--- a +++ b/scripts/cv_analysis/pp.py @@ -0,0 +1,43 @@ +#==============================================================================# +# Author: Dominik Müller # +# Copyright: 2020 IT-Infrastructure for Translational Medical Research, # +# University of Augsburg # +# # +# This program is free software: you can redistribute it and/or modify # +# it under the terms of the GNU General Public License as published by # +# the Free Software Foundation, either version 3 of the License, or # +# (at your option) any later version. # +# # +# This program is distributed in the hope that it will be useful, # +# but WITHOUT ANY WARRANTY; without even the implied warranty of # +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # +# GNU General Public License for more details. # +# # +# You should have received a copy of the GNU General Public License # +# along with this program. If not, see <http://www.gnu.org/licenses/>. # +#==============================================================================# +#-----------------------------------------------------# +# Library imports # +#-----------------------------------------------------# +import tensorflow as tf +from miscnn.data_loading.interfaces import NIFTI_interface +from miscnn import Data_IO +from miscnn.evaluation.cross_validation import split_folds + +#-----------------------------------------------------# +# Running Preprocessing # +#-----------------------------------------------------# +for i in range(2,5): + # Initialize Data IO Interface for NIfTI data + ## We are using 4 classes due to [background, lung_left, lung_right, covid-19] + interface = NIFTI_interface(channels=1, classes=4) + + # Create Data IO object to load and write samples in the file structure + data_io = Data_IO(interface, input_path="data", delete_batchDir=False) + + # Access all available samples in our file structure + sample_list = data_io.get_indiceslist() + sample_list.sort() + + # Split samples into k (training, validation) folds + split_folds(sample_list, k_fold=i, evaluation_path="evaluation.cv" + str(i))