|
a |
|
b/sybil/serie.py |
|
|
1 |
import functools |
|
|
2 |
from typing import List, Optional, NamedTuple, Literal |
|
|
3 |
from argparse import Namespace |
|
|
4 |
|
|
|
5 |
import torch |
|
|
6 |
import numpy as np |
|
|
7 |
import pydicom |
|
|
8 |
import torchio as tio |
|
|
9 |
|
|
|
10 |
from sybil.datasets.utils import order_slices, VOXEL_SPACING |
|
|
11 |
from sybil.utils.loading import get_sample_loader |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
class Meta(NamedTuple): |
|
|
15 |
paths: list |
|
|
16 |
thickness: float |
|
|
17 |
pixel_spacing: list |
|
|
18 |
manufacturer: str |
|
|
19 |
slice_positions: list |
|
|
20 |
voxel_spacing: torch.Tensor |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
class Label(NamedTuple): |
|
|
24 |
y: int |
|
|
25 |
y_seq: np.ndarray |
|
|
26 |
y_mask: np.ndarray |
|
|
27 |
censor_time: int |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
class Serie: |
|
|
31 |
def __init__( |
|
|
32 |
self, |
|
|
33 |
dicoms: List[str], |
|
|
34 |
voxel_spacing: Optional[List[float]] = None, |
|
|
35 |
label: Optional[int] = None, |
|
|
36 |
censor_time: Optional[int] = None, |
|
|
37 |
file_type: Literal["png", "dicom"] = "dicom", |
|
|
38 |
split: Literal["train", "dev", "test"] = "test", |
|
|
39 |
): |
|
|
40 |
"""Initialize a Serie. |
|
|
41 |
|
|
|
42 |
Parameters |
|
|
43 |
---------- |
|
|
44 |
`dicoms` : List[str] |
|
|
45 |
[description] |
|
|
46 |
`voxel_spacing`: Optional[List[float]], optional |
|
|
47 |
The voxel spacing associated with input CT |
|
|
48 |
as (row spacing, col spacing, slice thickness) |
|
|
49 |
`label` : Optional[int], optional |
|
|
50 |
Whether the patient associated with this serie |
|
|
51 |
has or ever developped cancer. |
|
|
52 |
`censor_time` : Optional[int] |
|
|
53 |
Number of years until cancer diagnostic. |
|
|
54 |
If less than 1 year, should be 0. |
|
|
55 |
`file_type`: Literal['png', 'dicom'] |
|
|
56 |
File type of CT slices |
|
|
57 |
`split`: Literal['train', 'dev', 'test'] |
|
|
58 |
Dataset split into which the serie falls into. |
|
|
59 |
Assumed to be test by default |
|
|
60 |
""" |
|
|
61 |
if label is not None and censor_time is None: |
|
|
62 |
raise ValueError("censor_time should also provided with label.") |
|
|
63 |
if file_type == "png" and voxel_spacing is None: |
|
|
64 |
raise ValueError("voxel_spacing should be provided for PNG files.") |
|
|
65 |
|
|
|
66 |
self._censor_time = censor_time |
|
|
67 |
self._label = label |
|
|
68 |
args = self._load_args(file_type) |
|
|
69 |
self._args = args |
|
|
70 |
self._loader = get_sample_loader(split, args) |
|
|
71 |
self._meta = self._load_metadata(dicoms, voxel_spacing, file_type) |
|
|
72 |
self._check_valid(args) |
|
|
73 |
self.resample_transform = tio.transforms.Resample(target=VOXEL_SPACING) |
|
|
74 |
self.padding_transform = tio.transforms.CropOrPad( |
|
|
75 |
target_shape=tuple(args.img_size + [args.num_images]), padding_mode=0 |
|
|
76 |
) |
|
|
77 |
|
|
|
78 |
def has_label(self) -> bool: |
|
|
79 |
"""Check if there is a label associated with this serie. |
|
|
80 |
|
|
|
81 |
Returns |
|
|
82 |
------- |
|
|
83 |
bool |
|
|
84 |
[description] |
|
|
85 |
""" |
|
|
86 |
return self._label is not None |
|
|
87 |
|
|
|
88 |
