a b/Owkin_PyRadiomics_and_clinical_pipeline.ipynb
1
{
2
  "nbformat": 4,
3
  "nbformat_minor": 0,
4
  "metadata": {
5
    "colab": {
6
      "name": "Owkin - PyRadiomics and clinical pipeline.ipynb",
7
      "provenance": [],
8
      "collapsed_sections": [],
9
      "toc_visible": true
10
    },
11
    "kernelspec": {
12
      "name": "python3",
13
      "display_name": "Python 3"
14
    }
15
  },
16
  "cells": [
17
    {
18
      "cell_type": "code",
19
      "metadata": {
20
        "id": "FpLNFVodLnzM",
21
        "colab_type": "code",
22
        "colab": {}
23
      },
24
      "source": [
25
        "import os\n",
26
        "os.chdir('./drive/My Drive/Challenge-Owkin/')"
27
      ],
28
      "execution_count": 0,
29
      "outputs": []
30
    },
31
    {
32
      "cell_type": "code",
33
      "metadata": {
34
        "id": "ZKtjbnNFJnoW",
35
        "colab_type": "code",
36
        "colab": {}
37
      },
38
      "source": [
39
        "import pandas as pd\n",
40
        "import numpy as np\n",
41
        "import matplotlib.pyplot as plt"
42
      ],
43
      "execution_count": 0,
44
      "outputs": []
45
    },
46
    {
47
      "cell_type": "markdown",
48
      "metadata": {
49
        "id": "fTo18WgtdtLv",
50
        "colab_type": "text"
51
      },
52
      "source": [
53
        "# Metrics"
54
      ]
55
    },
56
    {
57
      "cell_type": "code",
58
      "metadata": {
59
        "id": "czN1DE7odL-u",
60
        "colab_type": "code",
61
        "colab": {}
62
      },
63
      "source": [
64
        "import numpy as np\n",
65
        "import pandas as pd\n",
66
        "import warnings\n",
67
        "\n",
68
        "\n",
69
        "def cindex(y_true_times, predicted_times, tol=1e-8):\n",
70
        "    \"\"\"\n",
71
        "    Author: Romuald Menuet & Rémy Dubois\n",
72
        "\n",
73
        "    Evaluate concordance index from Pandas DataFrame, taking ties into account.\n",
74
        "\n",
75
        "    Args:\n",
76
        "        y_true_times: pd.DataFrame\n",
77
        "            pd DataFrame with three columns: `PatientID`, `Event` and `SurvivalTime` the float-valued column of true survival times.\n",
78
        "        predicted_times: pd.DataFrame\n",
79
        "            pd DataFrame with three columns: `PatientID`, `SurvivalTime` the float-valued column of predicted survival times,\n",
80
        "            and one `Event`column, whose value does not matter. It must be appended so that target and predictions have the same format.\n",
81
        "        tol: float\n",
82
        "            small float value for numerical stability.\n",
83
        "    Returns:\n",
84
        "        Concordance index, as described here:\n",
85
        "        https://square.github.io/pysurvival/metrics/c_index.html\n",
86
        "    \"\"\"\n",
87
        "\n",
88
        "    assert isinstance(y_true_times, pd.DataFrame), 'Y true times should be pd dataframe with `PatientID` as index, and `Event` and `SurvivalTime` as columns'\n",
89
        "    assert isinstance(predicted_times, pd.DataFrame), 'Predicted times should be pd dataframe with patient `PatientID` as index, and `Event` and `SurvivalTime` as columns'\n",
90
        "    assert len(y_true_times.shape) == 2, 'Y true times should be pd dataframe with `PatientID` as index, and `Event` and `SurvivalTime` as columns'\n",
91
        "    assert len(predicted_times.shape) == 2, 'Predicted times should be pd dataframe with `PatientID` as index, and `Event` and `SurvivalTime` as columns'\n",
92
        "    assert set(y_true_times.columns) == {'Event', 'SurvivalTime'}, 'Y true times should be pd dataframe with `PatientID` as index, and `Event` and `SurvivalTime` as columns'\n",
93
        "    assert set(predicted_times.columns) == {'Event', 'SurvivalTime'}, 'Predicted times should be pd dataframe with `PatientID` as index, and `Event` and `SurvivalTime` as columns'\n",
94
        "    np.testing.assert_equal(y_true_times.shape, predicted_times.shape, err_msg=\"Not same amount of predicted versus true samples\")\n",
95
        "    assert set(y_true_times.index) == set(predicted_times.index), 'Not same patients in prediction versus ground truth'\n",
96
        "    assert np.all(predicted_times['SurvivalTime'] > 0), 'Predicted times should all be positive'\n",
97
        "\n",
98
        "    events = y_true_times.Event\n",
99
        "    y_true_times = y_true_times.SurvivalTime\n",
100
        "    predicted_times = predicted_times.SurvivalTime\n",
101
        "\n",
102
        "    # Just ordering the right way\n",
103
        "    predicted_times = predicted_times.loc[y_true_times.index]\n",
104
        "    events = events.loc[y_true_times.index]\n",
105
        "\n",
106
        "    events = events.values.astype(int)\n",
107
        "    y_true_times = y_true_times.values.astype(float)\n",
108
        "    predicted_times = predicted_times.values.astype(float)\n",
109
        "    # events = events.values.astype(bool)\n",
110
        "\n",
111
        "    np.testing.assert_array_less(1.,\n",
112
        "                                 predicted_times.astype(float),\n",
113
        "                                 err_msg=\"Predicted y_true_times all below 1.\\\n",
114
        "                                 It should be in days. Make sure that you are not predicting risk instead of time.\")\n",
115
        "\n",
116
        "    return _cindex_np(y_true_times, predicted_times, events)\n",
117
        "\n",
118
        "\n",
119
        "def _cindex_np(times, predicted_times, events, tol=1.e-8):\n",
120
        "    \"\"\"\n",
121
        "    Raw CI computation from np arrray. Should not be used as is.\n",
122
        "    \"\"\"\n",
123
        "    assert times.ndim == predicted_times.ndim == events.ndim == 1, \"wrong input, should be vectors only\"\n",
124
        "    assert times.shape[0] == predicted_times.shape[0] == events.shape[0], \"wrong input, should be vectors of the same len\"\n",
125
        "\n",
126
        "    risks = - predicted_times\n",
127
        "\n",
128
        "    risks_i = risks.reshape((-1, 1))\n",
129
        "    risks_j = risks.reshape((1, -1))\n",
130
        "    times_i = times.reshape((-1, 1))\n",
131
        "    times_j = times.reshape((1, -1))\n",
132
        "    events_i = events.reshape((-1, 1))\n",
133
        "\n",
134
        "    eligible_pairs = (times_i < times_j) * events_i\n",
135
        "\n",
136
        "    well_ordered = np.sum(eligible_pairs * (risks_i > risks_j))\n",
137
        "    ties = + np.sum(eligible_pairs * 0.5 * (risks_i == risks_j))\n",
138
        "\n",
139
        "    return (well_ordered + ties) / (eligible_pairs.sum() + tol)\n"
140
      ],
141
      "execution_count": 0,
142
      "outputs": []
143
    },
144
    {
145
      "cell_type": "markdown",
146
      "metadata": {
147
        "id": "FXzQe3YxJi7P",
148
        "colab_type": "text"
149
      },
150
      "source": [
151
        "# Read files"
152
      ]
153
    },
154
    {
155
      "cell_type": "code",
156
      "metadata": {
157
        "id": "78TS7toUKizf",
158
        "colab_type": "code",
159
        "colab": {}
160
      },
161
      "source": [
162
        "from sklearn import preprocessing\n",
163
        "\n",
164
        "def normalizing_input(x_train, x_test):\n",
165
        "    all_x = pd.concat([x_train, x_test])\n",
166
        "    x_val = all_x.values\n",
167
        "    min_max_scaler = preprocessing.MinMaxScaler()\n",
168
        "    x_scaled = min_max_scaler.fit_transform(x_val)\n",
169
        "    df = pd.DataFrame(x_scaled, index=all_x.index, columns=all_x.columns)\n",
170
        "    return df.loc[x_train.index], df.loc[x_test.index]\n",
171
        "\n",
172
        "def cleaning_clinical(clinical):\n",
173
        "    \"\"\"\n",
174
        "    Cleaning the clinical dataframe.\n",
175
        "    :param clinical:\n",
176
        "    :return:\n",
177
        "    \"\"\"\n",
178
        "    # Encoding label for SourceDataset\n",
179
        "    le = preprocessing.LabelEncoder()\n",
180
        "    le.fit(clinical['SourceDataset'])\n",
181
        "    le.transform(clinical['SourceDataset'])\n",
182
        "    clinical['SourceDataset'] = le.transform(clinical['SourceDataset'])\n",
183
        "    # Cleaning Histology\n",
184
        "    clinical.replace(\"NSCLC NOS (not otherwise specified)\", \"nos\", inplace=True)\n",
185
        "    clinical.replace(\"Adenocarcinoma\", \"adenocarcinoma\", inplace=True)\n",
186
        "    clinical.replace(\"Squamous cell carcinoma\", \"squamous cell carcinoma\", inplace=True)\n",
187
        "    # Dummies for Histology\n",
188
        "    clinical = pd.get_dummies(clinical)\n",
189
        "    # Fill age nan\n",
190
        "    clinical['age'].fillna((clinical['age'].mean()), inplace=True)\n",
191
        "\n",
192
        "    return clinical\n",
193
        "\n",
194
        "def clean_clinical_data(file, newfile):\n",
195
        "    \"\"\"\n",
196
        "    Cleaning clinical data.\n",
197
        "    :param file: clinical data file\n",
198
        "    :param newfile: path for the cleaned data file.\n",
199
        "    :return:\n",
200
        "    \"\"\"\n",
201
        "    clinical = pd.read_csv(file, index_col=0)\n",
202
        "    cleaned = cleaning_clinical(clinical)\n",
203
        "    cleaned.to_csv(newfile)\n",
204
        "\n",
205
        "def y_dataframe_to_rsf_input(y_df):\n",
206
        "    \"\"\"\n",
207
        "    Input for random survival forest.\n",
208
        "    :param y_df: event + survival time dataframe.\n",
209
        "    :return:\n",
210
        "    \"\"\"\n",
211
        "    y_array = []\n",
212
        "    Y = y_df.to_numpy()\n",
213
        "    for y in Y:\n",
214
        "        tuple = (bool(y[1]), y[0])\n",
215
        "        y_array.append(tuple)\n",
216
        "    return np.array(y_array, dtype = [(f'{y_df.columns[1]}', np.bool), (f'{y_df.columns[0]}', np.float)])"
217
      ],
218
      "execution_count": 0,
219
      "outputs": []
220
    },
221
    {
222
      "cell_type": "code",
223
      "metadata": {
224
        "id": "KdL8k83uHmrT",
225
        "colab_type": "code",
226
        "colab": {}
227
      },
228
      "source": [
229
        "def read_input(file_radiomics, file_clinical):\n",
230
        "    \"\"\"\n",
231
        "    Read radiomics and clinical feature and return dataframe.\n",
232
        "    :param file_radiomics: filename\n",
233
        "    :param file_clinical: filename\n",
234
        "    :return:\n",
235
        "    \"\"\"\n",
236
        "    radiomics = pd.read_csv(file_radiomics, index_col=0)\n",
237
        "    clinical = pd.read_csv(file_clinical, index_col=0)\n",
238
        "    clinical = cleaning_clinical(clinical)\n",
239
        "    input = pd.concat([radiomics, clinical], axis=1)\n",
240
        "    return input\n",
241
        "\n",
242
        "def read_output(file_output):\n",
243
        "    \"\"\"\n",
244
        "    Return dataframe for event + survival time.\n",
245
        "    :param file_output:\n",
246
        "    :return:\n",
247
        "    \"\"\"\n",
248
        "    output = pd.read_csv(file_output, index_col=0, header=0)\n",
249
        "    return output\n",
250
        "\n",
251
        "def load_owkin_data(radiomics_path_train=\"data/train/features/radiomics.csv\",\n",
252
        "                    clinical_path_train=\"data/train/features/clinical_data.csv\",\n",
253
        "                    label_path_train='data/train/y_train.csv',\n",
254
        "                    radiomics_path_test=\"data/test/features/radiomics.csv\",\n",
255
        "                    clinical_path_test=\"data/test/features/clinical_data.csv\"):\n",
256
        "    \"\"\"\n",
257
        "    Load Owkin data: return PyRadiomics + clinical features of training set in dataframe,\n",
258
        "                    event + time of training set in dataframe, and\n",
259
        "                    PyRadiomics + clinical features of testing set in dataframe,\n",
260
        "    \"\"\"\n",
261
        "    input_train = read_input(radiomics_path_train, clinical_path_train)\n",
262
        "    output_train = read_output(label_path_train)\n",
263
        "    input_test = read_input(radiomics_path_test, clinical_path_test)\n",
264
        "    return input_train, output_train, input_test\n",
265
        "\n",
266
        "\n",
267
        "input_train, output_train, input_test = load_owkin_data()\n",
268
        "all_features = input_train.columns"
269
      ],
270
      "execution_count": 0,
271
      "outputs": []
272
    },
273
    {
274
      "cell_type": "markdown",
275
      "metadata": {
276
        "id": "NsBunJa1_aj-",
277
        "colab_type": "text"
278
      },
279
      "source": [
280
        "# Data exploration"
281
      ]
282
    },
283
    {
284
      "cell_type": "markdown",
285
      "metadata": {
286
        "id": "IdgtOIZ9ptQE",
287
        "colab_type": "text"
288
      },
289
      "source": [
290
        "## Global distribution"
291
      ]
292
    },
293
    {
294
      "cell_type": "code",
295
      "metadata": {
296
        "id": "HhxnK1L-pvMB",
297
        "colab_type": "code",
298
        "outputId": "5ba5a029-0716-4b04-a34e-bb1c700d52a8",
299
        "colab": {
300
          "base_uri": "https://localhost:8080/",
301
          "height": 487
302
        }
303
      },
304
      "source": [
305
        "x_train, y_train, x_test = load_owkin_data()\n",
306
        "x_train"
307
      ],
308
      "execution_count": 0,
309
      "outputs": [
310
        {
311
          "output_type": "execute_result",
312
          "data": {
313
            "text/html": [
314
              "<div>\n",
315
              "<style scoped>\n",
316
              "    .dataframe tbody tr th:only-of-type {\n",
317
              "        vertical-align: middle;\n",
318
              "    }\n",
319
              "\n",
320
              "    .dataframe tbody tr th {\n",
321
              "        vertical-align: top;\n",
322
              "    }\n",
323
              "\n",
324
              "    .dataframe thead th {\n",
325
              "        text-align: right;\n",
326
              "    }\n",
327
              "</style>\n",
328
              "<table border=\"1\" class=\"dataframe\">\n",
329
              "  <thead>\n",
330
              "    <tr style=\"text-align: right;\">\n",
331
              "      <th></th>\n",
332
              "      <th>original_shape_Compactness1</th>\n",
333
              "      <th>original_shape_Compactness2</th>\n",
334
              "      <th>original_shape_Maximum3DDiameter</th>\n",
335
              "      <th>original_shape_SphericalDisproportion</th>\n",
336
              "      <th>original_shape_Sphericity</th>\n",
337
              "      <th>original_shape_SurfaceArea</th>\n",
338
              "      <th>original_shape_SurfaceVolumeRatio</th>\n",
339
              "      <th>original_shape_VoxelVolume</th>\n",
340
              "      <th>original_firstorder_Energy</th>\n",
341
              "      <th>original_firstorder_Entropy</th>\n",
342
              "      <th>original_firstorder_Kurtosis</th>\n",
343
              "      <th>original_firstorder_Maximum</th>\n",
344
              "      <th>original_firstorder_Mean</th>\n",
345
              "      <th>original_firstorder_MeanAbsoluteDeviation</th>\n",
346
              "      <th>original_firstorder_Median</th>\n",
347
              "      <th>original_firstorder_Minimum</th>\n",
348
              "      <th>original_firstorder_Range</th>\n",
349
              "      <th>original_firstorder_RootMeanSquared</th>\n",
350
              "      <th>original_firstorder_Skewness</th>\n",
351
              "      <th>original_firstorder_StandardDeviation</th>\n",
352
              "      <th>original_firstorder_Uniformity</th>\n",
353
              "      <th>original_firstorder_Variance</th>\n",
354
              "      <th>original_glcm_Autocorrelation</th>\n",
355
              "      <th>original_glcm_ClusterProminence</th>\n",
356
              "      <th>original_glcm_ClusterShade</th>\n",
357
              "      <th>original_glcm_ClusterTendency</th>\n",
358
              "      <th>original_glcm_Contrast</th>\n",
359
              "      <th>original_glcm_Correlation</th>\n",
360
              "      <th>original_glcm_DifferenceEntropy</th>\n",
361
              "      <th>original_glcm_DifferenceAverage</th>\n",
362
              "      <th>original_glcm_JointEnergy</th>\n",
363
              "      <th>original_glcm_JointEntropy</th>\n",
364
              "      <th>original_glcm_Id</th>\n",
365
              "      <th>original_glcm_Idm</th>\n",
366
              "      <th>original_glcm_Imc1</th>\n",
367
              "      <th>original_glcm_Imc2</th>\n",
368
              "      <th>original_glcm_Idmn</th>\n",
369
              "      <th>original_glcm_Idn</th>\n",
370
              "      <th>original_glcm_InverseVariance</th>\n",
371
              "      <th>original_glcm_MaximumProbability</th>\n",
372
              "      <th>original_glcm_SumAverage</th>\n",
373
              "      <th>original_glcm_SumEntropy</th>\n",
374
              "      <th>original_glrlm_ShortRunEmphasis</th>\n",
375
              "      <th>original_glrlm_LongRunEmphasis</th>\n",
376
              "      <th>original_glrlm_GrayLevelNonUniformity</th>\n",
377
              "      <th>original_glrlm_RunLengthNonUniformity</th>\n",
378
              "      <th>original_glrlm_RunPercentage</th>\n",
379
              "      <th>original_glrlm_LowGrayLevelRunEmphasis</th>\n",
380
              "      <th>original_glrlm_HighGrayLevelRunEmphasis</th>\n",
381
              "      <th>original_glrlm_ShortRunLowGrayLevelEmphasis</th>\n",
382
              "      <th>original_glrlm_ShortRunHighGrayLevelEmphasis</th>\n",
383
              "      <th>original_glrlm_LongRunLowGrayLevelEmphasis</th>\n",
384
              "      <th>original_glrlm_LongRunHighGrayLevelEmphasis</th>\n",
385
              "      <th>Mstage</th>\n",
386
              "      <th>Nstage</th>\n",
387
              "      <th>SourceDataset</th>\n",
388
              "      <th>Tstage</th>\n",
389
              "      <th>age</th>\n",
390
              "      <th>Histology_adenocarcinoma</th>\n",
391
              "      <th>Histology_large cell</th>\n",
392
              "      <th>Histology_nos</th>\n",
393
              "      <th>Histology_squamous cell carcinoma</th>\n",
394
              "    </tr>\n",
395
              "    <tr>\n",
396
              "      <th>PatientID</th>\n",
397
              "      <th></th>\n",
398
              "      <th></th>\n",
399
              "      <th></th>\n",
400
              "      <th></th>\n",
401
              "      <th></th>\n",
402
              "      <th></th>\n",
403
              "      <th></th>\n",
404
              "      <th></th>\n",
405
              "      <th></th>\n",
406
              "      <th></th>\n",
407
              "      <th></th>\n",
408
              "      <th></th>\n",
409
              "      <th></th>\n",
410
              "      <th></th>\n",
411
              "      <th></th>\n",
412
              "      <th></th>\n",
413
              "      <th></th>\n",
414
              "      <th></th>\n",
415
              "      <th></th>\n",
416
              "      <th></th>\n",
417
              "      <th></th>\n",
418
              "      <th></th>\n",
419
              "      <th></th>\n",
420
              "      <th></th>\n",
421
              "      <th></th>\n",
422
              "      <th></th>\n",
423
              "      <th></th>\n",
424
              "      <th></th>\n",
425
              "      <th></th>\n",
426
              "      <th></th>\n",
427
              "      <th></th>\n",
428
              "      <th></th>\n",
429
              "      <th></th>\n",
430
              "      <th></th>\n",
431
              "      <th></th>\n",
432
              "      <th></th>\n",
433
              "      <th></th>\n",
434
              "      <th></th>\n",
435
              "      <th></th>\n",
436
              "      <th></th>\n",
437
              "      <th></th>\n",
438
              "      <th></th>\n",
439
              "      <th></th>\n",
440
              "      <th></th>\n",
441
              "      <th></th>\n",
442
              "      <th></th>\n",
443
              "      <th></th>\n",
444
              "      <th></th>\n",
445
              "      <th></th>\n",
446
              "      <th></th>\n",
447
              "      <th></th>\n",
448
              "      <th></th>\n",
449
              "      <th></th>\n",
450
              "      <th></th>\n",
451
              "      <th></th>\n",
452
              "      <th></th>\n",
453
              "      <th></th>\n",
454
              "      <th></th>\n",
455
              "      <th></th>\n",
456
              "      <th></th>\n",
457
              "      <th></th>\n",
458
              "      <th></th>\n",
459
              "    </tr>\n",
460
              "  </thead>\n",
461
              "  <tbody>\n",
462
              "    <tr>\n",
463
              "      <th>202</th>\n",
464
              "      <td>0.027815</td>\n",
465
              "      <td>0.274892</td>\n",
466
              "      <td>48.559242</td>\n",
467
              "      <td>1.537964</td>\n",
468
              "      <td>0.650210</td>\n",
469
              "      <td>5431.333210</td>\n",
470
              "      <td>0.275228</td>\n",
471
              "      <td>19786.0</td>\n",
472
              "      <td>3.942944e+09</td>\n",
473
              "      <td>5.138062</td>\n",
474
              "      <td>1.592466</td>\n",
475
              "      <td>241.0</td>\n",
476
              "      <td>-310.858031</td>\n",
477
              "      <td>288.311105</td>\n",
478
              "      <td>-266.0</td>\n",
479
              "      <td>-1006.0</td>\n",
480
              "      <td>1247.0</td>\n",
481
              "      <td>446.407319</td>\n",
482
              "      <td>-0.281714</td>\n",
483
              "      <td>320.385361</td>\n",
484
              "      <td>0.037008</td>\n",
485
              "      <td>102646.779451</td>\n",
486
              "      <td>1056.843506</td>\n",
487
              "      <td>546253.499762</td>\n",
488
              "      <td>-5334.563631</td>\n",
489
              "      <td>555.818455</td>\n",
490
              "      <td>54.336816</td>\n",
491
              "      <td>0.821101</td>\n",
492
              "      <td>3.845383</td>\n",
493
              "      <td>5.036775</td>\n",
494
              "      <td>0.005920</td>\n",
495
              "      <td>9.270194</td>\n",
496
              "      <td>0.338672</td>\n",
497
              "      <td>0.262780</td>\n",
498
              "      <td>-0.175185</td>\n",
499
              "      <td>0.901525</td>\n",
500
              "      <td>0.981053</td>\n",
501
              "      <td>0.917509</td>\n",
502
              "      <td>0.249416</td>\n",
503
              "      <td>0.037768</td>\n",
504
              "      <td>61.035662</td>\n",
505
              "      <td>6.007130</td>\n",
506
              "      <td>0.926391</td>\n",
507
              "      <td>1.457980</td>\n",
508
              "      <td>555.378594</td>\n",
509
              "      <td>14592.303727</td>\n",
510
              "      <td>0.891330</td>\n",
511
              "      <td>0.003562</td>\n",
512
              "      <td>954.749135</td>\n",
513
              "      <td>0.003384</td>\n",
514
              "      <td>851.987373</td>\n",
515
              "      <td>0.004444</td>\n",
516
              "      <td>1651.710761</td>\n",
517
              "      <td>0</td>\n",
518
              "      <td>0</td>\n",
519
              "      <td>1</td>\n",
520
              "      <td>2</td>\n",
521
              "      <td>66.000000</td>\n",
522
              "      <td>1</td>\n",
523
              "      <td>0</td>\n",
524
              "      <td>0</td>\n",
525
              "      <td>0</td>\n",
526
              "    </tr>\n",
527
              "    <tr>\n",
528
              "      <th>371</th>\n",
529
              "      <td>0.023015</td>\n",
530
              "      <td>0.188210</td>\n",
531
              "      <td>75.703368</td>\n",
532
              "      <td>1.744961</td>\n",
533
              "      <td>0.573079</td>\n",
534
              "      <td>10369.568729</td>\n",
535
              "      <td>0.240727</td>\n",
536
              "      <td>43168.0</td>\n",
537
              "      <td>3.122890e+09</td>\n",
538
              "      <td>4.461054</td>\n",
539
              "      <td>3.371013</td>\n",
540
              "      <td>262.0</td>\n",
541
              "      <td>-134.429809</td>\n",
542
              "      <td>191.395154</td>\n",
543
              "      <td>-15.0</td>\n",
544
              "      <td>-945.0</td>\n",
545
              "      <td>1207.0</td>\n",
546
              "      <td>268.966000</td>\n",
547
              "      <td>-1.216062</td>\n",
548
              "      <td>232.962090</td>\n",
549
              "      <td>0.080061</td>\n",
550
              "      <td>54271.335557</td>\n",
551
              "      <td>1219.689108</td>\n",
552
              "      <td>331155.230396</td>\n",
553
              "      <td>-6857.579704</td>\n",
554
              "      <td>295.032309</td>\n",
555
              "      <td>16.868781</td>\n",
556
              "      <td>0.891184</td>\n",
557
              "      <td>2.984034</td>\n",
558
              "      <td>2.570017</td>\n",
559
              "      <td>0.025532</td>\n",
560
              "      <td>7.551168</td>\n",
561
              "      <td>0.495719</td>\n",
562
              "      <td>0.439879</td>\n",
563
              "      <td>-0.250370</td>\n",
564
              "      <td>0.932847</td>\n",
565
              "      <td>0.993282</td>\n",
566
              "      <td>0.953464</td>\n",
567
              "      <td>0.340024</td>\n",
568
              "      <td>0.110575</td>\n",
569
              "      <td>67.826804</td>\n",
570
              "      <td>5.255594</td>\n",
571
              "      <td>0.855154</td>\n",
572
              "      <td>2.512125</td>\n",
573
              "      <td>1766.619373</td>\n",
574
              "      <td>22881.932686</td>\n",
575
              "      <td>0.766032</td>\n",
576
              "      <td>0.002246</td>\n",
577
              "      <td>1092.823724</td>\n",
578
              "      <td>0.002069</td>\n",
579
              "      <td>884.838627</td>\n",
580
              "      <td>0.003633</td>\n",
581
              "      <td>3386.995589</td>\n",
582
              "      <td>0</td>\n",
583
              "      <td>2</td>\n",
584
              "      <td>0</td>\n",
585
              "      <td>4</td>\n",
586
              "      <td>64.572200</td>\n",
587
              "      <td>0</td>\n",
588
              "      <td>1</td>\n",
589
              "      <td>0</td>\n",
590
              "      <td>0</td>\n",
591
              "    </tr>\n",
592
              "    <tr>\n",
593
              "      <th>246</th>\n",
594
              "      <td>0.027348</td>\n",
595
              "      <td>0.265740</td>\n",
596
              "      <td>70.434367</td>\n",
597
              "      <td>1.555420</td>\n",
598
              "      <td>0.642913</td>\n",
599
              "      <td>10558.818691</td>\n",
600
              "      <td>0.200766</td>\n",
601
              "      <td>52655.0</td>\n",
602
              "      <td>1.059535e+09</td>\n",
603
              "      <td>3.437111</td>\n",
604
              "      <td>7.585494</td>\n",
605
              "      <td>115.0</td>\n",
606
              "      <td>-54.136093</td>\n",
607
              "      <td>94.132136</td>\n",
608
              "      <td>2.0</td>\n",
609
              "      <td>-785.0</td>\n",
610
              "      <td>900.0</td>\n",
611
              "      <td>141.852795</td>\n",
612
              "      <td>-2.153344</td>\n",
613
              "      <td>131.116356</td>\n",
614
              "      <td>0.160905</td>\n",
615
              "      <td>17191.498865</td>\n",
616
              "      <td>972.465798</td>\n",
617
              "      <td>54523.086867</td>\n",
618
              "      <td>-1618.363118</td>\n",
619
              "      <td>78.183970</td>\n",
620
              "      <td>7.040623</td>\n",
621
              "      <td>0.831081</td>\n",
622
              "      <td>2.333939</td>\n",
623
              "      <td>1.496020</td>\n",
624
              "      <td>0.066569</td>\n",
625
              "      <td>5.686554</td>\n",
626
              "      <td>0.616607</td>\n",
627
              "      <td>0.581458</td>\n",
628
              "      <td>-0.249969</td>\n",
629
              "      <td>0.884911</td>\n",
630
              "      <td>0.995095</td>\n",
631
              "      <td>0.963887</td>\n",
632
              "      <td>0.379957</td>\n",
633
              "      <td>0.189723</td>\n",
634
              "      <td>61.795144</td>\n",
635
              "      <td>4.159019</td>\n",
636
              "      <td>0.769265</td>\n",
637
              "      <td>4.096838</td>\n",
638
              "      <td>3462.816344</td>\n",
639
              "      <td>18773.106002</td>\n",
640
              "      <td>0.644554</td>\n",
641
              "      <td>0.001880</td>\n",
642
              "      <td>878.989601</td>\n",
643
              "      <td>0.001635</td>\n",
644
              "      <td>634.910036</td>\n",
645
              "      <td>0.004869</td>\n",
646
              "      <td>4232.418080</td>\n",
647
              "      <td>0</td>\n",
648
              "      <td>3</td>\n",
649
              "      <td>0</td>\n",
650
              "      <td>2</td>\n",
651
              "      <td>66.045200</td>\n",
652
              "      <td>0</td>\n",
653
              "      <td>0</td>\n",
654
              "      <td>0</td>\n",
655
              "      <td>1</td>\n",
656
              "    </tr>\n",
657
              "    <tr>\n",
658
              "      <th>240</th>\n",
659
              "      <td>0.026811</td>\n",
660
              "      <td>0.255406</td>\n",
661
              "      <td>46.818800</td>\n",
662
              "      <td>1.576120</td>\n",
663
              "      <td>0.634469</td>\n",
664
              "      <td>4221.412123</td>\n",
665
              "      <td>0.323878</td>\n",
666
              "      <td>13074.0</td>\n",
667
              "      <td>6.583324e+08</td>\n",
668
              "      <td>4.352564</td>\n",
669
              "      <td>4.281865</td>\n",
670
              "      <td>274.0</td>\n",
671
              "      <td>-118.705522</td>\n",
672
              "      <td>149.072998</td>\n",
673
              "      <td>-37.0</td>\n",
674
              "      <td>-850.0</td>\n",
675
              "      <td>1124.0</td>\n",
676
              "      <td>224.397694</td>\n",
677
              "      <td>-1.437836</td>\n",
678
              "      <td>190.429315</td>\n",
679
              "      <td>0.074476</td>\n",
680
              "      <td>36263.324022</td>\n",
681
              "      <td>968.117567</td>\n",
682
              "      <td>166735.779994</td>\n",
683
              "      <td>-3968.921514</td>\n",
684
              "      <td>184.299591</td>\n",
685
              "      <td>13.656782</td>\n",
686
              "      <td>0.860096</td>\n",
687
              "      <td>2.926791</td>\n",
688
              "      <td>2.492079</td>\n",
689
              "      <td>0.015048</td>\n",
690
              "      <td>7.536161</td>\n",
691
              "      <td>0.457545</td>\n",
692
              "      <td>0.391681</td>\n",
693
              "      <td>-0.214233</td>\n",
694
              "      <td>0.902811</td>\n",
695
              "      <td>0.993509</td>\n",
696
              "      <td>0.950374</td>\n",
697
              "      <td>0.357236</td>\n",
698
              "      <td>0.050439</td>\n",
699
              "      <td>60.841486</td>\n",
700
              "      <td>5.122729</td>\n",
701
              "      <td>0.880123</td>\n",
702
              "      <td>1.824328</td>\n",
703
              "      <td>683.869792</td>\n",
704
              "      <td>7978.285176</td>\n",
705
              "      <td>0.828138</td>\n",
706
              "      <td>0.002855</td>\n",
707
              "      <td>907.045929</td>\n",
708
              "      <td>0.002680</td>\n",
709
              "      <td>774.885387</td>\n",
710
              "      <td>0.003901</td>\n",
711
              "      <td>1844.746046</td>\n",
712
              "      <td>0</td>\n",
713
              "      <td>2</td>\n",
714
              "      <td>0</td>\n",
715
              "      <td>3</td>\n",
716
              "      <td>59.356600</td>\n",
717
              "      <td>0</td>\n",
718
              "      <td>0</td>\n",
719
              "      <td>1</td>\n",
720
              "      <td>0</td>\n",
721
              "    </tr>\n",
722
              "    <tr>\n",
723
              "      <th>284</th>\n",
724
              "      <td>0.023691</td>\n",
725
              "      <td>0.199424</td>\n",
726
              "      <td>53.795911</td>\n",
727
              "      <td>1.711620</td>\n",
728
              "      <td>0.584242</td>\n",
729
              "      <td>5295.900331</td>\n",
730
              "      <td>0.327241</td>\n",
731
              "      <td>16237.0</td>\n",
732
              "      <td>8.072532e+08</td>\n",
733
              "      <td>4.055700</td>\n",
734
              "      <td>8.999616</td>\n",
735
              "      <td>203.0</td>\n",
736
              "      <td>-67.201946</td>\n",
737
              "      <td>143.210231</td>\n",
738
              "      <td>14.0</td>\n",
739
              "      <td>-1023.0</td>\n",
740
              "      <td>1226.0</td>\n",
741
              "      <td>222.972850</td>\n",
742
              "      <td>-2.438490</td>\n",
743
              "      <td>212.604774</td>\n",
744
              "      <td>0.104419</td>\n",
745
              "      <td>45200.790098</td>\n",
746
              "      <td>1594.558416</td>\n",
747
              "      <td>658805.553990</td>\n",
748
              "      <td>-10509.915485</td>\n",
749
              "      <td>248.373464</td>\n",
750
              "      <td>20.121147</td>\n",
751
              "      <td>0.849653</td>\n",
752
              "      <td>2.787526</td>\n",
753
              "      <td>2.372269</td>\n",
754
              "      <td>0.029317</td>\n",
755
              "      <td>6.940307</td>\n",
756
              "      <td>0.544607</td>\n",
757
              "      <td>0.501892</td>\n",
758
              "      <td>-0.238174</td>\n",
759
              "      <td>0.911356</td>\n",
760
              "      <td>0.992658</td>\n",
761
              "      <td>0.958908</td>\n",
762
              "      <td>0.384513</td>\n",
763
              "      <td>0.100536</td>\n",
764
              "      <td>78.421376</td>\n",
765
              "      <td>4.878253</td>\n",
766
              "      <td>0.819049</td>\n",
767
              "      <td>2.652580</td>\n",
768
              "      <td>962.094760</td>\n",
769
              "      <td>7520.054910</td>\n",
770
              "      <td>0.734898</td>\n",
771
              "      <td>0.006710</td>\n",
772
              "      <td>1513.420445</td>\n",
773
              "      <td>0.004704</td>\n",
774
              "      <td>1197.140900</td>\n",
775
              "      <td>0.023273</td>\n",
776
              "      <td>4444.272812</td>\n",
777
              "      <td>0</td>\n",
778
              "      <td>3</td>\n",
779
              "      <td>0</td>\n",
780
              "      <td>4</td>\n",
781
              "      <td>71.055400</td>\n",
782
              "      <td>0</td>\n",
783
              "      <td>0</td>\n",
784
              "      <td>0</td>\n",
785
              "      <td>1</td>\n",
786
              "    </tr>\n",
787
              "    <tr>\n",
788
              "      <th>...</th>\n",
789
              "      <td>...</td>\n",
790
              "      <td>...</td>\n",
791
              "      <td>...</td>\n",
792
              "      <td>...</td>\n",
793
              "      <td>...</td>\n",
794
              "      <td>...</td>\n",
795
              "      <td>...</td>\n",
796
              "      <td>...</td>\n",
797
              "      <td>...</td>\n",
798
              "      <td>...</td>\n",
799
              "      <td>...</td>\n",
800
              "      <td>...</td>\n",
801
              "      <td>...</td>\n",
802
              "      <td>...</td>\n",
803
              "      <td>...</td>\n",
804
              "      <td>...</td>\n",
805
              "      <td>...</td>\n",
806
              "      <td>...</td>\n",
807
              "      <td>...</td>\n",
808
              "      <td>...</td>\n",
809
              "      <td>...</td>\n",
810
              "      <td>...</td>\n",
811
              "      <td>...</td>\n",
812
              "      <td>...</td>\n",
813
              "      <td>...</td>\n",
814
              "      <td>...</td>\n",
815
              "      <td>...</td>\n",
816
              "      <td>...</td>\n",
817
              "      <td>...</td>\n",
818
              "      <td>...</td>\n",
819
              "      <td>...</td>\n",
820
              "      <td>...</td>\n",
821
              "      <td>...</td>\n",
822
              "      <td>...</td>\n",
823
              "      <td>...</td>\n",
824
              "      <td>...</td>\n",
825
              "      <td>...</td>\n",
826
              "      <td>...</td>\n",
827
              "      <td>...</td>\n",
828
              "      <td>...</td>\n",
829
              "      <td>...</td>\n",
830
              "      <td>...</td>\n",
831
              "      <td>...</td>\n",
832
              "      <td>...</td>\n",
833
              "      <td>...</td>\n",
834
              "      <td>...</td>\n",
835
              "      <td>...</td>\n",
836
              "      <td>...</td>\n",
837
              "      <td>...</td>\n",
838
              "      <td>...</td>\n",
839
              "      <td>...</td>\n",
840
              "      <td>...</td>\n",
841
              "      <td>...</td>\n",
842
              "      <td>...</td>\n",
843
              "      <td>...</td>\n",
844
              "      <td>...</td>\n",
845
              "      <td>...</td>\n",
846
              "      <td>...</td>\n",
847
              "      <td>...</td>\n",
848
              "      <td>...</td>\n",
849
              "      <td>...</td>\n",
850
              "      <td>...</td>\n",
851
              "    </tr>\n",
852
              "    <tr>\n",
853
              "      <th>261</th>\n",
854
              "      <td>0.035752</td>\n",
855
              "      <td>0.454151</td>\n",
856
              "      <td>36.619667</td>\n",
857
              "      <td>1.300968</td>\n",
858
              "      <td>0.768658</td>\n",
859
              "      <td>3143.972679</td>\n",
860
              "      <td>0.281441</td>\n",
861
              "      <td>11204.0</td>\n",
862
              "      <td>1.299546e+09</td>\n",
863
              "      <td>4.747964</td>\n",
864
              "      <td>1.925799</td>\n",
865
              "      <td>89.0</td>\n",
866
              "      <td>-238.768476</td>\n",
867
              "      <td>214.212310</td>\n",
868
              "      <td>-178.5</td>\n",
869
              "      <td>-901.0</td>\n",
870
              "      <td>990.0</td>\n",
871
              "      <td>340.572258</td>\n",
872
              "      <td>-0.515713</td>\n",
873
              "      <td>242.856085</td>\n",
874
              "      <td>0.052870</td>\n",
875
              "      <td>58979.078135</td>\n",
876
              "      <td>924.461193</td>\n",
877
              "      <td>227251.294990</td>\n",
878
              "      <td>-3840.952856</td>\n",
879
              "      <td>325.775953</td>\n",
880
              "      <td>17.384511</td>\n",
881
              "      <td>0.898046</td>\n",
882
              "      <td>3.111318</td>\n",
883
              "      <td>2.831998</td>\n",
884
              "      <td>0.016200</td>\n",
885
              "      <td>8.006776</td>\n",
886
              "      <td>0.451176</td>\n",
887
              "      <td>0.383987</td>\n",
888
              "      <td>-0.271559</td>\n",
889
              "      <td>0.953994</td>\n",
890
              "      <td>0.990157</td>\n",
891
              "      <td>0.939545</td>\n",
892
              "      <td>0.306048</td>\n",
893
              "      <td>0.095692</td>\n",
894
              "      <td>58.216494</td>\n",
895
              "      <td>5.587446</td>\n",
896
              "      <td>0.885250</td>\n",
897
              "      <td>2.126745</td>\n",
898
              "      <td>336.573622</td>\n",
899
              "      <td>6761.904881</td>\n",
900
              "      <td>0.807157</td>\n",
901
              "      <td>0.003026</td>\n",
902
              "      <td>791.295506</td>\n",
903
              "      <td>0.002829</td>\n",
904
              "      <td>659.103280</td>\n",
905
              "      <td>0.004400</td>\n",
906
              "      <td>2243.689318</td>\n",
907
              "      <td>0</td>\n",
908
              "      <td>0</td>\n",
909
              "      <td>0</td>\n",
910
              "      <td>1</td>\n",
911
              "      <td>87.126600</td>\n",
912
              "      <td>0</td>\n",
913
              "      <td>0</td>\n",
914
              "      <td>0</td>\n",
915
              "      <td>1</td>\n",
916
              "    </tr>\n",
917
              "    <tr>\n",
918
              "      <th>298</th>\n",
919
              "      <td>0.011765</td>\n",
920
              "      <td>0.049182</td>\n",
921
              "      <td>122.531629</td>\n",
922
              "      <td>2.729392</td>\n",
923
              "      <td>0.366382</td>\n",
924
              "      <td>20785.949532</td>\n",
925
              "      <td>0.332614</td>\n",
926
              "      <td>62744.0</td>\n",
927
              "      <td>3.952856e+08</td>\n",
928
              "      <td>2.716180</td>\n",
929
              "      <td>57.125568</td>\n",
930
              "      <td>843.0</td>\n",
931
              "      <td>10.986086</td>\n",
932
              "      <td>35.924670</td>\n",
933
              "      <td>21.0</td>\n",
934
              "      <td>-971.0</td>\n",
935
              "      <td>1814.0</td>\n",
936
              "      <td>79.372376</td>\n",
937
              "      <td>-5.466666</td>\n",
938
              "      <td>78.608396</td>\n",
939
              "      <td>0.225383</td>\n",
940
              "      <td>6179.279913</td>\n",
941
              "      <td>1612.770951</td>\n",
942
              "      <td>56349.565987</td>\n",
943
              "      <td>-887.363706</td>\n",
944
              "      <td>28.577221</td>\n",
945
              "      <td>3.267889</td>\n",
946
              "      <td>0.792003</td>\n",
947
              "      <td>1.723912</td>\n",
948
              "      <td>0.905901</td>\n",
949
              "      <td>0.086325</td>\n",
950
              "      <td>4.629383</td>\n",
951
              "      <td>0.684890</td>\n",
952
              "      <td>0.666367</td>\n",
953
              "      <td>-0.227001</td>\n",
954
              "      <td>0.818529</td>\n",
955
              "      <td>0.999401</td>\n",
956
              "      <td>0.988139</td>\n",
957
              "      <td>0.450041</td>\n",
958
              "      <td>0.170998</td>\n",
959
              "      <td>80.160908</td>\n",
960
              "      <td>3.474101</td>\n",
961
              "      <td>0.711658</td>\n",
962
              "      <td>4.405809</td>\n",
963
              "      <td>7158.438787</td>\n",
964
              "      <td>18591.140071</td>\n",
965
              "      <td>0.613336</td>\n",
966
              "      <td>0.001022</td>\n",
967
              "      <td>1592.190051</td>\n",
968
              "      <td>0.000812</td>\n",
969
              "      <td>1123.462320</td>\n",
970
              "      <td>0.003265</td>\n",
971
              "      <td>7145.459719</td>\n",
972
              "      <td>0</td>\n",
973
              "      <td>0</td>\n",
974
              "      <td>0</td>\n",
975
              "      <td>1</td>\n",
976
              "      <td>68.766856</td>\n",
977
              "      <td>0</td>\n",
978
              "      <td>0</td>\n",
979
              "      <td>0</td>\n",
980
              "      <td>1</td>\n",
981
              "    </tr>\n",
982
              "    <tr>\n",
983
              "      <th>129</th>\n",
984
              "      <td>0.025668</td>\n",
985
              "      <td>0.234096</td>\n",
986
              "      <td>64.876806</td>\n",
987
              "      <td>1.622565</td>\n",
988
              "      <td>0.616308</td>\n",
989
              "      <td>9571.675020</td>\n",
990
              "      <td>0.224665</td>\n",
991
              "      <td>42663.0</td>\n",
992
              "      <td>1.227827e+08</td>\n",
993
              "      <td>2.368997</td>\n",
994
              "      <td>51.791276</td>\n",
995
              "      <td>449.0</td>\n",
996
              "      <td>20.628577</td>\n",
997
              "      <td>27.675471</td>\n",
998
              "      <td>31.0</td>\n",
999
              "      <td>-751.0</td>\n",
1000
              "      <td>1200.0</td>\n",
1001
              "      <td>53.646685</td>\n",
1002
              "      <td>-5.135133</td>\n",
1003
              "      <td>49.522001</td>\n",
1004
              "      <td>0.275115</td>\n",
1005
              "      <td>2452.428625</td>\n",
1006
              "      <td>1055.791154</td>\n",
1007
              "      <td>6889.281619</td>\n",
1008
              "      <td>-186.782360</td>\n",
1009
              "      <td>10.944156</td>\n",
1010
              "      <td>1.439822</td>\n",
1011
              "      <td>0.762876</td>\n",
1012
              "      <td>1.440679</td>\n",
1013
              "      <td>0.633557</td>\n",
1014
              "      <td>0.130721</td>\n",
1015
              "      <td>3.939592</td>\n",
1016
              "      <td>0.746369</td>\n",
1017
              "      <td>0.735862</td>\n",
1018
              "      <td>-0.264988</td>\n",
1019
              "      <td>0.824795</td>\n",
1020
              "      <td>0.999412</td>\n",
1021
              "      <td>0.987616</td>\n",
1022
              "      <td>0.408032</td>\n",
1023
              "      <td>0.295579</td>\n",
1024
              "      <td>64.912687</td>\n",
1025
              "      <td>3.116713</td>\n",
1026
              "      <td>0.631183</td>\n",
1027
              "      <td>7.254939</td>\n",
1028
              "      <td>4513.100699</td>\n",
1029
              "      <td>8467.466888</td>\n",
1030
              "      <td>0.511173</td>\n",
1031
              "      <td>0.001135</td>\n",
1032
              "      <td>1030.197953</td>\n",
1033
              "      <td>0.000784</td>\n",
1034
              "      <td>637.718544</td>\n",
1035
              "      <td>0.006983</td>\n",
1036
              "      <td>7752.599509</td>\n",
1037
              "      <td>0</td>\n",
1038
              "      <td>1</td>\n",
1039
              "      <td>0</td>\n",
1040
              "      <td>3</td>\n",
1041
              "      <td>59.843900</td>\n",
1042
              "      <td>0</td>\n",
1043
              "      <td>1</td>\n",
1044
              "      <td>0</td>\n",
1045
              "      <td>0</td>\n",
1046
              "    </tr>\n",
1047
              "    <tr>\n",
1048
              "      <th>273</th>\n",
1049
              "      <td>0.032517</td>\n",
1050
              "      <td>0.375695</td>\n",
1051
              "      <td>22.472205</td>\n",
1052
              "      <td>1.385866</td>\n",
1053
              "      <td>0.721570</td>\n",
1054
              "      <td>820.276370</td>\n",
1055
              "      <td>0.605798</td>\n",
1056
              "      <td>1377.0</td>\n",
1057
              "      <td>4.253586e+08</td>\n",
1058
              "      <td>5.129264</td>\n",
1059
              "      <td>1.585915</td>\n",
1060
              "      <td>68.0</td>\n",
1061
              "      <td>-464.367466</td>\n",
1062
              "      <td>273.935074</td>\n",
1063
              "      <td>-525.0</td>\n",
1064
              "      <td>-948.0</td>\n",
1065
              "      <td>1016.0</td>\n",
1066
              "      <td>555.789862</td>\n",
1067
              "      <td>0.281740</td>\n",
1068
              "      <td>305.393561</td>\n",
1069
              "      <td>0.032073</td>\n",
1070
              "      <td>93265.227351</td>\n",
1071
              "      <td>614.128952</td>\n",
1072
              "      <td>407492.165534</td>\n",
1073
              "      <td>266.873157</td>\n",
1074
              "      <td>497.132773</td>\n",
1075
              "      <td>78.081431</td>\n",
1076
              "      <td>0.728237</td>\n",
1077
              "      <td>4.126944</td>\n",
1078
              "      <td>6.580868</td>\n",
1079
              "      <td>0.002750</td>\n",
1080
              "      <td>9.201181</td>\n",
1081
              "      <td>0.272701</td>\n",
1082
              "      <td>0.192854</td>\n",
1083
              "      <td>-0.212124</td>\n",
1084
              "      <td>0.939127</td>\n",
1085
              "      <td>0.959449</td>\n",
1086
              "      <td>0.873813</td>\n",
1087
              "      <td>0.190427</td>\n",
1088
              "      <td>0.016097</td>\n",
1089
              "      <td>45.121191</td>\n",
1090
              "      <td>6.104251</td>\n",
1091
              "      <td>0.952612</td>\n",
1092
              "      <td>1.231149</td>\n",
1093
              "      <td>40.140124</td>\n",
1094
              "      <td>1137.721790</td>\n",
1095
              "      <td>0.934473</td>\n",
1096
              "      <td>0.013537</td>\n",
1097
              "      <td>525.682829</td>\n",
1098
              "      <td>0.012984</td>\n",
1099
              "      <td>486.598834</td>\n",
1100
              "      <td>0.016086</td>\n",
1101
              "      <td>726.945564</td>\n",
1102
              "      <td>0</td>\n",
1103
              "      <td>0</td>\n",
1104
              "      <td>1</td>\n",
1105
              "      <td>1</td>\n",
1106
              "      <td>70.000000</td>\n",
1107
              "      <td>1</td>\n",
1108
              "      <td>0</td>\n",
1109
              "      <td>0</td>\n",
1110
              "      <td>0</td>\n",
1111
              "    </tr>\n",
1112
              "    <tr>\n",
1113
              "      <th>366</th>\n",
1114
              "      <td>0.031294</td>\n",
1115
              "      <td>0.347965</td>\n",
1116
              "      <td>67.542579</td>\n",
1117
              "      <td>1.421744</td>\n",
1118
              "      <td>0.703361</td>\n",
1119
              "      <td>9620.491997</td>\n",
1120
              "      <td>0.183806</td>\n",
1121
              "      <td>52399.0</td>\n",
1122
              "      <td>2.762241e+09</td>\n",
1123
              "      <td>4.227597</td>\n",
1124
              "      <td>3.987643</td>\n",
1125
              "      <td>173.0</td>\n",
1126
              "      <td>-104.654402</td>\n",
1127
              "      <td>163.293001</td>\n",
1128
              "      <td>-3.0</td>\n",
1129
              "      <td>-951.0</td>\n",
1130
              "      <td>1124.0</td>\n",
1131
              "      <td>229.598607</td>\n",
1132
              "      <td>-1.422339</td>\n",
1133
              "      <td>204.359919</td>\n",
1134
              "      <td>0.089917</td>\n",
1135
              "      <td>41762.976327</td>\n",
1136
              "      <td>1347.121905</td>\n",
1137
              "      <td>231987.589044</td>\n",
1138
              "      <td>-5333.113542</td>\n",
1139
              "      <td>225.056577</td>\n",
1140
              "      <td>12.072458</td>\n",
1141
              "      <td>0.897295</td>\n",
1142
              "      <td>2.801756</td>\n",
1143
              "      <td>2.259543</td>\n",
1144
              "      <td>0.022109</td>\n",
1145
              "      <td>7.243873</td>\n",
1146
              "      <td>0.484819</td>\n",
1147
              "      <td>0.425104</td>\n",
1148
              "      <td>-0.234808</td>\n",
1149
              "      <td>0.914060</td>\n",
1150
              "      <td>0.994511</td>\n",
1151
              "      <td>0.955753</td>\n",
1152
              "      <td>0.380151</td>\n",
1153
              "      <td>0.071257</td>\n",
1154
              "      <td>71.940366</td>\n",
1155
              "      <td>4.987725</td>\n",
1156
              "      <td>0.858965</td>\n",
1157
              "      <td>2.085791</td>\n",
1158
              "      <td>2982.109496</td>\n",
1159
              "      <td>29229.001918</td>\n",
1160
              "      <td>0.797732</td>\n",
1161
              "      <td>0.001272</td>\n",
1162
              "      <td>1258.994044</td>\n",
1163
              "      <td>0.001148</td>\n",
1164
              "      <td>1046.829951</td>\n",
1165
              "      <td>0.002128</td>\n",
1166
              "      <td>2947.807968</td>\n",
1167
              "      <td>0</td>\n",
1168
              "      <td>3</td>\n",
1169
              "      <td>0</td>\n",
1170
              "      <td>2</td>\n",
1171
              "      <td>54.694000</td>\n",
1172
              "      <td>0</td>\n",
1173
              "      <td>1</td>\n",
1174
              "      <td>0</td>\n",
1175
              "      <td>0</td>\n",
1176
              "    </tr>\n",
1177
              "  </tbody>\n",
1178
              "</table>\n",
1179
              "<p>300 rows × 62 columns</p>\n",
1180
              "</div>"
1181
            ],
1182
            "text/plain": [
1183
              "           original_shape_Compactness1  ...  Histology_squamous cell carcinoma\n",
1184
              "PatientID                               ...                                   \n",
1185
              "202                           0.027815  ...                                  0\n",
1186
              "371                           0.023015  ...                                  0\n",
1187
              "246                           0.027348  ...                                  1\n",
1188
              "240                           0.026811  ...                                  0\n",
1189
              "284                           0.023691  ...                                  1\n",
1190
              "...                                ...  ...                                ...\n",
1191
              "261                           0.035752  ...                                  1\n",
1192
              "298                           0.011765  ...                                  1\n",
1193
              "129                           0.025668  ...                                  0\n",
1194
              "273                           0.032517  ...                                  0\n",
1195
              "366                           0.031294  ...                                  0\n",
1196
              "\n",
1197
              "[300 rows x 62 columns]"
1198
            ]
1199
          },
1200
          "metadata": {
1201
            "tags": []
1202
          },
1203
          "execution_count": 6
1204
        }
1205
      ]
1206
    },
1207
    {
1208
      "cell_type": "markdown",
1209
      "metadata": {
1210
        "id": "73VhYwZnVwDO",
1211
        "colab_type": "text"
1212
      },
1213
      "source": [
1214
        "## Low and high survival probability population"
1215
      ]
1216
    },
1217
    {
1218
      "cell_type": "markdown",
1219
      "metadata": {
1220
        "id": "vLJI7KyWV4dm",
1221
        "colab_type": "text"
1222
      },
1223
      "source": [
1224
        "En regardant le temps de survie dans patients labelisé Event = 0 ou Event = 1, j'ai splitté deux groupes de populations, une qui a une très faible chance de survie, et une autre avec une grand chance de survie, pour voir si ces deux groupes avaient des valeurs de features caractéristiques. Résultat: y'a juste deux features très discriminants, SourceDataset (ce qui est assez vache) et Histology_adenocarcinoma, et quelques autres qui discriminent un peu (les valeurs moyennes sont assez proches, mais la dispersion est encore petite pour pouvoir dire qu'on a deux groupes différents). Pour les autres, soit la dispersion est trop grande donc on peut rien dire, soit au contraire ces features se concentrent autour de la même valeur pour les deux populations, donc ça permet pas de différencier les populations. Le dataset en soi est donc assez difficile. Je pense que dans un premier temps faut tèje les variables inutiles (trop dispersées ou non informatives), ça sera la partie feature sélection, et après l'idéal c'est de construire des nouveaux features discriminants à partir du set restreint de features PyRadiomics / clinique, et images."
