|
a |
|
b/model/Models.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torch.nn.functional as F |
|
|
4 |
from torch.nn import init |
|
|
5 |
from ._utils import * |
|
|
6 |
from math import sqrt |
|
|
7 |
|
|
|
8 |
def init_weights(net, init_type='normal', gain=0.02): |
|
|
9 |
def init_func(m): |
|
|
10 |
classname = m.__class__.__name__ |
|
|
11 |
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): |
|
|
12 |
if init_type == 'normal': |
|
|
13 |
init.normal_(m.weight.data, 0.0, gain) |
|
|
14 |
elif init_type == 'xavier': |
|
|
15 |
init.xavier_normal_(m.weight.data, gain=gain) |
|
|
16 |
elif init_type == 'kaiming': |
|
|
17 |
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') |
|
|
18 |
elif init_type == 'orthogonal': |
|
|
19 |
init.orthogonal_(m.weight.data, gain=gain) |
|
|
20 |
else: |
|
|
21 |
raise NotImplementedError('initialization method [%s] is not implemented' % init_type) |
|
|
22 |
if hasattr(m, 'bias') and m.bias is not None: |
|
|
23 |
init.constant_(m.bias.data, 0.0) |
|
|
24 |
elif classname.find('BatchNorm2d') != -1: |
|
|
25 |
init.normal_(m.weight.data, 1.0, gain) |
|
|
26 |
init.constant_(m.bias.data, 0.0) |
|
|
27 |
|
|
|
28 |
print('initialize network with %s' % init_type) |
|
|
29 |
net.apply(init_func) |
|
|
30 |
|
|
|
31 |
class DoubleConv(nn.Module): |
|
|
32 |
""" |
|
|
33 |
Double Conv for U-Net |
|
|
34 |
""" |
|
|
35 |
def __init__(self, in_ch, out_ch, k_1=3, k_2=3): |
|
|
36 |
super(DoubleConv, self).__init__() |
|
|
37 |
padding_1 = cal_same_padding(k_1) |
|
|
38 |
padding_2 = cal_same_padding(k_2) |
|
|
39 |
self.conv = nn.Sequential( |
|
|
40 |
nn.Conv2d(in_ch, out_ch, k_1, padding=padding_1), # in_ch、out_ch是通道数 |
|
|
41 |
nn.BatchNorm2d(out_ch), |
|
|
42 |
nn.ReLU(inplace=True), |
|
|
43 |
# Mish(), |
|
|
44 |
nn.Conv2d(out_ch, out_ch, k_2, padding=padding_2), |
|
|
45 |
nn.BatchNorm2d(out_ch), |
|
|
46 |
nn.ReLU(inplace=True) |
|
|
47 |
) |
|
|
48 |
|
|
|
49 |
for m in self.modules(): |
|
|
50 |
if isinstance(m, nn.Conv2d): |
|
|
51 |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
|
52 |
m.weight.data.normal_(0, sqrt(2. / n)) |
|
|
53 |
if m.bias is not None: |
|
|
54 |
m.bias.data.zero_() |
|
|
55 |
elif isinstance(m, nn.BatchNorm2d): |
|
|
56 |
m.weight.data.normal_(1.0, 0.02) |
|
|
57 |
m.bias.data.fill_(0) |
|
|
58 |
|
|
|
59 |
def forward(self, x): |
|
|
60 |
return self.conv(x) |
|
|
61 |
|
|
|
62 |
class conv_block(nn.Module): |
|
|
63 |
def __init__(self,ch_in,ch_out): |
|
|
64 |
super(conv_block,self).__init__() |
|
|
65 |
self.conv = nn.Sequential( |
|
|
66 |
nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True), |
|
|
67 |
nn.BatchNorm2d(ch_out), |
|
|
68 |
