--- a +++ b/model/Models.py @@ -0,0 +1,454 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.nn import init +from ._utils import * +from math import sqrt + +def init_weights(net, init_type='normal', gain=0.02): + def init_func(m): + classname = m.__class__.__name__ + if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): + if init_type == 'normal': + init.normal_(m.weight.data, 0.0, gain) + elif init_type == 'xavier': + init.xavier_normal_(m.weight.data, gain=gain) + elif init_type == 'kaiming': + init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') + elif init_type == 'orthogonal': + init.orthogonal_(m.weight.data, gain=gain) + else: + raise NotImplementedError('initialization method [%s] is not implemented' % init_type) + if hasattr(m, 'bias') and m.bias is not None: + init.constant_(m.bias.data, 0.0) + elif classname.find('BatchNorm2d') != -1: + init.normal_(m.weight.data, 1.0, gain) + init.constant_(m.bias.data, 0.0) + + print('initialize network with %s' % init_type) + net.apply(init_func) + +class DoubleConv(nn.Module): + """ + Double Conv for U-Net + """ + def __init__(self, in_ch, out_ch, k_1=3, k_2=3): + super(DoubleConv, self).__init__() + padding_1 = cal_same_padding(k_1) + padding_2 = cal_same_padding(k_2) + self.conv = nn.Sequential( + nn.Conv2d(in_ch, out_ch, k_1, padding=padding_1), # in_ch、out_ch是通道数 + nn.BatchNorm2d(out_ch), + nn.ReLU(inplace=True), + # Mish(), + nn.Conv2d(out_ch, out_ch, k_2, padding=padding_2), + nn.BatchNorm2d(out_ch), + nn.ReLU(inplace=True) + ) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, sqrt(2. / n)) + if m.bias is not None: + m.bias.data.zero_() + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.normal_(1.0, 0.02) + m.bias.data.fill_(0) + + def forward(self, x): + return self.conv(x) + +class conv_block(nn.Module): + def __init__(self,ch_in,ch_out): + super(conv_block,self).__init__() + self.conv = nn.Sequential( + nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True), + nn.BatchNorm2d(ch_out), + nn.ReLU(inplace=True), + nn.Conv2d(ch_out, ch_out, kernel_size=3,stride=1,padding=1,bias=True), + nn.BatchNorm2d(ch_out), + nn.ReLU(inplace=True) + ) + + + def forward(self,x): + x = self.conv(x) + return x + +class up_conv(nn.Module): + def __init__(self,ch_in,ch_out): + super(up_conv,self).__init__() + self.up = nn.Sequential( + nn.Upsample(scale_factor=2), + nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=1,padding=1,bias=True), + nn.BatchNorm2d(ch_out), + nn.ReLU(inplace=True) + ) + + def forward(self,x): + x = self.up(x) + return x + +class Recurrent_block(nn.Module): + def __init__(self,ch_out,t=2): + super(Recurrent_block,self).__init__() + self.t = t + self.ch_out = ch_out + self.conv = nn.Sequential( + nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1,bias=True), + nn.BatchNorm2d(ch_out), + nn.ReLU(inplace=True) + ) + + def forward(self,x): + for i in range(self.t): + + if i==0: + x1 = self.conv(x) + + x1 = self.conv(x+x1) + return x1 + +class RRCNN_block(nn.Module): + def __init__(self,ch_in,ch_out,t=2): + super(RRCNN_block,self).__init__() + self.RCNN = nn.Sequential( + Recurrent_block(ch_out,t=t), + Recurrent_block(ch_out,t=t) + ) + self.Conv_1x1 = nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=1,padding=0) + + def forward(self,x): + x = self.Conv_1x1(x) + x1 = self.RCNN(x) + return x+x1 + +class single_conv(nn.Module): + def __init__(self,ch_in,ch_out): + super(single_conv,self).__init__() + self.conv = nn.Sequential( + nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True), + nn.BatchNorm2d(ch_out), + nn.ReLU(inplace=True) + ) + + def forward(self,x): + x = self.conv(x) + return x + +class Attention_block(nn.Module): + def __init__(self,F_g,F_l,F_int): + super(Attention_block,self).