[f173e4]: / training-models / cnn_lstm_model.py

Download this file

72 lines (59 with data), 2.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# import necessary libraries
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16
from keras.layers import Dense, LSTM, Dropout, Flatten, Reshape
from keras.models import Sequential
# set up the data generators
train_dir = 'X-ray Images/train'
val_dir = 'X-ray Images/validation'
test_dir = 'X-ray Images/test'
img_height = 224
img_width = 224
batch_size = 32
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
val_generator = val_datagen.flow_from_directory(
val_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
# load the pre-trained VGG16 model and extract features from the images
vgg_model = VGG16(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))
# freeze the layers in the VGG16 model
for layer in vgg_model.layers:
layer.trainable = False
# create the CNN-LSTM model
model = Sequential()
model.add(vgg_model)
model.add(Flatten())
model.add(Reshape((1, -1)))
model.add(LSTM(256, return_sequences=False))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(train_generator.num_classes, activation='softmax'))
# compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# train the model
history = model.fit_generator(
train_generator,
steps_per_epoch=train_generator.n // batch_size,
epochs=10,
validation_data=val_generator,
validation_steps=val_generator.n // batch_size)
# evaluate the model on the test data
test_loss, test_acc = model.evaluate_generator(test_generator, steps=test_generator.n // batch_size)
print('Test accuracy:', test_acc)
# make predictions on new data
predictions = model.predict_generator(test_generator, steps=test_generator.n // batch_size)