nn.ReLU(inplace=True), |
|
|
69 |
nn.Conv2d(ch_out, ch_out, kernel_size=3,stride=1,padding=1,bias=True), |
|
|
70 |
nn.BatchNorm2d(ch_out), |
|
|
71 |
nn.ReLU(inplace=True) |
|
|
72 |
) |
|
|
73 |
|
|
|
74 |
|
|
|
75 |
def forward(self,x): |
|
|
76 |
x = self.conv(x) |
|
|
77 |
return x |
|
|
78 |
|
|
|
79 |
class up_conv(nn.Module): |
|
|
80 |
def __init__(self,ch_in,ch_out): |
|
|
81 |
super(up_conv,self).__init__() |
|
|
82 |
self.up = nn.Sequential( |
|
|
83 |
nn.Upsample(scale_factor=2), |
|
|
84 |
nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=1,padding=1,bias=True), |
|
|
85 |
nn.BatchNorm2d(ch_out), |
|
|
86 |
nn.ReLU(inplace=True) |
|
|
87 |
) |
|
|
88 |
|
|
|
89 |
def forward(self,x): |
|
|
90 |
x = self.up(x) |
|
|
91 |
return x |
|
|
92 |
|
|
|
93 |
class Recurrent_block(nn.Module): |
|
|
94 |
def __init__(self,ch_out,t=2): |
|
|
95 |
super(Recurrent_block,self).__init__() |
|
|
96 |
self.t = t |
|
|
97 |
self.ch_out = ch_out |
|
|
98 |
self.conv = nn.Sequential( |
|
|
99 |
nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1,bias=True), |
|
|
100 |
nn.BatchNorm2d(ch_out), |
|
|
101 |
nn.ReLU(inplace=True) |
|
|
102 |
) |
|
|
103 |
|
|
|
104 |
def forward(self,x): |
|
|
105 |
for i in range(self.t): |
|
|
106 |
|
|
|
107 |
if i==0: |
|
|
108 |
x1 = self.conv(x) |
|
|
109 |
|
|
|
110 |
x1 = self.conv(x+x1) |
|
|
111 |
return x1 |
|
|
112 |
|
|
|
113 |
class RRCNN_block(nn.Module): |
|
|
114 |
def __init__(self,ch_in,ch_out,t=2): |
|
|
115 |
super(RRCNN_block,self).__init__() |
|
|
116 |
self.RCNN = nn.Sequential( |
|
|
117 |
Recurrent_block(ch_out,t=t), |
|
|
118 |
Recurrent_block(ch_out,t=t) |
|
|
119 |
) |
|
|
120 |
self.Conv_1x1 = nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=1,padding=0) |
|
|
121 |
|
|
|
122 |
def forward(self,x): |
|
|
123 |
x = self.Conv_1x1(x) |
|
|
124 |
x1 = self.RCNN(x) |
|
|
125 |
return x+x1 |
|
|
126 |
|
|
|
127 |
class single_conv(nn.Module): |
|
|
128 |
def __init__(self,ch_in,ch_out): |
|
|
129 |
super(single_conv,self).__init__() |
|
|
130 |
self.conv = nn.Sequential( |
|
|
131 |
nn.Conv2d(ch_in, ch_out, kernel_size=3,stride=1,padding=1,bias=True), |
|
|
132 |
nn.BatchNorm2d(ch_out), |
|
|
133 |
nn.ReLU(inplace=True) |
|
|
134 |
) |
|
|
135 |
|
|
|
136 |
def forward(self,x): |
|
|
137 |
x = self.conv(x) |
|
|
138 |
return x |
|
|
139 |
|
|
|
140 |
class Attention_block(nn.Module): |
|
|
141 |
def __init__(self,F_g,F_l,F_int): |
|
|
142 |
super(Attention_block,self).__init__() |
|
|
143 |
self.W_g = nn.Sequential( |
|
|
144 |
nn.Conv2d(F_g, F_int, kernel_size=1,stride=1,padding=0,bias=True), |
|
|
145 |
nn.BatchNorm2d(F_int) |
|
|
146 |
) |
|
|
147 |
|
|
|
148 |
