|
a |
|
b/configs_seg_patch/luna_p1.py |
|
|
1 |
import numpy as np |
|
|
2 |
import data_transforms |
|
|
3 |
import data_iterators |
|
|
4 |
import pathfinder |
|
|
5 |
import lasagne as nn |
|
|
6 |
from collections import namedtuple |
|
|
7 |
from functools import partial |
|
|
8 |
import lasagne.layers.dnn as dnn |
|
|
9 |
import theano.tensor as T |
|
|
10 |
import utils |
|
|
11 |
import nn_lung |
|
|
12 |
|
|
|
13 |
restart_from_save = None |
|
|
14 |
rng = np.random.RandomState(42) |
|
|
15 |
|
|
|
16 |
# transformations |
|
|
17 |
p_transform = {'patch_size': (64, 64, 64), |
|
|
18 |
'mm_patch_size': (64, 64, 64), |
|
|
19 |
'pixel_spacing': (1., 1., 1.) |
|
|
20 |
} |
|
|
21 |
p_transform_augment = { |
|
|
22 |
'translation_range_z': [-27, 27], |
|
|
23 |
'translation_range_y': [-27, 27], |
|
|
24 |
'translation_range_x': [-27, 27], |
|
|
25 |
'rotation_range_z': [-180, 180], |
|
|
26 |
'rotation_range_y': [-180, 180], |
|
|
27 |
'rotation_range_x': [-180, 180] |
|
|
28 |
} |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
# data preparation function |
|
|
32 |
def data_prep_function(data, patch_center, luna_annotations, pixel_spacing, luna_origin, p_transform, |
|
|
33 |
p_transform_augment, **kwargs): |
|
|
34 |
x, patch_annotation_tf, annotations_tf = data_transforms.transform_patch3d(data=data, |
|
|
35 |
luna_annotations=luna_annotations, |
|
|
36 |
patch_center=patch_center, |
|
|
37 |
p_transform=p_transform, |
|
|
38 |
p_transform_augment=p_transform_augment, |
|
|
39 |
pixel_spacing=pixel_spacing, |
|
|
40 |
luna_origin=luna_origin) |
|
|
41 |
x = data_transforms.hu2normHU(x) |
|
|
42 |
y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere') |
|
|
43 |
return x, y |
|
|
44 |
|
|
|
45 |
|
|
|
46 |
data_prep_function_train = partial(data_prep_function, p_transform_augment=p_transform_augment, p_transform=p_transform) |
|
|
47 |
data_prep_function_valid = partial(data_prep_function, p_transform_augment=None, p_transform=p_transform) |
|
|
48 |
|
|
|
49 |
# data iterators |
|
|
50 |
batch_size = 1 |
|
|
51 |
nbatches_chunk = 4 |
|
|
52 |
chunk_size = batch_size * nbatches_chunk |
|
|
53 |
|
|
|
54 |
train_valid_ids = utils.load_pkl(pathfinder.LUNA_VALIDATION_SPLIT_PATH) |
|
|
55 |
train_pids, valid_pids = train_valid_ids['train'], train_valid_ids['valid'] |
|
|
56 |
|
|
|
57 |
train_data_iterator = data_iterators.PatchPositiveLunaDataGenerator(data_path=pathfinder.LUNA_DATA_PATH, |
|
|
58 |
batch_size=chunk_size, |
|
|
59 |
transform_params=p_transform, |
|
|
60 |
data_prep_fun=data_prep_function_train, |
|
|
61 |
rng=rng, |
|
|
62 |
patient_ids=train_pids, |
|
|
63 |
full_batch=True, random=True, infinite=True) |
|
|
64 |
|
|
|
65 |
valid_data_iterator = data_iterators.PatchPositiveLunaDataGenerator(data_path=pathfinder.LUNA_DATA_PATH, |
|
|
66 |
batch_size=1, |
|
|
67 |
transform_params=p_transform, |
|
|
68 |
data_prep_fun=data_prep_function_valid, |
|
|
69 |
rng=rng, |
|
|
70 |
patient_ids=valid_pids, |
|
|
71 |
full_batch=False, random=False, infinite=False) |
|
|
72 |
|
|
|
73 |
nchunks_per_epoch = train_data_iterator.nsamples / chunk_size |
|
|
74 |
max_nchunks = nchunks_per_epoch * 30 |
|
|
75 |
|
|
|
76 |
validate_every = int(1. * nchunks_per_epoch) |
|
|
77 |
save_every = int(0.5 * nchunks_per_epoch) |
|
|
78 |
|
|
|
79 |
learning_rate_schedule = { |
|
|
80 |
0: 1e-5, |
|
|
81 |
int(max_nchunks * 0.4): 5e-6, |
