[cf6a9e]: / trainner.py

Download this file

219 lines (185 with data), 9.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from model.MyModel import Mymodel
from dataprocess import *
import loss.losses as losses
from metrics import *
import torch.optim as optim
import time
import numpy as np
import os
import torch
from config import Config
import shutil
from tqdm import tqdm
import imageio
import math
from bisect import bisect_right
config = Config()
torch.cuda.set_device(config.gpu)
model_name = config.arch
if not os.path.isdir('result'):
os.mkdir('result')
if config.resume is False:
with open('./result/' + str(os.path.basename(__file__).split('.')[0]) + '_' + model_name + '.txt', 'a+') as f:
f.seek(0)
f.truncate()
model = Mymodel(img_ch=3)
model.cuda()
best_dice = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
optimizer = optim.Adam(model.parameters(), lr=config.learning_rate, betas=(0.5, 0.999))
dataloader, dataloader_val = get_dataloader(config, batchsize=config.batch_size) # 64
criterion = losses.init_loss('BCE_logit').cuda()
if config.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
if config.evaluate:
checkpoint = torch.load('./checkpoint/' + str(model_name) + '_best.pth.tar')
else:
checkpoint = torch.load('./checkpoint/' + str(model_name) + '.pth.tar')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
best_dice = checkpoint['dice']
start_epoch = config.epochs
def adjust_lr(optimizer, epoch, eta_max=0.0001, eta_min=0.):
cur_lr = 0.
if config.lr_type == 'SGDR':
i = int(math.log2(epoch / config.sgdr_t + 1))
T_cur = epoch - config.sgdr_t * (2 ** (i) - 1)
T_i = (config.sgdr_t * 2 ** i)
cur_lr = eta_min + 0.5 * (eta_max - eta_min) * (1 + np.cos(np.pi * T_cur / T_i))
elif config.lr_type == 'multistep':
cur_lr = config.learning_rate * 0.1 ** bisect_right(config.milestones, epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = cur_lr
return cur_lr
def train(epoch):
model.train()
train_loss = 0
start_time = time.time()
lr = adjust_lr(optimizer, epoch)
for batch_idx, (inputs, lungs, medias, targets_u, targets_i, targets_s) in enumerate(dataloader):
iter_start_time = time.time()
inputs = inputs.cuda()
lungs = lungs.cuda()
medias = medias.cuda()
targets_i = targets_i.cuda()
targets_u = targets_u.cuda()
targets_s = targets_s.cuda()
outputs = model(inputs)
outputs_i_sig = torch.sigmoid(outputs[0])
outputs_u_sig = torch.sigmoid(outputs[1])
outputs_s_sig = torch.sigmoid(outputs[2])
outputs_final_sig = torch.sigmoid(outputs[3])
loss_seg_i = criterion(outputs_i_sig, targets_i)
loss_seg_u = criterion(outputs_u_sig, targets_u)
loss_seg_s = criterion(outputs_s_sig, targets_s)
loss_seg_final = criterion(outputs_final_sig, targets_s)
loss_all = config.weight_seg1 * loss_seg_final + config.weight_seg2 * (loss_seg_i + loss_seg_u + loss_seg_s)
optimizer.zero_grad()
loss_all.backward()
optimizer.step()
train_loss += loss_all.item()
print('Epoch:{}\t batch_idx:{}/All_batch:{}\t duration:{:.3f}\t loss_all:{:.3f}'
.format(epoch, batch_idx, len(dataloader), time.time()-iter_start_time, loss_all.item()))
iter_start_time = time.time()
print('Epoch:{0}\t duration:{1:.3f}\ttrain_loss:{2:.6f}'.format(epoch, time.time()-start_time, train_loss/len(dataloader)))
with open('result/' + str(os.path.basename(__file__).split('.')[0]) + '_' + model_name + '.txt', 'a+') as f:
f.write('Epoch:{0}\t duration:{1:.3f}\t learning_rate:{2:.6f}\t train_loss:{3:.4f}'
.format(epoch, time.time()-start_time, lr, train_loss/len(dataloader)))
def test(epoch):
global best_dice
model.eval()
dices_all_i = []
dices_all_u = []
dices_all_s = []
ious_all_i = []
ious_all_u = []
ious_all_s = []
nsds_all_i = []
nsds_all_u = []
nsds_all_s = []
with torch.no_grad():
for batch_idx, (inputs, lungs, medias, targets_u, targets_i, targets_s) in enumerate(dataloader_val):
inputs = inputs.cuda()
lungs = lungs.cuda()
medias = medias.cuda()
targets_i = targets_i.cuda()
targets_u = targets_u.cuda()
targets_s = targets_s.cuda()
outputs = model(inputs)
outputs_final_sig = torch.sigmoid(outputs[3])
dices_all_i = meandice(outputs_final_sig, targets_i, dices_all_i)
