--- a +++ b/configs_fpred_patch/luna_c2.py @@ -0,0 +1,150 @@ +import numpy as np +import data_transforms +import data_iterators +import pathfinder +import lasagne as nn +from collections import namedtuple +from functools import partial +import lasagne.layers.dnn as dnn +import lasagne +import theano.tensor as T +import utils + +restart_from_save = None +rng = np.random.RandomState(42) + +# transformations +p_transform = {'patch_size': (64, 64, 64), + 'mm_patch_size': (64, 64, 64), + 'pixel_spacing': (1., 1., 1.) + } +p_transform_augment = { + 'translation_range_z': [-4, 4], + 'translation_range_y': [-4, 4], + 'translation_range_x': [-4, 4], + 'rotation_range_z': [-180, 180], + 'rotation_range_y': [-180, 180], + 'rotation_range_x': [-180, 180] +} + + +# data preparation function +def data_prep_function(data, patch_center, pixel_spacing, luna_origin, p_transform, + p_transform_augment, world_coord_system, **kwargs): + x, patch_annotation_tf = data_transforms.transform_patch3d(data=data, + luna_annotations=None, + patch_center=patch_center, + p_transform=p_transform, + p_transform_augment=p_transform_augment, + pixel_spacing=pixel_spacing, + luna_origin=luna_origin, + world_coord_system=world_coord_system) + x = data_transforms.pixelnormHU(x) + return x + + +data_prep_function_train = partial(data_prep_function, p_transform_augment=p_transform_augment, + p_transform=p_transform, world_coord_system=True) +data_prep_function_valid = partial(data_prep_function, p_transform_augment=None, + p_transform=p_transform, world_coord_system=True) + +# data iterators +batch_size = 4 +nbatches_chunk = 8 +chunk_size = batch_size * nbatches_chunk + +train_valid_ids = utils.load_pkl(pathfinder.LUNA_VALIDATION_SPLIT_PATH) +train_pids, valid_pids = train_valid_ids['train'], train_valid_ids['valid'] + +train_data_iterator = data_iterators.CandidatesLunaDataGenerator(data_path=pathfinder.LUNA_DATA_PATH, + batch_size=chunk_size, + transform_params=p_transform, + data_prep_fun=data_prep_function_train, + rng=rng, + patient_ids=train_pids, + full_batch=True, random=True, infinite=True, + positive_proportion=0.5) + +valid_data_iterator = data_iterators.CandidatesLunaValidDataGenerator(data_path=pathfinder.LUNA_DATA_PATH, + transform_params=p_transform, + data_prep_fun=data_prep_function_valid, + patient_ids=valid_pids) + +nchunks_per_epoch = train_data_iterator.nsamples / chunk_size +max_nchunks = nchunks_per_epoch * 100 + +validate_every = int(5. * nchunks_per_epoch) +save_every = int(1. * nchunks_per_epoch) + +learning_rate_schedule = { + 0: 1e-5, + int(max_nchunks * 0.5): 5e-6, + int(max_nchunks * 0.6): 2e-6, + int(max_nchunks * 0.8): 1e-6, + int(max_nchunks * 0.9): 5e-7 +} + +# model +conv3 = partial(dnn.Conv3DDNNLayer, + filter_size=3, + pad='valid', + W=nn.init.Orthogonal(), + b=nn.init.Constant(0.01), + nonlinearity=nn.nonlinearities.very_leaky_rectify) + +max_pool = partial(dnn.MaxPool3DDNNLayer, + pool_size=2) + +drop = lasagne.layers.DropoutLayer + +dense = partial(lasagne.layers.DenseLayer, + W=lasagne.init.Orthogonal(), + b=lasagne.init.Constant(0.01), + nonlinearity=lasagne.nonlinearities.very_leaky_rectify) + + +def build_model(): + l_in = nn.layers.InputLayer((None, 1,) + p_transform['patch_size']) + l_target = nn.layers.InputLayer((None, 1)) + + l = conv3(l_in, num_filters=128) + l = conv3(l, num_filters=128) + + l = max_pool(l) + + l = conv3(l, num_filters=128) + l = conv3(l, num_filters=128) + + l = max_pool(l) + + l = conv3(l, num_filters=256) + l = conv3(l, num_filters=256) + l = conv3(l, num_filters=256) + + l = max_pool(l) + + l_d01 = nn.layers.DenseLayer(l, num_units=1024, W=nn.init.Orthogonal(), + b=nn.init.Constant(0.01), nonlinearity=nn.nonlinearities.very_leaky_rectify) + + l_d02 = nn.layers.DenseLayer(nn.layers.dropout(l_d01), num_units=1024, W=nn.init.Orthogonal(), + b=nn.init.Constant(0.01), nonlinearity=nn.nonlinearities.very_leaky_rectify) + + l_out = nn.layers.DenseLayer(l_d02, num_units=2, + W=nn.init.Constant(0.), + nonlinearity=nn.nonlinearities.softmax) + + return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target) + + +def build_objective(model, deterministic=False, epsilon=1e-12): + predictions = nn.layers.get_output(model.l_out, deterministic=deterministic) + targets = T.cast(T.flatten(nn.layers.get_output(model.l_target)), 'int32') + p = predictions[T.arange(predictions.shape[0]), targets] + p = T.clip(p, epsilon, 1.) + loss = T.mean(T.log(p)) + return -loss + + +def build_updates(train_loss, model, learning_rate): + updates = nn.updates.adam(train_loss, nn.layers.get_all_params(model.l_out, trainable=True), learning_rate) + return updates