|
a |
|
b/features/read_csv.py |
|
|
1 |
import csv |
|
|
2 |
import platform |
|
|
3 |
import numpy as np |
|
|
4 |
import matplotlib.pyplot as plt |
|
|
5 |
import os |
|
|
6 |
import otsu |
|
|
7 |
from FeatureExtract import * |
|
|
8 |
from skimage.feature import hog, haar_like_feature,local_binary_pattern,multiblock_lbp,daisy |
|
|
9 |
import pysift |
|
|
10 |
import time |
|
|
11 |
|
|
|
12 |
def readCSV(filename): |
|
|
13 |
lines = [] |
|
|
14 |
with open(filename, "r") as f: |
|
|
15 |
csvreader = csv.reader(f) |
|
|
16 |
for line in csvreader: |
|
|
17 |
lines.append(line) |
|
|
18 |
return lines |
|
|
19 |
|
|
|
20 |
ori_path = 'C:/Users/RL/Desktop/可解释性的特征学习分类/nodules/ori_hu/' |
|
|
21 |
|
|
|
22 |
def get_feature_name(temp, index, value): |
|
|
23 |
name = [] |
|
|
24 |
for t in temp: |
|
|
25 |
if float(t[index]) == value: |
|
|
26 |
if len(t[1]) == 1: |
|
|
27 |
name.append('LIDC-IDRI-000' + t[1] + '_' + t[3] + '_' + t[2] + '.npy') |
|
|
28 |
elif len(t[1]) == 2: |
|
|
29 |
name.append('LIDC-IDRI-00' + t[1] + '_' + t[3] + '_' + t[2] + '.npy') |
|
|
30 |
elif len(t[1]) == 3: |
|
|
31 |
name.append('LIDC-IDRI-0' + t[1] + '_' + t[3] + '_' + t[2] + '.npy') |
|
|
32 |
else: |
|
|
33 |
name.append('LIDC-IDRI-' + t[1] + '_' + t[3] + '_' + t[2] + '.npy') |
|
|
34 |
return name |
|
|
35 |
|
|
|
36 |
def read_name(): |
|
|
37 |
labelCSV = readCSV('C:/Users/RL/Desktop/可解释性的特征学习分类/特征图片/malignancy.csv') |
|
|
38 |
Max = [] |
|
|
39 |
Min = [] |
|
|
40 |
temp = [labelCSV[i] for i in range(len(labelCSV))] |
|
|
41 |
final = np.array([[float(temp[i][j + 21]) for j in range(9)] for i in range(len(temp)) if '0' not in temp[i]]) |
|
|
42 |
Max = final.max(axis=0) |
|
|
43 |
Min = final.min(axis=0) |
|
|
44 |
# prob_map = [[final[i][j] / (Max[j] + Min[j] + 1) if j != 8 else final[i][j] >= 3.5 for j in range(final.shape[1])] for i in range(final.shape[0])] |
|
|
45 |
# 29 28 27毛刺 26分叶 25 24 23 22内在的 21 |
|
|
46 |
# print(prob_map[0]) |
|
|
47 |
name_maoci= get_feature_name(temp, 27, Max[6]) |
|
|
48 |
name_fenye = get_feature_name(temp, 26, Max[5]) |
|
|
49 |
name_solid = get_feature_name(temp, 28, Max[7]) |
|
|
50 |
name_non_solid = get_feature_name(temp, 28, 3) |
|
|
51 |
name_moboli = get_feature_name(temp, 28, 1) |
|
|
52 |
# with open('C:/Users/RL/Desktop/可解释性的特征学习分类/特征图片/name.txt',"w") as f: |
|
|
53 |
# f.write("*" * 10 + "maoci:"+ '\n') |
|
|
54 |
# for name in name_maoci: |
|
|
55 |
# f.write(name + '\n') |
|
|
56 |
# f.write("*" * 10 + "fenye:"+ '\n') |
|
|
57 |
# for name in name_fenye: |
|
|
58 |
# f.write(name+ '\n') |
|
|
59 |
# f.write("*" * 10 + "shixing:"+ '\n') |
|
|
60 |
# for name in name_solid: |
|
|
61 |
# f.write(name+ '\n') |
|
|
62 |
# f.write("*" * 10 + "yashixing:"+ '\n') |
|
|
63 |
# for name in name_non_solid: |
|
|
64 |
# f.write(name+ '\n') |
|
|
65 |
# f.write("*" * 10 + "moboli:"+ '\n') |
|
|
66 |
# for name in name_moboli: |
|
|
67 |
# f.write(name+ '\n') |
|
|
68 |
return name_maoci, name_fenye, name_solid, name_non_solid, name_moboli |
|
|
69 |
|
|
|
70 |
def read_lidc(filename): |
|
|
71 |
image = np.load(ori_path + filename) |
|
|
72 |
return image |
|
|
73 |
|
|
|
74 |
def image_feature_extract(image): |
|
|
75 |
features = [image] |
|
|
76 |
# otsu_image = otsu.helper(image.copy()) |
|
|
77 |
features.append(otsu.helper(image.copy())) |
|
|
78 |
features.append(gabor(image.copy())) |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
