[cf6a9e]: / features / otsu.py

Download this file

390 lines (366 with data), 16.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from __future__ import division
import math
import numpy as np
import cv2
# import and use one of 3 libraries PIL, cv2, or scipy in that order
USE_PIL = True
USE_CV2 = False
USE_SCIPY = False
try:
import PIL
from PIL import Image
raise ImportError
except ImportError:
USE_PIL = False
if not USE_PIL:
USE_CV2 = True
try:
import cv2
except ImportError:
USE_CV2 = False
if not USE_PIL and not USE_CV2:
USE_SCIPY = True
try:
import scipy
from scipy import misc
except ImportError:
USE_SCIPY = False
raise RuntimeError("couldn't load ANY image library")
class _OtsuPyramid(object):
"""segments histogram into pyramid of histograms, each histogram
half the size of the previous. Also generate omega and mu values
for each histogram in the pyramid.
"""
def load_image(self, im, bins=256):
""" bins is number of intensity levels """
if not type(im) == np.ndarray:
raise ValueError(
'must be passed numpy array. Got ' + str(type(im)) +
' instead'
)
if im.ndim == 3:
raise ValueError(
'image must be greyscale (and single value per pixel)'
)
self.im = im
hist, ranges = np.histogram(im, bins) #将输入转化为直方图
# print("hist:",hist,"range:",ranges) # hist表示每个区间内的元素个数,ranges表示区间
# convert the numpy array to list of ints
hist = [int(h) for h in hist]
histPyr, omegaPyr, muPyr, ratioPyr = \
self._create_histogram_and_stats_pyramids(hist)
# arrange so that pyramid[0] is the smallest pyramid
self.omegaPyramid = [omegas for omegas in reversed(omegaPyr)] # 前缀和
# print("self.omeaPtramid:",len(self.omegaPyramid[0]))
self.muPyramid = [mus for mus in reversed(muPyr)]# 乘了像素的 前缀和
self.ratioPyramid = ratioPyr# [1, 2, 2, 2, 2, 2, 2, 2]
def _create_histogram_and_stats_pyramids(self, hist):
"""Expects hist to be a single list of numbers (no numpy array)
takes an input histogram (with 256 bins) and iteratively
compresses it by a factor of 2 until the last compressed
histogram is of size 2. It stores all these generated histograms
in a list-like pyramid structure. Finally, create corresponding
omega and mu lists for each histogram and return the 3
generated pyramids.
"""
bins = len(hist)
# eventually you can replace this with a list if you cannot evenly
# compress a histogram
ratio = 2
reductions = int(math.log(bins, ratio)) #ln(bins)/ln(ratio),约等于开方
compressionFactor = []
histPyramid = []
omegaPyramid = []
muPyramid = []
for _ in range(reductions):
histPyramid.append(hist)
reducedHist = [sum(hist[i:i+ratio]) for i in range(0, bins, ratio)]
# collapse a list to half its size, combining the two collpased
# numbers into one
hist = reducedHist
# update bins to reflect the img_nums of the new histogram
bins = bins // ratio
compressionFactor.append(ratio)
# first "compression" was 1, aka it's the original histogram
compressionFactor[0] = 1
# print("the length of histPyramid:",len(histPyramid))
for hist in histPyramid:
omegas, mus, muT = \
self._calculate_omegas_and_mus_from_histogram(hist)
omegaPyramid.append(omegas)
muPyramid.append(mus)
return histPyramid, omegaPyramid, muPyramid, compressionFactor
def _calculate_omegas_and_mus_from_histogram(self, hist):
""" Comput histogram statistical data: omega and mu for each
intensity level in the histogram
"""
probabilityLevels, meanLevels = \
self._calculate_histogram_pixel_stats(hist)
bins = len(probabilityLevels)
# these numbers are critical towards calculations, so we make sure
# they are float
ptotal = float(0)
# sum of probability levels up to k
omegas = []
for i in range(bins):
ptotal += probabilityLevels[i]
omegas.append(ptotal)
mtotal = float(0)
mus = []
for i in range(bins):
mtotal += meanLevels[i]
mus.append(mtotal)
# muT is the total mean levels.
muT = float(mtotal)
return omegas, mus, muT
def _calculate_histogram_pixel_stats(self, hist):
"""Given a histogram, compute pixel probability and mean
levels for each bin in the histogram. Pixel probability
represents the likely-hood that a pixel's intensty resides in
a specific bin. Pixel mean is the intensity-weighted pixel
probability.