__init__() + self.W_g = nn.Sequential( + nn.Conv2d(F_g, F_int, kernel_size=1,stride=1,padding=0,bias=True), + nn.BatchNorm2d(F_int) + ) + + self.W_x = nn.Sequential( + nn.Conv2d(F_l, F_int, kernel_size=1,stride=1,padding=0,bias=True), + nn.BatchNorm2d(F_int) + ) + + self.psi = nn.Sequential( + nn.Conv2d(F_int, 1, kernel_size=1,stride=1,padding=0,bias=True), + nn.BatchNorm2d(1), + nn.Sigmoid() + ) + + self.relu = nn.ReLU(inplace=True) + + def forward(self,g,x): + g1 = self.W_g(g) + x1 = self.W_x(x) + psi = self.relu(g1+x1) + psi = self.psi(psi) + + return x*psi + +class U_Net(nn.Module): + def __init__(self, img_ch=3, out_dim=1): + + super(U_Net, self).__init__() + self.conv1 = DoubleConv(img_ch, 64) + self.pool1 = nn.MaxPool2d(2) + self.conv2 = DoubleConv(64, 128) + self.pool2 = nn.MaxPool2d(2) + self.conv3 = DoubleConv(128, 256) + self.pool3 = nn.MaxPool2d(2) + self.conv4 = DoubleConv(256, 512) + self.pool4 = nn.MaxPool2d(2) + self.conv5 = DoubleConv(512, 1024) + + + self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2) + self.conv6 = DoubleConv(1024, 512) + self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2) + self.conv7 = DoubleConv(512, 256) + self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2) + self.conv8 = DoubleConv(256, 128) + self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2) + self.conv9 = DoubleConv(128, 64) + self.conv10 = nn.Conv2d(64, out_dim, 1) + + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, sqrt(2. / n)) + if m.bias is not None: + m.bias.data.zero_() + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.normal_(1.0, 0.02) + m.bias.data.fill_(0) + + def forward(self, inputs): + c1 = self.conv1(inputs) + p1 = self.pool1(c1) + c2 = self.conv2(p1) + p2 = self.pool2(c2) + c3 = self.conv3(p2) + p3 = self.pool3(c3) + c4 = self.conv4(p3) + p4 = self.pool4(c4) + c5 = self.conv5(p4) + + up_6 = self.up6(c5) + merge6 = torch.cat([up_6, c4], dim=1) + c6 = self.conv6(merge6) + up_7 = self.up7(c6) + merge7 = torch.cat([up_7, c3], dim=1) + c7 = self.conv7(merge7) + up_8 = self.up8(c7) + merge8 = torch.cat([up_8, c2], dim=1) # 256 *48 + c8 = self.conv8(merge8) + up_9 = self.up9(c8) + merge9 = torch.cat([up_9, c1], dim=1) + c9 = self.conv9(merge9) + c10 = self.conv10(c9) + + + return c10 + + +class R2U_Net(nn.Module): + def __init__(self,img_ch=3,output_ch=1,t=2): + super(R2U_Net,self).__init__() + + self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2) + self.Upsample = nn.Upsample(scale_factor=2) + + self.RRCNN1 = RRCNN_block(ch_in=img_ch,ch_out=64,t=t) + + self.RRCNN2 = RRCNN_block(ch_in=64,ch_out=128,t=t) + + self.RRCNN3 = RRCNN_block(ch_in=128,ch_out=256,t=t) + + self.RRCNN4 = RRCNN_block(ch_in=256,ch_out=512,t=t) + + self.RRCNN5 = RRCNN_block(ch_in=512,ch_out=1024,t=t) + + + self.Up5 = up_conv(ch_in=1024,ch_out=512) + self.Up_RRCNN5 = RRCNN_block(ch_in=1024, ch_out=512,t=t) + + self.Up4 = up_conv(ch_in=512,ch_out=256) + self.Up_RRCNN4 = RRCNN_block(ch_in=512, ch_out=256,t=t) + + self.Up3 = up_conv(ch_in=256,ch_out=128) + self.Up_RRCNN3 = RRCNN_block(ch_in=256, ch_out=128,t=t) + + self.Up2 = up_conv(ch_in=128,ch_out=64) + self.Up_RRCNN2 = RRCNN_block(ch_in=128, ch_out=64,t=t) + + self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0) + + + def forward(self,x): + # encoding path + x1 = self.RRCNN1(x) + + x2 = self.Maxpool(x1) + x2 = self.RRCNN2(x2) + + x3 = self.Maxpool(x2) + x3 = self.RRCNN3(x3) + + x4 = self.Maxpool(x3) + x4 = self.RRCNN4(x4) + + x5 = self.Maxpool(x4) + x5 = self.RRCNN5(x5) + + # decoding + concat path + d5 = self.Up5(x5) + d5 = torch.cat((x4,d5),dim=1) + d5 = self.Up_RRCNN5(d5) + + d4 = self.Up4(d5) + d4 = torch.cat((x3,d4),dim=1) + d4 = self.Up_RRCNN4(d4) + + d3 = self.Up3(d4) + d3 = torch.cat((x2,d3),dim=1) + d3 = self.Up_RRCNN3(d3) + + d2 = self.Up2(d3) + d2 = torch.cat((x1,d2),dim=1) + d2 = self.Up_RRCNN2(d2) + + d1 = self.Conv_1x1(d2) + + return d1 + + +class AttU_Net(nn.Module): + def __init__(self,img_ch=3,output_ch=1): + super(AttU_Net,self).