import os
from posixpath import split
import traceback, warnings
import pickle, json
import numpy as np
import pydicom
import torchio as tio
from tqdm import tqdm
from collections import Counter
import torch
import torch.nn.functional as F
from torch.utils import data
from sybil.serie import Serie
from sybil.utils.loading import get_sample_loader
from sybil.datasets.utils import (
METAFILE_NOTFOUND_ERR,
LOAD_FAIL_MSG,
VOXEL_SPACING,
)
import copy
from sybil.datasets.nlst_risk_factors import NLSTRiskFactorVectorizer
METADATA_FILENAME = {"google_test": "NLST/full_nlst_google.json"}
GOOGLE_SPLITS_FILENAME = (
"/Mounts/rbg-storage1/datasets/NLST/Shetty_et_al(Google)/data_splits.p"
)
CORRUPTED_PATHS = "/Mounts/rbg-storage1/datasets/NLST/corrupted_img_paths.pkl"
CT_ITEM_KEYS = [
"pid",
"exam",
"series",
"y_seq",
"y_mask",
"time_at_event",
"cancer_laterality",
"has_annotation",
"origin_dataset",
]
RACE_ID_KEYS = {
1: "white",
2: "black",
3: "asian",
4: "american_indian_alaskan",
5: "native_hawaiian_pacific",
6: "hispanic",
}
ETHNICITY_KEYS = {1: "Hispanic or Latino", 2: "Neither Hispanic nor Latino"}
GENDER_KEYS = {1: "Male", 2: "Female"}
EDUCAT_LEVEL = {
1: 1, # 8th grade = less than HS
2: 1, # 9-11th = less than HS
3: 2, # HS Grade
4: 3, # Post-HS
5: 4, # Some College
6: 5, # Bachelors = College Grad
7: 6, # Graduate School = Postrad/Prof
}
class NLST_Survival_Dataset(data.Dataset):
def __init__(self, args, split_group):
"""
NLST Dataset
params: args - config.
params: transformer - A transformer object, takes in a PIL image, performs some transforms and returns a Tensor
params: split_group - ['train'|'dev'|'test'].
constructs: standard pytorch Dataset obj, which can be fed in a DataLoader for batching
"""
super(NLST_Survival_Dataset, self).__init__()
self.split_group = split_group
self.args = args
self._num_images = args.num_images # number of slices in each volume
self._max_followup = args.max_followup
try:
self.metadata_json = json.load(open(args.dataset_file_path, "r"))
except Exception as e:
raise Exception(METAFILE_NOTFOUND_ERR.format(args.dataset_file_path, e))
self.input_loader = get_sample_loader(split_group, args)
self.always_resample_pixel_spacing = split_group in ["dev", "test"]
self.resample_transform = tio.transforms.Resample(target=VOXEL_SPACING)
self.padding_transform = tio.transforms.CropOrPad(
target_shape=tuple(args.img_size + [args.num_images]), padding_mode=0
)
if args.use_annotations:
assert (
self.args.region_annotations_filepath
), "ANNOTATIONS METADATA FILE NOT SPECIFIED"
self.annotations_metadata = json.load(
open(self.args.region_annotations_filepath, "r")
)
self.dataset = self.create_dataset(split_group)
if len(self.dataset) == 0:
return
print(self.get_summary_statement(self.dataset, split_group))
dist_key = "y"
label_dist = [d[dist_key] for d in self.dataset]
label_counts = Counter(label_dist)
weight_per_label = 1.0 / len(label_counts)
label_weights = {
label: weight_per_label / count for label, count in label_counts.items()
}
print("Class counts are: {}".format(label_counts))
print("Label weights are {}".format(label_weights))
self.weights = [label_weights[d[dist_key]] for d in self.dataset]
def create_dataset(self, split_group):
"""
Gets the dataset from the paths and labels in the json.
Arguments:
split_group(str): One of ['train'|'dev'|'test'].
