a b/configs_fpred_patch/luna_c2.py
1
import numpy as np
2
import data_transforms
3
import data_iterators
4
import pathfinder
5
import lasagne as nn
6
from collections import namedtuple
7
from functools import partial
8
import lasagne.layers.dnn as dnn
9
import lasagne
10
import theano.tensor as T
11
import utils
12
13
restart_from_save = None
14
rng = np.random.RandomState(42)
15
16
# transformations
17
p_transform = {'patch_size': (64, 64, 64),
18
               'mm_patch_size': (64, 64, 64),
19
               'pixel_spacing': (1., 1., 1.)
20
               }
21
p_transform_augment = {
22
    'translation_range_z': [-4, 4],
23
    'translation_range_y': [-4, 4],
24
    'translation_range_x': [-4, 4],
25
    'rotation_range_z': [-180, 180],
26
    'rotation_range_y': [-180, 180],
27
    'rotation_range_x': [-180, 180]
28
}
29
30
31
# data preparation function
32
def data_prep_function(data, patch_center, pixel_spacing, luna_origin, p_transform,
33
                       p_transform_augment, world_coord_system, **kwargs):
34
    x, patch_annotation_tf = data_transforms.transform_patch3d(data=data,
35
                                                               luna_annotations=None,
36
                                                               patch_center=patch_center,
37
                                                               p_transform=p_transform,
38
                                                               p_transform_augment=p_transform_augment,
39
                                                               pixel_spacing=pixel_spacing,
40
                                                               luna_origin=luna_origin,
41
                                                               world_coord_system=world_coord_system)
42
    x = data_transforms.pixelnormHU(x)
43
    return x
44
45
46
data_prep_function_train = partial(data_prep_function, p_transform_augment=p_transform_augment,
47
                                   p_transform=p_transform, world_coord_system=True)
48
data_prep_function_valid = partial(data_prep_function, p_transform_augment=None,
49
                                   p_transform=p_transform, world_coord_system=True)
50
51
# data iterators
52
batch_size = 4
53
nbatches_chunk = 8
54
chunk_size = batch_size * nbatches_chunk
55
56
train_valid_ids = utils.load_pkl(pathfinder.LUNA_VALIDATION_SPLIT_PATH)
57
train_pids, valid_pids = train_valid_ids['train'], train_valid_ids['valid']
58
59
train_data_iterator = data_iterators.CandidatesLunaDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,
60
                                                                 batch_size=chunk_size,
61
                                                                 transform_params=p_transform,
62
                                                                 data_prep_fun=data_prep_function_train,
63
                                                                 rng=rng,
64
                                                                 patient_ids=train_pids,
65
                                                                 full_batch=True, random=True, infinite=True,
66
                                                                 positive_proportion=0.5)
67
68
valid_data_iterator = data_iterators.CandidatesLunaValidDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,
69
                                                                      transform_params=p_transform,
70
                                                                      data_prep_fun=data_prep_function_valid,
71
                                                                      patient_ids=valid_pids)
72
73
nchunks_per_epoch = train_data_iterator.nsamples / chunk_size
74
max_nchunks = nchunks_per_epoch * 100
75
76
validate_every = int(5. * nchunks_per_epoch)
77
save_every = int(1. * nchunks_per_epoch)
78
79
learning_rate_schedule = {
80
    0: 1e-5,
81
    int(max_nchunks * 0.5): 5e-6,
82
    int(max_nchunks * 0.6): 2e-6,
83
    int(max_nchunks * 0.8): 1e-6,
84
    int(max_nchunks * 0.9): 5e-7
85
}
86
87
# model
88
conv3 = partial(dnn.Conv3DDNNLayer,
89
                filter_size=3,
90
                pad='valid',
91
                W=nn.init.Orthogonal(),
92
                b=nn.init.Constant(0.01),
93
                nonlinearity=nn.nonlinearities.very_leaky_rectify)
94
95
max_pool = partial(dnn.MaxPool3DDNNLayer,
96
                   pool_size=2)
97
98
drop = lasagne.layers.DropoutLayer
99
100
dense = partial(lasagne.layers.DenseLayer,
101
                W=lasagne.init.Orthogonal(),
102
                b=lasagne.init.Constant(0.01),
103
                nonlinearity=lasagne.nonlinearities.very_leaky_rectify)
104
105
106
def build_model():
107
    l_in = nn.layers.InputLayer((None, 1,) + p_transform['patch_size'])
108
    l_target = nn.layers.InputLayer((None, 1))
109
110
    l = conv3(l_in, num_filters=128)
111
    l = conv3(l, num_filters=128)
112
113
    l = max_pool(l)
114
115
    l = conv3(l, num_filters=128)
116
    l = conv3(l, num_filters=128)
117
118
    l = max_pool(l)
119
120
    l = conv3(l, num_filters=256)
121
    l = conv3(l, num_filters=256)
122
    l = conv3(l, num_filters=256)
123
124
    l = max_pool(l)
125
126
    l_d01 = nn.layers.DenseLayer(l, num_units=1024, W=nn.init.Orthogonal(),
127
                                 b=nn.init.Constant(0.01), nonlinearity=nn.nonlinearities.very_leaky_rectify)
128
129
    l_d02 = nn.layers.DenseLayer(nn.layers.dropout(l_d01), num_units=1024, W=nn.init.Orthogonal(),
130
                                 b=nn.init.Constant(0.01), nonlinearity=nn.nonlinearities.very_leaky_rectify)
131
132
    l_out = nn.layers.DenseLayer(l_d02, num_units=2,
133
                                 W=nn.init.Constant(0.),
134
                                 nonlinearity=nn.nonlinearities.softmax)
135
136
    return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
137
138
139
def build_objective(model, deterministic=False, epsilon=1e-12):
140
    predictions = nn.layers.get_output(model.l_out, deterministic=deterministic)
141
    targets = T.cast(T.flatten(nn.layers.get_output(model.l_target)), 'int32')
142
    p = predictions[T.arange(predictions.shape[0]), targets]
143
    p = T.clip(p, epsilon, 1.)
144
    loss = T.mean(T.log(p))
145
    return -loss
146
147
148
def build_updates(train_loss, model, learning_rate):
149
    updates = nn.updates.adam(train_loss, nn.layers.get_all_params(model.l_out, trainable=True), learning_rate)
150
    return updates