Diff of /plot_luna_roi.py [000000] .. [70b6b3]

Switch to unified view

a b/plot_luna_roi.py
1
import cPickle as pickle
2
import string
3
import sys
4
import time
5
from itertools import izip
6
import lasagne as nn
7
import numpy as np
8
import theano
9
from datetime import datetime, timedelta
10
import utils
11
import logger
12
import theano.tensor as T
13
import buffering
14
from configuration import config, set_configuration
15
import pathfinder
16
import utils_plots
17
import utils_lung
18
import data_iterators
19
20
theano.config.warn_float64 = 'raise'
21
22
if len(sys.argv) < 2:
23
    sys.exit("Usage: train.py <configuration_name>")
24
25
config_name = sys.argv[1]
26
set_configuration('configs_fpred_scan', config_name)
27
28
predictions_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
29
outputs_path = predictions_dir + '/%s' % config_name
30
utils.auto_make_dir(outputs_path)
31
32
# candidates after segmentations path
33
predictions_dir = utils.get_dir_path('model-predictions', pathfinder.METADATA_PATH)
34
segmentation_outputs_path = predictions_dir + '/%s' % config_name
35
id2candidates_path = utils_lung.get_candidates_paths(segmentation_outputs_path)
36
37
data_iterator = data_iterators.FixedCandidatesLunaDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,
38
                                                                transform_params=config().p_transform,
39
                                                                data_prep_fun=config().data_prep_function,
40
                                                                id2candidates_path=id2candidates_path,
41
                                                                top_n=4)
42
43
print
44
print 'Data'
45
print 'n samples: %d' % data_iterator.nsamples
46
47
prev_pid = None
48
i = 0
49
for (x_chunk_train, y_chunk_train, id_train) in data_iterator.generate():
50
    print id_train
51
    pid = id_train[0]
52
    if pid == prev_pid:
53
        i += 1
54
    else:
55
        i = 0
56
57
    utils_plots.plot_slice_3d_3axis(input=x_chunk_train[0, 0],
58
                                    pid='-'.join([str(pid), str(i)]),
59
                                    img_dir=outputs_path,
60
                                    idx=np.array(x_chunk_train[0, 0].shape) / 2)
61
    prev_pid = pid