[d9566e]: / examples / local.py

Download this file

42 lines (29 with data), 1.0 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python
__doc__ = """
Simple example script showing how to use the Sybil library locally to predict risk scores for a set of DICOM files.
"""
import sybil
from sybil import visualize_attentions
from utils import get_demo_data
def main():
# Load a trained model
model = sybil.Sybil("sybil_ensemble")
dicom_files = get_demo_data()
# Get risk scores
serie = sybil.Serie(dicom_files)
print(f"Processing {len(dicom_files)} DICOM files")
prediction = model.predict([serie], return_attentions=True)
scores = prediction.scores
print(f"Risk scores: {scores}")
# Visualize attention maps
output_dir = "sybil_attention_output"
print(f"Writing attention images to {output_dir}")
series_with_attention = visualize_attentions(
serie,
attentions=prediction.attentions,
save_directory=output_dir,
gain=3,
)
print(f"Finished writing attention images to {output_dir}")
if __name__ == "__main__":
main()