self.W_x = nn.Sequential( |
|
|
149 |
nn.Conv2d(F_l, F_int, kernel_size=1,stride=1,padding=0,bias=True), |
|
|
150 |
nn.BatchNorm2d(F_int) |
|
|
151 |
) |
|
|
152 |
|
|
|
153 |
self.psi = nn.Sequential( |
|
|
154 |
nn.Conv2d(F_int, 1, kernel_size=1,stride=1,padding=0,bias=True), |
|
|
155 |
nn.BatchNorm2d(1), |
|
|
156 |
nn.Sigmoid() |
|
|
157 |
) |
|
|
158 |
|
|
|
159 |
self.relu = nn.ReLU(inplace=True) |
|
|
160 |
|
|
|
161 |
def forward(self,g,x): |
|
|
162 |
g1 = self.W_g(g) |
|
|
163 |
x1 = self.W_x(x) |
|
|
164 |
psi = self.relu(g1+x1) |
|
|
165 |
psi = self.psi(psi) |
|
|
166 |
|
|
|
167 |
return x*psi |
|
|
168 |
|
|
|
169 |
class U_Net(nn.Module): |
|
|
170 |
def __init__(self, img_ch=3, out_dim=1): |
|
|
171 |
|
|
|
172 |
super(U_Net, self).__init__() |
|
|
173 |
self.conv1 = DoubleConv(img_ch, 64) |
|
|
174 |
self.pool1 = nn.MaxPool2d(2) |
|
|
175 |
self.conv2 = DoubleConv(64, 128) |
|
|
176 |
self.pool2 = nn.MaxPool2d(2) |
|
|
177 |
self.conv3 = DoubleConv(128, 256) |
|
|
178 |
self.pool3 = nn.MaxPool2d(2) |
|
|
179 |
self.conv4 = DoubleConv(256, 512) |
|
|
180 |
self.pool4 = nn.MaxPool2d(2) |
|
|
181 |
self.conv5 = DoubleConv(512, 1024) |
|
|
182 |
|
|
|
183 |
|
|
|
184 |
self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2) |
|
|
185 |
self.conv6 = DoubleConv(1024, 512) |
|
|
186 |
self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2) |
|
|
187 |
self.conv7 = DoubleConv(512, 256) |
|
|
188 |
self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2) |
|
|
189 |
self.conv8 = DoubleConv(256, 128) |
|
|
190 |
self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2) |
|
|
191 |
self.conv9 = DoubleConv(128, 64) |
|
|
192 |
self.conv10 = nn.Conv2d(64, out_dim, 1) |
|
|
193 |
|
|
|
194 |
|
|
|
195 |
for m in self.modules(): |
|
|
196 |
if isinstance(m, nn.Conv2d): |
|
|
197 |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
|
198 |
m.weight.data.normal_(0, sqrt(2. / n)) |
|
|
199 |
if m.bias is not None: |
|
|
200 |
m.bias.data.zero_() |
|
|
201 |
elif isinstance(m, nn.BatchNorm2d): |
|
|
202 |
m.weight.data.normal_(1.0, 0.02) |
|
|
203 |
m.bias.data.fill_(0) |
|
|
204 |
|
|
|
205 |
def forward(self, inputs): |
|
|
206 |
c1 = self.conv1(inputs) |
|
|
207 |
p1 = self.pool1(c1) |
|
|
208 |
c2 = self.conv2(p1) |
|
|
209 |
p2 = self.pool2(c2) |
|
|
210 |
c3 = self.conv3(p2) |
|
|
211 |
p3 = self.pool3(c3) |
|
|
212 |
c4 = self.conv4(p3) |
|
|
213 |
p4 = self.pool4(c4) |
|
|
214 |
c5 = self.conv5(p4) |
|
|
215 |
|
|
|
216 |
up_6 = self.up6(c5) |
|
|
217 |
merge6 = torch.cat([up_6, c4], dim=1) |
|
|
218 |
c6 = self.conv6(merge6) |
|
|
219 |
up_7 = self.up7(c6) |
|
|
220 |
merge7 = torch.cat([up_7, c3], dim=1) |
|
|
221 |