Returns:
The dataset as a dictionary with img paths, label,
and additional information regarding exam or participant
"""
self.corrupted_paths = self.CORRUPTED_PATHS["paths"]
self.corrupted_series = self.CORRUPTED_PATHS["series"]
# self.risk_factor_vectorizer = NLSTRiskFactorVectorizer(self.args)
if self.args.assign_splits:
np.random.seed(self.args.cross_val_seed)
self.assign_splits(self.metadata_json)
dataset = []
for mrn_row in tqdm(self.metadata_json, position=0):
pid, split, exams, pt_metadata = (
mrn_row["pid"],
mrn_row["split"],
mrn_row["accessions"],
mrn_row["pt_metadata"],
)
if not split == split_group:
continue
for exam_dict in exams:
if self.args.use_only_thin_cuts_for_ct and split_group in [
"train",
"dev",
]:
thinnest_series_id = self.get_thinnest_cut(exam_dict)
elif split == "test" and self.args.assign_splits:
thinnest_series_id = self.get_thinnest_cut(exam_dict)
elif split == "test":
google_series = list(self.GOOGLE_SPLITS[pid]["exams"])
nlst_series = list(exam_dict["image_series"].keys())
thinnest_series_id = [s for s in nlst_series if s in google_series]
assert len(thinnest_series_id) < 2
if len(thinnest_series_id) > 0:
thinnest_series_id = thinnest_series_id[0]
elif len(thinnest_series_id) == 0:
if self.args.assign_splits:
thinnest_series_id = self.get_thinnest_cut(exam_dict)
else:
continue
for series_id, series_dict in exam_dict["image_series"].items():
if self.skip_sample(series_dict, pt_metadata):
continue
if self.args.use_only_thin_cuts_for_ct and (
not series_id == thinnest_series_id
):
continue
sample = self.get_volume_dict(
series_id, series_dict, exam_dict, pt_metadata, pid, split
)
if len(sample) == 0:
continue
dataset.append(sample)
return dataset
def get_thinnest_cut(self, exam_dict):
# volume that is not thin cut might be the one annotated; or there are multiple volumes with same num slices, so:
# use annotated if available, otherwise use thinnest cut
possibly_annotated_series = [
s in self.annotations_metadata
for s in list(exam_dict["image_series"].keys())
]
series_lengths = [
len(exam_dict["image_series"][series_id]["paths"])
for series_id in exam_dict["image_series"].keys()
]
thinnest_series_len = max(series_lengths)
thinnest_series_id = [
k
for k, v in exam_dict["image_series"].items()
if len(v["paths"]) == thinnest_series_len
]
if any(possibly_annotated_series):
thinnest_series_id = list(exam_dict["image_series"].keys())[
possibly_annotated_series.index(1)
]
else:
thinnest_series_id = thinnest_series_id[0]
return thinnest_series_id
def skip_sample(self, series_dict, pt_metadata):
series_data = series_dict["series_data"]
# check if screen is localizer screen or not enough images
is_localizer = self.is_localizer(series_data)
# check if restricting to specific slice thicknesses
slice_thickness = series_data["reconthickness"][0]
wrong_thickness = (self.args.slice_thickness_filter is not None) and (
slice_thickness not in self.args.slice_thickness_filter
)
# check if valid label (info is not missing)
screen_timepoint = series_data["study_yr"][0]
bad_label = not self.check_label(pt_metadata, screen_timepoint)
# invalid label
if not bad_label:
y, _, _, time_at_event = self.get_label(pt_metadata, screen_timepoint)
invalid_label = (y == -1) or (time_at_event < 0)
else:
invalid_label = False
insufficient_slices = len(series_dict["paths"]) < self.args.min_num_images
if (
is_localizer
or wrong_thickness
or bad_label
or invalid_label
or insufficient_slices
):
return True
else:
return False
def get_volume_dict(
self, series_id, series_dict, exam_dict, pt_metadata, pid, split
):
img_paths = series_dict["paths"]
slice_locations = series_dict["img_position"]
series_data = series_dict["series_data"]
device = series_data["manufacturer"][0]
screen_timepoint = series_data["study_yr"][0]