def get_label(self, max_followup: int = 6) -> Label: |
|
|
89 |
"""Get the label for this Serie. |
|
|
90 |
|
|
|
91 |
Parameters |
|
|
92 |
---------- |
|
|
93 |
max_followup : int, optional |
|
|
94 |
[description], by default 6 |
|
|
95 |
|
|
|
96 |
Returns |
|
|
97 |
------- |
|
|
98 |
Tuple[bool, np.array, np.array, int] |
|
|
99 |
[description] |
|
|
100 |
|
|
|
101 |
Raises |
|
|
102 |
------ |
|
|
103 |
ValueError |
|
|
104 |
[description] |
|
|
105 |
|
|
|
106 |
""" |
|
|
107 |
if not self.has_label(): |
|
|
108 |
raise ValueError("No label in this serie.") |
|
|
109 |
|
|
|
110 |
# First convert months to years |
|
|
111 |
year_to_cancer = self._censor_time # type: ignore |
|
|
112 |
|
|
|
113 |
y_seq = np.zeros(max_followup, dtype=np.float64) |
|
|
114 |
y = int((year_to_cancer < max_followup) and self._label) # type: ignore |
|
|
115 |
if y: |
|
|
116 |
y_seq[year_to_cancer:] = 1 |
|
|
117 |
else: |
|
|
118 |
year_to_cancer = min(year_to_cancer, max_followup - 1) |
|
|
119 |
|
|
|
120 |
y_mask = np.array( |
|
|
121 |
[1] * (year_to_cancer + 1) + [0] * (max_followup - (year_to_cancer + 1)), |
|
|
122 |
dtype=np.float64, |
|
|
123 |
) |
|
|
124 |
return Label(y=y, y_seq=y_seq, y_mask=y_mask, censor_time=year_to_cancer) |
|
|
125 |
|
|
|
126 |
def get_raw_images(self) -> List[np.ndarray]: |
|
|
127 |
""" |
|
|
128 |
Load raw images from serie |
|
|
129 |
|
|
|
130 |
Returns |
|
|
131 |
------- |
|
|
132 |
List[np.ndarray] |
|
|
133 |
List of CT slices of shape (1, C, H, W) |
|
|
134 |
""" |
|
|
135 |
|
|
|
136 |
loader = get_sample_loader("test", self._args, apply_augmentations=False) |
|
|
137 |
input_dicts = [loader.get_image(path) for path in self._meta.paths] |
|
|
138 |
images = [i["input"] for i in input_dicts] |
|
|
139 |
return images |
|
|
140 |
|
|
|
141 |
@functools.lru_cache |
|
|
142 |
def get_volume(self) -> torch.Tensor: |
|
|
143 |
""" |
|
|
144 |
Load loaded 3D CT volume |
|
|
145 |
|
|
|
146 |
Returns |
|
|
147 |
------- |
|
|
148 |
torch.Tensor |
|
|
149 |
CT volume of shape (1, C, N, H, W) |
|
|
150 |
""" |
|
|
151 |
|
|
|
152 |
input_dicts = [ |
|
|
153 |
self._loader.get_image(path) for path in self._meta.paths |
|
|
154 |
] |
|
|
155 |
|
|
|
156 |
x = torch.cat([i["input"].unsqueeze(0) for i in input_dicts], dim=0) |
|
|
157 |
|
|
|
158 |
# Convert from (T, C, H, W) to (C, T, H, W) |
|
|
159 |
x = x.permute(1, 0, 2, 3) |
|
|
160 |
|
|
|
161 |
x = tio.ScalarImage( |
|
|
162 |
affine=torch.diag(self._meta.voxel_spacing), |
|
|
163 |
tensor=x.permute(0, 2, 3, 1), |
|
|
164 |
) |
|
|
165 |
x = self.resample_transform(x) |
|
|
166 |
x = self.padding_transform(x) |
|
|
167 |
x = x.data.permute(0, 3, 1, 2) |
|
|
168 |
x.unsqueeze_(0) |
|
|
169 |
return x |
|
|
170 |
|
|
|
171 |
def _load_metadata(self, paths, voxel_spacing, file_type): |
|
|
172 |
"""Extract metadata from dicom files efficiently |
|
|
173 |
|
|
|
174 |
Parameters |
|
|
175 |
---------- |
|
|
176 |
`paths` : List[str] |
|
|
177 |
List of paths to dicom files |
|
|
178 |
`voxel_spacing`: Optional[List[float]], optional |
|
|
179 |
The voxel spacing associated with input CT |
|
|
180 |
as (row spacing, col spacing, slice thickness) |
|
|
181 |
`file_type` : Literal['png', 'dicom'] |
|
|
182 |
File type of CT slices |
|
|
183 |
|
|
|
184 |
Returns |