dices_all_u = meandice(outputs_final_sig, targets_u, dices_all_u)
dices_all_s = meandice(outputs_final_sig, targets_s, dices_all_s)
ious_all_i = meandIoU(outputs_final_sig, targets_i, ious_all_i)
ious_all_u = meandIoU(outputs_final_sig, targets_u, ious_all_u)
ious_all_s = meandIoU(outputs_final_sig, targets_s, ious_all_s)
nsds_all_i = meanNSD(outputs_final_sig, targets_i, nsds_all_i)
nsds_all_u = meanNSD(outputs_final_sig, targets_u, nsds_all_u)
nsds_all_s = meanNSD(outputs_final_sig, targets_s, nsds_all_s)
# 保存图像
# if config.evaluate:
# basePath = os.path.join(config.figurePath, str(os.path.basename(__file__).split('.')[0]) + '_' + model_name + '/fold' + str(config.fold))
# inputsPath = os.path.join(basePath, 'inputs')
# masksPath_s = os.path.join(basePath, 'masks_s')
# outputsPath_s = os.path.join(basePath, 'outputs_s')
# uncertaintyPath = os.path.join(basePath, 'uncertainty_map')
# if not os.path.exists(inputsPath):
# os.makedirs(inputsPath)
# if not os.path.exists(masksPath_s):
# os.makedirs(masksPath_s)
# if not os.path.exists(outputsPath_s):
# os.makedirs(outputsPath_s)
# if not os.path.exists(uncertaintyPath):
# os.makedirs(uncertaintyPath)
# num = inputs.shape[0]
# inputsfolder = inputs.chunk(num, dim=0)
# masksfolder_s = targets_s_sig.chunk(num, dim=0)
# outputsfolder_s = outputs_final_sig.chunk(num, dim=0)
# uncertaintyfolder = uncertainty_map.chunk(num, dim=0)
# for index in range(num):
# input = inputsfolder[index]
# input = input.squeeze()
# imageio.imsave(os.path.join(inputsPath, str(epoch) + '_' + str(batch_idx*config.batch_size+index+1) + '.jpg'), input.cpu().detach().numpy())
# target_s = masksfolder_s[index]
# target_s = target_s.squeeze()
# imageio.imsave(os.path.join(masksPath_s, str(epoch) + '_' + str(batch_idx*config.batch_size+index+1) + '.jpg'), target_s.cpu().detach().numpy())
# output_s = outputsfolder_s[index]
# output_s = output_s.squeeze()
# imageio.imsave(os.path.join(outputsPath_s, str(epoch) + '_' + str(batch_idx*config.batch_size+index+1) + '.jpg'), output_s.cpu().detach().numpy())
# map = uncertaintyfolder[index]
# map = map.squeeze()
# imageio.imsave(os.path.join(uncertaintyPath, str(epoch) + '_' + str(batch_idx*config.batch_size+index+1) + '.jpg'), map.cpu().detach().numpy())
print('Epoch:{}\tbatch_idx:{}/All_batch:{}\tdice_i:{:.4f}\tdice_u:{:.4f}\tdice_s:{:.4f}\tiou_i:{:.4f}\tiou_u:{:.4f}\tiou_s:{:.4f}\tnsd_i:{:.4f}\tnsd_u:{:.4f}\tnsd_s:{:.4f}'
.format(epoch, batch_idx, len(dataloader_val), np.mean(np.array(dices_all_i)), np.mean(np.array(dices_all_u)), np.mean(np.array(dices_all_s)), np.mean(np.array(ious_all_i)), np.mean(np.array(ious_all_u)), np.mean(np.array(ious_all_s)), np.mean(np.array(nsds_all_i)), np.mean(np.array(nsds_all_u)), np.mean(np.array(nsds_all_s))))
with open('result/' + str(os.path.basename(__file__).split('.')[0]) + '_' + model_name + '.txt', 'a+') as f:
f.write('\tdice_i:{:.4f}\tdice_u:{:.4f}\tdice_s:{:.4f}\tiou_i:{:.4f}\tiou_u:{:.4f}\tiou_s:{:.4f}\tnsd_i:{:.4f}\tnsd_u:{:.4f}\tnsd_s:{:.4f}'.format(np.mean(np.array(dices_all_i)), np.mean(np.array(dices_all_u)), np.mean(np.array(dices_all_s)), np.mean(np.array(ious_all_i)), np.mean(np.array(ious_all_u)), np.mean(np.array(ious_all_s)), np.mean(np.array(nsds_all_i)), np.mean(np.array(nsds_all_u)), np.mean(np.array(nsds_all_s)))+'\n')
# Save checkpoint.
if config.resume is False:
dice = np.mean(np.array(dices_all_s))
print('Test accuracy: ', dice)
state = {
'model': model.state_dict(),
'dice': dice,
'epoch': epoch,
'optimizer': optimizer.state_dict()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/'+str(model_name)+'.pth.tar')
is_best = False
if best_dice < dice:
best_dice = dice
is_best = True
if is_best:
shutil.copyfile('./checkpoint/' + str(model_name) + '.pth.tar',
'./checkpoint/' + str(model_name) + '_best.pth.tar')
print('Save Successfully')
print('------------------------------------------------------------------------')
if __name__ == '__main__':
if config.resume:
test(start_epoch)
else:
for epoch in tqdm(range(start_epoch, config.epochs)):
train(epoch)
test(epoch)