1225
      ]
1226
    },
1227
    {
1228
      "cell_type": "code",
1229
      "metadata": {
1230
        "id": "C5eRHmFy_fn4",
1231
        "colab_type": "code",
1232
        "colab": {}
1233
      },
1234
      "source": [
1235
        "x_train, y_train, x_test = load_owkin_data()\n",
1236
        "x_train, x_test = normalizing_input(x_train, x_test)"
1237
      ],
1238
      "execution_count": 0,
1239
      "outputs": []
1240
    },
1241
    {
1242
      "cell_type": "code",
1243
      "metadata": {
1244
        "id": "98GdkDDUJBQ8",
1245
        "colab_type": "code",
1246
        "outputId": "1a6425ee-9aa6-424a-d744-5ed35172cf2b",
1247
        "colab": {
1248
          "base_uri": "https://localhost:8080/",
1249
          "height": 662
1250
        }
1251
      },
1252
      "source": [
1253
        "\"\"\" Distribution of patient in event time \"\"\"\n",
1254
        "dead = y_train.loc[y_train['Event'] == 1]['SurvivalTime']\n",
1255
        "alive = y_train.loc[y_train['Event'] == 0]['SurvivalTime']\n",
1256
        "print(len(dead), len(alive))\n",
1257
        "\n",
1258
        "plt.figure(figsize=(12, 3))\n",
1259
        "plt.plot(dead, np.zeros(len(dead)), 'o', label='Event = 1')\n",
1260
        "plt.plot(alive, np.zeros(len(alive)) + 0.4, 'o', label='Event = 0')\n",
1261
        "plt.ylim([-0.5, 0.9])\n",
1262
        "plt.xlabel('Event time')\n",
1263
        "plt.yticks([])\n",
1264
        "plt.legend()\n",
1265
        "plt.title('Distribution in event time')\n",
1266
        "\n",
1267
        "plt.figure(figsize=(8,6))\n",
1268
        "n_bins = 50\n",
1269
        "plt.hist(alive, bins = n_bins, fc=(1, 0, 0, 0.5), label = 'Event = 0')\n",
1270
        "plt.hist(dead, bins = n_bins, fc=(0, 0, 1, 0.5), label = 'Event = 1')\n",
1271
        "plt.legend()\n",
1272
        "plt.xlabel('Event time')\n",
1273
        "plt.title('Histogram distribution according to event')\n"
1274
      ],
1275
      "execution_count": 0,
1276
      "outputs": [
1277
        {
1278
          "output_type": "stream",
1279
          "text": [
1280
            "162 138\n"
1281
          ],
1282
          "name": "stdout"
1283
        },
1284
        {
1285
          "output_type": "execute_result",
1286
          "data": {
1287
            "text/plain": [
1288
              "Text(0.5, 1.0, 'Histogram distribution according to event')"
1289
            ]
1290
          },
1291
          "metadata": {
1292
            "tags": []
1293
          },
1294
          "execution_count": 8
1295
        },
1296
        {
1297
          "output_type": "display_data",
1298
          "data": {
1299
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAADgCAYAAAAt8I8NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3de3hV9Z3v8c83mx3YXApEqAMEDRWv\nLRQhrSC16nhDC4/WIzbWjlrb8ejY8ZS2Wh0dDT721FFH5vjYjtVpD1VbRB2kRY+XasFxbMUGRPGC\nSi2tCVQF5WqAJPzOH2vtZGVn7Ut29kr2Iu/X8+TJzrr8ft/1Xb+9+LLyWzvmnBMAAAAQBxV9HQAA\nAABQKIpXAAAAxAbFKwAAAGKD4hUAAACxQfEKAACA2KB4BQAAQGxQvAIoOTO7y8z+uURtHWRmO80s\n4f+8wsy+WYq2/fYeN7MLS9VeoN2S5aCcmdlrZnZCX8cBoP8wPucVQHeY2QZJB0pqldQm6XVJ90q6\n2zm3r4i2vumce7ob+6yQdL9z7j+605e/b72kic65r3V33/2dX4De75yrzrHNQkmNzrnreisuAMjE\nnVcAxZjjnBsm6WBJN0v6vqSflroTMxtQ6jYBAPFG8QqgaM65bc65X0v6iqQLzewzkneHzsxu8l+P\nMrNHzWyrmX1oZs+ZWYWZ3SfpIEnL/GkBV5lZjZk5M/uGmf1F0m8Dy4KF7CFm9qKZbTezX5lZld/X\nCWbWGIzRzDaY2clmNkvSP0n6it/fy/769mkIflzXmdmfzex9M7vXzIb769JxXGhmfzGzzWZ2bbbc\nZOTgBDNrNLPv+u1uMrOv59h3uJn91N+uycxuMrOEmQ308/iZwLajzazZzD7p/zzbzNb42/3OzCZn\n5OJ7ZvaKmW0zs8VmNsjMhkh6XNJYPzc7zWxsRkyXSDpf0lX++mXB/Pqv683sITO738x2mNlaMzvM\nzK7xj/tdMzs133FmywsASBSvAErAOfeipEZJx4Ws/q6/brS86Qb/5O3i/k7SX+TdxR3qnLslsM/x\nko6UdFqWLi+QdLGkMfKmL9xRQIxPSPrfkhb7/X02ZLOL/K8TJX1K0lBJd2Zs8wVJh0s6SdL1ZnZk\nvr59fyNpuKRxkr4h6UdmNjLLtgvlHddESUdLOlXe9Io9kpZIOi+w7bmSnnXOvW9mR0v6maT/KekA\nST+R9GszG5ix/SxJEyRNlnSRc26XpNMlbfRzM9Q5tzEYkHPubkm/kHSLv35OltjnSLpP0khJL0l6\nUt6/NeMk3ejHlPM4s7QLAJIoXgGUzkZJVSHLW+QVmQc751qcc8+5/JPt651zu5xzzVnW3+ece9Uv\nuv5Z0rklumN3vqTbnXPvOOd2SrpGUl3GXd/5zrlm59zLkl6WFFYEh2mRdKOfg/8naae8IrgTMztQ\n0hmSvu3n4H1JCyTV+Zv8MvBakr7qL5OkSyT9xDm30jnX5pz7uaQ9kqYHtr/DObfROfehpGWSphQY\nf6Gec8496ZxrlfSQvP+03Oyca5H0gKQaMxtRwHECQCjmkwEolXGSPgxZfqukeklPmZnkPdh1c562\n3u3G+j9LSkoaVViYOY312wu2PUDeHeO0vwZefyzv7mwhtvgFXb59D5Z3PJv8fEnejYb0MS+XNNjM\njpH0nrzi85HAvhea2T8G2quUd1zZ4u80PaAE3gu8bpa02TnXFvhZ8o57rHIfJwCEongF0GNm9jl5\nxet/Z65zzu2QN3Xgu/5czd+a2R+cc89IynYHNt+d2fGB1wfJu6u5WdIuSYMDcSXk3fkrtN2N8grA\nYNut8gqyrE/hl9i78u6WjsoodiVJzrk2M3tQ3tSB9yQ96uc4ve8PnHM/KKLfQj56ppQfT5PzOAEg\nG6YNACiamX3CzGbL+3Xw/c65tSHbzDaziebdXtsm7+O10h+p9Z68uaXd9TUzO8rMBsubR/mwf3fv\nLUmDzOxLZpaUdJ2k4HzP9+T92jrbtW+RpHlmNsHMhqpjjmyvFVfOuU2SnpL0r35+K8zsEDM7PrDZ\nL+U9JHe+OqYMSNI9ki41s2PMM8TPxbACun5P0gHpB9RybFPM+eqiwOMEgC4oXgEUY5mZ7ZB39+xa\nSbdLyvb0/KGSnpY3x/P3kn7snFvur/uhpOv8J+O/143+75P3sM9fJQ2SdIXkffqBpH+Q9B+SmuTd\niQ1++sBD/vctZrY6pN2f+W3/l6Q/Sdot6R9DtovaBfJ+3f+6pI8kPSxv3rAkyTm3Ut6xjZX3KQHp\n5Q2S/l7eQ2YfSVov7wG0vJxz6+QV7+/45yNsOsFPJR3lr1/a/cPqIudxAkAY/kgBAAAAYoM7rwAA\nAIgNilcAAADEBsUrAAAAYoPiFQAAALFB8QoAAIDY6NYfKRg1apSrqamJKBQAAABAWrVq1Wbn3Oiw\ndd0qXmtqatTQ0FCaqAAAAIAQZvbnbOuYNgAAAIDYoHgFAABAbFC8AgAAIDa6NecVAACgP2tpaVFj\nY6N2797d16HsFwYNGqTq6molk8mC96F4BQAAKFBjY6OGDRummpoamVlfhxNrzjlt2bJFjY2NmjBh\nQsH7MW0AAACgQLt379YBBxxA4VoCZqYDDjig23exKV4BAAC6gcK1dIrJJcUrAABAjCQSCU2ZMqX9\n6+abby5p+ytWrNDvfve7krR17bXXavz48Ro6dGhJ2pOY8woAABCZpS816dYn39TGrc0aOyKlK087\nXGcdPa5HbaZSKa1Zs6ZEEXa1YsUKDR06VMcee2yP25ozZ46+9a1v6dBDDy1BZB7uvAIAAERg6UtN\numbJWjVtbZaT1LS1WdcsWaulLzWVvK8nnnhCc+fObf95xYoVmj17tiTpqaee0owZMzR16lTNnTtX\nO3fulOT95dQbbrhBU6dO1aRJk7Ru3Tpt2LBBd911lxYsWKApU6boueee61Fc06dP15gxY3rURiaK\nVwAAgAjc+uSbam5p67SsuaVNtz75Zo/abW5u7jRtYPHixTr55JO1cuVK7dq1S5K0ePFi1dXVafPm\nzbrpppv09NNPa/Xq1aqtrdXtt9/e3taoUaO0evVqXXbZZbrttttUU1OjSy+9VPPmzdOaNWt03HHH\ndep7+fLlnfpOf5XiLm2hmDYAAAAQgY1bm7u1vFDZpg3MmjVLy5Yt0znnnKPHHntMt9xyi5599lm9\n/vrrmjlzpiRp7969mjFjRvs+Z599tiRp2rRpWrJkSd6+TzzxxEinLBSC4hUAACACY0ek1BRSqI4d\nkYqkv7q6Ot15552qqqpSbW2thg0bJuecTjnlFC1atCh0n4EDB0ryHgJrbW3N28fy5cs1b968LssH\nDx5csoe88qF4BQAAiMCVpx2ua5as7TR1IJVM6MrTDo+kv+OPP14XX3yx7rnnHtXV1Uny5pxefvnl\nWr9+vSZOnKhdu3apqalJhx12WNZ2hg0bpu3bt4euK4c7r8x5BQAAiMBZR4/TD8+epHEjUjJJ40ak\n9MOzJ/X40wYy57xeffXVkry7p7Nnz9bjjz/e/rDW6NGjtXDhQp133nmaPHmyZsyYoXXr1uVsf86c\nOXrkkUdK8sDWVVddperqan388ceqrq5WfX19j9qTJHPOFbxxbW2ta2ho6HGnAAAAcfTGG2/oyCOP\n7Osw9ithOTWzVc652rDtufMKAACA2KB4BQAAQGxQvAIAACA2KF4BAAAQGxSvAAAAiA2KVwAAAMQG\nxSsAAECMJBKJTp/zevPNN5e0/RUrVpTsr2WtWrVKkyZN0sSJE3XFFVeoOx/Rmg1/YQsAACAqrzwo\nPXOjtK1RGl4tnXS9NPncHjWZSqUi/StXK1as0NChQ3Xsscf2uK3LLrtM99xzj4455hidccYZeuKJ\nJ3T66af3qE3uvAIAAEThlQelZVdI296V5Lzvy67wlpfYE088oblz57b/vGLFiva/svXUU09pxowZ\nmjp1qubOnaudO3dKkmpqanTDDTdo6tSpmjRpktatW6cNGzborrvu0oIFC3r8F7Y2bdqk7du3a/r0\n6TIzXXDBBVq6dGnPDlQUrwAAANF45kappbnzspZmb3kPZP552MWLF+vkk0/WypUrtWvXLknS4sWL\nVVdXp82bN+umm27S008/rdWrV6u2tla33357e1ujRo3S6tWrddlll+m2225TTU2NLr30Us2bN09r\n1qzRcccd16nv5cuXd+o7/RV2l7apqUnV1dXtP1dXV6upqalHxy4xbQAAACAa2xq7t7xA2aYNzJo1\nS8uWLdM555yjxx57TLfccoueffZZvf7665o5c6Ykae/evZoxY0b7PmeffbYkadq0aVqyZEnevk88\n8cRIpywUguIVAAAgCsOr/SkDIcsjUFdXpzvvvFNVVVWqra3VsGHD5JzTKaecokWLFoXuM3DgQEne\nQ2Ctra15+1i+fLnmzZvXZfngwYO7POQ1btw4NTZ2FOqNjY0aN25cdw4pFNMGAAAAonDS9VIy1XlZ\nMuUtj8Dxxx+v1atX65577lFdXZ0kafr06Xr++ee1fv16SdKuXbv01ltv5Wxn2LBh2rFjR+i69J3X\nzK+wTycYM2aMPvGJT+iFF16Qc0733nuvzjzzzB4eJcUrAABANCafK825Qxo+XpJ53+fc0eNPG8ic\n83r11VdL8u6ezp49W48//nj7w1qjR4/WwoULdd5552ny5MmaMWOG1q1bl7P9OXPm6JFHHunxA1uS\n9OMf/1jf/OY3NXHiRB1yyCE9/qQBSbLufN5WbW2ta2ho6HGnAAAAcfTGG2/oyCOP7Osw9ithOTWz\nVc652rDtufMKAACA2KB4BQAAQGxQvAIAACA2KF4BAAC6oTvPCyG3YnJJ8QoAAFCgQYMGacuWLRSw\nJeCc05YtWzRo0KBu7ccfKQAAAChQdXW1Ghsb9cEHH/R1KPuFQYMGdfoTsoWgeAUAAChQMpnUhAkT\n+jqMfo1pAwAAAIgNilcAAADEBsUrAAAAYoPiFQAAALFB8QoAAIDYoHgFAABAbFC8AgAAIDYoXgEA\nABAbFK8AAACIDYpXAAAAxAbFKwAAAGKD4hUAAACxQfEKAACA2KB4BQAAQGxQvAIAACA2BvR1AHk9\n+h1p1ULJtUmWkKZdJM2+vWP9Kw9Kz9wobWuUhldLJ10vTT63cxuFbFOMYLupkd6y5g+9OF2bNHy8\ndOip0ttPdWzTvE1SW+d2ho/vGlO+mDPXB/tJby91bFM5WNr7sSTnxVfzBemva71406xCqjlO+vAd\nadu7HcfR/r1Ccvu8bVNV0un/0jWmR78t7d3VsSwxUGrb0/Fzqkr69Jc750SSmj/q/DoYb6Z035L0\n+Pc7jiFVJf3NJGnDcx1xJodIc/7NizNbTl95sHM7ss79pvPVnpcseWhvP8c2hch3bjPHVOseqWVX\n13bCznNovJntvtt1DL/8QEcfViFN+3qW92HGsWeqHCLN/rcc5+6/vX6D58AqpAEpr/90XKmqzsed\nqJT2tXbuN/i+KvYaENW1I7SPd8Pfa0Hp5akq7+fmjwqLq8sYz6JyiPeeLbTdQvtLDvHOT/BakJYc\nIrU2e8cVvMYXcn3NFl/w3420zOtxVOczl7Bznes4Qvfto9j3J736vg77N7mI898XynjMmXMhxUEW\ntbW1rqGhIcJwMjz6HanhpyGBfKPj4rbsCqmluWNdMiXNuaMjwYVsU4ywdnsiGFO+mAvpuyIpmUlt\ne0sTX5hEpXTmjzpiWnqptK8t/36lUJGQ9jlJWYqkoPQ/iC//smtOP/tV6aX7epanRKV09N91bT9z\nm3Sucin1uApTkZSmXpA73kLkeh/mYhV+XVrAueup9DkOO/f5rgFRXTvy9VGMXHG98qD0q8uLG+PF\nHG9P+kubcLzU+GL+vITFl+3fjUL3j0quc50vjt4Yi/1FX72vE5WSc9K+lq7bl+O5LIMxZ2arnHO1\noevKunidX9X5f85plpBu+FBa8BnvfzCZho+X5r3qvS5km2Jka7cn0jHlizmKvotVjjGFSf8vt9Dl\npWo/qJAx11t5LMVx53sflotsx5rvfER17Sikj2Jki6unfXT3eHt7PGTGl+3fjUL3j0q+vOSKozfG\nYn9Rru/rcjuXZTDmchWv5T3nNdsFKL18W2P4+uDyQrYpRk/3z9Vmvpij6LtY5RhTmHxjKar2gwrJ\nUW/lsRTHne99WC6yHWu+uKO6dvR2W719revt8ZDZX3fHdm/FW+x4y7Wu3N975ahc39fldi7LfMyV\nd/FqidzLh1eHrw8uL2SbYvR0/1xt5os5ir6LVY4xhck3lqJqP6iQHPVWHktx3Pneh+Ui27Hmizuq\na0dvt9Xb17reHg+Z/XV3bPdWvMWOt1zryv29V47K9X1dbueyzMdceRev0y7Kvfyk6705GEHJVMfE\n6EK3KUZYuz0RjClfzIX0XZH05thEKVHZOaaKEhWChahIqODhm57zGpbTaRf1PE+JyvD2M7cpZMyV\nelyFqUjmj7cQud6HuViFeu3Skz7HxVwDorp25OujGLniOun64sd4Mcfbk/7SJhxfWF7C4sv270ah\n+0cl17nOF0dvjMX+oq/e14lK79obphzPZZmPuUR9fX3BG9999931l1xySXTRZDrsNGnnB9KmV9T+\nlHztxR1POR/4aWnEQdLGNdKeHd5cjFk3d55MXMg2xchsN1XlndjWZv9//s7ra9Jcadfmjm1a96rL\nE/SZMeWLOWx9sJ/h46UzbpGO+FLHNpVDpLZWb39LSBO+6C1vDUzGtgpvudsn7dnecRzt3ys6Yk9V\nSbMXdI5p5ATpj7+V2gIT0hMDO/8aL1UlTflq55wkU1Lr7s6vg/FmSlVJc/6PdOQcacPzHceQqpLG\nf96fp+PHmRwinXmndNx3wnN63HekkTWd25F17i+dr/a8hOShU/tZtilkzBVybjPHlFWEPwQQdp5T\nVd6nL4Tlo73d7V3H8AdvdfRhFTnehxnHnqlyiPfgWtZz1+jvGzgHViElB3v9p+PKPO5Epb9foN/g\nOS7mGhDVtSNrH9vD32tB6eXB90q+uA78dMgYz6JyiFQ5rLB2cx1TZn/JIf6DeiG/0k8O8ZcHrvHn\nLizs+hoWX+a/G2lh76VSn89csp3rQuLojbHYX/T6+9rv4/Tgv8ndPP99oQzG3Pz58zfV19ffHbau\nvB/YAgAAQL8T3we2AAAAgACKVwAAAMQGxSsAAABig+IVAAAAsUHxCgAAgNigeAUAAEBsULwCAAAg\nNiheAQAAEBsUrwAAAIgNilcAAADEBsUrAAAAYoPiFQAAALFB8QoAAIDYoHgFAABAbFC8AgAAIDYo\nXgEAABAbFK8AAACIDYpXAAAAxAbFKwAAAGKD4hUAAACxQfEKAACA2KB4BQAAQGxQvAIAACA2KF4B\nAAAQGxSvAAAAiA2KVwAAAMQGxSsAAABig+IVAAAAsUHxCgAAgNigeAUAAEBsULwCAAAgNiheAQAA\nEBsUrwAAAIgNilcAAADEBsUrAAAAYoPiFQAAALFB8QoAAIDYoHgFAABAbFC8AgAAIDYG9HUAuSx9\nqUm3PvmmmrY2Z93GJA2okFr29V5ckpRKVuh/TKvW8nUfaOPWZlWY1OY6bzPzkCq9tnGHtja3FNRm\nhUmHjB6i9e/vkgtZf+gnh2j9B7vk/JXJCqlyQEK79rYV1P6QyoSSiQptbW6RmdrbCTNuREpXnna4\nzjp6nK5bulaLVr6rNueUMNN5x4xX7cFVuvXJN7Vxa7OGp5Iykz76uOtxmqTzpx+km86aJEm6bula\n/eKFv4QenyQNTlZoYDKhrR+3aOyIlE48YrT+c1Wjmv0TXGHSV4/paC89RjZubdaIwUk5J21r9vZN\nxx8Utv3W5haZ1CWmzFjC2ku3Wf/r19rPc4VJ+5yXwxOPGN0+RsLayNx35OCkbpjz6az9zF/2Wnue\n0zGPyxFb5jGPzRNT8FybSakBFWpu2Zfz+IN9NG1tVsJMbc7ljStbfIXsE2U7UbcZVR+9EWspxSXe\nuMQJ9CfmclUwGWpra11DQ0OE4XRY+lKTrlmyVs0thRVmKL1UMqGpBw3X83/8sMu6dIFWqK9NP0iS\ndP8LfylJbF+bfpBqD67KOUZSyYR+ePak9n9oejqmMttLt3nlQy+rpcBkBNvItm8yYbr1nM927efh\nl9WS+T+kHLGl98t3zOl9G/78Yc7zU0wf2fbJtW++faJsJ+o2o+qjN2ItpbjEG5c4gf2Rma1yztWG\nrSvbaQO3PvkmhWsfa25pCy1cpe4VrpK0aOW7WrTy3RJE1dFevjHS3NKmW598s/3nno6pzPbSbRZa\nuGa2kW3fljYX3k+WwjVbbOn98h1zet9856eYPrLtk2vffPtE2U7UbUbVR2/EWkpxiTcucQL9TdlO\nG9iYY6oA4qetG3f4C22vkDES3KYUYyqzjWLaTO+Ta99i+gnbptD4Nm5tzjqVo6d9dOc4C20zqnai\nbjOqPnoj1lKKS7xxiRPob8r2zuvYEam+DgEllDBTwqyk7RUyRoLblGJMZbZRTJvpfXLtW0w/YdsU\nGt/YEamCzk8xfXTnOAttM6p2om4zqj56I9ZSiku8cYkT6G/Ktni98rTDlUom+jqMfi2VTGjmIVWh\n6yq6WYeed8x4nXfM+BJE1dFevjGSSiZ05WmHt//c0zGV2V66zWQ3khFsI9u+yYSF95PI3k9YbOn9\n8h1zet9856eYPrLtk2vffPtE2U7UbUbVR2/EWkpxiTcucQL9TaK+vr7gje++++76Sy65JLpoAo4Y\n8wlVj0xpbdM27djdmnU7k/fUfXfnYPZUKlmhus+P15ade7Vzd6sS1vVp9ZmHVGnH7lbtbi3soxAq\nTJr4ySH6aFf4pxMc+skhnZ7oT1Z4F9JccyGDhlQmNKRygHa37lO+m2zjRqR0/ZyjdO2XjtLmnXv0\nWtN2OXl3PM+ffpC+PnOC1jZt087drRqRSipVmdDukI98MHkPV9101iT97REHavPOPVrbuC1rv4OT\nFRo6aID2tOzTuBEpnTllrN5+b4da/RNcYR2fXhAcIzt3t2rk4KQGDUhoT+u+9viDD1Vk23536z6F\npSMzlsz20m0eVDVYL7yzpf08V1jHpwCcOWVs+xjJbCNs35GDk/rBl7s+DJLeduWftrTnOR1zttjC\njjlXTOnzkz7XZl4OWve5gvvYsbtVCbP248+2T6748u0TZTtRtxlVH70RaynFJd64xAnsj+bPn7+p\nvr7+7rB1ZftpAwAAAOifYvlpAwAAAEAmilcAAADEBsUrAAAAYoPiFQAAALFB8QoAAIDYoHgFAABA\nbFC8AgAAIDYoXgEAABAbFK8AAACIDYpXAAAAxAbFKwAAAGKD4hUAAACxQfEKAACA2KB4BQAAQGxQ\nvAIAACA2KF4BAAAQGxSvAAAAiA2KVwAAAMQGxSsAAABig+IVAAAAsUHxCgAAgNigeAUAAEBsULwC\nAAAgNiheAQAAEBsUrwAAAIgNilcAAADEBsUrAAAAYoPiFQAAALFB8QoAAIDYoHgFAABAbFC8AgAA\nIDYoXgEAABAbFK8AAACIDYpXAAAAxAbFKwAAAGKD4hUAAACxQfEKAACA2KB4BQAAQGxQvAIAACA2\nKF4BAAAQGxSvAAAAiA2KVwAAAMQGxSsAAABig+IVAAAAsUHxCgAAgNigeAUAAEBsULwCAAAgNihe\nAQAAEBsUrwAAAIgNilcAAADEBsUrAAAAYoPiFQAAALFB8QoAAIDYMOdc4RubfSDpz9GF08UoSZt7\nsb/+hNxGh9xGi/xGh9xGh9xGi/xGp69ye7BzbnTYim4Vr73NzBqcc7V9Hcf+iNxGh9xGi/xGh9xG\nh9xGi/xGpxxzy7QBAAAAxAbFKwAAAGKj3IvXu/s6gP0YuY0OuY0W+Y0OuY0OuY0W+Y1O2eW2rOe8\nAgAAAEHlfucVAAAAaFeWxauZzTKzN81svZld3dfxxJGZbTCztWa2xswa/GVVZvYbM3vb/z7SX25m\ndoef71fMbGrfRl9+zOxnZva+mb0aWNbtfJrZhf72b5vZhX1xLOUmS27rzazJH79rzOyMwLpr/Ny+\naWanBZZz3chgZuPNbLmZvW5mr5nZ//KXM3Z7KEduGbslYGaDzOxFM3vZz+98f/kEM1vp52qxmVX6\nywf6P6/319cE2grNe3+VI7cLzexPgbE7xV9eftcF51xZfUlKSPqjpE9JqpT0sqSj+jquuH1J2iBp\nVMayWyRd7b++WtK/+K/PkPS4JJM0XdLKvo6/3L4kfVHSVEmvFptPSVWS3vG/j/Rfj+zrY+vrryy5\nrZf0vZBtj/KvCQMlTfCvFQmuG1lzO0bSVP/1MElv+Tlk7EaXW8ZuafJrkob6r5OSVvpj8kFJdf7y\nuyRd5r/+B0l3+a/rJC3Olfe+Pr4yze1CSeeEbF9214VyvPP6eUnrnXPvOOf2SnpA0pl9HNP+4kxJ\nP/df/1zSWYHl9zrPC5JGmNmYvgiwXDnn/kvShxmLu5vP0yT9xjn3oXPuI0m/kTQr+ujLW5bcZnOm\npAecc3ucc3+StF7eNYPrRgjn3Cbn3Gr/9Q5Jb0gaJ8Zuj+XIbTaM3W7wx+BO/8ek/+Uk/a2kh/3l\nmWM3PaYflnSSmZmy573fypHbbMruulCOxes4Se8Gfm5U7gsCwjlJT5nZKjO7xF92oHNuk//6r5IO\n9F+T8+J0N5/kuXu+5f+K6mfpX2uL3BbN/zXq0fLusjB2SygjtxJjtyTMLGFmayS9L68w+qOkrc65\nVn+TYK7a8+iv3ybpAJHfUJm5dc6lx+4P/LG7wMwG+svKbuyWY/GK0viCc26qpNMlXW5mXwyudN49\nfz5qokTIZ8n9u6RDJE2RtEnSv/ZtOPFmZkMl/aekbzvntgfXMXZ7JiS3jN0Scc61OeemSKqWd7f0\niD4Oab+RmVsz+4yka+Tl+HPypgJ8vw9DzKkci9cmSeMDP1f7y9ANzrkm//v7kh6R98Z/Lz0dwP/+\nvr85OS9Od/NJngvknHvPv7juk3SPOn7NR267ycyS8oqrXzjnlviLGbslEJZbxm7pOee2SlouaYa8\nX1kP8FcFc9WeR3/9cElbRH5zCuR2lj8Vxjnn9kj6vyrjsVuOxesfJB3qP1FYKW/i9a/7OKZYMbMh\nZjYs/VrSqZJelZfH9NOAFwJsT4kAAAPFSURBVEr6lf/615Iu8J8onC5pW+BXisiuu/l8UtKpZjbS\n/1Xiqf4yZMiYc/1leeNX8nJb5z9ZPEHSoZJeFNeNUP6cv59KesM5d3tgFWO3h7LllrFbGmY22sxG\n+K9Tkk6RN694uaRz/M0yx256TJ8j6bf+bxWy5b3fypLbdYH/0Jq8ucTBsVte14XeeCqsu1/ynmx7\nS978lmv7Op64fcl7avVl/+u1dA7lzf95RtLbkp6WVOUvN0k/8vO9VlJtXx9DuX1JWiTvV4At8ub1\nfKOYfEq6WN4DA+slfb2vj6scvrLk9j4/d6/Iu3COCWx/rZ/bNyWdHljOdaNrbr8gb0rAK5LW+F9n\nMHYjzS1jtzT5nSzpJT+Pr0q63l/+KXnF53pJD0ka6C8f5P+83l//qXx5769fOXL7W3/svirpfnV8\nIkHZXRf4C1sAAACIjXKcNgAAAACEongFAABAbFC8AgAAIDYoXgEAABAbFK8AAACIDYpXAP2SmbWZ\n2ZrA19Ulbv8EMzu2kHVmdqmZXVDK/gFgfzUg/yYAsF9qdt6fR4zKCZJ2SvpdvnXOubsijAMA9ivc\neQUAn5nNMrOHAj+fYGaP+q9PNbPfm9lqM3vI/5v2MrMNZjbfX77WzI4wsxpJl0qa59/VPS7QZpd1\nZlZvZt/z168wswVm1mBmb5jZ58xsiZm9bWY3Bdr5mpm96LfxEzNLRJ8hAOh7FK8A+qtUxrSBr8j7\na1PH+H9WWZK+IukBMxsl6TpJJzvnpkpqkPSdQFub/eX/Lul7zrkNku6StMA5N8U591x6w1zrAvY6\n52r97X4l6XJJn5F0kZkdYGZH+rHN9O8et0k6vyRZAYAyx7QBAP1V6LQBM3tC0hwze1jSlyRdJel4\nSUdJet77s9+qlPT7wG5L/O+rJJ1dgtjSf9t+raTXnPd3xGVm70gaL+9Pk06T9Ac/npSk90vQLwCU\nPYpXAOjsAUnfkvShpAbn3A7zKsTfOOfOy7LPHv97m0pzXU23ty/wOv3zAHl/a/znzrlrStAXAMQK\n0wYAoLNnJU2V9PfyCllJekHSTDObKElmNsTMDsvTzg5Jw4pYV4hnJJ1jZp/046kys4N70B4AxAbF\nK4D+KnPO682S5Jxrk/SopNP973LOfSDpIkmLzOwVeVMGjsjT/jJJX858YKuAdXk5516XNwf3KT+e\n30ga0912ACCOzDnX1zEAAAAABeHOKwAAAGKD4hUAAACxQfEKAACA2KB4BQAAQGxQvAIAACA2KF4B\nAAAQGxSvAAAAiA2KVwAAAMTG/weseWejp/wdVgAAAABJRU5ErkJggg==\n",
1300
            "text/plain": [
1301
              "<Figure size 864x216 with 1 Axes>"
1302
            ]
1303
          },
1304
          "metadata": {
1305
            "tags": []
1306
          }
1307
        },
1308
        {
1309
          "output_type": "display_data",
1310
          "data": {
1311
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAGDCAYAAADztMNhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3de5hddX3v8fe3SSBAggIZKTLERIIo\nKg+No4CopAo0IBzUB07DqXJTUxC8cOxBLLVMW+yjHhTtoYpQEKwaogheCwWVEa2CDWmQS1AiYJkQ\nIIDIXUC/54+1Jmw2c987+c3seb+eZz+z7uv7W2tlPrMu2SsyE0mStGn9UekCJEmaigxgSZIKMIAl\nSSrAAJYkqQADWJKkAgxgSZIKMIA1qIi4KSIWla5jU4qIeRGRETG97r8sIo5q07JfHxG/aOi/IyL2\na8ey6+VNmf1V76MFdffZEfGR0jVJ42EAT0GD/fKPiKMj4scD/Zn58szsG2E5zwqsTpOZB2bmhSNN\n1xgIwyzrR5m5azvqiogLIuL0puWPuL86UWYel5n/0O7lTtZjOyL6IuJdpevQ6BjAmrAm2y+/oXRK\nOzY1t5s6nQGsQTWeJUfEayJiRUQ8FBH3RMSn6smurn8+GBGPRMTeEfFHEfE3EfHriLg3Ir4YEc9r\nWO6R9bj7I+IjTevpjYiLI+JLEfEQcHS97p9GxIMRsS4izoqIzRqWlxHxnoi4NSIejoh/iIidI+In\ndb1fbZy+qY3TIuKMiLgvIm4D3tw0fsPZREQsiIgfRsRv6+mX18MHtsH19Tb484hYFBH9EfGhiLgb\n+MLAsKYSXh0RN0fEbyLiCxExs17ms65GNLRzQUQsBf4COLle37cH2V+bR8SnI+Ku+vPpiNi8HjdQ\n2wfr/bMuIo4Z5jg4JiJW19v2toj4y6bxh0bEqnpb/yoiFtfDt63bdFfdvm80zPPuiFgTEQ9ExLci\n4oVN7TwhIm4Fbq2H/Z+6zrsi4tim9W+4GjBS2yJiu4j4dl3rf0bE6c3bucGYj+1Btt3B9bZ5sD4e\nd6+HfygiLm6a9jMR8U919/Mi4ry6/rV1ndPqcUdHxI/r4/Y3EXF7RBxYj/so8HrgrLrms4aqTRNE\nZvqZYh/gDmC/pmFHAz8ebBrgp8A76u5ZwF519zwggekN8x0LrAFeXE97CfCv9bjdgEeA1wGbAWcA\nTzWsp7fufwvVH4dbAK8C9gKm1+tbDXygYX0JfBPYGng58Dvg+/X6nwfcDBw1xHY4DrgF2AnYFriq\nsT1AH/CuunsZcGpd10zgdU01LGjoXwQ8DXwc2LxuxyKgv2n73tiw7v8ATh9sXzSvA7hgYNoh9tff\nA9cALwC6gJ8A/9BU298DM4CDgMeAbYbYRm8GdgYC2LeedmE97jXAb4H96+2yI/DSetx3geXANvV6\n9q2HvxG4D1hYb5v/B1zd1M4r622yBbAYuAd4BbAV8JWhtsVIbQMuqj9bUh2LdzZv54Y65jGGY3uQ\n+f8EuBfYE5gGHFXvo82BF9V1za6nnQas45l/V5cCn6/b+wLgZ8BfNhwbTwHvruc7HrgLiOZj1s/E\n/xQvwE+BnV79IngEeLDh8xhDB/DVwN8Bc5qWM9gvqe8D72no37X+hTEd+FtgWcO4LYEneXYAXz1C\n7R8ALm3oT2Cfhv7rgA819H8S+PQQy/oBcFxD/wEMHcBfBM4BugdZzmAB/CQws2lYcwA3rvsg4Fd1\n99G0FsC/Ag5qGPdnwB0NdTzetM/upf7lP4pj5xvA++vuzwNnDjLNDsAfGCTUgfOATzT0z6qPj3kN\n7Xxjw/jzgY819L9kqG0xXNuowuopYNeGcac3b+fxHtuDzP856j96Gob9gmf+EPkxcGTdvX/Dvt+e\n6o/ILRrmOwK4quHYWNP0byiBP24+Zv1M/I+XoKeut2Tm8wc+wHuGmfadVL/4bqkv3R08zLQvBH7d\n0P9rqvDdvh5358CIzHwMuL9p/jsbeyLiJRHxnYi4O6rL0v8IzGma556G7scH6Z81TK2N6/v1ENMB\nnEx1FvizqJ44PnaYaQHWZ+YTI0zTvO4XDjXhGA22DxqXfX9mPt3Q/xhDbKOIODAirqkvFz9I9YfC\nwPbfiSrsm+0EPJCZvxmptsx8hOoY2LFhmjubph/tPoKh29ZFdRw2LutZx9ooDHdsN3sR8MH68vOD\n9bbbiWf2w1eoghXgf9X9A/PNANY1zPd5qjPhAXcPdNT/hmDoY1wTmAGsEWXmrZl5BNUvgY8DF0fE\nVlR/eTe7i+qXyIC5VJcF76G6zNY9MCIitgC2a15dU//nqC4T75KZWwN/TRWE7bCO6pdiY62Dysy7\nM/PdmflC4C+Bz8bwTz6P5jVjzeu+q+5+lOrMBoCI+OMxLnuwfXDXENMOqb5v/HWqWwXb13+o/RvP\nbP87qS5PN7sT2DYinj9SbfVxtB2wtmGaxvaNeh+NYD3VcdjdMGynIaZtrmHAcMd2szuBjzb+kZuZ\nW2bmsnr814BFEdENvJVnAvhOqjPgOQ3zbZ2ZLx+pgcPUrQnKANaIIuLtEdGVmX+gulwN1SXG9fXP\nFzdMvgw4KSLmR8QsqjPW5fVZycXAIRHx2qgejOpl5DCdDTwEPBIRL6W659UuXwXeFxHdEbENcMpQ\nE0bE4fUvS4DfUP2i+0Pdfw/P3gajdUK97m2p7i8vr4dfD7w8IvaI6sGs3qb5RlrfMuBvIqIrIuZQ\nXfr/0jjq24zqnuV64On6YZ8DGsafBxwTEW+qH1DaMSJempnrgMuo/kjZJiJmRMQbGmo7pm7b5lTH\nx7WZeccQNXyV6mG83SJiS+C0cbSDzPw91T3b3ojYsj6WjhxmlrEe283OBY6LiD2jslVEvDkiZtf1\nrKe6XPwF4PbMXF0PXwdcAXwyIraut+vOEbHvKJs63mNRBRjAGo3FwE0R8QjwGWBJZj5eX/76KPAf\n9eWyvaju2f0r1X3j24EngPcCZOZNdfdFVGc2j1Ddo/vdMOv+K6pLdA9T/VJbPsy0Y3Uu8O9UgbeS\n6hf0UF4NXFtvg29R3Qe9rR7XC1xYb4P/OYb1f4Xql+1tVJdyTwfIzF9SPUj0PaongZuf1D0P2K1e\n3zd4rtOBFcDPgRvqtp0+yHTDysyHgfdRheBvqPbDtxrG/ww4BjiT6mGsH/LMGeI7qO6P3kK1jz9Q\nz/M94CNUZ9brqM6glwxTw2XAp6nu16+pf47XiVQP5t1NdYwuY4hjb6zH9iDzr6B6UOosqm23hur+\nbaOvAPvxzNnvgCOp/vi5uZ73Yqr76qPxGeCw+gnpfxrlPCpk4Mk5aZOrzyIepLq8fHvpejS1RMTH\nqR5eOqp0LZqaPAPWJhURh9SXALeiurd4A9UTvNJGFREvjYjd60vCr6F6uPDS0nVp6jKAtakdSvUw\ny13ALlSXs70Mo01hNtVthkepbmV8kur/kEtFeAlakqQCPAOWJKkAA1iSpAI26dtG5syZk/PmzduU\nq5QkqZjrrrvuvszsGmzcJg3gefPmsWLFik25SkmSiomIIb8+1UvQkiQVYABLklSAASxJUgGb9B6w\nJGlieOqpp+jv7+eJJ0Z6a6ZGY+bMmXR3dzNjxoxRz2MAS9IU1N/fz+zZs5k3bx4R7XrD59SUmdx/\n//309/czf/78Uc/nJWhJmoKeeOIJtttuO8O3DSKC7bbbbsxXEwxgSZqiDN/2Gc+2NIAlSUVMmzaN\nPfbYY8PnYx/7WFuX39fXx09+8pO2LOu6667jla98JQsWLOB973sf7XiPgveAJUnQ27vJl7fFFluw\natWq9q63QV9fH7NmzeK1r31ty8s6/vjjOffcc9lzzz056KCDuPzyyznwwANbWqZnwJKkCePyyy/n\n8MMP39Df19fHwQcfDMAVV1zB3nvvzcKFCzn88MN55JFHgOpbFk877TQWLlzIK1/5Sm655RbuuOMO\nzj77bM4880z22GMPfvSjH427pnXr1vHQQw+x1157EREceeSRfOMb32itoRjAkqRCHn/88Wddgl6+\nfDn77bcf1157LY8++igAy5cvZ8mSJdx3332cfvrpfO9732PlypX09PTwqU99asOy5syZw8qVKzn+\n+OM544wzmDdvHscddxwnnXQSq1at4vWvf/2z1n3VVVc9a90Dn8HOlteuXUt3d/eG/u7ubtauXdty\n+70ELUkqYqhL0IsXL+bb3/42hx12GN/97nf5xCc+wQ9/+ENuvvlm9tlnHwCefPJJ9t577w3zvO1t\nbwPgVa96FZdccsmI6/7TP/3TjXr5ezQMYEnShLJkyRLOOusstt12W3p6epg9ezaZyf7778+yZcsG\nnWfzzTcHqge7nn766RHXcdVVV3HSSSc9Z/iWW275nAe3dtxxR/r7+zf09/f3s+OOO46lSYOaMgE8\n1PMA7X7uQJLUmn333Zdjjz2Wc889lyVLlgCw1157ccIJJ7BmzRoWLFjAo48+ytq1a3nJS14y5HJm\nz57NQw89NOi4sZwB77DDDmy99dZcc8017Lnnnnzxi1/kve9979gb1sR7wJKkIprvAZ9yyilAdRZ7\n8MEHc9lll214AKurq4sLLriAI444gt133529996bW265ZdjlH3LIIVx66aUtP4QF8NnPfpZ3vetd\nLFiwgJ133rnlJ6ABoh3/l2m0enp6stT7gD0DlqRnrF69mpe97GWly+gog23TiLguM3sGm94zYEmS\nCjCAJUkqwACWJKkAA1iSpAIMYEmSCjCAJUkqwACWJBUxmV5HeOqpp7LTTjsxa9astiwPptA3YUmS\nhlbgbYST6nWEhxxyCCeeeCK77LJLGyqreAYsSZowJuLrCKH6KswddtihpWU0M4AlSUVMltcRbixe\ngpYkFeHrCCVJmkAm2usINxYDWJI0oUy01xFuLN4DliQVMZleR3jyySfT3d3NY489Rnd3N71teGx8\nxNcRRsT5wMHAvZn5iqZxHwTOALoy876RVubrCCVpYvB1hO23MV5HeAGwuHlgROwEHAD899jLlCRp\nahsxgDPzauCBQUadCZwMDH8KLUmSnmNc94Aj4lBgbWZe3+Z6JEmaEsb8FHREbAn8NdXl59FMvxRY\nCjB37tyxrm5cxnJf13vDkqaqzCQiSpfREUZ6nmow4zkD3hmYD1wfEXcA3cDKiPjjIYo6JzN7MrOn\nq6trHKuTJLXbzJkzuf/++8cVHHq2zOT+++9n5syZY5pvzGfAmXkD8IKB/jqEe0bzFLQkaWLo7u6m\nv7+f9evXly6lI8ycOZPu7u4xzTNiAEfEMmARMCci+oHTMvO8cVUoSZoQZsyYwfz580uXMaWNGMCZ\necQI4+e1rRpJkqYIvwlLkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANY\nkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAA\nliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgow\ngCVJKsAAliSpAANYkqQCRgzgiDg/Iu6NiBsbhv3fiLglIn4eEZdGxPM3bpmSJHWW0ZwBXwAsbhp2\nJfCKzNwd+CXw4TbXJUlSRxsxgDPzauCBpmFXZObTde81QPdGqE2SpI7VjnvAxwKXDTUyIpZGxIqI\nWLF+/fo2rE6SpMmvpQCOiFOBp4EvDzVNZp6TmT2Z2dPV1dXK6iRJ6hjTxztjRBwNHAy8KTOzbRVJ\nkjQFjCuAI2IxcDKwb2Y+1t6SJEnqfKP5b0jLgJ8Cu0ZEf0S8EzgLmA1cGRGrIuLsjVynJEkdZcQz\n4Mw8YpDB522EWiRJmjL8JixJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQC\nDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSp\nAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJ\nKsAAliSpAANYkqQCRgzgiDg/Iu6NiBsbhm0bEVdGxK31z202bpmSJHWW0ZwBXwAsbhp2CvD9zNwF\n+H7dL0mSRmnEAM7Mq4EHmgYfClxYd18IvKXNdUmS1NHGew94+8xcV3ffDWzfpnokSZoSpre6gMzM\niMihxkfEUmApwNy5c1tdXVG9vRtn2rEuox3LliSVNd4z4HsiYgeA+ue9Q02YmedkZk9m9nR1dY1z\ndZIkdZbxBvC3gKPq7qOAb7anHEmSpobR/DekZcBPgV0joj8i3gl8DNg/Im4F9qv7JUnSKI14Dzgz\njxhi1JvaXIskSVOG34QlSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUgAEs\nSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFTDi+4C18fX2lq5AkrSpeQYsSVIBBrAk\nSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUgAEs\nSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIBLQVwRJwUETdFxI0RsSwiZrarMEmSOtm4AzgidgTeB/Rk\n5iuAacCSdhUmSVIna/US9HRgi4iYDmwJ3NV6SZIkdb7p450xM9dGxBnAfwOPA1dk5hXN00XEUmAp\nwNy5c8e7ukH19rZ1cZJKGukftP/g1WFauQS9DXAoMB94IbBVRLy9ebrMPCczezKzp6ura/yVSpLU\nQVq5BL0fcHtmrs/Mp4BLgNe2pyxJkjpbKwH838BeEbFlRATwJmB1e8qSJKmzjTuAM/Na4GJgJXBD\nvaxz2lSXJEkdbdwPYQFk5mnAaW2qRZKkKcNvwpIkqQADWJKkAgxgSZIKMIAlSSrAAJYkqQADWJKk\nAgxgSZIKMIAlSSrAAJYkqQADWJKkAgxgSZIKMIAlSSrAAJYkqQADWJKkAgxgSZIKaOl9wBpab28b\nF9bX17Tw5v52rkyDGmkbuw/cRtIYeQYsSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIk\nFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUQEsBHBHPj4iL\nI+KWiFgdEXu3qzBJkjrZ9Bbn/wxweWYeFhGbAVu2oSZJkjreuAM4Ip4HvAE4GiAznwSebE9ZkiR1\ntlYuQc8H1gNfiIj/ioh/iYit2lSXJEkdrZVL0NOBhcB7M/PaiPgMcArwkcaJImIpsBRg7ty5Laxu\n0+rtLV3BxvOctvX1VcMX9Y1yhjaPb4fSNbS6/IlwwJXehtIU08oZcD/Qn5nX1v0XUwXys2TmOZnZ\nk5k9XV1dLaxOkqTOMe4Azsy7gTsjYtd60JuAm9tSlSRJHa7Vp6DfC3y5fgL6NuCY1kuSJKnztRTA\nmbkK6GlTLZIkTRl+E5YkSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIBBrAk\nSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUQEvvAxbQ1zf8+EWLNn4Nvb309g2+nt5F\nfc8dOMS0wy1/1JMOsuzRzy1JU4dnwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIB\nBrAkSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFWAAS5JUgAEsSVIBBrAkSQUYwJIkFdByAEfE\ntIj4r4j4TjsKkiRpKmjHGfD7gdVtWI4kSVNGSwEcEd3Am4F/aU85kiRNDdNbnP/TwMnA7KEmiIil\nwFKAuXPntri6Avr6JvU6evsWbbRlTyq9vaUrUKtG2ofuY00y4z4DjoiDgXsz87rhpsvMczKzJzN7\nurq6xrs6SZI6SiuXoPcB/kdE3AFcBLwxIr7UlqokSepw4w7gzPxwZnZn5jxgCfCDzHx72yqTJKmD\n+f+AJUkqoNWHsADIzD6grx3LkiRpKvAMWJKkAgxgSZIKMIAlSSrAAJYkqQADWJKkAgxgSZIKMIAl\nSSrAAJYkqQADWJKkAgxgSZIKMIAlSSrAAJYkqQADWJKkAgxgSZIKMIAlSSqgLe8DLqqvb/jxixZt\niio6Qm/foucOW9TXhgX3tra+oeZvHNywrLHUPFgNY12GJoghjpNRj9fEMIX2o2fAkiQVYABLklSA\nASxJUgEGsCRJBRjAkiQVYABLklSAASxJUgEGsCRJBRjAkiQVYABLklSAASxJUgEGsCRJBRjAkiQV\nYABLklSAASxJUgEGsCRJBYw7gCNip4i4KiJujoibIuL97SxMkqRONr2FeZ8GPpiZKyNiNnBdRFyZ\nmTe3qTZJkjrWuM+AM3NdZq6sux8GVgM7tqswSZI6WStnwBtExDzgT4BrBxm3FFgKMHfu3HasbnLp\n62v7Inv7FrV9mWNdV++ivk1WA729bWlzq8vYqNuit7e18a0uf1MtQ9IGLT+EFRGzgK8DH8jMh5rH\nZ+Y5mdmTmT1dXV2trk6SpI7QUgBHxAyq8P1yZl7SnpIkSep8rTwFHcB5wOrM/FT7SpIkqfO1cga8\nD/AO4I0Rsar+HNSmuiRJ6mjjfggrM38MRBtrkSRpyvCbsCRJKsAAliSpAANYkqQCDGBJkgowgCVJ\nKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCxv0+\n4Emjr2/48YsWbYoqOk5v36Li004Ug9Xcu6ivvcvo7R1+2jZs46Fqbkf7RmustY1t4b3Dr6/hd8Eg\nk44wok029vJbNVJ9E71+mFBt8AxYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAA\nliSpAANYkqQCDGBJkgowgCVJKsAAliSpAANYkqQCDGBJkgowgCVJKsAAliSpgJYCOCIWR8QvImJN\nRJzSrqIkSep04w7giJgG/DNwILAbcERE7NauwiRJ6mStnAG/BliTmbdl5pPARcCh7SlLkqTO1koA\n7wjc2dDfXw+TJEkjiMwc34wRhwGLM/Nddf87gD0z88Sm6ZYCS+veXYFfjL/cZ5kD3NemZU1ktrOz\n2M7OM1XaajvH50WZ2TXYiOktLHQtsFNDf3c97Fky8xzgnBbWM6iIWJGZPe1e7kRjOzuL7ew8U6Wt\ntrP9WrkE/Z/ALhExPyI2A5YA32pPWZIkdbZxnwFn5tMRcSLw78A04PzMvKltlUmS1MFauQRNZv4b\n8G9tqmWs2n5Ze4KynZ3FdnaeqdJW29lm434IS5IkjZ9fRSlJUgGTLoA77esvI+KOiLghIlZFxIp6\n2LYRcWVE3Fr/3KYeHhHxT3Xbfx4RC8tWP7yIOD8i7o2IGxuGjbltEXFUPf2tEXFUibYMZ4h29kbE\n2nq/roqIgxrGfbhu5y8i4s8ahk/oYzsidoqIqyLi5oi4KSLeXw/vqH06TDs7ap9GxMyI+FlEXF+3\n8+/q4fMj4tq65uX1Q7ZExOZ1/5p6/LyGZQ3a/olgmHZeEBG3N+zPPerhm+64zcxJ86F62OtXwIuB\nzYDrgd1K19Vim+4A5jQN+wRwSt19CvDxuvsg4DIggL2Aa0vXP0Lb3gAsBG4cb9uAbYHb6p/b1N3b\nlG7bKNrZC/zVINPuVh+3mwPz6+N52mQ4toEdgIV192zgl3V7OmqfDtPOjtqn9X6ZVXfPAK6t99NX\ngSX18LOB4+vu9wBn191LgOXDtb90+0bRzguAwwaZfpMdt5PtDHiqfP3locCFdfeFwFsahn8xK9cA\nz4+IHUoUOBqZeTXwQNPgsbbtz4ArM/OBzPwNcCWweONXP3pDtHMohwIXZebvMvN2YA3VcT3hj+3M\nXJeZK+vuh4HVVN9+11H7dJh2DmVS7tN6vzxS986oPwm8Ebi4Ht68Pwf288XAmyIiGLr9E8Iw7RzK\nJjtuJ1sAd+LXXyZwRURcF9W3hgFsn5nr6u67ge3r7k5o/1jbNpnbfGJ9Cev8gcuydEg768uPf0J1\nNtGx+7SpndBh+zQipkXEKuBeqkD5FfBgZj5dT9JY84b21ON/C2zHJGxnZg7sz4/W+/PMiNi8HrbJ\n9udkC+BO9LrMXEj1VqkTIuINjSOzuvbRkY+qd3LbgM8BOwN7AOuAT5Ytp30iYhbwdeADmflQ47hO\n2qeDtLPj9mlm/j4z96D6JsPXAC8tXNJG0dzOiHgF8GGq9r6a6rLyhzZ1XZMtgEf19ZeTSWaurX/e\nC1xK9Y/gnoFLy/XPe+vJO6H9Y23bpGxzZt5T/6P/A3Auz1ySm9TtjIgZVKH05cy8pB7ccft0sHZ2\n6j4FyMwHgauAvakuuQ58R0RjzRvaU49/HnA/k7Odi+tbDZmZvwO+QIH9OdkCuKO+/jIitoqI2QPd\nwAHAjVRtGnjC7ijgm3X3t4Aj66f09gJ+23Dpb7IYa9v+HTggIrapL/kdUA+b0Jruzb+Var9C1c4l\n9ROl84FdgJ8xCY7t+n7fecDqzPxUw6iO2qdDtbPT9mlEdEXE8+vuLYD9qe53XwUcVk/WvD8H9vNh\nwA/qKx5DtX9CGKKdtzT80RhU97kb9+emOW5beYKrxIfqCbVfUt2rOLV0PS225cVUTw9eD9w00B6q\n+yrfB24Fvgdsm888zffPddtvAHpKt2GE9i2julT3FNX9kneOp23AsVQPdqwBjindrlG281/rdvy8\n/ge9Q8P0p9bt/AVwYMPwCX1sA6+jurz8c2BV/Tmo0/bpMO3sqH0K7A78V92eG4G/rYe/mCpA1wBf\nAzavh8+s+9fU4188UvsnwmeYdv6g3p83Al/imSelN9lx6zdhSZJUwGS7BC1JUkcwgCVJKsAAliSp\nAANYkqQCDGBJkgowgKWCIuL3DW9jWRVtfmNORCyKiNeOZlxEHBcRR7Zz/ZKGNn3kSSRtRI9n9RV5\nG8si4BHgJyONy8yzN2Idkpp4BixNMFG9Q/ZrDf2LIuI7dfcBEfHTiFgZEV+rv6944L3Sf1cPvyEi\nXlq/SOA44KT67Pr1Dct8zliQ2kMAAAG7SURBVLio3nf7V/X4vvoL6ldExOqIeHVEXBLVe1BPb1jO\n26N61+qqiPh8REzb+FtI6gwGsFTWFk2XoP+c6tuk9qy/nhTgz4GLImIO8DfAflm9wGMF8L8blnVf\nPfxzVO+tvYPqfa5nZuYemfmjgQmHG9fgyczsqaf7JnAC8Arg6IjYLiJeVte2T30W/3vgL9qyVaQp\nwEvQUlmDXoKOiMuBQyLiYuDNwMnAvlQvP/+P6utr2Qz4acNsAy9HuA54WxtqG/je4huAm7L+3vGI\nuI3qS+lfB7wK+M+6ni145kUMkkZgAEsT00XAicADwIrMfLj+0vgrM/OIIeb5Xf3z97Tn3/bA8v7Q\n0D3QP53qO3MvzMwPt2Fd0pTjJWhpYvohsBB4N1UYA1wD7BMRC2DD27ReMsJyHgZmj2PcaHwfOCwi\nXlDXs21EvKiF5UlTigEsldV8D/hjUL1AHPgOcGD9k8xcDxwNLIuIn1Ndfh7pBerfBt7a/BDWKMaN\nKDNvpronfUVdz5XADsPPJWmAb0OSJKkAz4AlSSrAAJYkqQADWJKkAgxgSZIKMIAlSSrAAJYkqQAD\nWJKkAgxgSZIK+P8mv0jx/1mtIQAAAABJRU5ErkJggg==\n",
1312
            "text/plain": [
1313
              "<Figure size 576x432 with 1 Axes>"
1314
            ]
1315
          },
1316
          "metadata": {
1317
            "tags": []
1318
          }
1319
        }
1320
      ]
1321
    },
1322
    {
1323
      "cell_type": "markdown",
1324
      "metadata": {
1325
        "id": "ojlTTL1XOwgI",
1326
        "colab_type": "text"
1327
      },
1328
      "source": [
1329
        "**Hypothesis**: Patients with event 1 (people who died in the experience) with an event time less than 300 are considered as low survival probability patients. Patients with event 0 (people who are still alive in the experience) with an event time higher than 2000 are considered as high survival probability patients."
