[d9566e]: / sybil / utils / losses.py

Download this file

199 lines (158 with data), 8.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from collections import OrderedDict
import torch
import torch.nn.functional as F
def get_cross_entropy_loss(model_output, batch, model, args):
logging_dict, predictions = OrderedDict(), OrderedDict()
logit = model_output["logit"]
loss = F.cross_entropy(logit, batch["y"].long())
logging_dict["cross_entropy_loss"] = loss.detach()
predictions["probs"] = F.softmax(logit, dim=-1).detach()
predictions["golds"] = batch["y"]
return loss, logging_dict, predictions
def get_survival_loss(model_output, batch, model, args):
logging_dict, predictions = OrderedDict(), OrderedDict()
logit = model_output["logit"]
y_seq, y_mask = batch["y_seq"], batch["y_mask"]
loss = F.binary_cross_entropy_with_logits(logit, y_seq.float(), weight=y_mask.float(), reduction='sum') / torch.sum(y_mask.float())
logging_dict["survival_loss"] = loss.detach()
predictions["probs"] = torch.sigmoid(logit).detach()
predictions["golds"] = batch["y"]
predictions["censors"] = batch["time_at_event"]
return loss, logging_dict, predictions
def get_annotation_loss(model_output, batch, model, args):
total_loss, logging_dict, predictions = 0, OrderedDict(), OrderedDict()
B, _, N, H, W, = model_output["activ"].shape
batch_mask = batch["has_annotation"]
for attn_num in [1, 2]:
side_attn = -1
if model_output.get("image_attention_{}".format(attn_num), None) is not None:
if len(batch["image_annotations"].shape) == 4:
batch["image_annotations"] = batch["image_annotations"].unsqueeze(1)
# resize annotation to 'activ' size
annotation_gold = F.interpolate(
batch["image_annotations"], (N, H, W), mode="area"
)
annotation_gold = annotation_gold * batch_mask[:, None, None, None, None]
# renormalize scores
mask_area = annotation_gold.sum(dim=(-1, -2)).unsqueeze(-1).unsqueeze(-1)
mask_area[mask_area == 0] = 1
annotation_gold /= mask_area
# reshape annotation into 1D vector
annotation_gold = annotation_gold.view(B, N, -1).float()
# get mask over annotation boxes in order to weigh
# non-annotated scores with zero when computing loss
annotation_gold_mask = (annotation_gold > 0).float()
num_annotated_samples = (annotation_gold.view(B * N, -1).sum(-1) > 0).sum()
num_annotated_samples = max(1, num_annotated_samples)
pred_attn = (
model_output["image_attention_{}".format(attn_num)]
* batch_mask[:, None, None]
)
kldiv = (
F.kl_div(pred_attn, annotation_gold, reduction="none")
* annotation_gold_mask
)
# sum loss per volume and average over batches
loss = kldiv.sum() / num_annotated_samples
logging_dict["image_attention_loss_{}".format(attn_num)] = loss.detach()
total_loss += args.image_attention_loss_lambda * loss
# attend to cancer side
cancer_side_mask = (batch["cancer_laterality"][:, :2].sum(-1) == 1).float()[
:, None
] # only one side is positive
cancer_side_gold = (
batch["cancer_laterality"][:, 1].unsqueeze(1).repeat(1, N)
) # left side (seen as lung on right) is positive class
num_annotated_samples = max(N * cancer_side_mask.sum(), 1)
side_attn = torch.exp(model_output["image_attention_{}".format(attn_num)])
side_attn = side_attn.view(B, N, H, W)
side_attn = torch.stack(
[
side_attn[:, :, :, : W // 2].sum((2, 3)),
side_attn[:, :, :, W // 2 :].sum((2, 3)),
],
dim=-1,
)
side_attn_log = F.log_softmax(side_attn, dim=-1).transpose(1, 2)
loss = (
F.cross_entropy(side_attn_log, cancer_side_gold, reduction="none")
* cancer_side_mask