c7 = self.conv7(merge7) |
|
|
222 |
up_8 = self.up8(c7) |
|
|
223 |
merge8 = torch.cat([up_8, c2], dim=1) # 256 *48 |
|
|
224 |
c8 = self.conv8(merge8) |
|
|
225 |
up_9 = self.up9(c8) |
|
|
226 |
merge9 = torch.cat([up_9, c1], dim=1) |
|
|
227 |
c9 = self.conv9(merge9) |
|
|
228 |
c10 = self.conv10(c9) |
|
|
229 |
|
|
|
230 |
|
|
|
231 |
return c10 |
|
|
232 |
|
|
|
233 |
|
|
|
234 |
class R2U_Net(nn.Module): |
|
|
235 |
def __init__(self,img_ch=3,output_ch=1,t=2): |
|
|
236 |
super(R2U_Net,self).__init__() |
|
|
237 |
|
|
|
238 |
self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2) |
|
|
239 |
self.Upsample = nn.Upsample(scale_factor=2) |
|
|
240 |
|
|
|
241 |
self.RRCNN1 = RRCNN_block(ch_in=img_ch,ch_out=64,t=t) |
|
|
242 |
|
|
|
243 |
self.RRCNN2 = RRCNN_block(ch_in=64,ch_out=128,t=t) |
|
|
244 |
|
|
|
245 |
self.RRCNN3 = RRCNN_block(ch_in=128,ch_out=256,t=t) |
|
|
246 |
|
|
|
247 |
self.RRCNN4 = RRCNN_block(ch_in=256,ch_out=512,t=t) |
|
|
248 |
|
|
|
249 |
self.RRCNN5 = RRCNN_block(ch_in=512,ch_out=1024,t=t) |
|
|
250 |
|
|
|
251 |
|
|
|
252 |
self.Up5 = up_conv(ch_in=1024,ch_out=512) |
|
|
253 |
self.Up_RRCNN5 = RRCNN_block(ch_in=1024, ch_out=512,t=t) |
|
|
254 |
|
|
|
255 |
self.Up4 = up_conv(ch_in=512,ch_out=256) |
|
|
256 |
self.Up_RRCNN4 = RRCNN_block(ch_in=512, ch_out=256,t=t) |
|
|
257 |
|
|
|
258 |
self.Up3 = up_conv(ch_in=256,ch_out=128) |
|
|
259 |
self.Up_RRCNN3 = RRCNN_block(ch_in=256, ch_out=128,t=t) |
|
|
260 |
|
|
|
261 |
self.Up2 = up_conv(ch_in=128,ch_out=64) |
|
|
262 |
self.Up_RRCNN2 = RRCNN_block(ch_in=128, ch_out=64,t=t) |
|
|
263 |
|
|
|
264 |
self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0) |
|
|
265 |
|
|
|
266 |
|
|
|
267 |
def forward(self,x): |
|
|
268 |
# encoding path |
|
|
269 |
x1 = self.RRCNN1(x) |
|
|
270 |
|
|
|
271 |
x2 = self.Maxpool(x1) |
|
|
272 |
x2 = self.RRCNN2(x2) |
|
|
273 |
|
|
|
274 |
x3 = self.Maxpool(x2) |
|
|
275 |
x3 = self.RRCNN3(x3) |
|
|
276 |
|
|
|
277 |
x4 = self.Maxpool(x3) |
|
|
278 |
x4 = self.RRCNN4(x4) |
|
|
279 |
|
|
|
280 |
x5 = self.Maxpool(x4) |
|
|
281 |
x5 = self.RRCNN5(x5) |
|
|
282 |
|
|
|
283 |
# decoding + concat path |
|
|
284 |
d5 = self.Up5(x5) |
|
|
285 |
d5 = torch.cat((x4,d5),dim=1) |
|
|
286 |
d5 = self.Up_RRCNN5(d5) |
|
|
287 |
|
|
|
288 |
d4 = self.Up4(d5) |
|
|
289 |
d4 = torch.cat((x3,d4),dim=1) |
|
|
290 |
d4 = self.Up_RRCNN4(d4) |
|
|
291 |
|
|
|
292 |
d3 = self.Up3(d4) |
|
|
293 |
d3 = torch.cat((x2,d3),dim=1) |
|
|
294 |
d3 = self.Up_RRCNN3(d3) |
|
|
295 |
|
|
|
296 |
d2 = self.Up2(d3) |
|
|
297 |
d2 = torch.cat((x1,d2),dim=1) |
|
|
298 |
d2 = self.Up_RRCNN2(d2) |
|
|
299 |
|
|
|
300 |
d1 = self.Conv_1x1(d2) |
|
|
301 |
|
|
|
302 |
