Diff of /plot_dsb_roi.py [000000] .. [70b6b3]

Switch to unified view

a b/plot_dsb_roi.py
1
import cPickle as pickle
2
import string
3
import sys
4
import time
5
from itertools import izip
6
import lasagne as nn
7
import numpy as np
8
import theano
9
from datetime import datetime, timedelta
10
import utils
11
import logger
12
import theano.tensor as T
13
import buffering
14
from configuration import config, set_configuration
15
import pathfinder
16
import utils_plots
17
18
theano.config.warn_float64 = 'raise'
19
20
if len(sys.argv) < 2:
21
    sys.exit("Usage: train.py <configuration_name>")
22
23
config_name = sys.argv[1]
24
set_configuration('configs_class_dsb', config_name)
25
26
predictions_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
27
outputs_path = predictions_dir + '/%s' % config_name
28
utils.auto_make_dir(outputs_path)
29
30
train_data_iterator = config().train_data_iterator
31
valid_data_iterator = config().valid_data_iterator
32
test_data_iterator = config().test_data_iterator
33
34
35
print
36
print 'Data'
37
print 'n train: %d' % train_data_iterator.nsamples
38
print 'n validation: %d' % valid_data_iterator.nsamples
39
print 'n chunks per epoch', config().nchunks_per_epoch
40
41
# use buffering.buffered_gen_threaded()
42
for (x_chunk_train, y_chunk_train, id_train) in test_data_iterator.generate():
43
    print id_train
44
    print x_chunk_train.shape
45
46
    for i in xrange(x_chunk_train.shape[0]):
47
        pid = id_train[i]
48
        for j in xrange(x_chunk_train.shape[1]):
49
            utils_plots.plot_slice_3d_3axis(input=x_chunk_train[i, j, 0],
50
                                            pid='-'.join([str(pid), str(j)]),
51
                                            img_dir=outputs_path,
52
                                            idx=np.array(x_chunk_train[i, j, 0].shape) / 2)