import os
import numpy as np
import data_transforms
import pathfinder
import utils
import utils_lung
from configuration import set_configuration, config
from utils_plots import plot_slice_3d_2, plot_2d, plot_2d_4, plot_slice_3d_3, plot_2d_animation
import utils_lung
import lung_segmentation
set_configuration('configs_seg_scan', 'luna_s_local')
p_transform = {'patch_size': (416, 416, 416),
'mm_patch_size': (416, 416, 416),
'pixel_spacing': (1., 1., 1.)
}
def test_luna3d():
image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
image_dir = image_dir + '/test_luna/'
utils.auto_make_dir(image_dir)
id2zyxd = utils_lung.read_luna_annotations(pathfinder.LUNA_LABELS_PATH)
luna_data_paths = [
'/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474.mhd']
candidates = utils.load_pkl(
'/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474.pkl')
candidates = candidates[:4]
print candidates
print '--------------'
print id2zyxd['1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474']
for k, p in enumerate(luna_data_paths):
id = os.path.basename(p).replace('.mhd', '')
print id
img, origin, pixel_spacing = utils_lung.read_mhd(p)
lung_mask = lung_segmentation.segment_HU_scan_ira(img)
print np.min(lung_mask), np.max(lung_mask)
x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=img,
pixel_spacing=pixel_spacing,
p_transform=p_transform,
luna_annotations=candidates,
p_transform_augment=None,
luna_origin=origin,
lung_mask=lung_mask,
world_coord_system=False)
print np.min(lung_mask_out), np.max(lung_mask_out)
plot_slice_3d_2(x, lung_mask_out, 0, id)
plot_slice_3d_2(x, lung_mask_out, 1, id)
plot_slice_3d_2(x, lung_mask_out, 2, id)
# for zyxd in annotations_tf:
# plot_slice_3d_2(x, lung_mask_out, 0, id, idx=zyxd)
# plot_slice_3d_2(x, lung_mask_out, 1, id, idx=zyxd)
# plot_slice_3d_2(x, lung_mask_out, 2, id, idx=zyxd)
for i in xrange(136, x.shape[1]):
plot_slice_3d_2(x, lung_mask_out, 1, str(id) + str(i), idx=np.array([200, i, 200]))
# plot_slice_3d_2(x, lung_mask_out, 0, id, idx=np.array(x.shape) / 2)
# plot_slice_3d_2(x, lung_mask_out, 1, id, idx=np.array(x.shape) / 2)
# plot_slice_3d_2(x, lung_mask_out, 2, id, idx=np.array(x.shape) / 2)
def test_luna3d_2():
image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
image_dir = image_dir + '/test_luna/'
utils.auto_make_dir(image_dir)
id2zyxd = utils_lung.read_luna_annotations(pathfinder.LUNA_LABELS_PATH)
luna_data_paths = [
'/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311.mhd']
for k, p in enumerate(luna_data_paths):
id = os.path.basename(p).replace('.mhd', '')
print id
img, origin, pixel_spacing = utils_lung.read_mhd(p)
lung_mask = lung_segmentation.segment_HU_scan(img)
annotations = id2zyxd[id]
x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=img,
pixel_spacing=pixel_spacing,
p_transform=p_transform,
luna_annotations=annotations,
p_transform_augment=None,
luna_origin=origin,
lung_mask=lung_mask,
world_coord_system=True)
y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere')
for zyxd in annotations_tf:
plot_slice_3d_3(x, lung_mask_out, y, 0, id, idx=zyxd)
plot_slice_3d_3(x, lung_mask_out, y, 1, id, idx=zyxd)
plot_slice_3d_3(x, lung_mask_out, y, 2, id, idx=zyxd)
# for i in xrange(136, x.shape[1]):
# plot_slice_3d_2(x, lung_mask_out, 1, str(id) + str(i), idx=np.array([200, i, 200]))
#
# plot_slice_3d_2(x, lung_mask_out, 0, id, idx=np.array(x.shape) / 2)
# plot_slice_3d_2(x, lung_mask_out, 1, id, idx=np.array(x.shape) / 2)
# plot_slice_3d_2(x, lung_mask_out, 2, id, idx=np.array(x.shape) / 2)
if __name__ == '__main__':
test_luna3d()