|
a |
|
b/scripts/test/predict.py |
|
|
1 |
#==============================================================================# |
|
|
2 |
# Author: Dominik Müller # |
|
|
3 |
# Copyright: 2020 IT-Infrastructure for Translational Medical Research, # |
|
|
4 |
# University of Augsburg # |
|
|
5 |
# # |
|
|
6 |
# This program is free software: you can redistribute it and/or modify # |
|
|
7 |
# it under the terms of the GNU General Public License as published by # |
|
|
8 |
# the Free Software Foundation, either version 3 of the License, or # |
|
|
9 |
# (at your option) any later version. # |
|
|
10 |
# # |
|
|
11 |
# This program is distributed in the hope that it will be useful, # |
|
|
12 |
# but WITHOUT ANY WARRANTY; without even the implied warranty of # |
|
|
13 |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # |
|
|
14 |
# GNU General Public License for more details. # |
|
|
15 |
# # |
|
|
16 |
# You should have received a copy of the GNU General Public License # |
|
|
17 |
# along with this program. If not, see <http://www.gnu.org/licenses/>. # |
|
|
18 |
#==============================================================================# |
|
|
19 |
#-----------------------------------------------------# |
|
|
20 |
# Library imports # |
|
|
21 |
#-----------------------------------------------------# |
|
|
22 |
import tensorflow as tf |
|
|
23 |
from miscnn.data_loading.interfaces import NIFTI_interface |
|
|
24 |
from miscnn import Data_IO, Preprocessor, Neural_Network |
|
|
25 |
from miscnn.processing.subfunctions import Normalization, Clipping, Resampling |
|
|
26 |
from miscnn.neural_network.architecture.unet.standard import Architecture |
|
|
27 |
from miscnn.neural_network.metrics import tversky_crossentropy, dice_soft, \ |
|
|
28 |
dice_crossentropy, tversky_loss |
|
|
29 |
import argparse |
|
|
30 |
import os |
|
|
31 |
|
|
|
32 |
#-----------------------------------------------------# |
|
|
33 |
# Argparser # |
|
|
34 |
#-----------------------------------------------------# |
|
|
35 |
parser = argparse.ArgumentParser(description="Automated COVID-19 Segmentation") |
|
|
36 |
parser.add_argument("--model", help="Path to model", required=True, type=str, dest="model") |
|
|
37 |
parser.add_argument("--output", help="Path to the output directory", |
|
|
38 |
required=True, type=str, dest="output") |
|
|
39 |
parser.add_argument("-g", "--gpu", help="GPU ID selection for multi cluster", |
|
|
40 |
required=False, type=int, dest="gpu", default=0) |
|
|
41 |
args = parser.parse_args() |
|
|
42 |
path_model = args.model |
|
|
43 |
path_preds = args.output |
|
|
44 |
os.environ["CUDA_VISIBLE_DEVICES"] = str(int(args.gpu)) |
|
|
45 |
|
|
|
46 |
#-----------------------------------------------------# |
|
|
47 |
# Setup of MIScnn Pipeline # |
|
|
48 |
#-----------------------------------------------------# |
|
|
49 |
# Initialize Data IO Interface for NIfTI data |
|
|
50 |
## We are using 4 classes due to [background, lung_left, lung_right, covid-19] |
|
|
51 |
interface = NIFTI_interface(channels=1, classes=4) |
|
|
52 |
|
|
|
53 |
# Create Data IO object to load and write samples in the file structure |
|
|
54 |
data_io = Data_IO(interface, input_path="data.testing", output_path=path_preds, |
|
|
55 |
delete_batchDir=False) |
|
|
56 |
|
|
|
57 |
# Access all available samples in our file structure |
|
|
58 |
sample_list = data_io.get_indiceslist() |
|
|
59 |
sample_list.sort() |
|
|
60 |
|
|
|
61 |
# Create a clipping Subfunction to the lung window of CTs (-1250 and 250) |
|
|
62 |
sf_clipping = Clipping(min=-1250, max=250) |
|
|
63 |
# Create a pixel value normalization Subfunction to scale between 0-255 |
|
|
64 |
sf_normalize = Normalization(mode="grayscale") |
|
|
65 |
# Create a resampling Subfunction to voxel spacing 1.58 x 1.58 x 2.70 |
|
|
66 |
sf_resample = Resampling((1.58, 1.58, 2.70)) |
|
|
67 |
# Create a pixel value normalization Subfunction for z-score scaling |
|
|
68 |
sf_zscore = Normalization(mode="z-score") |
|
|
69 |
|
|
|
70 |
# Assemble Subfunction classes into a list |
|
|
71 |
sf = [sf_clipping, sf_normalize, sf_resample, sf_zscore] |
|
|
72 |
|
|
|
73 |
# Create and configure the Preprocessor class |
|
|
74 |
pp = Preprocessor(data_io, data_aug=None, batch_size=2, subfunctions=sf, |
|
|
75 |
prepare_subfunctions=True, prepare_batches=False, |
|
|
76 |
analysis="patchwise-crop", patch_shape=(160, 160, 80), |
|
|
77 |
use_multiprocessing=True) |
|
|
78 |
# Adjust the patch overlap for predictions |
|
|
79 |
pp.patchwise_overlap = (80, 80, 30) |
|
|
80 |
pp.mp_threads = 16 |
|
|
81 |
|
|
|
82 |
# Initialize the Architecture |
|
|
83 |
unet_standard = Architecture(depth=4, activation="softmax", |
|
|
84 |
batch_normalization=True) |
|
|
85 |
|
|
|
86 |
# Create the Neural Network model |
|
|
87 |
model = Neural_Network(preprocessor=pp, architecture=unet_standard, |
|
|
88 |
loss=tversky_crossentropy, |
|
|
89 |
metrics=[tversky_loss, dice_soft, dice_crossentropy], |
|
|
90 |
batch_queue_size=3, workers=3, learninig_rate=0.001) |
|
|
91 |
|
|
|
92 |
# Load best model weights during fitting |
|
|
93 |
model.load(path_model) |
|
|
94 |
|
|
|
95 |
# Compute predictions |
|
|
96 |
model.predict(sample_list, return_output=False) |