assert screen_timepoint == exam_dict["screen_timepoint"]
if series_id in self.corrupted_series:
if any([path in self.corrupted_paths for path in img_paths]):
uncorrupted_imgs = np.where(
[path not in self.corrupted_paths for path in img_paths]
)[0]
img_paths = np.array(img_paths)[uncorrupted_imgs].tolist()
slice_locations = np.array(slice_locations)[uncorrupted_imgs].tolist()
sorted_img_paths, sorted_slice_locs = self.order_slices(
img_paths, slice_locations
)
y, y_seq, y_mask, time_at_event = self.get_label(pt_metadata, screen_timepoint)
exam_int = int(
"{}{}{}".format(
int(pid), int(screen_timepoint), int(series_id.split(".")[-1][-3:])
)
)
sample = {
"paths": sorted_img_paths,
"slice_locations": sorted_slice_locs,
"y": int(y),
"time_at_event": time_at_event,
"y_seq": y_seq,
"y_mask": y_mask,
"exam_str": "{}_{}".format(exam_dict["exam"], series_id),
"exam": exam_int,
"accession": exam_dict["accession_number"],
"series": series_id,
"study": series_data["studyuid"][0],
"screen_timepoint": screen_timepoint,
"pid": pid,
"device": device,
"institution": pt_metadata["cen"][0],
"cancer_laterality": self.get_cancer_side(pt_metadata),
"num_original_slices": len(series_dict["paths"]),
"pixel_spacing": series_dict["pixel_spacing"]
+ [series_dict["slice_thickness"]],
"slice_thickness": self.get_slice_thickness_class(
series_dict["slice_thickness"]
),
}
if self.args.use_risk_factors:
sample["risk_factors"] = self.get_risk_factors(
pt_metadata, screen_timepoint, return_dict=False
)
return sample
def check_label(self, pt_metadata, screen_timepoint):
valid_days_since_rand = (
pt_metadata["scr_days{}".format(screen_timepoint)][0] > -1
)
valid_days_to_cancer = pt_metadata["candx_days"][0] > -1
valid_followup = pt_metadata["fup_days"][0] > -1
return (valid_days_since_rand) and (valid_days_to_cancer or valid_followup)
def get_label(self, pt_metadata, screen_timepoint):
days_since_rand = pt_metadata["scr_days{}".format(screen_timepoint)][0]
days_to_cancer_since_rand = pt_metadata["candx_days"][0]
days_to_cancer = days_to_cancer_since_rand - days_since_rand
years_to_cancer = (
int(days_to_cancer // 365) if days_to_cancer_since_rand > -1 else 100
)
days_to_last_followup = int(pt_metadata["fup_days"][0] - days_since_rand)
years_to_last_followup = days_to_last_followup // 365
y = years_to_cancer < self.args.max_followup
y_seq = np.zeros(self.args.max_followup)
cancer_timepoint = pt_metadata["cancyr"][0]
if y:
if years_to_cancer > -1:
assert screen_timepoint <= cancer_timepoint
time_at_event = years_to_cancer
y_seq[years_to_cancer:] = 1
else:
time_at_event = min(years_to_last_followup, self.args.max_followup - 1)
y_mask = np.array(
[1] * (time_at_event + 1)
+ [0] * (self.args.max_followup - (time_at_event + 1))
)
assert len(y_mask) == self.args.max_followup
return y, y_seq.astype("float64"), y_mask.astype("float64"), time_at_event
def is_localizer(self, series_dict):
is_localizer = (
(series_dict["imageclass"][0] == 0)
or ("LOCALIZER" in series_dict["imagetype"][0])
or ("TOP" in series_dict["imagetype"][0])
)
return is_localizer
def get_cancer_side(self, pt_metadata):
"""
Return if cancer in left or right
right: (rhil, right hilum), (rlow, right lower lobe), (rmid, right middle lobe), (rmsb, right main stem), (rup, right upper lobe),
left: (lhil, left hilum), (llow, left lower lobe), (lmsb, left main stem), (lup, left upper lobe), (lin, lingula)
else: (med, mediastinum), (oth, other), (unk, unknown), (car, carina)
"""
right_keys = ["locrhil", "locrlow", "locrmid", "locrmsb", "locrup"]
left_keys = ["loclup", "loclmsb", "locllow", "loclhil", "loclin"]
other_keys = ["loccar", "locmed", "locoth", "locunk"]
right = any([pt_metadata[key][0] > 0 for key in right_keys])
left = any([pt_metadata[key][0] > 0 for key in left_keys])
