Diff of /generate_dsb_histogram.py [000000] .. [70b6b3]

Switch to unified view

a b/generate_dsb_histogram.py
1
import cPickle as pickle
2
import string
3
import sys
4
import time
5
from itertools import izip
6
import numpy as np
7
from datetime import datetime, timedelta
8
import utils
9
import logger
10
import buffering
11
from configuration import config, set_configuration
12
import pathfinder
13
import utils_plots
14
import data_iterators
15
import data_transforms
16
17
import matplotlib
18
matplotlib.use('Agg')
19
import matplotlib.pyplot as plt
20
21
22
predictions_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
23
outputs_path = predictions_dir + 'dsb_scan_histograms'
24
utils.auto_make_dir(outputs_path)
25
26
train_valid_ids = utils.load_pkl(pathfinder.VALIDATION_SPLIT_PATH)
27
train_pids, valid_pids, test_pids = train_valid_ids['training'], train_valid_ids['validation'], train_valid_ids['test']
28
print 'n train', len(train_pids)
29
print 'n valid', len(valid_pids)
30
print 'n test', len(test_pids)
31
32
all_pids = train_pids + valid_pids + test_pids
33
34
data_iterator = data_iterators.DSBDataGenerator(data_path=pathfinder.DATA_PATH, patient_pids=all_pids)
35
36
histograms = {}
37
bins = np.arange(-960,1700,40)
38
# avg_histogram = np.zeros((bins.shape[0]-1), dtype=np.int64)
39
# use buffering.buffered_gen_threaded()
40
for idx, (x, pid) in enumerate(data_iterator.generate()):
41
    print idx, 'pid', pid
42
    histograms[pid]= data_transforms.get_rescale_params_hist_eq(x)
43
44
45
46
pickle.dump(histograms, open( "dsb_rescale_params_hist_eq.pkl", "wb" ) )