).sum() / num_annotated_samples
logging_dict[
"image_side_attention_loss_{}".format(attn_num)
] = loss.detach()
total_loss += args.image_attention_loss_lambda * loss
if model_output.get("volume_attention_{}".format(attn_num), None) is not None:
# find size of annotation box per slice and normalize
annotation_gold = batch["annotation_areas"].float() * batch_mask[:, None]
if N != args.num_images:
annotation_gold = F.interpolate(annotation_gold.unsqueeze(1), (N), mode= 'linear', align_corners = True)[:,0]
area_per_slice = annotation_gold.sum(-1).unsqueeze(-1)
area_per_slice[area_per_slice == 0] = 1
annotation_gold /= area_per_slice
num_annotated_samples = (annotation_gold.sum(-1) > 0).sum()
num_annotated_samples = max(1, num_annotated_samples)
# find slices with annotation
annotation_gold_mask = (annotation_gold > 0).float()
pred_attn = (
model_output["volume_attention_{}".format(attn_num)]
* batch_mask[:, None]
)
kldiv = (
F.kl_div(pred_attn, annotation_gold, reduction="none")
* annotation_gold_mask
) # B, N
loss = kldiv.sum() / num_annotated_samples
logging_dict["volume_attention_loss_{}".format(attn_num)] = loss.detach()
total_loss += args.volume_attention_loss_lambda * loss
if isinstance(side_attn, torch.Tensor):
# attend to cancer side
cancer_side_mask = (
batch["cancer_laterality"][:, :2].sum(-1) == 1
).float() # only one side is positive
cancer_side_gold = batch["cancer_laterality"][
:, 1
] # left side (seen as lung on right) is positive class
num_annotated_samples = max(cancer_side_mask.sum(), 1)
pred_attn = torch.exp(
model_output["volume_attention_{}".format(attn_num)]
)
side_attn = (side_attn * pred_attn.unsqueeze(-1)).sum(1)
side_attn_log = F.log_softmax(side_attn, dim=-1)
loss = (
F.cross_entropy(side_attn_log, cancer_side_gold, reduction="none")
* cancer_side_mask
).sum() / num_annotated_samples
logging_dict[
"volume_side_attention_loss_{}".format(attn_num)
] = loss.detach()
total_loss += args.volume_attention_loss_lambda * loss
return total_loss * args.annotation_loss_lambda, logging_dict, predictions
def get_risk_factor_loss(model_output, batch, model, args):
total_loss, logging_dict, predictions = 0, OrderedDict(), OrderedDict()
for idx, key in enumerate(args.risk_factor_keys):
logit = model_output["{}_logit".format(key)]
gold_rf = batch["risk_factors"][idx]
is_rf_known = (torch.sum(gold_rf, dim=-1) > 0).unsqueeze(-1).float()
gold = torch.argmax(gold_rf, dim=-1).contiguous().view(-1)
loss = (
F.cross_entropy(logit, gold, reduction="none") * is_rf_known
).sum() / max(1, is_rf_known.sum())
total_loss += loss
logging_dict["{}_loss".format(key)] = loss.detach()
probs = F.softmax(logit, dim=-1).detach()
predictions["{}_probs".format(key)] = probs.detach()
predictions["{}_golds".format(key)] = gold.detach()
predictions["{}_risk_factor".format(key)] = batch["risk_factors"][idx]
# preds = torch.argmax(probs, dim=-1).view(-1)
return total_loss * args.primary_loss_lambda, logging_dict, predictions
def discriminator_loss(model_output, batch, model, args):
logging_dict, predictions = OrderedDict(), OrderedDict()
d_output = model.discriminator(model_output, batch)
loss = F.cross_entropy(d_output['logit'], batch['origin_dataset'].long()) * args.adv_loss_lambda
logging_dict['discrim_loss'] = loss.detach()
predictions['discrim_probs'] = d_output['logit'].detach()
predictions['discrim_golds'] = batch['origin_dataset']
if model.reverse_discrim_loss:
loss = -loss
return loss, logging_dict, predictions