1330
      ]
1331
    },
1332
    {
1333
      "cell_type": "code",
1334
      "metadata": {
1335
        "id": "vyKCOyKfOFB1",
1336
        "colab_type": "code",
1337
        "outputId": "030731e1-4686-4c38-87ce-6fa31e6a215e",
1338
        "colab": {
1339
          "base_uri": "https://localhost:8080/",
1340
          "height": 204
1341
        }
1342
      },
1343
      "source": [
1344
        "\"\"\" Low survival probability patients \"\"\"\n",
1345
        "dead_df = y_train.loc[y_train['Event'] == 1] \n",
1346
        "low_survival_index = dead_df.loc[dead_df['SurvivalTime'] <= 500].index\n",
1347
        "low_surv_df = x_train.loc[low_survival_index]\n",
1348
        "print(f'Number of low survival probability patients: {len(low_survival_index)}')\n",
1349
        "print(low_survival_index)\n",
1350
        "\n",
1351
        "\"\"\" High survival probability patients \"\"\"\n",
1352
        "alive_df = y_train.loc[y_train['Event'] == 0]\n",
1353
        "high_survival_index = alive_df.loc[alive_df['SurvivalTime'] >= 1500].index\n",
1354
        "high_surv_df = x_train.loc[high_survival_index]\n",
1355
        "print(f'Number of high survival probability patients: {len(high_survival_index)}')\n",
1356
        "print(high_survival_index)"
1357
      ],
1358
      "execution_count": 0,
1359
      "outputs": [
1360
        {
1361
          "output_type": "stream",
1362
          "text": [
1363
            "Number of low survival probability patients: 101\n",
1364
            "Int64Index([371, 384, 100, 173,  83, 423, 149, 316, 102, 249,\n",
1365
            "            ...\n",
1366
            "            112, 345, 299, 354, 373, 295, 213, 105,  56, 365],\n",
1367
            "           dtype='int64', name='PatientID', length=101)\n",
1368
            "Number of high survival probability patients: 49\n",
1369
            "Int64Index([284, 394, 178, 304, 421, 143, 180,  53,  94, 338, 380,  48, 334,\n",
1370
            "             39, 257, 331, 403, 388, 151, 308, 130,  91, 275, 115,  42, 406,\n",
1371
            "            305,  25, 184,  95, 131, 256, 148, 297, 393,  84,  36, 163, 391,\n",
1372
            "             11, 141, 279, 154, 362, 381,  69,  58, 261, 273],\n",
1373
            "           dtype='int64', name='PatientID')\n"
1374
          ],
1375
          "name": "stdout"
1376
        }
1377
      ]
1378
    },
1379
    {
1380
      "cell_type": "code",
1381
      "metadata": {
1382
        "id": "HdD4J_LhZZTk",
1383
        "colab_type": "code",
1384
        "colab": {}
1385
      },
1386
      "source": [
1387
        "\"\"\" Print features of the population having a small range Q3 - Q1 \"\"\"\n",
1388
        "def small_range_Q3_Q1(df, threshold, title):\n",
1389
        "    descip = df.describe()\n",
1390
        "    range_df = descip.loc['75%'] - descip.loc['25%']\n",
1391
        "\n",
1392
        "    fig, axs = plt.subplots(1, 2, figsize=(18, 6))\n",
1393
        "\n",
1394
        "    axs[0].hist(range_df, 100)\n",
1395
        "    axs[0].set_xlabel('Value of the range Q3 - Q1')\n",
1396
        "    axs[0].set_title('Histogram of all the features according to their Q3 - Q1 range')\n",
1397
        "    small_range_id = range_df.loc[range_df < threshold]\n",
1398
        "\n",
1399
        "    low_range_features = small_range_id.axes[0]\n",
1400
        "    df[low_range_features].boxplot(ax=axs[1], figsize=(8,6), rot=90)\n",
1401
        "    axs[1].set_title(f'Boxplot of the pop for only features with Q3 - Q1 < {threshold}')\n",
1402
        "\n",
1403
        "    fig.suptitle(title)\n",
1404
        "\n",
1405
        "    return small_range_id.axes[0]"
1406
      ],
1407
      "execution_count": 0,
1408
      "outputs": []
1409
    },
1410
    {
1411
      "cell_type": "code",
1412
      "metadata": {
1413
        "id": "SvvOIXy1UAJK",
1414
        "colab_type": "code",
1415
        "outputId": "4374616a-06ca-47d5-8e97-d0b2b584bc62",
1416
        "colab": {
1417
          "base_uri": "https://localhost:8080/",
1418
          "height": 1000
1419
        }
1420
      },
1421
      "source": [
1422
        "\"\"\" Statistics of the low survival probability population \"\"\"\n",
1423
        "threshold = 0.1\n",
1424
        "low_surv_df.boxplot(figsize=(18,12), rot=90)\n",
1425
        "low_range_features_low_surv = small_range_Q3_Q1(low_surv_df, threshold, 'Low survival probability population')\n",
1426
        "low_surv_df.describe()"
1427
      ],
1428
      "execution_count": 0,
1429
      "outputs": [
1430
        {
1431
          "output_type": "execute_result",
1432
          "data": {
1433
            "text/html": [
1434
              "<div>\n",
1435
              "<style scoped>\n",
1436
              "    .dataframe tbody tr th:only-of-type {\n",
1437
              "        vertical-align: middle;\n",
1438
              "    }\n",
1439
              "\n",
1440
              "    .dataframe tbody tr th {\n",
1441
              "        vertical-align: top;\n",
1442
              "    }\n",
1443
              "\n",
1444
              "    .dataframe thead th {\n",
1445
              "        text-align: right;\n",
1446
              "    }\n",
1447
              "</style>\n",
1448
              "<table border=\"1\" class=\"dataframe\">\n",
1449
              "  <thead>\n",
1450
              "    <tr style=\"text-align: right;\">\n",
1451
              "      <th></th>\n",
1452
              "      <th>original_shape_Compactness1</th>\n",
1453
              "      <th>original_shape_Compactness2</th>\n",
1454
              "      <th>original_shape_Maximum3DDiameter</th>\n",
1455
              "      <th>original_shape_SphericalDisproportion</th>\n",
1456
              "      <th>original_shape_Sphericity</th>\n",
1457
              "      <th>original_shape_SurfaceArea</th>\n",
1458
              "      <th>original_shape_SurfaceVolumeRatio</th>\n",
1459
              "      <th>original_shape_VoxelVolume</th>\n",
1460
              "      <th>original_firstorder_Energy</th>\n",
1461
              "      <th>original_firstorder_Entropy</th>\n",
1462
              "      <th>original_firstorder_Kurtosis</th>\n",
1463
              "      <th>original_firstorder_Maximum</th>\n",
1464
              "      <th>original_firstorder_Mean</th>\n",
1465
              "      <th>original_firstorder_MeanAbsoluteDeviation</th>\n",
1466
              "      <th>original_firstorder_Median</th>\n",
1467
              "      <th>original_firstorder_Minimum</th>\n",
1468
              "      <th>original_firstorder_Range</th>\n",
1469
              "      <th>original_firstorder_RootMeanSquared</th>\n",
1470
              "      <th>original_firstorder_Skewness</th>\n",
1471
              "      <th>original_firstorder_StandardDeviation</th>\n",
1472
              "      <th>original_firstorder_Uniformity</th>\n",
1473
              "      <th>original_firstorder_Variance</th>\n",
1474
              "      <th>original_glcm_Autocorrelation</th>\n",
1475
              "      <th>original_glcm_ClusterProminence</th>\n",
1476
              "      <th>original_glcm_ClusterShade</th>\n",
1477
              "      <th>original_glcm_ClusterTendency</th>\n",
1478
              "      <th>original_glcm_Contrast</th>\n",
1479
              "      <th>original_glcm_Correlation</th>\n",
1480
              "      <th>original_glcm_DifferenceEntropy</th>\n",
1481
              "      <th>original_glcm_DifferenceAverage</th>\n",
1482
              "      <th>original_glcm_JointEnergy</th>\n",
1483
              "      <th>original_glcm_JointEntropy</th>\n",
1484
              "      <th>original_glcm_Id</th>\n",
1485
              "      <th>original_glcm_Idm</th>\n",
1486
              "      <th>original_glcm_Imc1</th>\n",
1487
              "      <th>original_glcm_Imc2</th>\n",
1488
              "      <th>original_glcm_Idmn</th>\n",
1489
              "      <th>original_glcm_Idn</th>\n",
1490
              "      <th>original_glcm_InverseVariance</th>\n",
1491
              "      <th>original_glcm_MaximumProbability</th>\n",
1492
              "      <th>original_glcm_SumAverage</th>\n",
1493
              "      <th>original_glcm_SumEntropy</th>\n",
1494
              "      <th>original_glrlm_ShortRunEmphasis</th>\n",
1495
              "      <th>original_glrlm_LongRunEmphasis</th>\n",
1496
              "      <th>original_glrlm_GrayLevelNonUniformity</th>\n",
1497
              "      <th>original_glrlm_RunLengthNonUniformity</th>\n",
1498
              "      <th>original_glrlm_RunPercentage</th>\n",
1499
              "      <th>original_glrlm_LowGrayLevelRunEmphasis</th>\n",
1500
              "      <th>original_glrlm_HighGrayLevelRunEmphasis</th>\n",
1501
              "      <th>original_glrlm_ShortRunLowGrayLevelEmphasis</th>\n",
1502
              "      <th>original_glrlm_ShortRunHighGrayLevelEmphasis</th>\n",
1503
              "      <th>original_glrlm_LongRunLowGrayLevelEmphasis</th>\n",
1504
              "      <th>original_glrlm_LongRunHighGrayLevelEmphasis</th>\n",
1505
              "      <th>Mstage</th>\n",
1506
              "      <th>Nstage</th>\n",
1507
              "      <th>SourceDataset</th>\n",
1508
              "      <th>Tstage</th>\n",
1509
              "      <th>age</th>\n",
1510
              "      <th>Histology_adenocarcinoma</th>\n",
1511
              "      <th>Histology_large cell</th>\n",
1512
              "      <th>Histology_nos</th>\n",
1513
              "      <th>Histology_squamous cell carcinoma</th>\n",
1514
              "    </tr>\n",
1515
              "  </thead>\n",
1516
              "  <tbody>\n",
1517
              "    <tr>\n",
1518
              "      <th>count</th>\n",
1519
              "      <td>101.000000</td>\n",
1520
              "      <td>101.000000</td>\n",
1521
              "      <td>101.000000</td>\n",
1522
              "      <td>101.000000</td>\n",
1523
              "      <td>101.000000</td>\n",
1524
              "      <td>101.000000</td>\n",
1525
              "      <td>101.000000</td>\n",
1526
              "      <td>101.000000</td>\n",
1527
              "      <td>101.000000</td>\n",
1528
              "      <td>101.000000</td>\n",
1529
              "      <td>101.000000</td>\n",
1530
              "      <td>101.000000</td>\n",
1531
              "      <td>101.000000</td>\n",
1532
              "      <td>101.000000</td>\n",
1533
              "      <td>101.000000</td>\n",
1534
              "      <td>101.000000</td>\n",
1535
              "      <td>101.000000</td>\n",
1536
              "      <td>101.000000</td>\n",
1537
              "      <td>101.000000</td>\n",
1538
              "      <td>101.000000</td>\n",
1539
              "      <td>101.000000</td>\n",
1540
              "      <td>101.000000</td>\n",
1541
              "      <td>101.000000</td>\n",
1542
              "      <td>101.000000</td>\n",
1543
              "      <td>101.000000</td>\n",
1544
              "      <td>101.000000</td>\n",
1545
              "      <td>101.000000</td>\n",
1546
              "      <td>101.000000</td>\n",
1547
              "      <td>101.000000</td>\n",
1548
              "      <td>101.000000</td>\n",
1549
              "      <td>101.000000</td>\n",
1550
              "      <td>101.000000</td>\n",
1551
              "      <td>101.000000</td>\n",
1552
              "      <td>101.000000</td>\n",
1553
              "      <td>101.000000</td>\n",
1554
              "      <td>101.000000</td>\n",
1555
              "      <td>101.000000</td>\n",
1556
              "      <td>101.000000</td>\n",
1557
              "      <td>101.000000</td>\n",
1558
              "      <td>101.000000</td>\n",
1559
              "      <td>101.000000</td>\n",
1560
              "      <td>101.000000</td>\n",
1561
              "      <td>101.000000</td>\n",
1562
              "      <td>101.000000</td>\n",
1563
              "      <td>101.000000</td>\n",
1564
              "      <td>101.000000</td>\n",
1565
              "      <td>101.000000</td>\n",
1566
              "      <td>101.000000</td>\n",
1567
              "      <td>101.000000</td>\n",
1568
              "      <td>101.000000</td>\n",
1569
              "      <td>101.000000</td>\n",
1570
              "      <td>101.000000</td>\n",
1571
              "      <td>101.000000</td>\n",
1572
              "      <td>101.000000</td>\n",
1573
              "      <td>101.000000</td>\n",
1574
              "      <td>101.000000</td>\n",
1575
              "      <td>101.000000</td>\n",
1576
              "      <td>101.000000</td>\n",
1577
              "      <td>101.000000</td>\n",
1578
              "      <td>101.000000</td>\n",
1579
              "      <td>101.000000</td>\n",
1580
              "      <td>101.000000</td>\n",
1581
              "    </tr>\n",
1582
              "    <tr>\n",
1583
              "      <th>mean</th>\n",
1584
              "      <td>0.476402</td>\n",
1585
              "      <td>0.335141</td>\n",
1586
              "      <td>0.321982</td>\n",
1587
              "      <td>0.266604</td>\n",
1588
              "      <td>0.529001</td>\n",
1589
              "      <td>0.210168</td>\n",
1590
              "      <td>0.272455</td>\n",
1591
              "      <td>0.131952</td>\n",
1592
              "      <td>0.061725</td>\n",
1593
              "      <td>0.510419</td>\n",
1594
              "      <td>0.118243</td>\n",
1595
              "      <td>0.184491</td>\n",
1596
              "      <td>0.775428</td>\n",
1597
              "      <td>0.345475</td>\n",
1598
              "      <td>0.858435</td>\n",
1599
              "      <td>0.307685</td>\n",
1600
              "      <td>0.249277</td>\n",
1601
              "      <td>0.275224</td>\n",
1602
              "      <td>0.611627</td>\n",
1603
              "      <td>0.408463</td>\n",
1604
              "      <td>0.294907</td>\n",
1605
              "      <td>0.242956</td>\n",
1606
              "      <td>0.605381</td>\n",
1607
              "      <td>0.118148</td>\n",
1608
              "      <td>0.387256</td>\n",
1609
              "      <td>0.219607</td>\n",
1610
              "      <td>0.084823</td>\n",
1611
              "      <td>0.775846</td>\n",
1612
              "      <td>0.396232</td>\n",
1613
              "      <td>0.187427</td>\n",
1614
              "      <td>0.166168</td>\n",
1615
              "      <td>0.438821</td>\n",
1616
              "      <td>0.581820</td>\n",
1617
              "      <td>0.566204</td>\n",
1618
              "      <td>0.485035</td>\n",
1619
              "      <td>0.787726</td>\n",
1620
              "      <td>0.870571</td>\n",
1621
              "      <td>0.754060</td>\n",
1622
              "      <td>0.598113</td>\n",
1623
              "      <td>0.241447</td>\n",
1624
              "      <td>0.686037</td>\n",
1625
              "      <td>0.500815</td>\n",
1626
              "      <td>0.589580</td>\n",
1627
              "      <td>0.146258</td>\n",
1628
              "      <td>0.105473</td>\n",
1629
              "      <td>0.110472</td>\n",
1630
              "      <td>0.530723</td>\n",
1631
              "      <td>0.039752</td>\n",
1632
              "      <td>0.569912</td>\n",
1633
              "      <td>0.047246</td>\n",
1634
              "      <td>0.509542</td>\n",
1635
              "      <td>0.035881</td>\n",
1636
              "      <td>0.205714</td>\n",
1637
              "      <td>0.029703</td>\n",
1638
              "      <td>0.321782</td>\n",
1639
              "      <td>0.158416</td>\n",
1640
              "      <td>0.344059</td>\n",
1641
              "      <td>0.558008</td>\n",
1642
              "      <td>0.227723</td>\n",
1643
              "      <td>0.217822</td>\n",
1644
              "      <td>0.178218</td>\n",
1645
              "      <td>0.316832</td>\n",
1646
              "    </tr>\n",
1647
              "    <tr>\n",
1648
              "      <th>std</th>\n",
1649
              "      <td>0.173457</td>\n",
1650
              "      <td>0.166450</td>\n",
1651
              "      <td>0.195652</td>\n",
1652
              "      <td>0.153115</td>\n",
1653
              "      <td>0.172619</td>\n",
1654
              "      <td>0.183855</td>\n",
1655
              "      <td>0.211392</td>\n",
1656
              "      <td>0.155133</td>\n",
1657
              "      <td>0.085546</td>\n",
1658
              "      <td>0.242460</td>\n",
1659
              "      <td>0.181936</td>\n",
1660
              "      <td>0.165187</td>\n",
1661
              "      <td>0.172660</td>\n",
1662
              "      <td>0.238864</td>\n",
1663
              "      <td>0.161358</td>\n",
1664
              "      <td>0.147532</td>\n",
1665
              "      <td>0.156409</td>\n",
1666
              "      <td>0.186487</td>\n",
1667
              "      <td>0.170562</td>\n",
1668
              "      <td>0.218355</td>\n",
1669
              "      <td>0.212134</td>\n",
1670
              "      <td>0.203402</td>\n",
1671
              "      <td>0.219387</td>\n",
1672
              "      <td>0.139078</td>\n",
1673
              "      <td>0.100801</td>\n",
1674
              "      <td>0.192068</td>\n",
1675
              "      <td>0.111087</td>\n",
1676
              "      <td>0.153960</td>\n",
1677
              "      <td>0.204374</td>\n",
1678
              "      <td>0.158845</td>\n",
1679
              "      <td>0.151797</td>\n",
1680
              "      <td>0.229303</td>\n",
1681
              "      <td>0.236810</td>\n",
1682
              "      <td>0.245050</td>\n",
1683
              "      <td>0.158270</td>\n",
1684
              "      <td>0.154150</td>\n",
1685
              "      <td>0.166189</td>\n",
1686
              "      <td>0.200761</td>\n",
1687
              "      <td>0.207235</td>\n",
1688
              "      <td>0.166099</td>\n",
1689
              "      <td>0.197625</td>\n",
1690
              "      <td>0.242696</td>\n",
1691
              "      <td>0.225605</td>\n",
1692
              "      <td>0.141577</td>\n",
1693
              "      <td>0.156377</td>\n",
1694
              "      <td>0.114490</td>\n",
1695
              "      <td>0.245564</td>\n",
1696
              "      <td>0.106124</td>\n",
1697
              "      <td>0.215871</td>\n",
1698
              "      <td>0.107909</td>\n",
1699
              "      <td>0.181075</td>\n",
1700
              "      <td>0.113548</td>\n",
1701
              "      <td>0.162696</td>\n",
1702
              "      <td>0.170613</td>\n",
1703
              "      <td>0.300701</td>\n",
1704
              "      <td>0.366952</td>\n",
1705
              "      <td>0.257030</td>\n",
1706
              "      <td>0.196801</td>\n",
1707
              "      <td>0.421454</td>\n",
1708
              "      <td>0.414824</td>\n",
1709
              "      <td>0.384605</td>\n",
1710
              "      <td>0.467562</td>\n",
1711
              "    </tr>\n",
1712
              "    <tr>\n",
1713
              "      <th>min</th>\n",
1714
              "      <td>0.045788</td>\n",
1715
              "      <td>0.017690</td>\n",
1716
              "      <td>0.023903</td>\n",
1717
              "      <td>0.057762</td>\n",
1718
              "      <td>0.060644</td>\n",
1719
              "      <td>0.003058</td>\n",
1720
              "      <td>0.026136</td>\n",
1721
              "      <td>0.000474</td>\n",
1722
              "      <td>0.000357</td>\n",
1723
              "      <td>0.071819</td>\n",
1724
              "      <td>0.003333</td>\n",
1725
              "      <td>0.029309</td>\n",
1726
              "      <td>0.279380</td>\n",
1727
              "      <td>0.016698</td>\n",
1728
              "      <td>0.108265</td>\n",
1729
              "      <td>0.174419</td>\n",
1730
              "      <td>0.028302</td>\n",
1731
              "      <td>0.028038</td>\n",
1732
              "      <td>0.000000</td>\n",
1733
              "      <td>0.042157</td>\n",
1734
              "      <td>0.010855</td>\n",
1735
              "      <td>0.007781</td>\n",
1736
              "      <td>0.131618</td>\n",
1737
              "      <td>0.000688</td>\n",
1738
              "      <td>0.094170</td>\n",
1739
              "      <td>0.006610</td>\n",
1740
              "      <td>0.000359</td>\n",
1741
              "      <td>0.203515</td>\n",
1742
              "      <td>0.000000</td>\n",
1743
              "      <td>0.000000</td>\n",
1744
              "      <td>0.003165</td>\n",
1745
              "      <td>0.016297</td>\n",
1746
              "      <td>0.040142</td>\n",
1747
              "      <td>0.032800</td>\n",
1748
              "      <td>0.000000</td>\n",
1749
              "      <td>0.000000</td>\n",
1750
              "      <td>0.179424</td>\n",
1751
              "      <td>0.142017</td>\n",
1752
              "      <td>0.055881</td>\n",
1753
              "      <td>0.004558</td>\n",
1754
              "      <td>0.053378</td>\n",
1755
              "      <td>0.000000</td>\n",
1756
              "      <td>0.000000</td>\n",
1757
              "      <td>0.002510</td>\n",
1758
              "      <td>0.000213</td>\n",
1759
              "      <td>0.000952</td>\n",
1760
              "      <td>0.000000</td>\n",
1761
              "      <td>0.000492</td>\n",
1762
              "      <td>0.132005</td>\n",
1763
              "      <td>0.000420</td>\n",
1764
              "      <td>0.106711</td>\n",
1765
              "      <td>0.003397</td>\n",
1766
              "      <td>0.011810</td>\n",
1767
              "      <td>0.000000</td>\n",
1768
              "      <td>0.000000</td>\n",
1769
              "      <td>0.000000</td>\n",
1770
              "      <td>0.000000</td>\n",
1771
              "      <td>0.015641</td>\n",
1772
              "      <td>0.000000</td>\n",
1773
              "      <td>0.000000</td>\n",
1774
              "      <td>0.000000</td>\n",
1775
              "      <td>0.000000</td>\n",
1776
              "    </tr>\n",
1777
              "    <tr>\n",
1778
              "      <th>25%</th>\n",
1779
              "      <td>0.374122</td>\n",
1780
              "      <td>0.223535</td>\n",
1781
              "      <td>0.162474</td>\n",
1782
              "      <td>0.169819</td>\n",
1783
              "      <td>0.433796</td>\n",
1784
              "      <td>0.051512</td>\n",
1785
              "      <td>0.128843</td>\n",
1786
              "      <td>0.016345</td>\n",
1787
              "      <td>0.012152</td>\n",
1788
              "      <td>0.317655</td>\n",
1789
              "      <td>0.018154</td>\n",
1790
              "      <td>0.073272</td>\n",
1791
              "      <td>0.671351</td>\n",
1792
              "      <td>0.147928</td>\n",
1793
              "      <td>0.862631</td>\n",
1794
              "      <td>0.186047</td>\n",
1795
              "      <td>0.142367</td>\n",
1796
              "      <td>0.119388</td>\n",
1797
              "      <td>0.527886</td>\n",
1798
              "      <td>0.220675</td>\n",
1799
              "      <td>0.105008</td>\n",
1800
              "      <td>0.074269</td>\n",
1801
              "      <td>0.452139</td>\n",
1802
              "      <td>0.030397</td>\n",
1803
              "      <td>0.341826</td>\n",
1804
              "      <td>0.063276</td>\n",
1805
              "      <td>0.022835</td>\n",
1806
              "      <td>0.694403</td>\n",
1807
              "      <td>0.247110</td>\n",
1808
              "      <td>0.072918</td>\n",
1809
              "      <td>0.047916</td>\n",
1810
              "      <td>0.244542</td>\n",
1811
              "      <td>0.394454</td>\n",
1812
              "      <td>0.368093</td>\n",
1813
              "      <td>0.380593</td>\n",
1814
              "      <td>0.752825</td>\n",
1815
              "      <td>0.838722</td>\n",
1816
              "      <td>0.668426</td>\n",
1817
              "      <td>0.482752</td>\n",
1818
              "      <td>0.118431</td>\n",
1819
              "      <td>0.553587</td>\n",
1820
              "      <td>0.302171</td>\n",
1821
              "      <td>0.423152</td>\n",
1822
              "      <td>0.047774</td>\n",
1823
              "      <td>0.007983</td>\n",
1824
              "      <td>0.023171</td>\n",
1825
              "      <td>0.338877</td>\n",
1826
              "      <td>0.007635</td>\n",
1827
              "      <td>0.399738</td>\n",
1828
              "      <td>0.010350</td>\n",
1829
              "      <td>0.373402</td>\n",
1830
              "      <td>0.008025</td>\n",
1831
              "      <td>0.084520</td>\n",
1832
              "      <td>0.000000</td>\n",
1833
              "      <td>0.000000</td>\n",
1834
              "      <td>0.000000</td>\n",
1835
              "      <td>0.250000</td>\n",
1836
              "      <td>0.440696</td>\n",
1837
              "      <td>0.000000</td>\n",
1838
              "      <td>0.000000</td>\n",
1839
              "      <td>0.000000</td>\n",
1840
              "      <td>0.000000</td>\n",
1841
              "    </tr>\n",
1842
              "    <tr>\n",
1843
              "      <th>50%</th>\n",
1844
              "      <td>0.475980</td>\n",
1845
              "      <td>0.315574</td>\n",
1846
              "      <td>0.291289</td>\n",
1847
              "      <td>0.238690</td>\n",
1848
              "      <td>0.535424</td>\n",
1849
              "      <td>0.168099</td>\n",
1850
              "      <td>0.205094</td>\n",
1851
              "      <td>0.078499</td>\n",
1852
              "      <td>0.031150</td>\n",
1853
              "      <td>0.482425</td>\n",
1854
              "      <td>0.061671</td>\n",
1855
              "      <td>0.125199</td>\n",
1856
              "      <td>0.835057</td>\n",
1857
              "      <td>0.297312</td>\n",
1858
              "      <td>0.923166</td>\n",
1859
              "      <td>0.250646</td>\n",
1860
              "      <td>0.205832</td>\n",
1861
              "      <td>0.236759</td>\n",
1862
              "      <td>0.612533</td>\n",
1863
              "      <td>0.381681</td>\n",
1864
              "      <td>0.264920</td>\n",
1865
              "      <td>0.180771</td>\n",
1866
              "      <td>0.643047</td>\n",
1867
              "      <td>0.075532</td>\n",
1868
              "      <td>0.404867</td>\n",
1869
              "      <td>0.156279</td>\n",
1870
              "      <td>0.047242</td>\n",
1871
              "      <td>0.801636</td>\n",
1872
              "      <td>0.364809</td>\n",
1873
              "      <td>0.132452</td>\n",
1874
              "      <td>0.127012</td>\n",
1875
              "      <td>0.425570</td>\n",
1876
              "      <td>0.643137</td>\n",
1877
              "      <td>0.626659</td>\n",
1878
              "      <td>0.475598</td>\n",
1879
              "      <td>0.818568</td>\n",
1880
              "      <td>0.932224</td>\n",
1881
              "      <td>0.821191</td>\n",
1882
              "      <td>0.646767</td>\n",
1883
              "      <td>0.214629</td>\n",
1884
              "      <td>0.723143</td>\n",
1885
              "      <td>0.484535</td>\n",
1886
              "      <td>0.569787</td>\n",
1887
              "      <td>0.121663</td>\n",
1888
              "      <td>0.042527</td>\n",
1889
              "      <td>0.077018</td>\n",
1890
              "      <td>0.500447</td>\n",
1891
              "      <td>0.013177</td>\n",
1892
              "      <td>0.584989</td>\n",
1893
              "      <td>0.018849</td>\n",
1894
              "      <td>0.540478</td>\n",
1895
              "      <td>0.013592</td>\n",
1896
              "      <td>0.167268</td>\n",
1897
              "      <td>0.000000</td>\n",
1898
              "      <td>0.500000</td>\n",
1899
              "      <td>0.000000</td>\n",
1900
              "      <td>0.250000</td>\n",
1901
              "      <td>0.579104</td>\n",
1902
              "      <td>0.000000</td>\n",
1903
              "      <td>0.000000</td>\n",
1904
              "      <td>0.000000</td>\n",
1905
              "      <td>0.000000</td>\n",
1906
              "    </tr>\n",
1907
              "    <tr>\n",
1908
              "      <th>75%</th>\n",
1909
              "      <td>0.584234</td>\n",
1910
              "      <td>0.428020</td>\n",
1911
              "      <td>0.464677</td>\n",
1912
              "      <td>0.320481</td>\n",
1913
              "      <td>0.638526</td>\n",
1914
              "      <td>0.314406</td>\n",
1915
              "      <td>0.363445</td>\n",
1916
              "      <td>0.171272</td>\n",
1917
              "      <td>0.066572</td>\n",
1918
              "      <td>0.731944</td>\n",
1919
              "      <td>0.144419</td>\n",
1920
              "      <td>0.238930</td>\n",
1921
              "      <td>0.905610</td>\n",
1922
              "      <td>0.518386</td>\n",
1923
              "      <td>0.940629</td>\n",
1924
              "      <td>0.399225</td>\n",
1925
              "      <td>0.312464</td>\n",
1926
              "      <td>0.417599</td>\n",
1927
              "      <td>0.721518</td>\n",
1928
              "      <td>0.563368</td>\n",
1929
              "      <td>0.436437</td>\n",
1930
              "      <td>0.353959</td>\n",
1931
              "      <td>0.787601</td>\n",
1932
              "      <td>0.166475</td>\n",
1933
              "      <td>0.437492</td>\n",
1934
              "      <td>0.310728</td>\n",
1935
              "      <td>0.106296</td>\n",
1936
              "      <td>0.871950</td>\n",
1937
              "      <td>0.524123</td>\n",
1938
              "      <td>0.243542</td>\n",
1939
              "      <td>0.246711</td>\n",
1940
              "      <td>0.621432</td>\n",
1941
              "      <td>0.771233</td>\n",
1942
              "      <td>0.766459</td>\n",
1943
              "      <td>0.584677</td>\n",
1944
