import cv2
import torch
import torchvision
from typing import Literal
from abc import ABCMeta, abstractmethod
import numpy as np
import random
try:
import albumentations as A
except ImportError:
# albumentations is not installed, training with augmentations will not be possible
A = None
def get_augmentations(split: Literal["train", "dev", "test"], args):
if split == "train":
augmentations = [
Scale_2d(args, {}),
Rotate_Range(args, {"deg": 20}),
ToTensor(),
Force_Num_Chan_Tensor_2d(args, {}),
Normalize_Tensor_2d(args, {}),
]
else:
augmentations = [
Scale_2d(args, {}),
ToTensor(),
Force_Num_Chan_Tensor_2d(args, {}),
Normalize_Tensor_2d(args, {}),
]
return augmentations
class Abstract_augmentation(object):
"""
Abstract-transformer.
Default - non cachable
"""
__metaclass__ = ABCMeta
def __init__(self):
self._is_cachable = False
self._trans_sep = "@"
self._attr_sep = "#"
self.name = (
self.__str__().split("sybil.augmentations.")[-1].split(" ")[0].lower()
)
@abstractmethod
def __call__(self, input_dict):
pass
def set_seed(self, seed):
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def cachable(self):
return self._is_cachable
def set_cachable(self, *keys):
"""
Sets the transformer as cachable
and sets the _caching_keys according to the input variables.
"""
self._is_cachable = True
name_str = "{}{}".format(self._trans_sep, self.name)
keys_str = "".join(self._attr_sep + str(k) for k in keys)
self._caching_keys = "{}{}".format(name_str, keys_str)
return
def caching_keys(self):
return self._caching_keys
class ComposeAug(Abstract_augmentation):
"""
Composes multiple augmentations
"""
def __init__(self, augmentations):
super(ComposeAug, self).__init__()
self.augmentations = augmentations
def __call__(self, input_dict, sample=None):
for transformer in self.augmentations:
input_dict = transformer(input_dict, sample)
return input_dict
class ToTensor(Abstract_augmentation):
"""
torchvision.transforms.ToTensor wrapper.
"""
def __init__(self):
super(ToTensor, self).__init__()
self.name = "totensor"
def __call__(self, input_dict, sample=None):
input_dict["input"] = torch.from_numpy(input_dict["input"]).float()
if input_dict.get("mask", None) is not None:
input_dict["mask"] = torch.from_numpy(input_dict["mask"]).float()
return input_dict
class ResizeTransform:
def __init__(self, width, height):
self.width = width
self.height = height
def __call__(self, image=None, mask=None):
out = {"image": None, "mask": None}
if image is not None:
out["image"] = cv2.resize(image, dsize=(self.width, self.height), interpolation=cv2.INTER_LINEAR)
if mask is not None:
out["mask"] = cv2.resize(mask, dsize=(self.width, self.height), interpolation=cv2.INTER_NEAREST)
return out
class Scale_2d(Abstract_augmentation):
"""
Given PIL image, enforce its some set size
(can use for down sampling / keep full res)
"""
def __init__(self, args, kwargs):
super(Scale_2d, self).__init__()
assert len(kwargs.keys()) == 0
width, height = args.img_size
self.set_cachable(width, height)
self.transform = ResizeTransform(width, height)
def __call__(self, input_dict, sample=None):
out = self.transform(
image=input_dict["input"], mask=input_dict.get("mask", None)
)
input_dict["input"] = out["image"]
input_dict["mask"] = out["mask"]
return input_dict
class Rotate_Range(Abstract_augmentation):
"""
Rotate image counter clockwise by random degree https://albumentations.ai/docs/api_reference/augmentations/geometric/rotate/#albumentations.augmentations.geometric.rotate.Rotate
kwargs
deg: max degrees to rotate
"""
def __init__(self, args, kwargs):
super(Rotate_Range, self).__init__()
assert len(kwargs.keys()) == 1
self.max_angle = int(kwargs["deg"])
assert A is not None, "albumentations is not installed"
self.transform = A.Rotate(limit=self.max_angle, p=0.5)
def __call__(self, input_dict, sample=None):
if sample and "seed" in sample:
self.set_seed(sample["seed"])
out = self.transform(
image=input_dict["input"], mask=input_dict.get("mask", None)
)
input_dict["input"] = out["image"]
input_dict["mask"] = out["mask"]
return input_dict
class Normalize_Tensor_2d(Abstract_augmentation):
"""
Normalizes input by channel
wrapper for torchvision.transforms.Normalize wrapper.
"""
def __init__(self, args, kwargs):
super(Normalize_Tensor_2d, self).__init__()
assert len(kwargs) == 0
channel_means = [args.img_mean] if len(args.img_mean) == 1 else args.img_mean
channel_stds = [args.img_std] if len(args.img_std) == 1 else args.img_std
self.transform = torchvision.transforms.Normalize(
torch.Tensor(channel_means), torch.Tensor(channel_stds)
)
self.permute = args.img_file_type in [
"png",
]
def __call__(self, input_dict, sample=None):
img = input_dict["input"]
if len(img.size()) == 2:
img = img.unsqueeze(0)
if self.permute:
img = img.permute(2, 0, 1)
input_dict["input"] = self.transform(img).permute(1, 2, 0)
else:
input_dict["input"] = self.transform(img)
return input_dict
class Force_Num_Chan_Tensor_2d(Abstract_augmentation):
"""
Convert gray scale images to image with args.num_chan num channels.
"""
def __init__(self, args, kwargs):
super(Force_Num_Chan_Tensor_2d, self).__init__()
assert len(kwargs) == 0
self.args = args
def __call__(self, input_dict, sample=None):
img = input_dict["input"]
mask = input_dict.get("mask", None)
if mask is not None:
input_dict["mask"] = mask.unsqueeze(0)
num_dims = len(img.shape)
if num_dims == 2:
img = img.unsqueeze(0)
existing_chan = img.size()[0]
if not existing_chan == self.args.num_chan:
input_dict["input"] = img.expand(self.args.num_chan, *img.size()[1:])
return input_dict