other = any([pt_metadata[key][0] > 0 for key in other_keys])
return np.array([int(right), int(left), int(other)])
def order_slices(self, img_paths, slice_locations):
sorted_ids = np.argsort(slice_locations)
sorted_img_paths = np.array(img_paths)[sorted_ids].tolist()
sorted_slice_locs = np.sort(slice_locations).tolist()
if not sorted_img_paths[0].startswith(self.args.img_dir):
sorted_img_paths = [
self.args.img_dir
+ path[path.find("nlst-ct-png") + len("nlst-ct-png") :]
for path in sorted_img_paths
]
if (
self.args.img_file_type == "dicom"
): # ! NOTE: removing file extension affects get_ct_annotations mapping path to annotation
sorted_img_paths = [
path.replace("nlst-ct-png", "nlst-ct").replace(".png", "")
for path in sorted_img_paths
]
return sorted_img_paths, sorted_slice_locs
def get_risk_factors(self, pt_metadata, screen_timepoint, return_dict=False):
age_at_randomization = pt_metadata["age"][0]
days_since_randomization = pt_metadata["scr_days{}".format(screen_timepoint)][0]
current_age = age_at_randomization + days_since_randomization // 365
age_start_smoking = pt_metadata["smokeage"][0]
age_quit_smoking = pt_metadata["age_quit"][0]
years_smoking = pt_metadata["smokeyr"][0]
is_smoker = pt_metadata["cigsmok"][0]
years_since_quit_smoking = 0 if is_smoker else current_age - age_quit_smoking
education = (
pt_metadata["educat"][0]
if pt_metadata["educat"][0] != -1
else pt_metadata["educat"][0]
)
race = pt_metadata["race"][0] if pt_metadata["race"][0] != -1 else 0
race = 6 if pt_metadata["ethnic"][0] == 1 else race
ethnicity = pt_metadata["ethnic"][0]
weight = pt_metadata["weight"][0] if pt_metadata["weight"][0] != -1 else 0
height = pt_metadata["height"][0] if pt_metadata["height"][0] != -1 else 0
bmi = weight / (height**2) * 703 if height > 0 else 0 # inches, lbs
prior_cancer_keys = [
"cancblad",
"cancbrea",
"canccerv",
"canccolo",
"cancesop",
"canckidn",
"canclary",
"canclung",
"cancoral",
"cancnasa",
"cancpanc",
"cancphar",
"cancstom",
"cancthyr",
"canctran",
]
cancer_hx = any([pt_metadata[key][0] == 1 for key in prior_cancer_keys])
family_hx = any(
[pt_metadata[key][0] == 1 for key in pt_metadata if key.startswith("fam")]
)
risk_factors = {
"age": current_age,
"race": race,
"race_name": RACE_ID_KEYS.get(pt_metadata["race"][0], "UNK"),
"ethnicity": ethnicity,
"ethnicity_name": ETHNICITY_KEYS.get(ethnicity, "UNK"),
"education": education,
"bmi": bmi,
"cancer_hx": cancer_hx,
"family_lc_hx": family_hx,
"copd": pt_metadata["diagcopd"][0],
"is_smoker": is_smoker,
"smoking_intensity": pt_metadata["smokeday"][0],
"smoking_duration": pt_metadata["smokeyr"][0],
"years_since_quit_smoking": years_since_quit_smoking,
"weight": weight,
"height": height,
"gender": GENDER_KEYS.get(pt_metadata["gender"][0], "UNK"),
}
if return_dict:
return risk_factors
else:
return np.array(
[v for v in risk_factors.values() if not isinstance(v, str)]
)
def assign_splits(self, meta):
if self.args.split_type == "institution_split":
self.assign_institutions_splits(meta)
elif self.args.split_type == "random":
for idx in range(len(meta)):
meta[idx]["split"] = np.random.choice(
["train", "dev", "test"], p=self.args.split_probs
)
def assign_institutions_splits(self, meta):
institutions = set([m["pt_metadata"]["cen"][0] for m in meta])
institutions = sorted(institutions)
institute_to_split = {
cen: np.random.choice(["train", "dev", "test"], p=self.args.split_probs)
for cen in institutions
}
for idx in range(len(meta)):
meta[idx]["split"] = institute_to_split[meta[idx]["pt_metadata"]["cen"][0]]
@property
def METADATA_FILENAME(self):
return METADATA_FILENAME["google_test"]
@property
def CORRUPTED_PATHS(self):
return pickle.load(open(CORRUPTED_PATHS, "rb"))
def get_summary_statement(self, dataset, split_group):
