import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from ._utils import *
from math import sqrt
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
class DoubleConv(nn.Module):
"""
Double Conv for U-Net
"""
def __init__(self, in_ch, out_ch, k_1=3, k_2=3):
super(DoubleConv, self).__init__()
padding_1 = cal_same_padding(k_1)
padding_2 = cal_same_padding(k_2)
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, k_1, padding=padding_1), # in_ch、out_ch是通道数
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
# Mish(),
nn.Conv2d(out_ch, out_ch, k_2, padding=padding_2),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def forward(self, x):
return self.conv(x)
class conv_block(nn.Module):
def __init__(self,ch_in,ch_out):
super(conv_block,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True),
nn.Conv2d(ch_out, ch_out, kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True)
)
def forward(self,x):
x = self.conv(x)
return x
class up_conv(nn.Module):
def __init__(self,ch_in,ch_out):
super(up_conv,self).__init__()
self.up = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True)
)
def forward(self,x):
x = self.up(x)
return x
class Recurrent_block(nn.Module):
def __init__(self,ch_out,t=2):
super(Recurrent_block,self).__init__()
self.t = t
self.ch_out = ch_out
self.conv = nn.Sequential(
nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True)
)
def forward(self,x):
for i in range(self.t):
if i==0:
x1 = self.conv(x)
x1 = self.conv(x+x1)
return x1
class RRCNN_block(nn.Module):
def __init__(self,ch_in,ch_out,t=2):
super(RRCNN_block,self).__init__()
self.RCNN = nn.Sequential(
Recurrent_block(ch_out,t=t),
Recurrent_block(ch_out,t=t)
)
self.Conv_1x1 = nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=1,padding=0)
def forward(self,x):
x = self.Conv_1x1(x)
x1 = self.RCNN(x)
return x+x1
class single_conv(nn.Module):
def __init__(self,ch_in,ch_out):
super(single_conv,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True)
)
def forward(self,x):
x = self.conv(x)
return x
class Attention_block(nn.Module):
def __init__(self,F_g,F_l,F_int):
super(Attention_block,self).__init__()
self.W_g = nn.Sequential(
nn.Conv2d(F_g, F_int, kernel_size=1,stride=1,padding=0,bias=True),
nn.BatchNorm2d(F_int)
)
self.W_x = nn.Sequential(
nn.Conv2d(F_l, F_int, kernel_size=1,stride=1,padding=0,bias=True),
nn.BatchNorm2d(F_int)
)
self.psi = nn.Sequential(
nn.Conv2d(F_int, 1, kernel_size=1,stride=1,padding=0,bias=True),
nn.BatchNorm2d(1),
nn.Sigmoid()
)
self.relu = nn.ReLU(inplace=True)
def forward(self,g,x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1+x1)
psi = self.psi(psi)
return x*psi
class U_Net(nn.Module):
def __init__(self, img_ch=3, out_dim=1):
super(U_Net, self).__init__()
self.conv1 = DoubleConv(img_ch, 64)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(2)
self.conv3 = DoubleConv(128, 256)
self.pool3 = nn.MaxPool2d(2)
self.conv4 = DoubleConv(256, 512)
self.pool4 = nn.MaxPool2d(2)
self.conv5 = DoubleConv(512, 1024)
