|
a |
|
b/dataprocess/segdataloader.py |
|
|
1 |
import os |
|
|
2 |
import numpy as np |
|
|
3 |
from glob import glob |
|
|
4 |
from PIL import Image |
|
|
5 |
import torch |
|
|
6 |
from torchvision.transforms import Compose, Normalize, ToTensor |
|
|
7 |
from Transforms import Scale |
|
|
8 |
import cv2 |
|
|
9 |
|
|
|
10 |
# width, height = 96, 96 |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
def att_compare(a, b=3): |
|
|
14 |
if a > b: |
|
|
15 |
return np.array([1]) |
|
|
16 |
else: |
|
|
17 |
return np.array([0]) |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
def makedirs(path): |
|
|
21 |
if not os.path.exists(path): |
|
|
22 |
os.makedirs(path) |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
def normalazation(image_array): |
|
|
26 |
max = image_array.max() |
|
|
27 |
min = image_array.min() |
|
|
28 |
image_array = (image_array-min)/(max-min) # float cannot apply the compute,or array error will occur |
|
|
29 |
avg = image_array.mean() |
|
|
30 |
image_array = image_array-avg |
|
|
31 |
return image_array # a bug here, a array must be returned,directly appling function did't work |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
class Dataset(torch.utils.data.Dataset): |
|
|
35 |
def __init__(self, datas, lungs, medias, inters, unions, masks, label=None, width=64, height=64): |
|
|
36 |
self.size = (width, height) |
|
|
37 |
self.datas = datas |
|
|
38 |
self.lungs = lungs |
|
|
39 |
self.medias = medias |
|
|
40 |
self.inters = inters |
|
|
41 |
self.unions = unions |
|
|
42 |
self.masks = masks |
|
|
43 |
self.img_resize = Compose([ |
|
|
44 |
Scale(self.size, Image.BILINEAR), |
|
|
45 |
|
|
|
46 |
]) |
|
|
47 |
self.label_resize = Compose([ |
|
|
48 |
Scale(self.size, Image.NEAREST), |
|
|
49 |
]) |
|
|
50 |
self.img_transform_gray = Compose([ |
|
|
51 |
ToTensor(), |
|
|
52 |
Normalize(mean=[0.448749], std=[0.399953]) # 这个归一化方式可以提升近1个点的dice |
|
|
53 |
]) |
|
|
54 |
|
|
|
55 |
self.img_transform_rgb = Compose([ |
|
|
56 |
ToTensor(), |
|
|
57 |
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
58 |
]) |
|
|
59 |
|
|
|
60 |
self.input_paths = self.datas |
|
|
61 |
self.lung_paths = self.lungs |
|
|
62 |
self.media_paths = self.medias |
|
|
63 |
|
|
|
64 |
self.inter_path = self.inters |
|
|
65 |
self.union_path = self.unions |
|
|
66 |
self.mask_path = self.masks |
|
|
67 |
|
|
|
68 |
print('Training data:') |
|
|
69 |
print(len(self.datas)) |
|
|
70 |
|
|
|
71 |
def __getitem__(self, index): |
|
|
72 |
input = np.load(self.input_paths[index]) |
|
|
73 |
lung = np.load(self.lung_paths[index]) |
|
|
74 |
media = np.load(self.media_paths[index]) |
|
|
75 |
lung = normalazation(lung) |
|
|
76 |
media = normalazation(media) |
|
|
77 |
|
|
|
78 |
inter = Image.open(self.inter_path[index]) |
|
|
79 |
union = Image.open(self.union_path[index]) |
|
|
80 |