summary = "Contructed NLST CT Cancer Risk {} dataset with {} records, {} exams, {} patients, and the following class balance \n {}"
class_balance = Counter([d["y"] for d in dataset])
exams = set([d["exam"] for d in dataset])
patients = set([d["pid"] for d in dataset])
statement = summary.format(
split_group, len(dataset), len(exams), len(patients), class_balance
)
statement += "\n" + "Censor Times: {}".format(
Counter([d["time_at_event"] for d in dataset])
)
statement
return statement
@property
def GOOGLE_SPLITS(self):
return pickle.load(open(GOOGLE_SPLITS_FILENAME, "rb"))
def get_ct_annotations(self, sample):
# correct empty lists of annotations
if sample["series"] in self.annotations_metadata:
self.annotations_metadata[sample["series"]] = {
k: v
for k, v in self.annotations_metadata[sample["series"]].items()
if len(v) > 0
}
if sample["series"] in self.annotations_metadata:
# store annotation(s) data (x,y,width,height) for each slice
if (
self.args.img_file_type == "dicom"
): # no file extension, so os.path.splitext breaks behavior
sample["annotations"] = [
{
"image_annotations": self.annotations_metadata[
sample["series"]
].get(os.path.basename(path), None)
}
for path in sample["paths"]
]
else: # expects file extension to exist, so use os.path.splitext
sample["annotations"] = [
{
"image_annotations": self.annotations_metadata[
sample["series"]
].get(os.path.splitext(os.path.basename(path))[0], None)
}
for path in sample["paths"]
]
else:
sample["annotations"] = [
{"image_annotations": None} for path in sample["paths"]
]
return sample
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
sample = self.dataset[index]
if self.args.use_annotations:
sample = self.get_ct_annotations(sample)
try:
item = {}
input_dict = self.get_images(sample["paths"], sample)
x = input_dict["input"]
if self.args.use_annotations:
mask = torch.abs(input_dict["mask"])
mask_area = mask.sum(dim=(-1, -2))
item["volume_annotations"] = mask_area[0] / max(1, mask_area.sum())
item["annotation_areas"] = mask_area[0] / (
mask.shape[-2] * mask.shape[-1]
)
mask_area = mask_area.unsqueeze(-1).unsqueeze(-1)
mask_area[mask_area == 0] = 1
item["image_annotations"] = mask / mask_area
item["has_annotation"] = item["volume_annotations"].sum() > 0
if self.args.use_risk_factors:
item["risk_factors"] = sample["risk_factors"]
item["x"] = x
item["y"] = sample["y"]
for key in CT_ITEM_KEYS:
if key in sample:
item[key] = sample[key]
return item
except Exception:
warnings.warn(LOAD_FAIL_MSG.format(sample["exam"], traceback.print_exc()))
def get_images(self, paths, sample):
"""
Returns a stack of transformed images by their absolute paths.
If cache is used - transformed images will be loaded if available,
and saved to cache if not.
"""
out_dict = {}
if self.args.fix_seed_for_multi_image_augmentations:
sample["seed"] = np.random.randint(0, 2**32 - 1)
# get images for multi image input
s = copy.deepcopy(sample)
input_dicts = []
for e, path in enumerate(paths):
if self.args.use_annotations:
s["annotations"] = sample["annotations"][e]
input_dicts.append(self.input_loader.get_image(path, s))
images = [i["input"] for i in input_dicts]
input_arr = self.reshape_images(images)
if self.args.use_annotations:
masks = [i["mask"] for i in input_dicts]
mask_arr = self.reshape_images(masks) if self.args.use_annotations else None
# resample pixel spacing
resample_now = self.args.resample_pixel_spacing_prob > np.random.uniform()
if self.always_resample_pixel_spacing or resample_now:
spacing = torch.tensor(sample["pixel_spacing"] + [1])
input_arr = tio.ScalarImage(
affine=torch.diag(spacing),
tensor=input_arr.permute(0, 2, 3, 1),
)
input_arr = self.resample_transform(input_arr)
input_arr = self.padding_transform(input_arr.data)
if self.args.use_annotations:
mask_arr = tio.ScalarImage(
affine=torch.diag(spacing),
tensor=mask_arr.permute(0, 2, 3, 1),