return d1 |
|
|
303 |
|
|
|
304 |
|
|
|
305 |
class AttU_Net(nn.Module): |
|
|
306 |
def __init__(self,img_ch=3,output_ch=1): |
|
|
307 |
super(AttU_Net,self).__init__() |
|
|
308 |
|
|
|
309 |
self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2) |
|
|
310 |
|
|
|
311 |
self.Conv1 = conv_block(ch_in=img_ch,ch_out=64) |
|
|
312 |
self.Conv2 = conv_block(ch_in=64,ch_out=128) |
|
|
313 |
self.Conv3 = conv_block(ch_in=128,ch_out=256) |
|
|
314 |
self.Conv4 = conv_block(ch_in=256,ch_out=512) |
|
|
315 |
self.Conv5 = conv_block(ch_in=512,ch_out=1024) |
|
|
316 |
|
|
|
317 |
self.Up5 = up_conv(ch_in=1024,ch_out=512) |
|
|
318 |
self.Att5 = Attention_block(F_g=512,F_l=512,F_int=256) |
|
|
319 |
self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) |
|
|
320 |
|
|
|
321 |
self.Up4 = up_conv(ch_in=512,ch_out=256) |
|
|
322 |
self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128) |
|
|
323 |
self.Up_conv4 = conv_block(ch_in=512, ch_out=256) |
|
|
324 |
|
|
|
325 |
self.Up3 = up_conv(ch_in=256,ch_out=128) |
|
|
326 |
self.Att3 = Attention_block(F_g=128,F_l=128,F_int=64) |
|
|
327 |
self.Up_conv3 = conv_block(ch_in=256, ch_out=128) |
|
|
328 |
|
|
|
329 |
self.Up2 = up_conv(ch_in=128,ch_out=64) |
|
|
330 |
self.Att2 = Attention_block(F_g=64,F_l=64,F_int=32) |
|
|
331 |
self.Up_conv2 = conv_block(ch_in=128, ch_out=64) |
|
|
332 |
|
|
|
333 |
self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0) |
|
|
334 |
|
|
|
335 |
|
|
|
336 |
def forward(self,x): |
|
|
337 |
# encoding path |
|
|
338 |
x1 = self.Conv1(x) |
|
|
339 |
|
|
|
340 |
x2 = self.Maxpool(x1) |
|
|
341 |
x2 = self.Conv2(x2) |
|
|
342 |
|
|
|
343 |
x3 = self.Maxpool(x2) |
|
|
344 |
x3 = self.Conv3(x3) |
|
|
345 |
|
|
|
346 |
x4 = self.Maxpool(x3) |
|
|
347 |
x4 = self.Conv4(x4) |
|
|
348 |
|
|
|
349 |
x5 = self.Maxpool(x4) |
|
|
350 |
x5 = self.Conv5(x5) |
|
|
351 |
|
|
|
352 |
# decoding + concat path |
|
|
353 |
d5 = self.Up5(x5) |
|
|
354 |
x4 = self.Att5(g=d5,x=x4) |
|
|
355 |
d5 = torch.cat((x4,d5),dim=1) |
|
|
356 |
d5 = self.Up_conv5(d5) |
|
|
357 |
|
|
|
358 |
d4 = self.Up4(d5) |
|
|
359 |
x3 = self.Att4(g=d4,x=x3) |
|
|
360 |
d4 = torch.cat((x3,d4),dim=1) |
|
|
361 |
d4 = self.Up_conv4(d4) |
|
|
362 |
|
|
|
363 |
d3 = self.Up3(d4) |
|
|
364 |
x2 = self.Att3(g=d3,x=x2) |
|
|
365 |
d3 = torch.cat((x2,d3),dim=1) |
|
|
366 |
d3 = self.Up_conv3(d3) |
|
|
367 |
|
|
|
368 |
d2 = self.Up2(d3) |
|
|
369 |
x1 = self.Att2(g=d2,x=x1) |
|
|
370 |
d2 = torch.cat((x1,d2),dim=1) |
|
|
371 |
d2 = self.Up_conv2(d2) |
|
|
372 |
|
|
|
373 |
d1 = self.Conv_1x1(d2) |
|
|
374 |
|
|
|
375 |
return d1 |
|
|
376 |
|
|
|
377 |
|
|
|
378 |
class R2AttU_Net(nn.Module): |
|
|
379 |