mask = Image.open(self.mask_path[index]) |
|
|
81 |
|
|
|
82 |
input = cv2.resize(input, self.size) |
|
|
83 |
lung = cv2.resize(lung, self.size) |
|
|
84 |
media = cv2.resize(media, self.size) |
|
|
85 |
inter = self.img_resize(inter) |
|
|
86 |
union = self.img_resize(union) |
|
|
87 |
mask = self.img_resize(mask) |
|
|
88 |
|
|
|
89 |
torch.from_numpy(input) |
|
|
90 |
torch.from_numpy(lung) |
|
|
91 |
torch.from_numpy(media) |
|
|
92 |
|
|
|
93 |
# 归一化 |
|
|
94 |
input = self.img_transform_gray(input) |
|
|
95 |
lung = self.img_transform_gray(lung) |
|
|
96 |
media = self.img_transform_gray(media) |
|
|
97 |
inter = self.img_transform_gray(inter) |
|
|
98 |
union = self.img_transform_gray(union) |
|
|
99 |
mask = self.img_transform_gray(mask) |
|
|
100 |
|
|
|
101 |
# 二值化 |
|
|
102 |
inter[inter > 0.5] = 1 |
|
|
103 |
inter[inter < 0.5] = 0 |
|
|
104 |
union[union > 0.5] = 1 |
|
|
105 |
union[union < 0.5] = 0 |
|
|
106 |
mask[mask > 0.5] = 1 |
|
|
107 |
mask[mask < 0.5] = 0 |
|
|
108 |
|
|
|
109 |
return input, lung, media, union, inter, mask |
|
|
110 |
|
|
|
111 |
def __len__(self): |
|
|
112 |
return len(self.input_paths) |
|
|
113 |
|
|
|
114 |
|
|
|
115 |
class Dataset_val(torch.utils.data.Dataset): |
|
|
116 |
def __init__(self, datas, medias, inters, unions, masks, label=None, width=64, height=64): |
|
|
117 |
self.size = (width, height) |
|
|
118 |
self.data = datas |
|
|
119 |
self.medias = medias |
|
|
120 |
self.inters = inters |
|
|
121 |
self.unions = unions |
|
|
122 |
self.mask = masks |
|
|
123 |
self.img_resize = Compose([ |
|
|
124 |
Scale(self.size, Image.BILINEAR), |
|
|
125 |
|
|
|
126 |
]) |
|
|
127 |
self.label_resize = Compose([ |
|
|
128 |
Scale(self.size, Image.NEAREST), |
|
|
129 |
]) |
|
|
130 |
self.img_transform_gray = Compose([ |
|
|
131 |
ToTensor(), |
|
|
132 |
Normalize(mean=[0.448749], std=[0.399953]) # 这个归一化方式可以提升近1个点的dice |
|
|
133 |
]) |
|
|
134 |
|
|
|
135 |
self.img_transform_rgb = Compose([ |
|
|
136 |
ToTensor(), |
|
|
137 |
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
138 |
]) |
|
|
139 |
|
|
|
140 |
self.input_paths = self.data |
|
|
141 |
self.media_paths = self.medias |
|
|
142 |
self.inter_path = self.inters |
|
|
143 |
self.union_path = self.unions |
|
|
144 |
self.mask_paths = self.mask |
|
|
145 |
|
|
|
146 |
print('Testing data:') |
|
|
147 |
print(len(self.input_paths)) |
|
|
148 |
|
|
|
149 |
def __getitem__(self, index): |
|
|
150 |
input = np.load(self.input_paths[index]) |
|
|
151 |
media = np.load(self.media_paths[index]) |
|
|
152 |
inter = Image.open(self.inter_path[index]) |
|
|
153 |
union = Image.open(self.union_path[index]) |
|
|
154 |
mask = Image.open(self.mask_paths[index]) |
|
|
155 |
|
|
|
156 |
input = cv2.resize(input, self.size) |
|
|
157 |
media = cv2.resize(media, self.size) |
|
|
158 |
inter = self.img_resize(inter) |
|
|
159 |
