import torch
import os
import sys
import os.path
import warnings
from sybil.datasets.utils import get_scaled_annotation_mask, IMG_PAD_TOKEN
from sybil.augmentations import ComposeAug
import numpy as np
from abc import ABCMeta, abstractmethod
import hashlib
CACHED_FILES_EXT = ".png"
DEFAULT_CACHE_DIR = "default/"
CORUPTED_FILE_ERR = (
"WARNING! Error processing file from cache - removed file from cache. Error: {}"
)
def md5(key):
"""
returns a hashed with md5 string of the key
"""
return hashlib.md5(key.encode()).hexdigest()
def split_augmentations_by_cache(augmentations):
"""
Given a list of augmentations, returns a list of tuples. Each tuple
contains a caching key of the augmentations up to the spiltting point,
and a list of augmentations that should be applied afterwards.
split_augmentations will contain all possible splits by cachable augmentations,
ordered from latest possible one to the former ones.
The last tuple will have all augmentations.
Note - splitting will be done for indexes that all augmentations up to them are
cachable.
"""
# list of (cache key, post augmentations)
split_augmentations = []
split_augmentations.append((DEFAULT_CACHE_DIR, augmentations))
all_prev_cachable = True
key = ""
for ind, trans in enumerate(augmentations):
# check trans.cachable() first separately to save run time
if not all_prev_cachable or not trans.cachable():
all_prev_cachable = False
else:
key += trans.caching_keys()
post_augmentations = (
augmentations[ind + 1 :] if ind < len(augmentations) else []
)
split_augmentations.append((key, post_augmentations))
return list(reversed(split_augmentations))
def apply_augmentations_and_cache(
loaded_input, sample, img_path, augmentations, cache, base_key=""
):
"""
Loads the loaded input by its absolute path and apply the augmentations one
by one (similar to what the composed one is doing). All first cachable
transformer's output is cached (until reaching a non cachable one).
"""
all_prev_cachable = True
key = base_key
for ind, trans in enumerate(augmentations):
loaded_input = trans(loaded_input, sample)
if not all_prev_cachable or not trans.cachable():
all_prev_cachable = False
else:
key += trans.caching_keys()
cache.add(img_path, key, loaded_input["input"])
return loaded_input
class cache:
def __init__(self, path, extension=CACHED_FILES_EXT):
if not os.path.exists(path):
os.makedirs(path)
self.cache_dir = path
self.files_extension = extension
if ".npy" != extension:
self.files_extension += ".npy"
def _file_dir(self, attr_key, par_dir):
return os.path.join(self.cache_dir, attr_key, par_dir)
def _file_path(self, attr_key, par_dir, hashed_key):
return os.path.join(
self.cache_dir, attr_key, par_dir, hashed_key + self.files_extension
)
def _parent_dir(self, path):
return os.path.basename(os.path.dirname(path))
def exists(self, image_path, attr_key):
hashed_key = md5(image_path)
par_dir = self._parent_dir(image_path)
return os.path.isfile(self._file_path(attr_key, par_dir, hashed_key))
def get(self, image_path, attr_key):
hashed_key = md5(image_path)
par_dir = self._parent_dir(image_path)
return np.load(self._file_path(attr_key, par_dir, hashed_key))
def add(self, image_path, attr_key, image):
hashed_key = md5(image_path)
par_dir = self._parent_dir(image_path)
file_dir = self._file_dir(attr_key, par_dir)
if not os.path.exists(file_dir):
os.makedirs(file_dir)
np.save(self._file_path(attr_key, par_dir, hashed_key), image)
def rem(self, image_path, attr_key):
hashed_key = md5(image_path)
par_dir = self._parent_dir(image_path)
try:
os.remove(self._file_path(attr_key, par_dir, hashed_key))
# Don't raise error if file not exists.
except OSError:
pass
class abstract_loader:
__metaclass__ = ABCMeta
def __init__(self, cache_path, augmentations, args, apply_augmentations=True):
self.pad_token = IMG_PAD_TOKEN
self.augmentations = augmentations
self.args = args
self.apply_augmentations = apply_augmentations
if cache_path is not None:
self.use_cache = True
self.cache = cache(cache_path, self.cached_extension)
self.split_augmentations = split_augmentations_by_cache(augmentations)
else:
self.use_cache = False
self.composed_all_augmentations = ComposeAug(augmentations)
@abstractmethod
def load_input(self, path):
pass
@property
@abstractmethod
def cached_extension(self):
pass
def configure_path(self, path, sample=None):
return path
def get_image(self, path, sample=None):
"""
Returns a transformed image by its absolute path.
If cache is used - transformed image will be loaded if available,
and saved to cache if not.
"""
input_dict = {}
input_path = self.configure_path(path, sample)
if input_path == self.pad_token:
return self.load_input(input_path)
if not self.use_cache:
input_dict = self.load_input(input_path)
# hidden loaders typically do not use augmentation
if self.apply_augmentations:
input_dict = self.composed_all_augmentations(input_dict, sample)
return input_dict
if self.args.use_annotations:
input_dict["mask"] = get_scaled_annotation_mask(
input_dict["annotations"], self.args
)
for key, post_augmentations in self.split_augmentations:
base_key = (
DEFAULT_CACHE_DIR + key
if key != DEFAULT_CACHE_DIR
else DEFAULT_CACHE_DIR
)
if self.cache.exists(input_path, base_key):
try:
input_dict["input"] = self.cache.get(input_path, base_key)
if self.apply_augmentations:
input_dict = apply_augmentations_and_cache(
input_dict,
sample,
input_path,
post_augmentations,
self.cache,
base_key=base_key,
)
return input_dict
except Exception as e:
print(e)
hashed_key = md5(input_path)
par_dir = self.cache._parent_dir(input_path)
corrupted_file = self.cache._file_path(key, par_dir, hashed_key)
warnings.warn(CORUPTED_FILE_ERR.format(sys.exc_info()[0]))
self.cache.rem(input_path, key)
all_augmentations = self.split_augmentations[-1][1]
input_dict = self.load_input(input_path)
if self.apply_augmentations:
input_dict = apply_augmentations_and_cache(
input_dict,
sample,
input_path,
all_augmentations,
self.cache,
base_key=key,
)
return input_dict