def __init__(self,img_ch=3,output_ch=1,t=2): |
|
|
380 |
super(R2AttU_Net,self).__init__() |
|
|
381 |
|
|
|
382 |
self.Maxpool = nn.MaxPool2d(kernel_size=2,stride=2) |
|
|
383 |
self.Upsample = nn.Upsample(scale_factor=2) |
|
|
384 |
|
|
|
385 |
self.RRCNN1 = RRCNN_block(ch_in=img_ch,ch_out=64,t=t) |
|
|
386 |
|
|
|
387 |
self.RRCNN2 = RRCNN_block(ch_in=64,ch_out=128,t=t) |
|
|
388 |
|
|
|
389 |
self.RRCNN3 = RRCNN_block(ch_in=128,ch_out=256,t=t) |
|
|
390 |
|
|
|
391 |
self.RRCNN4 = RRCNN_block(ch_in=256,ch_out=512,t=t) |
|
|
392 |
|
|
|
393 |
self.RRCNN5 = RRCNN_block(ch_in=512,ch_out=1024,t=t) |
|
|
394 |
|
|
|
395 |
|
|
|
396 |
self.Up5 = up_conv(ch_in=1024,ch_out=512) |
|
|
397 |
self.Att5 = Attention_block(F_g=512,F_l=512,F_int=256) |
|
|
398 |
self.Up_RRCNN5 = RRCNN_block(ch_in=1024, ch_out=512,t=t) |
|
|
399 |
|
|
|
400 |
self.Up4 = up_conv(ch_in=512,ch_out=256) |
|
|
401 |
self.Att4 = Attention_block(F_g=256,F_l=256,F_int=128) |
|
|
402 |
self.Up_RRCNN4 = RRCNN_block(ch_in=512, ch_out=256,t=t) |
|
|
403 |
|
|
|
404 |
self.Up3 = up_conv(ch_in=256,ch_out=128) |
|
|
405 |
self.Att3 = Attention_block(F_g=128,F_l=128,F_int=64) |
|
|
406 |
self.Up_RRCNN3 = RRCNN_block(ch_in=256, ch_out=128,t=t) |
|
|
407 |
|
|
|
408 |
self.Up2 = up_conv(ch_in=128,ch_out=64) |
|
|
409 |
self.Att2 = Attention_block(F_g=64,F_l=64,F_int=32) |
|
|
410 |
self.Up_RRCNN2 = RRCNN_block(ch_in=128, ch_out=64,t=t) |
|
|
411 |
|
|
|
412 |
self.Conv_1x1 = nn.Conv2d(64,output_ch,kernel_size=1,stride=1,padding=0) |
|
|
413 |
|
|
|
414 |
|
|
|
415 |
def forward(self,x): |
|
|
416 |
# encoding path |
|
|
417 |
x1 = self.RRCNN1(x) |
|
|
418 |
|
|
|
419 |
x2 = self.Maxpool(x1) |
|
|
420 |
x2 = self.RRCNN2(x2) |
|
|
421 |
|
|
|
422 |
x3 = self.Maxpool(x2) |
|
|
423 |
x3 = self.RRCNN3(x3) |
|
|
424 |
|
|
|
425 |
x4 = self.Maxpool(x3) |
|
|
426 |
x4 = self.RRCNN4(x4) |
|
|
427 |
|
|
|
428 |
x5 = self.Maxpool(x4) |
|
|
429 |
x5 = self.RRCNN5(x5) |
|
|
430 |
|
|
|
431 |
# decoding + concat path |
|
|
432 |
d5 = self.Up5(x5) |
|
|
433 |
x4 = self.Att5(g=d5,x=x4) |
|
|
434 |
d5 = torch.cat((x4,d5),dim=1) |
|
|
435 |
d5 = self.Up_RRCNN5(d5) |
|
|
436 |
|
|
|
437 |
d4 = self.Up4(d5) |
|
|
438 |
x3 = self.Att4(g=d4,x=x3) |
|
|
439 |
d4 = torch.cat((x3,d4),dim=1) |
|
|
440 |
d4 = self.Up_RRCNN4(d4) |
|
|
441 |
|
|
|
442 |
d3 = self.Up3(d4) |
|
|
443 |
x2 = self.Att3(g=d3,x=x2) |
|
|
444 |
d3 = torch.cat((x2,d3),dim=1) |
|
|
445 |
d3 = self.Up_RRCNN3(d3) |
|
|
446 |
|
|
|
447 |
d2 = self.Up2(d3) |
|
|
448 |
x1 = self.Att2(g=d2,x=x1) |
|
|
449 |
d2 = torch.cat((x1,d2),dim=1) |
|
|
450 |
d2 = self.Up_RRCNN2(d2) |
|
|
451 |
|
|
|
452 |
d1 = self.Conv_1x1(d2) |
|
|
453 |
|
|
|
454 |
return d1 |