--- a +++ b/plot_dsb_roi.py @@ -0,0 +1,52 @@ +import cPickle as pickle +import string +import sys +import time +from itertools import izip +import lasagne as nn +import numpy as np +import theano +from datetime import datetime, timedelta +import utils +import logger +import theano.tensor as T +import buffering +from configuration import config, set_configuration +import pathfinder +import utils_plots + +theano.config.warn_float64 = 'raise' + +if len(sys.argv) < 2: + sys.exit("Usage: train.py <configuration_name>") + +config_name = sys.argv[1] +set_configuration('configs_class_dsb', config_name) + +predictions_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH) +outputs_path = predictions_dir + '/%s' % config_name +utils.auto_make_dir(outputs_path) + +train_data_iterator = config().train_data_iterator +valid_data_iterator = config().valid_data_iterator +test_data_iterator = config().test_data_iterator + + +print +print 'Data' +print 'n train: %d' % train_data_iterator.nsamples +print 'n validation: %d' % valid_data_iterator.nsamples +print 'n chunks per epoch', config().nchunks_per_epoch + +# use buffering.buffered_gen_threaded() +for (x_chunk_train, y_chunk_train, id_train) in test_data_iterator.generate(): + print id_train + print x_chunk_train.shape + + for i in xrange(x_chunk_train.shape[0]): + pid = id_train[i] + for j in xrange(x_chunk_train.shape[1]): + utils_plots.plot_slice_3d_3axis(input=x_chunk_train[i, j, 0], + pid='-'.join([str(pid), str(j)]), + img_dir=outputs_path, + idx=np.array(x_chunk_train[i, j, 0].shape) / 2)