|
|
82 |
int(max_nchunks * 0.5): 3e-6, |
|
|
83 |
int(max_nchunks * 0.6): 2e-6, |
|
|
84 |
int(max_nchunks * 0.85): 1e-6, |
|
|
85 |
int(max_nchunks * 0.95): 5e-7 |
|
|
86 |
} |
|
|
87 |
|
|
|
88 |
# model |
|
|
89 |
conv3d = partial(dnn.Conv3DDNNLayer, |
|
|
90 |
filter_size=3, |
|
|
91 |
pad='same', |
|
|
92 |
W=nn.init.Orthogonal(), |
|
|
93 |
b=nn.init.Constant(0.01), |
|
|
94 |
nonlinearity=nn.nonlinearities.linear) |
|
|
95 |
|
|
|
96 |
max_pool3d = partial(dnn.MaxPool3DDNNLayer, |
|
|
97 |
pool_size=2) |
|
|
98 |
|
|
|
99 |
|
|
|
100 |
def build_model(): |
|
|
101 |
l_in = nn.layers.InputLayer((None, 1,) + p_transform['patch_size']) |
|
|
102 |
l_target = nn.layers.InputLayer((None, 1,) + p_transform['patch_size']) |
|
|
103 |
|
|
|
104 |
net = {} |
|
|
105 |
base_n_filters = 64 |
|
|
106 |
net['contr_1_1'] = conv3d(l_in, base_n_filters) |
|
|
107 |
net['contr_1_1'] = nn.layers.ParametricRectifierLayer(net['contr_1_1']) |
|
|
108 |
net['contr_1_2'] = conv3d(net['contr_1_1'], base_n_filters) |
|
|
109 |
net['contr_1_2'] = nn.layers.ParametricRectifierLayer(net['contr_1_2']) |
|
|
110 |
net['contr_1_3'] = conv3d(net['contr_1_2'], base_n_filters) |
|
|
111 |
net['contr_1_3'] = nn.layers.ParametricRectifierLayer(net['contr_1_3']) |
|
|
112 |
net['pool1'] = max_pool3d(net['contr_1_3']) |
|
|
113 |
|
|
|
114 |
net['encode_1'] = conv3d(net['pool1'], base_n_filters) |
|
|
115 |
net['encode_1'] = nn.layers.ParametricRectifierLayer(net['encode_1']) |
|
|
116 |
net['encode_2'] = conv3d(net['encode_1'], base_n_filters) |
|
|
117 |
net['encode_2'] = nn.layers.ParametricRectifierLayer(net['encode_2']) |
|
|
118 |
net['encode_3'] = conv3d(net['encode_2'], base_n_filters) |
|
|
119 |
net['encode_3'] = nn.layers.ParametricRectifierLayer(net['encode_3']) |
|
|
120 |
net['upscale1'] = nn_lung.Upscale3DLayer(net['encode_3'], 2) |
|
|
121 |
|
|
|
122 |
net['concat1'] = nn.layers.ConcatLayer([net['upscale1'], net['contr_1_3']], |
|
|
123 |
cropping=(None, None, "center", "center", "center")) |
|
|
124 |
net['expand_1_1'] = conv3d(net['concat1'], 2 * base_n_filters) |
|
|
125 |
net['expand_1_1'] = nn.layers.ParametricRectifierLayer(net['expand_1_1']) |
|
|
126 |
net['expand_1_2'] = conv3d(net['expand_1_1'], 2 * base_n_filters) |
|
|
127 |
net['expand_1_2'] = nn.layers.ParametricRectifierLayer(net['expand_1_2']) |
|
|
128 |
net['expand_1_3'] = conv3d(net['expand_1_2'], base_n_filters) |
|
|
129 |
net['expand_1_3'] = nn.layers.ParametricRectifierLayer(net['expand_1_3']) |
|
|
130 |
|
|
|
131 |
l_out = dnn.Conv3DDNNLayer(net['expand_1_3'], num_filters=1, |
|
|
132 |
filter_size=1, |
|
|
133 |
W=nn.init.Constant(0.), |
|
|
134 |
nonlinearity=nn.nonlinearities.sigmoid) |
|
|
135 |
|
|
|
136 |
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target) |
|
|
137 |
|
|
|
138 |
|
|
|
139 |
def build_objective(model, deterministic=False, epsilon=1e-12): |
|
|
140 |
predictions = T.flatten(nn.layers.get_output(model.l_out)) |
|
|
141 |
targets = T.flatten(nn.layers.get_output(model.l_target)) |
|
|
142 |
dice = (2. * T.sum(targets * predictions) + epsilon) / (T.sum(predictions) + T.sum(targets) + epsilon) |
|
|
143 |
return -1. * dice |
|
|
144 |
|
|
|
145 |
|
|
|
146 |
def build_updates(train_loss, model, learning_rate): |
|
|
147 |
updates = nn.updates.adam(train_loss, nn.layers.get_all_params(model.l_out), learning_rate) |
|
|
148 |
return updates |