[d9566e]: / scripts / data / create_nlst_metadata_json.py

Download this file

162 lines (138 with data), 8.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import json
import os
import pickle
import numpy as np
from tqdm import tqdm
import argparse
import pandas as pd
import time
from collections import defaultdict
from ast import literal_eval
SPLIT_PROBS = [0.8, 0.2]
parser = argparse.ArgumentParser()
parser.add_argument('--output_json_path', type = str, default = '/Mounts/rbg-storage1/datasets/NLST/full_nlst.json')
parser.add_argument('--source_json_path', type = str, default = '/Mounts/rbg-storage1/datasets/NLST/nlst_metadata_022020.json')
parser.add_argument('--nlst_abnormalities_csv', type = str, default = '/Mounts/rbg-storage1/datasets/NLST/package-nlst-564.2020-01-30/NLST_564/nlst_564.delivery.010220/nlst_564_ct_ab_20191001.csv')
parser.add_argument('--nlst_metadata_csv', type = str, default = '/Mounts/rbg-storage1/datasets/NLST/package-nlst-564.2020-01-30/NLST_564/nlst_564.delivery.010220/nlst_564_prsn_20191001.csv')
parser.add_argument('--nlst_imagedata_csv', type = str, default = '/Mounts/rbg-storage1/datasets/NLST/package-nlst-564.2020-01-30/NLST_564/nlst_564.delivery.010220/nlst_564_ct_image_info_20191001.csv')
parser.add_argument('--test_google_splits', type = str, default = '/Mounts/rbg-storage1/datasets/NLST/Shetty_et_al(Google)/TEST_41591_2019_447_MOESM5_ESM.xlsx')
if __name__ == '__main__':
args = parser.parse_args()
# Google Splits
test_google_data = pd.read_excel(args.test_google_splits)
test_google_pids = [str(p) for p in test_google_data['patient_id']]
# Source json, output of OncoData ..
source_json = json.load(open(args.source_json_path, 'r'))
# Dataset json, create new or update existing
if os.path.exists(args.output_json_path):
json_dataset = json.load(open(args.output_json_path, 'r'))
pid_list = [d['pid'] for d in json_dataset ]
else:
json_dataset, pid_list = [], []
processed_len = len(pid_list)
abnormalities_data = pd.read_csv(args.nlst_abnormalities_csv, low_memory = True)
image_data = pd.read_csv(args.nlst_imagedata_csv, low_memory = True)
meta_data = pd.read_csv(args.nlst_metadata_csv, low_memory = True)
abnormalities_data.fillna(-1, inplace = True)
image_data.fillna(-1, inplace = True)
meta_data.fillna(-1, inplace = True)
def make_metadata_dict(dataframe, pid, timepoint, series_id, use_timepoint = False, use_timepoint_and_studyinstance = False):
if use_timepoint_and_studyinstance:
df = dataframe.loc[(dataframe.pid == int(pid)) & (dataframe.study_yr == timepoint ) & (dataframe.seriesinstanceuids == series_id )]
elif use_timepoint:
df = dataframe.loc[(dataframe.pid == int(pid)) & (dataframe.study_yr == timepoint )]
else:
df = dataframe.loc[(dataframe.pid == int(pid))]
if df.shape[0] > 0:
return df.to_dict('list')
else:
return {}
now = time.time()
processed_dict = defaultdict(list)
# accession, pid, scanner, year, slicelocations
for row_dict in tqdm(source_json):
dcm_keys = list(row_dict['dicom_metadata'].keys())
if ('PatientID' not in dcm_keys) or ('StudyDate' not in dcm_keys) or ('AccessionNumber' not in dcm_keys) or ('ClinicalTrialTimePointID' not in dcm_keys) or ('SliceLocation' not in dcm_keys):
continue
pid = row_dict['dicom_metadata']['PatientID']
date = row_dict['dicom_metadata']['StudyDate']
accession_number = row_dict['dicom_metadata']['AccessionNumber']
slicelocation = float(row_dict['dicom_metadata']['SliceLocation'])
img_posn = float(literal_eval(row_dict['dicom_metadata']['ImagePositionPatient'])[-1])
timepoint = int(row_dict['dicom_metadata']['ClinicalTrialTimePointID'][-1]) # convert from 'T1' to 1
exam = '{}_T{}'.format(accession_number, timepoint)
