--- a +++ b/scripts/test/predict.py @@ -0,0 +1,96 @@ +#==============================================================================# +# Author: Dominik Müller # +# Copyright: 2020 IT-Infrastructure for Translational Medical Research, # +# University of Augsburg # +# # +# This program is free software: you can redistribute it and/or modify # +# it under the terms of the GNU General Public License as published by # +# the Free Software Foundation, either version 3 of the License, or # +# (at your option) any later version. # +# # +# This program is distributed in the hope that it will be useful, # +# but WITHOUT ANY WARRANTY; without even the implied warranty of # +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # +# GNU General Public License for more details. # +# # +# You should have received a copy of the GNU General Public License # +# along with this program. If not, see <http://www.gnu.org/licenses/>. # +#==============================================================================# +#-----------------------------------------------------# +# Library imports # +#-----------------------------------------------------# +import tensorflow as tf +from miscnn.data_loading.interfaces import NIFTI_interface +from miscnn import Data_IO, Preprocessor, Neural_Network +from miscnn.processing.subfunctions import Normalization, Clipping, Resampling +from miscnn.neural_network.architecture.unet.standard import Architecture +from miscnn.neural_network.metrics import tversky_crossentropy, dice_soft, \ + dice_crossentropy, tversky_loss +import argparse +import os + +#-----------------------------------------------------# +# Argparser # +#-----------------------------------------------------# +parser = argparse.ArgumentParser(description="Automated COVID-19 Segmentation") +parser.add_argument("--model", help="Path to model", required=True, type=str, dest="model") +parser.add_argument("--output", help="Path to the output directory", + required=True, type=str, dest="output") +parser.add_argument("-g", "--gpu", help="GPU ID selection for multi cluster", + required=False, type=int, dest="gpu", default=0) +args = parser.parse_args() +path_model = args.model +path_preds = args.output +os.environ["CUDA_VISIBLE_DEVICES"] = str(int(args.gpu)) + +#-----------------------------------------------------# +# Setup of MIScnn Pipeline # +#-----------------------------------------------------# +# Initialize Data IO Interface for NIfTI data +## We are using 4 classes due to [background, lung_left, lung_right, covid-19] +interface = NIFTI_interface(channels=1, classes=4) + +# Create Data IO object to load and write samples in the file structure +data_io = Data_IO(interface, input_path="data.testing", output_path=path_preds, + delete_batchDir=False) + +# Access all available samples in our file structure +sample_list = data_io.get_indiceslist() +sample_list.sort() + +# Create a clipping Subfunction to the lung window of CTs (-1250 and 250) +sf_clipping = Clipping(min=-1250, max=250) +# Create a pixel value normalization Subfunction to scale between 0-255 +sf_normalize = Normalization(mode="grayscale") +# Create a resampling Subfunction to voxel spacing 1.58 x 1.58 x 2.70 +sf_resample = Resampling((1.58, 1.58, 2.70)) +# Create a pixel value normalization Subfunction for z-score scaling +sf_zscore = Normalization(mode="z-score") + +# Assemble Subfunction classes into a list +sf = [sf_clipping, sf_normalize, sf_resample, sf_zscore] + +# Create and configure the Preprocessor class +pp = Preprocessor(data_io, data_aug=None, batch_size=2, subfunctions=sf, + prepare_subfunctions=True, prepare_batches=False, + analysis="patchwise-crop", patch_shape=(160, 160, 80), + use_multiprocessing=True) +# Adjust the patch overlap for predictions +pp.patchwise_overlap = (80, 80, 30) +pp.mp_threads = 16 + +# Initialize the Architecture +unet_standard = Architecture(depth=4, activation="softmax", + batch_normalization=True) + +# Create the Neural Network model +model = Neural_Network(preprocessor=pp, architecture=unet_standard, + loss=tversky_crossentropy, + metrics=[tversky_loss, dice_soft, dice_crossentropy], + batch_queue_size=3, workers=3, learninig_rate=0.001) + +# Load best model weights during fitting +model.load(path_model) + +# Compute predictions +model.predict(sample_list, return_output=False)