self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.conv6 = DoubleConv(1024, 512)
self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv7 = DoubleConv(512, 256)
self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv8 = DoubleConv(256, 128)
self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv9 = DoubleConv(128, 64)
self.conv10 = nn.Conv2d(64, out_dim, 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def forward(self, inputs):
c1 = self.conv1(inputs)
p1 = self.pool1(c1)
c2 = self.conv2(p1)
p2 = self.pool2(c2)
c3 = self.conv3(p2)
p3 = self.pool3(c3)
c4 = self.conv4(p3)
p4 = self.pool4(c4)
c5 = self.conv5(p4)
up_6 = self.up6(c5)
merge6 = torch.cat([up_6, c4], dim=1)
c6 = self.conv6(merge6)
up_7 = self.up7(c6)
merge7 = torch.cat([up_7, c3], dim=1)
c7 = self.conv7(merge7)
up_8 = self.up8(c7)
merge8 = torch.cat([up_8, c2], dim=1) # 256 *48
c8 = self.conv8(merge8)
up_9 = self.up9(c8)
merge9 = torch.cat([up_9, c1], dim=1)
c9 = self.conv9(merge9)
c10 = self.conv10(c9)
return c10
class R2U_Net(nn.Module):
def __init__(self,img_ch=3,output_ch=1,t=2):
super(R2U_Net,self).__init__()
self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2)
self.Upsample = nn.Upsample(scale_factor=2)
self.RRCNN1 = RRCNN_block(ch_in=img_ch,ch_out=64,t=t)
self.RRCNN2 = RRCNN_block(ch_in=64,ch_out=128,t=t)
self.RRCNN3 = RRCNN_block(ch_in=128,ch_out=256,t=t)
self.RRCNN4 = RRCNN_block(ch_in=256,ch_out=512,t=t)
self.RRCNN5 = RRCNN_block(ch_in=512,ch_out=1024,t=t)
self.Up5 = up_conv(ch_in=1024,ch_out=512)
self.Up_RRCNN5 = RRCNN_block(ch_in=1024, ch_out=512,t=t)
self.Up4 = up_conv(ch_in=512,ch_out=256)
self.Up_RRCNN4 = RRCNN_block(ch_in=512, ch_out=256,t=t)
self.Up3 = up_conv(ch_in=256,ch_out=128)
self.Up_RRCNN3 = RRCNN_block(ch_in=256, ch_out=128,t=t)
self.Up2 = up_conv(ch_in=128,ch_out=64)
self.Up_RRCNN2 = RRCNN_block(ch_in=128, ch_out=64,t=t)
self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0)
def forward(self,x):
# encoding path
x1 = self.RRCNN1(x)
x2 = self.Maxpool(x1)
x2 = self.RRCNN2(x2)
x3 = self.Maxpool(x2)
x3 = self.RRCNN3(x3)
x4 = self.Maxpool(x3)
x4 = self.RRCNN4(x4)
x5 = self.Maxpool(x4)
x5 = self.RRCNN5(x5)
# decoding + concat path
d5 = self.Up5(x5)
d5 = torch.cat((x4,d5),dim=1)
d5 = self.Up_RRCNN5(d5)
d4 = self.Up4(d5)
d4 = torch.cat((x3,d4),dim=1)
d4 = self.Up_RRCNN4(d4)
d3 = self.Up3(d4)
d3 = torch.cat((x2,d3),dim=1)
d3 = self.Up_RRCNN3(d3)
d2 = self.Up2(d3)
d2 = torch.cat((x1,d2),dim=1)
d2 = self.Up_RRCNN2(d2)
d1 = self.Conv_1x1(d2)
return d1
class AttU_Net(nn.Module):
def __init__(self,img_ch=3,output_ch=1):
super(AttU_Net,self).__init__()
self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2)
self.Conv1 = conv_block(ch_in=img_ch,ch_out=64)
self.Conv2 = conv_block(ch_in=64,ch_out=128)
self.Conv3 = conv_block(ch_in=128,ch_out=256)
self.Conv4 = conv_block(ch_in=256,ch_out=512)
self.Conv5 = conv_block(ch_in=512,ch_out=1024)
self.Up5 = up_conv(ch_in=1024,ch_out=512)
self.Att5 = Attention_block(F_g=512,F_l=512,F_int=256)
self.Up_conv5 = conv_block(ch_in=1024, ch_out=512)