union = self.img_resize(union) |
|
|
160 |
mask = self.img_resize(mask) |
|
|
161 |
|
|
|
162 |
torch.from_numpy(input) |
|
|
163 |
torch.from_numpy(media) |
|
|
164 |
|
|
|
165 |
input = self.img_transform_gray(input) |
|
|
166 |
media = self.img_transform_gray(media) |
|
|
167 |
inter = self.img_transform_gray(inter) |
|
|
168 |
union = self.img_transform_gray(union) |
|
|
169 |
mask = self.img_transform_gray(mask) |
|
|
170 |
|
|
|
171 |
# 二值化 |
|
|
172 |
inter[inter > 0.5] = 1 |
|
|
173 |
inter[inter < 0.5] = 0 |
|
|
174 |
union[union > 0.5] = 1 |
|
|
175 |
union[union < 0.5] = 0 |
|
|
176 |
mask[mask > 0.5] = 1 |
|
|
177 |
mask[mask < 0.5] = 0 |
|
|
178 |
|
|
|
179 |
|
|
|
180 |
return input, media, union, inter, mask |
|
|
181 |
|
|
|
182 |
def __len__(self): |
|
|
183 |
return len(self.input_paths) |
|
|
184 |
|
|
|
185 |
|
|
|
186 |
class RowDataset(torch.utils.data.Dataset): |
|
|
187 |
def __init__(self, data, mask, label=None, width=64, height=64): |
|
|
188 |
self.size = (width, height) |
|
|
189 |
self.data = data |
|
|
190 |
self.mask = mask |
|
|
191 |
self.label = label |
|
|
192 |
self.img_resize = Compose([ |
|
|
193 |
Scale(self.size, Image.BILINEAR), |
|
|
194 |
|
|
|
195 |
]) |
|
|
196 |
self.label_resize = Compose([ |
|
|
197 |
Scale(self.size, Image.NEAREST), |
|
|
198 |
]) |
|
|
199 |
self.img_transform_gray = Compose([ |
|
|
200 |
ToTensor(), |
|
|
201 |
Normalize(mean=[0.448749], std=[0.399953]) # 这个归一化方式可以提升近1个点的dice |
|
|
202 |
]) |
|
|
203 |
|
|
|
204 |
self.img_transform_rgb = Compose([ |
|
|
205 |
ToTensor(), |
|
|
206 |
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
207 |
]) |
|
|
208 |
|
|
|
209 |
self.input_paths = self.data |
|
|
210 |
self.mask_paths = self.mask |
|
|
211 |
self.label_paths = self.label |
|
|
212 |
|
|
|
213 |
def __getitem__(self, index): |
|
|
214 |
image = Image.open(self.input_paths[index]) |
|
|
215 |
mask = Image.open(self.mask_paths[index]) |
|
|
216 |
# mask.save('image1.jpg') |
|
|
217 |
|
|
|
218 |
image = self.img_resize(image) |
|
|
219 |
mask = self.img_resize(mask) |
|
|
220 |
# mask.save('image2.jpg') |
|
|
221 |
|
|
|
222 |
image = self.img_transform_gray(image) |
|
|
223 |
mask = self.img_transform_gray(mask) |
|
|
224 |
|
|
|
225 |
# mask = mask.squeeze() |
|
|
226 |
# mask = np.transpose(mask.cpu().detach().numpy(), (0,1)) |
|
|
227 |
# cv2.imwrite('image3.jpg', mask) |
|
|
228 |
return image, mask |
|
|
229 |
|
|
|
230 |
def __len__(self): |
|
|
231 |
return len(self.input_paths) |
|
|
232 |
|
|
|
233 |
|
|
|
234 |
def loader(dataset, batch_size, num_workers=8, shuffle=False): |
|
|
235 |
input_images = dataset |
|
|
236 |
|
|
|
237 |
input_loader = torch.utils.data.DataLoader(dataset=input_images, |
|
|
238 |
batch_size=batch_size, |
|
|
239 |
shuffle=shuffle, |
|
|
240 |
num_workers=num_workers) |
|
|
241 |
|
|
|
242 |
return input_loader |