"""
# bins = number of intensity levels
bins = len(hist)
# print("bins:",bins)
# N = number of pixels in image. Make it float so that division by
# N will be a float
N = float(sum(hist))
# percentage of pixels at each intensity level: i => P_i
hist_probability = [hist[i] / N for i in range(bins)]
# mean level of pixels at intensity level i => i * P_i
pixel_mean = [i * hist_probability[i] for i in range(bins)]
# print("N:",N)
return hist_probability, pixel_mean
class OtsuFastMultithreshold(_OtsuPyramid):
"""Sacrifices precision for speed. OtsuFastMultithreshold can dial
in to the threshold but still has the possibility that its
thresholds will not be the same as a naive-Otsu's method would give
"""
def calculate_k_thresholds(self, k):
self.threshPyramid = []
start = self._get_smallest_fitting_pyramid(k)
self.bins = len(self.omegaPyramid[start])
# print("self.bins:",self.bins)
thresholds = self._get_first_guess_thresholds(k)
# print("thresholds:",thresholds)
# give hunting algorithm full range so that initial thresholds
# can become any value (0-bins)
deviate = self.bins // 2
for i in range(start, len(self.omegaPyramid)):
omegas = self.omegaPyramid[i] # 个数平均前缀和
mus = self.muPyramid[i] # 平均像素前缀和
hunter = _ThresholdHunter(omegas, mus, deviate)
thresholds = \
hunter.find_best_thresholds_around_estimates(thresholds)
self.threshPyramid.append(thresholds)
# how much our "just analyzed" pyramid was compressed from the
# previous one
scaling = self.ratioPyramid[i]
# deviate should be equal to the compression factor of the
# previous histogram.
deviate = scaling
thresholds = [t * scaling for t in thresholds]
# return readjusted threshold (since it was scaled up incorrectly in
# last loop)
# print("true thresholds:",thresholds)
return [t // scaling for t in thresholds]
def _get_smallest_fitting_pyramid(self, k):
"""Return the index for the smallest pyramid set that can fit
K thresholds
"""
for i, pyramid in enumerate(self.omegaPyramid):
if len(pyramid) >= k:
return i
def _get_first_guess_thresholds(self, k):
"""Construct first-guess thresholds based on number of
thresholds (k) and constraining intensity values. FirstGuesses
will be centered around middle intensity value.
"""
kHalf = k // 2
midway = self.bins // 2
firstGuesses = [midway - i for i in range(kHalf, 0, -1)] + [midway] + \
[midway + i for i in range(1, kHalf)]
# print("firstGuesses:",firstGuesses)
# additional threshold in case k is odd
firstGuesses.append(self.bins - 1)
return firstGuesses[:k]
def apply_thresholds_to_image(self, thresholds, im=None):
if im is None:
im = self.im
k = len(thresholds)
bookendedThresholds = [None] + thresholds + [None]
# I think you need to use 255 / k *...
greyValues = [0] + [int(256 / k * (i + 1)) for i in range(0, k - 1)] \
+ [255]
greyValues = np.array(greyValues, dtype=np.uint8)
finalImage = np.zeros(im.shape, dtype=np.uint8)
for i in range(k + 1):
kSmall = bookendedThresholds[i]
# True portions of bw represents pixels between the two thresholds
bw = np.ones(im.shape, dtype=np.bool8)
if kSmall:
bw = (im >= kSmall)
kLarge = bookendedThresholds[i + 1]
if kLarge:
bw &= (im < kLarge)
greyLevel = greyValues[i]
# apply grey-color to black-and-white image
greyImage = bw * greyLevel
# add grey portion to image. There should be no overlap between
# each greyImage added
finalImage += greyImage
return finalImage
class _ThresholdHunter(object):
"""Hunt/deviate around given thresholds in a small region to look
for a better threshold
"""
def __init__(self, omegas, mus, deviate=2):
self.sigmaB = _BetweenClassVariance(omegas, mus)
# used to be called L
self.bins = self.sigmaB.bins
# hunt 2 (or other amount) to either side of thresholds
self.deviate = deviate
def find_best_thresholds_around_estimates(self, estimatedThresholds):
"""Given guesses for best threshold, explore to either side of
the threshold and return the best result.
"""
bestResults = (
0, estimatedThresholds, [0 for t in estimatedThresholds]
)
# print("bestResults:",bestResults)
bestThresholds = estimatedThresholds
bestVariance = 0
for thresholds in self._jitter_thresholds_generator(
estimatedThresholds, 0, self.bins):
# print("thresholds:",thresholds)
variance = self.sigmaB.get_total_variance(thresholds)
if variance == bestVariance:
if sum(thresholds) < sum(bestThresholds):
# keep lowest average set of thresholds
bestThresholds = thresholds
elif variance > bestVariance:
bestVariance = variance
bestThresholds = thresholds
return bestThresholds
def find_best_thresholds_around_estimates_experimental(self, estimatedThresholds):
"""Experimental threshold hunting uses scipy optimize method.