              "      <td>0.873934</td>\n",
1945
              "      <td>0.974168</td>\n",
1946
              "      <td>0.893074</td>\n",
1947
              "      <td>0.738960</td>\n",
1948
              "      <td>0.337898</td>\n",
1949
              "      <td>0.848430</td>\n",
1950
              "      <td>0.708227</td>\n",
1951
              "      <td>0.779072</td>\n",
1952
              "      <td>0.201804</td>\n",
1953
              "      <td>0.121800</td>\n",
1954
              "      <td>0.160963</td>\n",
1955
              "      <td>0.723372</td>\n",
1956
              "      <td>0.038828</td>\n",
1957
              "      <td>0.736627</td>\n",
1958
              "      <td>0.046370</td>\n",
1959
              "      <td>0.640683</td>\n",
1960
              "      <td>0.020318</td>\n",
1961
              "      <td>0.280116</td>\n",
1962
              "      <td>0.000000</td>\n",
1963
              "      <td>0.500000</td>\n",
1964
              "      <td>0.000000</td>\n",
1965
              "      <td>0.500000</td>\n",
1966
              "      <td>0.688819</td>\n",
1967
              "      <td>0.000000</td>\n",
1968
              "      <td>0.000000</td>\n",
1969
              "      <td>0.000000</td>\n",
1970
              "      <td>1.000000</td>\n",
1971
              "    </tr>\n",
1972
              "    <tr>\n",
1973
              "      <th>max</th>\n",
1974
              "      <td>0.826667</td>\n",
1975
              "      <td>0.734517</td>\n",
1976
              "      <td>1.000000</td>\n",
1977
              "      <td>0.848415</td>\n",
1978
              "      <td>0.854953</td>\n",
1979
              "      <td>0.706103</td>\n",
1980
              "      <td>0.985167</td>\n",
1981
              "      <td>0.757682</td>\n",
1982
              "      <td>0.388404</td>\n",
1983
              "      <td>0.937622</td>\n",
1984
              "      <td>0.959661</td>\n",
1985
              "      <td>1.000000</td>\n",
1986
              "      <td>1.000000</td>\n",
1987
              "      <td>0.955959</td>\n",
1988
              "      <td>0.990687</td>\n",
1989
              "      <td>0.863049</td>\n",
1990
              "      <td>1.000000</td>\n",
1991
              "      <td>0.845946</td>\n",
1992
              "      <td>1.000000</td>\n",
1993
              "      <td>0.990265</td>\n",
1994
              "      <td>1.000000</td>\n",
1995
              "      <td>0.982058</td>\n",
1996
              "      <td>1.000000</td>\n",
1997
              "      <td>1.000000</td>\n",
1998
              "      <td>1.000000</td>\n",
1999
              "      <td>0.946078</td>\n",
2000
              "      <td>0.675703</td>\n",
2001
              "      <td>1.000000</td>\n",
2002
              "      <td>0.935675</td>\n",
2003
              "      <td>0.820194</td>\n",
2004
              "      <td>1.000000</td>\n",
2005
              "      <td>0.891901</td>\n",
2006
              "      <td>1.000000</td>\n",
2007
              "      <td>1.000000</td>\n",
2008
              "      <td>1.000000</td>\n",
2009
              "      <td>1.000000</td>\n",
2010
              "      <td>1.000000</td>\n",
2011
              "      <td>1.000000</td>\n",
2012
              "      <td>0.971813</td>\n",
2013
              "      <td>1.000000</td>\n",
2014
              "      <td>1.000000</td>\n",
2015
              "      <td>0.897109</td>\n",
2016
              "      <td>0.983827</td>\n",
2017
              "      <td>1.000000</td>\n",
2018
              "      <td>0.979532</td>\n",
2019
              "      <td>0.557070</td>\n",
2020
              "      <td>0.979884</td>\n",
2021
              "      <td>1.000000</td>\n",
2022
              "      <td>1.000000</td>\n",
2023
              "      <td>1.000000</td>\n",
2024
              "      <td>1.000000</td>\n",
2025
              "      <td>1.000000</td>\n",
2026
              "      <td>0.763831</td>\n",
2027
              "      <td>1.000000</td>\n",
2028
              "      <td>0.750000</td>\n",
2029
              "      <td>1.000000</td>\n",
2030
              "      <td>0.750000</td>\n",
2031
              "      <td>0.904993</td>\n",
2032
              "      <td>1.000000</td>\n",
2033
              "      <td>1.000000</td>\n",
2034
              "      <td>1.000000</td>\n",
2035
              "      <td>1.000000</td>\n",
2036
              "    </tr>\n",
2037
              "  </tbody>\n",
2038
              "</table>\n",
2039
              "</div>"
2040
            ],
2041
            "text/plain": [
2042
              "       original_shape_Compactness1  ...  Histology_squamous cell carcinoma\n",
2043
              "count                   101.000000  ...                         101.000000\n",
2044
              "mean                      0.476402  ...                           0.316832\n",
2045
              "std                       0.173457  ...                           0.467562\n",
2046
              "min                       0.045788  ...                           0.000000\n",
2047
              "25%                       0.374122  ...                           0.000000\n",
2048
              "50%                       0.475980  ...                           0.000000\n",
2049
              "75%                       0.584234  ...                           1.000000\n",
2050
              "max                       0.826667  ...                           1.000000\n",
2051
              "\n",
2052
              "[8 rows x 62 columns]"
2053
            ]
2054
          },
2055
          "metadata": {
2056
            "tags": []
2057
          },
2058
          "execution_count": 22
2059
        },
2060
        {
2061
          "output_type": "display_data",
2062
          "data": {
2063
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAOSCAYAAAAieEiTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdf4wc93nn+U9pmpYJSscA8a5uZUak\ncPACJRWX8CqbXLT9Byt95liWs/pjF+eUnLWyqpMCeVOgb31LjlGHMMylbFKBA/soWw5ui1gKsUpa\nXADb4cgijWETi17hDrZhcN12IYBhSQlXC+zdYW9A8ebkmbnv/UF1s3t6SPZM1/S3qvr9Agh2V091\nP11d/aOeer7P1zHGCAAAAAAA4E7ush0AAAAAAACoBpIIAAAAAABgLCQRAAAAAADAWEgiAAAAAACA\nsZBEAAAAAAAAYyGJAAAAAAAAxtKw9cAf+tCHzIEDB255+/Xr17Vnz55t3/+k65chhqqvX4YYqr5+\nGWKo+vpliKHq65chhqqvX4YYqr5+GWKo+vpliKHq65chhqqvX4YYqr5+GWKo+vpliKHs6//whz/8\nP40xf2vTG40xVv498sgj5nba7fZtb7+TSdcvQwxVX78MMVR9/TLEUPX1yxBD1dcvQwxVX78MMVR9\n/TLEUPX1yxBD1dcvQwxVX78MMVR9/TLEUPX1yxBD2deX9ANzi2N5hjMAAAAAAICxkEQAAAAAAABj\nIYkAAAAAAADGQhIBAAAAAACMhSQCAAAAAAAYC0kEAAAAAAAwFpIIAAAAAABgLCQRAAAAAADAWEgi\nAAAAAACAsZBEAAAAAAAAYyGJAAAAAAAAxkISAQAAAAAAjIUkAgAAAAAAGAtJBAAAAAAAMBaSCAAA\nAAAAYCwkEQAAAAAAwFhIIgAAAAAAgLGQRAAAAAAAAGMhiQAAAAAAAMZCEgEAAAAAAIyFJAIAAAAA\nABgLSQQAAAAAADAWkggAAAAAAGAsJBEAAAAAAMBY7phEcBznrOM4/8lxnO4tbnccx/mfHcf5meM4\n/95xnL9ffJgAAAAAAMC2cSoR/rWkj9/m9sckfeT9f89KenHysOzKskye56nVasnzPGVZZjskVAz7\n0OTYhvXYBpM+hzpsg6rjNWAbFIFtyDaQ7G+DWX98SZqfn9ddd90l3/d11113aX5+fqqP7ziOHMeR\n7/v9y1Uz6XOwvX4RGnf6A2PMv3Uc58Bt/uQJSS8ZY4yk/81xnF9yHOfvGGP+Y0ExTlWWZYrjWGma\nan19XXNzcwrDUJIUBIHl6FAF7EOTYxvWYxtM+hzqsA2qjteAbVAEtiHbQLK/DWb98aUbCYSLFy/q\nueee0yc+8Qm99tprevHFFzU/P68LFy7s+OMPHuwmSaI4jvvLbxxKlt/gc/jc5z6nr3zlK/3l4zyH\nwfU///nP68tf/vK21z9x4oROnjy5pfWLUkRPhA9L+puB61ffX1ZJSZIoTVP5vq9GoyHf95WmqZIk\nsR0aKoJ9aHJsw3psg0mfQx22QdXxGrANisA2ZBtI9rfBrD++JH3ve9/Tc889p69//eu655579PWv\nf13PPfecvve9700tBkkyxujRRx+tTOJgM8YYPfHEE9t+DsYYffKTn5xo/cOHD1vbhs6YGY8Dks4b\nY7xNbjsv6ZQxpvP+9SVJx40xP9jkb5/VjSEPuu+++x555ZVXbvmY7777ru65557xnkWB67daLV24\ncEGNRqN/H2tra5qfn9fS0tJUYqjL+mWIwcb6Re1Dvu+PLGu321uKRZrtbThJDJLd16Asn0WTbINJ\nn0NZtsGk61f5vVyW12DSbWhzP5708YtYv6j7kOztR2V5H233PsryXrK5vu39oA6PP2g7r4Pv+/rL\nv/xL3XPPPf313333Xf3Wb/3Wlt9P2338JEn06KOP9td/4403FMfxVB6/iPvwfV+f+9zn9MQTT/TX\n//a3v62vfOUrYz0H3/f1+c9/Xp/85Cf7658/f15f/vKXx17/xIkTOnz4cH/9y5cv6+TJk3dc/58v\nXdf1Vent058cuW3/8fPas0v6WmvP4GP90Bjzq5vemTHmjv8kHZDUvcVtfyYpGLj+V5L+zp3u85FH\nHjG30263b3v7nWx3/YcffthcunRp6D4uXbpkHn744anFUJf1yxCDjfWL3IeMMWb/8fPbWq+HbTj5\nc7DxGpTps8iY7W2DSZ9DmbaBrW1YZAyzuh9Oun6R28BG/EXfh+39yPb7aLv3Uab3Uh1+Y1fxvVyG\n3zaO45jnnntuaP3nnnvOOI4zlceXZG4cft5cf3DZTj9+Efcx6XOwuf7G/Xbj8994u6QfmFscyxcx\nnOE7kj7z/iwN/7WkZVPRfgiSFMexwjBUu93W2tqa2u22wjDsj9kB7oR9aHJsw3psg0mfQx22QdXx\nGrANisA2ZBtI9rfBrD++JH3sYx/Tiy++qM9+9rN699139dnPflYvvviiPvaxj00tBunG+P033nij\nkk0VexzH0be//e1tPwfHcXT+/PmJ1r98+bK1bXjHxoqO42SSDkv6kOM4VyWdkLRLkowx35D0mqRP\nSPqZpP9H0j/bqWCnodfYJIoi5Xku13WVJMnMNL3B5NiHJsc2rMc2mPQ51GEbVB2vAdugCGxDtoFk\nfxvM+uNL0oULFzQ/P69vfOMbevHFF+U4jo4cOTKVporSjQr43kHvYPLEVKg3wuBz6DVV7C3f6vq9\nporbXb/XVHEr6xdlnNkZbrtnv1/q8M8Li6gEgiBQEAS6fPmyDh8+bDscVBD70OTYhvXYBpM+hzps\ng6rjNWAbFIFtyDaQ7G+DWX98Sf2Ega0Yege7VX4fTPocbK9fhCKGM6BmyjCHLewrwxy0Vcc2BAAA\nQN3csRIBs6UMc9iiHHpZzgMLi3rr1OOWo6kmtiEAAADqhkoEDCnDHLYAikFVEQAAAIpGJQKG5Hmu\nZrM5tKzZbCrPc0sRAdgOqooAAACwE6hEwBDXddXpdIaWdTodua5rKSIA20FVEQAUy3afG6rLAJQF\nlQgY0pvDtnf2sjeHLQceQLVQVQQAxbLZ54bqMgBlQhIBQ8owhy2AyfWqinzf7y+jqggAqmmwuqw3\nrVuapoqiaGq/0TarvJj23PQAyoHhDBgRBIG63a6WlpbU7XZJIAAV1KsqarfbWltb61cVxXFsOzQA\nwBaVobrMGCNjjPYfP9+/DGA2UYkAADVEVREA1AfVZQDKhEoEAKgpqooAoB6oLgNQJlQiAAAAlNCh\nkxe1vLI6tOzAwmL/8t7du3TlxJFphwULqC4DUCYkEQAAAEpoeWV1aBaAXkO9nsGEwk6jqZ59QRAo\nCIKR/QAApo3hDAAAALgtmuoBAHpIIgAAAAAAgLGQRAAAAAAAAGMhiQBsIssyeZ6nVqslz/OUZZnt\nkAAAAADAOhorAhtkWaY4jpWmqdbX1zU3N6cwDCWJLsgAAAAAZhqVCMAGSZIoTVP5vq9GoyHf95Wm\nqZIksR0aAAAAAFhFEgHYIM9zNZvNoWXNZlN5nluKCAAAAADKgSQCsIHruup0OkPLOp2OXNe1FBEA\nAAAAlANJBGCDOI4VhqHa7bbW1tbUbrcVhqHiOLYdGgAAAABYRWNFYINe88QoipTnuVzXVZIklWuq\n6DjOyDJjjIVIAAAAANQFlQjAJoIgULfb1dLSkrrdbuUSCNKNhIExRvuPn+9fBgAAAIBJkEQAANRW\nlmXyPE+tVkue5ynLMtshAQAAVBrDGQAAtZRlmeI4VpqmWl9f19zcnMIwlKRKVhcBAACUAZUIAIBa\nSpJEaZrK9301Gg35vq80TZUkie3QAAAAKoskAgCglvI8V7PZHFrWbDaV57mliAAAAKqPJAIAoJZc\n11Wn0xla1ul05LqupYgAAACqjyQCsAmasQHVF8exwjBUu93W2tqa2u22wjBUHMe2QwMAAKgsGisC\nG9CMDaiH3vs1iiLleS7XdZUkCe9jAACACZBEADYYbMZ2+fJlHT58WGmaKoqimTj4OHTyopZXVoeW\nHVhY7F/eu3uXrpw4Mu2wgG0JgkBBEPTfywAAAJgMSQTUkuM4I8uMMWOtO+vN2JZXVvXWqcf71zce\nfA0mFAAAAADMFnoioJaMMTLGaP/x8/3L46IZGwAAAABsjkoEYINeM7ZeT4ReMzbmlgdgwySVVQAA\nAEUjiQBsQDM2AGXSSxgcWFgcGmoEAABgA0kEYBM0YwMA2Havu6CD5xaGF54bvF2SSCwBAKaLJAIA\nAEAJXctP0egWAFA6NFYEAAAAAABjIYkAAAAAAADGQhIBAAAAAACMhZ4IAIbQyAsAAADArZBEADCE\nRl4AAAAAboXhDAAAAAAAYCwkEQAAAAAAwFhIIgAAAAAAgLGQRAAAAAAAAGMhiQAAAAAAAMZCEgEA\nAAAAAIyFJAIAAAAAABgLSQQApZRlmTzPU6vVkud5yrLMdkgAAADAzGvYDgDlk2WZkiRRnudyXVdx\nHCsIAtthzYxDJy9qeWV1aNmBhcX+5b27d+nKiSPTDmuqsixTHMdK01Tr6+uam5tTGIaSxL4IAAAA\nWEQSAUM4eLNveWVVb516vH/98uXLOnz4cP/6YEKhrpIkUZqm8n2///zTNFUUReyHAAAA2DbHcUaW\nGWMsRFJdDGfAkMGDt0ajId/3laapkiSxHRpmSJ7najabQ8uazabyPLcUEQAAAOrAGCNjjPYfP9+/\njK0hiYAhHLyhDFzXVafTGVrW6XTkuq6liAAAAABIJBGwAQdvKIM4jhWGodrtttbW1tRutxWGoeI4\nth0aAAAAMNPoiYAhvYO3Xk+E3sEbwxkwTb2+B1EU9Rt8JklCPwQAAADAMpIIGMLBG8oiCAIFQTDS\nWBIAgK2ikRoAFIfhDAAAAKg1GqkBQHGoRMAQpngEAKA+Dp28qOWV1aFlg1MF7929S1dOHJl2WACA\nCiOJgCGDUzz2ysjTNFUURSQRAABbRhm5Xcsrq3rr1OP96xuHiA0mFAAAGAfDGTCEKR4BAEWijBwA\ngHohiYAhTPFYjCzL5HmeWq2WPM9TlmW2QwIAAACAiTGcAUOY4nFy9JUAAAAAUFckETCEKR4nR18J\nAAAAAHVFEgEjgiBQEAQjzZcwHvpKAAAAAKgreiIABaOvBAAAAIC6IokAFKzXV6Ldbmttba3fVyKO\nY9uhAQAAAMBEGM4AFIy+EgAAAADqiiQCsAPoKwEAAACgjkgiAAAA7IBDJy9qeWV1aNmBhcX+5b27\nd+nKiSPTDgsAgImQRMCILMuUJEm/FD+O45krxWcbAJgUB5BYXlnVW6ce71/fWJ02uD8AAFAVJBEw\nJMsyxXGsNE21vr6uubk5hWEoSTNzEM02AFAEDiABAEAdMTsDhiRJojRN5fu+Go2GfN9XmqZKksR2\naFPDNgAAAACAzZFEwJA8z9VsNoeWNZtN5XluKaLpYxsUI8syeZ6nVqslz/OUZZntkAAAAABMiOEM\nGOK6rjqdjnzf7y/rdDpyXddiVNPFNpgcQ0IAAACAeqISAUPiOFYYhmq321pbW1O73VYYhorj2HZo\nU8M2mBxDQgAAAIB6ohIBQ3pniaMo6s9MkCTJTJ09Zhts0vDt9eGO8nfCkBAAAACgnkgiYEQQBAqC\nYKST+CyZ5W0w2E1eupFQ2LjsThgSAgAAANQTwxkAFI4hIQAAAEA9UYkAoHAMCQEAAADqiSQCgB0x\ny0NCAAAAgLpiOMMOyLJMnuep1WrJ8zxlWbal9R3HkeM48n2/fxkAAAAAANuoRChYlmWK41hpmmp9\nfV1zc3MKw1CSxi7lNsZI2l5DOwAAAAAAdgqVCAVLkkRpmsr3fTUaDfm+rzRNlSSJ7dAAAAAAAJgI\nlQgFy/NczWZzaFmz2VSe55YiAgAAqKZDJy9qeWV1aNmBhcX+5b27d+nKiSPTDgsAZhpJhIK5rqtO\npyPf9/vLOp2OXNe1GBUAAED1LK+sDg3t3NisdzChAACYDoYzFCyOY4VhqHa7rbW1NbXbbYVhqDiO\nbYcGzByalGLSRreAxGcJAACDqEQoWK95YhRFyvNcrusqSZKxmyoCKA5NSmdbEY1uAYnPEgAABlGJ\nsAOCIFC329XS0pK63S4/VgHAAhrdAgAAFI8kAgCglmh0CwAAUDyGMwAAaolGt6iDkcaBrw/PTAAA\nwLSRRAAA1FKv0W2vJ0Kv0S3DGVAVG/sv0JMBAFAGJBGAkrnXXdDBcwvDC88N3i5J/IgE7oRGtwAA\nAMUjiQCUzLX8FHNiAwUJgkBBEIy8jwAAALA9NFYEAAAAAABjIYkAAAAAAADGQhIBAAAAAACMpXQ9\nERzHGVlmjLEQCQAAAAAAGFS6SgRjjIwx2n/8fP8yAADYnizL5HmeWq2WPM9TlmW2QwIAABVWukoE\n2JdlmZIk6U+JFscxU6IBQAVlWaY4jpWmqdbX1zU3N6cwDCWJz3UAALAtJBEwhB+cAFAfSZIoTVP5\nvt+f5jJNU0VRxGc6AADYFpIIGMIPTgCojzzP1Ww2h5Y1m03leW4pIkzbve6CDp5bGF54bvB2SXp8\nmiEBACqOJAKG8IMTAOrDdV11Oh35vt9f1ul05LquxahmRxkO4K/lp/TWqZuP0TtB0HNgYXFHHx8A\nUD8kETCEH5wAUB9xHCsMw/4QtXa7rTAMlSSJ7dBmAgfwAIA6IomAIfzgBID66A1Di6Ko3yw3SRKG\npwEAgG0jiYAh/OAEgHoJgkBBEIycBQcAANiOu2wHgPIJgkDdbldLS0vqdrskEICKyrJMnuep1WrJ\n8zxlWWY7JAAAAFQclQgAUENM1woAAICdQCUCANTQ4HStjUZDvu8rTVP6mwAAAGAiYyURHMf5uOM4\nf+U4zs8cx1nY5PYHHMdpO47zI8dx/r3jOJ8oPlQAwLiYrhUAAAA74Y5JBMdx5iR9TdJjkh6SFDiO\n89CGP/sfJf0bY8xHJf22pK8XHSgAYHy96VoHMV0rAAAAJjVOJcKvSfqZMebnxphfSHpF0hMb/sZI\n+i/ev7xX0jvFhQgA2KredK3tdltra2v96VrjOLYdGgAAACpsnMaKH5b0NwPXr0r69Q1/84eSLjqO\nE0naI+m/KSQ6AMC2MF2rffe6Czp4bsMIwHODt0vS49MMCQAAYGKOMeb2f+A4/0TSx40x/9371/+p\npF83xvz+wN/8i/fv68uO4/yGpFSSZ4z5/zbc17OSnpWk++6775FXXnnllo/7u69f17/++J7tPStJ\n7777ru65555tr1/EfUy6vu1twDa0E//GmDfex1af06TboIrbcCPb24BtaP858F62vw0njb+I+5j2\n+mXYB8oQw6Ct7kdli7+I+7D9XizDe9l2DFV//CLuY9bXl+y/jtNef6ufp77v/9AY86ub3pkx5rb/\nJP2GpAsD178g6Qsb/uYnkn5l4PrPJf3t293vI488Ym5n//Hzt739Ttrt9kTrF3Efk65vexuwDe3E\nvzHmjfex1ec06Tao4jbcyPY2YBvafw68l+1vw0njL+I+pr1+GfaBMsRwu8ff6uPZjr+I+7D9XizD\ne9l2DFV//CLuY9bXN8b+6zjt9bf6eSrpB+YWx/Lj9ET4vqSPOI7zoOM4H9CNxonf2fA3fy2pJUmO\n47iSPijp/xjjvgEAAAAAQEXcsSeCMWbNcZzfl3RB0pyks8aYnziO80e6kZ34jqTPS/pfHMf573Wj\nyeLvvp+9AABsk+M4I8v4aAUAAIBN4zRWlDHmNUmvbVj2BwOXfyrpHxYbGgDMtl7C4MDCot46RQM+\nAAAA2DfOcAYAQAVlWSbP89RqteR5nrIssx0SAAAAKm6sSgQAQLVkWaY4jpWmqdbX1zU3N6cwDCWJ\naR4BAACwbSQRAOyILMuUJInyPJfruorjmIPXKUqSRGmayvd9Xb58WYcPH1aapoqiaKzX4dDJi1pe\nWR1admBhsX957+5dunLiSOFxAwAAoNxIIgAoHGfB7cvzXM1mc2hZs9lUnudjrb+8sjrUh6GXiOgZ\nTCgAAABgdtATAUDhBs+CNxoN+b6vNE2VJInt0GaG67rqdDpDyzqdjlzXtRQRAAAA6oAkAoDCTXoW\nHJOL41hhGKrdbmttbU3tdlthGCqOY9uhAQAAoMIYzgCgcL2z4L7v95dxFny6esNGoijq96VIkoTh\nJAAAAJgIlQgACsdZ8HIIgkDdbldLS0vqdrskEAAAADAxKhEAFI6z4ACAumC2GgAYRhIBwI4IgkBB\nEIx09QcAoEqYrQYAhjGcAQAAAAAAjIUkAgAAAAAAGAvDGQAAQCkxFh0AgPIhiQBsIssyJUnSbwoY\nxzFNAQFgyhiLDgBA+ZBEADbIskxxHCtNU62vr2tubk5hGEoSiQQAAABYw4kulAFJhB3Am7vakiRR\nmqbyfb9/1itNU0VRxOsIABXCcAgAdcKJLpQFSYSC8eauvjzP1Ww2h5Y1m03leW4pIgDAdjAcAkCd\ncKILZcHsDAUbfHM3Gg35vq80TZUkie3QpirLMnmep1arJc/zlGWZ7ZDG5rquOp3O0LJOpyPXdS1F\nBAAAgFnHiS6UBZUIBePNXf1qjDiOFYZhP/52u60wDGcuEQQAAIDy6J3o8n2/v4wTXbCBSoSCcRa7\n+tUYQRAoSRJFUaT5+XlFUaQkSSqRAAEAAEA99U50tdttra2t9U90xXFsOzTMGCoRCsZZ7HpUYwRB\noCAIRsbPAgAAADb0TmhFUdRv4M6JLthAEqFgvLkptQIAAAB2Aie6UAYkEXbArL+5qcaoB8dxbl4+\nfeN/Y4ylaAAAAACUAUkEFI5qjHroJQxmNRkGAEUYmUby9ZvX9+7eNeVoAACYHEkE7IhZr8YAAOCt\nU48PXT+wsDiyDACAqmF2BozIskye56nVasnzPGVZZjskWMB+AAAAgEGO48hxHPm+3788S4+PG6hE\nwJAsyxTHcb+fwdzcnMIwlCSGI8wQ9gMAAABs1Bvuaquyyvbj4wYqETAkSRKlaSrf99VoNOT7vtI0\npSnijGE/AAAAALAZkggYkue5ms3m0LJms6k8zy1FBBvYDwAAAABshiQChriuq06nM7Ss0+nIdV1L\nEcGGMuwH9GQAAAAAyoeeCBgSx7HCMOyPhW+32wrDkDL2GWN7P6AnAwAAAFBOJBEwpHeAFkWR8jyX\n67pKkoQDtxljez8Y7MnQmyY0TVNFUcS+CABTdOjkRS2vrA4tO7Cw2L+8d/cuXTlxZNphAQAsIomw\nic2mCul1Ap0FQRAoCIL+wRtmk839gJ4MAFAOyyurQx3QN34nDCYUAACzgSTCJpg6BLCr15PB9/3+\nMnpzAAAwm6iIAcqldkmEMlQRZFmmJEn6ZeBxHFOCDWyB7Z4MAACgPKiIAcqldkkE21UENISzi0x1\nPdjuyQAAAABgc7VLIthGQzi7yFTXB705AAAAgPK5y3YAdZPnua5evTo0v/3Vq1dpCIfKybJsaD/O\nssx2SAAAADON32coAyoRCnb//ffr2LFjevnll/vDGZ588kndf//9tkMDxpZlmY4ePao9e/ZIkq5f\nv66jR49KYlgOAACADQybRllQibADNjZ33KzZI1Bmx44dU6PR0NmzZ3XhwgWdPXtWjUZDx44dsx0a\nAADATBocNt1oNOT7vtI0pfE0po4kQsHeeecdnT59WlEUaX5+XlEU6fTp03rnnXdshwaM7erVqzp3\n7tzQl9S5c+d09epV26EBAADMpDzP1Ww2h5Y1m02GTWPqGM5QMNd1tW/fPnW73X5DuHa7Xan57Zmi\nEgAAlMG97oIOnlsYXnhu8HZJmv5sXLOEma/Kw3VddTod+b7fX9bpdCp1nIF6IIlQsKrPb89YK0jS\nvn379JnPfKbf26Pdbuszn/mM9u3bZzu0qeAHEwCUw7X8FLMuWcbMV+VR9eMM1AdJhIJVfX57pqiE\nJD3//PM6evSonn76ab399tvav3+/1tfX9ad/+qe2Q5sKfjABAICyqfpxBuqDJMIOqPL89oy1gnTz\nSypJEjmOoz179uiLX/wiX1IAAAAWVfk4A/VBY0UM6Y21GsRYq9kUBIG63a6WlpbU7XZJIAAAAAAg\niYBhvbFW7XZba2tr/bFWcRzbDg0AAAAAYBnDGTCEsVYAAABAOTGLGsqAJAJGMNYKAAAAKBdmUUNZ\nMJwBAAAAAEpucBa1RqMh3/eVpilTPGLqqEQAAABALR06eVHLK6tDywan6d27e5eunDgy7bCAbWEW\nNZQFSYQachxnZJkxxkIkmGXshwAA25ZXVvXWqcf71zcO1RxMKABl15tFzff9/jJmUYMNDGeoIWOM\njDHaf/x8/zKwVVmWyfM8tVoteZ6nLMu2tD77IQAAQHGYRQ1lQSUCsAOq3jk3yzIdPXpUe/bskTFG\n169f19GjRyXRuAcAAMAGZlFDWZBEAApWh865x44d09zcnM6ePdt/Dk8++aSOHTtWmecAAABQN8yi\nhjJgOANQsDp0zr169apeeumloefw0ksv6erVq7ZDAwAAAGARSQSgYHTOBQAAAFBXJBGAgvU65w6q\nWufcffv26amnnhpq3PPUU09p3759tkMDAAAAYBE9EYCC9Trn9noi9DrnVmk4w/PPP6/f+73f0/z8\nvFZXV7Vr1y598IMf1J/92Z/ZDg2olJHp414fnp8eAACgakgiAAWrS+fcD37wg/rlX/5lvf322/rw\nhz+s69ev2w4JqJTBuemlGwmFjcsAAACqhuEMwA4IgkDdbldLS0vqdruVSyAkSaJXX31Vb775pi5d\nuqQ333xTr776aqWqKQAAAAAUj0oEACNoDgkAAIA6OXTyopZXVoeWDQ473Lt7l66cODLtsCqJJAKA\nEb3mkL7v95dVrTkkIElZlilJkv7QojiOK1cZBAAAJre8sjo0rPDy5cs6fPhw//pIHyPcEkkEACPq\n0BwSyLJMcRz39+O5uTmFYShJJBIAAAC2iSQCgBF1aQ6J2ZYkidI0le/7/bMNaZoqiiL2ZQAAgG0i\niQBgU0EQKAiCkVIvoCro7QEAAFA8ZmcAANRSr7fHoK329siyTJ7nqdVqyfM8ZVlWdJgAAACVQiUC\nAKCWJu3tQU8FAACAUVQiAABKa5JKgCAIlCSJoijS/Py8oijaUm+PwZ4KjUZDvu8rTVMajAIAgJlG\nJQIAoJSKqASYpLcHPRUAAMkKQxkAACAASURBVABGUYkAACgl25UARfRUAAAAqBsqEYASOrCwOLzg\n9ZvX9+7eNeVoADtsVwJM2lMBAACgjkgiACXz1qnHh64fWFgcWTYNWZYpSRLleS7XdRXHMc3kMFW9\nSgDf9/vLplkJ0Nvfoyjqvw+20lMBAACgjkgiABhBV3qUQRkqASbpqQCUBdVtAIAikUQAMGJwLHrv\n4ClNU0VRRBIBU0MlADC5slS3AQDqgyQCgBG2x6IDPVQCAAAAlAuzMwAYQVd6AAAAAJuhEgHAiDiO\n9alPfUp79uzR22+/rf379+v69ev66le/ajs0AAAAABZRiQDgthzHsR0CAAAAgJIgiQBgRJIkevXV\nV/Xmm29qaWlJb775pl599dWpdsUHAAAAUD4MZwAwgsaKAFAegxVhzukb/xtjLEUDAJh1VCIAGEFj\nRQAoD2OMjDFqt9v9ywAA2EIlAoARcRwrDEOlaar19XW1222FYchwhorZrJ8FBx8AAACYBEkEACOC\nIJAkRVGkPM/luq6SJOkvRzX0EgYHFhb11qnHLUcDAACAOiCJAGBTQRAoCAJdvnxZhw8fth0OAAAA\ngBKgJwIAAAAAABgLlQgAAADY1L3ugg6eWxheeG7wdkliuBQAzBKSCAAAANjUtfzUUE+VjUPcDiws\nWogKAGATSQQAwAjOPtZHlmVKkqTfJDWO48o0SWU/BACgfEgiYEdU+UcrAM4+1kWWZYrjuD9d69zc\nnMIwlKRKfCazHwIAUD4kEVC4qv9oBYC6SJJEaZrK9/3+AXiapoqiiM9jABjToZMXtbyyOrRsMIm5\nd/cuXTlxZNphAdaQRCiRunxA8aMVAMohz3M1m82hZc1mU3meW4oIAKpneWWVqihgAEmEEqnLBxQ/\nWgGgHFzXVafTke/7/WWdTkeu61qMCgAAVNldtgNA/fR+tA7iRysATF8cxwrDUO12W2tra2q32wrD\nUHEc2w4NAABUFJUIKFzvR2uvJ0LvR2uSJLZDA4CZ0htCFkVRv9FtkiQMLasYmhUDAMqEJAIKx49W\nACiPIAgUBMHIEDlUA82KAQBlw3AG7IggCNTtdrW0tKRut8sPHQAAtmGwWXGj0ZDv+0rTlOo+AIA1\nJBEAAABKimbFAICyYTgDAACopXvdBR08tzC88Nzg7ZL0uMqMGTYAAGVDEgEAANTStfxU5adOplkx\nAKBsSCIAAACUFM2KAQBlQxIBIxzHGVlmjLEQCQCgqg6dvKjlldWhZYNn/vfu3qUrJ45MO6xKYoYN\nAECZkETAiF7C4MDC4lAZKABUDUlRe5ZXVis/lAAAyibLMiVJ0q9MiuOYyiRMHUkEAEBtkRQFANRF\nlmWK47jfI2Vubk5hGEoSiQRMFVM8AgAAAEDJJUmiNE3l+74ajYZ831eapjRaxdSRRAAAAABKLssy\neZ6nVqslz/OUZZntkDBleZ6r2WwOLWs2m8rz3FJEmFUMZwCADeowtzwAoD4oY4ckua6rTqcj3/f7\nyzqdjlzXtRgVZhGVCACwwbX8lH781I/7/87sPzN0/Vp+ynaIwNg4ewlUH2XskKQ4jhWGodrtttbW\n1tRutxWGoeI4th0aZgyVCAAA1BRnL4F6oIwd0s3P7SiK+rMzJEnC5zmmjkoEAABqirOXQD30ytgH\nUcY+m4IgULfb1dLSkrrdLgkEWDFWEsFxnI87jvNXjuP8zHGchVv8zX/rOM5PHcf5ieM4LxcbJgAA\n2CrOXgL1QBk7gDK543AGx3HmJH1N0sckXZX0fcdxvmOM+enA33xE0hck/UNjzH92HOdv71TAAABg\nPDThAuqBMnYAZTJOJcKvSfqZMebnxphfSHpF0hMb/uYZSV8zxvxnSTLG/KdiwwQAAFvF2UugPihj\nB1AW4zRW/LCkvxm4flXSr2/4m78rSY7j/DtJc5L+0BjzeiERAgCAbQmCQG+88YYee+wxvffee7r7\n7rv1zDPPcPABAAC2rajZGRqSPiLpsKR9kv6t4zgHjTH/9+AfOY7zrKRnJem+++7T5cuXb3und7r9\nTiZdf9L7ePfdd7e8/uDfb7b+JPe3HZOuv51tMOn6RW5DG/FvxubrWMRzsP3424mhbu/F7axft/eS\n7cefNIbtrL+0tKS/+Iu/0Je+9CU9+OCDevPNN/Unf/In+qVf+iW1Wq0t3Zetz+NJ76MM7+XB4STO\n6Rv/t9vtLd9PHT4PbexHZdgPB9n+PLT926oMMVTx8Yu+jzp8r876bxur+7Ex5rb/JP2GpAsD178g\n6Qsb/uYbkv7ZwPUlSf/gdvf7yCOPmNvZf/z8bW+/k0nXL+I+2u32RI+3cf2txlOGbbjVbTDp+kVv\nw2nHvxnbr+Okz8H2428nhrq9F7ezft3eS1XcD4tY/+GHHzaXLl0yxtx8DpcuXTIPP/zwlu/Lxufx\npPdRtvey7feBMfY+DyWN/JvG45dhP9zI9n5g+7dVGWKo2uPvxH1U/XuV3zY7vx9L+oG5xbH8OD0R\nvi/pI47jPOg4zgck/bak72z4m2/pRhWCHMf5kG4Mb/j5eGmM+smyTJ7nqdVqyfM8ZVlmOyRgy9iP\ngepjdgaURe+H5/7j5wdPQgEAKuiOwxmMMWuO4/y+pAu60e/grDHmJ47j/JFuZCe+8/5tRxzH+amk\ndUn/0hjzf+1k4GWVZZniOFaaplpfX9fc3JzCMJQkxqCiMtiPgXpgdgYAAFC0cSoRZIx5zRjzd40x\n/5UxJnl/2R+8n0Do1aP9C2PMQ8aYg8aYV3Yy6DJLkkRpmsr3fTUaDfm+rzRNlSSJ7dCAsbEfA/XA\n7AwAAKBoRTVWxPsoHUUdsB8D9cDc8gAAoGhjVSJgfL3S0UGUjqJq2I+B+mBueQAAUCSSCAWjdBR1\nwH4MAAAAYDMMZygYpaOoA/ZjAAAAAJspTRLh0MmLWl5ZHVp2YGGxf3nv7l26cuLItMPaliAIFASB\nLl++rMOHD9sOB9gW9mMAs65Ov02AKrvXXdDBcwvDC88N3i5Jj08zJGCmlSaJsLyyqrdO3Xzzbzxw\nGfzSBgAA2Gn8NgHK4Vp+ivciUCL0RAAAAABKLssyeZ6nVqslz/OUZZntkADMqNJUIgAAAAAYlWWZ\n4jhWmqZaX1/X3NycwjCUJPoVAWNiWExxqEQAAOwYzpwBwOSSJFGapvJ9X41GQ77vK01TJUliOzSg\nMq7lp/Tjp37c/3dm/5mh69fyU7ZDrAwqEQBsKssyJUnSn50hjmPOdmBLOHMGAMXI81zNZnNoWbPZ\nVJ7nliICMMuoRAAwIssyHT16VNevX5cxRtevX9fRo0enehaZM9jVx5kzACiG67rqdDpDyzqdjlzX\ntRQRgFlGEgHAiGPHjmlubk5nz57VxYsXdfbsWc3NzenYsWNTefzeGewzZ87owoULOnPmjOI4JpFQ\nMZw5KwcSckD1xXGsMAzVbre1tramdrutMAwVx7Ht0ADMIIYzABhx9epVXbx4Ub7v96dReumll3Tk\nyHTmQx88g917/DRNFUURZfAV0jtz5vt+fxlnzqaLISVAPfTer1EU9YcZJknC+xiAFSQRAJQOZ7Dr\noXfmrHcA2ztzxnCG6SEhVw/0qLGrLB3dgyBQEAT99zIA2EISAcCIffv26amnntI3v/nN/sHfU089\npX379k3l8TmDXQ+cObOPhFz1UU1i37X8lN46dTNJsPEg/sDCooWoAMAeeiIAGPH8889rbW1NTz/9\ntObn5/X0009rbW1Nzz///FQen7Gf9REEgbrdrpaWltTtdjnomTKasVUfDUoBAGVDJQKAEb0Dvd6P\n1D179uiLX/zi1A4Aq34G+9DJi1peWR1aNnimau/uXbpyYjr9JTDbGFJSfVSTAADKhiQCgE3ZHntp\n+/EnsbyySukrSqHqCTkwvAvFobcGgKKQRAAAoMaqnJAD1SQoBr01ABSJJAIAAEBJUU2CIjBTC4Ai\nkUQAAAAoMapJMCl6awAoEkkEAAAAoMborVEfjuOMLDPGWIgEs4wkAgAAAEprpBnt68Oz3eDO6K1R\nH72EwYGFxaEmzsA0kUQAAABAKW08SOLAaXvorQGgSCQRAAAAgJqjtwaAotxlOwAAAAAAAFANJBGw\nI7Isk+d5arVa8jxPWZbZDgkAAAAAMCGGM6BwWZYpjuN+8565uTmFYShJjL0DgCnLskxJkvTHQcdx\nzGcxAADYNioRdoDjOHIcR77v9y/PkiRJlKapfN9Xo9GQ7/tK05QOwAAwZb2k7pkzZ3ThwgWdOXNG\ncRxTHVYxVPcBAMqESoQdMOtTr+R5rmazObSs2Wwqz3NLEQHAbBpM6vaaqaVpqiiKqEaoCKr7AABl\nQxIBhXNdV51OR77v95d1Oh25rmsxKgCYPUUkdTerpusly7HzSAQB9t3rLujguYXhhecGb5ek2Ttx\niNlFEgGFi+NYYRj2z5q0222FYchwBgCYsiKSurNeXWcb1X2AfdfyU0OffxunyTywsGghKsAekggo\nXO/MSBRF/UZeSZJwxgQApoykbvVR3QcAKBuSCCVSp1KpIAgUBMFIphYAMD0kdauPRBAAoGxIIpQI\npVIAgKKR1K22IAj0xhtv6LHHHtN7772nu+++W8888wyJoApiulUAdUESAQAAoKSyLNPi4qK++93v\nDs3O8Oijj3IAWiHMsgGgTu6yHQAAAAA2Nzg7Q6PRkO/7StOU4QwVw+sIoE6oRACATYwMH3r95vW9\nu3dNORoAs4rZGeqB1xFAnVCJAOyALMvkeZ5arZY8z1OWZbZDwha8derxoX8bl105ccRyhACqZJLv\nhN7sDIOYnaF6eB0B1AmVCNgRs9w8iHGPAICeSb8TmJ2hHngdAdQJSQQUbtYPogfHPfa6oadpqiiK\nZuL5AyjGoZMXtbyyOrRscJjN3t27qIqpgEm/E5imsx54HQHUCUkEFG7WD6IZ9wigCMsrq0z7WwNF\nfCcwTWc98DoCqAt6IqBws34QzbhHAEAP3wkAgLqhEgGF6/1g8n2/v2yWfjDZHvdICTQAlIft7wQA\nAIpGEgGFm/UfTLbHPVICDQDlEQSB3njjDT322GN67733dPfdd+uZZ56ZieF9AIB6IomAwtk+iC4D\nxj0CAKQbzYYXFxf13e9+d6jZ8KOPPjpT34sAgPqgJwJ2RBAE6na7WlpaUrfb5YcSAGAmDTYbbjQa\n8n1faZrOTHUeAKB+SCIAAADskCKaDWdZJs/z1Gq15HmesiwrOkwAAMbGcAYAAIAdMmmz4SzLFMdx\nv89QbziEJKr8AABWUIkAAMAt1OEMcB2eQ5X1mg23222tra31mw3HcTzW+gyHAACUDZUIwCayLFOS\nJP3GkHEcc8ZnyhzHGVlmjLEQCWZVHc4A1+E5VN2kzYaLGA4BAECRqETAjqjyma/ej+4zZ87owoUL\nOnPmjOI4rtRzqANjjIwx2n/8fP8yME11OANch+dQB5M0G+4Nhxi0leEQAAAUjUoEFK7qZ74Gf3T3\npmhM01RRFFUifgDFqMMZ4Do8h1kXx7E+9alPac+ePXr77be1f/9+Xb9+XV/96ldthwYAmFFUIqBw\nVT/zxY9uAFI9zgDX4Tngps2GeQEAMG1UIqBwVT8In7STNoB66DXE61VV9RriVSUhKtXjOcy6JEn0\n7LPP6lvf+pYkac+ePfr0pz+9pb4KwCTudRd08NzC8MJzg7dL0uPTDAkWHDx3cOj6va5G9osfP/Xj\nHXv8QycvanlldWjZgYXF/uW9u3fpyokjO/b4GEYSAYWr+kE4P7oBSJM3xCuDOjyHWffTn/5U169f\n19mzZ/tDBJ9++mm9/fbbtkPDjLiWn9Jbp24mCXpDPXsGD+RQX7b3g+WVVfbDEmE4Awo36XRWtgVB\noCRJFEWR5ufnFUURP7qBGTVJQ7yyqMNzqLpJmg1/4AMfUBRFQ0MEoyjSBz7wgR2MGACAW6MSAYWr\nw5mvIAgUBMFIlhMAgK2YtNnwL37xC73wwgv66Ec/2q+Oe+GFF/SLX/xip0MHAGBTVCJgR3DmCwCA\nyZsNP/TQQ3ryySeHquOefPJJPfTQQzscOQAAm6MSAQAAYIdM2mw4juNNKxno0wMAsIUkAgAAwA6Z\ntNlwHYYIAgDqheEMAAAAO6SIZsMMEQQAlAmVCNgRWZYpSZL+WZM4jvnRAwCYOVQSAADqhiQCCjdp\nJ2qUA4kgACgGM/7Yc6+7oIPnFoYXnhu8XZIeFwBgfCQRULjBTtS9H0xpmiqKoh0/COXHQjFIBAEA\neg4sLA4veP3m9b27d005mq25lp/SW6dufu9vTOSMPLcdRHIeQF2QREDhJu1EPYky/VioMpuJIGCQ\n4zgjy4wxFiIBZtPgd6p043t04zLcGcl5AHVCY0UUrteJetBWOlHDPpuJIGCQMUbGGO0/fr5/Gaia\nLMvkeZ5arZY8z1OWZbZDwpQNJucbjYZ831eapkzVCaCSqERA4XqdqHvZ9l4nar4oq2PSKckAADdw\nBhoSyXkA9VKaJAJj2euDTtTVRyIIAIr5bcLwMEgk5wHUS2mSCIxlrxc6UVcbiSDgBhqhzbYifptw\nBhpSOZLzfJ4BKEppkgioF76oqo9EEGYdZegoAmegIdlPzvN5BqBINFZE4XpfVGfOnNGFCxd05swZ\nxXFMIykAlUIjNBShdwa63W5rbW2tfwY6jmPboWHKgiBQt9vV0tKSut3ulg/eJ2nQyecZgCJRiYDC\nMf4TQB1Qho4i2D4DjXqYtJKAzzMARaISAYXjiwpAHTBdLYoy6RloYNJKAj7PABSJJAIKxxdVPTCv\nOWYdZegAymLSEzR8ngEoEsMZBhw6eVHLK6tDywY7L+/dvUtXThyZdliVU4YOxLY5jjOyzBhjIZLt\noQETQBk6gPKYtEEnn2cAikQSYcDyyirTTBaAL6qbCYMDC4tD+1RV0NcCuIFZSgCUQREnaPg8A1AU\nkgjYEXxRVRt9LQAAKA9O0AAoE3oiABhBXwsAAMqFBp0AyoIkAoARNGACAAAAsBmGMwAYQdkkAAAA\ngM1QiQBgU5RNAgAAFIfps1EXVCIAADY1MiPN68NT3gIAgPEwfTbqhCQCAGDExqlJqzpdKQDURZZl\nSpKkP8wwjmMOPiuE6bNRJyQRAAAAgBLjLHb1MX026oSeCAAAAECJDZ7FbjQa8n1faZoqSRLboWFM\nTJ+NOiGJAAAAAJQYZ7Grj+mzUSckEbAj6D5bfbyGQDEcx5HjOHr79Cf7lwFgKziLXX1BEChJEkVR\npPn5eUVRxPTZqCx6IqBwjNurPl5DoDjGGEnqN9ICgK3qncXufS/3zmIznKFagiBQEAR8H6DySCKg\ncHSfrT5eQ6A+Nqt86CU2AFRD77s3iqL+7AxbPYvN7A4A01cXhSQCCse4verjNQTqo5cwYJpOoNom\nOYtNhSHA9NVFIomAwvXG7fm+31/GuL1q4TWEbYdOXtTyyurQssGzB3t379KVE0emHRYAVBIVhgCK\nRBIBhWPcXvXxGtrFAbS0vLI6dHZg45m3kXJEAMAtUWEIoEgkEUqmDuN0ihi3B7t4De3iABoAUCQq\nDAEUiSRCidRpnA7dZ6uP1xAAgHqgwhBAkUgiAAAAADVGhSGAIpFEAAAAAGqOCkMARalNEoFGZAAA\nAAAA7KzaJBFoRAYAQHnc6y7o4LmF4YXnBm+XpGr2/QEAYJbVJokAAADK41p+iuQ+AAA1RBIBAAAA\nuI06TMENAEUhiQAAAADcQp2m4AaAItxlOwAAQH1lWSbP89RqteR5nrIssx0SAAAAJkAlAoDaYbaW\ncsiyTHEcK01Tra+va25uTmEYShJzkwMAAFQUSQQAtcNsLeWQJInSNJXv+/3XIE1TRVFEEgEAAKCi\nSCIAAHZEnudqNptDy5rNpvI8txQRANjjOM7IMmOMhUgAYDL0RAAA7AjXddXpdIaWdTodua5rKSIA\nsMcYI2OM9h8/378MAFVEEgEAsCPiOFYYhmq321pbW1O73VYYhorj2HZoAAAA2CaGMwAAdkSv70EU\nRcrzXK7rKkkS+iEAAABUGJUIwCaYlg4oRhAE6na7WlpaUrfbJYEAAABQcWNVIjiO83FJX5U0J+lf\nGWNO3eLv/rGk/1XSPzDG/KCwKIEpYlo6wL573QUdPLcwvPDc4O2S9LgAAAAwXXdMIjiOMyfpa5I+\nJumqpO87jvMdY8xPN/zdvZKOSvrfdyJQYFqYlg6w71p+imk6AQAASmic4Qy/JulnxpifG2N+IekV\nSU9s8nf/k6TTkv7fAuMDpo5p6QAAAABgc+MMZ/iwpL8ZuH5V0q8P/oHjOH9f0q8YYxYdx/mXt7oj\nx3GelfSsJN133326fPny0O2D1999993b3r6ZSdcv6j4m+fu6rO/7/siydru95fvZ7DW4k0lfwwce\neEAvvPCCPvrRj/bX/9GPfqQHHnhgW9tj0tdgO/dR5H68ndfgdvFMa33b7+UyfJ5N8vdF34eN9/Lt\n7m+ringfVH0bTPp4tr6Xba8/aNL9qIj9UKrub4vtrl/0+2i76xS1vo39qOhtuJ0YRirQXr95fc+u\nnX8vFrENlpaW9Od//uf667/+az3wwAP6nd/5HbVarS3FsdXHvBXb+4Htx59kndvFUPb1C9uGvXlq\nb/VP0j/RjT4Ivev/VNILA9fvknRZ0oH3r1+W9Kt3ut9HHnnEDNp//PzQ9Xa7fdvbN5p0/aLuY5K/\nr9v6RdzHxtdgq4+3ndfw5ZdfNg8++KC5dOmS+d73vmcuXbpkHnzwQfPyyy9vKZZxH6/o+yh6P97q\na/D3/vCC2X/8/C3//b0/vLCl+9vONrT9Xi7D59kkf78T92HjvTzJ32+01fiLuI+ybQMbn0W230u2\nP0+LXt8Y+78NqrgfThpD0etPez/aiW046XOo4ndSkb8vx33M27G9H9h+/O2uc7sYyr7+VrehpB+Y\nWxzLj1OJ8B8k/crA9X3vL+u5V5In6bLjOJL0X0r6juM4/8jQXBEVxLR0k1leWWUsOwAAwAB6bqFO\nxkkifF/SRxzHeVA3kge/LenJ3o3GmGVJH+pddxznsqT/gQQCqiwIAgVBMHIADAAAAGwVPbdQJ3ds\nrGiMWZP0+5IuSMol/RtjzE8cx/kjx3H+0U4HiNmUZZk8z1Or1ZLnecqyzHZIAAALDiws9v/97uvX\nh67v3b3LdnjA1PDbqNpc11Wn0xla1ul05LqupYiA7RunEkHGmNckvbZh2R/c4m8PTx4WZlmWZYrj\nWGmaan19XXNzcwrDUJIo9wIwVVmWKUmS/tCmOI75HJqiwaFR0o2EwsZlwCwo4rcRn2d2xXGsMAz7\nr2G73VYYhkqSxHZowJaNlUQApokxYwDKgIQmgLKY9LcRn2f20XMLdXLH4QzAtDFmDEAZDP5obzQa\n8n1faZpy1gjA1E3624jPs3IIgkDdbldLS0vqdrskEFBZJBFQOq7r6uTJk0Pj/k6ePMmYMQBTRUIT\nQFlMOp6ezzMARSKJgNLxfV+nT5/W008/rcXFRT399NM6ffq0fN+3HRqAGUITLABl0RtP3263tba2\n1h9PH8fxWOvzeQagSPREQOm0220dP35cZ8+e7Y8ZO378uL71rW/ZDg3ADKEJFoCyCIJAb7zxhh57\n7DG99957uvvuu/XMM8+MXQ7P5xmAIpFEQOnkea4f/ehH+uM//uN+86DV1VV96Utfsh0aMJZ73QUd\nPLcwvPDc4O2SRIf5sqMJFoCyyLJMi4uL+u53vzvUGPHRRx8d6zOJzzMARSKJgNLpldwNDl+g5A5V\nci0/NTQNXS8Z1nNgYdFCVNiOIAgUBMHIa4jZMfJ+ff3m9b27d005GsyqImau4vMMQFFIIqB0KLkD\n6oN5yVFlg8lA6UZCYeMyYBpojAigTEgioHQouQPqgXnJAaAYVGkCKBNmZ0ApMY8uUH3MSw4AxZh0\ndgYAKFKpKhEYdwgA9UH5LQAUgypN+zhOAW4qTRKBcYcAUC+U3wJAcWiMaA/HKcAwhjMAAHYE5bcA\nAAD1U5pKBABAvVB+izKgBBkAgGKRRAAA7BjKb2ETJcgAABSPJAIAALeQZZmSJOlXUsRxPLVKinvd\nBR08tzC88Nzg7ZLEATEAAJgukgjoO3TyopZXVoeWDZaB7t29S1dOHJl2WABgRZZliuNYaZpqfX1d\nc3NzCsNQkqaSSLiWnxo6a76xmmOkTB8AAGAKSCKgb3lllR+sAPC+JEmUpql83+9/HqZpqiiK6OuA\nynEc5+bl0zf+N8ZYigYAUGXMzgAAwCbyPFez2Rxa1mw2lee5pYiA7TPGyBijdrvdv4xqybJMnuep\n1WrJ8zxlWWY7JAAzikoEAAA24bquOp2OfN/vL+t0OnJd12JUAGaR7eFVADCISgQAADYRx7HCMFS7\n3dba2pra7bbCMFQcx7ZDAzBjBodXNRoN+b6vNE2VJInt0ADMICoRgJJi/CrqYHA/7qnKftw7uxdF\nUX92hiRJOOsHYOryPNfVq1fleV7/8+j48eMMrwJgBUkEoKR6B1obG1xOi82p7TCZMs200tuPDyws\nDjVurYogCBQEgbX3IQBI0v3336/jx4/rm9/8Zn84w6c//Wndf//9tkMDMINIIgAYwdjLamOmFQCo\nn41VXFWp6gJQP/READCCsZcAAJTHO++8o+eff15RFGl+fl5RFOn555/XO++8M/Z9OI4jx3Hk+37/\nMgBsB0kEACOY2g4AgPJwXVf79u1Tt9vV0tKSut2u9u3bt6XZYnpTe+4/fp5pPgFMhCQCgBG9qe0G\nMbUdAAB2MFsMgDKhJwKAEb0fK72eCL0fKwxnAABg+pgtBkCZkEQAMIIfKwAAlEsdZoth5iegHkgi\noJT4krGvDj9WUG0js0i8PjxNJQCgOpj5CagPkggonTJ8yZDEAOwanKJSupFQ2LgMAFAdgzM/9U5Q\npGmqKIr4jQVUDEkElI7tL5kyJDEAAKiDQycvanlldWjZYJXR3t27dOXEkWmHhS0qojKMmZ+A+iCJ\ngNKx/SVjO4kBAMCgVJsiWAAAIABJREFUKlfHLa+sDlURbRwiN3JwitIpqjKsN/OT7/v9Zcz8BFQT\nSQSUju0vGdtJDAAAeqiOQ10w8xNQH3fZDgDYyPZcyL0kxiAy5QAAGwar4xqNhnzfV5qmHHihcoIg\nUJIkiqJI8/PziqJo6jM/ZVkmz/PUarXkeZ6yLJvaYwN1QiUCSsf29IJxHOs3f/M3R5a//PLLU3l8\nAAB6qI5Dndic+YmqHqA4VCKglIL/n717j5Orru8//v5kFyQsEG8VL5FLvdSFRbzVetlWxkhQ8YK2\naAcQarZVStmuxZpEpzXGOpDEYkvjpV4mGq0Z64XmhyAQGwY1Wi0iIgurVA1getGqmEIMmiyf3x/f\nM7szez1nzmTPmdnX8/GYx+6c3e85350953u+5/O9FYsaHR3Vzp07NTo6uqCFe7FY1LZt23TyySdL\ntkQnn3yytm3bxg0GALDg6B0HtAe9eoD2IYgAzKAexDh+9VULHsQAAKAu6yF+QLegVw/QPgxnAAAA\nyKmsh/gB3SLribuBbkJPBAAAgBzLcogf0C3o1QO0Dz0RAAAAAHQ1evUA7UMQoY1OXb9De/cfaNp2\nwtprJr5ftvQw3bpu5UJnCwAAAFj0slwdAugmBBHaaO/+A7prw5kT76cWUI0BBQAAAAAAOg1BBORS\ntVpVuVye6G5WKpVidzebFqy5rrk3CAAAAACgNV0TRDi6f61O2bq2eePWxp9L0plC/lWrVZVKJVUq\nFY2Pj6unp0dDQ0OSNG8gobEniBQCClO3AQAAAABa0zVBhPvGNiz6oQTdMidDuVxWpVJRoVCY+D9W\nKhUNDw8z+Q0AAAAAZKhrggjonjkZxsbGNDg42LRtcHBQY2NjGeUIC6lbgmEAkCdphgkCANCIIAJy\np7+/X+vXr9f27dsnKjtnnXWW+vv7s84aFkC3BMOQLYJRwKQ0wwSRHwSCAOQFQQTkTqFQ0MaNG7Vx\n40addNJJuuOOO7RmzRpdeOGFWWcNQIcgGAVMYphg5yMQBCBPlmSdAWCqWq2mNWvWaMuWLTrzzDO1\nZcsWrVmzRrVaLeusAQDQcRgm2PkaA0G9vb0qFAqqVCoql8tZZw3AIkQQAbkzNjamdevWaXR0VDt3\n7tTo6KjWrVtHZQcAgBb09/dr165dTdt27drFMMEOQiAIQJ4wnAG5w5wIAAC0T6lU0tDQ0ERX+Fqt\npqGhIVqxOwh1IwB5QhABucOcCAAAtE99zPzw8PDEA2i5XF40Y+mnzYFyXfMkq52AuhGAPCGIgNxp\nnBOhXtlZs2aNtm/fnnXWAADoSMViUcVicdoko92ucYJVKQQUpm7rBNSNAOQJQQTkztjYmG655Ra9\n613vmqjsHDhwQJdddlnWWQMAAFhw1I0A5AlBBOROfQKoQqEwsY0JoOI7un+tTtm6tnnj1safS1Ln\ntcIAALBYUTcCkCeszoDcqU8AVavVdPDgwYkJoEqlUtZZW1DValUDAwNasWKFBgYGVK1WY6W7b2yD\nbrvgtonX5uM3N72/b2zDIc450D1avQ4BoJ2oGwHIE3oiIHcW+wRQUnhwKZVKEzNp9/T0aGhoSJIW\n1ecAZInrEEBeUDcCkCf0REAuFYtFjY6OaufOnRodHV10N8lyuaxKpaJCoaDe3l4VCgVVKhWW4wIW\nENchgDxZ7HUjAPlBT4QGjCVHXoyNjWlwcLBp2+DgoMbGxjLKEbD4cB2im1SrVZXL5YlW7FKpxEMo\nAKAlBBEa