Diff of /generate_features_dsb.py [000000] .. [70b6b3]

Switch to unified view

a b/generate_features_dsb.py
1
import sys
2
import lasagne as nn
3
import numpy as np
4
import theano
5
import pathfinder
6
import utils
7
from configuration import config, set_configuration
8
from utils_plots import plot_slice_3d_3
9
import theano.tensor as T
10
import utils_lung
11
import blobs_detection
12
import logger
13
from collections import defaultdict
14
15
theano.config.warn_float64 = 'raise'
16
17
if len(sys.argv) < 2:
18
    sys.exit("Usage: generate_features_dsb.py <configuration_name>")
19
20
config_name = sys.argv[1]
21
set_configuration('configs_gen_features', config_name)
22
23
# predictions path
24
predictions_dir = utils.get_dir_path('model-predictions', pathfinder.METADATA_PATH)
25
outputs_path = predictions_dir + '/%s' % config_name
26
utils.auto_make_dir(outputs_path)
27
28
# logs
29
logs_dir = utils.get_dir_path('logs', pathfinder.METADATA_PATH)
30
sys.stdout = logger.Logger(logs_dir + '/%s.log' % config_name)
31
sys.stderr = sys.stdout
32
33
# builds model and sets its parameters
34
model = config().build_model()
35
36
x_shared = nn.utils.shared_empty(dim=len(model.l_in.shape))
37
givens_valid = {}
38
givens_valid[model.l_in.input_var] = x_shared
39
40
get_featuremap = theano.function([], nn.layers.get_output(model.l_out, deterministic=True),
41
                                        givens=givens_valid,
42
                                        on_unused_input='ignore')
43
44
data_iterator = config().data_iterator
45
46
print
47
print 'Data'
48
print 'n samples: %d' % data_iterator.nsamples
49
50
prev_pid = None
51
candidates = []
52
patients_count = 0
53
patch_size = 48
54
stride = 16
55
for n, (x, id) in enumerate(data_iterator.generate()):
56
    pid = id
57
58
    print(pid)
59
    print model.l_out.output_shape
60
    predictions = np.empty(((x.shape[2]-patch_size+1)//stride, (x.shape[3]-patch_size+1)//stride, (x.shape[4]-patch_size+1)//stride,) + (model.l_out.output_shape[1],))
61
    print predictions.shape
62
    print 'x.shape', x.shape
63
    for idxi, i in enumerate(np.arange(0,x.shape[2]-patch_size,stride)):  
64
        print 'slice idxi', idxi 
65
    for idxj, j in enumerate(np.arange(0,x.shape[3]-patch_size,stride)):  
66
            for idxk, k in enumerate(np.arange(0,x.shape[4]-patch_size,stride)):
67
                #print i, j, k, '|', idxi, idxj, idxk, x.shape[4], x.shape[4]-patch_size+1
68
        x_in = x[0,0,i:i+patch_size,j:j+patch_size,k:k+patch_size]
69
                #print x_in.shape
70
                x_shared.set_value(x_in[None,:,:,:])
71
                fm = get_featuremap()
72
        #print fm.shape
73
                predictions[idxi,idxj,idxk] = fm[0]
74
75
    result = np.concatenate(predictions,axis=0)
76
77
    utils.save_pkl(result, outputs_path + '/%s.pkl' % pid)