Finds ok thresholds but doesn't work quite as well
"""
estimatedThresholds = [int(k) for k in estimatedThresholds]
if sum(estimatedThresholds) < 10:
return self.find_best_thresholds_around_estimates(
estimatedThresholds
)
# print('estimated', estimatedThresholds)
fxn_to_minimize = lambda x: -1 * self.sigmaB.get_total_variance(
[int(k) for k in x]
)
bestThresholds = scipy.optimize.fmin(
fxn_to_minimize, estimatedThresholds
)
bestThresholds = [int(k) for k in bestThresholds]
# print('bestTresholds', bestThresholds)
return bestThresholds
def _jitter_thresholds_generator(self, thresholds, min_, max_):
pastThresh = thresholds[0]
# print("pastThresd:",pastThresh)
if len(thresholds) == 1:
# -2 through +2
for offset in range(-self.deviate, self.deviate + 1):
thresh = pastThresh + offset
if thresh < min_ or thresh >= max_:
# skip since we are conflicting with bounds
continue
yield [thresh]
else:
# new threshold without our threshold included
thresholds = thresholds[1:]
# number of threshold left to generate in chain
m = len(thresholds)
for offset in range(-self.deviate, self.deviate + 1):
thresh = pastThresh + offset
# verify we don't use the same value as the previous threshold
# and also verify our current threshold will not push the last
# threshold past max
if thresh < min_ or thresh + m >= max_:
continue
recursiveGenerator = self._jitter_thresholds_generator(
thresholds, thresh + 1, max_
)
for otherThresholds in recursiveGenerator:
yield [thresh] + otherThresholds
class _BetweenClassVariance(object):
def __init__(self, omegas, mus):
self.omegas = omegas
self.mus = mus
# number of bins / luminosity choices
self.bins = len(mus)
self.muTotal = sum(mus)
def get_total_variance(self, thresholds):
"""Function will pad the thresholds argument with minimum and
maximum thresholds to calculate between class variance
"""
thresholds = [0] + thresholds + [self.bins - 1]
numClasses = len(thresholds) - 1
# print("thesholds:",thresholds)
sigma = 0
for i in range(numClasses):
k1 = thresholds[i]
k2 = thresholds[i+1]
sigma += self._between_thresholds_variance(k1, k2)
# print("sigma:",sigma)
return sigma
def _between_thresholds_variance(self, k1, k2):
"""to be usedin calculating between-class variances only!"""
# print("len(self.omegas)):",len(self.omegas))
# print("k2:",k2, "kl:",k1)
omega = self.omegas[k2] - self.omegas[k1]
mu = self.mus[k2] - self.mus[k1]
muT = self.muTotal
return omega * ((mu - muT)**2)
import math
def normalize(img):
# 需要特别注意的是无穷大和无穷小
Max = -1
Min = 10000
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if img[i][j] > Max :
Max = img[i][j]
if img[i][j] < Min:
Min = img[i][j]
print(Max, Min)
for i in range(img.shape[0]):
for j in range(img.shape[0]):
if math.isnan(img[i][j]):
img[i][j] = 255.
img = (img - Min) / (Max - Min)
return img * 255.
def _otsu(img, categories_pixel_nums = 1):
'''
ret_num: the number of image return
img_nums: the number of calculate thresholds
categories_pixel_nums: the number of pixel categories
return the images with only categories_pixel_nums types of pixels
'''
return normalize(img.copy())
# img = normalize(img.copy())
# ot = OtsuFastMultithreshold()
# ot.load_image(img)
# kThresholds = ot.calculate_k_thresholds(categories_pixel_nums)
# # print(total)
# return ot.apply_thresholds_to_image(kThresholds,img)
# plt.imsave('C:/Users/RL/Desktop/可解释性的特征学习分类/otsu/' + str(i) + '.jpg',crushed,cmap="gray")
# ans.append(crushed)
# plt.figure()
# plt.subplot(121)
# plt.imshow(img[i],cmap="gray")
# plt.subplot(122)
# plt.imshow(crushed,cmap="gray")
# plt.show()
#otsu的接口,返回处理后的图片
def otsu_helper(img, upper=0.5, down = -0.5,categories=1):
ot = OtsuFastMultithreshold()
ot.load_image(img)
return ot.apply_thresholds_to_image([down, upper], img)