3De2oWnZn6nLIE1bZxg4RJhACcge1yG6BUNzAADtxHAGIIeYQAnIHtchugVDcwAA7URP\nBCCHmEApH8xs8vuN4au7Z5QbLDSuQ3QLhuYAANqJngjIJZZVQx64u9xdtVpt4nsgKcozZK0+NKcR\nQ3MAAK2iJwJyh7GbfAZAHrTjOuRaRh7Uh+bUz8P60ByGMwAAWkFPBOQOYzf5DIA8aMd1yLUMKfve\nKMViUWeeeaZe8pKX6PTTT9dLXvISnXnmmQSygA5y6vodOmHtNRMvSU3vT12/I+McYjGhJwJyh7Gb\nfAZAHrTjOuRaRh56o1SrVV1zzTW69tprm/LwvOc9j0AC0CH27j/AKnLIDXoiIHcYu8lnAORBf3+/\n1q9f39SCvH79+kTXIdcy8tAbJQ95AAB0D4IIyB2WVeMzAPKgUCho48aNWrVqla655hqtWrVKGzdu\nVKFQiL0PrmXkoTdKHvIAAOgeDGdA7rCsGp8BkAe1Wk1r1qzRli1bJq7DNWvWaPv27bH3wbWMem+U\nxuDTQvdGyUMekF7jssN1rBoEIAv0REAuFYtFjY6OaufOnRodHV2UFW4+AyBbY2NjWrduXdN1uG7d\nusStt1zLi1seeqPkIQ9Ir77U8PFrrmbZYQCZoicCgBlVq1WVy+WJ1tNSqcTDDxYVWm/RDnnojZKH\nPAAAugdBBADT5GE2cSBr9dbb+nVQb71lMjokVSwWVSwWp82mvtjyAADoDgQRAEzTOJN3vcJZqVQ0\nPDxMEAGLBq23AAAA0xFEADANM3ln6+j+tTpl69rmjVsbfy5JZwqHHq23AAAAzQgiAJiGseDZum9s\ng+7aMBkkmPoAe8LaazLIFQAAAMDqDABmwEzeAAAAAGZCTwQA0zAWHAAAAMBMCCIAmBFjwQEAAABM\nxXAGAAAAAAAQC0EEAAAAAAAQC0EEAACALletVjUwMKAVK1ZoYGBA1Wo16ywBADoUcyIAAAB0sWq1\nqlKppEqlovHxcfX09GhoaEiSmDAXAJAYQQQAbXV0/1qdsnVt88atjT+XpDMXMksAsKiVy2VVKhUV\nCoWJyXIrlYqGh4cJIgDoCNQv84UgAoC2um9sg+7aMFmIT13d4YS112SQKwBYvMbGxjQ4ONi0bXBw\nUGNjYxnlCACSue2C25ren7D2mqb6JhYWQQQAAHJqWtDtusn3y5YedkiPfer6Hdq7/8Cs+Vm29DDd\num7lIc0D2qO/v1+7du1SoVCY2LZr1y719/dnmCsAQKciiAAAQA5NbWFZ6FaXvfsP0KuoS5RKJQ0N\nDU3MiVCr1TQ0NKRyuZx11gAAHYggAgAAXSgPPQmy7EmBSfV5D4aHhzU2Nqb+/n6Vy2XmQ8CiU61W\nVS6XJ66DUqnEdQC0gCACAABdKOueBFn3pECzYrGoYrE47TwAFgtWKQHaZ0nWGQAAAACAQ6lxlZLe\n3l4VCgVVKhWG9QAtoCdCG7H0CPLQfRgAAADNWKUEaB+CCG3E0nbIuvswAgJ6ALoJ47iB9FilBGgf\ngggAug4BPQDdgnHcQHuwSgnQPgQRAAAAcqpxHHc9IFqpVDQ8PEwQAUiAVUqA9iGIAAAAkFOM4wba\nh1VKgPZgdQYAAICcqo/jbsQ4bgBAlggiAMAsqtWqBgYGtGLFCg0MDKharWadJQCLTH0cd61W08GD\nByfGcZdKpayzBgBYpBjOAAAzYDIzAHnAOG4AQN7QEwEAZtA4mVlvb68KhYIqlQqzOANYcMViUaOj\no9q5c6dGR0cJIAAAMtVVPRGmLdt23eT7ZUsPW+DcAOhkTGYGAAAATNc1QYTGNeGlEFCYug0A4qpP\nZlYoFCa2MZkZAAAAFruuCSIAQDvVJzOrz4lQn8ws7nAGekYBAACgGxFEAIAZpJnMjJ5R3cPMpm1z\n9wxyAgAAkA9MrAgAs2AyM7i73F3Hr7l64nsgKZaLBQB0E3oiAAAAHCKLfbnYo/vX6pSta5s3bm38\nuSTRUwsAOglBBAAAgEOkcbnYG2+8UaeddpoqlYqGh4cXRRDhvrENTcO56p9B3bT5YwAAucdwBgAA\nDiG6si9uLBcLAOg29EQAAOAQWexd2cFysQCA7kNPBAAADpFyuaxzzjlHw8PDOuOMMzQ8PKxzzjkn\n9lKh6Hz15WJrtZoOHjw4sVxsqVTKOmsAALQkVk8EM3uxpCsk9Uj6iLtvmPLzSyT9saSDkv5X0ip3\nv7vNecUiUq1WVS6XJ5bWK5VKtNotEkzChUaNSyzaxvC1k1ZIuOOOO7Rv3z5t2bJloifCqlWrdPfd\n3CIXizTLxQIAkEfzBhHMrEfS+ySdLmmPpJvM7Cp3v6Ph126R9Cx3/6WZ/amkTZJeeygyjEMnLw9v\ndP9d3JiEC43qAYOp50GnOPzwwzU8PNw0qd7w8LDe9ra3ZZ01LKBisahisdix5zEAAI3i9ER4tqTv\nu/sPJcnMPiXplZImggjuXmv4/a9LOq+dmcTCyMvD22KfyRpA9/j1r3+t9773vXr605+u8fFx1Wo1\nvfe979Wvf/3rrLMGAADQkjhBhMdJ+lHD+z2SfmeO3x+SdG2aTGFxYyZrAN3ipJNO0llnndXUlf2c\nc87R9u3bs84agAVy6vod2rv/QNO2xoaZZUsP063rVi50tgCgZW1dncHMzpP0LEkvmOXnb5D0Bkk6\n9thjdeONN865v/l+Pp9W0jemuf/++6ftI0meW0kvqWkG5/oY4FqtNstvt/f47cj/XPuM47jjjtOq\nVau0a9cu3XPPPTruuOM0ODio4447bkGOnzZ9uz/DmfaxkHnI4vjtyH/Wn8Fc+Un6+516LbczfdbX\nQSu/L0mvetWrVKlU9Ja3vEUnnniidu/erXe/+90aGhpakP9B3s6jtOdQO/bRaedxO9O3ax+deC22\nM33Sfezdf0Afe3HfxPv7779fRx111MT7P7puX8d9Bp14HnbD8bOu22R9/Lnyk8U+si7TM/0fuvuc\nL0nPlXR9w/u3SnrrDL/3Ikljkh413z7dXc985jN9LsevuXrOn8+nlfRT09RqtUT7TJt+qqnp55O3\n/Lea5uKLL/be3l6//PLL/dprr/XLL7/ce3t7/eKLL16Q46dJfyg+w4U+D7I+fjvyn/VnMF9+kv5+\np17L7Uyf9XWQJv/btm3zk08+2ZcsWeInn3yyb9u2raX9dPp5lPYcaMc+sk6ftixJm74d+8jqvihp\n2qsVWZyHebuWsk7vvvDnYTccP+u6TdbHny8/Wewj6zL9UP8PJX3TZ3mWj9MT4SZJTzKzEyX9p6Q/\nlHRO4y+Y2dMlfVDSi939J/HCF8DMarWa1qxZoy1btkx0/12zZg3dfwF0JCbVA9LzDp9kFQC6ybxB\nBHc/aGYXS7peYYnHLe5+u5m9UyE6cZWkd0s6StJnouW47nH3VxzCfKOLjY2N6ZZbbtG73vWuicrC\ngQMHdNlll2WdNQDAItTpS40CANBOseZEcPcvSPrClG1vb/j+RW3OFxax/v5+7dq1q2luiF27dqm/\nvz/DXAEAFitawQEAmLQk6wwAU5VKJQ0NDalWq+ngwYOq1WoaGhpSqVTKOmsAAAAAsKi1dXUGoB2K\nxaIkNS2JVi6XJ7YDAAAAALJBTwTkUrFY1OjoqHbu3KnR0VECCAAApFCtVjUwMKAVK1ZoYGBA1Wo1\n6ywBADoUPRGQS9VqVeVyeaInQqlUIpDQQU5Ye03zhusm3y9betgC5wYAFrdqtapSqaRKpaLx8XH1\n9PRoaGhIkri3YkFRvwO6A0EE5A6Vnc5214Yzm96fsPaaadsAAPGlffAql8uqVCoqFAoTk0NWKhUN\nDw9zX8WCoX4HdA+GMyB3Gis7vb29KhQKqlQqKpfLWWcNiwzdfwFkrf7gtXnzZl1//fXavHmzSqVS\novJobGxMg4ODTdsGBwc1NjbW7uwCs6J+B3QPeiIgd6jsIA86ucXk6P61OmXr2uaNWxt/Lkn0DgE6\nQTt6EbB0MvKA+h3QPeiJgNypV3YaUdnBQuvkFpP7xjbotgtum3htPn5z0/v7xjZknUUAMbXjwYul\nk5EH1O+A7kFPBOROvbJTbwGuV3Y64eEN3YMWEwB50I5eBCydjDygfgd0D4IIyB0qO8gDuv8CyIN2\nPXgVi0UVi8WJIRHAQqN+B3QPggjIJSo7nc/MJr/fGL66e0a5SY4WEwB5wIMXugn1O6A7EEQAcEjU\nAwadWlGg4g4gL3jwAgDkCUEEtNWp63do7/4DTdtOWHvNxPfLlh6mW9etXOhsAS2h4g4AAAA0I4jQ\nZo0PzJKk65ofoLvd3v0HdNeGyaXjpj58Tft8AAAAgAVQrVZVLpcnehiWSiV6GAItIIjQRo0Pz1J4\nYJ667VBibXgAAABgumq1qlKpNDHXUU9Pj4aGhiSpIwIJ1PORJwQRush9YxvoBQAgFxjaBADIk3K5\nrEqlokKhMFFHrlQqGh4e7oggAvV85AlBBABA2zG0CQCQJ2NjYxocHGzaNjg4qLGxsYxyBHQugghT\nLPY5DQAAAIBu09/fr127dqlQKExs27Vrl/r7+zPMFdCZCCI0yHpOAwAAAKCdGF4WlEolDQ0NTcyJ\nUKvVNDQ0pHK5nHXWgI5DEAG5xOy5AAAA6TG8LKjXI4eHhyfql+Vymfol0IIlWWcAmKparWpkZET7\n9u2TJO3bt08jIyOqVqsZ5wzAQqtWqxoYGNCKFSs0MDBAOQAAaFmxWNTo6Kh27typ0dFRAghAi+iJ\ngNxZvXq1ent7tWXLlokleM4991ytXr2awh5YRNIsx8VSWAAAAIcGQQTkzp49e7Rjx46mJXi2bt2q\nlSu7f7wegElpluNiKSwAAIBDg+EMAIBcYjkuAACA/CGIgNxZvny5zj//fNVqNR08eFC1Wk3nn3++\nli9fnnXWACyg+nJcjViOCwAAIFsEEZA7mzZt0vj4uFatWqWVK1dq1apVGh8f16ZNm7LOGoAFVF+O\nqzGgODQ0pFKplHXWAAAAFi3mREDu1Mc6l8tlmZn6+vp06aWXMqliAtPGe1/XvB400AlYjgtoH5ZO\nBgC0C0EE5FKxWFSxWJw2GRrm1ziZnBQCClO3AZ2CsgBIL81KJwAATEUQAWhw6vod2rv/QNO2xlb9\nZUsP063rWCUCANA50qx0AgDAVAQRgAZ79x9gWbgcYDgGALQPK50AAcN6gPYgiAAgVxiOAQDtVV/p\npFAoTGxjpRMsNtVqVSMjI+rr65Mk7du3TyMjI5IY1gMkxeoMAAAAXYyVTgBp9erV6u3t1ZYtW3T9\n9ddry5Yt6u3t1erVq7POGtBx6IkAAADQxVjpBJD27NmjtWvXNl0HF1xwgTZs2JB11oCOQxABAACg\ny7HSCSB97GMf07Zt2yZWKTnnnHOyzhLQkRjOAAAAAKCr9fb26le/+lXTtl/96lfq7aVNFUiKqwYA\nMCszm/x+Y/jq7hnlBkkc3b9Wp2xd27xxa+PPJYlJSwF0jjT3pPHxcfX29mrVqlW6++67dfzxx6u3\nt1fj4+OHIqtAVyOIAACYVb1yRhfoznPf2AaWrAXQVdLck0466SSdddZZ2r59u8xMfX19Ovfcc7V9\n+/ZDkFOguxFEQJNplcrrJt8vW3rYAucGAAAASK9UKqlUKqlSqUzMiTA0NKRyuZx11oCOQxABExpb\nrKQQUJi6DQCwODAcAkC7VatVlcvlidURSqXSgq0SwiolQPsQRMihLAvYvGgc81bXCeOwqXQD6BYM\nhwDQTtVqdcaeAJIWNJDAKiVAegQRcqZarWpkZER9fX2SpH379mlkZETSwhWweVAPGHRabwgq3QAA\nANOVy2VVKhUVCoWJ+lGlUtHw8PCiquMC3YAgQs6sXr1avb292rJly0SU9txzz9Xq1aspYAEAADpM\n2l6Kp67fob37DzRta2yUWLb0MN26bmUbcnpojY2NaXBwsGnb4OCgxsbGFiwP9PYF2oMgQs7s2bNH\nO3bsaIrSbt26VStX5v/mAAAAuhPLvbYubS/FvfsPdEUvx/7+fu3atUuFQmFi265du9Tf378gx8/D\ncAqgWxBEANCVWGkEANonzdJ6lMeQwuoIQ0NDEw/xtVptQVdHYDgF0D4EEXJm+fLlOv/887Vt27aJ\nAvb888/X8uXLs84a0DFYaQQA8oHyGHVZr46Qh+EUQLdYknUG0GzTpk0aHx/XqlWrtHLlSq1atUrj\n4+PatGlT1lkDAAAAWlYsFjU6OqqdO3dqdHR0QXsA1IdTNFrI4RRANyGIkDPFYlFXXHGF+vr6ZGbq\n6+vTFVdcQTcrLLhqtaqBgQGtWLFCAwMDqlarWWcJAAB0sCzrFvXhFLVaTQcPHpwYTlEqlRYsD0C3\nYDhDDrGGLbLG5EMAAKCdsq5bZD2cAugm9EQAME3j5EO9vb0qFAqqVCoLNvkRAADoLnmoW2Q5nAL5\nYWYyM9298WUT3yMZgggApmHyIQAA0E55qFswVBNSWG3G3VWr1Sa+RzIMZ8iharWqcrk80dWqVCoR\nKcWCynotZyBrp67fob37DzRta1ymbtnSw3TrupULnS0A6Fj9/f1av369tm/fPlHHPeussxasbtGO\n4RSNLda2MXzlARSLEUGEnMl6vBggZb+WM1hXPWt79x9oWoZu6hw10/4/AIA5FQoFXXbZZXrUox4l\nSfrZz36myy67TBdddNGCHL9xOEW9TK9UKhoeHo5dx64HDJi3DIsdQYScaUcBB6TF5EPZYl11AEC3\n2b59u4455hgdccQRcncdccQROuaYY7R9+3Zt3rz5kB8/D8MpgG7BnAg5QwGHvGDyIQAA0C579uzR\npz/9ae3evVs33HCDdu/erU9/+tPas2fPghy/PlSzEUM1gdYQRMgZCjgAAACgvepDNWu1mg4ePDgx\nVLNUKmWdNaDjEETIGQo4AJjETNoA0B2WL1+u888/v6mOe/7552v58uULcvxisajdu3frhS98oU4/\n/XS98IUv1O7du+lpCbSAORFyhrHoABAw0SwAdI9NmzZpZGREq1at0t13363jjz9e4+Pjes973rNg\neahPjMhcQ0A69ETIIcaiA0DzRLO9vb0qFAqqVCqsEgIAHahYLOqKK65QX1+fzEx9fX264oorqOcC\nHYggAgAgl5hoFgAAIH8IIgAAcomJZgGge1SrVV144YW688479eCDD+rOO+/UhRdeyFw3QAciiAAA\nyCUmmgWA7nHxxRfr/vvv14YNG3Tttddqw4YNuv/++3XxxRdnnTUACTGxIgAgl5hoFgC6x89//nNt\n2rRJl1xyiW688UZdcsklGh8f1+rVq7POGoCECCIAAHKrWCyqWCzqxhtv1GmnnZZ1dgAAKQwMDMz5\nHkBnIIgAAAAA4JDq7e3Veeedp89+9rMaHx9XrVbTeeedp97exfM4Uq1WVS6XJ3rXlUqlRL3rTlh7\nTfOG6ybfL1t6WLuyCcxr8Vy1AAAAADJx4YUX6v3vf7/OOecc/eQnP9GjHvUo/eIXv9BFF12UddYW\nRLVa1cjIiPr6+iRJ+/bt08jIiCTFCiTcteHMpvcnrL1m2jZgoRBEAAAAAHBIbd68WZL04Q9/WA8+\n+KDuvfdeXXTRRRPbu93q1avV29urLVu2aHx8XD09PTr33HO1evVq5vpBx2F1BgAAAACH3ObNm/XA\nAw+oVqvpgQceWDQBBEnas2ePtm7dqkKhoN7eXhUKBW3dulV79uzJOmtAYrnriWBmk99vDF/dPaPc\nIKmj+9fqlK1rmzdubfy5JNH1CgAAAAA6Ue6CCPWAATNxd6b7xjY0jc+a+n+cNiEMAAAADpk8NfA0\nNhbWLZbGwuXLl+vss8/Wwx72MN1zzz067rjjdO+992r58uVZZw1ILHdBBABAelnP4JynSisALGZ5\nauCpBwwW46SAZ511lt73vvfp/vvv14MPPqgf/ehHevDBB/W6170u66wBiRFEANos64c3IA8zOOep\n0rqYUR4BQD5s375dRxxxhA4ePKjx8XEtWbJEhx9+uLZv376o5oZAdyCIgK6U1dwaeXh4AwCJ8ggA\n8mTPnj1atmyZjj32WN1999163OMep3vvvZeJFdGRWJ0BXcnd5e6q1WoT3wMAAABZOXDggKTJxq76\ne6DTEEQAAAAAgEPsgQce0PDwsK655hoNDw/rgQceyDpLQEsYzoBcOXX9Du3d3xyVbRzTu2zpYbp1\n3cqFzhYAAACQytKlS7V58+aJ1RmWLl2qffv2ZZ0tIDGCCDlUrVZVLpc1Njam/v5+lUolFYvFrLO1\nIPbuP8BkbAAAAOg6vb3h0as+zLb+Hug0nLk5U61WVSqVVKlUND4+rp6eHg0NDUnSogkkAEA7sDIB\nACAvli9frvvuu09S8wTgy5cvzypLQMsIIuRMuVxWpVJRoVCYaIWvVCoaHh4miLAAWNse6A6sTAC0\n12LuJQm0w6ZNmzQyMiJpsifC4Ycfrk2bNmWZLaAlBBFyZmxsTIODg03bBgcHNTY2llGOFhfWtgcA\noBm9JIH06tdKuVyWmamvr0+XXnop1xA6EqszHAJmJjPT3RtfNvF9XP39/dq1a1fTtl27dqm/v7/d\n2QQAAJhXYy/J3t5eFQoFVSoVlcvlBctDtVrVwMCAVqxYoYGBAVWr1QU7NtAuxWJRo6Oj2rlzp0ZH\nRwkgoGPRE+EQqHdRmtqKHUepVNLQ0NBEtL9Wq2loaGhBb9QAAAB1WfeSpCcEAOQLPRFyplgsqlwu\na3h4WGeccYaGh4dVLpe5SQIZoOULALLvJZmHnhAAgEn0RMihYrGoYrHYUk8GAO1ByxcABFn3ksy6\nJwQAoFnuggjM/psOS5oB7cFKKQAQ1Mu84eHhifrZQvaSrPeEKBQKE9uYLwqdiOccdItcBRFo+UuH\nJc2A9qHlCwAmZdlLMuueEEA78JyDbpKrIAItfwDygpYvgN5tyIese0K0A9cSeM5BN8lVEIGWPwB5\nQcvX4nZ0/1qdsnVt88atjT+XpO7u6UXvNuRJJ88XxbWUvVPX79De/QeatjUGdpYtPUy3rlt5SPPA\ncw66Sa6CCLT8AciLbmj5QuvuG9vQVMmf+uAyrVURAJBbe/cfyLxM5zkH3SRXQQRa/gDkSSe3fAEA\nugM9o7oDzznoJrkKItDyB6CbmNnk9xvDV3fPKDcAgE5Ez6juwHMOukmugggSLX8Aukc9YEB5BqRD\nQA7obHmYkyAPeM5Bt8hdEAEAAKARATmgs+VhToI8aAyI1hEQRSdaknUGAAAAAKDbubvcXcevuXri\ne6ATEUQAAAA4xaMxAAAgAElEQVQAAACxMJwBAAB0NeZUAACgfQgiIFdYxgjoHtPGuF7XPIkWsFCY\nUwEAgPYhiIBc6ZZljGj1wmLXeB1L4dqdug0AAACdhyACcAjQ6pVeOwIxBHMAAACA9mJiRUxjZjIz\n3b3xZRPfAwutPmtxrVZreQbjduwDAAAAwCSCCDNY7A/RPHgBAAAAAGbCcIYZ0BUdAMDEkAC6BeUZ\nMKlarapcLmtsbEz9/f0qlUoqFotZZ6ujEEQAAGAKJoYE0C0oz7J36vod2rv/QNO2xsDOsqWH6dZ1\nKxc6W4tStVrVyMiI+vr65O7at2+fRkZGJIlAQgIEEQAAAAB0rayXEN+7/0BXrD7WDVavXq2enh5t\n2bJF4+Pj6unp0TnnnKPVq1cTREig64IIzMaOtOjyBwAA0D26ZQlxpLdnzx7t2LFDhUJh4jz4+Mc/\nrpUr6QmSRNcFEZjPIHud/BDeTV3+CKgByAPKIgAAukvXBRGQrW56CO90BNQA5AFlEYDFLuvhFJi0\nfPlyXXDBBfrkJz+p8fFx1Wo1XXDBBVq+fHnWWesoBBGQO53ckwEAAADNFvtDNMMp8mPTpk0aGRnR\nqlWrdM899+i4447TwYMHdfnll2edtY5CEAG5Qk8GYBLdwAEA3SAPD9Hd0khF3SCd+uSJ5XJZktTX\n16dLL72USRUTIogAADlFN3AAANLrpkYq6gbpFYtFFYtFPsMUCCIAQJeitQIAukM3tKJ3w9+QxmL/\n+9FdYgURzOzFkq6Q1CPpI+6+YcrPHyLp45KeKelnkl7r7ne1N6sAgCRorSCQAqDzdUMrejf8DWks\n9r8f3WfJfL9gZj2S3ifpJZJOklQ0s5Om/NqQpHvd/YmS/k7SxnZnFAAWWrVa1cDAgFasWKGBgQFV\nq9Wss4SE3F3urlqtNvE9kFTasoCyJAT0zEx3b3zZxPcAgM4UpyfCsyV9391/KElm9ilJr5R0R8Pv\nvFLSO6LvPyvpvWZmTm0tE7S8pcdniGq1qlKppEqlovHxcfX09GhoaEiSmHwHi8piLw/TlgWUJQE9\no7iWwDmA7jFvTwRJj5P0o4b3e6JtM/6Oux+UtFfSI9qRQSSXh5a3tC0OWbdY5OEzRLbK5bIqlYoK\nhYJ6e3tVKBRUqVQmZvNFPFlfy2l1ev7bYbGXh2nLAsoS1KW9ljq9bpWHPGR9/MVenqJ72Hwnr5n9\ngaQXu/sfR+9fJ+l33P3iht8ZjX5nT/T+B9Hv/HTKvt4g6Q2SdOyxxz7zU5/61KzHvf/++3XUUUe1\n9Ee1I30e8tDp6fOQh05Pn4c8dHr6VvexYsUKXX/99ert7Z1If/DgQZ1xxhnauXPnIT9+ntLnIQ+d\nnj7NPgqFwrRttVptwdLXdfJnmCZ92rIgT2VJO/bRqenbcR10y7WU5WeYNg+kb30fw3cPz/s7m4/f\nPOvP/ui6fZKkuze+bNrPjl9ztfoOk963ou+QHb8uy/Mw7d/QaekLhcLN7v6sGX+xHgWb7SXpuZKu\nb3j/VklvnfI710t6bvR9r6SfKgpQzPZ65jOf6XOp1Wpz/nw+adPnIQ+dnj4Peej09HnIQ6enb3Uf\nJ598st9www1N6W+44QY/+eSTF+T4eUqfhzx0evo85KHT02eVh7RlQZ7KknbsY7Gnz0MeOj19HvLQ\n6enzkIdOT5+HPOQ9vaRv+izP8nGGM9wk6UlmdqKZHS7pDyVdNeV3rpJ0QfT9H0i6ITowAHSkUqmk\noaEh1Wo1HTx4ULVaTUNDQyqVSllnDcACSlsWUJYAALrNvBMruvtBM7tYobdBj6Qt7n67mb1TITpx\nlaSKpE+Y2fcl/Vwh0AAAHas+4dnw8LDGxsbU39+vcrm8qCZCA5C+LKAsAQB0mzirM8jdvyDpC1O2\nvb3h+wcknd3erAFAtorFoorF4qKeTRxA+rKAsgQA0E3iDGcAAAAAAAAgiAAAAAAAAOIhiAAAAAAA\nAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIh\niAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAA\nAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAAAGIhiAAAAAAA\nAGIhiAAAAAAAAGIhiAAAAAAAAGIxd8/mwGb/K+nuOX7lkZJ+muIQadPnIQ+dnj4Peej09HnIQ6en\nz0MeOj19HvLQ6enzkIdOT5+HPHR6+jzkodPT5yEPnZ4+D3no9PR5yEOnp89DHvKe/nh3/40Zf+Lu\nuXxJ+maW6fOQh05Pn4c8dHr6POSh09PnIQ+dnj4Peej09HnIQ6enz0MeOj19HvLQ6enzkIdOT5+H\nPHR6+jzkodPT5yEPnZye4QwAAAAAACAWgggAAAAAACCWPAcRPpRx+jzkodPT5yEPnZ4+D3no9PR5\nyEOnp89DHjo9fR7y0Onp85CHTk+fhzx0evo85KHT0+chD52ePg956PT0echDx6bPbGJFAAAAAADQ\nWfLcEwEAAAAAAOQIQQQAAAAAABALQQQAAAAAABALQYQGZtZjZn+RcR6GzexhWeah05nZI9q4r4eZ\n2VPbtT8kY2ZHZnjsPjNbEn3/ZDN7hZkdtoDHb9t53MnMbKmZ/VaLaVN9hmb2/DjbDqVOPw/ylH8z\nO8bMHl5/ZZ2fxSTruo2ZvbxenudBFnWLdlyLacrjbmNmS8zsmKzz0WnM7CFxts2S1szsPDN7e/T+\nODN7dov5WND6pZl93syumu21wHn5DTP7WzP7gpndUH8l3U9uCtTZmNnrY/7eU8xshZkdNWX7i+Me\ny93HJRUTZnFqPp5vZl80szvN7IdmttvMfphgF8dKusnMPm1mLzYzS3j855jZTWZ2v5n92szGzez/\nEqRfbmb/Ymb/a2Y/MbPPmdnyhHk41swqZnZt9P4kMxtKkP5yMzs5yTGn+LqZfcbMXpr084uOf2O9\nsinpW5I+bGbvSbiPp0YPna+uv1rIx/PM7BwzO7/+SpA21XkYFTBvM7MPmdmW+itB+oea2Z+b2XvM\n7B/qrwTpn2dmd0j6bvT+VDN7f8y0D5/rFTcPkr4s6Qgze5ykHZJeJ+ljCf6Gh0T/v7eZ2dvrrwTH\nT3sep7oOozRpz6MjzeyvzezD0fsnmdnLEqR/uaRvS7ouev+0hDfbVJ+hpM0xt83JQoD6sRYqPMeZ\n2XEJkqf9G2Rmg/V7aXRtn5ggbWblcWP5OdMrwX7eaGb/I+k7km6OXt9M9mdM2+eC1U2i32/5fhCl\nf7KZfdjMdlgLlUYL0lTe09ZtUpUlkl4r6T/MbJOZPSXJsRvycLaZHR19/1dmdqWZPSNB+lR1i+h4\nZ1rrwZC095S05bHMbCT6DCy6P33LzFYmSP8Eix44zew0C/WMhy5g+m1R/vskjUq6w8zekiD9pij9\nYWa200Jd+7y46aN9PD86vqJr8j1mdnyC9Gnr6GmvxX+LuW0m75f0XE0+q90n6X0Jjp2qftmwj1Ye\nwv9W0uVzvBJJWR59UtKYpBMlrZd0l6SbkuZB7p7rl6R7YvzOn0v6nqTt0QfxyoaffSvh8f5O0nsl\n/a6kZ9RfCdJ/V9JLJD1K0iPqr4R5MElnSPqUpO9LulTSE2Km/aakJ0q6RVKPpNdLuizBsb8YpemN\nXn8k6YsJ83+tpNdIujV63yvptgTp/1jSVyV9Q9KFkpa18PmdLqna8Pk9OUH6WxrysT76/jsJ0m+J\n/g9bJX00em1J+Dd8QtLXFArMzdHrHxbqPIyOvTH6P/5+/ZUw/Xuic+mC+itB+m9Ienz9fxFtG42Z\ndrekH0ZfxyX9VNLPou93J8jDt6Kvw5JWR99/O0H66yT9s6TVkt5cfy3geZzqOmzTeVT/+0ej90cm\n/AxvlrRsynmQpCxp6TNUqKS8WdKPJF3S8HpH/fNMkIfh6By8XdJt0StJeZL2PFgn6fOS7ozeP1bS\nVxOkz6w81mT5eY2keyV9Lnr9XNLVCfLwH5IemSTfMfa5YHUTpbwfRPu4VdKfSnq2pGfWXwnSf0Ch\nsj4WvX+YpJtaOBdardukKkuiNMdIeqOkrys8tLxB0tEJ0n8n+joo6UZJZ0r6RoL0aesWL1Ko/P9A\n0gZJv9XC55+mLElVHtfPw+jrGZKulHRywmvh2wr3sidKulPSuyV9YSHTR1/PVXjwOyzh/7Ce/lWS\nKtHnmfSe8p3of3mqQl3/zyR9KUH6tHX0lq5FSY+Oyp0xSU/X5DPWaZK+G/PY9XpZ4zmY9PNruX7Z\n8Ps7JA1Ff8sLFOr9G5PsI+0rTXkk6ebGfUTfJyrP3T0fQYTogpjpdZukX8VIf5uko6LvT1B4gBuZ\neqLFzEtthtcNCdLHvqHMs59TJf29QiX+A1FBsSlGum/OcGLE/gxmKgjiFA5Tfv+mqcdNuo8ozW8p\n3CjvlrRNUqGFfRQk/aekX0j6kqTnxjyfHhMVEr899fOMkf6ONvz/xxQtwdpi+lTnYSv/rynpEwXv\nZst/yhvFhyW9tOH9SyR9MEH6WxQeJr8u6eT6uZEgfaKb0jz7auU8Tn0dtuE8+uYMeYj9f5T09RnS\nx74WW/0MFSoF6yT9d/S1/rpE0pMSHvf7ShhIbvN58G2FCmeqzzCr8jhKt0PSYxreP0bS9QmOe52k\nI1vIby7qJmnvB9E+bk6ZPnXlPUqTtm6T9viPkPQmhaDOtQoBpuGYaetBgMskndPC/zFV3aJhP8sU\nAno/UgguvV7SYQn30UpZkro81uSDzxWSXtXCZ1g/D99S/78tcPrbFQIHn5H0gqTnoSYfvD8i6cVJ\n00/5G94uaahxW8z0qeoGrV6LCo1JNYXeA43PWP9P0qtjHvsbCg2k9c/gN5L8/+r7aCX/U/aR+CE8\nuv5nu5+0Ug60XB41XMvXKwQfni7pB0nz0Kt8OFYhKnnvlO2mUEDOZ4m73y9J7n6XmZ0m6bNR955E\nXbbcvZDk92dQM7N3K0RYf9Ww32/FSWxmI5LOV2i5+oikt7j7gaj72n8oRP/m8kszO1zSt81sk0Il\nOEnXt59FXauq0fuiQituEvssjL1zKQyxkLQ3yQ7MrEfSU6LXTxVaUS4xsze6+x/Ok/YRks5T6H7+\nY4WWwKskPU2h4J+vK+87FS6sXe5+k5n9psJnH9e/mdlJ7n5HgjRTjSpEbf+7xfSpzkNJV5vZS939\nCy0e/xNm9ieSrp5y/J/HTP8jM3ueJLcwD8GIQkU6iee4+580HPva6JqI602S3irpX9z99ug8qCVI\n/zUzO8Xdb0uQZkIbzuPU16HSn0e/NrOlDXl4QuN+YrjdzM6R1GNmT1Jo2Y1zT1B0vJY+Q3f/kqQv\nmdnH3P3uaF9LFB4IYw8Pi/xIyT/3CW04D37t7m5m9f9BXwt5yLI8lqTHu3tjWfhjSUmGhLxV4Xr8\nhprP4z+fJ11e6iZp7weS9Hkzu0jSv6i1MvlAdB7Uz6PfkPRg3IO3oW6Tqiwxs1coPGw/UdLHJT3b\n3X9iYVz0HYo3TOk/zeyDCq35G6Nu8UnqV2nrFlOvp1sUeiYMKjygnZYgbSvXYqryOHKzme2IjvXW\nqDt27PNI4TwsKvy9L4+2JZmrKG36DyoEoG6V9OXoWk5yT7jazL4rab+kP42uowcSpJek+8zsrQr/\ny9+LrqEkf0PaukFL16K7b5W01cx+390/l+B4jf5BoQx7lJmVJf2BpL9KuI921C8PRF//28zOlPRf\nkuYbLptkyEccacqjd5nZMoUel5sVemklnxMwadThULwUuvQMzvKzbTHS3yDpaVO29SrcKMYT5uXY\nKD/XRu9PUhTpi5m+NsMrSU+G9ZKOn+Vn/THSHy/piOiEWKfQpfyJCY5/vMJN5X8l/UShG+ZxCT/D\nZyh0f90bfb1T0lMTpP87hda7Dyrc6Bt/9r0Y6e+U9NeSls/wszXtPn9nOMYLor/9e2oxyhidN/cq\nVDiuqr8W8Dy8T+HGvl/hBnmfpP9LkP7PFFo47lIYVrBb0g8TpH+kQuXox9F5+E9KPizoeoWbywnR\nq6QErZdT9rVE0jEJ09wh6detngdpz+O012GbzqPTFVq5/jf6f94l6bQE6Y+UVFYYq/fN6PsjFvAz\n3KZQlvZF/889Cg8/ST7DiqRdCg+yE0MjFvBv+EuFsvSHkv5EoRt3rJbXKH3m5bHCEMPrFYbX/ZFC\nC/LmBH/Dv6uF4VXKSd1EKe8H0T52z/BKUiafGx13T3Qdfk/S2QnSp63bpC1Ltkr6vVl+tiLmPo6U\n9GpFvZEUehWsTPJ/SPNSeHi6IypLHjPlZ9+MkT5tWZKqPI72sUTh3vTQ6P0jlKx+eJLCg2Qxen9i\n3HKkHeln2Wdvwt9/uKSehs/00QnTP1rhPvK70fvjJJ2fIH3aOnraa/HRSvec9RSFOubFccqOGdK3\no375MoUeQQMK5fPNkl6RIP3xkl4Ufb9UCYZVNewj0/LI3UP3uE5nYeK/g+7+PzP87Pnu/tUE+7pW\nYQxmyd1PNbNehe4hp7Qvx3Me/xPu/rr5ts2zj6UKD/7fa3sG4+ehV6H7qylUNA/Mk6Qx7eslfdrd\n983ws2XuPmfE1MzM3d3CrLnu7vfFPO5qd99kZpsVRVgb+fytVvX9fF+hgL9NDRF2j1o0Y+7jBTNt\n99BCmnsWJt97trv/NMM8PFwhkPZ7Cv/PL0t6p8dseTOzbQpdRscVKk3HSLrC3d8dM/3xM22Pex6Y\n2Wvc/dNTtp3t7p+Jkz76/Zavw3aJWjyeE+Xh6wt5TtTLghTpv+3uTzOzcxUqXmsVujHGnlXdzNbN\ntN3d18dM31J5NmUfp0taqfA/uN7dv5ggbSbl8Qz7ebXCXEWS9GV3/5cEaW9x96e3ctw02lU3ycv9\nwMKEhCsUzqOd7h679a5NdZtUZYmZPVphTghX6Ho87f8yS7pj3P3/bJaJeee7p7SxbjGtd6CZPcTd\nY/XIaMc9pVVm9hR3/67NMvGbx+/dlgkzO8/d/8nMLpnp5+4+5wSZZvZCd7/BZpkQ1t2vbEc+40pb\nN0hzLaZ5zprlGrwvi7pNqyz00n2DpIe7+xOiXj3/6O4rWtjXqZq8L37F3W+Nme5EhZ5IJ0iToxLc\n/RWJjp+nIELUJWaPu/8q6vb3VEkfd/dfLET6aB83uftvN1Y66hXJmOmXafLBRQrRunfOV9FqSP8t\nd39Gw/sehXHYJ8VM/3KFGUAPd/cTzexp0fHnPDHadZNryPOZmn5yxpqFeJabzF5Jd7v7wRjpn6VQ\nQB2tUMD9QtIqd795nnQvd/fPm9kFM/3cQ1eseZnZv7n7c+P87qGS9jyM9vEwSU9S6NkiSXL3L8dM\nu0PSWe7+y9iZbk4/00oOexVaW/5fwn31zfQAFCNdOx4gWyrgo7RNZcFs2+ZI/2eSPlkv/6L/Z9Hd\nY89C3Iby7FUKPRf2Ru8fqtBisX2edJ/XDOVQXdwbnZl9UaG1tPEz+JS7nxEz/e0KXX23SXqvu3/J\nzG5191PjpJ+yr6OivN+fMF1L5Vm7ZFUet5OZXarQWvZ5tdCV30J339vrAZAoINLv7t9YiPQN+zlG\nzffUefM/20NLwz5iPby04TNIW7dJex4OKZRlNyichy9QKMvmXXXIzK5295eZ2W6FcqlxKIq7+2/O\nk75ddYu094S06Wcql/cq9Er4oLvP2i3fzD7k7m8ws9oMP3Z3f+E8x/60u7/GzG6bkgeL0s95X25D\n+je6+wdbDQqb2Xp3X2dmH505ua+aK320j13uPmhm983yN8RabnKWMmGvwvX4kxjp016LLT9nmdld\nCpMi3qvwdz9U0v8o9Cr4kzj3lXbUL9M8hJvZtxWCmd9o+PtvixNEmbKfEYXehfUy/FWSPuTu8w7N\nMrNbFXqDTG3sTBSYzlsQ4duSnqXwT/mCwmQbJ7v7SxcifbSPGxVmov+iuz8junFudPcZWwJmSP85\nhfGL9ZvC6ySd6u5z3sgtjG96m0K3lvqDlyl0h/6Qu7815vFvlvRCSTcmOTnbdZOL9vUFhTFeU0/O\nuC1vX1d4aKvPQDugMJnNMkl/6u475kn/HUl/5u5fid4PSnp/koe/hn0lHgdtYamYh2p6hTV2pDk6\n7zZL6pd0uMJEMvsS3CRaOg8b0v+xwjix5QoTsz1H0r/Nd6NvSP8vCrMu15RsDHI9/YcUuqzVW0h+\nX6H77SMUuuC+KcY+nqcw9vYodz8ueqB/o7tfFDMPqR4gWy3gzewlkl6qMHvyPzf86BhJJ7l7rGXV\nZropW8IW2TacRy3lwSZbXl+t0PXxn6L3RUk/dvdYY/fSfgZm9ueS1iiMfz1TodvoP7n7786ZsHkf\nAwqz69dbUH6q0PX09pjpU5VnM1Q4pcmK/5vdfc4lO7Msj2fJu5S80rx7hs3zPvw1pL9FYZUmj94v\nUahwxn34Spv+DQrj6R9QuKfW//5589/w0PIoSc9TeIiWwsR6X3P3WON0W/0b2li3SXsefk/S89z9\nZ9H7Ryj8/b8V5/jtlqRuYaEHxeMUysFzNBnEOEahBXPOJSvbeE+5QmEiu/qcWa9VGO7oCsP9Yvcq\nScrMHuPu/20t9vBLm76bmNk1CpNG1wM6pyl0xz9RIbD2iXnSp70Wb1SLz1kWlpX8rLtfH71fGe3r\nowo9RX8nxj7aUb9s+SHczL7h7r9Tr4tY6InxraTPKNG99bkeNZJZmO/o32LeW78R57Oaly/g2In5\nXsp41tXo92caK3RqgvSpVjdQguUYZ0mfavZczTDGcaZt8+yjpdnTG9JfqWg2/Oj9SZI+K+k343yW\nM/3PlWzm2lTjoDW5LFnjK+kSj2mX6kx7Ht6m0AOhvhzRUyRdmSD9BTO9EqT/uqIxg9H7XoWx3D2K\nufqFUi7jozBp1H8qBCRNYQzbVxKk/46kvob3fXGuDYXZyy9QmAW/8fN7taSHJfwfWsP7HoWWxCTn\nYdrzaNrfq2QrXEwb5zvTtjnS36yGOV2i/2HalUOSjn/9mhpWMlCosH0tQfq05dnfKCxrd3RUrr1B\nYfnW1yoEm+dLn2l5HPNvjH1dtLj/ma6DxMu6pUifeolKpV/hIu3fkLZuk/Y8/JpCD836+8OTXIdR\nmufXy3SFSe3eowRzRqnFuoVmn9X+KsWY1V7tu6dMm31ekzP9x7q3SDpb0fhvhTmLrpT09AR56FOY\nsFSSnizpFUqwMkUb0m+K/oeHSdqpMC/AeQnSj0TpTaGR41tKOI5d0hMkPST6/jSFuspDE6S/XtKx\nDe+PjbY9XDHqSG24Fluek0Ez1B80ueJHrLqJ2lS/TPI/m+EcepvCCjWnK8x1Um5hP7epYU4ShTp7\nrPqVQjBynUIwqb7U5jOS5iEvqzPUZT3rqhSiaS9Qw1ghJZt9d7+ZDbr7Lkkys+crTE43J4vGi0n6\nzExdhTz+eLG0s+e+VZPRubm2zeVaM1vp80Qj5/Bkb2ilc/c7os/nh2axJrT+koUZS6sKEfLXSrqx\n/rnG+CxP8jD+8VyFCbzWKjyMxBoL7+6vj/N7MfbzfTPrcfdxSR+NWoJitdqoxfOwwQPu/oCZycKY\ny++aWewWG0/Qc2UWD5N0lCZnDO5TGD82bmaxZ+R29x9NOWfGE6T9B4UJmOruNrMkq7fYlOONq7kb\n7GzHvVXSrWb2SY/RNXAO10n65+hakMKD5HUJ95H2PPqmmb1HYX15KUyGlKQbe5+Z/aZHreVRF8Ik\nqwuUJO0ysy8pfPa/q/AQHZuFmZdPVsOwHoVW4bj63L1Wf+PuN1qyFRLSlmev8ObeMx+KemisMbO3\nxTh+1uVxHDsVKkFNrE1d+SX9MOqV8oHo/UUKE1XGlTb9DzTZit+qtCtctPQ3tLFuk/Y8/L6kb5jZ\n/1M4D18p6TsWjXH3eMMtPyDp1KhX25sVHgI/oVBnjKOluoWnnNW+jfeUo8zsOHe/R5LM7DiF+7QU\nepbE8dfu/pmoR9KLFP72f5QUt1X0y5J+18LQtB0K8xW9VmHiz4VIv9LdV1sYqneXQiDmy5rsLTef\nVe5+hZmdodDy/TqFcyhJfflzkp5lZk+U9CGFXtfbFHqbxPF4d/9xw/ufRNt+bmZx5hZIdS26+7ei\n3oatzMnw32a2RtKnovevlfRjC8Oj4q7y0Y765RUWhrbsUPKVq9ZKGlIIArxRoaHqIzGP2+ijCmVa\nfX6gsxR6R8RxisK590JNfm4evY8tb0GE1ytMZFZ2991RhXHObjVtTi+FriDPUAgmSApjxjRDBWUW\nf6pQ2C9TuDh+rjCb9HwuUajcXj7Dz5L8Y4cVKs6/UihUrpf0rvkSNXR3e5w1jxc6RlLSm87XJf1L\n1F3vgBJ2PZV0h5l9QM2FxB0Wli+JU9DUK8zrpmx/uuJ9lodZWPblLIVu7AcsWh4tjqj76LTf9xhj\n3hqkXaqz1fOwbo+F8evbJX3RzO5VaMWIxSbHjjbxmN2HFSK13466vZnCmPxLo4evf425j1TL+JjZ\nsZIulfRYd3+JmZ2kELWNW0i3VMBbNHZT0i0znXcev8vbGoUb1J9G77+o5DeqtOfRsMJs4PUutF9U\nCCTE9RcKD5w/1GRvkDfGTezu10UPLs+JNr3Jk00A9Y8KMyAXFD67P1CY6T+JH5rZX2vyXnSekj1A\npi3Pfmlmr1FoKZLC31AfuxynXMu6PI5jtpprvTFhxq78mhxqNJ8LFQKKf6WQ551KFoxKm77VJSob\n7TSz69XcFT1uWSq1/je8WWFYV9q6ze0pz8MfRK+6+tjno2MeXwqTZLqZvVKhblCxMNdCXC3VLSya\n1E/SCTbDxH7zBUDaeE95s0JQ9gcK19yJki6K7stxGw7qgfUzFYazXGNm89ZRG5i7/zL63N/vYS6v\nby9g+vpz05mSPuPue2MGsSaOH319qcKcbbdbwh1IetDdD0aBjM3uvjlqZIrrRjO7Ws3d+evB7Thz\nyKW6FiHxLmwAACAASURBVM3sbEnXRX/7X0l6hpm9K+YDeL0FvT6v0lejbT0Kw3XiaEf9Ms1D+FKF\n3skfllSfH6ZxuFcs7v6eqIHk+dGm17t73PPgbEm/6e5xg38zytWcCI2iKOHj3f07C5HeUo45m2F/\nx0iSJ19TvGXRifiv7p6ktbSe9lSF8d/vlPT2hh/dJ6nm7lPXyZ5rX7sVovy3eQsnmIXVJS5SWPtY\nCoXE+xUqvkd6wonJWjh+qnHQZvb7DW+PUBgL/19JKnwWxu39WKHL5V8ojDV7v7t/P+4+ov2kPg+j\niPEyhUI/VoFjYbxp3REKBdbD3f3tsySZaR+PUZh8RgpdJv8rbtoo/SMlXaHQ2mEKEeMRj8bExkif\neqWW6AG2fh5/JU4Bbzkcu5lFedZw7IcoDKeRpO96zJnIG9I/TiH40Dj5UdwJQr/j7k9t+HqUwrJU\nSeZEeJjC8nYT54GkdyQpU9OwsBb9FQoBMFcI8v6FwlCdZ9Z7mcyRPtPyOA6bZ3I4CxO9XlBviY/K\nlo95zAk2s2Zm/66wTOjU8beJenxZihUustau89BanOA0Svslhd5cr1d48PiJpFvj3hNarVtY+kn9\n2nZPmVIef8/nmExxlvRXK5Q9pys0zu2X9O8ef66hWxTOg79TWBbwdkswKV0b0m9QCALtV6ifPFTS\n1R5zfHnUyPQ4hQDMqQoPvze6+zPjpI/28Q1Jf6/QYPjyqNF01N0HYqY3hcBB/eHzq5I+F7e+nvZa\nbLifDioMt/tbSW+P+xm2g5k9ViEIMKbQK2FP3HpBlP77Cj2LEj+EW5hT4kX1zykqk3a4+/Na2FeP\nwnCUxvrNPTHSbZf0Bo8xkeac+8lTECGKCr1C4cO4WaGA/qq7z7ikSjvTW5hQ8I8UJmb8ZsOP/k/S\nVp+n26OlXP6lYT+pZlQ3s50KY+Riz8I/Jf1hCboVzbaPLyvMwB63a1Fj2pYDIQ37SL0ywQz77PUW\nuwFa6JGxK2kBYS0s1Zn2PLSUS1nNs++bE94o0zz89ShE+eN2UZxpHy3NINzuz9BamJE9Svd8Se/Q\n5GeYZDK2dpVnT5b0l5o+g3Hs1mcLExOepOZVQj4eM2197P/tamgt8PirO/y7uz87uum/WtLPFMb+\nPjFu/tM6FOVZgmPnsjye4RjzBRHG3L2/4f0Shf9j/2xppqRPtRxWG9JnskTllDz8hkKPghPU/DfM\n2cPO2jekJBVLOcFptI9HKzQy3eTuX7HQnf+0uOXRLPtsuW6R4pgt3VOitC2Xx1H6IyW9WKGR6T+i\ngN4pHnP4q5n9nsI95avuvjEKkr4pbiNN2vTRPh4uaa+H7u9HKkwqGXe50CUKDXY/dPdfRA0uj/ME\nDaYWekVeqNBzuhqVL69x941x95Elm5xQ8DKF82Bb3DIuKodWa8oQw4R1ilQTh0f7aPkhfKZ6ZJy6\n5Qz7GVa4t/5Yk8Nl3eNNrHijwgqGN6m5d1uiJR7zNpxhWVT5/mOFB4B1FmafPOTpPeWYM02O052p\na1ySSM2fuHt9/LDc/V4La4rGXZbtfkm3WVjabGJZuwQF5AnRhT31JhG3G7oUuureaKElt/HknPfB\nIyqUH7QY64/PYYvCjPL1rk2vU2hRjjuj/IyVXk2On0rqSQrdaWOzhqU6JZ1oMZfqVPrzcJuklykE\n4Vxq6ibsChPnzMuax74uUQjOxS5vZnv4Uxh7OK/oPDrezA5vJVIc2Rfd4D3K03MU7xyY+hnWmZJ9\nhm9UaMF+oGE/sdMrDJ34iygfseeCiLSrPPuMwnjXj7SQB0Utb6cplEdfkPQShRbZuJXWsyT9lifs\nvdDg8xaG9bxbYQIsl/ThOAnN7O/d/U02y3KVCW7WacuzIxTGX06tdM07vCoP5XFM83UHTtuVf7vC\n9fR5xR93287011pYoSHxEpXWphUuFLr/f0Xhc0tyLb98jp+5Yg4psTDHU5q6yYckXeLR/CQWlgH/\nsMIwl1iiB8X3NLy/R/HLIkXHbXmOlTYEo1LdU9pQHsvDss9XmtmjoiCMFCaYi5v+y2qoB3iYLyd2\nACBt+shjJb0oKlvrYn0G7v6ghd66T56SPjZ3v0MNeXb33QqT5cZi6Vf/Snst/qeFeXJOl7TRQu+W\nuMN1P6kwPPJlCoGUCxQmt0xiRNJvK0xEXzCzpygMXU3ioZK+a2atPITvM7NneDR8w8yeqWRzTdWN\nKNRvYvWunWLGXk1J5S2I0BtFJV+j0E1nodNL0lfNrKIp46Ddfc6xzO5en7zsX939q40/i1oE4+ox\nM/Ooi0jUEnR4gvRXavpNOUml/6MKJ9ffKYwbfb2SjcWXwlIpuxXynSTvdWkDIU9w98YhBest2Zi3\ntJX2eqWt/tD4PwpdGJN4h0JXuRslyd2/HVUg5pT2PPRouS93n/dY82gc/3pQYQKiuOPVpPQPf1II\nZn3VzK5S83kUqxVdYZ6SqyQ9wcy+qrC01R/Ml6iNn+FfShrwBGP4p9jr7te2krCN5dlBd//A/L82\nqz9Q6PJ5i7u/3sI8FXEnsJLCOXCYGm7ycUUtRjs99Ar7nIVuuEckeJiuz4Hwt0mPPUXa8uwTCpX0\nMxQeVs5VgrlBlH15LGmiV97j1fzwVB9Du2KutO5+sTV35f+QJ+vK/4CHiVZblTZ9MfraOLFurIc/\nd4815t/MHuZzD7E50t2T3sfaNtGw0tdN0k5wOtvD1/3uvixm+rRzrKQNRqW9p6Qtj2Vmr1CoHzxW\nobfwcQrl08kx06dqiW5D+lSBlNlawZVgbpg2PMS/V9IfKgT5nyXpfIWVKuJKey2+RqE3yt9GvTEe\no7CqXhyP8DAXyYiH5RS/FD3IJ5Fq4vBImofwNylMNPtfCs8Jj1YIbCf1I7XYuOlhyfJjFYIpUhhS\nlLhXRd6CCO9UmAjwq+5+U9TN6D8WML00uSRfPQhxp0LUK+5kaps1fRLGmbbNJtWM6j5ljKSZPV6h\nsIhrqbvvjAIZd0t6h5ndrOZ5EubLw5zj82KYKRCSRNoZ5VNVeuNW2uZxwKdP2JMkGNTSeWgzzJ7d\nlIGYM2l7iu7PkZYf/hrUJ9JaomSTZ0lS2hmEZWY73X3FfNvmkHZG9pqZvVvhWko6e3Bd2vLs82Z2\nkcISRolaUCP7o5abgxa64P5E4UEyrl8qTKC0UwknpIuO+z6FCQAVBbSSrAxSX4Xiae5+RePPzGxE\noYdTHGnLsye6+9lm9kp332pm2xRalOPKujyWmf2NwnDDH6i5BfWFUrzzyUO3+Vb/jjQzcadO34aA\nZBwzrnDR4Goze6m7fyHJTq1NQ6OUvm6SdoJTKf3D1/N8co6V9WZ2ucIqDXGlDUalvaekLY+lMAb+\nOQoB6qdbWPHovATp07ZEp02fNpDSjlbw1I19nm71r1TXYsreKPU62H9HvXr+S5NDlOJKNXG4lO4h\nPHo+fYpC3VJKWLdsUO/1fY0S9vq2MNnyuxUaKk3SZjN7i7t/ds6EU+QqiODun1HDUoJRN6Pfnz1F\ne9NHHununzazt0b7OGhm83bdM7PnKnSL+40pN8tjFKLVcaWeUT2KtJ6t0HrxWIUKfFy/ilrg/sPM\nLlaYAOeoedJMPX5NM3ffjRVpjSq6iecDaHChpI9bGJYgSfcq3Cjiakel96ma3uUwSQW2paU623Ae\n1nsQHKFQSbpVoYB5qsJcIc+Nk/mogD5f0z+DuK2XLT/8Nfxu2mCWFHqDnKDwNzzDzOYd/2mhi+KR\nkh4ZtZ42TtL6uATHTjsje32Somc1bIs1e3Aby7P6ddfYypBkSMY3o3PpwwrDMu5XaLWJ66ro1aqd\nFiZKvbLeO6wFFyhMbNjoj2bYNpu05Vm9cvILC+OZ/0cJhlfloDyWQsvVEzzh0CRrX1f+tMthtZTe\nFnY+gfmGhIxIepuFJdCSrLo019CoJNLWTVYpdOW/UuGz/0q0LZGUD1/1esQvLUzs9jNJj0lw+LTB\nrLT3lLTlsRQaSH5mZkvMbIm718zs7xOkT9sSnTZ92kBKO1rB0wbU0q7+lepatHS9Ud4V3UverNCg\ncYxCy35s7v6q6Nt3RM8ry5Rw+eu0D+FR0GA0yTFncE/0aqXXd0nSb9cDH9Fz479qchWnWHIVRLAw\nCdcHJB3r7gPRg9gr3D3W8i9p00daHQd9uMJF1Kvmm+X/KUYX6DoPkxF+QJNrMcdiZkcrdLc/RyEy\nfqWkE919eZL9KFQUjlR4aP0bhUrO+Qn38ZcN3x+hEMiJPXGQtT4fQH34x+s8zKbf6ozyqSq9ZrZF\n4aF76nj+JBW+xqU6qwo9bP4mRrpU52G9B4GZXSnpGe5+W/R+QGGIRVxfUJgFvmk28QTSPvy1o9vi\nJyQ9QaHLYT2Q6Jq/2+IbFW5qj1WoaNUr5/+n0JIV1wcVlqRr6TNM2RukXeVZqhZUd78o+vYfzew6\nhQmsYs+T04YH4DcqDGs5aGYPKMHDp5kVFcrjEy0Mqak7WmGpzHm1qTz7UBTM+iuFa+oohWU3Y8lB\neSyFytZDFSqcscXtFWbzd+VPuxxWq+nbtURlHHMGyVrtYefR0Kg2BHWn1k0Kinlfjs7DK9vQQy7t\nw9fVNn2OlSSNRGmDWWnvKanK48gvLMxG/2VJnzSzn6hhmFQMaVui06ZPG0hJ3Qqu9AG11ymctxcr\nzJv0eCWbo2amazHJc0Ka3ij3ehhSuDc6btIhlk2iQFIr2vIQnsZ8ZaqZbXb34Vl+vGRKz4mfKfnQ\ndcndc/NS6N75bIVuQvVtowuVPvr9ZygsV7I3+nqnpKfGTNujsExKK3/7p6Ovt/1/9s47WpKqavu/\nZ4YMDkkEJQxBBHlBBUniEERBUVABCUNQwAAGGBRFggFEQTARBEEkZxDJkgRmSEMacpRoIomvwohk\n9vfHPnW7um911zl1auZe3/Xtte663dW9T1VXOGHvZz8PcHfvX4T/S+H3rw1DqhuPtXBNxgLbttDO\nLQnfnYZHBpveBzdlHutS4f84fJAc2hbpf3/u+WrhfI/P9L8vZtsA/9tHwTm4AieUewBYF+e6ODjB\n/4HiWWq4/10zj/+OHP/QxifwQMr3ir+ZfB/NhS9efx3eLwtsnNjGovgCap3iL8F3E+Ah4PHw/n3A\nhTPqnus9d3jt7NRw/xV/qwCzJLTTuD/DJwVbZv6OEe2PQxur4hPly+kEGFu7jnX9FT7hf1tG+7n+\nVwBvL71/O3B5W78/5hyE78yPz7GaPItL47X8f8eDQRfggZUY37F4/XTO77sKJ9/OaWM8HpAeh8PJ\nf46XCzVpa/bU4wEeAWbLOP6sMQXniKndVtPG3OF6zoIHgXbD0QGx/huH/mhF4JrQP31yZvn3tLUk\nkeuDPv7r4opySdcUh9DPg/MqnIAHE9dM8J8Us22A/xYx2wb43xb+34UvZsGlUmN8h/VTMX1X23+4\nqkT5/ZjebSP9N+i84IHMy3FU5A54WVX0/Lj4G1VIBJy45xZ114GnSN/k+mMZddDmTNbvSNlfySaF\n/xs39N8br9U7CjhD0lkpziFL9FV8wn4hXkbxVRwydDdeRxbbVjmqOwZ4P95px1oVH0BK1PyOkPk7\nh24isNiszbl4Fr6cMfst/jtibKqkFcwZdJOsJ2M5zCye0f0/8nr4pjI4d0v6DZ1av23x+yDWTpGr\nilxMg1p45RMHQT5s8V6c8OapBJ8hM7MjlCeH1ZiRHVoh8YL8++gEfJJWMKD/DX8uL45xVkel4366\n0SCxes77MZygNPoeUgavhTnM9E9ElgANsMb9mTnsdk/g7Iz9j3R/DHASzj7eFNlUZ3VQ/hwm7jb8\nFzezcj/0DA4BbtMGngPlE8KdDhwJFFDirXGUXa02fJhbTaj7Xo3lEoQWzzS4ukEjZIWktSiV+Smi\nRK5kjRA5JWs0pqi9Ej3MrIw6OKnvF/v7F2PHUCZ6ZvoDqEd+WtI6Fik/Hb4/FlgYJyAHn2f8Odbf\nzIp5zL9xPoRUyy2x25tS6fiAbf0sGY2i9kos27LLNFzxJ4ovRj6YbosHUX8g54VYxMxS52eNzcy+\nJS/VLFAcqWTDwCgrZwCek7QMnVKCz5A2gc/1Lx7uj9Pp5DcMnXws+c+dTSZMZvZU2PeJ1gByZ2aH\nAoeGCfLWeObjHZK+DZxnZn+saeIUHLY/FfgCsA8+UGxqZqlM2mV5wNfxjvLzCf6N+ABKNgcOzSlP\nbmrLCeREJ/8DzKvuWtRxdMsx1dnJeCDhaXygjtZuxRccf8E7ppupn9z2s1zyoB1xXo4iuHUtaSU2\nr+KRzn0hXUqKdlRCcmGLbwXul3QLDSb+ypfDaszIHiyXxAvy76NlzGyrAO3HzP6jntVojeWqdDRa\nALc5aVamnBYN+7OS/UHSN/HrWB6TYsktR6Q/7rH/WB6hXJ3V8V18P7P9XP9ciUogT+GCfEK4uczs\nlNL7UyXFMrJDfjAqV7mqgE3vR2kBGY4hViKxaYlcYbnBqKZjSlslegXPx8F4iY5I5CcJsPEvMpxv\nKYrfogX/rMC2pF3x/uAZuktSYuaHRRvvwnmGeu/DOo6VfiV244gosZO0Eb4+WlRSuT8eR1rC9lM4\nevrr+GJ6XuqDcq2UWLZlmYvwo/Brvz4uCDAdT16uNsipbTOzc8N+G9toCyJ8FdfyXV7S3/DFZwpr\na64/eIT2ZZpnPBpPmKwFTW5zMskDgQNDFnQivoB5Z43r0ma2EkDIQD+F1xG/3OAYcpmkm/IBFPYb\nayZLtxy+WJqPbm3r6figE2vH4TVnTe6hRXDt3KKzvwQ4w8zuS2wnKwtvTvxzNPB7a1ZLvgcO82wq\nJZWtEkI1Ac/XE/z3S/hulTVmcQ71jnuZWRKiqMdySbwgH83xqpyToAjsLkOa4kauSkfTBXBrk2by\nGd2b9meFFdJRXy1tSwlGjVR/XLbrJB2Eo+SaKo00NmteN9uWf65EZRsKF40I4dRBJl4qaS/gzLDf\n6MxdsNxg1HxWrZKSYsfhY8g0OgvIFFsVWMECnriBNQ5G5Ywp4bwdJmlXMzui6TEEOwTYxMxSZGbL\ndgFOivkHml2DXP/cwPak4P+Phv7gY8nROC9Dym+4EZ/bv5VuGe7pxCFNn8QJtj+JPwNl/5S51ffM\n5WLfJKBRQnCmr4Rsaf5xYoEICvf0PNaMZyfbMhbha5jZKnJSVszsn3Kulbatb8ImN5g3ZL31DaPh\nD6+ZestI+BPBPzCDf/sFOKzpOODw4i+xjfHAR8LruQh1/TU+tw96H7nfzQb9zcRz2LhmCs8S7pO5\n/6kt/Y7Z8Unf34GvJfreFP5fjtfFrww8muD/STJqyfEa3rkyfvuNOPLgdzj5z6Z4adFMuYfCMXwe\nWDbD/5bwfxoewBDwYIL/bZnH/108ILY5zsj/FHDATL6PNsC5Wv6OoxqeANaL8Dsi9H3n4nXAxzTp\nD0P/9yPgVnzy8yNgjgT/LF6L8nUsjy0k1Cbn9Gej4a+N48drl3v/rm7xGCuvBz45fqHibzrwQkS7\nWf4tX4eHyKunPy/0J/vhWdcL8CBznd/jeDDw8Yq/bN6mzPswiSMAuDnzGM6hxG2R6Ds2Zfzo00bW\nmBLaWAtPcHy2+Ev0vyFz/3eOsP+l+MK1qf81JHDi9GljWqb/3HS4CN6Fz/dmTfCftfR6fhJ5Ifo8\ni1FrL7wsalz4DfcDfwW+lXM+Gp7DzYCH8bKYpD4dRxmPLc4DsFBqXxT8Vqr5fIcBnz0CvDv3PBQE\nfKPCJM2OT3iXpBui84OZ4R/aOBgnirki1qfHfzF8AlxkWq7DCUv+Gun/uartZhZVOyavQ/8SsICZ\nLROyb0dbTQ2vXMaygAgKmBOX2UthIz9hwMdm8XCxd+EKD0uSBtUqaqZ2x2HwhY3DyzLeG7n/W8xs\n9Zjv9vE/Cp9s9dYdRmVMwn38CRyNsCSefTvezP6WcAwb4/fe4nSy8PubWZTiQcj6rw9MNrOVw7Z7\nLKBVIvzPw0tDrqGBlJSk1XBiw/nwrOe8OOnLzTH+oY0TqICrJtyH++OZvyXxQMC1wHUWWd4T7oN9\n8Cz0Hnj94p1mFlXDKOnHwHM0h6GX25odXzwnIZxy76PQxoJ4/bTwoEQtOqVfP1hYbH/Yhqmnhjns\nPxZ+jKRrgY/gvBRFMGeHuv6oxf5sLlxhYgkz+1IYE5azTm1wnf+I9sdt2SAov6QFmjxX5bZtsLpD\nI3+1J1GJpHOBL1uklnlNW+sSZNGsuWJF6j4bqW+VINwT8L6ssLcAb9bNjUIbq4SXW+KT/9+RgIiR\ndBF+Hd+CB+SblshdgAc2o+vne/yzxpR+5Rgx47o6JaLr4ojL82k2P/ohcKOZpaBYsv0lHYFfw0Vx\nhGGS/LQ6dfz/g6NeL+nxry2ZLqF6dsN5Mc6jGV/SNHxuMz9OIH8r8KqZbRvpPxkPPMyCz42exc/p\nQDSCpC8DX8FRcI+WPnoLHlzqixyXNIuZvS7pTjN7n6RtcZLivfCgSnQ5SBsm6REaImrCsW+FH/9J\nOGr1O2YWyylRtHMdnmw8ETgtZX4n6QYza6xqMdTOKAsiXIZHdbqgYmb2s75OLfqHNjbFIcdjSNNC\nLvyvxCNlRe3fdri6wQYJx9BYkkzSnTiR2M1NFn+jwSTdhUO1eq/jtL5ODE1s1sNrt48ufTQduMjM\nHo7c/y9wCHXvQBsFne0TTIkKokg6GWcN/j1wppnl6sg2Mkk3mdmaku4o3Ud3x3bUucGwivbGAlub\nWQrB5+alt3PgaIYnYwMZpXbmxMtZvgksambJJD6SliRRDkvS4xWbzWrqbyWtb2ZXq4/GfOxkrS1T\nDwlVOIZoEqrQxqz4c/G3mEVQadJeaQmT9saT5lIb4/FJ1qw45HNe4Cgze6TGr63+7Cy8L/1sWHzN\nhU/43hfpP6L9cWjrQOAQM/tXeD8/sIeZfSfSvxLKXxcISTi+281slfpvzjD/2iCGpFVx9MC9JCxg\nJY0zsxfUTZg8ZCnBF2UQzUqagteBH1Mak+41sxVr/MYDS+FEvXuVPpqOZz9ra7nlWvL9rPY+Cs/C\noAaiyl1CQHJlPAhRnpvE9meNxpSS/wM0LMfITTKVAmrCs9Cv0uE9qp2jt+CfFdiWcyQN8q8l6gzX\nr/gNFU1EX8fbzeH0u+Klo4cUi/NI/zvMpRm/gJO+fj9mfigvL52fimexrh8pHfN9eCDudOCXZjYl\nZW7aluUuwuWcMh/Gr+VVTYIRoZ1lgZ1wGeFbgBPM7MoIv8PICOYNtTPKggi1A8KM9A9tPI6TftzT\nsKMc9iAmPpxDmtxmtpQSNLmD/81mtkbpIZ8Fh8ykkLZMwGHcJ0h6K14aUjX49POfF6/dWydsmhJ+\nQ1SUTNI0M4tVQqjyH28dFuUm/lUThtYmnDX7fpPO5KB8/0UFsyTtGQaEImreZbGLH0nH4ZH2vXB0\nz244hG2XGP+mphqVEDP7VEbbY4DrzWyt2i/797+DI4rmAe7ASRGvs26W9Cq/5c3rhSsXBbHBqKYm\naf8wqOcEsyrvn1IjsfdRQUJ1HyUSqYiFy9HAEWZ2X+hPpuIL2AWAb5rZGTX+xaR9M3ygLLgoJgLP\nWE3GpNRO40lzW9ZCf3abma3aExC8y+KRDCPaH4c2ho69tC164S3pIRz6OUOy5lXHN5P9a89FmHwf\nQw9XT90CVtLFZrZxzwJm6H/CwuX7VBDNmlkUKZqkW81stZ77OHpuNVpM0iJ4oseAW83s6QTfymBE\nbBAi1ySdA+xWNwb+Xzd5/fry+DV8qEm/EuY6ZmbT2z6+iH3fgSMCfgF8PoyzKUjTe4AN8Sz6vmZ2\na5OFvKS30R1Q7IuwKa1pdsW5E+7GEbtLAKea2dr9fGeE5SzC+wRkp1ukEmBFe2Nxro7D8dIK4WXZ\nfY8lZ35YttFGrHijpJXM7J4R8gdnxr83Y9L4D0nb0WFRnoiTAcXafmRIkuHEI/sAc0raAO8oLop1\nDgP9qjjc6gScEfVUOuUZMXY8nu3YMrzfPrRVmRmtsIskfYWGUC1gdkm/JhF+W/peU9mf7AW8mUUp\nEAzIPBXRzNti2hlgjcjUJJ1tZluGQabqHNQNMm2qhPTasjiJTKxthjMOX4IHwqZaHJnSN/CSoioE\nlBEpiSbPvn+ZTjBuMp6FGzjQhADCGOBSM2sq7Zd7/xTWlIRq7VLAakfgj2b26TABv5RO/1ppxaRa\n0s/MbNXSRxdJSvltjWU++z0DpWOMnXBl9Wfkk1uOaH8cbKyczO8VGEIHzZ7gnyuNV2e5QaZc/xjF\nk0YKFyGAIGDdQZP8CGtMNBssS31LLRCJyUuzvo+XRhgeWP6BRZLkhczt94Crw/6PkPQDMzs+xj9k\nXRemw+J+iyWUpzQdU0qWpVgUjmFpXEpwTfwcTgV2T0xUbUbnGlxnZufH+ub6S/o4Hox7FL+GS0na\n2cyilI/kiKATCAoDkp4HdrIaZFdPG3Pgc/uh34CXLccSoe+OK3ScFwIIS+Olp7H2A3xOeH0IICyN\n8wPEHv8mwM9x4uJncaTiA3ipRz8rSzsW5XFfx1HjSde/JRuHl3xvWNpmxBG93o6X1v0Tv4fmA56W\n9Azwxdh7QV7StSMeTLkSL6+4XU6kPXXQsVhkWW3tMYxggmWYSbofVxF4nHRpvGz/0MaJeL3OpSTW\nKwX/8XjtcKENfgMeuY0afJUPIx+DE8JtiP/+y3F27KgLLS+HWBlHLyTvv2ijNzuQkjFQPuSuEfy2\n5F+pAGA13BqSNjGzi9QylL/PvgZmniStMqMz3n32+3ZzudLxVZ/XZSTL0fAQXW2sEqJu+KLh9eh7\nmzPqxrYxDg+gTcDhYs+aWa5eeey+f4ND4Iv7ZnvgDTP7QqT/bT0L6JxjmcvM/tPA71JgCzP7d6Jf\nuf+7BDjHzE7s/SyinQeAT5ir1iBpKZwM7t2R/tfQsIa53zNQaiMqO99Cf7YhHhBcASc8/SDOyTA5\n0n9E++PQxrdxxZwie7IjTvR6SKR/Iyh/wvGNdDlDDBLh5/hvb6RwkZKp7ON/i5mtLq/H/hBeTvCA\nAUytqgAAIABJREFUmS0f6b80rr61Fj75fhwvFY19jhrXMJfauBLnximCH9viRLEfifR/CJfe/Ud4\nvyBeWlSrchG+vyUunTwZH9fWxknlfhvpnzumZCMhJN0EHEknELw1zvOwRqT/Ufg8vyx3+qiZfbW/\nV6v+DwIbWyhHC4GtSxLu47uBr5rZdeH9BLy8LWWOfTb+/BT34Ta4+sgWsW2MpIUxYX3gD+bogg8B\n25lZXyl4SU/hnCj9Sjmiue9G2iQdC/zWzC4P7zfEEb8nAIclPAtTcBL+c8zspZ7PtrduSd1ieyto\n5cJGGxJhoxH2hw5r8GzhL8nCgJYzMcnV5J4TJ+E7FoYWYgVJYoy9amYmqYj2z52w78JekjTBzK4P\nbXyQjtxcrVm+ROTrZvarDP8XS6/nwGUfayceZlYgPs7qXfTKy0LatLrM089C1va34XiiuBXUrR08\nzOom3RZgjrETuwobyoiYS57+tUkAIfi/pf5b/U1ev7s2TgS1Ko5Sum6gU7f/3fhE5Wwze7Tu+xW2\nmnVDzq8Og2+s/UHSN8kgZpST4x2Hl3QsIem9wM5m9pXIJv4D3CkpiYQK+Jec1PFJfNH7+XA8s+D9\nWax9HZgs6TH8mRmPyzfG2n4J3+2y8jMQAgrLmtkfQhY9ZezN6s/M7IqwcCvILSdZgvTqKOiPMbOD\nw/NUkOAdUEzAIu0kPAvdVLq5zmKQADPSP8aKwNuapW3RyCjgdkmrmVmKxGvZbpM0Hy5LNw0nmp2a\n4P8nM/tImJOMsXQY+DM5AYRgbzezMiLvh5K26vvt4fYPfPFX2HTSkKr74uPCswCSFsKlCqOCCGSO\nKeZIiHJfNhdONJlic/Usbk6V9K0E//VxVvlijnoSXi43s/ynWzefzWN0X9M6e6MIIACY2fWSank5\nemxFM1uh9P6akEQdaLnzu34Jto671aJVg71mZv+QNEbSGDO7RtKhNT5PjYZAQUuL8DXNbEg2PozR\nPzWzneUk2FFmZn25VqoCCMHaQisDoy+I8EMz2768QU5stX2f77ftH0VuMshUDdX6epEJi7BcTe6r\ncCbwIvM3J559iqoDB86WdAwwn1zpYSd80E+xXYCT5bXM4FmDgaQ00Hk4w+strMRUKulAM9sncv9Z\n8FvrIeKU9FP8OsTaLZK+ZGY3Bf/NcSKZFG34OhuILDGzD4UgwpbAMSGjfpbVMFnjCJq/4PfezTSc\n3Ko5dPS9kgrNX+FlOUWNV4x/+RgGZuYiMnA/xoMGh+O1q6n1apvgWY6z5VwXZ+EBhVhI8BuSlikC\nEKFvSdGELia35QyL4UirWDsU+CievcTM7pK0zmCXLruw8E20nfHzvggOdS3qhj+Ml5dEmZldFoKx\nRZboQUsorbBM+DCASoo5OEnjYnhmvpYVPlhWfyYnmTwdz9y/WPf9kt+o6I9L378URwg2sUZQ/rJp\ngLoDEdcy17+u+bovWMMyvZKtAWwr6U94UDIJ6VkKPB4tJ8FOIpoFHg9+Z+HlAKl2m5xkNIdI7ApJ\nWwNFmdhnSJsbPALcLFdZMJx/624FmLbVI17H9PQ//8Dh3LGWNaZU9GWLktaXAVwqaS/gTPwcbAX8\nXqFOPKJfeASvgy+CtIuHbbGW63+bpN/j94DhCMVbw5wn5n6aEubYZ9D5/ZOL+UrEvAQ8oLdmaY65\nBnGLwtz5XdX4MRdeerog8WuVf0maB59fnSbp2T5tl21mBFpjrI1F+FNydN2Z4f1WwDMh6Rsd5FZ1\nyeTz4dh+aBVlVkWy01pCRo+2coYuSF44off0RNxmmH/wWQjYE6/NKRN+xNYxZ0G1ck2ZpQTh+xtQ\nKoewCKbP4Hc/Plk9w8weDQtXzOyFwZ5D/kPXr+JappBoZcFvK9qbH19EvjPy+yvhvBCT8ZqvBYEv\nWKTMZ+Q+Us7HSvg9vZWZDUTXhGdmA5zL4z34gu0MM0uJ1LcCHa1pP4aN/CZcQudu/F5+D965vgxx\nRJnKUErpaWdZ4Ls4/DYqcyPpwzi8rZxF39HMUmoXs0w9RK1hWzQpX+a+x+JZ86hSsgHtNJZoVCZ8\nOLSRpZiT25/JIchb4XWTt+ITl4utBuEzGvpjtSRxqHwof5a6Q65/aCNLolL5CheNStR62ijXol9v\nZucl+M6FowK3xvv1i3EFo+sj/bOJxML9ODedif4YSkTIdfejMhn6Jf0EH8fKUPy7zezbNYde+GeN\nKbl9Wfj+IO6D2n5BDuFeDS8xI7y+DV88xWTTc/1zVSaylD5CGw/gvGVFQmIJ4CGcw6lvYK+t+V1o\n6y3AJBwleDbws9gAuxxN9BL+/GyLKxadVrXoLflkyfCOJpMjk8vcKjfgPBPP4/PNqKCWpEPwIODp\nYdPWeFDnaWCCmW0ywPdKvNS0PB6caWYfTfktowKJIGlvnECtyDqCd3Cv4jVwM9S/x07DI90b4xn1\nzwF/T/DPgmqpoSZ3yV5UqR5e0vtJKCUI+7pS0s3F/hMe3on4TXyFpH/gA91ZOFtojKnP66r3fc0y\n4bc90b2xwEL4Ax67/3sk/QgnCZwOrNNmAKE4zIEfSu/GJxifoaMLvUddo2b2BnAZcJkcVjURj5Lv\nb2a/TDi+NqCjg+wqfCI5yJ7ESWruAYryhP0sng18SCkFWEqJSimhjfH4ddgK7+z3jPApsr6P4WSQ\nRb3sQ5ZIUKgMSbVgfwmLcJOTck0iorRH+QSbRTnL1jgBUyNTH4lGIPYc5MKHAV4xs1clFcc0CzVI\norLl9mfm9cpTwgRyfVyu9HicGGqQjXh/bJklSSXLhfJvCSxjzdUdsvz7BSEIxx85Pm9kJfSImf1T\nThIXFUQoggXqYVSPNQ2vRd9Z0kcsshbdnJPlbBzZNT+O+JxCJJzeWiASy70f64IE/UyBVNTMvlUK\nxAD8OiYQ0+KYktWXQSvlUYMg9TPcP/c+snxEEMDHGu47e34nR4x8A1/8nwSsUpfQqbBZ8XkJwPkW\nodw22gIITRfhYRw+zMy27fOVFFTMR3qC+feoI4W5XY3vQsWxw9B4kEI8PuQ4av6Ag0bSP7QxLfy/\nu7Tt1gT/g3FZvCXxKO+eOJR9AWCBCP+7cPbc1YH3F38J+18Nn2hchzMHP5LovzMexXoCH3AeBx5r\ncB7XxBlU/4yzvn4xwuf2qtdV7/v471l6vUXPZwdG+C8e/o8v/S2KB1M2Tvjtx+GZy6VwKPiDOJFO\nrP9YHHY96DsD7yW8jGYS8I4G1252XJngHDxz+V1g0cQ2DsMDFxNDW5sBm6Uey4D274j4zn0x2wb4\nT8Mj5HeUtt2T4H8zzsK7N7B0gt/t5f8Z5+j74dl7Bs8+PY2T+aS08VY8sPoMzqJ8KrBghN/bw//x\nVX8J+/8F8EscAbBK8Zfg/wABcdfwHN7T835Myj0QfA7Bg9wP4lmg84AfRfhl9Wc9358TX8iei/fp\nR8Teh1X3Ysy92fLxL1DxN2vT69rgPjgXeNsI+j+Eyz7n/Ia7gdl77omU/vCTOAP7i+EeejPR/8Hy\nsxiepQcSf8O6wFH43ORsYPMIn7NLrw/u+eyKBufxPeFcJI9rOLfOefi4cHfxF+FXjAmnNLz2bY0p\njfqynjbGhvO3G74Y/QbwjQbHMq7cH8wsf3xe93Oc+b4o17swwX++8Nt/jpfsHQ4c3uD45w/3YtK4\nSMb8DkflPYpLLM7T4JhnB04E/oXLZt+Jlzsfn9u/zew/4M6KbbXz0vC969v4vfh6cfXS+9WAu2KO\nBZ/fLlF6P75J/zDayhk2Ba62EJWSk/CsZ5HyK7n+wadQR7gcf7ifxCfey0T650K1sjS5Qxuz0h1p\njq7llvQw8AFLIN6qaW89fCGwgpkNJAyR9AadWssyGaSAOcxs1hr/LPitnHX3Y2b2RM/2HYHvJNwD\nu+ORRgvv5wV+bgOYZyvauAAvg2ksqdUEii/pZGBFXMf7TIskZKxopwryZ5aoQTug/ZjreQZ+P5WZ\ntOcxs4mR+8hVSlku5dyX/K7EszurUUHkaJFIiIACKCTV3qsgqWZmG0T6jwVOtv4R82iTlzaVkVWx\n9fxV0E+zeBh5lq55H/jwPWZWiygptSG8ZjRJMSe3Pyt992w8KF3Uk08xs9q6y5Huj3vaeoIKSSw8\nuFUriaV8KH+WukML/ucCX7ZEPo6eNnIVLpIZ1Xv8L8aD6QWiYTzwSxsAue3xfwJfeJxNAr9HT//d\nex9GK72E7x+P9wf30SlpiB7X5OoM36KH4NPqVYvuBQ7Ea86HIVutpg6/xTElS/0rtPF7vKSw9xxE\noTQkfQlHhr4c/IvSptjyrlz/u/BEUe/xRylUSLoRuKnCP7pGvR8yqW5czJ3fybmdXiGUTZQ/Iq6c\n5wc4MnAXC8So8rKII3Hi1O+mHM9ImpyseNNijh76s/NixrVwHd6NB6DKpNdJqEtJq+EBmHnwa/AC\n/nzej6tS9ZX4lvRRnO9uSvBdG/iSpREWj7ogQlU9f4qcV5Z/+P7GeCe7OC7VOA7Y38yakINFW4AI\ngUconyWDhCoHwiwnLtrMGsi5ldpYDc9Ab45nLM7EJUhSWIgHtV9ZD98zWei67jH3QYB2Hoo/fA+H\nbXvj8jkbWfslCYOO5VocgnsL3Z1M7GA/BMU3s6UUCcUPg8RQjWf5IxKJDWekRQYR5qBbE/ta4FcW\nqfYg6Ti8bGIv/F7eDc9+7hLpvzA+8XuHmW0kaQU8QHdcjd9seGbhFHzx2WUJk5UsSbXQxvXA+tYc\nhr0zsD+BhyJsjp6w5ZoyJBpLbZThw9dZWh33WDxbG33OS75Z/Vnpux/FF35vhPcTgIkWCSNvam0d\nf/h+liRW1f4SAzH34drwTRcOuf6tSFRK2ogOCd6VKRNGBcnYsIha2czeVAQ/ipzY03BUV7kWfXWc\nqHS9yP2Ps8CvJJfV2wbY2swGacu3Hcy63xI4tir8r7cGEsHhmd0WRxP1zkVrgxgtjilzAy+X+pKx\nOLoler6YEojv45+V6GrB/+a6/qbGP0vONbTxELBS6rg80vO7EAxbvfd+kZMs3mRmK87I/bdpOYtw\n9eFGiQ2kVbQ3b/CvLQsJ3x+DlzpfTafE76Ymz8So4EQoWRXLbMox5vpjZheHl8/jE+8kk6MAyguX\nycAxVo8GmAZDmvbQHW02IhnVw825Hh5E+D0ue3k98TXAewM3yjkRUiTZimzPVsD/4oGDD86ghXe/\nenjr87rq/XBns99LegVnD/40PtiujnMaRNd8yUn0DmJ4ICdl4ZQbkd0PP/bJYd93SqqtRTSzKKbn\nAYGcVjVoBx1C3RdCsOAXko7EiVL/FhtACFZWSjkdVzlJkRg6EV/k7Bve/xHPBA8MIoSJwU2S1jKz\nFD6WXsuVVAOHDd8gl4ZqEjH/Ji5H1XTC1igQU7L9Gu73ncDCZnZDyPL9LmyfoBK7eZ2Z8zo8JGkJ\nS0cVZfVnpWO4XNLKkibii5DHCb8nxiSdYhWqR73bqnY94HhTsxe5klhjFerKAeQorWgpLfLVHXL9\nW5GotDyFi4JR/VriGdXBg9lt2DySPo8HD1bCx9itI/zmkrQyPj+cM7wuFINS5GIBpkpawcxq5fT6\n2Pcl/Qafw0QrRJiTR14fAjmxfV/Zv60xJVf9C3x+taGZXdHwGB4lXrJ8RvgfFubZV9CApBU4Ra5y\ncTHN1WruxdFYScik2PndDLQ3qwJOZvZvBVn5/wYLi/B58XVIsQjfPXae0zRYUHEc8+Jlq+uE91Pw\nZOHAYEIIAO9pjlS4eNB362y0BRFuk7MoHxnefxWf/M5w/xYXP7/CSUOOCu+3D9uGRX972s8lmyns\nM3QgzDuGSfipNT5lOwaPTjWZrLyMlwM8nOiXav0WkIU8YFkasPh+FBGUmV0lL1+YDNyIZ2FTFp7g\nC8fv42UcH8Jho0mdt+XrMb9mZs9LXaeqzU66XyAnW/4mMnvbV1JK0tF4zfd9oZOdipPqLSDpm2Z2\nRj/fHptoZvvSCQIg6cc4MiHG3mpmZwc0C2b2uhwiPtAkHWpmuwPHVw2sddnHEDQ53fIl1cAnXI/i\n928TUrHcCduJNAjEFJbxHB2KB1R77fnwWRQEO9j8wH2SUlFFWf2ZnKR3YvgryFVl6cReXZleOZla\nTMlddn9cslxJrNOAq9Qps9oRX5jH2nWSDqKhukML/o2DEMpUuJC0BXARLkf4EvB1OozqtUHVcpZb\nDeRS5fDziTg/0dk4XPeChIn4U3TIWZ+mm6j16eFfH2gn44GEp/HrmCRzid93y+NzxKFyCGqCepLW\nN7OrgX8qSAmWrS4IkTumlGwOMysCCMXib65I38JuAs4LC7HXSM+CN050teS/Ej6vX5/uaxhL0voq\nzi2wL90kqSlJpoOAO0JmvzEyaQTM5KVkVXP4xsHRmW25i3BlqgCW7Hg8oLRleL89Pl8a1kdU2B8k\nfROfF5TnJUkElqMtiLArnoE9K7y/km6N8xnp34b2JziTdxned7Uc/hdlcgj2V+hIf1wHHJ2wkH0p\n3OCvy+uQn8VLM2JtVjP7RsL3y3YfsJJcUnCY1Q10CVa5GLZ46bx+WfRisiU8S/Vh4Fn5SjxlkJsz\nBCNkXuu4nxxSHs0KrHw95vskbYNn4JbFofg3xu4/5hCrNloLGrQx2duajm5t65Qc7Aj80cw+LWkR\nPAsXG0TYXNLLZnYagKRfkpa5elHSgoT7VdKaBBmpGivUXZpm8P4I/FTS2/FJ9xlmdkdqI2GB9i7L\n40TInbA1CsQUlvEcLWxB1aNs5sorS8buP1gjVFFsfzbAHsTHj40tSEZJ+nqsszJVj1o4/rJtgwdm\nz4chSaxt8IDQlgP8imM5WNLddK77AZZW+5mr7pDr3zgIYfkKF9vgiZnL8b7z8ib9u4bLpR4hKUYu\n9Zd4IHgbM7sttJWCxGmDDb+w4/CJelNEyGpmtlz914bZunhypyp4WRuEIH9MKSxb/QsP4nwA55Zp\nktjISXS14b8FTpTcVKllD+CdTdF5wVpBJo2AzYsndqvmj/81SIRgOYvwXBXAwpYxs81L7/eXy7DG\n2Fbhf3mNnBrMGl1BBHOinNgsX6v+bSx+gr1RhrtKWpqOtFiMnYzXLh8R3m+DDwBbRPrnQpgvDZH/\ni0iHWm084LOYgW5mWWUWPXay1S8IUbJXQpT9YUlfA/6GE5+k2FcJeszh2B5WmvxKGYp/Bj4BPCDx\nGAZZZYcvh733d4qPlDfN3oIvcgrbAGchxsye7kFm1NnmwIXyOsKPAf+yBHJMnHX6QmAZSTfgUqG1\n8pIWSOIssk61wv8wHHI5Hof7Hi+Hb5+BBxT+GNnOG5LGS5otY8KUO2FrGogprOlzNN+Az6IDSSEQ\nc0wNqiamnQk4muIEucb0W8xsEIkveDZia+CagEQ5k4gyoMLM7CDgIEkHmVkVKiP22JuWQ5SP5Tm8\nT6uyRyQdYWb9Pi/aaAzlz12ItrCQzQ1ClHmXyjbdakotzWzTkJDYFL8Gx8mJf89I7KOayqW+HZ//\n/CwEgs/GM/lJFp7FTzBcPjuFzOzvlsePdaMalEOY2ffD/0bygrljSskmAedIehLvSxahsxiJtb8A\n9zYMIEBeoqsN/0alBCV7hDx0HuSXR42ImdmSI30MLVrOInxBMztO0iTrSDDf2uAYXpI0wbzcCUkf\nJDKoZy2h30cbsWIWxKMF/8/hnWQRKX4Al16J1lWXtD4OwX0M72THAzuaWRXLeJX/MOKeqm0Vfh80\nsxvUXfe5JIkQZlWrS5jNJCK0GFMiKdcM8B9IjCMnlnwAH2gOwKOvh5jZTQn7uNnM1iiONUCIb7cM\nQqI2rd85kPR3fJJwBr5w666niCdwWrdqe4y/nEzvZ3jw5hpg+RBAmAWfvAxc0PVMtt+CZz9vICBJ\nUuBeYZ/L4echVSnlg3hN/3h80pvEIt3T1so49O09KRliZbIIt/CsrYIHVFfEJ28L4XKBUeiups+R\nXNnjajM7tmf7F4ANzCx64qxMpRV5/e2qwHJm9i5J78CJaj8Y6T83DkWfiC86T8ZZpKNrkiUtSuc+\nBMDMro307SWzmwWXtWtMUFe3j9L2LCh/qZ1cdYcs/zZMmQoXpXYWxIOhX8Gl8aKQjpLuMbOVSu/H\n4HJklcjFPm0shk/eJwJz4/fxPpG+WaoAoY2j8PPWm2SJSpBIegBHRD1Og3IIOf/H5gwPhERx9eSM\nKSEIsxuODGmk/hXaORFfaF1K9zmMHVMOxCXImyS62vCfjCt03EozpZXz8DXKNTRD5yEv236F5uVR\nI2rybM62wFJmdoCkJYBFzOyWGtf/E6ZMFcBSO+/DUSnz4s/y/wI7JMyPGpPwFzaqkAjkQzwa+4cA\nwu549vB2/IKsAvxEkpnZKYP8QxtjcT6CZenuZF/p7zXMbpe0ZrHglLQGcSUWh+N1qlPDcWM9UoUx\n1kZ0ShlkaMqsh4+03MjZwGyemRURxX/jcPomNkVSASXeAJ+wXRR1cC0Ew2J202f7Inj2fyKOorkE\nz1jdl9K45XFC7Iw/D4vgZDdF3euHw/HUWZnktPj/ifAXFWkOE+1t8PpX8GvwJN7Jx9pxeP3xNNLQ\nTMUxzIITq26N//bJpBMN5nIi5CCbwEuk1qUUiCGCX0TS18zslzR/jnbH63a3pcOrsyowG56RTbEc\nVA1hfyvj4xJm9qRcFivKzBF6pwOnh8XrZ3Cd76gggpwHZGtcNqq4Dw0n2Bvkl1UO0YZZPpS/sI3K\ni1Uz+6dczSc2CJDl31IQ4kr6K1wcBdQyzof9boYv5BegHkVQtsvCpLksl/r7BH/MiZp/hqMSlsXH\nmVhbrIUg/Jx4P7Zh+bCIR1l+LHP/F+BIrGmU+tMEazymmCPTJprZL/CAblN7PPzNFv5SrbjmZXRU\nCgw717+SWT/Bzg9/OZaNTBphOwoP5K2PJ9qmA+fS4Uv5r7CMRfgP5Xxde9BRAYwuNSzt606ce2hc\neP9CjcuQKZ+E39sZZUiEaWb2fpUkYCTdamZRN1aOv6SbcLmgJ3q2L4nrqa5Z4VbVzi1mtnrMd/v4\nP4BPmIus1RL4xPl1BkSsw/HfDXyaDvnUkMVGOSV9tmp7IhrjUgIZmrk+/Sw40WNUxiE3cxfRfpbE\nzoCsV1tQ/iJLk6zHPCgYBhyaEAwbGMiRtEDdQjBkTSaGfe8fFnVRplItu5ktEyaMR5tZbgBphpuk\nd+MQ/stxXXPhg/4GOFHng5HtNJKSCovlicDHcTm1M3Eisihd9T5tzgNOpJXol4VsqnrWYp7f4jtN\nn6NSOx/CURDgz8TVPZ/XlTZloWqCfyHVWfymuYGpKQsidZdDLISXQzwW6fsQjmBpsmhBmeUQkfuo\nQ4c1gvKX/O/GofhldYfbrEZesEX/LInK8P0uJEBxXGb2HlXIY5e+Mw8eyJqI92MX4n3K5ITnSMBi\n+CIhRy61cTmCpIOBq6y5KkBjU4cYEUlLWakUSdJmCUiGey1DBq/pmFLy/wVeStJbB56VAZc0i5m9\nntPGjDZJyxdjt0qI3/B+KPE3wH9IorTisybqPf+1VhrLyjLAtXKxo8n6LcLNrLZktYV9DyzHiekT\nJd1Dh4T/vSH5e6qZbZByLKMNiVAM6E9J+gSeuasa/GeE/7iqzL2ZPVFEeSLtBjkBW9NOtmmkemNc\neuejpCla9Fo54DIHnsG8nbToVBYZGvmZuzpLKoxPsA8wAMqfYmb2Js5rcWzdd3vsy8CmPffy1ZI2\nxyd+tUEEyyQ2DMGDT+CTziVxVED0ZDFYLicEYbH0RYZPOus0tVcD/lIgGEJgbXPgT8B+EVn0A4BJ\n5sy95XY3B34U2oqxayT9BM9ypUAW98Yzz3sMWuBGLoBXxO+ZBcL754DPxiJLrCGySV77vCjdkmzg\nEftoNvCM56jwvwaHnfazfiol5TamqAErfcnOlnQMMF8Iru1Ewu9RqRwCD+7Oil/TqHIIvDRvVppl\nPjGzvZVRDhFpdX3t7VRA+SXFQvlz1R1y/XMlKqG5wsUTwGV49vDy2MBL2czMJP0+BDGaciNdxPBy\nhJQsWGNVAElnm9mW4fXBZvbt0mdXmNmG/b0BJzQs+olz6e4zvkP8OblR0kpWQfoaaU3HlMKKQFO5\nfCIqAy7pejObEF73cqLcQk0/qqCgFl5vYWbnlD470GrKWnL98TG1OMapdB/vUXXHjyMBVwn7u6on\nIXJ+hD/qqGwgr6c/rPTZiWa2Q10bo8ReC/1OwXW0EP9dBJHQQAlPfdT/CotN9tIMFdpruST8wOgL\nIuRCPHL8B5FRpLDPNupk5XDt18zZ/JG0HJ5J/FNMlNrMnpN0Dl5CkMOM30VOJSdpHIZsqLFcMrRG\nbOZhXzOjHGKGQflDdHBQJ1OXfWwrGNYokCOvoV8Rj8zub2ZNYY+vmNmrCkSIcjRLKmzqApyd/g+k\nQTePwQNySFoH+DFOKPY+HIZdF2leqSoabWbnymHJsVZkjFYtN0NNX2LxMkG1C2D8934jLKaRtB6+\ngI3SBZc0Kx7YWidsmowTDdYtRD4K7IBnL39G55mbjkPk6+w96kDouw6JhFr4CKsNFKo5Kz0AZvZT\nObrkBTwQ8D0zuzLhGLPKIXASsDsl9Wrbx6LbGpVDJNphNZ9nQfktU90h15/8IAQ0V7hY3MxeAg9e\nSFrazB5K3Dd4qeZq1in3S7XccoQcVYBlS683wMuBClsowl99Xle9H2QTgB3kCK8mEpONxpShL+YR\nhM5det2Lpog5B1sDh4TXexMIk4N9jPpxIdc/9xqWv9Ob3Iy9B9Ypvf4c3f3eqODLirQisfQ2ST/C\n51QzjR+mJWuyCM9V/wPSeFwGWC4JPzDKgghmVuhtPg8kd1aZ/u8Og3yviQTJi4xO9jIcdvuwpHfi\nF/M0YOMw8NbCQUMGeWu6dZBz7UUgNZu4B8NZ6WPVJbLq4VvIojcOQpjZG/h1vEwdKP9kSSlQ/kLh\nomB8LZAD2xG3iG4rGNY0kLMdfs9MAnZTRw0hdfE2RQ05IUo2VzljlGBjS/fIVsCvzexc4FywlwQE\nAAAgAElEQVTFyecMKhuILinInLDFWMzEZW4rkcKa2WQ5nD7WfoVnsY8K77cP274wyCkEQk+StHk4\n96l2j2UQOiZYzDPZlJWe8P2lcOj3leH9nJKWrAoW9rFXQya4COqmXD/wvjyHkX5TnBQyGckg6SIG\nB1U/Gf6fWNPUmmb2xZLfFZJ+amY7h7661ixD3SHXv4UgRGOFi1IAYRM8oz4bsJSc1OsHdYHlkq0B\nbCcneHyR9AXwpZI2tOblCDmqAIN8YtqzPq9j/QvbKOG7ww8ic0xRBt8V+eegzUV8E//c42/jHhj0\nG/5rzMxOk8uefxj/HZ82swdG+LBSLXkRHpvg7dcXV3xvMTxhXqAKr8NRsH+t8zWzr4SXR8vVm5JI\n+AsbVUEEuRziYXi0+E38gnzd4ms3c/zf3eighx/Dgni0fwLeMVyPD7T/qHGd38weDq8/h2ewd5U0\nG36DxtaUZpVT9EzaxuD1Pmf39xhuZjZNXgdcJkOL7vDUXNu9sMblEC0EIbKg/CUkygY9i6BvS7qd\negnTtoJhjQI5ZlZLegdRUPq98KDaPThR4u+B38S0XbKLJX3czJLIu3DocFGj+WH8Xiwsps98m6pr\n1kRE1qrC14Dn8Hq7Olm/FIuZuDwm6bt0B7Oi+uNgq1l3nePVkqKYg4MtFqL80/HBehVgr4yFxEjY\nGOsuX/gHEeSQJTuHbuTHG2FbLAlVVjlEDrItWE45RK6ufWGNoPzKVHfI9S9bbhAjwurKW/bDS8wm\nh+O5MwS4Yu2jzQ5ryBqXIwR7DA/qN1EFmEteVjWG7hIrESf5urScM0ml14T3tedQHU6P6cVh45LD\nsZwUbY0pJxL4rsL7P+JzzZggwnySNsXP4XySNisOD2eXr7ORXsQvJulw/HiL14T3i0b4F/MC0T1H\niJoXBBsjJzcdU3pdzK2jVZdG2gI6+T4zOzK8HydpDTO7eYQPLdraWoT3sdhSwxPwMpsiSbtd2FbL\naxCexavN7HlzpPJ8kj5tZkmkn6MqiICfjCPpsF9vjdeXxxLBNPYvLd7mowNd+6OZpcDwwScp19Kp\ne94W72Q/UncIpdfr4/BXzCHdKbVCjWvWgpUnba/j5RS1Ua2yySVwdrAA45fXmP8Grx+Ksdx6+Mbl\nEMFGGsofmnPZzvBmLeIWHm0Fw3IDOXU2EEpvmbXswSYB+0h6hbRJ5xk4EuI5HL1xHUBACMX0B8fS\nv2YtJhBS5bsksK+k/cwstbwox3YC9sdraA0/FwM5JXrsDUnLmNmjMBToTSkt2cnMDpP0UWBBHMlw\nCvXKAueEBeJu5mziM8pigqNVrPQpi8FZzOzV4k0YE6JZza1hOYRCHbj6lFglZJAbl0NYvq59YY2g\n/Jap7pDr32YQogV7zcyeL6HLIGLxFcbufYB34kHhgyyBRbxkOeUIkKcK8BQdhOfTdKM9nx7+9WH2\nqdLr3sBYTKCsrBhU2DwhIPuFCFRSW2NKDt/VFOCTpdeblD6LKW16r7xETQxXfJmjv1tr/t8qve6F\npcfA1Mvzgt45QmyCZF78Xijug3JycPSw5Nfbr+ie//27YtuotrYW4Zm2kJmdUHp/oqTdI32/byVi\nWzP7l5w/Ken4R5s6w929ExMlMHbm+IcM8jG4usHj+EM6Hs8i71KexNW0M4w9VxWsyBV+p+KD0d/w\nLOxSZvafENSYEnsORoOFCf9heBZ+UZzb4fMJaIhG2u49bQzLopvZ9Dq/4NuITT0Ee4qgQ/nBSp7w\nSVoFjygWEfp/4QuqaBbknnMwJ74YiT0HdxICOdZhz629jxOObRjbeLEP8jghWrEQKX87cIUFVQNJ\n7wLmKa5BBJqi7WNaAPiDZSiL9LRXeQ3aNEnr49mrx+j0qTtaqUSixr9gjz8MZ4M/L+W4lamWE9qY\nH691LJMCFvdArUpJ+N5mNGelvxI4wswuDO8/hQdHogJ6IVv8lJm9HN7PCSxct/CQ9HYzeyr0I8Os\nCLxH7P9zffyjEQ5ydZaDGC6nFY2uqml/IHxU+eoOWf4zw1SvcHEcHvzdC0+S7AbMama71LR7Gb7w\nuRYv13uLNSCAk3QtsF4IMP9/Y6hf+ZKZNSLkTh1TQoJoc+BKc3b9NYGDzaxyzvT/7f9blalCDaZq\n/Taarc9vaGVOVdcXl753Fb5OKBIUE/H5Ve3coM96OXmOP9qQCJdK2gvP5htBR7gYgCMmazn+38Eh\nl4sXCy05+dSReGY7Nrt9hZyXoCgB+AwuK1ZnX8Qzp0sCG5rZf8L2FUiAdEr6XtV2M/tB1faSX5uw\ny8sl7YKTWT0HrGyB6T7SpiijHj43i24jDOUPGdR1zWVX5g1tJyFiKs7BYqQhCdogNhxk/drK5YTo\nsrAAXJbuhUdt1sMq5JrM7I89myrRFOrAHPu1HcvA2+v3v+pJA/YztUQwGhawW1i3Pv2ZZlYLTQ7H\n8F78/C8XNj9kabXx0yRdgUN+9w59csoiIre86wCc4PFROvffELJr0JgSkCsLm9kN5uS4vwvbJ5TR\nGRG2C3Ba+B3Ca7srpXj7WKNyCDN7Kvz/kzLUJVKCBQPsBBxJ8Auc72hH0kpC6qwOPpqr7pDlP5OC\nEHV9y644jP0VfNJ6Oa5EU2dvN7MC/n65vCyvieWUIyDpGqoRNbEozaKdtRiu+BOlXiXpg3hZSKFU\nUsyvGgXDzOx3khoT0qWMKcG+wXC+qyRJu5Cw25zh53DgHLWnjbHAwj3+AyUS+zxDQ1a3vlAkP8sA\n/+x5QUguDWojS2pzJtpjknbD0Qfgc/yUMsnRYFXjT1tr6thnciecE+EX+L15Iz5fibHbJP0cX+OC\nz7mTlf1GGxJhUG1WbUeb4y/pXmD10uK92D4PcFMvumBAO9NxFto38BthDKXsdMpivE/755pZX4k4\nSXuU3s6BL8oesBpZuzZNXkO9Jb6IfQ+ukLGHmV0S6Z+r7Z6VRS8vwM1smZAFOzo28xfRfozOfVYG\ntYVzcAiOfvgsPnn8CnB/aTKYZRFZrzZ00b+AB+YWA+4E1gSmpk4aU44xbC8yrx/Eg4Bnhfdb4Odw\nYOZuwP4+BHw39vglXQDsWje5qmmj6jrMNCRA6AveBzxmDrdbEFjUImsPw8Kh1yzhHD6Eq21EIdF6\nfC8G9rYeOTZJKwEHmtkm1Z5925sHwMz+nehXlTFJQfj1qkusDdSqS6i9cggkTTOz95f7sGJbbBs1\n7df1R8fSX93hMDMbWDLZgv8TVAQhgNggRq1J2sHqCSqL747FSVdryxLkkPv16EyMrym/j0gOFe18\nv2q7RTKVSyrfK3Pg5/91M9szxj+0cQoelL+TktJIbGBY0oP4fGhayR+r58zq1948OK/B+2q/XO0f\nPabICWHH41LHb8Ov30OpgSw5MuV5hp+Dn0X674oHFJ+hJPVZ15+E9UFvSUhp97Xri4FoC6tHqlYi\nskr+tcHWPuNZqYl25jYz2uQlTofjwXjDEzK7pwSnR9okHY/PkcuL8AUsAmWlGpnW2L5YpZLnQdv6\n+M6NJ8c/gl+DK4EfWUDextqoQiJYQ03xlvzf7A0ghDb/rcBqHXkMbeh3DrKBHV1vRyzpp8QhIco+\n78UnigDXxk7YS7YgHpB5CZgaBo3f4JKHtWb59fC5WfRcToY6i4kyZmVQyT8HbRAbDrK6cyA144Qo\n2yQ8e3qTmX1I0vI4s3RbVnk+i8mApC8DE8wJGpF0NIFfYZD1WXQtADxJWga6McFoyd5UiWRUjtBJ\nuY9y7+OiBOA9aQmzof3kKlzciy/YmkxuFq6aKJjZPZKWjG2kN3NXnIeEzN3fJX3SusshnovdP83V\nJSaF/xsP/FacvRICSg9L+hpe9jdPC+3GWq66Q65/Y4nK2Axq3aRV0uk4KuYN4FZgnKTDzOwnNcfe\nW8cNnVpuI5LwNzZYMMC/N9ByQ+gbU2xVYIXYhEaFPW9OkJlkqibqnR/nGKhVfsodU0JA/kAckbUU\nXkLRVLFlMWtYfhFsEq72khR4aWF9MRQkkJeELWEJUqe9QQJJc1WtOWramNGKTTPcQgDyF2a29Ugf\nS6btii/CiyTRlXQQtHV2VOj3TwROsx6kcWwwF0ch9Aa/q7YNsxAsqCNqr7VRFUQIN9cnGA5zioWr\n5fibuplOyxYNn5XD1e40sxclbYdfzENzsoG9x5n4/bnwTGyUSZqEl1b8Lmw6TdKvzeyI2DbMbHdJ\nC0sqMve3mFkMW2hb9fBTlCcPOFJQ/rLlEmRmnYOcQI7agdLvBJygUM5B4IRIPJSXzexlSUia3cwe\nlLRcvVtrNj8wDigybfOEbXXWu+gy4B+9EWLVczLkEoyCLyCvlzSFThb6S4Nduiz3Pi6TWc2BB/em\nxforT5IMvA7/DjlSrQyhjgnEzDfgsxhG98IuoJO5a6JwkFsO0Uhdwloqhwg2CR/LdsMh9OvjKkZt\nWV2EqpG6Q4v+OUGIthQuVjCzFyRtixOD7oXfkwODCGa2ZBs7V2Y5grrh7GOA9xOnClC2e4FFcKLF\nJnaNpJ/g86tyf1IXVO1NThmORNluUEazZFFjygDbHfgfM/u7nBz3NJrLvt5Yl4mtsb8QR3BcafKJ\n3bbAUmZ2gKQlgEXMLCqgpEypU0kfwNUs5gGWCEm7na3D9h/Txlx4ackSZvYlOVp2OevI3I9aM1dA\nGy9pNmuA8BstVizC5SWWZgkIQTNbO1yznfCSzVuAEyyC8BiG7qG1gIV6AozjmMkqHaMqiIAvcl7G\ns59NyHNy/Kui5YWlLCB/hbPAvhfYA8/engLMFOKZnoX4WLxmLbrWDM8+r2EdMrmDcanM6CCCpC3w\nTnYyfj6PkFQLf6W9evjcLHpuECLbWog4DzsHZlYbEGgjkGP5MpnZnBDB/ionJj0fuFLSP3EoZltW\nt/D4Mb4AvSZ8dx28HnagWSRhHfUKF1PUgNujp43L5HWYa4ZNu5vrzcfaFonf791/F+Rf0uLAoQlN\nnEhzSTKAk4CDaTam3Cbpi73PXcjqpcDPszJ35twLa6phOQTV6hLRsqkaXg4ROx4MmZndGl7+G+dD\naNsOq/m8kbpDi/6NgxDWnsLFrJJmxcmnf2lmrykBpQkg6T0MT/L8rq9Dt32z9HqoHCFh92WFg9dx\nAu3PJ/gDvBW4P0z6U4OK0EGMrFraVhtUbQGFMTSmqMMnsKC8PKyWTwB41cz+Hr77WCR6pp9NAHaQ\nlxe8AkO8ELFJooIb4xIacGPgyJ038XN+AC6beS7xkrn7kSd1eigud3ph8L9L0joJ/uBj2jQ6XDd/\nw3luRn0QIdhjOBLoQroRirHXcMRNXpZ4Mo7oQa7m9TmLVGUzRzh/B1f2OBxYOQS49onoE2fDg1Cz\n0B1gfIFEjpJcG22cCFnsnLn+bZhCbaWc4PBvZnacEmu5a9ofWI+sbibt14FnLMCpI9u/B4euFkze\ncwC3WgJjp7wGcgPrgb9afA1udj18jimTkyGi/dqa8rB4/j6+8ASXRPpB7GJa0iQzO6xuW4Vfcf9U\nBnLMLAr+JGfSXhloBKVXC6z6Pe2tiwcKL4uJfsegKTSAmT/cQ2vig2UxcbzZ0ghG646xri9ohdtD\n0ifp3IeTY7IdIVtzPC6t+SawpZndmLLfPu0Kvy4rRH7/VjNbrXyuVMERUOff8FgXxtV9XqUTNFgV\nnwBsGnsvSPo1rs7QKHOndojMNqdDPpiqLpE1HgSfd+GolIKQDqjPQiuTDC3h+AaqO+T6S3orPh5M\noBOE+AGekV3CzB6J2EeWwoW8Fn0v4C4c8bkEcKqZrT3QseN/PM6RdB/dteyN+ZraHici9tdIuanF\n/b8LD6YsScJzUPJvyifwLJ0AFrh8+tB7SyALVr7aSy43RjFHL48JKRwxN5nZmj3+0WsP9aiPpe4/\nfP82M1s1p42RtNxrOBpM0o3AvhaUpiSth3MdrTXQkaFg6o54P3olcJyZ3S7pHThvV+UzUtHO+OK5\nCXPOeayZfG5jG21IhEslbWhmdRrgM8Rf0iIAZvZ0mOisDTxoZvcnNDNdrqG7HbBOuLCzJh7HoHqr\nb/fxmQvXcS5uqOVwacUn8IlsrJ0A3Cyp8Pk08Vm7whrBX0smNaiHbyOLHr430lB+8AXYvXSyVNvj\n12azyEP5HMOzaztUbOuy0v2zQc8C9dtyVu3YGqpcKH1uLT0AkibgmfgTwjO9KJ6BGmiWiaYwszcl\nHRnO4QUpx5xgdUGtbG4PST/GMzSnhU2TJK1lZvvUuP4IWNu8hGQN4BAaoLEkHUHndxYkiyn3wIsh\n22ahvTVJg8JeJ+kgPGuUAj/GzJ4B1pKTlxXEvJeY2dXl76m+LCU3c5dbDoGZnYtn65pY7ngAnmU7\nGu+TY3XpoT0of53VqTtk+ZujefoFGR6JDGI0VrgI85hnzGzR0rY/h3Zibc3Y4F+fY2hUjiBpNeAv\nRdBO0mfxoNqfgP0G9eO9lhssUEP1rJIVz8FvSHsOCmvEJ0B3WRk0YHEvWVYypoWF5mthnlaMCQuR\nhjK7T9I2wNgQmNsNZ8WPtb+EOa3JkT2TgAcS/AFeDeuE4jcsQ8O+fSTsvylYMMDmtpJUtZlNlpMV\nxtgR+LpqH3PuuKKNJ5WmtnKQXAkvmqemZ041zFICgjD6ggg3AeeFAes1OpOlWEWDxv6SdsYXSJJD\n+HfAF3EHSTrE4mtot8Jhip8PwYglqKkZ7DmOgfVWAwIkl+HZ84fl0mJT8Yn/xpLWqMsgS/oWcIaZ\n/VyuBVwQmu1oZnfEHn9xLMqAv9K8Hj6rHKKNIETu4rNky1i3Csf+csWFgSZpIn7/LSWHihX2Fjq1\n+THWKJBTmOVD6XNr6Yto96q4vOAJeDDvVOIn/LnEhFeFDO7vzEYE8tUGt8fHgfeFwBqSTgLuAOqC\nCK+b2YMAZnazvG6wid1WbhPvo2qZh0tWJUm2RYJ/EUhbs7Qt6T4ME41BrNoDy1KAjWL31ccalUOo\nv+wv+IT1UTwTc1VNU7njAfj99Kv6r3XbzMoQjwKL6dPmNLOrJCkEi/eTNA2oXNiWLQRF96QjXU3o\n01LKCaZKWiExKVO2puUIx+AM5Mhh4z/GAzLvA35NAvy355mYDR9TXkyYo5Y5CIbUs2L3T8PnoGSN\n+ASsHZnWwi6hcx3nAJYCHgL+J8ZZ+VKdh+OJtbdJ+hF+/VMWbmWp09NxpOoPE/x3wZM5i+JlCFcQ\nT8hX2H74nH9xSafhz/8OiW2MmLVwDUeDPSZXoiuvM6JkKs2sb0LFzE7p91mFNeGpuW3AZ8k22oII\nPwc+ANzTcNKd4/81vBObE49QvzMEAebHJ4BRQYQQ7f556f2f8bqZWNuPZvVW85vZw+H15/DJ9q6S\nZsNvqroM8jvwQf4JfLJ3hoUauFiTcyFcZGbfkrQZnUDEry0S/qqMevgWsuhtcTK0wYr/kqQJZnY9\ngJyw86UaH/CI+FN47WZZqWM6kKKykUVsqBKUHpfEWhTPoERB6a0dFuJN8UXg7aHNJxMXs7loip3x\nRezrkl4mPShaZ3WcDFPUDrfHfHQCULFEZG9TN+FP13uLrH1sYfJ6H46AWA4/Xw+RFgybGWzYA6+j\nOTFhL6ImRZmgEZGZDVAaCv30ijhh4wQz+9eAdr6l7nKI6PGgZBdJ+go++S8jQmLlAbOg/P9HLFfh\n4g+SvslwdFhscPpkfI7xNA0QNdacXX9s6Ri3wu+/c4FzYwLzPccw9EzIo7OfojvAWOefq56V9RyQ\nySegzHKK8N2u0lg55040qSCZ3BhmdloInn0Yvwc/bWYpgZzlzaWum8pdy8y2begLUBCrTsPvPQGT\nLIN7aAQsl99kNNhOwP50SOivI3KO3Cdh+Ty+wP9hAlIomaem5YDgqAsi/AW4NyNrl+P/mrncyn8k\nPVpA38zsn3UXBUDS9WY2oSJ7k7pweM3Mnle3nFnM7yl/Z31CJCpkImuhWmb29TDJXwevd/uuvJb1\nDDyTOj3iGLYBjixlnb5lZkmQu5DJn4hLwDRl4G2URW8hCFFYG6z4uwAnlxbx/ySCjTz8hj/hwbRG\nlhPIKVkWlF6ZnBDBXjUzK55fxUPNgHw0xaBFWJ2pnbKYNmQ6C3WCMjnk3hF+x9JN+NP7fqANQAWl\nQvmnmnOp3Fdq+3YiJJDCdw8EDikWySGovIeZpWSu6mxg/94Coia3HGL4AXu/fpe85Ohqas6n5ZVD\nQKfvK8Oqo+UByYDyR1q6/mi7/jGWq3CxVfhfzpqmXIPj8LK8JJJS5ZcjjJU0izk31IfpVpdpPAcO\n88zzw/PZVCotST2L/Ofgz+FvtvCXarnlFMPMvBa8r0RpxfezpDolHQ6caWZHxvr02M/kpc+/Bc6y\nSCK9kt0QknVnAecOCsD2MznXy+nAhRavsDFqLPcajgYzL0FMgv6X7FL8+Tk9vN8a7wuexsmgN6l2\nG2bH4CXrdwHXhvnqQE4EtcwTNNqCCEWU9FKasa7m+JukWc3sNZzsAgA5sWDMAnRC+N944RCsab3V\n3SGq/TfgnThECjk7fZSFQXEKnsH8Gg4B/DGuODFXhP+mksbhGeBdgeMkXYCjGlJgpbn18LnygI2C\nEKXjzFp8BnshLOLHhTZfiESkFD+gMeyypUBOLpQ+lxMC4GxJxwDzBWTETiTwXOSiKUIb8wPL0p39\nvLbOz1ooi7EMbo9SG2fIy5sKcsFvWwQhoJntHwIhu5nZLxrsuleSLMnCJG9RHIWxMp1F2jgi+rKS\nbWQl/ocQVP44afDXXMtF1OSWQ/Q1MztaXgo4zCoC6mVLKYfIyUIX1hjKH2l16g4z2r82CGGZChct\nXIO/m1kTWcDccoQz8DnNczia77rQ1jtJhPbLEZaFjcGDey8n+FepZx0Q6597DSzUoqu5UktuOQU9\nCLWC2+LJBP9cqc5pwHfkvGHn4QGFaIi3mX0ojC9bAseEOdpZZhZV0mBm75K0Or5w3FfS/eEYTk34\nDT/Fg3o/lnQrTnJ5sQVC9NFuLVzDEbdMVM5HrJso/h51CD+3iz0GMzscL88p7E9yDqZB1ipP0GgL\nIjwe/ppGSXP8NyV07mb219L2BXGpxiiTy34U2cP7zey+Qd+vsHK91Rk41C1mkPkinmlYEtgwoCrA\n4ZtJN034DVvjndRzxGUeAV/s4rJoJ8kJzT4DHC5nsl88spnG9fAtZdFHFMof7FxgFetmWv0t3tnW\nmmXCLskP5ExRHpS+ESdE2czsp2HfL+BZ3O9ZpA5vsFw0xRfwZ3Ix4E78/E8lvp6+UVnMgCx+4R+d\ngZZ0lbmaw4UV2wZaORgVu7+SzQosbD38B/KynhhVg4/iNaKL4WU9xSJrOvV8DmUbK2l2M3sl7H9O\nIEferMrqFoC5iJo/Ka8conYXffabXQ4haX0zu7pn8VbeR6w8YCMof2zWxsxOnBH+CVYbhFBDhYuS\nf642/R2STsfHgXKSp+4aZpUjmNmPJF0FvB24IiRLwBcvQ2SUqic4he4M4et4FjAlc1cOjr6OqyRE\n9ydy6PKXKanlAMeE5FeM/4p4mWZZlu6zCfPU3HIK6EakvY7LEkbLvZIp1WkO5z4pLGQ3Bw4Owfpl\nE9p4Gp/XXgPsiQcjo3kRzOwW4BY50u3n+Jw5OogQknJTQj+6Pj7/Px4Pkv83WBtyqyNtOaicsZJW\nD/dBgbYqEo21ZR2StjOzU3sCcmXrmzgvJ3Q1mMQ/ykZVECE3Sprj35vtC9HFWfDIde3CKSw4L8Bl\nj+7CH46V5AzGn7JI2Y2w+N9XTu5oFldGgDnD548rtt9ICckg6dyexVmxfVk8cLA1/kCciQcjoohC\nKtqbH88ab4UPWCma4I3rkHOz6C0FIRovPiUtj3NzzNszcR5HKZudYmHSlAq7zCU2zIXSN+WE6LIQ\nNEgJHJQtF00xCc/g3xSyF8sDByb4Ny2Lyeb2kCOw5gLeGp7lciZ/0b6Ow61pMOpQqoOXL4TPBsL9\nShPFzcOCo6mdhhNknhDe74hP+JIsnMPF6V68FeegLiCTi6jJLYdo3Sy+HGLd8HnV9TY69ah11hTK\nn5u1yfJvOQjRVOGisBPI06afE194bljaFnMNs8sRzOymim1/7NlUR3CKmXUhOMJz/RVcjWagSVoU\nRx7cHcaVt+Hj6w44J1WM/Qp/fo8K77cP274Q6f9r4BvWLUt3LJ1rWme55RRD8/TCQnDrl/hCOMZ/\nGBojzA9S7Z14wm88CeSWkt6Nz2s/gyfZziIt0VigdbfGk0zn4fPFJAsLwE3CsaxCg3FppKwFVNNo\nsBxUzheA48NaVfi85vMhQXBQhH+RSMgpmR1I4h/djo0IaXi19UZJ8Qc0Okqa6x/a2Bkny3iZzuBt\nVkPAJK+zehXY0zpM5mPwhf2cFqkhHSJSx9O5OZ4HdrLhNUSNTH205SU9iiMfzrT0Gq+ijXnwznEi\nDr+9EA9GTLaEG02Z9fCSfoEPtI2y6MrUnlaPDnBYfN4ekwGW9CmcJOWTlLK/eAb1zBAUijmGKtjl\numbWmCthZpqk9+JEXF2cEGZWSw6p/jDqJH4SSYfgKJTP4hmrr+DooihCJUm3mtlqIVu2hpm9Iuk+\nM4tioQ5tDCuLiQ0sVj3rCpC5CN9JwO745LYMNX0BONbMfhl5DFWqBFaX/SzOXZ/P7rEecq4B7UzC\nFz/T8cnyKsBeliADLGkjOgv9K80shQgNSQfgC4VH6R5TYpBVwtEUy+OLLwGXWwKiJtx/K+N9ULKu\neUT7lWPKzPL/v2ySBsqiWkKZoKRpZhaFZOvjPyLa9JL2xVVinsOTNKuYmcnLEU4ys1aCYYPuQ0mL\n40HddxAg8HgAYHu8XHNSTdu74wjTR3DkwVHAwfgYd4iZPRV5jMPOd8o1yPXPMUnvwRct7wDOB47E\ngwdrAD+zmrK3kODZEg9iX2pm90naGEeWzRnbh4RxfVO8Pz4TON8SeAkkTQ1+55hZdBlGyf9x/Pef\nbWZTU/1DG2fjgYfL8HnulGLd8d9guYia0WCS9gOeJQOVk5GozDZ5Od/6+Pqs6M+j51BMQ0UAACAA\nSURBVFaFjSokAvlR0lx/8BqXFS2d6fQjwHvKD7K5LNI+eDY21o4DvmJmRd3eBHwS3MqEj/7Q02WK\n1z0LlzmBWSIXLk/gndpR+ES3aYeQWw+fm0UfMSi/mV0AXCDpA00HmGBVsMtPxTo3DeSoPSh9DifE\nVcAieIbrTOvDKRBhuWiKv8o5Sc4HrpT0T5wMLMqUXxYjNeT2MLPDgMMk7WpmR8Qec0U7TVFFg7hc\n5kxoZyczO0zSR/HStO3xQHN0EMHMLsWJkJralnh5zqupjmGx9PswsDdF1GSVQwSfHCRFncUQF1fB\nNp8HpplZjPRtLpQ/S92hqX9KkCDCcqHoWdr0Ac1TJes2sFTQ2i1HGLirAZ+djI+B5wIfw1nU78Tn\nfDHlVV/CSz/+Vy77/Ufggw2SQ29IWsbMHgWQtDRpqJLGsnRhf5+t2m5mMQpkx+Koiak4T8udePZ8\nW4ur5T8O74NuAY6Q9CSeHNnLzM6P8C/sUeADDeb4AJjZB8JzsEQTf2Dp0B+ncPP02nHAREskLh9F\nlouoGQ3WGJXTO7+WlJooPXzQ52YWQ/jYlMS/y0ZbEGHuIgAAYGaTEyc8uf7gHcx/ar813F41h9t1\nmZm9Lil6oAXeKAIIwf96STNN+qRi4bIY8QuXxc3LKur2UVlSUbKseviMhUthIw3lB9hU0n04hP8y\nPIj0dYsk37Ee2GUDaxrIaUsmszEnhJl9OnTSmwHHyqH5Z+EBhegosWUSE5rZpuHlfiEjPy9+LWMt\ni5OBfIJRgOerJo6Rk0YkLYyXcLzDzDaStAI+gauTzL1N0hfNrOvcy3kmUibexQj5ceDkkL2qJaFr\nC80S7F48KPJsgk/Zbpe0mnWI8VIttxyiEklB6A9TnqkMWzX8FcHYjXHJ2l0knWNmh9T4twHlz1F3\nyPLPDWIEy4Wi70eeNn257GEOPBsclcm1lsoRMmwBM9svvL5cLme9bUL29+XiOTGzP0t6qEEAAfza\nXSPpMbwvGk8aSWZjWbpgZXTYHPi88HbiZMxnt07ZzUOSdjOzPRP2vSohURfG9KfxuWKsHF5hxwLb\nSFrazH4QgjqLWKhPrzPlw8DXlHQczsmyhBx1ubOZpchcXgfsLedyaMJPMtK2Wg/65Wq5Gtx/jVle\nSUZuorTcd+yPjy2p1pTEv8tGWznDeXiHVF54vL80GZ+h/qGNlfGLeTPd0fqBkR1JD+Iw/t4JqoBT\nzezdkfs/FM+0nYEP8FvhpRWnhuOIzYb3a38gdDQs1lcHbs6BuGQew1RcHrJcD/9Ti4TiN82ijyaT\ndKeZvU/SpviE+RvAtVYDO5R0BIORAFGSNMX+67YN8G8EpVeHE+IQuie74/B7IroUILQ3Bq89PBw4\n0CKUWnLRFOpmHq7yj9W2zymLGVJGyIHMhfupsKFJo5nVMaIX/pfi/em+AVkyC3BHXX8Sgg/n4SVi\nxYC5Kj5x2zQy+1dkPxcFlgLei5MXTbYMWHeqSVoV58u5l+4xJWrSGcaWZXE00YsQL9EYAia55RAP\nASs1QVJEtl9bziDpWuDjFniO5KVzl+BZ4WlmtkKNfy6Uf5qZvb88Fqa02YL/9XSCEJsQghBm1pa6\nRJTJyZILbfqbmmZzQ1tjgOvNLAUpOqi9GVZWExY469GZ311Tfl/Xp0t6FofAF7Z1+X3suBzamh3n\nNwF4yALp60iYHGl3ppl9LOK7vXPk03BZ8OIcDpzb9s4fYuYTfdr5FS4xur6ZvVuOsrrC+pTPVfhn\nwcAl3YzzKVxY8r/XzFZM+A1n4ePiZ81sxYBquDF2fjbSJpdZ3sK6ETW/bXI9R8qUQTSbO7/u8WvU\n74Xj35cOR83lwA8tUeFjtCERylFSIz1KmusPLid0NYlaxnhUtN8CJWrCG6xYJPZGllYmMhuuwYyb\n365xzyWTi7G69nYBTi5lUP9Jmp51VpSvaRAid/HZY7OG/5/Aa+96YUf9LFqqqMZyiQ2lZlD65fCg\nyXx0l2RMJ5J4qbS/icDawPX4wvO6wV5DloumKDMPL4Hfv8J/05/xBW2MTVHzspg2ZDqxHi6XYtKY\n0MRbzexsSXuH9l6XVJsJNrNngLXkckXF5OoSM7u653jqIMyfx5FFj5nZf8IiKDpz1ycgNN3SSrVO\nwuufU8eUwj7awAdorRwiF0nRRjnE2+iGzr+Gq3e8pDikXy6Uv5G6Q4v+jSUq1ZLChdrXpl8Wv65t\nWUxZTNP7cF68Xy8PwoVfDJrjWz3vk1AIcmnLKltDElYjG6w+pSTBzMyaMuO/SPx41jtHLr+Pmdsu\nL6ngRBKwTHgfHVQNtoa5lN4duOM/JaWouWXDwM3sLz3+qeioZcxsqzDGE8a2qAniKLEyogZcVS4X\nPTuzLYdothXi8GCN1mcWSPzDX2MbFUEEOTTpLWb2dxxSUWx/GxEnNte/x2Y1s36yGX3NzNZL9enT\nThYUXzVQK6snFGu8cGnRcurhIV8ecKSh/AAXhsj9S8CX5bJstRFCc1b6IVNzPejcQE4jKL21wAkh\n6YmwvzPx0pzXw/ZVwj4GZjzCJB1JG/REeL8dIugDFS7+H3vnHS5LVWb93+JKEiQJgwkBA2AA1AEl\niaIjBmDEUUQwjMigqEMwK8oAojIEUcQICChJBUYFTCBKRnK8KB8YcVRUVERBBVzfH++ue+r07e7a\nVbvOOc141vPc59wO767q7qod3r3etZxobpKOBr5s++vp8QsJ0cxclJbFlGp7DEObSSPAn9PCvaqj\n3oQW3uyO8rRh4owVmijMW6S/G3ScY11NLDrqiaBfSbod2M15lOS7HX7OneByi8bScoiDCHu+rkyK\nPsohTgIuk/TV9Hg74GRFueJNGfGlVP6u7g59xZckIfpyuCjyptdUiZDS31/RvKnRG0quQ9trlRx7\ncFzugMEkBMS5b0D0TwuGvF7HsIXNGsBbMmIXQdPdQpYgymtOzYntYY6cxebNwL0Kpl41Jq1Gu+Ru\nKQ38trTJYYXA4F60cIdIKNInmSsohONvSwnRxxPzmu0JjaIHVDkDZYmcNxLuUSsS/eHvaFcaVgxJ\n5xBskD+kxysTrKJWmxYTUc4g6Sjgm4MZcQWVe2vbb5zJ+IGYDxG00UEv4ya62tgFZm62P7W1DUHp\nrtc+vn90xLTYUqrVEsTCZRH1FTjGPV4oai5nWIympnbUz9JyiDmh8tfeuwRBGf0BcGfaVV6OSJTl\n0rjrTiUCfkM7p5O1bf94MJFj+8cZscVUeoWC8gfooAkh6TymTxLrHbudL6Z2LfDmATbFJ1tcB4vd\nd23uxVKoozPCQBtDJ422syb/KXFzJMEmuJGwONvBdi8Thoy+pJ4AXYYo1bqqxTVwNEGz/FZ6vDXh\nLX4ccITtZ2S0cTgxlpzB9DEl1y1mkUWj7XUkPYL4DbJU6VVQDpHiFxIMvWlMCmeK/qmncghFWUj1\nmS+23RfrauKRJt/fJ5JYBxI744d4iFbALJxL3Zv+BW6nDzJjyOgLiq9DSefafm7Tc2Pih1l23kkw\nCD/TIiGzOfA+YGXgg7azN3oU1PF9CKblR4DP5n4nmu4Wch/wU9s/z4ztbY5cAkmvZLot4suA99nO\nSoZoOA38QGeWlUhaFTiCEGMXsYDeswUrirTB9z5iPD6bpE9i+7zcNuYCaRPmXxwCo1sSicg9CLbg\nE5xZJjkJkHQJwV66ODFbHks4tWQ7u9Xn1y2PXddsejBTOn7Zmk0j1imtSyMmgolA6Ba8fvBJ21+W\n9IFZiK9jp/S37lGes2Mxzrc8O9sv6dPERbEVsev4MkKNNhelVKtlgWOdBM3ShGFZWopNqkNJhabq\n4VccGHBWoJZQyUDpLvpcUfkBKlePT9RvZgd9tA2FtNSppETYsA8q/da235kSgT8hWCAXkLRBGo7/\nbAiG0uCkTMFaykWpMOEvJL2PqXN+JRlCYuqpLMblAqMw3ee+1aQxYSGxE7ouMcDdTDtBuiaM7dts\nT+uXFVZtH23R/ia2F5XR2D5b0mG236CoTc5BdR9vUj818oVaX5LauDqdwy8ktfGH7lwOkVDEpKCg\nHELSCimBuQqhIv+j2murZCT3+6Lyl7o7FMXXWCR/oiPtV4UOF6mNIm96hc3fWkz/DtpssJSUxZRc\nh8sQ3uyrpnOoJlgrEJorufgRkUg9JT3ekSjVW4cYn1/dcB7PJawmTWj8tNE2WY9YeD4VOBTY3UPE\nwMfELwAWOulgKEoAXivpLc7T/CqaIw8snKrvfxGzJTeZZfuktNn23BS7Pe3YcYvRwBUaBTtmxv+W\nmAssgqTDCGe43HM4Jy3IK32SvQgh9EnHglqfvSNwlO3TgdPVji08CdiPlkKzI/pgqvWaMzS70vva\njP+j8HeFMOfP0jmsSYfSiElJIoyzOsmZcJbGL4I7Km66XA2/wma2N1D4eB8g6cO0sxcrpVqdS2RI\nK/r7skSmM1v8SN1LKnqph6e8HGJOqPwDOFfSS4H/6cgC6eRU0mMip5RK31UToo5LWJzqPuy5xZAm\nTM9K11FXYcKdiIHmy+nxBUwlKcehl7IY9SAwOrjbLGkLSe+x/eZRMQO41MHAWcSASZOfuRJQ+jnt\naLG/lPQupnQgdgRuT9dHFgW2h2ROkUWjy8shLpR0EB2ZFJSVQ5xM3A+VzkiFihLflNzvi8pf6u5Q\nFF+ahEgocrjQdG/6j9PSm17SsQSjbCFT906bDZbSspiS6/ANwN7AI5iujfBH4rvIxWaeLuB3pqQr\nbG+cGD9DoWCnvpdY7L6v2uDIhaRTiQ2ADxMlDPcDK9QWL03JuFcQbKQ/S7oF+CBR9nkFAwviUSid\nI/e0cKra+gHB9ARA0s/obtkIkMVyHYOX0yKJAOBwpfha9TiNqyWfYTawQNKDUvLquUS5aYVJWY9m\nYVgix81Cs71dwz3gvcBFCntJEfphi23GN2FSfrRfS3q6ByxWFBS+38xCfD2mxAe3aqNzOQJTO953\nK2irdxD+yLnYg7g4/kpku79F0B9zsYxr9fO2/6T2frb7E5ON81Ib1+Ys4t1DPXxC5130hM5JiJ4W\nnxCTlrcC90n6Cy2z7XT3g+4rkVNqk9lJEwJA0sOI3aFlFW4r9V2jrGu5DzZFmpjt1SGuSJOhhlIb\nIdJ5PJVQ0d4B+DEZk/4+foPc02s4j7pbyRLEddlGE2JnIhHzldTOxem5BUx9r+NPMErkDvH02sO3\n2X5f5jmUWjQuKocgfv8lCXZMVjkE5UyKzsKStrdVrHSeVe2YtIzfL/0tTfLfZ/tTcxhfmsSAcOl4\nmqccLvYjFiFbEgvjJpvMUm/6TdzgotGAlxN1yF3LEUquwyNSUnwf223mU4NYfmD379FMJfTGfa4z\niQToHcA7JU2zRsxIhGxM3LNvB97GQIkfzcm49xGM31sVJWqXAi9zizKKCupu+1tvo54UXZUo9Wws\ntRzXZEFsH+jj+HP9GXJwCqG79ltibnchgKTH0YINMpdI138dv0x/H53u7ZHzC9sHzNyZtYPtb6bP\nUo3re2ckQRbDpCQR3kFMlI5nup3XawgrnJmOr6PEB7ePcoSzFAroh6bjmhZiahXVStLB8dB3tTg2\nRKb5adWNIOmfaS9OWVpS8ZKUlW9VD9/jLvpcU/n7yLoP+kFfwCwJG6Z2Ou++KjQhziTugUoT4m7g\nxZlNPJ/YsXoU09Wg7yJqQXNRxKZIu4dvZ3H6bu7iSyooi6FAYDSd+07p32+J70Atftf6b/BhpiY4\nbX+DUgpzvW7+PqJm8eLcY6dBdY8RL98q