|
a |
|
b/config.py |
|
|
1 |
import os |
|
|
2 |
|
|
|
3 |
from numpy.core.numeric import False_ |
|
|
4 |
|
|
|
5 |
class Config(object): |
|
|
6 |
""" Wrapper class for various (hyper)parameters. """ |
|
|
7 |
def __init__(self): |
|
|
8 |
self.arch = 'mymodel_fold1' |
|
|
9 |
# training settings |
|
|
10 |
self.epochs = 150 |
|
|
11 |
self.learning_rate = 0.00001 |
|
|
12 |
self.gpu = 0 |
|
|
13 |
self.evaluate = False # test or train |
|
|
14 |
self.resume = False |
|
|
15 |
self.num_classes = 3 |
|
|
16 |
self.in_dim = 3 |
|
|
17 |
self.out_dim = 1 |
|
|
18 |
self.lr_type = 'SGDR' |
|
|
19 |
self.milestones = [80, 160, 240] |
|
|
20 |
self.sgdr_t = 50 |
|
|
21 |
self.weight_seg1 = 1 |
|
|
22 |
self.weight_seg2 = 0.5 |
|
|
23 |
self.weight_con = 0.1 |
|
|
24 |
self.weight_im = 0.9 |
|
|
25 |
self.weight_kd = 0.5 |
|
|
26 |
self.weight_edge = 0.5 |
|
|
27 |
self.batch_size = 8 |
|
|
28 |
|
|
|
29 |
# cross validation settings |
|
|
30 |
self.fold = 1 |
|
|
31 |
self.fold_num = 5 |
|
|
32 |
|
|
|
33 |
self.training_fold_index = [] |
|
|
34 |
for i in range(self.fold_num + 1): |
|
|
35 |
if i != self.fold and i != 0: |
|
|
36 |
self.training_fold_index.append(i) |
|
|
37 |
|
|
|
38 |
self.test_fold_index = [self.fold] |
|
|
39 |
|
|
|
40 |
# paths |
|
|
41 |
self.maskPath1 = './data/row_image/' # 对比实验所用数据集 |
|
|
42 |
self.csvPath = './dataprocess/split_csv/' # fold_csv |
|
|
43 |
self.maskPath2 = './data/mid_image/' |
|
|
44 |
self.midPath = './data/mid_image_npy/' |
|
|
45 |
self.lungPath = './data/lung_image/' |
|
|
46 |
self.mediaPath = './data/media_image/' |
|
|
47 |
self.figurePath = './result/figure/' |
|
|
48 |
|
|
|
49 |
|