|
|
185 |
------- |
|
|
186 |
Tuple[list] |
|
|
187 |
slice_positions: list of indices for dicoms along z-axis |
|
|
188 |
""" |
|
|
189 |
if file_type == "dicom": |
|
|
190 |
slice_positions = [] |
|
|
191 |
processed_paths = [] |
|
|
192 |
for path in paths: |
|
|
193 |
dcm = pydicom.dcmread(path, stop_before_pixels=True) |
|
|
194 |
processed_paths.append(path) |
|
|
195 |
slice_positions.append(float(dcm.ImagePositionPatient[-1])) |
|
|
196 |
|
|
|
197 |
processed_paths, slice_positions = order_slices( |
|
|
198 |
processed_paths, slice_positions |
|
|
199 |
) |
|
|
200 |
|
|
|
201 |
thickness = float(dcm.SliceThickness) |
|
|
202 |
pixel_spacing = list(map(float, dcm.PixelSpacing)) |
|
|
203 |
manufacturer = dcm.Manufacturer |
|
|
204 |
voxel_spacing = torch.tensor(pixel_spacing + [thickness, 1]) |
|
|
205 |
elif file_type == "png": |
|
|
206 |
processed_paths = paths |
|
|
207 |
slice_positions = list(range(len(paths))) |
|
|
208 |
thickness = voxel_spacing[-1] if voxel_spacing is not None else None |
|
|
209 |
pixel_spacing = [] |
|
|
210 |
manufacturer = "" |
|
|
211 |
voxel_spacing = ( |
|
|
212 |
torch.tensor(voxel_spacing + [1]) if voxel_spacing is not None else None |
|
|
213 |
) |
|
|
214 |
|
|
|
215 |
meta = Meta( |
|
|
216 |
paths=processed_paths, |
|
|
217 |
thickness=thickness, |
|
|
218 |
pixel_spacing=pixel_spacing, |
|
|
219 |
manufacturer=manufacturer, |
|
|
220 |
slice_positions=slice_positions, |
|
|
221 |
voxel_spacing=voxel_spacing, |
|
|
222 |
) |
|
|
223 |
return meta |
|
|
224 |
|
|
|
225 |
def _load_args(self, file_type): |
|
|
226 |
""" |
|
|
227 |
Load default args required for a single Serie volume |
|
|
228 |
|
|
|
229 |
Parameters |
|
|
230 |
---------- |
|
|
231 |
file_type : Literal['png', 'dicom'] |
|
|
232 |
File type of CT slices |
|
|
233 |
|
|
|
234 |
Returns |
|
|
235 |
------- |
|
|
236 |
Namespace |
|
|
237 |
args with preset values |
|
|
238 |
""" |
|
|
239 |
args = Namespace( |
|
|
240 |
**{ |
|
|
241 |
"img_size": [256, 256], |
|
|
242 |
"img_mean": [128.1722], |
|
|
243 |
"img_std": [87.1849], |
|
|
244 |
"num_images": 200, |
|
|
245 |
"img_file_type": file_type, |
|
|
246 |
"num_chan": 3, |
|
|
247 |
"cache_path": None, |
|
|
248 |
"use_annotations": False, |
|
|
249 |
"fix_seed_for_multi_image_augmentations": True, |
|
|
250 |
"slice_thickness_filter": 5, |
|
|
251 |
} |
|
|
252 |
) |
|
|
253 |
return args |
|
|
254 |
|
|
|
255 |
def _check_valid(self, args): |
|
|
256 |
""" |
|
|
257 |
Check if serie is acceptable: |
|
|
258 |
|
|
|
259 |
Parameters |
|
|
260 |
---------- |
|
|
261 |
`args` : Namespace |
|
|
262 |
manually set args used to develop model |
|
|
263 |
|
|
|
264 |
Raises |
|
|
265 |
------ |
|
|
266 |
ValueError if: |
|
|
267 |
- serie doesn't have a label, OR |
|
|
268 |
- slice thickness is too big |
|
|
269 |
""" |
|
|
270 |
if self._meta.thickness is None: |
|
|
271 |
raise ValueError("slice thickness not found") |
|
|
272 |
if self._meta.thickness > args.slice_thickness_filter: |
|
|
273 |
raise ValueError( |
|
|
274 |
f"slice thickness {self._meta.thickness} is greater than {args.slice_thickness_filter}." |
|
|
275 |
) |
|
|
276 |
if self._meta.voxel_spacing is None: |
|
|
277 |
raise ValueError("voxel spacing either not set or not found in DICOM") |