# 添加新的方式 |
|
|
82 |
# lbp = local_binary_pattern(image.copy(), 3, 3, method='var') |
|
|
83 |
# features.append(otsu._otsu(lbp)) |
|
|
84 |
# features.append(edge_detection(image.copy())) |
|
|
85 |
_, hog_image = hog(gabor(image.copy()), orientations=9, pixels_per_cell=(8, 8),cells_per_block=(2, 2), visualize=True, multichannel=False) |
|
|
86 |
features.append(hog_image) |
|
|
87 |
|
|
|
88 |
|
|
|
89 |
features.append(np.transpose(super_pixel(image.copy()),(2,0,1))[0]) |
|
|
90 |
features.append(local_binary_pattern(image.copy(), 4, 4, method='var')) # 会产生无穷大或者是无穷小 |
|
|
91 |
fd, hog_image = hog(image.copy(), orientations=9, pixels_per_cell=(4, 4),cells_per_block=(2, 2), visualize=True, multichannel=False) |
|
|
92 |
|
|
|
93 |
_, descs_img = daisy(image.copy(), step=180, radius=58, rings = 2, histograms=10,orientations=8,visualize=True) |
|
|
94 |
features.append(hog_image) |
|
|
95 |
features.append(np.transpose(descs_img.copy(),(2,0,1))[0]) |
|
|
96 |
features.append(descs_img) |
|
|
97 |
kps, _ = pysift.computeKeypointsAndDescriptors(image.copy()) |
|
|
98 |
x = [] |
|
|
99 |
y = [] |
|
|
100 |
for kp in kps: |
|
|
101 |
x.append(kp.pt[0]) |
|
|
102 |
y.append(kp.pt[1]) |
|
|
103 |
return features, x, y |
|
|
104 |
|
|
|
105 |
# 接下里就是 统计每个属性的图像特征输出 |
|
|
106 |
if __name__ == "__main__": |
|
|
107 |
a1, a2, a3, a4, a5 = read_name() |
|
|
108 |
ori_image = [] |
|
|
109 |
# 不清楚normalize的影响 |
|
|
110 |
ori_image.append([normalization(truncate_hu(read_lidc('LIDC-IDRI-0007_2_3000631.npy')))])# 毛刺 |
|
|
111 |
ori_image.append([normalization(truncate_hu(read_lidc('LIDC-IDRI-0060_1_3000575.npy')))])# 分叶 |
|
|
112 |
ori_image.append([normalization(truncate_hu(read_lidc('LIDC-IDRI-0003_4_3000611.npy')))]) # 磨玻璃 |
|
|
113 |
ori_image.append([normalization(truncate_hu(read_lidc('LIDC-IDRI-0003_2_3000611.npy')))]) # 实性 |
|
|
114 |
ori_image.append([normalization(truncate_hu(read_lidc('LIDC-IDRI-0008_1_3000549.npy')))]) # 亚实性 |
|
|
115 |
ori_image.append([normalization(truncate_hu(read_lidc('LIDC-IDRI-0132_1_5418.npy')))]) # 空洞 |
|
|
116 |
X = [] |
|
|
117 |
Y = [] |
|
|
118 |
for i in range(6): |
|
|
119 |
features, x, y = image_feature_extract(ori_image[i][0]) |
|
|
120 |
for feature in features: |
|
|
121 |
ori_image[i].append(feature) |
|
|
122 |
# print(len(ori_image[i])) |
|
|
123 |
X.append(x) |
|
|
124 |
Y.append(y) |
|
|
125 |
name = ["origial","sift-key-point","otsu","gabor","new","super-pixel","lbp","hog","daisy-three-dim","daisy-gray"] |
|
|
126 |
plt.figure() |
|
|
127 |
# 对实性结节 对亚实性结节 对分叶 对毛玻璃 对空洞 对毛刺 |
|
|
128 |
numRows = 6 |
|
|
129 |
numCols = 10 |
|
|
130 |
font2 = {'family' : 'Times New Roman', |
|
|
131 |
'weight' : 'normal', |
|
|
132 |
'size' : 7, |
|
|
133 |
} |
|
|
134 |
for i in range(numRows): |
|
|
135 |
for j in range(numCols): |
|
|
136 |
ax = plt.subplot(numRows,numCols,1 + i * numCols + j) |
|
|
137 |
if i == 0: |
|
|
138 |
ax.set_title(name[j],font2) |
|
|
139 |
if j != numCols - 1: |
|
|
140 |
plt.imshow(ori_image[i][j], cmap="gray") |
|
|
141 |
else: |
|
|
142 |
plt.imshow(ori_image[i][j]) |
|
|
143 |
if j == 1: |
|
|
144 |
plt.scatter(X[i], Y[i], color='red', s=3, alpha=0.5) |
|
|
145 |
plt.xticks([]) |
|
|
146 |
plt.yticks([]) |
|
|
147 |
# plt.savefig("C:/Users/RL/Desktop/可解释性的特征学习分类/特征图片/pictures/test" + str(time.time()) + ".png",dpi=1500) |
|
|
148 |
plt.show() |