self.Up4 = up_conv(ch_in=512,ch_out=256)
self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128)
self.Up_conv4 = conv_block(ch_in=512, ch_out=256)
self.Up3 = up_conv(ch_in=256,ch_out=128)
self.Att3 = Attention_block(F_g=128,F_l=128,F_int=64)
self.Up_conv3 = conv_block(ch_in=256, ch_out=128)
self.Up2 = up_conv(ch_in=128,ch_out=64)
self.Att2 = Attention_block(F_g=64,F_l=64,F_int=32)
self.Up_conv2 = conv_block(ch_in=128, ch_out=64)
self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0)
def forward(self,x):
# encoding path
x1 = self.Conv1(x)
x2 = self.Maxpool(x1)
x2 = self.Conv2(x2)
x3 = self.Maxpool(x2)
x3 = self.Conv3(x3)
x4 = self.Maxpool(x3)
x4 = self.Conv4(x4)
x5 = self.Maxpool(x4)
x5 = self.Conv5(x5)
# decoding + concat path
d5 = self.Up5(x5)
x4 = self.Att5(g=d5,x=x4)
d5 = torch.cat((x4,d5),dim=1)
d5 = self.Up_conv5(d5)
d4 = self.Up4(d5)
x3 = self.Att4(g=d4,x=x3)
d4 = torch.cat((x3,d4),dim=1)
d4 = self.Up_conv4(d4)
d3 = self.Up3(d4)
x2 = self.Att3(g=d3,x=x2)
d3 = torch.cat((x2,d3),dim=1)
d3 = self.Up_conv3(d3)
d2 = self.Up2(d3)
x1 = self.Att2(g=d2,x=x1)
d2 = torch.cat((x1,d2),dim=1)
d2 = self.Up_conv2(d2)
d1 = self.Conv_1x1(d2)
return d1
class R2AttU_Net(nn.Module):
def __init__(self,img_ch=3,output_ch=1,t=2):
super(R2AttU_Net,self).__init__()
self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2)
self.Upsample = nn.Upsample(scale_factor=2)
self.RRCNN1 = RRCNN_block(ch_in=img_ch,ch_out=64,t=t)
self.RRCNN2 = RRCNN_block(ch_in=64,ch_out=128,t=t)
self.RRCNN3 = RRCNN_block(ch_in=128,ch_out=256,t=t)
self.RRCNN4 = RRCNN_block(ch_in=256,ch_out=512,t=t)
self.RRCNN5 = RRCNN_block(ch_in=512,ch_out=1024,t=t)
self.Up5 = up_conv(ch_in=1024,ch_out=512)
self.Att5 = Attention_block(F_g=512,F_l=512,F_int=256)
self.Up_RRCNN5 = RRCNN_block(ch_in=1024, ch_out=512,t=t)
self.Up4 = up_conv(ch_in=512,ch_out=256)
self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128)
self.Up_RRCNN4 = RRCNN_block(ch_in=512, ch_out=256,t=t)
self.Up3 = up_conv(ch_in=256,ch_out=128)
self.Att3 = Attention_block(F_g=128,F_l=128,F_int=64)
self.Up_RRCNN3 = RRCNN_block(ch_in=256, ch_out=128,t=t)
self.Up2 = up_conv(ch_in=128,ch_out=64)
self.Att2 = Attention_block(F_g=64,F_l=64,F_int=32)
self.Up_RRCNN2 = RRCNN_block(ch_in=128, ch_out=64,t=t)
self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0)
def forward(self,x):
# encoding path
x1 = self.RRCNN1(x)
x2 = self.Maxpool(x1)
x2 = self.RRCNN2(x2)
x3 = self.Maxpool(x2)
x3 = self.RRCNN3(x3)
x4 = self.Maxpool(x3)
x4 = self.RRCNN4(x4)
x5 = self.Maxpool(x4)
x5 = self.RRCNN5(x5)
# decoding + concat path
d5 = self.Up5(x5)
x4 = self.Att5(g=d5,x=x4)
d5 = torch.cat((x4,d5),dim=1)
d5 = self.Up_RRCNN5(d5)
d4 = self.Up4(d5)
x3 = self.Att4(g=d4,x=x3)
d4 = torch.cat((x3,d4),dim=1)
d4 = self.Up_RRCNN4(d4)
d3 = self.Up3(d4)
x2 = self.Att3(g=d3,x=x2)
d3 = torch.cat((x2,d3),dim=1)
d3 = self.Up_RRCNN3(d3)
d2 = self.Up2(d3)
x1 = self.Att2(g=d2,x=x1)
d2 = torch.cat((x1,d2),dim=1)
d2 = self.Up_RRCNN2(d2)
d1 = self.Conv_1x1(d2)
return d1