|
a |
|
b/sybil/augmentations.py |
|
|
1 |
import cv2 |
|
|
2 |
import torch |
|
|
3 |
import torchvision |
|
|
4 |
|
|
|
5 |
from typing import Literal |
|
|
6 |
from abc import ABCMeta, abstractmethod |
|
|
7 |
import numpy as np |
|
|
8 |
import random |
|
|
9 |
|
|
|
10 |
try: |
|
|
11 |
import albumentations as A |
|
|
12 |
except ImportError: |
|
|
13 |
# albumentations is not installed, training with augmentations will not be possible |
|
|
14 |
A = None |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def get_augmentations(split: Literal["train", "dev", "test"], args): |
|
|
18 |
if split == "train": |
|
|
19 |
augmentations = [ |
|
|
20 |
Scale_2d(args, {}), |
|
|
21 |
Rotate_Range(args, {"deg": 20}), |
|
|
22 |
ToTensor(), |
|
|
23 |
Force_Num_Chan_Tensor_2d(args, {}), |
|
|
24 |
Normalize_Tensor_2d(args, {}), |
|
|
25 |
] |
|
|
26 |
else: |
|
|
27 |
augmentations = [ |
|
|
28 |
Scale_2d(args, {}), |
|
|
29 |
ToTensor(), |
|
|
30 |
Force_Num_Chan_Tensor_2d(args, {}), |
|
|
31 |
Normalize_Tensor_2d(args, {}), |
|
|
32 |
] |
|
|
33 |
|
|
|
34 |
return augmentations |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
class Abstract_augmentation(object): |
|
|
38 |
""" |
|
|
39 |
Abstract-transformer. |
|
|
40 |
Default - non cachable |
|
|
41 |
""" |
|
|
42 |
|
|
|
43 |
__metaclass__ = ABCMeta |
|
|
44 |
|
|
|
45 |
def __init__(self): |
|
|
46 |
self._is_cachable = False |
|
|
47 |
self._trans_sep = "@" |
|
|
48 |
self._attr_sep = "#" |
|
|
49 |
self.name = ( |
|
|
50 |
self.__str__().split("sybil.augmentations.")[-1].split(" ")[0].lower() |
|
|
51 |
) |
|
|
52 |
|
|
|
53 |
@abstractmethod |
|
|
54 |
def __call__(self, input_dict): |
|
|
55 |
pass |
|
|
56 |
|
|
|
57 |
def set_seed(self, seed): |
|
|
58 |
random.seed(seed) |
|
|
59 |
np.random.seed(seed) |
|
|
60 |
torch.random.manual_seed(seed) |
|
|
61 |
|
|
|
62 |
def cachable(self): |
|
|
63 |
return self._is_cachable |
|
|
64 |
|
|
|
65 |
def set_cachable(self, *keys): |
|
|
66 |
""" |
|
|
67 |
Sets the transformer as cachable |
|
|
68 |
and sets the _caching_keys according to the input variables. |
|
|
69 |
""" |
|
|
70 |
self._is_cachable = True |
|
|
71 |
name_str = "{}{}".format(self._trans_sep, self.name) |
|
|
72 |
keys_str = "".join(self._attr_sep + str(k) for k in keys) |
|
|
73 |
self._caching_keys = "{}{}".format(name_str, keys_str) |
|
|
74 |
return |
|
|
75 |
|
|
|
76 |
def caching_keys(self): |
|
|
77 |
return self._caching_keys |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
class ComposeAug(Abstract_augmentation): |
|
|
81 |
""" |
|
|
82 |
Composes multiple augmentations |
|
|
83 |
""" |
|
|
84 |
|
|
|
85 |
def __init__(self, augmentations): |
|
|
86 |
super(ComposeAug, self).__init__() |
|
|
87 |
self.augmentations = augmentations |
|
|
88 |
|
|
|
89 |
def __call__(self, input_dict, sample=None): |
|
|
90 |
for transformer in self.augmentations: |
|
|
91 |
input_dict = transformer(input_dict, sample) |
|
|
92 |
|
|
|
93 |
return input_dict |
|
|
94 |
|
|
|
95 |
|
|
|
96 |
class ToTensor(Abstract_augmentation): |
|
|
97 |
""" |
|
|
98 |
torchvision.transforms.ToTensor wrapper. |
|
|
99 |
""" |
|
|
100 |
|
|
|
101 |
def __init__(self): |
|
|
102 |
super(ToTensor, self).__init__() |
|
|
103 |
self.name = "totensor" |
|
|
104 |
|
|
|
105 |
def __call__(self, input_dict, sample=None): |
|
|
106 |
input_dict["input"] = torch.from_numpy(input_dict["input"]).float() |
|
|
107 |
if input_dict.get("mask", None) is not None: |
|
|
108 |
input_dict["mask"] = torch.from_numpy(input_dict["mask"]).float() |
|
|
109 |
return input_dict |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
class ResizeTransform: |
|
|
113 |
def __init__(self, width, height): |
|
|
114 |
self.width = width |
|
|
115 |
self.height = height |
|
|
116 |
|
|
|
117 |
def __call__(self, image=None, mask=None): |
|
|
118 |
out = {"image": None, "mask": None} |
|
|
119 |
if image is not None: |
|
|
120 |
out["image"] = cv2.resize(image, dsize=(self.width, self.height), interpolation=cv2.INTER_LINEAR) |
|
|
121 |
if mask is not None: |
|
|
122 |
out["mask"] = cv2.resize(mask, dsize=(self.width, self.height), interpolation=cv2.INTER_NEAREST) |
|
