--- a +++ b/generate_features_dsb.py @@ -0,0 +1,77 @@ +import sys +import lasagne as nn +import numpy as np +import theano +import pathfinder +import utils +from configuration import config, set_configuration +from utils_plots import plot_slice_3d_3 +import theano.tensor as T +import utils_lung +import blobs_detection +import logger +from collections import defaultdict + +theano.config.warn_float64 = 'raise' + +if len(sys.argv) < 2: + sys.exit("Usage: generate_features_dsb.py <configuration_name>") + +config_name = sys.argv[1] +set_configuration('configs_gen_features', config_name) + +# predictions path +predictions_dir = utils.get_dir_path('model-predictions', pathfinder.METADATA_PATH) +outputs_path = predictions_dir + '/%s' % config_name +utils.auto_make_dir(outputs_path) + +# logs +logs_dir = utils.get_dir_path('logs', pathfinder.METADATA_PATH) +sys.stdout = logger.Logger(logs_dir + '/%s.log' % config_name) +sys.stderr = sys.stdout + +# builds model and sets its parameters +model = config().build_model() + +x_shared = nn.utils.shared_empty(dim=len(model.l_in.shape)) +givens_valid = {} +givens_valid[model.l_in.input_var] = x_shared + +get_featuremap = theano.function([], nn.layers.get_output(model.l_out, deterministic=True), + givens=givens_valid, + on_unused_input='ignore') + +data_iterator = config().data_iterator + +print +print 'Data' +print 'n samples: %d' % data_iterator.nsamples + +prev_pid = None +candidates = [] +patients_count = 0 +patch_size = 48 +stride = 16 +for n, (x, id) in enumerate(data_iterator.generate()): + pid = id + + print(pid) + print model.l_out.output_shape + predictions = np.empty(((x.shape[2]-patch_size+1)//stride, (x.shape[3]-patch_size+1)//stride, (x.shape[4]-patch_size+1)//stride,) + (model.l_out.output_shape[1],)) + print predictions.shape + print 'x.shape', x.shape + for idxi, i in enumerate(np.arange(0,x.shape[2]-patch_size,stride)): + print 'slice idxi', idxi + for idxj, j in enumerate(np.arange(0,x.shape[3]-patch_size,stride)): + for idxk, k in enumerate(np.arange(0,x.shape[4]-patch_size,stride)): + #print i, j, k, '|', idxi, idxj, idxk, x.shape[4], x.shape[4]-patch_size+1 + x_in = x[0,0,i:i+patch_size,j:j+patch_size,k:k+patch_size] + #print x_in.shape + x_shared.set_value(x_in[None,:,:,:]) + fm = get_featuremap() + #print fm.shape + predictions[idxi,idxj,idxk] = fm[0] + + result = np.concatenate(predictions,axis=0) + + utils.save_pkl(result, outputs_path + '/%s.pkl' % pid)