)
mask_arr = self.resample_transform(mask_arr)
mask_arr = self.padding_transform(mask_arr.data)
out_dict["input"] = input_arr.data.permute(0, 3, 1, 2)
if self.args.use_annotations:
out_dict["mask"] = mask_arr.data.permute(0, 3, 1, 2)
return out_dict
def reshape_images(self, images):
images = [im.unsqueeze(0) for im in images]
images = torch.cat(images, dim=0)
# Convert from (T, C, H, W) to (C, T, H, W)
images = images.permute(1, 0, 2, 3)
return images
def get_slice_thickness_class(self, thickness):
BINS = [1, 1.5, 2, 2.5]
for i, tau in enumerate(BINS):
if thickness <= tau:
return i
if self.args.slice_thickness_filter is not None:
raise ValueError("THICKNESS > 2.5")
return 4
class NLST_for_PLCO(NLST_Survival_Dataset):
"""
Dataset for risk factor-based risk model
"""
def get_volume_dict(
self, series_id, series_dict, exam_dict, pt_metadata, pid, split
):
series_data = series_dict["series_data"]
screen_timepoint = series_data["study_yr"][0]
assert screen_timepoint == exam_dict["screen_timepoint"]
y, y_seq, y_mask, time_at_event = self.get_label(pt_metadata, screen_timepoint)
exam_int = int(
"{}{}{}".format(
int(pid), int(screen_timepoint), int(series_id.split(".")[-1][-3:])
)
)
riskfactors = self.get_risk_factors(
pt_metadata, screen_timepoint, return_dict=True
)
riskfactors["education"] = EDUCAT_LEVEL.get(riskfactors["education"], -1)
riskfactors["race"] = RACE_ID_KEYS.get(pt_metadata["race"][0], -1)
sample = {
"y": int(y),
"time_at_event": time_at_event,
"y_seq": y_seq,
"y_mask": y_mask,
"exam_str": "{}_{}".format(exam_dict["exam"], series_id),
"exam": exam_int,
"accession": exam_dict["accession_number"],
"series": series_id,
"study": series_data["studyuid"][0],
"screen_timepoint": screen_timepoint,
"pid": pid,
}
sample.update(riskfactors)
if (
riskfactors["education"] == -1
or riskfactors["race"] == -1
or pt_metadata["weight"][0] == -1
or pt_metadata["height"][0] == -1
):
return {}
return sample
class NLST_for_PLCO_Screening(NLST_for_PLCO):
def create_dataset(self, split_group):
generated_lung_rads = pickle.load(
open("/data/rsg/mammogram/NLST/nlst_acc2lungrads.p", "rb")
)
dataset = super().create_dataset(split_group)
# get lung rads for each year
pid2lungrads = {}
for d in dataset:
lungrads = generated_lung_rads[d["exam"]]
if d["pid"] in pid2lungrads:
pid2lungrads[d["pid"]][d["screen_timepoint"]] = lungrads
else:
pid2lungrads[d["pid"]] = {d["screen_timepoint"]: lungrads}
plco_results_dataset = []
for d in dataset:
if len(pid2lungrads[d["pid"]]) < 3:
continue
is_third_screen = d["screen_timepoint"] == 2
is_1yr_ca_free = (d["y"] and d["time_at_event"] > 0) or (not d["y"])
if is_third_screen and is_1yr_ca_free:
d["scr_group_coef"] = self.get_screening_group(pid2lungrads[d["pid"]])
for k in ["age", "years_since_quit_smoking", "smoking_duration"]:
d[k] = d[k] + 1
plco_results_dataset.append(d)
else:
continue
return plco_results_dataset
def get_screening_group(self, lung_rads_dict):
"""doi:10.1001/jamanetworkopen.2019.0204 Table 1"""
scr1, scr2, scr3 = lung_rads_dict[0], lung_rads_dict[1], lung_rads_dict[2]
if all([not scr1, not scr2, not scr3]):
return 0
elif (not scr3) and ((not scr1) or (not scr2)):
return 0.6554117
elif ((not scr3) and all([scr1, scr2])) or (
all([not scr1, not scr2]) and (scr3)
):
return 0.9798233
elif (
(all([scr1, scr3]) and not scr2)
or (not scr1 and all([scr2, scr3]))
or (all([scr1, scr2, scr3]))
):
return 2.1940610
raise ValueError(
"Screen {} has not equivalent PLCO group".format(lung_rads_dict)
)
class NLST_Risk_Factor_Task(NLST_Survival_Dataset):
"""
Dataset for risk factor-based risk model
"""
def get_risk_factors(self, pt_metadata, screen_timepoint, return_dict=False):
return self.risk_factor_vectorizer.get_risk_factors_for_sample(
pt_metadata, screen_timepoint
)