|
123 |
return out |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
class Scale_2d(Abstract_augmentation): |
|
|
127 |
""" |
|
|
128 |
Given PIL image, enforce its some set size |
|
|
129 |
(can use for down sampling / keep full res) |
|
|
130 |
""" |
|
|
131 |
|
|
|
132 |
def __init__(self, args, kwargs): |
|
|
133 |
super(Scale_2d, self).__init__() |
|
|
134 |
assert len(kwargs.keys()) == 0 |
|
|
135 |
width, height = args.img_size |
|
|
136 |
self.set_cachable(width, height) |
|
|
137 |
self.transform = ResizeTransform(width, height) |
|
|
138 |
|
|
|
139 |
def __call__(self, input_dict, sample=None): |
|
|
140 |
out = self.transform( |
|
|
141 |
image=input_dict["input"], mask=input_dict.get("mask", None) |
|
|
142 |
) |
|
|
143 |
input_dict["input"] = out["image"] |
|
|
144 |
input_dict["mask"] = out["mask"] |
|
|
145 |
return input_dict |
|
|
146 |
|
|
|
147 |
|
|
|
148 |
class Rotate_Range(Abstract_augmentation): |
|
|
149 |
""" |
|
|
150 |
Rotate image counter clockwise by random degree https://albumentations.ai/docs/api_reference/augmentations/geometric/rotate/#albumentations.augmentations.geometric.rotate.Rotate |
|
|
151 |
|
|
|
152 |
kwargs |
|
|
153 |
deg: max degrees to rotate |
|
|
154 |
""" |
|
|
155 |
|
|
|
156 |
def __init__(self, args, kwargs): |
|
|
157 |
super(Rotate_Range, self).__init__() |
|
|
158 |
assert len(kwargs.keys()) == 1 |
|
|
159 |
self.max_angle = int(kwargs["deg"]) |
|
|
160 |
assert A is not None, "albumentations is not installed" |
|
|
161 |
self.transform = A.Rotate(limit=self.max_angle, p=0.5) |
|
|
162 |
|
|
|
163 |
def __call__(self, input_dict, sample=None): |
|
|
164 |
if sample and "seed" in sample: |
|
|
165 |
self.set_seed(sample["seed"]) |
|
|
166 |
out = self.transform( |
|
|
167 |
image=input_dict["input"], mask=input_dict.get("mask", None) |
|
|
168 |
) |
|
|
169 |
input_dict["input"] = out["image"] |
|
|
170 |
input_dict["mask"] = out["mask"] |
|
|
171 |
return input_dict |
|
|
172 |
|
|
|
173 |
|
|
|
174 |
class Normalize_Tensor_2d(Abstract_augmentation): |
|
|
175 |
""" |
|
|
176 |
Normalizes input by channel |
|
|
177 |
wrapper for torchvision.transforms.Normalize wrapper. |
|
|
178 |
""" |
|
|
179 |
|
|
|
180 |
def __init__(self, args, kwargs): |
|
|
181 |
super(Normalize_Tensor_2d, self).__init__() |
|
|
182 |
assert len(kwargs) == 0 |
|
|
183 |
channel_means = [args.img_mean] if len(args.img_mean) == 1 else args.img_mean |
|
|
184 |
channel_stds = [args.img_std] if len(args.img_std) == 1 else args.img_std |
|
|
185 |
|
|
|
186 |
self.transform = torchvision.transforms.Normalize( |
|
|
187 |
torch.Tensor(channel_means), torch.Tensor(channel_stds) |
|
|
188 |
) |
|
|
189 |
|
|
|
190 |
self.permute = args.img_file_type in [ |
|
|
191 |
"png", |
|
|
192 |
] |
|
|
193 |
|
|
|
194 |
def __call__(self, input_dict, sample=None): |
|
|
195 |
img = input_dict["input"] |
|
|
196 |
if len(img.size()) == 2: |
|
|
197 |
img = img.unsqueeze(0) |
|
|
198 |
|
|
|
199 |
if self.permute: |
|
|
200 |
img = img.permute(2, 0, 1) |
|
|
201 |
input_dict["input"] = self.transform(img).permute(1, 2, 0) |
|
|
202 |
else: |
|
|
203 |
input_dict["input"] = self.transform(img) |
|
|
204 |
|
|
|
205 |
return input_dict |
|
|
206 |
|
|
|
207 |
|
|
|
208 |
class Force_Num_Chan_Tensor_2d(Abstract_augmentation): |
|
|
209 |
""" |
|
|
210 |
Convert gray scale images to image with args.num_chan num channels. |
|
|
211 |
""" |
|
|
212 |
|
|
|
213 |
def __init__(self, args, kwargs): |
|
|
214 |
super(Force_Num_Chan_Tensor_2d, self).__init__() |
|
|
215 |
assert len(kwargs) == 0 |
|
|
216 |
self.args = args |
|
|
217 |
|
|
|
218 |
def __call__(self, input_dict, sample=None): |
|
|
219 |
img = input_dict["input"] |
|
|
220 |
mask = input_dict.get("mask", None) |
|
|
221 |
if mask is not None: |
|
|
222 |
input_dict["mask"] = mask.unsqueeze(0) |
|
|
223 |
|
|
|
224 |
num_dims = len(img.shape) |
|
|
225 |
if num_dims == 2: |
|
|
226 |
img = img.unsqueeze(0) |
|
|
227 |
existing_chan = img.size()[0] |
|
|
228 |
if not existing_chan == self.args.num_chan: |
|
|
229 |
input_dict["input"] = img.expand(self.args.num_chan, *img.size()[1:]) |
|
|
230 |
|
|
|
231 |
return input_dict |