series_id = row_dict['dicom_metadata']['SeriesInstanceUID']
slicenumber = int(row_dict['dicom_metadata']['InstanceNumber'])
pixel_spacing = list(map(float, eval(row_dict['dicom_metadata']['PixelSpacing'])))
slice_thickness = float(row_dict['dicom_metadata']['SliceThickness'])
path = row_dict['dicom_path'].replace('/data/rsg/mammogram', '/Mounts/rbg-storage1/datasets').replace('nlst-ct', 'nlst-ct-png') + '.png'
# in case resuming from previous time point - skip over processed (patient, exam, series, path)
if len(processed_dict['pids']) < processed_len:
if (pid not in processed_dict['pids']):
processed_dict['pids'].append(pid)
if len(processed_dict['pids'])%1200==0:
elapsed = round((time.time()-now)/3600, 3)
print('Skipped {} processed participants in {} hrs'.format(len(processed_dict['pids']), elapsed))
processed_dict['exams'].append(exam)
processed_dict['dcms'].append(path)
continue
if (len(processed_dict['pids']) == len(pid_list)) and (pid in pid_list):
pt_idx = pid_list.index(pid)
existing_exams = [ exam['exam'] for exam in json_dataset[pt_idx]['accessions'] ]
if exam in existing_exams:
exam_idx = existing_exams.index(exam)
if (series_id in list(json_dataset[pt_idx]['accessions'][exam_idx]['image_series'].keys()) ) and (path in json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['paths']):
processed_dict['exams'].append(exam)
processed_dict['dcms'].append(path)
continue
if len(pid_list) == len(set(processed_dict['pids'])) and (pid not in pid_list):
print('Already processed {} participants, with {} exams, and {} dicoms'.format(len(pid_list), len(set(processed_dict['exams'])), len(set(processed_dict['dcms']))))
exam_dict = {
'exam': exam,
'accession_number': accession_number,
'screen_timepoint': timepoint,
'date': date,
'abnormalities': make_metadata_dict(abnormalities_data, pid, timepoint, series_id, use_timepoint = True),
}
img_series_dict = {
'paths': [path],
'slice_location': [slicelocation],
'slice_number': [slicenumber],
'pixel_spacing': pixel_spacing,
'slice_thickness': slice_thickness,
'img_position': [img_posn],
'series_data': make_metadata_dict(image_data, pid, timepoint, series_id, use_timepoint_and_studyinstance = True)
}
if pid in pid_list:
pt_idx = pid_list.index(pid)
existing_exams = [ exam['exam'] for exam in json_dataset[pt_idx]['accessions'] ]
if exam in existing_exams:
exam_idx = existing_exams.index(exam)
if series_id not in list(json_dataset[pt_idx]['accessions'][exam_idx]['image_series'].keys()):
json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id] = img_series_dict
else:
json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['paths'].append(path)
json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['slice_location'].append(slicelocation)
json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['slice_number'].append(slicenumber)
json_dataset[pt_idx]['accessions'][exam_idx]['image_series'][series_id]['img_position'].append(img_posn)
else:
exam_dict['image_series'] = {series_id: img_series_dict}
json_dataset[pt_idx]['accessions'].append(exam_dict)
else:
exam_dict['image_series'] = {series_id: img_series_dict}
if pid in test_google_pids:
split_group = 'test'
else:
split_group = np.random.choice(['train', 'dev'], p = SPLIT_PROBS)
pt_dict = {
'accessions': [exam_dict],
'pid': pid,
'split': split_group,
'pt_metadata': make_metadata_dict(meta_data, pid, timepoint, series_id)
}
json_dataset.append(pt_dict)
if (len(pid_list) > 0) and (len(pid_list)%500 == 0):
elapsed = round((time.time()-now)/3600, 3)
print('Processed {} participants in {} hrs'.format(len(pid_list), elapsed))
pid_list.append(pid)
json.dump(json_dataset, open(args.output_json_path, 'w'))