__init__() + + self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2) + + self.Conv1 = conv_block(ch_in=img_ch,ch_out=64) + self.Conv2 = conv_block(ch_in=64,ch_out=128) + self.Conv3 = conv_block(ch_in=128,ch_out=256) + self.Conv4 = conv_block(ch_in=256,ch_out=512) + self.Conv5 = conv_block(ch_in=512,ch_out=1024) + + self.Up5 = up_conv(ch_in=1024,ch_out=512) + self.Att5 = Attention_block(F_g=512,F_l=512,F_int=256) + self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) + + self.Up4 = up_conv(ch_in=512,ch_out=256) + self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128) + self.Up_conv4 = conv_block(ch_in=512, ch_out=256) + + self.Up3 = up_conv(ch_in=256,ch_out=128) + self.Att3 = Attention_block(F_g=128,F_l=128,F_int=64) + self.Up_conv3 = conv_block(ch_in=256, ch_out=128) + + self.Up2 = up_conv(ch_in=128,ch_out=64) + self.Att2 = Attention_block(F_g=64,F_l=64,F_int=32) + self.Up_conv2 = conv_block(ch_in=128, ch_out=64) + + self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0) + + + def forward(self,x): + # encoding path + x1 = self.Conv1(x) + + x2 = self.Maxpool(x1) + x2 = self.Conv2(x2) + + x3 = self.Maxpool(x2) + x3 = self.Conv3(x3) + + x4 = self.Maxpool(x3) + x4 = self.Conv4(x4) + + x5 = self.Maxpool(x4) + x5 = self.Conv5(x5) + + # decoding + concat path + d5 = self.Up5(x5) + x4 = self.Att5(g=d5,x=x4) + d5 = torch.cat((x4,d5),dim=1) + d5 = self.Up_conv5(d5) + + d4 = self.Up4(d5) + x3 = self.Att4(g=d4,x=x3) + d4 = torch.cat((x3,d4),dim=1) + d4 = self.Up_conv4(d4) + + d3 = self.Up3(d4) + x2 = self.Att3(g=d3,x=x2) + d3 = torch.cat((x2,d3),dim=1) + d3 = self.Up_conv3(d3) + + d2 = self.Up2(d3) + x1 = self.Att2(g=d2,x=x1) + d2 = torch.cat((x1,d2),dim=1) + d2 = self.Up_conv2(d2) + + d1 = self.Conv_1x1(d2) + + return d1 + + +class R2AttU_Net(nn.Module): + def __init__(self,img_ch=3,output_ch=1,t=2): + super(R2AttU_Net,self).__init__() + + self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2) + self.Upsample = nn.Upsample(scale_factor=2) + + self.RRCNN1 = RRCNN_block(ch_in=img_ch,ch_out=64,t=t) + + self.RRCNN2 = RRCNN_block(ch_in=64,ch_out=128,t=t) + + self.RRCNN3 = RRCNN_block(ch_in=128,ch_out=256,t=t) + + self.RRCNN4 = RRCNN_block(ch_in=256,ch_out=512,t=t) + + self.RRCNN5 = RRCNN_block(ch_in=512,ch_out=1024,t=t) + + + self.Up5 = up_conv(ch_in=1024,ch_out=512) + self.Att5 = Attention_block(F_g=512,F_l=512,F_int=256) + self.Up_RRCNN5 = RRCNN_block(ch_in=1024, ch_out=512,t=t) + + self.Up4 = up_conv(ch_in=512,ch_out=256) + self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128) + self.Up_RRCNN4 = RRCNN_block(ch_in=512, ch_out=256,t=t) + + self.Up3 = up_conv(ch_in=256,ch_out=128) + self.Att3 = Attention_block(F_g=128,F_l=128,F_int=64) + self.Up_RRCNN3 = RRCNN_block(ch_in=256, ch_out=128,t=t) + + self.Up2 = up_conv(ch_in=128,ch_out=64) + self.Att2 = Attention_block(F_g=64,F_l=64,F_int=32) + self.Up_RRCNN2 = RRCNN_block(ch_in=128, ch_out=64,t=t) + + self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0) + + + def forward(self,x): + # encoding path + x1 = self.RRCNN1(x) + + x2 = self.Maxpool(x1) + x2 = self.RRCNN2(x2) + + x3 = self.Maxpool(x2) + x3 = self.RRCNN3(x3) + + x4 = self.Maxpool(x3) + x4 = self.RRCNN4(x4) + + x5 = self.Maxpool(x4) + x5 = self.RRCNN5(x5) + + # decoding + concat path + d5 = self.Up5(x5) + x4 = self.Att5(g=d5,x=x4) + d5 = torch.cat((x4,d5),dim=1) + d5 = self.Up_RRCNN5(d5) + + d4 = self.Up4(d5) + x3 = self.Att4(g=d4,x=x3) + d4 = torch.cat((x3,d4),dim=1) + d4 = self.Up_RRCNN4(d4) + + d3 = self.Up3(d4) + x2 = self.Att3(g=d3,x=x2) + d3 = torch.cat((x2,d3),dim=1) + d3 = self.Up_RRCNN3(d3) + + d2 = self.Up2(d3) + x1 = self.Att2(g=d2,x=x1) + d2 = torch.cat((x1,d2),dim=1) + d2 = self.Up_RRCNN2(d2) + + d1 = self.Conv_1x1(d2) + + return d1 \ No newline at end of file