6UgPOFgMwQttL/rMDjXwFxET85GQtLTtv9o+TFED+0ci\nEfBfbkFjprAcogcmRamwpCV9DeisJaJyKn+pu0NpfGkSAgodLmx/S9JmktZi+r2Yu8FyqaQn2s4R\nwhyGUpeQ0uvw/jSvKEkivI3Y/fsh0SeuDbwpsYvGlYYU3YMuFIYk2FC3praulnRLlwRCwvEk29/0\n+P8R40tWEmFIUnQp2iVFhyHH2WMUe05MMSfHxY+yfhb9JADmXuCuAbY/KOlcYmP0bNv1BH/TODop\n+HD6uwxxHV5H/H4bEPONRlaKpEcRWlHVNXshwWRoUypajDS/yXGTGImJEFYEUDgpvJkpO6+FwMdt\nZw0YpfFj2s32wU3vv95T5QgbKNTxv2H7mR2OvTTBDMhejCb2xbFM0WbuBF7nPBXxKv4LRO22gIcB\nO+bGpzY+S5RFvJsQIduTcL3YPTP+WttPUdTDb0vsyF9ge8OGuBcT9W3/SlBvK9xF/IZjyzpqSYhD\nmK6GvAIh1PikzPP/CDGotF58SlrP9g9GDVi5C9iBNhcQ5Q3Z4i0qEDZM8UVUehV6fqc2Xuqot+sa\nXyRMqPAW/zSR2Fy0e9fiXnwaMUmaVhbTIonRWWBU0t+JgW3XavIo6Ue2c9Xsq3ZKf4OhFOYWiZgZ\nhTIEUxU2ZBs7CW8p6sqvbOpPqrYlnWB7bK10QzuX2356rb3liDKTXGHFIiaFCoUlUxufI8bzTg4T\nkk5mOJV/LaJcqonKP2yX07n3Qw/x+xOL565JCBIz7SVA3eHiDGJSfJTtsbR0SScQddfXMtWf2fae\no6OmxT8rHe9X6TO0FfjcKJ17V5eQPq7Dw4hd+K5lhtW8br308Ga39GUvhaRHsnhZTJNF5M+ZnpB/\na/2xM2u5U1tV+caiMV7thKuvJSVFa/HXN11Hms5Km/YS8O9uYHmOmA8sQlOyNfUBg0LPtfDmvkDD\nhTlJbT7HdqtSt3l0h6T/AfazfUN6/GRgf2eIQyqcEU5mOlP4lbafN1PnO1OYmCRCDiSdPrCzNuPx\nCguWG22vm/n+y2w/Q9L3CNrwHYQYzeNaHHMzFt+9zGVCXE8oylc0oS0IRflcD93qM1ef92a380RH\n09VrK4eHA3MHS0kLbT9J0jGEMvo3JV3XlESoxXfaRS9NQtTa6bz4lHSU7df3sIA9mdB2uJ+oW1yB\nUJM/NDO+UyKnFn86MdmrdldeDWxoO4tK39NkbSXCR72zJkAJ1MJRZEhsHw4XGxIMqmnaHravHx21\nKHZ7gsW1OZFE+gLh0tJKM0bSXkQi5C6Civ004N1utpqt4jspqmu0OGVbT/Gm4+QkEd5FLNiOS0/t\nApyRsXC9kaD9HsgQizfniwK+nXBneB5RF/464GTbR2bGl7rN9OESUuowcQHwIk9R+ZcnqPwvINgI\nJTT7GUdpEqLWTmeHC0nfB55Y0B/fSowjgy4fP82ML3UJ6eM6vIsQWLyfSLC3LTPsNL/rqz9TMFR3\nJGxR64mgsYmYtPs/Em5B01a4J70UOCclNTcBDrb9rPGRi+I7JUUljdW1crkN54xD090xFkPuvTCP\nclTrlKbnRsQWOcBNEialnCEXrQbMLvEabmn2pRbHKCpHGJXtJ7OcAri/SiAA2L5IUrYCb8K6xOde\nBniapFaaEC4vqehcD5/QqRzCE0DlByqa8q62czQMRuGJDi2HVxLCnO8mdsSzkgiUCxt2ptInlGpC\nQNAjO2sClLIpKKAwu5+ymM7aHra/AnwlTdBeTIiK/ZOkTwFfzk0CEMyJIyQ9H3go8RucQIi15qAr\nhXnb5rfMDmwfnJK7VenFgU6WkQ3YnRAtG9QngQxBOvVXDrGgaiu1uyyQ60zRl0vI8wk7u4rRdwHB\nzMlFJyq/Ct0dSuNr7+sk+JzOocjhooYbCWbiL5veOAK/sX1G89tGorQcofg6dGGZYcH8rq/+bHvC\nKjbLjrBCbpJAIbp7UMPb3kZs0jxW0sWEW0Uba79OGjFVkkDS+k67x12gcHb4LFEa9/sO8aen+G+6\nhTApTCUJFOLlX2sbP49ecX3a6Ky7bzVu0CTcIelVTLm07ERsOM8aFJaUP7f9V4V72wbA550Yh9nt\ndEwqzwna7H50jVeBD+6QtrqUI5Rm+z9KOCqcQgxOOxIL8BOhmbqXMs7PJpIIXwdeCFzkFv6tKiip\nUNTDb0Io51b18MsRwjm/yjx+6S76nFH5a9n10mt9ISEidzJBAz6/JZvjIIL6eg8hkrkScJbtZ2TG\nd6bS94XSbG8PbIpSCnPnspgUv9g1VMiOWJkQV9zRyRdd0srjJlKaKus6AjjPYbubXaqijhRmhVDT\n6h7QP0jX4a9s/zDn+BnnV1x2M6btHWyfKun1to/qEN9XOUQnJkUtvlRYsmK0/AeROKls2Y52Ppui\nE5Vf0gG295N03JCXbXuszkwP8cVJCElnOQQqKzr1opdo1x99lxhTLqdbOcEniXHkzIH4XEZNUTlC\nH9dhivtXpsb282xn1xSXzu9SG2sSooLfTgm9B+Vu1Ej6BrCDa+LZfSJ33iLpQdRsf92e7fo8akzX\nNklRSRcSSdDjgZPaJunT2LILMbe+kugXz879TSX9S4rfhBBMPc7DrdDHtXEiUXt/OmHJ/oOGkHn0\nDIXt6xuZ6gsuAD7lDMZ1uoePJH5DE65he9i+bYZOd9g5XEuU+K1FrPW+CjzJ9otatTOfRBj53hWY\nTjfLytZLejPRMdUHqp1sfzIz/lSCxtwp26/xdVt2A3VPQZvbELgm7WKuDpzoFrU6KiypKJ2Yq7wc\nYs6o/IpaKRMCnxcOvt5iwrYn8C5C9GUbwvrnRGdoc/SUyOlEpVePmhCliYzSJEQpRtzLOfdwL9oe\nmec4tk9Ni6dHAmsT/coCYuKdlchQRwqzpLOA9wzuOElan/BXH+dZng1Jr7V9/IjX6r7m014ig1VT\nmlBUT+UQqa0XMsWkOMd5TIoqtqgcIr3/ekLB/c/pcStdhxTTmco/VyhNQtTaEbCGOzhc1NoYSqVu\nuhdr8aWfobTEr4/r8L+Jsfmk9NROhL7JezLjS+d3uxE2bKvYfqzCxvvTVVJ3TFylB/BIoh8+l+mJ\nmCxdi4zza5y7pXv5C8AXuyRzFSKpX7T9vx1Pk/S9vY5Iil8OHO98dl3VxhLE/PBTBKvkOKJkNHet\nsCJx/bwXuI1gU5yYm1BJa5SdiISE0/FPyU0ozWPuoJpg9rjnZvgcqvnFO4C/2D6yy9rrgVbOUKpg\n2hgv6fWELd1fiElrrh91hd1sf6J64FDi3g0Ym0TQVBnFQ4CbJHXK9rucsneP7b9Lui91Ur8mlNHb\noLSk4lxJL6V7PXxpOcRcUvm3IerGT2BKBbY1HLTPOvXzp5Kyro30+3+i3pmkyfufx4QNoiuV/q3E\nJGnYZ29jKweRJf5cGqwF/A4YWxc5gHskbTGQhGjlVKIQ26lKg4B8fZOCe7kvm84cNN0YuxK7lz+y\nfbekhxKTnlx0pTCvPphAALB9g0Jdfiw0WsCqaudf09/jx7yn1GHlDklnA2tLWowGnjEmFJVDDBzr\nG0RZVBcUlUMkiOnWhveTN573QuVXobtD13j3ZFFplztc5CYLxsSXfobSuU0f1+GLgKc40cgVgp/X\nAFlJBGBVCuZ3hHj404HLUtwtClHxJlQJs6uYrvcEY/q5DshpaztiF/9LCgHfLwJfapHgeghwtqTf\npdhTbd/e6iTje3sf8b18DHhqSrTtk5NclbQBMY69iGADnARsAXyHKXvrcfEPJcT0Xk1cP1X8vxNM\n4JzP8EdJpxHM470JptU7JH3MmQyteXRHSkQdxOLzu5y14pHEPL/puZnEvYqS2X9nan7Q6DIyiIlL\nIqSO/dEeTu9510zHEzs2T3YHv8yEBZJULX4VAmlLZcQd1vF4i0HSNsROZP3Cfn9m+JUKTYejiQHn\nT4TAXRucr6hZq5dUnFftLmfsJneuh1e5PSCUJyE6Lz4dAnLfk7SZ7d+Mep8arOXSILUfMTAZuIhI\njuXWXZUmcrraZPalCUGanE9LZLRsYnfg8ykJAYlNkRusEaVB5NvFdiqLcU/aHplouja2SH83aJmI\nq3ChorSmLYV5pTGvLZtx3D7742HWXndl7DiVJhQfbvuNaXehSzlEEZOihpOI/qReDtFWxOw44DJJ\nX06PtyfPEu5kIqF2FUOo/ORvDmzEcHeH3SU1ujuUxpcmMRKulrSxWzpc9MCoeaftQzRCHT93F1zl\n5Qh9XIcQfUuVfFpx3BuHYP8Ox6vjr7b/VvWlirKAxvHZU3oAe9k+ov6aolSoLzR28g4hzUOAQ9JC\nbF/gYIKl1giHPsMBaSG/IzHf/Lntf8k6wakEwDbEfGM7h23lI0hizg3xVxF6LJ8lRIKrcemyNNdr\nOv6XiUT/CenYFSvli5Ky2FGKkppdgMcR84mn2/61QtT8JmJBOo+ZxXHE/OwjhAXrLjRYcEvaFNgM\nWG2gT1+BzOu/R+xCzHE/aPvHaZPvhIaYxTBR5QwKsZDDgKVsry3pKcSkOZfCXRSf2vgm8G8OccDW\nkHQoYZ/zmfTUG4DbbL8tM345ptgA6xBWQN9oQXH6NPBg4qI+hhCsudz2rg1xm9u+eCBTvxawgjPU\n3AfaKiqpKIUKyiE0h1T+lufZRCM/h6jRqou+PLvFQFupUN9HJFByJ4xFVHr1pAmR2iq1mVw7da7T\n2BS2h2kdDIsvKg1SuSZDkbZH5jGarsO6l/gyxC7aVbl9wIi+pLEPkXQK8B3bRw88/x/A82zvmHP8\nPiDpJwSb6/fEfbQSYXN3O8FcG6sVI2m1cQnFMXG93UulUEE5RK2NpzGVlLrQ9jWZcX1Q+YvcHXqI\nL7KoTG0UOVxktD9UH0XSdrbP1Ah1fGeq4g8b19te26XXYdq5+2/gu8T3tyWxkPxiizZWJ0oiIOZm\n2aKxqU//A/AaYA/gTcBNtt+bGT9MJ6c3XRdJ+9j+UMb71iQSADsSrKIv2m6VKJX0MKIc4RXE/Cy3\nXPZ8Ym58mu17Bl57te2xCylJjynZ4JC0le2xdpEZbXwO+KyHWHNKeq7tc0van0czlPSlJN1ge/36\nc2NinkVsLO1O2H9XuAs40/YtM3nOM4FJSyJcRdCVz/OU/+uiH2im49P7n0ra9aBDzVhahL6B2kBF\nWKPdPzpqsc/wTEKJ+mLCnu9vbvBwrsVXQmbV3+WJJMTYWvjaDTFnE071VA+vk3jsnwAAIABJREFU\nQnvA0kG1dPGZeYymxduNtp888Fyre6HjeRXZZKonTYjUVukivEiYUFNWVFcRSb27gO/bXq8htIov\nFYYs0vbIPEare0XSGsBHXWDVm3mc1QlXjL8Ru9AQi7ClgJe0SAiWUBarNo4mJqzfSo+3JizOqhra\noWKlkj5qe2+NKK1ouhf6upfUnUkxMSjt+9ICfP3qMytEk6+zvV7OPdBDfLFFZVq4LeZw4UyLxYz2\nm8akZTwgOiZpVWeyPhW19Bt7ejnClU2J6b4h6eFMTwJk9SUp9uUES/I8IgnxTCK5flpm/BJEiVjd\nPvuYpnlOSn7sTCTh6n3BQ4C/u0FTodbO2kTyYi2ma4a1GZcvI2jTpxLJg1YLcoXj0csJV4dTiVKI\nm9q0UQqVsX1RQZnjPCYDki4h7qfTiDKW/wX+2/a6GbFrVv1uuqeXd3umbBG0uNAu0G5uA5NXznCv\nF68/b7MILI2HYBB8hwEhr1w4auU+lf51gRy1w7sSYoSHSLquRXyVWb1bQc+6A3h4Rty9ko4CHiVp\nsRrk3CRKhY6dbF/18KX2gHNF5e8TZ0t6BVP2pC8jJhxjUZrIcTmVvhdNiIRO2hSaYlOsqOmq6CtQ\nu54zUFoaVKrJUKrtQTruysROen3SWF0HWZPPGn4OPKHFsTtRmB01spspdECqZNrXbH9noP2x7hJ0\noCwOwSa2F2lR2D5b0mG235AWk6NQ7Yh1La3o6166miFMCkljmRTqrxyiD3Si8tdwEkFXrrs7nKxg\nqeUsYErjO1lUDmB7pjtcnED0TX1Rn5s6l8sVTiPfA0hj7EHAOpntdypHmIHrcAngt0R/uI6kdYbt\nCI/Ae4lEyK/Tua0GfJuYH+Rge8KGrdHScACXENacqzK9L7iLfFs6gK8QNP4z6TA/TniNW7oRDGAN\nYG/nl/FMQ2liWCPYvi2OX1TmmNrYhLhvn0AkxhcAf57lPvUfHXsR18GehHjxVuSXux4kaXeChXMF\nsIKkI2znWrD3gY1q/1+GYPUM2zAYD9sT84/onHYmOrXHEzfJp2crPrVxTcdz/1L6e0M6/rR/bY5P\n2H58j7DbALihRfy+xCTvpQRl9peEL3lT3KoELeynxI0w7V/L7+LTRId4GzEBv4GgXjXF7ZD+PmaO\nr8O7iAHyb4S3+l2EUGBT3Hrpe/8h8G+1f68FFvZ8jkOv0+pca5/h3vTv75mf4aj097tD/n2nxfkd\nQiy6lySUoH8DvKpF/GoNrx+Z0calwBa1x5sTiu5NcS8mFo93pL/Vv48Bm3X8vdYCNmgZsyHhrvGT\n9O+aNm0QE6UfpLgliZ2by1qew4HpPj6v43VwZPrePgZ8nJgsnVhynQNXd/kNRrQ/ti1ilxdqfXD1\nXItjnE3o8ayZ/r2TYKgtyP0s6bcbe0+Miy38jo4Gnl97vDWRbN+k7fU0V//SfXB/6puvJ43TLdvY\niJg47gVs1OEcOscT4/rVxHi6HyEI919EydlJmW1cDyxXe7xc2++gof2me2l9YsJ8KJEQ+CbwqJbH\neCGRVDusfk3O4nV0cOqLv0YspM8k7E5z428YeLzE4HMN8ccRc7QTCHbZg2b58xff78DqxFz9G+nx\nEwkNpDZtbAHskv6/GrB2i9iLiOT39ak/3p8oc8yNv37g7/JEeVX2NZB+9+tq38c5LT//lYQewjVp\nHNkFOGg2r4X5f42/0cg5KnBt+vtKIqm3ZJ99ccE5t5rb2J64JMKDgQ+mgebK9P9lZis+tfEhYjf8\n4URWZhXCTqcp7uHp75rD/rU4/pYEDfxd6fFjgI91/D6XBlZs8f4FwFt7+B07dbKkSQgdFwnAeunv\n04b9m6nrtnb83hefY4712hn6DL0kcmqd5EuICcOK1aDZ03k2XiOESnK1CP8p7Rfhmxae47k5z42J\nXzv9XYHQJln0XEbsEoSAzyrAgvTccsDDWn6GmwmNma7fQT0Z+Upg85bx1wNL1x4vS48JORqSxsQO\n3hLE7u1/puv55pbHWJVIplxDLASPJCa+SwGPa4jdn9j1/B3BBPgN8F+Zx/1o+nsmMaZM+9fi/Bdb\n5NT69msz4lcZ8m/Jvn7DzM+wZuoP9kj/NiRjXK7dd8M+Q868oCh+oK3SJMYN1OZDxO5T9gI2o/2c\nPnl7IsH9i6ZrfwaugeLrMPWHSxecw6EEI/C16d83CKZVmzaWJMoFTyLGtWNaxFabDPV/txGlX41j\nPrFJtx+x0dVpbpU+88uZWkQ/qM11mI5/JvD/0uNHEJatufFFiWGihAVio+8RxDz71g7xVxFju4Af\ntPwOr0x/r68912kDdP7fzPwb1x8CC5kq6XlWeq63+XHm+dXXRxsROg2tz2GiyhkcYobvlXRwPGzn\nd1oan7BT+lu37DENKs62f6lwYjjeBVZEDlrcBbXHPyLoMgCoQZU/vWczajVrknBGvZVDRPAVwOHd\nzn4RupZUlFqaFZVDTACVvxKi85hjNFrLDWnzscR1vZOb60ffQ3Rsp1FmN9MLlb4EHnBnIMTEXkE+\nffMlkhbSUphQ0jJEQnPVRL+vPvgKhE93LjqXxbgfm04ITYmVCKvX1nCmaNoY9KWoPgoj77WEQcri\nc2hnE4qj5ntUn33rqD5dod68OUF//nF67jHApyS9xfZHGg5dWg5R4ZeS3kV4u0OIod2exrscSnOn\ncoie0ZXKX+ruUBSvniwqE46jm8NFLsZ28JI+CzyW6EfXAc5K1/4nGuL6Kkfo4zr8ETG25ZaQTIPt\nd6QSuUog9CjbXx4XM6SNeyV9g/hOlmXq2s7BR4mSspOJ7+AVxG9yNXAszfaC6xPaQs9h6t5vnFsN\nYFXbX5L0HgDb90nK0gxLeAnw1HTO2P6FpDZ2un9Ndei3SPpPopZ9+RbxZ6YyxUPTOZjoS3LRhwPa\n3ZKWAq5ViG3+kvZldvOYO3yG2Ny6Drgg6dXMqiYC09dJ96XzeXnbRiZNWHFjoiOrOoQ7gdflTjJK\n4/uApHMJd4csBfgO7TeJF51ADArXMuWrbecLQ36EGCS/SG3B0bSAHmhjX2Jy9lzgE0Qne4ztfRvi\nlmKqhnexQdENPtWSdrB9qjqq50o6yvbr1VERvtZOZ1V8hXrrSDR9B7V2HkFMEHYiBv6DCI2HGxri\n+hJjO4gY7O8hFPlXAs7yCBG5thh3H6SkwZuJBftXiZrTNwNvIzL3WXaf6ihMqLDM2pvYpfhfpibX\nfwSOtv3xhvgih4taO0UCo6mNjYjv8EZa+JornCnGTfyzFeHVg7L/mLYnwblg6DlIuoZwkvjtwPOr\nAWe7naDlagDu5vKwKtPtYi8m7GLvJOyUb22I7yQs2ScUonybpkQaSYvg0pzrUCpzdyiJl3SW7W21\nuAhWdR+1EsFSR4eLWvxIfZSmpIakvYnf2+nxisDhbnCO6gsl16Gm7CkfSbBYzqWD8PaItn9m+9GZ\n730hkcR7NlFi9iWiL7gvM/66wfGrNs4t9tqQ+FuBJzqsqDtB0nnE936Owz1mE+Bg22PnPrX4SrC4\ncp/JvpdT/MbA94k5yYHEuHqok1ZHQ+wShMbNJenx0gS7J9fxSUQJz23p8Vp0c0Bbk3D3WQp4C8H0\n/GRTXzyP2UPbuYWkB+Xex5OESUsiXA+82faF6fEWxI2R2zl0jpf0HNvf0XQhtUWwPdY7ttbOV4ks\n6TlMX4R3HmQG2m9KInyf6OS7LhqKFtBD2mvVyaaYsZZmY3buiizNSpMQtXZmXBV/zLFfTyQOHklM\nML4EfNX22pnxRYmc1EaxTWbGMUYqmqd78PfEAvq5hCiZgL3cQoxJ0kLbT5JU2UF9M2eiVYvfw3Zr\n0TIVOlzU2ulk0znQxkIiaz5NaDYjobfmuNfdkyJ8KcZdR+n1dYhEzppMXzj1ZlM7JomwmMNKzmsD\n79ufKMNYgvj97yNqNbOVxDOOMZYdpyHOCJpyD8p2Gyk8xxsIRsdf0uNlgCsGz2tcfO57+44vTWL0\nBUkHEhT8HzKV0Og8N+hw/CKXkJLrUCPsKSu4gHEl6Tbba2S+9xRig+cbTi4VLY91KSESWwk5vowo\nYd0k516U9BXg9W5hSzmkjacRm0xPJpLTqwEvy11IS3o7oXn2PGJz5HXAKbYXEwQfEruASFi8vePp\nN44ZGfGlfckCQlwzy7FtHnODYdeJpFfZPlHBMlwMtktZ4NlQoQV6hYkqZwDurxIAALYvktQmM1MS\n/yzClWG7Ia+ZoEHm4H9avHcmcCPwMILe1BouKMWoQx1LKtI5NO2WbT7i+dJyiImh8qu7gvDHicXz\nzravTG1lJ5TSDsP3JG3WJZGT2uiLSj8OR4x57TGe8u09hrgXHu0Be7EMnKGwZrsHeGPazW1sI+10\n3FYlECS9hth5+Smw/7jdOuinLCa104biOQp350zOhmBJQj3+4vqTCoeJxkSSelRUH7d7SrO7xKmE\nUOzRTDG7ZgvjdvsadwJVXg6Ri1H9cYXScog+UErlL3V36Bxv25K+RjDK5hIvJxxvOu1CF4xpFUrL\nETpfh4NJAklLEovg/y1ZUFfNZ7/R3iklaJ8JfFthc/kg55fuvpIYOz+Zjvs94FWpnf/MiF8J+IGk\nK2jBTBv4DFcrGJfrEr/jzUTCPCuJYPswSc8jmH3rEhox52TG3p82F0tQ6t5V1Jekz7CmpKW63ovz\nKIek9T2e2Ttsjrpc+tvH3KwUxxLrxaqE4dXEOJllgV5h0pgIHyVqvE4hOrgdiUn7idBMqS+N7wup\nQ360y2xsRrU9NAuqqVr6hxACUpfToZOX9F/Dnm+zc6XCkoqM9kft3JWWQ0wMlV/SRUxZy21Hspaz\nPfT3qcU9lLBq2YlIJn2JEGHM2ulocX5NjJhOVHplakK0ObcuzJQSNoWkq4F/sf07SVsSk9Y9iPvy\nCbZflnkOncpiVKjtMdDW4UQ/cgbT+5Omvvgs4D2Dg6yk9YEP2R6WrO0dpbunkq6yPaPWrGP69PsZ\nnngTwe5acshr09qlp3KIhuM09QVF5RB9QQVU/pRMfDxRN/pnaFeW00P854CPFyQxiiHpdOCNXRfN\nXce0WnxRWUzJdaiw9TvS9sK0g3cpMbdZBXi77VMajj1055G4Dt5rO8taTdJuhO7TKrYfmxIzn7bd\n1mq3EzSi3LJpbpXRbnZJR2m8pE8RTM1Tmc4WzmUbFzH8Ul/wOGJToXVfkNr4PGHveMbAZ5i1nex/\ndEi6kBDVPJ5wyJmREvaZwjDmUQ4babF2JiyJMIxKX6Fx4lcan9o4AfjP6oJIWd9jcztpSdsRQlZL\n2V5b0lMIikh2prah/dd6iKjeqM69Qm4nL+lttYfLEHT879t+XYtzLCqpyGi/adLatRxiYqj81eJF\nNepb2wWNpEcRibSdiEHvy7b3yY1vaLvpN+g00PZxHQ8svkQkFu/OPYdaO51oi6qVPEj6BPAb2/un\nx9mdtLprMvSi7ZHa6tSGpCtsbzzitWw6p8opzDcD63fdsVGUA/yaUC+vJ1HaCNo1HWNon94ifmXb\nvx/yfHE5RObxi3QlRvXHk4Q0D1iZ2AGGED/+gzPLcnqIL0pC9AF11EepxReNacP6DfVYFjPuOlQq\nbUv/3xt4tu3tJT2MKC0YO05I2m/c67YPyDzHa4mNicuqY7bsT1cDdqPGEk3Hz57fzQTUoqSjNF5T\nIr11eLa+A40o9cvtC1IbQ6+n3OtoHv0gJfFeR2zcXQ4c5zGsGEljWZ3uaaM1B4rSpnfYvig93hw4\nzPambdqZqHIGF1LpS+MTLiJoj28lspXvIATZcrE/0cmfl87pWgWFdCxyd2BHTTarxVVasN7joJSv\nA6xHWOpkwfY0Z4O0o9xWyKyopCIDY2sDxiUQEobSbz1ZVP5SBWFs/5xQYP1w6ux2agjpDe5IpS/d\n0UhtLMh536jFVw1daYsLNCWS81xi56hCmz63a1lMNYjt6gJtDyjqU1ca89qyLdoppTAXuUsw5cRQ\nF7jMUeUv7tNb4FyGl18VlUO0QKntSlM5xCSgq7tDX/HPZ0gSIjO2L3wOOJgBfZQWKB3TZrosZtx1\nWL9fnkfsYmP7Vzl9coskwXtsHzTmLX+1/bfqmJIeRItyCCIJdCEhNpxdnqWp8rLKVWTRS7QsLxuB\n0g2nNiUhu3Q5QLrOlrX9p/R4E0LYEMJeMaukpEoWSHokYasOYXmajflkwWTA9i2S3gdcSVi5P1Vx\nc+7j4cyW+nzlAIIZNVd4I/C5xKwSYSP92raNTFQSAUDSNoQyeb1mrg2Vvije9mcUYmLfJfy5n9pm\nBxm4d8hkP2eAK7XhqnAB8ExFHfDZwBXEYNtVhOXBwKNy3qjpJRU3SepUUpGBcfXwxeiahKihtGYO\nerCW04AuBbGL1ReGzpzUE5Ve5fWzORi1+KrwBmL3/z5JbWiLpwDnS/otUYpQCb0+jqDO5qKTJgP9\naXsg6UOEj/kf0uOVgbfZfl9D6JWSdrM9zfpK0n8wfSBtwjmMpjB/EmgqEToIuEZSp91TZwqSjkBf\nfXoTRq1iNpQ0zDZK1O6pHjCj/fGEYFdClb1ydziYoLTnJgFK40uTEH2gqz5KhdIxbWdi0v0VpsoR\ndiYWYq2tyVriD5K2JRIfmxO/Z7WIb5MUbcIORJ81CudL2gdYVqEL8CbgzBbtP9j2u9qeVNdNgTo0\n3rFn9Yz4cSUhjckoSU8iND3OSI8/QrgaQJQKNc1NDiaS0Yekx6cQSepliGT32O9VYWm5ZG09cimR\nCFyKSNCN+92rNrYgNJ8+nx6fRpTUAHzA9nea2phHP5C0AVGStQ0xT9nOoffxCFIp72CMa9oqkvZ2\nuQV2Z3jAAt3TrcSzMWnlDJ8mBpmtgGMI5djLnWkBVBqf2ng1sC8xWG1A7ADsYvu6zPjPEouTdxOT\n3T2JjmP33HMogaYcCvYgsqaHqJ2ifL2jX0Ao577fDbZ0KbaIip67c1eKHui3M0Ll7xOaeV2KUWU1\nfdlkFtXPZh6jSGW5oe1NgIcTtefVwmEdYHlPWaKNZEKoTJOhF22P1NYwheHG+0fS6kQJwN+YShps\nREyYXpKbmC2lMKu7u0Qvbj2zgR76s1HlEA+I/ng2oB7cHQrjO1tU9gV11EeZLYxjCGbGj7MNXofY\naXwY8NFq7JP0fGBr223YquPOocktZgkigbE1Ma/41mCitqH9DwCX2P56h3NbACy0vV7b2BRf5Nij\nwpKQ1J8d5Cl7xpuIuf6DgZfa3r4h/hriHr6vemy72nm+0PZYwUaFVtIza/dwFb8AOL8pPsWcC+xh\n+6b0+AZi93g5Yvf7BU1tzKMfSDqfEOc91fY9A6+92vYJDfFzOu5JWgl4DYuXNrVaI0waE2GzNDm8\n3vYBkj5MCyp+D/EQC/8tHOJBpyjUnD9HiKLlYA/gvcQgewpRCnBg7sF72IGVpE0J5kGVPFki9/hE\n7XWF+4Dbneld6vKSirneuesFPWXtS63lNqKDLkXuwmFYAiGhLyr9srbPlaQ0udhf0lVAb0kERnzO\nPtgUHuI5bfv/DTw1kgnhsrKYbZjS9vhww3ubsEDS0k52YgrR2KWbgmzfDmwmaStCxRzga4M7JeMS\nKQmlFOauu6d9ufXMFqumBKOuw/8T/XFPKHV3KI0X0+nn9zP731vVF21Se84Eo2AkNMQpqY6+klGU\nl8WM/D5T373YAi0xpBaVe6q5HKEJY8dr238nGCiLEgeSLrad+9n3AvaR9DciwZu9wZES2TdLerQ7\n2I16isa/B3CCE7utRfwBKf6htu9oe3zg4Z5uj/xH26enNt+QEb/EwFz4Xem8LCmrLKdKICQckZ67\nP42rOVihSiAk3OJU0qcQ9J7HLMH2yE3TpgTChODrhDtL1/I0YPKSCFU25+5ECbmD2M2brXgGs5G2\nL5f09BbxdxNJhPe2OW4NxzG1A7sVaQe2RfxeBJ35yw4l4ccQpRljIenBRClG1dGvC7yIoMB/eUzo\nMHQqqWjaHewRpfTbGaXyJ5Ray3XVpShdOPRFpS/WhCjAWwkdg2EL8MZJcws0LQI6lcW4B22PGk5K\n51GJUe1CJFVzz+W7jO9/mkpKSinMF6bJVavdU9v7pb+d6mcHUNqnN6F0MTk0/gHUH884bB8u6Tym\n3B12cQt3h9J4ypMQxXB3fZRNgduITZXLmNykUR/XYVM5QhO6fDfZrgY9bHCsDCxUlKrWXQHaJIJW\nJ8rdriZs5r7VcrPjewqByeMIUcvc2Gmf3XY9GfZPGfFLSXqIk/aB7bMBFDXlOeVhy0ta0kkUuMZm\nWRrIZalO0xqyXWfKNZaEzKM/aHh5zp2EPsIHhiW6NN26+sGaKjecdbYy4fA0qkQoG5NWzrAvUeP3\nXOATxJd9jO19ZyM+tbEMsYM/qKuQpdyadpDfzuIUkVaWYipQ5W9of5QzwQXE7vEtitrty4kFxBMJ\n2uW7WxyjtKSi087dLNJvZ5TKn9oq+s3TOXS2+iw4bl82mRsD3ycGzQOJ2sVDhu3wF5zrKGu9HWyf\nKukxhWyKpuPPaVlMLp1O0guJPhXgnLT71gua6LsZ8WMTIaX3oobX4d4JXOWoKcxpow+nlZUJgcn6\nmFKVxaziAreIjOtwovvjfxSowKKyp+N30kdJrKHnEcK+GwBfA06xvbDn8xtl/Txr12EP/dk+tj/U\nMqaNvaGIzZy1bR8oaQ1ih/7yzPheLB7TeWxNJFQ3IqyoP2v7h5mx/0Ko4m+cYo/34ky/wbjvAu+2\nfdnA85sA/2372Q3xb03H3b1iYihKND4FfMf22A2YdP88jHB/uzs9txzwceBXtt8zLj69/0zC0vNr\nA89vS9ivbtPUxjz6gcKC+37g5PTUK4jSmF8RbPZZsbHuCklvAf4EnEWB89REJRHqSNm5ZdzRe7Nr\nvKRTiTrknQkP4VcSFod7ZcZfR+wgX0VtB9nNKuJV/CXEROE0gk77v0QHt26LjzGu/VEDbX2CeyDh\nQ/xmhe3hVc6s3Uzx1xCCPx8hEhML1c6GqFM9/KgBrkLTQFc62ehz8alCa7nSwb5g4VBsk9kHlFG/\nOWrxVUuCzWjN2ky3P+nH7+McZuE3OpmY5FbiZdsC1xNJ4lNtHzIitN5GUZ+e+uPXAj9kqn9qlZRs\naL8piTAn/fE8JgvDFsht7780L9sJOBQ4wBlaSyXnl56ftesw415amyh5XYvpCcGmucVQbRYisfxp\n26tlnt+nCOryc2w/ISWCzvYIO96ZhKQNib7kBQRbbRMiSf3OFm1sBZxIJNuvI5IEl45479OBLwLH\nE0KIAP9MiHvumJNIkbQ7sE86noC7iL78UxmxC4APEvOin6b4NQhG0fucUTacNvi+Blwy8Bk2A7Zt\nSqTMoz8Mu9drc8fs9c5cQdKbievxD0yfV7Qqs5y4JIIWV5THSYl0luIrsZNKvGtJIuu/SWMwvewg\nz+gO7JgkwvVOIk2SLgYOtf2V9DibRZDevyXBxrjY9sGKkoq9nSnY0cfOXRf0kITobfEp6cfDT2F2\n6qi7Lhxq8au5gEqvck0IJH2VECFqVb/ZF5si4zijJr19lsWMO/44IbE67W7aS8wBG6JrfNfd01r8\nBcCLPGXrtTwxiXsBkVx9YkYbRX26pJuB9R1lKr2jafd0rvrjeUwWFOKOG3u6PsqVtp+UEbs0odWy\nEzE/OwM41vb/9nh+QxmCs4mMe+k6YtHYVuj1uHGvO7PsqjZHWXSeOfO7PscDSXsRgm6/JQTQv2L7\nXqXyRduPbYh/KPAq4NXA7cT3eQbBvDzVYxx1JP0T8J8E0xhgIfAJh4ZPNiQ9BMCZto4DscsCj0sP\nb/WAKF9G/NLE5mb9M5zsJNo6j9lBupd3q5JPaZw/xvaGTf3AJEDSj4Cn2/5tSTsTpYmgEYryQFYS\noDQ+4d709w+SnkxQUxrrpSRVNitnSnoTHXeQbV+R/vsnYuE2W7he0mHELtnjCC0DFAqerWD7AkIX\noXr8I8KlgtRmUy12UT181130HnYk7pB0NrC2hohJtVl8jhsIc6Cg6B0JPIFQxF8A/LnFYF8kbDgu\ngZDQJARVqgkB3es3i4UJc5gQTJUIDGLONRncgzho6Tn0hBfa3qd6YPv3kl4EZCURiL7/r7XH9wKr\n275H0l9HxExDD336jUQC4tcdYoFFyZOh5RCMvg4rzEl/PI+JQyd9FEmfJ8RVv06wD25sc1CVi/1W\n7czGdXhqw+t/cQeh1ypJIGmB7a7jIcC9aWxyam81MkTVeh4PVgH+zQNuDA4x4W1HxNRxKTE2b2/7\n57Xnr1Q4tI2E7V8rVPUPart4r5AW8dsBayksPqu2c63kzwHOJzYoftL2+CmJd2zbuHn0jv8Ajk0b\nCwL+COyqKFF5IIhc3grcXdrIRCUR6Kgo32M8wFFpwrUvkd1cnryF01VEx1xNit9Re81A1kDVxw5s\n0yFGPL8bIcq4FmFZVF1cT6R/le6mBWSpn3SRkFnBZKOPxWdf1nIfJ2q0TiXui9cA67Q4lbkUNgS4\nL4ci2IBsLZQ63IMwoTOUrMckFvtyuGhCo5BYLTlax11O4lA5KFzANjbf8Hond4kaTiIE7b6aHm8H\nnJwmCjeNDqudYHmffhBwjaQb6aBvohHlEKRkVEaCe07743lMBhKr8Hqm7tkDnaeP8ioiibsXsKe0\n6JbN3cXua/5RfB2qoRzBzXoGRyisCs+mm03mLZJOB47zdJX+XHyM2OD6J0kfJGzQcxOqvYwHTqK1\niRVQn1/9zPb3M5pYd9Qc3/bBGfGvAT4l6XfEQv4C4CKPdwmq46skXRymJ5hz8WrgmYQT3KEpGX2h\n7bfkNpDmhwcTSW7RM0NwHs1ImwPrK4Q18fTS+S/NzVm1wp+BaxVaIfW+qJXF40SVMyj0CPa03VZR\nvpf4SYAKNRUy2i+i/Ek63fZLC89hpuuYi+i3c0nll3SA7f1G0BftfIHPK21vpOllKtkUq1IKdkb7\nTTT0/SnQhKi1sybweNvfVjiQLOhCQRzRdtNnuICwRWvFhFBhWUzuzl08c2UZAAAgAElEQVRmWz8h\nEgC/JyYqKxHsrNsJKt/YfmnUAravpGhTf6awh9yOWEBA3MtnOEPLoNbGRkwlPi+2fWXLcyzVyVkI\nfIaWFOha/IyWQ2Qcf74cYh6NULPda2n7fQicdipHqMUfRCwif1iLz+4PE43+FUwlQI4FvmD7j2MD\np7exHpEIEuGOc6ftX2TG/oSC8SC1sR1wOPAIYoxfk9AdayyLSfGrAe9kcfHzVmOKwsHtZUTp7SNs\nZ22qSrrR9pOb3zm2jYcTNsLPJBJaP7O9mIXomPhbge0yky7zmAGk5MF+wJbpqfOB97ujjt9sQ9LQ\njQDb2e5bMCFMhNqk9yHATYl+nL3jUhqf2hhrdWH78KY2UjvLEKKCW6RzupAQvsmtV+q0A9sX5S8D\nM05B7WHnrnQXfc6o/O7PWu5uhcjhtQoV2V/SYtfFM19W07SDXHVwnRg9AJJ2I8oCViHKnB5JLOZK\nd79z0YkJQXlZTJ/MoXOA06odR0lbEzsoxwGfBJ7REP9y4LFtF7B99Wddd08lrWD7j2nn7UfpX/Va\nWzeEUlbN3e5Aga6hqBxiAvrjecwhNEv6KDTYvRYwBCv0cR12KkeoYQfgMV0TeikBfjRwtELD6WTg\nI5JOI/q2WzPa+AEhHg6ApJ+RbxNZOh4AfIAQUfy2Q39sK4KtkouTCIHEbYHdiblC05xrESS9ili8\nr0/oMnycIdpHY3CJpPVt39Aipn78H6bjnkwkpPaw3VhSMoDb5xMIc45jibG1spp+NXEfjBJBnSi0\nTRaMwkQwEVQuaFesvivp74SWwjeIBMS0RY7tA5raSO18iVBsPTE9tTOwku0dMuP3p8MObB/fQeb5\n9SEamCM+VLJzVypkNicOGQPvKbKWSzvwtxN6CG8hvoNP5kwyUvyMltWUMmIyj3Et8HTgMk+JSPWm\nmpv5O7ZmQmhCHC7SuSz2fWlKdPZa209piD+dsJ5qtYCdrf5szPHPsr2tQuC0PkhWC6c2yaz9KXNa\nOTzFnUEHCnRiUnyVmPB0KYeY0/54Hv8YyJgXlDIEi69DSTsDj6djOYKkrwCvb9sf1uIXEGWTuxAl\nFScQi+pnAh+y3aZksWrzNttrZL63aDxI769YktcBT3VoIbSxAK8YJXWW5RXOdJiQ9FuCCfJp4Lu2\nf5IZdwMxFjyIuAZ+xNRawdW5ZLSzFzG/XINI5pwPXOA8e8tqgfoswi7yK0y/DnPLXedRiGHXe+49\nMAnoISkLTAgToZoQKupM70mdyjrAesSifkbjE55KKAdvQ0yWTgHOdfssy5M9XbH7u5La1K512oGd\nzYVFD2iqxS7auethF720BrgPbMRwa7ndJTVay9n+qaL+++G5CbABdBI2LN1BVn+aEAB/tf03pRpc\nhQhSn1nTsWyKrkwI96DJkF7vY5D4paIk4Avp8Y7A7Wkym7N70qmev7Q/K909TQkEAc9yS3ePIShl\n1VQLq7pDUBuBzc8R9bPTKNgtMNf98TwmAOqhHr4BTX1zKUOwj+twfWLH8TnUyhHIvxdXAn4g6Qo6\nJPSAWwg7xENtX1J7/jSFK1YXtBkTS8cDCNHy5QktgpMk/ZpauV8Gquvtl5K2AX5BjLFZsL2qpCcR\nNPQPpnHyZtuvbgjNEX3MOf4RhDbG8sR1uD/wKEL8ugnb1f5/N7B1vWlgPokwe7hH0ha2LwKQtDnQ\nSaxzjtCLVtFEMBEqpAHhmYSq+sXAFcDfbL9yNuJr7WxGJBT+BXiX7cUoxWNiTwQ+XmW3JT0DeLPt\n17Q5h67oK7s0pv2RuwW5C8iMY+xP2c7dTItTFqFpxyW9p8haTlF3eBiwlO21JT2FqNfK/Q061Sz3\nwCrqRRMitXUI4YH7GkIM603ATbbfm9tGQ/tN9fhzyoQo3blLbaya2qjKsy4G3k+wYh7dxGxReT3/\nnCr79/l7zRXa7NKNiN+f/8P98TzyoB7q4Rvab+rPihiCfVyHilr0J7pjOcKo8bFFf7h8NSdoedwj\nGZ1U/fempGqtnaLxILWxHLHYWoKwKlwROMn2HZnnsC1RfrAG4UC1AuH6kTVPl7QCUVJaaRKsCnzP\ndtZGUWkyTdKHie9vecJp4kJCWHEmRZTn0TPSnPpzxPUr4HfAa21fN6cnlgn1pFU0aUmESlBsDyLr\nfEhLmlNRfGpjNaLGZQci47lvS7rb94F1gWr36tHAzcB9jKE89bUD29PCYVliQLh5yGtb2z57RFwv\nFGQFhXhIeN7CQeX02zmn8kv6ASGGdm96vDRwne31MpMQVxG7I+d1WcCWLhwmAYr6112JbL2AbxE+\nvmM7vR6TYZfZfkb1eyUmxNWj+oC2yJh0z7igXQYbonQBW0phLp3wfY5ICl/R+ObFY/vq0z9E0K7/\nkB6vDLzNdpaqusrLIea0P57HZEDS0Yyuhz/Cdk49/Lj2m8oZSssUi69DFZYjlEKhubUri4sKjk2u\na4SIWi2+n/ro5vFgAaGFsFXH9hcQ4ukfKTjH64GL0r8LPN0mMif+J5SJDb+MSBrc3v7sF7UxTJfj\nTuBK218d8to8ZggpKYVbiJtOAkqTshUmopyhBknalMhO7pqea0Ov6Bwv6XVE8mAZ4kt9eceBIlth\ndQDPIn7I7Ya81oamVET5q+9gA4vtYI9KIKTXeimpsL12YROlQmZzQuUfQKm13L2275SmMe7bZAyL\nKNilO8gq1IRIx/o7SYQq5/019CVMeL6kfYBlJT2PYEKc2RDTJ2ZD0K7JrvVChSJ5pwUshf0ZcDVD\nJnyScndPnwG8Kk0c/wyt6l/76tNfaHufRYH27yW9iHxrtqJyiAnoj+cxGdjE9m7VA9tnSzrM9htS\nkrsRKrB7dXk5Qh/XYadyBE2VV4nhGiu54pQnEHX0zycYAK8kEitj0VeSIANjxwOH9fHfJa3oDir2\nKX4nIqncCZ7SUeg6FhaJS9o+TdK/aqr85HzbbecFyxDl2qemxy8FfgxsKGkr23u3bG8emRgxN6Wa\naztThH8C0EvZ9qQlEfYC3gN82fZCSY8h6r9mI/4YQnjqp0QHvXV9AZYxSDyYWLj9ND1eF3gR8NOc\nHSf3p8pfunDYn6Bgn5fO51qFN3I2ui4g+9q5A86U9Ca676J3nWz0popv+0BJ32BqUN7dU9ZyOeU5\nCxUiUAvS77EncElDTP34pQuH0nqrzpoQmhJAGoqmBWBfyTDg3UQy8wbgDcDXiX6mLzQ5XEyCtkdp\nPX9pf1aqJv58ojzumenxBUSJTCN67NMXSFra9l9hEVMsa9GWjt91129S+uN5TAaK6uE1wu6V1Bc0\nXQ89MAT7uA73a/HeRbD9kC5xQ/A42ztIerHtz0k6mRbOAuk7fDshyjhXpUV/Am6QdA7TrY9z/ekv\nlvRxwqGhHp/LrHoykYxZJR7qN0RJx42Zxy9KpqWk+tOJjSKAPSVtWk8UZ2ADYHPb96c2P0VcB1sQ\n8415zBz6upfnFD0kZYEJK2doQhNVqiRe5bXcFwC72r5F0uMIb/iTiIX05bbfk3mOpar8pZS/79ne\npE4tVE0FN7ONThRk9VQP3wP9dn/miMqv6dZyiyH3HFJS671Mp/If6Aar0b4WDiqk0qtAE0LhiADw\n5vT3hPT3VfER/O7Mc5jTevwmaBYcLjLOoditpaH90v6s1F1iL8Ih43+I+2h74GjbR7b4DKV9+ruI\nfrTqF3cBzhiXSBuI71QOMSn98TwmAyrXR7mZKNHrqidQWqY4p9dhSrYstL1eQRuX2356Gh/fRNDo\nL28xt5nR0qKc8UCF/vSShm0MOjcRoqBxv9f2d9PjZxPOFptlxp9N2JHWk2nPI+YmV2R8/uuBpzjZ\nOqbr4pqWc+ybgadXbA5JKxLXwbrKKHedxzzSfbRYAqBtQvGBlkQomrD2MeGVdLrtlw55vr5YOhBY\nxfabFXZtVw1OZMe0fzLDd2DXAhpV+Ush6bNEB/luYsduT2BJ27u3aGPGa7FnEj0kITovPtWjtVwX\n9LhwKBXBKtKESDGLva9NH1CQDCtiQqg/TYYZF7Rr+i26LmB7PL8+Jnyb2v5zerwccGnLCV9xny7p\nhUzRvc9xYlZkHr/oPpjHPHLQtMmjjnavtfg5m0Oop3IERXniHu7o+CLpP4DTCZeI4wlW1r62P5MZ\nP6Pf4QNhAashOmnDnhsTX0+mQSTTDiA/mXY98OxqQyhtGJ3XckzZlShnO4+4BrcEPkS4yu1v+x2j\no+fRByQ9ihD2rNjCFwJ7uaXGxlxBUr0fWIZY791n+51t2pm0coYHAkYt4uoDy3OAQwEcFnNtbLUe\nBTyttgO7H7EDuyWRPR474exh4bAHsYP9V6JD+haxA9gGRRTkrjt3fe2iew6p/C60lpM0VqG4aQHq\n/ijYpVT6Uk0ICKri5rYvTg82o11JRdd6/MoKaigTIuO4fZXFdNL2aIkmu9aiev4e+rOdiXvxK0zt\nnu5M2Gm9POcUmP7d3U9zGckgivp0ANvfIN+ueBBF5RBz3R/P4wGDJn2UTnavNXQqR+jjOnR/5Qgr\nE6WGlzOdit/4HaQ51R9t/54oq+qyoTDTpUUjxwNJLwYeZfsT6fFlwGrp5XfaPm1cw2nRtpanLPXe\nytS88uSmxXsNP5K0L9PH5WxnBNu/JebJw5BzDtV98F2mEgBZ7MjaOXxW0teJsgiAfWz/Iv1/PoEw\nOzgOOJkQ4Ye4jo4jNikmHkPYRxenfqkV5pkIPbWhsHb8FbFgfjewtu27Ja1ECKfkZjlLVfl7oasp\nFEdt+642cSm2lILcaeeudBe9r0lvH0wMdbSWU9T33UYkgC5jYMHjfIeMYmHDUkjaiKmJ6cWe0oTI\njX8a0amvmJ76A/A659dOlrIp5nQHuGTXqUc2xPXAxgML2CttPykzfqbpt027p28lkl9fTk9tDxxv\n+6MtjtGpT6/tfi72Eu12P0vLIeakP57HAwtNfZvK7V47MQR7ZNf1UY5QavF4pe2NCo7f9TssHg8k\nXQy8wvZt6fG1BLtqOeA422OFNSWdQlhBnpUe3wwcRWxWrOd8K/iVCeZAVZZzIbF7P1brRtJHbe89\n6rtokQxD0sOByrXocmBN25dlxK1n+wdpbrMYcuc28yiHhpRDDntuUqHpJdNLAP8MfCx3flvhgcZE\naLsD1Hf8OOxG7L6uBWxt++70/BNpt7NYugNbpECcEgDHksRDJN1JLLyyJ+0uF+zotHPXwy56X2rq\nfajiXy1pY7e3lnsYkQndidhx/Rpwiu2FLdvpLGwI3XeQNV0T4kfUdggkrZK7Y5ImfM+yvaGiXhC3\nV4MuZVMUMSFUrslQsuvUFxviJODc2gR+F8JbORczrezfpCZ+uKTzmKKu7mL7mpbH6NSn97X7afvg\nlMypJukHukU5BHPXH8/j/xbutj3Mmi4L7sgQ7Os6dDgD3Czp0e5YjpCbLBiDb0t6O4uLCmaNi12/\nQ/oZD5aqEggJF9m+A7gj9YVNWLdKICTcbfvDAJKyxSUTk2OaiKOkLxKlbuNQMReKvwvbvyQci6rj\nX07YwTfhbcRa48PDmiVfsHge5bhD0quIDTuIOfcdc3g+bXEVUyVa9xHuHruOjRiCBxoToUhIrDQ+\ntVFU86URmgoD7+m8A6tCUcA02Xyz7QvT4y2AT7pdvVYRBbkHNsac7qKXMjFSGz8AHg/8hPbWclUb\nSxMd26HAAbY/3iK2s7Bhen+nHWT1qAmhJEKV+/6+0QMTopMmQy1+IgTtVFbPvz8zKHI6W8yQwj59\nmMjqXVX/ONN4oPfH85gdNF0Lkg4n7uFWdq89MgSLr8M0Lj6V2D3OLkfokVVUqtf0mmHP2/58TnwJ\nJN1q+3EjXvuh7cc2xN9Un3fUNxUkfd/2EwrO7We2cxbxMwJJt9leY66OP4/2UAh4HwlsStzblxB6\nJ7eNDfw/holgIuRSpUYlAErjh7S3LCGQcvOQl9+V08YYDO3s+9qBZWqntF4X5VHHHYL7qwQCgO2L\nJN2XGVuhtBa7lI1RuoteNNnogYkBBdZyaZK/DZFAWAv4GFN07Fz8E7WJHnAvsLrteyT9dURMHZ12\nkF2oCTGAUiuozsmwnpgQXTUZqvMs1fbogw1RWs9f2p/NGXrs068G1gB+Tyw6VgJ+Jel2YLdRibm+\nFi7McX88jwcMmvRRutq99sUQ7OM63DfzWNPQI6uotE/fuPb/ZYjk7tVAVhKhcDy4TNJuto8eaPMN\nRFKmCXdJWsf2/0vHrBII6wGty27bQoWCyQ3I2s0dlUirncO8zszs4VGDyUNJmxPlxBOPvq6liWAi\nqNxesSh+oK3tCLrSUrbXlvQU4P1NmeYW7Y/SVJhTVf7aeXwUWJag6JigeP0FOBHyFmDqQQG4cOeu\ndBe9SE29lImR2uhkLSfp88CTga8DX3C+9/FgO/sCLwHqC4czCBrdUW6oP+yBEdNJE2KgjVIrqFJL\nsSImhDpqMvS1c5fa6upQ0dcCdkZRyixraLuXPl3S0cBpFYND0taEkvJxwBG2n9HzqQ87hznrj+cx\nt8jdpJl0TMJ12JVVpNCoWt32LenxDsQ8DeBbtm/veD4rEfOEF2S+vzM7TtI/EQK3fyUSFxB12EsD\n2zd9BkkvIDZEPjgQvw+hij82Ua0ROgJEf3yW7Yc3xK9Ze//XgBfVX0+J/nHxo+4jAc+x3VjSoem6\nHtsxNUdNpzCvMzNbGLaWmy1mYx+Q9DVgM2JuCSECfwnwG9poxUxCEmGSkHb6nkNYrjw1PVe8oKm1\nP/IiSzuwa3TZge2R8jds4VVrJmsXdn86LCAHdu6GHTx3AVpKv50TKv9AG52s5RROINWue2crqtRW\nycKhlHb5OeDjbq8J0RtKk2GSPgIsSXcmRKeyGPUoaKc5smvtMxHScJziEreG9jv36bU2Fht/JF1v\newNlCDmVLFwmoT+ex9yir00aFdq9qpAhWHId9pUUlfQThrCKgCZW0VHAJVVfJelWgt21LMH6y7bg\nHmh3SeDGpsR07f19iEY/B6iEdRfa/s649w/EPhl4Zz2euKYaN0sa5rbY3qrFebReLPa52Znam+87\n5wCSNiUW33sTybQKKwAvcaaI/lxDYX/97w59DhRin8fbfn6bdiainKGCCqmzpfEJ99q+M+Z+i9Bn\npmWkuKNtp+xQl4RFL5S/Nh3pGHSlIJ9M7PpXgh8VKm/m3N+xlH47J1T+AXSylrOdJdwnaWWHwNDg\n871QsF1Ou3wG8Ko06eqqCbEisWuyZXrqfIJVlFtWUGqHVS3u3l97Llv8yB3LYtyvoF2pXWvXev6i\n/ix393QmEwip/ZI+vcIvFQ4LX0iPdwRuV5TM5NgHdyqHYHL643nMIdoubsagyO6V8nKEzteh+7N4\nPIfRrKJPEuPeMGwMvKH2+C4nV5nEDsjCQL+4BDFXPrXF+fchGr0VUZ55SbVJkouULBiq65AR28fc\ntjN6vI8WNdlze/PIw1LENf8gkgB9wh+Bl83JGXXDGlUCIeF28sQ9p2GimAglVKk+4lMbnwXOJWwa\nX0qouC7ZJtOrMZoKkra2ffaY2EnYgd2GyPTWEzHvHx3R67GLd+5SOyW76HNK5U9tFFvLNbQ/I2U1\nPTJi1mSIJoQbKIMDbZwO3MiUG8CrgQ1tj60Fq8XPqTChygVK+xASK7Vr/Qkddt5K0feuT+G5FPXp\nklYlxrXKkuxiIjF1JzHOjPUmV0E5xCT0x/OYDPSwyVNq91pcjlB6HRYkRav4TqyiwThJT6523yXd\naPvJmcev94v3AT+1/fOc2BTfh2j0LsS4vimhZXAhcIHtr44NnIpfB3g7UV7atVx0syHxY3UhNL0c\n4iTC/WrRxo7zGYabA/szNa53KlnuwoaYR3+QtGY1H02JteVt/3GOTysbCr2wxzPlLvEK4BaPsbwe\n2s6EJRGKqFI9Ua0eDLwX2Jq4ub9FWGL9JTO+SFNBhar8PVD+Pk3Y2m0FHENk1i633Wj90eMCslP5\niHqi36a25ozKX2vnaUxZy13o9tZy49oe509fUlbTlyd3J02IgTbm1Me3lAmhck2GIm2PPlCygE3v\nf8Ar+5f26RntHzlu4O+6cBkXn3levfXH85h79LDJ864UV7d7PSO3H1LHcoSe5wU/oSApqqAQn8t0\nVtHziETIFaMWhWkseL7tXw08/0jgGzl9SWIurWz7t+nxUsBrgbe4wNmgKyQ9DHg5kRBYOZft0cO4\neALwWODaWrxt7zk6iqZyCLdI7v8AeAuLn3+jPeAAk2RLYnOlfhIPCH2S/wtI86vdid/wCqKc4Qjb\nh87pibWApJcwNT+9wHZbAfaJSyJ0EhLrK36grRWIjqGV6qsKNRVKd2BLFw61yWX1d3likHrmuLgU\n29cCstPOXQ+76P8wk96mLHbXhUNfUEdNiIE2LgXeYfui9Hhz4DDbmzbE9ZUMK2VClGoy9LFzV8qG\nKF3AlvZnfZS4FaG0T89ov+le7rRwqcXPSX88j8lCT5s0JXavnRiCfV6HPSRFO7GKFH70ewFvA6rN\nhKcRG1Yfs31Cw3FfAXyGSGLeQogTHkssfg70LDgW1do4huiPbydYCBcBV9vOcgHrYVz8PvBEz9Hi\nR9JlTdfJmNiJYdj9o6Oav0h6JXEvvpuYV/WyOTDTSHPqv9i+X9K6wLrEWq+VdfREaSIQneSDiRKC\nA4nF+L+Pjeg3vqJrHUuqdZF0J+Htnku7LdVU2J7pO7AnEFaJuTuwjwKeVls47EcsHLYkMp9NWf97\n0t+7JT0CuAMYq1pbwf3VYneqh3e5PWBRDXBfi88JwdWSNm67cKjQww5yJ02IAewOfD4xAiB2j3L6\ng74sxR5r+6W1xwdIarN7XqrJUKrtAeV2raX1/KX92XFM7Z5uRdo9bfshClHap5diZ+I7+ApTC5ed\ngQXETmAT5qo/nsdkobge3gV2r7YPlPQNphiCu3uKITiyxLDn63AT27vV2j5b0mG235CYEWORWACj\nWEO3jmIV2T5R0m+BDxClpiZEBf/LDa4ECe8D/tn2rQqG46XAy2yf2RA3iNLxAOChRN/zB+B3wG9z\nEgi1zZ3ScfFG4GHAL5veOOZcWpdD1PBdSYcS40H9/BsTOfNJgonCkgph0u2JJPu9kiZnV74ZFwDP\nVAjcfhO4kpifjS3XHsREJRHcUUisr/iEzwJvsn0hgKQtiIlobnZpoaSdgQVpF2xPwjYjF7sSA1W1\nA3sw0eHnTjhLFw5nKWx/DiUEuUyUNWSjhwXk8xmyc5dzbLu7kFkPk42+Fp+zgaYFeamwYakI1nGE\nCFZdE+Kzmceu8EfbGyZWEYll0ij42GMy7B5JWwwwIe5piKmjq0BphT4E7UpFQksXsKX92bK2z5Wk\ntPO/f2KLZevk9IDSPr0IXRcuNcxJfzyPiUOnTRoVOhuoB7HfHq/D0qRoEzYf9YLtbxKT/ZGQ9B7b\nBw156W8Vy8H21ZJu6ZBAgB5Eo22/JJ3rE4i+5buSFth+VENotblTzV26jourAjdJupzpi/jckuOh\n5RBAbhKhYiFsVHsuW3A5nUMvugrzKMJniBLF64ALEuPwAaOJQFQi3C1pV+BTtg9pucm1qJEZOLdu\n6IE62wfVarHauia66MB7SzUVbiDEh/6SHi9DUE5zyyGKRAEH2loaWMb5avZVXCkFuageviv9thY/\np1T+UqQJzULb6415z9jJVykFW/1Q6Ys0IYbdt22okKXJMEkbEhOLaUwI29fnHL8PqFxIbH8KRUIb\n2m+q5y8VOe2txK0rSvv0jPaLrL6axre57o/n8Y8N9VSO0Md1qEKR04z2i8TyRsVL+jlweO2pt9Yf\n2z58MGZE+/tTLhq9LTGv2JLQlPgeMb4fm9tGCTSiJCB3l19zXA6RzqGzrsI8Zg6SHpTDqpkESLoG\neBPB0tzV9sIua59JSyKUCqYUxac2Pkp4755CDBI7An8BTkxt5daOddVUKFbl72HhUELVKl5AqrAe\nXuXilKVJiDkXg0u7z3t0ZFT0sXCYM294SesRlM9DmL5bsQKhkZCrBl6aDFvb9o8HmRC2hwlv1uOK\nymLUr5DYjDpU5EyaS/oz9aAmXoo++vSG9l/rAqvKjCTCnPbH85gM9LDJ09nZIDEEi1xCZuM6zGD1\nNMWXJhGGjq2KMrCRsH1AZvvF44FCFf5CInHwi9y4WvywcfFO4Abbv27bXofjnwrs6en2eG3ih7Lg\n3MIBTQW6CvMog6RXOcqLhs3zsxNycw1JWxKiphfbPljSY4C93SAwOoiJKmegnCpVTLUCNkx/Bzvd\np5JBOVKhpoLtwyWdx9QO7C45O7B9UP7Se0upWlBOQS6th+9Mv02Yayp/H1iZKK25nPgMQCv13lIK\n9lx6w69LfOcrMb205C5gt6ERw1Faj396iq9T3E4DmpgQpWUxRdoe0w5mN5Z/zAT66s/cT4lbEQr6\n9LoS97B2/zX9Pb6H0xx7KsxtfzyPyUBpPfzVDHE2kNTobGD3Uo4wG9fhyHKETLTV/RnE0P6iRZJg\nVDlE1U7xeGD7PyWtDmyc2IaXt1z870rYQ1ZuCc8mxrq1Jb3fzSKT9fKapYAlgT+7oaymhqJyCGrz\nMULsd1si0d0GnXUV5lGM5dLfLDeRSYXtC6i5e9j+EVGqBuQnRCctiVAqmFIaj+2tct87AqWaClVH\n0LYz6GvhsBHlVK3SBWRpPXypkFnpZKN08dkH9i2ML1o4uKMIVh9w+E1/VdKmti8taKpTMqzGhFhx\nYNdkBWoOAaPgQk0G9yAkVsqG6AG99Gelu6d9oWOffthMnMsQNN3Xc90fz2MyULpJcw6jnQ0+yVSt\n+CgUif3ywLgOjyiML01C7EC42UxvtMfxQNIORN92HnG+R0p6h+3TMpt4EPAE27en9lYnNrmeQczV\nxiYRXLOSTOPki4FNcs+f0CLoDNsfrj+WdBhR9twGxboK8+gG259Jf7MScw9gZCVEJ62coYgq1Rf1\nVtI2xCKgbgmWRTUaRicrpajloifKXxFVq9ZOaUlF53r4Hui3Dyw7cskAACAASURBVFgq/8B5rAk8\n3va3FVodC5xZXtOVgt0nlb4Ukg4h1KzvIQSpNiA8sU/MjO9qKfZi4vv61/T+CncBX7CdJbRaWhaj\nAm0P9WTXmnGccf7uffRnxSVu/9eRUw4xl/3xPCYDKqyHH9YfqZ3da2mZ4oxfh6Pmermsoh6Ov4/t\nDxXEjyqH6G08SH3y8yr2gaTVgG/b3nB85KL4m1wriU3jxELbT+w6v5rNedmQY69MaOQ8bi6OP492\nkPSxca+7ZTnApCJ33TpRTIRSqlQfVCtJnyYUiLciXAleBlzeoonzJX2G6ZoK56VJ2IzSjUoof7VB\n7iF0pGr1RUFOx+uyc7focJTRbx/IVH4AJO0GvB5YhShPeSSxmHruuLgKXSnY9Eil7wFb236npJcQ\nE89/I3YqspIIXdkUPTIhSstiOu/clbIhWmDkzltJf1ZDHyVucwqFy89BhLd6PbHdZDnbWznEHPfH\n85gMlLrFlDoblDIEZ+M6HNVeL6wihbvQHiyuWVXdy50TCFVTQ5/sdzxYwtPLF+6gne3ueZLOIspr\nINgs56X5VeP1MMCmWIIYY7OEz1N8UTnE/2/v3qMsK8s7j39/qEEBAV1eYsJFnKUyZEAkdERRUTJe\nFkJWo6MmikuRqETlMiZMohkFZCYo4gVx1NghDRI7ZiCiokuRwQsXUbGbm60koqKJ8RI1ghdAwGf+\nePfp2lV1qs7e+33r7F2nfp+1WN2nTr1776arzzn7eZ+LUqPd0fp7AQ8m9etpTAX6Klhn9Q2IU1lc\n+r6mDCKIkJsqVTj19glVZPyGiDhV0ltpN9c4q6dCAV1vHEq8yQ3lBjI3/XbVpvLXvAr4PeCL1TV9\nXdJD2hygy41DiVT6gu5T/fosUiPEW9OlLa9gMOxISVvpmAlBfllMbm+PztkQBW9gc1OYs0vcBmAj\n6f3k7aTg9tE0+9A9rXKISUqMa7WeFdikyR33mluOMI2fw7FB0WjY+b+BD5Ou+WLKjJRcaNk3yNzs\nuMonJV1C2miDFExq8xn7VaTAwejz1fuBf4yUVt2kHLnea+hu0gZD40yQyC+HOHzB+X8AbN9iPZTp\nq2AdRMR5o99LOrH+eMY0uucZRDlDbqpU4VSrL0bE4yR9gbRz+WNSqtSqSDUqkPK3I3B7RPxaqZ54\nb+AT0aCDcrU+OwW5hMz021lI5R/9HF8bEY+VdG9gy7RSiHNS6Qtew+mkcoTbSQGVXYGPxYSuxio3\nUuy6iNi/yoQ4nDRW6/IWaZtZZTHKHNNZHaPThAotMUZrpOmH6gKvZys6XWIaVI0lrf+bUotRpUOQ\n83ps/Sq8SbPceSaNe80uR+j6c1iqHKFrVlFt/Yp25Z9UDtH1/WDMcZ7N/L+Hi5b7/pVUlRO8MiL+\nd8YxGpVDSPpt4GHADRHxq2pj50TgJRHxWxnn3x64JCKe0vUY1l7TlP8hkrRvRNy4zPONpj4NIhMh\nN1WqcKrVxyTtCryFtAsbpLKGxpTRU6GA3JS/y4EnVS+snwKuIUWKG+2gF0pBzpaTfhuzkcr/OUmv\nA+4n6WmkebAXT1hTUu4OchZJ25H+vG8Bbo2IeyT9krRrsKyC2RSdMiFqcstiSjQS65QNUXDnLev1\nrMDu6RDcWf08f13Sq4HvAjs1XZx741JCZjmE9St3WkxTkxp5ZZcjZPwclsrq6ZpVNHJW9Rr8KTp0\n5S9QDlGkaXQVeNr2cyPpOxGxx4RrvzIinrignADmAsvLlhNI2p3UcPq3SBtEHwTeCLyIuayIibqW\nQ0g6EfhL4GZge0nvBt5MyqTIDQjvQPq7MWvq3VXw6VzgAxFxa/3JJgEEGEgmwkhuqlShVKv68bYH\n7rvwf+6ENWN7KkTEMW3P34XymwJuiYgDJB0H3C8izpB0fdPd0+oY5wHv6usGsk8DysTYjtTb4emk\nn4NLgL+JKf2Dz91BLnQNWc2ScrMpumZCLDhG5walhXbucrMhcnfeOr2eTWv3dBqUxgZ/jfTzcxqw\nC3BGRHyh4formbtxOYLqxiUixtbVmvVh0q5e1wzBIcnNKqreU14EfIO5coaIhtNmlJoangPcWFvf\nNjOseNNoSf8SEbt3WdviHJ8BPkfqb/XM6r/rSCWG329xnHrG86gc4n0R8e8T1n0VeGJE/ETSHsA/\nAwdHhya/WqKvQtPP+dbdgiDWDsAvR0/RIJg1JNXns5eSprJ8CdgYEZe2OsbAgghZqVIFU62ewOJI\n7fsbrh11Gx79uhOpHOBJExcXkHvjIOla0q7124FjImJr25upIdxA9mkIqfx9K5FKX+AaziR9YPhQ\nl+BJTjCsCuIcBNzEXCbEjsD9J31gUaGymOqDxrqIuKN6fF9SF+g2/5Y7Taiorc+6ge36eqYpTZdY\nDWahHML6V3qTZszxJ6YGdy1HKKVAUPTzpOu/kJTd8V3gTRHx6IbrbyaN4P5Vy0sfrc8qh8h9P1jm\nuE0yEca+H45Mel9cuBkm6V+BPSIiq7dE03KIhT/fbTfnFhxrz9rDbX0VRu+TZk0pNbZdD7wTuI10\nv/a6phstgyhnqMlNlcpOtZJ0Pqmb/XXMpc4FKeWoidurX38p6bdIPRUe1nBtCbkpfycArwUuqgII\njwA+0/IacksqVrveUvkXRKgXmWIgZwgzuV9B6kNwt6Q7aB8p7tyYMFJPkf9T35mp3uCbvMmXKovJ\nbiQW+U1C7xcRl0lSFUA6RdJmoOkueKfXs5jedIkVp9Sb5iRgT+YHtps26c0qhzCr5E6LmaTJv+u+\ny2JyyxFOIO1eHk/KKjqUuakXTXyFlJH0w0nfuISscoic94MlglCQ/t6bvB6N3g9F+kz9b8z9zDR6\nX6xu+EdrfgzsUmWPNglC5JZD7Kb54wEfVn8cDUcDKvVVeDDz+yq8EXhJdW1mE0naj/T69SzgUuCI\niNhS3bdeTcMytaEFER5C7YUNuAt4aETcLunOJdaUXA/pTXKfjLTv7J4KmbJuHCLictJN/+jxN0lv\neAATmx/Vztn3DWSfsrviZxh1/n1V9ev51a9HsUxwYQXkjsnMFrUuyh3lBsMuk/QcWmZCRKGeDNG9\nt8fCbIicCRW5N7BZr2crvXs6JReQxrNuYH5ApancGxczKFQPv4wlx70OSFZQtLax8HPSB/i2dgVu\nknQNLUdwV/Yl3fQeSq0cgglTwwq9Hyz3fjzx7z5q/W06lk7sQvo5rQerRsGTJkGI95PKIf6RVArx\nZdJm434NyyFOWvC4SxnDSvZVsLXlbNJnqddFxGjzm4j4N0n/s+lBhlbOkJs6m51qJekC4PiI+F6n\nP8T8Y7XuqVDCSqb8NUw5zK7FXs0Gksq/6E22yd9dwfNnp9JnnHvviLip+newSNNdF+X3F/kZsCMp\n3bB1JkSfZTEqN6Eiq56/OkbOpJUiJW59cumBDYE61sOr0GSDIShQjpCVVaQlpt5E854GncohSr0f\nNDzXayPi9AnfM/Wu+CtVDtHyGor1VTArYVBBBCCrkVjO+tob3f2B/UlNJrpEerN6KgxdwyBCbzeQ\nQ5B781noGq4DXhURV1WPnwC8OyL2n9L5e2uCJel9EfFypUZKC0WLD2y9BsPUc4PSKhui9yahOSRd\nDhxW2z3dibR7+kxSNsI+fV5fE5JOIaUvX8T896SmvTFyyyHMOm/SLHXjO9L0BngIcoOiSo0N30va\nhd6WVTStm0BJHwZeHhGtyyGm9X7Q8DNm5yCCpMsi4vcnfW3MuuuBpzCXyfCZ+uMWr8fjgmq3kjIb\n/nr0uXmJtcX6KtjapvGlz6Ofw/8VET9udJwhBBGU2Ugsd311jFJzzcf2VGha7zR0DV/gV30X5Rx9\n33xW5zyAlAq+S/WlnwIvbboLX/Aapt4ES9JzI+ICSY+oynG6HqdTMKxgJkTvDUpzsyH6voHtuns6\nJNXu30JtskF6vXGx2ZG7ybPWdc0q0lxH+FFfnG1P0S677bPAfqTR3a03yaaRHbfU6/KC0rTXAG+r\nPx8Rb2MZ1fv3jqQMkqcwFwzYGfhkROw9Yf0tpBKQcb072rwen0XqaTDqo/B8UkO7AHaOiBcts/aH\npF4MI39Yfzwr9xm28iSdQfo8sKn60h+Syh6/T8p2GTfSd5Gh9ETIbSSW3YhsFCSobvhuj9QY7VHA\n3sAnmv0xgPyeCkPXpPlR51rsGZE9zzrr5Knb6iER8RhJuwDElEtqqnP21QTrtaQ68guBnJTHrvX4\nrwFeTtqhW2hi/WnNEBqU5jYJza3nz/UB0t9hffd0U/U6/9Uerqe1qNUCd3R3RLynyMXYmqNC/VGU\nOdlgCAoERS+W9EpaZhVFfn+fkZMz10+jafRSn53r/w82sHyPhXFeAZxIaj5Y741wG/CuiRcV8fCW\n51vKEyJiXe3xxZKuiYh1krZOWJvdV8Gs8l8XbAjfONoklnRU04MMIhMB8lOlSqVaKTXJeRLpw/tV\npIjtr5ZK1RuzvlhPhSGS9JKIOLfv6xiyIWRiSPpSRPzetM43JJIuJX0QWQdcsfD5lqVJrbMpCmZC\nDKEsJisbYgj1/Kt191TSoRHxaUnPHvd8NBzBlFsOYWtbqXp4ZY57HYLcrJ6crKJqc2DrpB3zlTSN\n7LjcDDEt01Oh+n/4uog4LeP4ncohat/7NeAZo3sVpd4Gl0TEf14t2XG2+lWvZS+LiC9Vj9cBf1Nt\nPjb+ORxMEAGKpM5mp1rVIjHHkTrxntGk7kgFeyr0YYk6rW2Gfv1D01cqf+38bwfuA/wDtbGC0yxn\n6Iuk3yBlIJxPugmfp2lpUsb5R68hWc2fBlIWk9UktK8b2BIlbn2TdGpEnCxp45inIyJe2vA4WeUQ\nZiU2aUYBxfrntCEEGdvo+3qrjKrj2v49FCyHWPGm0ZJeFxF/lbF+2ffdrjfqueUQteMcRgpEfaM6\nxl7AK4HPkm7qJm42LfF5vVFfBTPYFjT4W9K0LJEyco4hZWg+KyL+b6PjDCyIkNVILHd9dYxrSf+g\n3w4cExFbmwQntMqbB63267f5lNlUcBZIenBE/PsyzzcZV9rlvEUyITSABqW52RB93cCW2j01s6TA\nJk/WZIMh6BoULZhVdDnwWNImVX1zYCqbPCWy4yTtBRzH4ubjRf4Mk4IEks4kjZtuNXq5+rOPyiG+\ny/xyiA0RMbEkonas7Uml0gD/1PamP6evglldbsnz0IIIuamz2alWkp4M/Bkp7fXNkh4BnBgNG5Zo\niZ4KUTX2MrNhyM0UWOa4RTIhBlIW03s2RFelStz6pvkNxUZuJU2XuG6ZdUVuXMygyCZP9rjXvnUN\nihbMKuo84rFEOUSJ94Mqjfoc4EZSo0Kg3EZVg0yE0ejle4DbaZGNUaIcojpO1gQ3VT0Uxn1N0taI\n+J2c67PZVwUPTgaeXH3pc8Ab2wYThhZEyE2dnUaq1bK7l8rsqdA3zUDzIyv3AjHLViqIUDt+dibE\nAMpiuk6oGMQNbIkSt75J2kRq2Htx9aXDgRtIH0IviIgzllhX5MbFDKZTD28rq2s5RG19dnacpC9G\nxOO6nL/h8Ve0r0Du8VVggpvcV8EySfpH4CvAedWXXgQ8JiLGfmZbylCmM4ysZ36q1PmkLqxNU6Vy\n1zdx8ITnFRG/lHQM8O6oeioUPP9K28hc86OnUjU/6vWKrIu/Jb1APK96/CLS322rFwjrbrkAQmXS\na0mfEy5Guk6oOISUsjxuTFCQXqOnYRrdxFfabsABEfFzAEknAx8nBQg3A2ODCBFxcvXr0VO6Tptt\nWdNi1PO41xwFyxG6ZhWNehoseooWPQ1If39bJXUth+j6flB3VvUa9inml4SUep+7YNI3SPoD5jZY\nPhsRH2tx/MskPYeW5RA1JSa4/SlwpaR5fRWqzJDzll1plvyniHhO7fGpkpZ8DVrK0DIRslKlppF6\n26RpCx16KgyFZqD5kYGk6yJi/0lfW8v6jtivdCZEKX1nQ+SYhd3T6s+w76gkrqqnvT4i9m7yM9z1\nxsWsrkB/lKzJBn0qWI7QKauolJxyiNoxst4PJJ1O2tT4BnPlDNE0mJTbU0HSm0j9ij5QfemPgC9H\nxGsbru9cDlGtLzLBLbevgq1tkq4GToqIK6vHBwNnRsTj2xxnaJkIYv4s8XuYa14yjfUlnECaU39R\nFUB4BDCuyd1Q3SlpO+Drkl5NaiCzU8/XZO3dLumJC14gbu/5mobmrL4vYDXIyYYYwA1s1u7pQHyA\ntPv3kerxEcCmKkj+1QbrD2T8jcuxklb8xsVmxjHAQbVNmjeTGtQ1zfS8OyLes1IXt5IKZvV0yioa\n0fhpMz+Lhj23SvQdKJAd91zgERHxq47rP0zKfriYWk+FFg4D9o+IX8O2Xh/Xkj63TxQR9+9wzroH\nAV+tskFyJrj9LnOBlMdIatVXwda8PwHOq0qfBfwEeEnbgwwtiJCbKlUi1WqSZYMSEXE56YPq6PE3\ngW21Tk3qoHt2ArAD6ZpPAw4lNXez1eVY4P3VCwTAf7BG/h7VcFxpRJw7rWtawrQDnH3o+wZ2GiVu\nKyoiTpP0CebKX46NiC9Xv2/SayfrxsWskrtJc7GkVzLlca8lFQiKPoTanx24C3hoRNwu6c4l1tRt\nAXYnvZ+L1KTy+5J+QBoPODaro2A5RAlfIV33DzuuvyMi3pl5DbuSbpogNfhsJbMc4pS25xtz/rF9\nFQAHEayR6vXqMZJ2rh7f1uU4gypngCKpUiuaeivpJTk3H6slhdlWN0l7RcS36i8Qo6/1fW0rbamU\nzZESuzEl5L6WrAZKI8kOq93A7kS6gX0m6YP3Pit8/tU8XWLn6t/tuN3HxjdfueUQZrDtBrrztBj1\nNO61pNxyBEmvB44E6llFHwXeCrwvJjTglrQBuDAiLqkePx14DmkD7axYwYaFpUj6LLAfqel46514\nSS8glah16qkg6Y+AN5EyhEUKBvxFRPxDw/VZ5RDVMR5aHQPgSxHRKqBSNVbM7atga9ASgdBtIuJt\nrY7nn8Gk6e5lgfMMOoiwmpsf2ZxxP2fubTEd03otWQ36voFVgW7ifZH0sYg4vLr5qv88jXYPG918\n5d64mI2s5v4oJZQIiko6kLmsoqtqWUVNzr+ov5akGyJivyY9j3LLIUrI7cuQ21OhOsbDmH8T//0W\na29gfjnEvYBrmwamJT0PeAvwWdJr+ZNItekXtriGIn0VbO2pMhGXFBGntjne0MoZ+nRm3xcwEBeQ\nmh9tYH7qoq0CkvYGfgfYRfM7Se9MbWTnWqD+xpX6tWRObj1/rmmUuK2IKoAg4JDoOJKtOk5uOYQZ\n0K0eXgMZ91pIp3KEBVlF36z+Gz33wBYlHd+T9OfAB6vHzwd+UN3INukP0KkcoqQCmYC5PRUgTRz7\nEeke6FGSHlWVIjeVUw7xl6TA9g8BJD0Y+H9A4yAC5foq2BrTNkgwiYMIlSmmOA+9DnrVNj8yAB5N\nSrHclfnj9X4GvKyXK+pPL+NKh1IuMQR938BGxNuq9NnR7unRq2n3NCJC0seB1pkTBW9czHIMZdxr\nCV2DoptI78ubGZNVBDQNbL+A9J724WrdVdXX7sXcOOflXMrS5RDvBlasHKLWl2H0Z972FO36MmT1\nVKgagj4f2Eotk4FaL7MJTgeulTSvHKLFJWy3oHzhx7T/XHJKy+83m0fSbqTeUKPPZlcAJ0TEv7Y6\njssZ5lvp3cuh10FLOoX04rxqmx8ZSHp8RFzd93X0ST2PK+0xE6J3per5bVv38HdFxDUt1xUphzCz\nOV3LEaqsot1zsooanGPZxt255RBDUKCnwj8B+0VEk0aWSx0jpxziLaTr//vqS88HboyI/9HyGrL6\nKtjaJulSUnDz/OpLRwEvjIintTmOMxEW67R72bQOesgBhMqog/9Jta+1iZTbMBwpaStprOMnSW9a\n/z0i/q7fy5qqvseV9pIJMRCldt4s7Q4eJekW4BfMBQGWrcEtVQ5hVsISDb2mOe61sxJZPTlZRS0c\nPOH53HKILNV5tkbE3hmHWbamu4FvAvdhfllKW53LISLipKq0Z5Qd976IuGi5NQuN6atwtqRWfRVs\nzXtwRGysPT5X0oltD+JMhAW67l4u1SxmxCnONk2jXQVJR5Ju5l4DXB4Rj+n50qZG0jrga6TUx9NI\ntYtnRMQXpnT+XjMh+jaNnbe1QNKewANIDbggpd3+NCK+3XD9ot1Hs2lT5mSDPhVsctopq6jFdS7b\nuFvSg0g34U9krhzijaRgzh4RcfNKXNeCa/gIcNy03xcknU36M/828BjgMuZnMhy/xNKFxxlbDpHT\nj0DSdyJijxbffz3wtIV9FdbS5zvLI+ky0kbXKCPmj0jlnr/f5jjORFis0+7lag8SzFjzI0uRdoBn\nkT6g3Zru6daO2ge1n5OyAKat70yIXk1p520tWA/8Mal2XKT0ww2kesYmtkhat1I3LmYN7QYcEHOT\nDU4mTTZ4MiljabBBhIJZPZ2yikqJiB8BS5U73DypHKKQBwBbq6aAv6hd27I34QV6KozKTjaTptN0\ntR54dE45xBhtP5yV6Ktga9tLSZ8h3k769/R54CVtD+IgwmInADsAx5N2Lw9lLsV/olVcBz1LzY8M\nPqo0Xu924E+qSPUdPV/TVKn/caVZryUzwjew+Y4BDoqIX8C2nbCraR5E6PXGxazSabLBUBQKij6D\nMVlFuddWk7tTMKkcooTXd1kUEffPOWlEnFd/LOk+wH8Bvtuyn0CJcohFl9fy+z8p6RLm91X4RMHr\nsdm328LAnaSDgX9pcxCXMxQm6Urm6qCPoKqDjog39HphtmZUu98HATcBt0bEPVX36Pu3aQC02lUp\nf+8l7TxsG1caUxhjZUkVyHokcAu+ge1E0o2kkWB3VI/vC1zTtEQhtxzCrARJrweOBOqTDT4KvJVU\nFz74caO55QiSTmB+VtF6YENENA0ITjp+VuPuSeUQfcvpqSDpvcDZEbFV0i6kQOw9wAOBP4uIv5+w\nPqscYomeIJB+Dv4yIsY2IV7mePW+Cle07atga9u4f+td/v07iLBA7u7laq+DXs3Nj2yOpGsj4rF9\nX0ef+v53N4BMiN75BjZf9Zr8YtLEHEg3HudGxDsarl/RGxezprpONhiK3KCopBuAx9eyinYErp60\nvmnj7lwrGUSolSMseooWIx679lSQtDUifqf6/YnAUyJivaTfBD4x6fOSpGWzCBdmOoxZv2xDyIg4\ndbnnJ2nbV8HWJkmPB54AnEja7B7ZGTiybV8NlzMsdgFp93IDtd3LFlZ7HfSBjG9+dKykQTc/snku\nk/Qc4EOxdiOFF0t6Jf2NK819LZkFufX8a15EvE1prNlo1+noiLi2xSFyyyHMOisx2WBAcssRxPz3\ngntoVoJwZotz5Fixxkm55Qg1nXoqAL+q/f5ppPdnIuL7TfpF5ZZDNA0SSHptRJze5HsXLu2wxtae\n3yDdk94bqP+bvA34b20P5kyEBXJ3L/vuCJ9L0uXAYbXmRzuRmh89k5SNsE+f12fNVFH/HYG7Sb0Q\nWkX7Z0HVSXuhxp20C5x/1WQgrZSuO29WTm45hFmOUpMNhiA3qyc3q2il5ZZDNDzHuLT9n0XEXQ3X\nj52ENqm5uaTPkEpnvgt8Bti7CiDcG/jKpBKJ3HKIprpmgzgTwdqQtOcoI7Ta+N4pIm5rfRwHEeaT\ndArwQ/rbvexVla637+gFXdL2wPURsbdT5M2aW+uvJeAb2CEY+o2Lzb5qssGqH/daIigq6QDm17I3\nzirq2rh7WuUQTVQNXncH/oMUiNkV+D7wA+BlK9WzqCovfCfwm8A7RsESSc8Anh4RfzphfVY5RIvr\nXPJzdum+CrZ2KY3cPZYUCLuGVM5wVkS8pc1xXM6w2Kju6aTa1wJoOgd4tddBfwD4YlV3Bqn50abq\nzfKr/V2WNSFp74i4qfqgskhEbJn2NU2bhjOuNOu1ZEZsJL2e1G9gz+nxetacAuUQZlkiZmbca9dy\nhG2q9+Cu78MbmWvc/VSqxt0N1k2rHKKJS4ELI+ISAElPB55D+rO9mzRNZpHcngoR8c+kjNqFX78E\nuKR2nqXKCbLKIVpYbmd3uZKQs0pehM28faoysxeSJnv8BakJeasggjMRCpuFjvCrvfnRWibpfRHx\n8ip1b6FYRcGsziSdGhEnS9o45umIiJdO/aLWsJydNzObDbmTDYag76ye1d64G1J22sJMNEk3RMR+\nkq6LiP37urbqWsaWE+SWQ7Q4f3bGb0ZfBVsjJG0F9gc2kV6XPyfpejdW7Kjg7uXdEfGegpc2FTPW\n/Ggtu7T69ZiI+Oay3zmjIuLk6tej+zj/gDIhBiFz583MZsPjgKOqdPZVOe51AFk9WY27u5ZDFPY9\nSX8OfLB6/HzgB0rjG389aXFuT4UGlkoreAVz5RAnxty47N8n9Q0r5YICx3gu6e/ZbCl/TZoycz1w\nudIkLfdE6KrU7uVqrYOepeZHa9koit61Oc8sWaJ+cMXHlToTwsxsPnnca7bcxt2SrmSuHOIIqnKI\niHjDylzx2Gt4UHUNTyR91rwKeCPpvXmPiLh5wvpbWMGeCrmfnSZlAUjaCzgOeDjzS56L9aVw/zLr\nQtK9I+LuVmscRCir747wOWal+dFaJulS0hvzOuCKhc9Ps4FS36rGMePGlT4c8LhSM7MpyZ1sYPlW\nQzmEpLMj4rhlnt/A0j0VzoqIsT0VWpw/6wZ8UhCiKnk+B7iRWuZFTJguUfIabO2SdFRE/N1STToj\n4m1tjudyhgVydy8jYq/yVzUdM9T8aC17FnAAcD6pfm8t2w04IObGlZ5MSjt8MqlnyYoGEfrKhDAz\nG6BjgINqkw3eTBqT5yBCQwUad2eVQ0zJwROePygiXjZ6EBGfknRmRLyimiaWK7ecYFKXxTsi4p2Z\n58i9Blu7dqx+Xa5JZ2MOIix2ION3L4+VtOTu5QzVQW+RtG41Nz9ayyLiV8AXJD0hIv59qe+bFO2f\nEQ+hVlIE3AU8NCJul3TnEmtK6vRaYmY2g7InGxgXkBp31KPdngAAEO1JREFUb2D+/8umTgB2AI4n\nlUMcytwUodUit6fCsuUEEfFXmdc3Kb37rGpD41PML3ku2TeoRF8Fm0ER8dfVr6eWOJ6DCIt13b08\nBPg0qc5soSCl8K0Gq775kcFyAYTKpGj/LOh7XGmvmRBmZgPica/5shp31zaHfk7qh7AavYDUU+HD\nzPVUeAFwL+B5DdZ/mPRzdzENgg4dTAqM7Qu8iBTAGZ0/qsfNTrDygRCbUZKWzYKJiOPbHM9BhMU6\n7V723RG+oGcwpvlRf5dj1k1EnCbpE8wFTI6tjSt94RQuoe9MCDOzQRjAZINZcLGkV9KxcXeBcohp\nWPYmPCJ+RLqBHufmBlmWK11OMCkL4LnAI6qs0a5WOhBis6veePRUUkCuMwcRFsvavZyBOuj1zG9+\ndD4pdc51i7YqDGhcad+ZEGZmg+Fxr9lGpQcn1b4WQNPG3bnlENNwVub6SVmWWeUEBbIAvkKaKPHD\nJudbwjT6KtgMiojzRr+XdGL9cReezjCGpAOZeyG6qrZ72WTtqu4IL+kG4PG15kc7Ale7nGG2zPII\noCGNK815LTEzMyulz0kMki5mmX4BpSZHNZiOcDqpnOAb1MoJmmZj5E5XqLJx9gOuYX4Qo/GfX9IL\ngEeysn0VbMaVmOLhTIRKwd3L1V4H7eZHa0NutH+wqgCCgEP6GFc6oEwIMzNb5Qo27s4qh8h05hTO\n0URuOUFuFkBW+nglu6+CWQkOIszZRMoa2MyY3Uuap4ut9jpoNz9axZpG+yPi3GldUx96Hlda6rXE\nzMysVOPu3HKIzpru1BcwadMrt5wgqxyi0P+HEn0VbA2S9DPmPpfuIOm20VOkj847tzmegwiVgruX\nq7oO2s2PVr2hRPuHoJdxpX1nQpiZ2ewo1bg7IvYqc0XdSXokcDqwD3Df0dcLlhlOyrLcFbhJUtdy\ngk5ZALWbt9FmwranaH/zVqKvgq1BEXH/ksdzT4QFJN0YEVm7l66DNuufpJtIdYO30MO40hKvJWZm\nZtC9cXfBcohskq4kpfS/nbTJdjSwXUS8YcK6Ij0VJB2yxPqmPQ1uBvbpMwugRF8FsxKcibBYp91L\n10HbkEwh2r8a9D2utJdMCDMzm0kHMr5x97GSlmvcXaocooT7RcRlkhQR3wZOkbQZWDaIQKEsywLl\nBJ2zACTdC9gaEXtnXkOJvgpm2ZyJsEDX3cshdYQ36xrtnyWSTmD+uNL1wIaImMq40r4zIczMbHZI\nuhw4rNa4eydS4+5nkrIR9unz+pqQ9HlSueyFpMDGd4E3RcSjV/i8RcoJcrMAqlLn41zqaLPAQYQF\nJO3JmN3LKmI6aa2A3f3iYH0bjXKqp9T3Od6pD32PK815LTEzM6urAtP7RsRd1ePtgesjYu8mY5u7\nlkOUJGkd8DXSbv5pwC7AGRHxhYbre82yLFAOcTnwWOBLpM2F0fqJQYjCfRXMsrmcYbH1zN+9PB/Y\nAEzcvey5I7xZ3Z2StgO+LunVpGj/Tj1f07T1Pa6082uJmZnZArmNu7uWQxRTK+/7OSlDsq2NzGVZ\nPrU6xnZNFpYoJyhQDvH6jHMXbYpnlsuZCAvk7l5KOg94l+ugrU+50f5ZUO26vJg0ExvSTf25EfGO\nKZ2/10wIMzObLTmNu4dQDiHpUaQRk3tS28iMiGWnG9TWZ2VZdi0nGEoWQMG+CmbZnImwWO7u5eOA\noyTdguugrScFov2r3gDGlfadCWFmZqtcwcbdD6FWxw/cBTw0Im6XdOcSa0q7AHgvKSvvngnfO05u\nluUDgK2SWpUT5GYB1IIQi56iRRAiIu6R9E+S9nDptPXNQYTFNpLSxeq7l+e0WN93R3iz7Gj/rIiI\nLcCWnk6f+1piZma2iVR6sJkxu+BA034AueUQJdwdEe/JWH8CsANwPCnL8lBSxmFTncsJcrIACpci\ndAqEmJXmcoYxJB3A3O7lFW12L/vuCG8GIOl6UrR/M7Vof0Rs7u2i1qCc1xIzMzMo17g7pxyiBEmn\nkMYjXsT86QarYgx67nSFKptkoZ+NmmU2PEZWc0ezUhxEKMx10DYEa20Sg5mZ2Syr9wFoua5eDrHI\nNG/gqzHoYy6h2XSFrlmWpcoJcqYrVOtvAXYH/qM6967A94EfAC/zRo+tJi5nKM910DYEF0t6Jas0\n2m9mZmbzbJG0rkPj7lLlENkiYq/MQ3TqqVCwnKBzOUTlUuDCiLgEQNLTgeeQyh/fTeqrNlapQIhZ\nKc5EKKzvjvBmkB/tNzMzs+GQdBPwSOAWWjbuLlUO0ZWkQyPi05KePe75iPhQw+NkZVmWKCfIMS6b\nRNINEbGfpOsiYv9pXIdZCc5EKGwAHeHNSkT7zczMbDg6N+6OiJD0caB1OUQhhwCfJjVzXChIfcSa\nyM2y3MKYcgJJy5YTFMwC+J6kPwc+WD1+PvCDqmnjr5scoO9AiNmIMxHMZkipaL+ZmZkNR27jbknn\nAe/qUA4xGAV6Kmxg6XKCsyJiyXKCEiQ9CDiZtNEYwFXAG4FbgT0i4uYGx7gF91WwAXAQwWyGSDo1\nIk6WtHHM0xERL536RZmZmVmW3MbdOeUQpVQlvwvdCmyOiOumcP6scoKVzgKQdHZEHDfhe3oNhJiN\nuJzBbIZExMnVr0f3fS1mZmZWTG7j7s7lEAUdWP13cfX4cOAG4FhJF0TEGeMWFcyyzC0n6FQO0cLB\nk7+FgyLiZaMHEfEpSWdGxCskbZ95frPGHEQwm0F9R/vNzMysqI3AFyXVG3ef02L9euaXQ5xPmnLQ\nqByikN2AAyLi5wCSTgY+DjyZND1ibBCBcj0VXkAqJ/gwc+UELwDuBTyvwfrO0xUKyu6rYFaCyxnM\nZpCkTYyP9j8cWDLab2ZmZsMk6QDmGndf0aZxd245RAlVScW+o/T/auf8+ojYW9K1EfHYaV3LEte3\nbDnBSk9XkLQlIg6Y8D3ZfRXMSnAmgtls6hrtNzMzswGKiC2klPoucsshSvgAKZviI9XjI4BNVUDj\nq5MWTyHLclI5wUpnAUz8+4iIHwFLBTpubtJXwawEBxHMZtNDqI0/Au4CHhoRt0u6c4k1ZmZmNpty\nyyGyRcRpkj7B3M36sRHx5er3L2xwiE49FQrKLYeY5KwCx2jSV8Esm8sZzGaQpNcDRwL1aP9HgbcC\n74uIJm/WZmZmNiNyyiEyz7tzRNy2xHQDIuInDY9zOXBYLctyJ1KW5TNJ2Qj7ZF7nxHKCCevHZgFI\nupgUdBgrIv6g6znHnCvrz2DWlDMRzGZQgWi/mZmZzZDMcogcm0hZA5uZfzOt6vEjGh5npbMsc8s7\nlsoCODPzuGaD4yCC2QxZEO3/ZvXf6LkHNo32m5mZmZUQEYdLEnBIRHwn41BZPRUaKFFOsEhEfG4l\njruEafe5sDXK5QxmM0TSx6o3628xJtofEU2j/WZmZmbFjJtu0OEYBzK3439VLctyuTVTKSeYVEog\n6ZHA6cA+wH1r5y/22UzSSyLi3FLHM1uKMxHMZkjBaL+ZmZlZSVskrYuIa9osKpBlOa1ygklZABtJ\njRnfDjwVOBrYrtGBGwZCHECwaXEmgtkMKhHtNzMzMytF0k3AI4FbgF8wlyW534R1qyLLclIWgKTN\nEfG79c9oo681OPYhyz0/5ZIJM2cimM2oTtF+MzMzsxXyDOABwJOqx5cDP520qFSWZddygoJZAHdK\n2g74uqRXA98Fdmpy7Q4S2NA4E8FsBnWN9puZmZmtBEknAH8MfIj0uWQ9sCEizm64PivLUtKVzJUT\nHEFVThARb5iwrkgWgKR1wNeAXYHTgF2AMyLiC03WV8dY8b4KZk04iGA2gyTtyZhof0R8u7+rMjMz\ns7VK0g3A4yPiF9XjHYGrm25wSDoPeFfXLMuccoKh6BoIMSvN5Qxms2k986P95wMbgEbRfjMzM7PC\nBNxTe3wP7UYSPg44StItdMuy7FxOAPlZAJIeBZwE7EntHiwiDm16DcD9IuIySao2hk6RtBlwEMGm\nykEEs9l0DHBQLdr/ZuBqHEQwMzOzfmwEvijpourxeuCcFus79VSoOQHYATieVE5wKPDiFus7T1eo\nXAC8l7Spc8+E711KViDErBSXM5jNIEk3Ausi4o7q8X2BazyxwczMzPoi6QDgidXDKyLi2hZrs3oq\n5MothyhROlGir4JZCQ4imM0gSa8hRdfr0f5zI+Id/V2VmZmZWTcFeipklRNI+jwpAHIh8GlSFsCb\nIuLRDdefAvyQ9Nnsztr5f9JkvdmQOIhgNqNyov1mZmZmQ5KbZSnpelI5wWZq5QQRsbnh+qwsAEnf\nGvPlaDNZoVBfBbNsDiKYmZmZmdmg5WZZrrZJDOPkBkLMSnEQwczMzMzMBi+zp8IpZJQTdM0CkHRo\nRHxa0rPHPR8RH2py/upYqz4QYrPBQQQzMzMzM5tpueUEXbMAJJ0aESdL2rjE+V/a5PzVsU7BfRVs\nABxEMDMzMzMzW8YQsgBK9FUwK8FBBDMzMzMzm0mlygkKlEO8ZsyXbwU2R8R1TY5hNhQOIpiZmZmZ\n2UwqVU5QoBxiE3AgcHH1pcOBG4CHAxdExBnLrC3WV8GsBAcRzMzMzMzMVpCky4HDIuLn1eOdgI8D\nzyRlI+yzzNpifRXMSnAQwczMzMzMZlrXcoKC5RA3AftGxF3V4+2B6yNib0nXRsRjmxzHbAjuPflb\nzMzMzMzMVrUDGV9OcKyk5coJDgE+DRwx5rkAmpYSfAD4oqSPVI+PADZJ2hH4apMDuK+CDYUzEczM\nzMzMbKbllBMUvIYDgYOrh1dFxJdbru/cV8GsJGcimJmZmZnZrHsItakKwF3AQyPidkl3LrFmm4xy\niJ0j4jZJDwS+Wf03eu6BTac7VHYDDqgFQk4mBUKeDGwGHESwqXAQwczMzMzMZl1uOUHXcohN1fdu\nJpU/jKh63Gi6QyUrEGJWissZzMzMzMxs5uWUE2ROVxCwe0R8p/PFp+O8HjgSqAdCPgq8FXhfRLww\n5/hmTTmIYGZmZmZmM2lBOcEiTcsJcqcrSLoxIvZte/1jjpPVV8GsBJczmJmZmZnZrCpVTpBbDrFF\n0rqIuKbh+eYutGxfBbNszkQwMzMzM7OZVbCcIKcc4ibgkcAtwC+oghgRsV+DtR+LiMMlfYsxgZCI\naNNXwSybgwhmZmZmZjbTupYTFCyH2BN4APCk6kuXAz+NiG83XF8kEGJWwnZ9X4CZmZmZmdkK2yJp\nXYd1m6pfNwNfrv03etzUeuB84EHAg6vf/0HTxZF2fj/e4nxmK8aZCGZmZmZmNtMyywmyswAk3QA8\nPiJ+UT3eEbi6yflrxzgPeFeXvgpmJbmxopmZmZmZzbpnMKacoMnCiAhJHwdypisIuKf2+J7qa208\nDjhK0i20DISYleQggpmZmZmZzbr1wB8DHyLdfJ8PbADObri+83SFykbSdIeLatdzTstjdA6EmJXk\ncgYzMzMzM5tpueUEOeUQtWMcADyxenhFRFzb/E8Akk5gfiBkPbAhIpoGQsyKcBDBzMzMzMxmmqQb\ngXURcUf1+L7ANU0nNuROVyihRF8FsxI8ncHMzMzMzGbdqJzgFEmnAF+gXTlB1nSFQkr0VTDL5kwE\nMzMzMzObeTnlBEPIApD0GuDFQL2vwrkR8Y5pXYMZOIhgZmZmZma2rNxyiILXkdVXwawET2cwMzMz\nMzNbXonpCtkiYguwZdrnNatzJoKZmZmZmdkEzgIwSxxEMDMzMzMzM7NGPJ3BzMzMzMzMzBpxEMHM\nzMzMzMzMGnEQwczMzMzMzMwacRDBzMzMzMzMzBpxEMHMzMzMzMzMGvn/KdYSr1v2RKkAAAAASUVO\nRK5CYII=\n",
2064
            "text/plain": [
2065
              "<Figure size 1296x864 with 1 Axes>"
2066
            ]
2067
          },
2068
          "metadata": {
2069
            "tags": []
2070
          }
2071
        },
2072
        {
2073
          "output_type": "display_data",
2074
          "data": {
2075
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABAgAAAJzCAYAAACCrCEiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzde3zddX348debhhblqsIQhFKcuqXU\nKZOfN6JrVrmrsInDFEQkA8GRoaAUjRNRo+CUwWDCYOkAgYAyRQQUWJvgKt5A0ZVGJ8odvICCtEBL\ny+f3x+ebcHJ6TnJOm+ScpK/n45FHzvle39/L+V7e38/n842UEpIkSZIkadO2WaMDkCRJkiRJjWeC\nQJIkSZIkmSCQJEmSJEkmCCRJkiRJEiYIJEmSJEkSJggkSZIkSRImCCRJWk9EHB4RN43DdI6KiGXj\nEVMN8/pERFy2geOOGmdEfDMi3lNp2IhYGREv3ZD5NouIGIiIv9/AcWcX62DGeMclSdJkM0EgSdoo\nEXFPRLyl0XGMp5TS5SmlfRsdR7NIKR2QUrqkSr+tUkq/AoiIiyPi05Mb3eQq399TSvcV62BdI+OS\nJGk8mCCQJG1yIqKl0THUayrGLEmSphYTBJKkCRERsyLi7Ih4qPg7OyJmFf1uiYh3FJ/3jogUEQcV\n3xdExB1VpvnaiLgtIv4YEb+JiLOK7vMj4oGyYYef9BbF76+OiMsi4o/ARyPiqYh4Ycnwe0bEIxGx\neWkx+og4PyI+Xzbtr0fEScXnUyPilxHxRESsiIi/qXH9zCmW+9hi/TwcER8q6V8e81ERsXNEXBsR\nv4+IuyLimLLJbhERVxWx/CgiXlUyvbHijIg4LyIej4ifRcSCkh5Vi+AXy/CyiDgWOBw4pShy/42I\n+HBE/FfZ8P8aEedUmdY9EfGRIr4/RMR/RsQWJf2PKZb798V62Lksjn+MiF8V2/GfI2KzknV5Wcmw\nQ+t+vaRLRPxpRCyNiEeL6VweEdsV/b4EzAa+USzjKeXTGm0bFXF8OSIuLbbDnRGxV6V1IUlSI5gg\nkCRNlG7g9cCrgVcBrwU+VvS7BZhffP4r4FfAm0u+31JlmucA56SUtgH+FPhyHfEcDFwNbAf8M/Bd\n4B0l/RcCV6eUnikbrw84LCICICJeAOwLXFn0/yXwJmBb4HTgsojYqY642oGXF9NcFCOra5TGfHkx\nzweAnYFDgc9ExF+XDf8V4IXAFcA1EbF5jXG+rhhme+A04KulCZSxpJQuLGL8XFHk/m3AZcD+JTfY\nLcC7gEtHmdThwH7k7fsKin2mWM7PAn8H7ATcy3PbYMjfAHsBf1msi6Nrjb9EFPPZGWgFdgU+USzj\nu4H7gLcVy/i5CuOPtY3eXgyzHXAtcN4GxChJ0oQwQSBJmiiHA59MKf02pfQ78k3pu4t+t5ATAZAT\nA58t+T5aguAZ4GURsX1KaWVK6Xt1xPPdlNI1KaVnU0pPkW+gOyA/OiffuF5RYbz/ARL55hryTd93\nU0oPAaSUvpJSeqiY7lXAL8jJkFqdnlJalVL6X+A/h2Iqj5l84743sCil9HRK6Q7gP4AjS4a/PaU0\nlOQ4C9iCnKSpJc7fAmenlJ4p+v8cOKiO5VhPSulh4NvAO4tO+wOPpJRuH2W081JK96eUfg/08Nz6\nOBxYnFL6UUppNfAR4A0RMadk3DNTSr9PKd0HnM3IdVlrzHellG5OKa0u9tuzeG7fHFVE7MrY22hZ\nSumGos2CL5GTZ5IkNQUTBJKkibIz+SnvkHuLbpCf3r8iInYklzC4FNg1IrYn37R+u8o0O8lPlX8W\nET+MiLfWEc/9Zd//i3yDuRM5SfEsORkwQkopkZ/4Dt1sLiQ/KQcgIo6MiDsi4rGIeAyYR76Z35C4\nStdReb+dgd+nlJ4oG/4llYYvkgpDT7JrifPBYlmrxbKhLgGOKD4fQb4pHk219TFif0oprQQepcry\ns4HxR8SOEXFlRDxYVO24jNq3Zy3b6Ncln58kVwuxfQlJUlMwQSBJmigPAbuVfJ9ddCOl9CRwO3Ai\nsDyltAa4FTgJ+GVK6ZFKE0wp/SKl1AH8CXAmcHVEbAmsAp4/NFzkV87tUD562bT+ANwEHEa+6b+y\n7Aa5VB9waETsRi6K/1/FfHYDLgJOAF6UUtoOWE4upl6rXUs+D6+jCjE/BLwwIrYuG/7BStMq6t/v\nAjxUY5wvGapGUSWWWlRaf9cAfxER84C3UpJcqaLa+hixPxXb/UVUWf6ycUfsH8CLR5n/Z8jL8cqi\nKssRjFxP1faRoRjH2kaSJDUtEwSSpPGweURsUfLXQr6p/lhE7FCUDPg4+WnskFvIN6xD1QkGyr6v\nJyKOiIgdiqfjjxWdnwX+j/wk9qCizv3HgFk1xH0Fufj3oVSuXgBASunHwCPk4uI3ppSG5r0l+Ybx\nd0V87yU/ma/HP0XE8yNiD+C9wFVVYrifnET5bLGO/4JcoqJ0nb4mIv62WP8fAFYD36sxzj8B/jFy\nI43vJNe/v6HOZfkN8NKyuJ8mt6NwBfCDovj/aP4hInYp2j/o5rn10Qe8NyJeHbmxy88A308p3VMy\n7ocj4gVFUf8TS8a9A3hzRMyOiG3J1ROq2RpYCTweES8BPjzWMpYsay3bSJKkpmWCQJI0Hm4Anir5\n+wTwaeA24KfA/wI/KroNuYV8M/btKt8r2R+4MyJWkhssfFdK6amU0uPA+8k38A+Snxg/UH0yw64l\nNxD465TST8YY9grgLZQkElJKK4AvkKtM/AZ4JfCdGuZb6hbgLmAJ8PmU0k2jDNsBzCE/qf4acFpK\n6b9L+n+dXCLiD+T2Hv62aFOglji/T14Xj5Dr/h+aUnq0zmXpBeYW1RiuKel+STHPsaoXQF6/N5Eb\nrvwlxT5TLOc/kUtvPExuxPBdZeN+nVwy5Q7g+iIeUko3k5MFPy36XzfK/E8nN3L4eDGNr5b1/yw5\n8fVYlLx1osRY20iSpKYV1UtTSpKkiVI0rnc3sHlKaW1jo5lYETEb+Bnw4pTSH0cZ7h7g7zfkhjoi\nEvDylNJdGxyoJEmbOEsQSJKkCVO0hXASuY2HqskBSZLUeLaaK0mSJkTRkOBvyC3579/gcCRJ0his\nYiBJkiRJkqxiIEmSJEmSTBBIkiRJkiRMEEiSJEmSJEwQSJIkSZIkTBBIkiRJkiRMEEiSJEmSJEwQ\nSJIkSZIkTBBIkiRJkiRMEEiSJEmSJEwQSJIkSZIkTBBIkiRJkiRMEEiSJEmSJEwQSJIkSZIkTBCM\nKSLujIj5jY6jkSLibyLi/ohYGRF71jnuJyLisuLznIhIEdFS47h1DV/D9I6PiN8Uy/Gi8Zim1hcR\nF0fEp4vPb4qInzc6plpszP4WEbOL/WrGRMQmSVNJcSx92STMJyLiPyPiDxHxgxrHGT5HTSUR8emI\neCQift3gODbmXLljRHw7Ip6IiC9MRHzNrLhOeOko/e+JiLdMZkxSJZt0gqDSDzEijoqIZUPfU0p7\npJQGxpjOuN7INqHPAyeklLZKKf14omYykQfGiNgcOAvYt1iORzdiWtN9e4+blNL/pJT+bCKmHRED\nEfH3GzH+uO1vKaX7iv1qXZ0xHBUR/xsRT0bEryPiixGxbUn/d0XEzyPi8Yj4bURcEhHbbEysEfHW\niPhBRKyKiEcj4rKIeElJ/50i4tqIeKjYz+dszPwkNU5xnHuquDH5Q0RcHxG7NjquIeXXXBugDdgH\n2CWl9NoJmH5TiIjZwMnA3JTSixsdz0Y4FngE2CaldPLGTGgqJnqK64RfwfjEHxG7RMTlxbl8VXFu\nP7BsmP6I+F1E/DEifhIRB2/kPLeLiPOLa5Yni2uY95QNc0JE3BYRqyPi4o2Z3xixfLCI448RsTgi\nZlUZbmZEXF0cD1Ns4g9+a7FJJwimiia4Ed0NuLPBMWysHYEtaILlKJ54TIvfnk/Mx1Zte0fEycCZ\nwIeBbYHXA3OAm4qEFsB3gL1TStsCLwVagA2+oIiIQ4ErgLOB7YE9gDXA/0TEdsVgzwLfAt6xAdNv\n9LFK0vrellLaCtgJ+A1wboPjGU+7AfeklFY1OpAJNht4NKX023pHbLLj8m7AipRSanQgTbZe6hYR\nLwSWkc/he5DP6f8CXBkRh5QMeiKwU0ppG3KC5rKI2GkD5zkT+G/ydnwD+drlw8DnIuIfSwZ9iHyt\nsnhD5lMyv+dFxNZV+u0HnAosKOJ5KXD6KJNbBhwBNLQEzpSRUtpk/4B7gLeUdTsKWFZpGOC1wG3A\nH8kn2bOK7vcBCVhZ/L2BnHz5GHAv8FvgUmDbkukeWfR7FPinsvl8ArgauKyY198X8/4u8BjwMHAe\nMLNkegl4P/AL4AngU8CfArcW0/hy6fBly1wxVmBWsTwJWAX8ssr45wD3F/O5HXhTSb9PAJcVn+cU\n02qpMI0vkW9MnirmeUrJ8O8p1vEjQHdZ3KcCvyzW45eBF1aY9iuK+Ie20dKi+58DNwO/B34O/F3J\nOAcBPy6W6X7gEyX9Km3v4eWstKzAANBDvuF7CnjZGPM/EFhRbMsHgQ9VWfd/Ciwtlv8R4HJgu5L+\nuwJfBX5XDHNeSb9jgMFiHiuAvyy6txbxPkZOqLy9ZJyLgfOBG4p1+hZgT+BHxXSuAq4EPl0MPx94\noOz39CHgp8DjxfBblPQ/hbx/P0Te7xPwsgrL3QOsA54utsF5Rfc3Aj8spv1D4I1V1tu47m+1bO+y\n+W9TzPfvyrpvVWyr91SIeSvyb/OGDTzeBfk3fkqF3/9y4LSy7i3FMs2p4Ti6qNimq4vxhtbT0L71\nN+XHWHLJpD8AdwMHlPTfHfh2Me5/A//GyN/W68nHtceAnwDzN2R9+OffpvBH2XUO+dzyfyXfty2O\nK78rjg8fK44JLwQeICcXho4/dwFHFt8vBi4gn8OeAG4BdiuZ7vCxe5R5tJKP4euK4+FjVZZhZ+Ba\n8rnyLuCYontn2finl41XcfpF7P8GXF/E/n3gT0vGq3purhDbAPBZ4Afk64WvU3IdArydfB59rBi2\ntWzbfKQ4Rv4B+E9Kzoclw72FfB55tliOi2uc9ojjcoXpVj1fFtP7FPkc9gRwE7B90W9OsX1bgHcC\nt5dN9yTg6xXmdzHwDPmGdmWxXKNexwFfId/QPU4+L+xRdD+2bFrfKN/vSuY54nqkWC+/Jl8HjHZe\n34J8Hf5osY5/COxYYbneOzT/4vsvgK+UfL8feHVpfKPEfw+jXCOVzfdT5HP3ZmXdFwG/AqLCOK8l\n/yZeu4HHk07yfcKWZd0PI+//W5V1/zTF/lrnfF4P/Dv5d/GGKsNcAXym5PsC4Nc1TPsBvG4Yexs0\nOoCGLnz9CYLvAu8uPm8FvL74PIeyG1/gaPKJ7KXFsF8FvlT0m1scENqAmeQL5WcYmSB4BjikOHg9\nD3hN8YNpKeY3CHygZH6JfGLahpxJXA0sKea/LfkE9J4q66FqrCXTXu8mraT/EcCLithOJh94tyhZ\nljETBJW2R8nwFxXr4FXFcrUW/U8EvgfsQk5m/DvQV2XaI+YNbEk+aL+3iHtP8g3h3KL/fOCVxfr/\nC3JC6JBRtvfwclaZ3wD5pnOPYn7bjjH/hykSLcALKG7eKyzXy8jFK2cBO5BPoGcX/WaQb6D+pVje\nLYC2ot87yYmH/0e+cXwZOQO7ebEvfJS8b/41+eLgz4rxLiaftPYu1s025Au+DxbjHkred0dLEPyA\nfMH3QvJ+fFzRb3/yvrMH8Hzyibnqvles078v+f5C8snk3cU67Si+v2ii97catvfmZfPeH1hL5Yu2\nS4DLS763Fes8kZMy+27g8e7Pi2nsXqHf6cB3yrrVkyC4g5yMel7J/rVzsY8cVsS9U8kx9hlygmoG\ncDw5IRQlx9nPk/e/NvJFx9Ax5CXki7UDi2nvU3zfYUPWiX/+Tfc/Rl7DPL84vlxa0v9S8rXD1sVx\n7P+AzqLfvuRj8p8Ux8WrS8a7mHxueHNxPDyHkddOpQmC0eZxVOl4VZbh28AXyeewV5MTDX9dy/iV\n+hexP0q+WWohJ9avLPqNem1QYfoD5HPpvGLc/yo5Xg09nNiHfH48hXx+nVmybZaTj50vJN+Mf7rK\nfOYz8lxay7RHHJfLpjfq+bJYrl8W83le8f2Mot8cnksQzCInUkqTEz8G3lFlOS4uXUbGuI4jX59u\nXfQ7G7ij2rTK97vyYYp1uJZccm9WsVyjndffB3yD/LuZQb4O36bCMr2UnEDYjHzeu3doWxX9/kBx\nE8/I30Wl+O+hyjVShfl+j7KkWNF992I+Ly/pdh05MZDIJQQ3qzTNGo4nVwKXVOjeUqzbfcq615wg\nIJdwOqVY5l8Cp1HheqVk+J8Ah5V8375YvorXfCXDmSCoZXs0OoCGLnz+Ia4sfthDf09SPUHwbfKF\n9PZl05nD+jeMS4D3l3z/M/JFcQvwcUYeAJ9PziKWJgi+PUbsHwC+VvI9kYsiD32/HVhU8v0LFDeO\nFaZVNdaSaVdNEFSY3h+AV5Usy8YmCHYp6fYD4F3F50FgQUm/nUrjHm0bkW9a/qdsmH+n7ClqSb+z\ngX8ZZXsPL2eV+Q0AnyzpP+r8yTeX76PCyWiMdX8I8OPi8xvIF1KV1seNwIkVur+JfEG4WUm3PooS\nFOQTWunF5Zspubkrut3K6AmCI0q+fw64oPi8GPhsSb+XjbbvsX6C4N3AD8qG+S5w1ETvb2Nt7wrz\nPoIqmW7gDOCmCt1fUuxnr6hnnygZv62IsdITquMoeapYdKsnQXD0GMPcARxcfD4KuKuk3/OL+byY\nXIx2LfD8kv6X8dwxZBElycuSffk9G7JO/PNvuv8x8jrnmeJ4/cqi3wzytcfckuHfBwyUfD8X+F/y\nTfCLSrpfTHFTXXzfivykftfieyqO4aPOg7Fv8Hctprt1SbfP8txT9LHGX69/Eft/lHw/EPhZ8bne\na4MBihvn4vvcYnlnkEuHfrmk32bFepxfsm2OK4ujWknN+Yw8l9Yy7arHZcY4XxbL9bGSfu8HvlV8\nnsPI8935QE/xeQ/yNeCsKvO9mJEJgnqu47Yr5rttpWmV7neV5leswzWMLLU42nn9aPL1zF/U8Du7\nH/hL4F3AheRrhz8nJ5qurRRflfjvoco1UoV53kWF5AE5kZYoK0FJTiQdAJw01vKMspz/Tcn+Xtbv\n18DCsm5jJgjI5/3riv1mMfm6cr3SDxXG+yWwf9ny1XLNYoKghr9pUQ96Ix2SUtpu6I98EKymk5xN\n/VlE/DAi3jrKsENZxCH3kg84Oxb97h/qkVJ6kpzNLnV/6ZeIeEVEXDfUGAfwGXK2rNRvSj4/VeH7\nVhsQ65gi4kMRMVg0pPYY+el4eWwbo7S+0JM8txy7AV+LiMeK+Q6SLyRqiXs34HVD4xbjH06+SSEi\nXlfSsMvj5BuojV2m0m066vzJ9b8PBO6NiFsi4g2VJhi5ReArI+LBYr+4rCTOXYF7U0prK4y6K/ng\nWm5n4P6U0rMl3e4l35xWWo6dgQdTcdQtGX401bbniN9F2edalO/HQ7G8pMKwoxmv/W20+B8Btq9S\nB3Knov8IKaUHyZn/KytNMCI+WjREtjIiLqgyz6Hp1zTPOpQfr46MiDtK1tU8Rv5+htdxcfyDvJ53\nBn5f0q182rsB7yz73bRReZkkZYcU1zdbACcAt0TEi8m/yc1Z//xfesy8kPz7vTit37hv6XXMSvKT\n5J3LhqllHqMZOiY8sYHjVzPacX60c3Mlpceoe8nLuz1l56TivHo/1c+n97L++qum3mmPOn7J/EvH\nr7aOyl0CLIyIICcevpxSWj1q9M+pel6NiBkRcUZE/LK4vrmnGGdjrsV+l1J6upb5k6sg3Eiu0/9Q\nRHyupH2gcreQExBvLj4PAH9V/N1SZ4y1rvdHqH4+H+o/LKX0TErpm8C+EfH2ShMsuYZYGblhzJrm\nWVzLbF8+zxptSU4sPUAuFTBYdk1ZzUpyKdYhQ5+fqDCs6mSCoA4ppV+klDrIxe3OBK6OiC3JGaty\nD5EPPEOGnoz9hlx8fJehHhHxPHIR/RGzK/t+PvAzcpGhbchFwGPDl6bmWEcVEW8iFwn6O+AFxUXI\n4xsYWy0HhFL3k+sub1fyt0VxI1XLuLeUjbtVSun4ov8V5DqPu6bcQNwFPLdMleJcRX4SOqTSxUTp\neKPOP6X0w5TSweR97RpyvbhKPlNM95XFfnFESZz3A7Or3ITeT26/oNxDwK5ljerNJj+ZqLQcDwMv\nKS4MSoffECN+F+QkxmjKt0P5fjwUS7X9YaL3t9Gm/11y9YW/Le0YEVuRM/wDVcZrofJ2I6X0mWIf\n2iqldFyFQX5OPgG/s2yem5ETUtXmWYvhZY2I3cjFkU8gP3HcjlyMtpZjwsPACyOi9LdUuh/cTy5B\nULoNtkwpnbERsUubhJTSupTSV8k3QG3ki/lnWP/8/yAMN0J7IbmKwPtj/dcWDv82i2PXC8nH4VKj\nzoOxj8MPkY8JpQ2VjXZcL7chx/nRrg0qKT1GzSYv7yOUnZOK8+SujIy9fNzy9VdNLdMebdnrPV9W\nlVL6HvnJ/JuAheQb61qNdl5dCBxMbqtgW3LJBRj9WuxJRr8WKx+n6vyLG+rTU0pzye01vJXcflgl\nQwmCNxWfb2HsBEG9+2a5/wb+tkIjyH9HPtffVWW80a4jtir5u6/KPA8o7n1KvYO8D3y/5uifm+cg\nuSrGP5Krcfwi8puUDq32VoLCneSqoENeBfymQiJTG8AEQR0i4oiI2KHI1D5WdH6WXIz7WfIOPqQP\n+GBE7F6cOD8DXFU8zb0aeFtEvLFoEfQTjH3xvDW5Lu7KiPhzcr3d8TJarGPZmpxM+B3QEhEfZ2RG\nrx6/YeQ6HMsFQE9xQ0JE7BC1v77lOuAVEfHuiNi8+Pt/EdFa9N+a/NTi6Yh4LflENaTS9r4DeHNE\nzI78mrqPbOj8I7+O5fCI2Dal9Ax5uz9bZTpbk7Ooj0d+Vd2HS/r9gHzDdUZEbBkRW0TE3kW//wA+\nFBGviexlxXr8PvkEe0oR03zgbVR5ak2+0V0L/GMx/N+S63VuiC8D7y3WwfPJRShHU76/3EBepwsj\noiUiDiMX97yuxvHHsjH72wgppcfJ1ZXOjYj9i3U3h7wOhhqbpNgPZhefdyM3fLhkA+eZyI0ffaxY\nR1sUTxH/g5z5H27ZPCK2INfHBJhVfK/VUNL0d8W03kt+AllLjPeSG4L9RPE7eAN5/xtyGfnYuV/x\ndGmLiJgfEbtUnKCkYcWx/mByuzaDKb+W9cvk49rWxTHmJPLvDPKDiEQuav3PwKUx8s01B0ZEW3Ed\n8yngeymlEU+ta5jHb4Bdimmsp5jercBni9/7X5BLc15WafgKRp1+BWNdG1RyRETMLc5bnyS31TC0\n3AdFxILIT55PJieGby0Z9x8iv6ruhUA3uVG6WtQy7dHUe74cy6XkxrOfSSnV81rJ0c6rW5OX6VHy\nTf9nysatdA6/g1yaYUZE7E++Qd+g+UdEe0S8stjn/0hO/FS7FrsFaCe39/AA8D/ktoZeRG6ToZJ6\nr0HK/Qs5cdIbES8ufh8d5Gun01JKz0bEn0fEAZHfBrB5RBzBc6UcNsSXyMmHr0R+5ffmkd8m8K/A\nPxfXNhT71BbkqjZD5+qqb41IWX9K6Uhyouvr5KrUDxe/+UouBTqL39525MZPL642j4govZaZWcQ0\nXg9apx0TBPXZH7gzIlaSG+R5V0rpqaI4bA/wncjFlF5PrkfzJXK7BXeTGwfpAkgp3Vl8vpJ8A7eS\n3CroaEWyPkS+SX2C/HSu1pNILarGWoMbycWe/49cPO1p6i8aPuSz5JuXxyLiQzUMfw75Kf9NEfEE\nucGW19Uyo6K44r7k+mIPkYt0DTVcA7mqySeL6X6ckif4lbZ3Sulm8jb5Kbn9h1FPsjXM/93APZGL\n1R1HLuJYyenkem+Pk1tk/mrJPNaRb65eRm7T4AFy/UpSSl8pluEK8j51Dbnl3jXFOAeQb1S/SG61\n+mdVlmMN+Sn4UeTipYeVxlCPoujbvwL95Mz394pe1X4X5wCHRn63978WWeO3ki+UHiWXbHlrSqla\nkbdJ298qSSl9jnwB/nnyNribfBH0lvTcK7vmArdGxCpyA1Y/Jzfut6HzvIq8b32QvL0eBvYC/iql\n9HDJoENvd4BccumpOuaxgtzmyXfJF0CvLGKv1eHk9jMeJddfvIpiHyhuFg4mr7ffkY81H8ZzmTSa\nbxTXLX8kH/ffU1yHQD7XryK3er6MfE5YHBGvId/IH1mcS84kJwtOLZnuFeSGxH5PfvJ3RJX5V5xH\n0W8p+UngryOi2rG6g/z0+CHga+Sbn/+ucdlrmf6wGs7NlXyJfGPya3I1jn8spvVz8jo5l3w+fRv5\nrRBrSsa9gvyGgF+Rq/3V9BrbGqc92vj1ni/H8iVyIrjWxM2Q0c6rl5KvKx8kN7T9vbJxe4G5xTn8\nmqLbieR1MVQ15BpGN9r8X0x+oPdHctWDW6hSOiKl9H/kc+b/FN//SN6m3yl+P5VUir9mxTZsI+9z\nK4r5Xwr8Q0pp6PcV5IeQvyWfM08kN+z3o3rnV8xzNblEx/3kB0pPke8BzmbkKwY/VvQ7lbyfPlV0\nq2UeT6SUelNKbeQHThVf7ZlS+ha5jYZ+8jXuveTjEQARcWdElF47/7yI4yXke5enWL8UjQpDrUar\ngSI/tX+MXH3g7kbHIzWD4onNcnJjR7WUZpnSiiftnyQ3NlqpaN9EzHNf8gXqW1JKd0zGPOsVEVeR\nGxA7bcyBJU2KiLiY3GheTRf901VEDJAbUf2PDRj3HnJDu7UmO5pW5KqyvyW/cekXjY5nUxQR25CT\n8V9LKX18kua5OfBNchLnqORN5bThU5cGiYi3RcTzI9fj+Ty5leB7GhuV1FgR8TdFMbAXkJ/afGNT\nSA4ApJT+k/xk/I2TOM+byK0sv36y5jmWojjvn0bEZkUR0YMZ+ymQJKlxjgd+aHKgcYpSCwcC64rq\ng5Mxz2fI7Q/8kvwGNE0TVeuDaMIdTC6qFOQ6t+8y8ybxPnJRzXXk4nyjvVVk2kkp1dO403jN8xuT\nPc8xvJhcTeVF5Goxx6eUqtXhlCQ1UFESIsivWVYDFdXwTh9zwPGd5+Pk0o+aRqxiIEmSJEmSrGIg\nSZIkSZJMEEiSJEmSJCaoDUS6kJ0AACAASURBVILtt98+zZkzZyImLUnSlHX77bc/klLaodFxbArG\n81pk1apVbLnlluMyrfHUrHFB88ZmXPUxrvoYV32Mqz7jGddo1yMTkiCYM2cOt91220RMWpKkKSsi\n7m10DJuK8bwWGRgYYP78+eMyrfHUrHFB88ZmXPUxrvoYV32Mqz7jGddo1yNWMZAkSZIkSSYIJEmS\nJEmSCQJJkiRJkoQJAkmSJEmShAkCSZIkSZKECQJJkiRJkoQJAkmSJEmShAkCSZIkSZKECQJJkiRJ\nkoQJAkmS1GARsTgifhsRy6v0j4j414i4KyJ+GhF/OdkxqjZ9fX3MmzePBQsWMG/ePPr6+hodUlNr\n1vVlXPXZb7/92GyzzWhvb2ezzTZjv/32a3RIAEQEEUF7e/vw52ZgXPWZ7LhaagzqHuAJYB2wNqW0\n10QGJUmSNikXA+cBl1bpfwDw8uLvdcD5xX81kb6+Prq7u+nt7WXdunXMmDGDzs5OADo6OhocXfNp\n1vVlXPXZb7/9uOmmmzj++OM58MADueGGGzj//PPZb7/9uPHGGxsWV+lNZE9PD93d3cPdU0qNCmtE\nXB/4wAc4++yzh7s3S1wnn3wyX/jCF4a7N0tcp512Gqeffvpw94mKq54SBO0ppVebHJAkSeMppfRt\n4PejDHIwcGnKvgdsFxE7TU50qlVPTw+9vb20t7fT0tJCe3s7vb299PT0NDq0ptSs68u46nPzzTdz\n/PHH88UvfpGtttqKL37xixx//PHcfPPNDY1rSEqJN77xjQ29ya0kpcTBBx/clHG99a1vbcq45s+f\nPylx1VSCQJIkqYFeAtxf8v2BotvDpQNFxLHAsQA77rgjAwMD4zLzlStXjtu0xlOzxTU4OMi6desY\nGBgYjm3dunUMDg42TZzNtM6adX0ZV31SShx44IEj4jrwwAM5//zzG76v9fT0jIhrqCRBo+P6wAc+\nMCKuoZIEjY7r5JNPHhHXUEmCRsd12mmnjYhrqCTBhMWVUhrzD7gb+BFwO3BslWGOBW4Dbps9e3Ya\nT7stum7EnyRJUxFwW6rhvLsp/gFzgOVV+l0HtJV8XwLsNdr0XvOa19S3cUbR398/btMaT80W1x57\n7JGWLl2aUnoutqVLl6Y99tijgVGN1EzrrFnXl3HVJyLS8ccfn1J6Lq7jjz8+RUQDo0oJSPlW77m4\nSrs1inHVZ6LiGu16pNYqBm0ppb8k1wH8h4h4c4VEw4Uppb1SSnvtsMMOteYnJEmSxvIgsGvJ912K\nbmoi3d3ddHZ20t/fz9q1a+nv76ezs3O47rNGatb1ZVz12WeffTj//PN5//vfz8qVK3n/+9/P+eef\nzz777NPQuIZEBLfeemvTNLg3JCL4+te/3pRxXXfddU0Z18DAwKTEVVMVg5TSg8X/30bE14DXAt+e\nyMAkSZIK1wInRMSV5MYJH08pPTzGONNOrReGqUF1Z4caiuvq6mJwcJDW1lZ6enpsoLCKZl1fxlWf\nG2+8kf32248LLriA888/n4hg3333bWgDhZCPA0PHjNIkSqOOD6XzH4prqIHCoe6NVBrXUAOFQ90b\nqTSuoQYKh7pPlDFLEETElhGx9dBnYF+g4muIJEmS6hURfcB3gT+LiAciojMijouI44pBbgB+BdwF\nXAS8v0GhNlR5MdDdFl1XrbpGw3R0dLB8+XKWLFnC8uXLG37z1uyadX0ZV31uvPFGnn32Wfr7+3n2\n2WcbnhwYMnRM6O/vb4rjwxDjqs9kx1VLCYIdga8VmYsW4IqU0rcmNCpJkrTJSCmNepVf1Jf8h0kK\nR5KkTdaYCYKU0q+AV01CLJIkSZIkqUFqbaRQkiRJkiRNYyYIJEmSJEmSCQJJkiRJkmSCQJIkSZIk\nYYJAkiRJkiRhgkCSJEmSJGGCQJIkSZIkYYJAkiRJkiRhgkCSJEmSJGGCQJIkSZIkYYJAkiRJkiQB\nLY0OQJIkSSO96vSbePypZ8Ycbs6p1485zLbP25yfnLbveIQlSZrmTBBIkiQ1mcefeoZ7zjho1GEG\nBgaYP3/+mNOqJYkgSRJYxUCSJEmSJGGCQJIkSZIkYYJAkiRJkiRhGwSSJElNZ+vWU3nlJaeOPeAl\ntUwLYPT2DCRJAhMEkiRJTeeJwTNspFCSNOmsYiBJkiRJkkwQSJIkSZIkEwSSJEmSJAkTBJIkSZIk\nCRMEkiRJkiQJEwSSJEmSJAkTBJIkSZIkCRMEkiRJkiQJEwSSJEmSJAkTBJIkSZIkCRMEkiRJkiQJ\nEwSSJEmSJAkTBJIkSZIkCRMEkiRJkiQJEwSSJEmSJAkTBJIkSZIkCWhpdACSJEla35xTrx97oG+N\nPcy2z9t8HKKRJG0KTBBIkiQ1mXvOOGjMYeacen1Nw0mSVCurGEiSJEmSJBMEkiRJkiTJBIEkSZIk\nScIEgSRJkiRJwgSBJEmSJEnCBIEkSZIkScIEgSRJkiRJwgSBJEmSJEnCBIEkSZIkScIEgSRJkiRJ\nwgSBJEmSJEnCBIEkSZIkScIEgSRJkiRJwgSBJEmSJEnCBIEkSWqwiNg/In4eEXdFxKkV+s+OiP6I\n+HFE/DQiDmxEnJIkTXcmCCRJUsNExAzg34ADgLlAR0TMLRvsY8CXU0p7Au8Cvji5UUqStGkwQSBJ\nkhrptcBdKaVfpZTWAFcCB5cNk4Btis/bAg9NYnySJG0yIqVU24A5w38b8GBK6a2jDbvXXnul2267\nbRzCy+acev2I7/eccdC4TVuSpMkSEbenlPZqdBzNJCIOBfZPKf198f3dwOtSSieUDLMTcBPwAmBL\n4C0ppdsrTOtY4FiAHXfc8TVXXnnluMS4cuVKttpqq3GZ1ng66luruHj/LRsdRkXNus6Mqz7GVR/j\nqo9x1Wc842pvb696PdJSx3ROBAZ5LoMvSZI0GTqAi1NKX4iINwBfioh5KaVnSwdKKV0IXAj5YcX8\n+fPHZeYDAwOM17TG1beub864aN51Zlz1Ma76GFd9jKs+kxVXTVUMImIX4CDgPyY2HEmStIl5ENi1\n5PsuRbdSncCXAVJK3wW2ALaflOgkSdqE1NoGwdnAKcCz1QaIiGMj4raIuO13v/vduAQnSZKmvR8C\nL4+I3SNiJrkRwmvLhrkPWAAQEa3kBIEXG5IkjbMxEwQR8Vbgt5Xq+pVKKV2YUtorpbTXDjvsMG4B\nSpKk6SultBY4AbiRXJXxyymlOyPikxHx9mKwk4FjIuInQB9wVKq1ESVJklSzWtog2Bt4e/HO4S2A\nbSLispTSERMbmiRJ2hSklG4Abijr9vGSzyvI1yOSJGkCjVmCIKX0kZTSLimlOeRif0tNDkiSJEmS\nNL3U2gaBJEmSJEmaxup5zSEppQFgYEIikSRJkiRJDWMJAkmSJEmSZIJAkiRJkiSZIJAkSZIkSZgg\nkCRJkiRJ1NlIoSRJkhojItbvdub6w6WUJiEaSdJ0ZAkCSZKkKSClxBVXXMHuu+/O0qVLufnmm1m6\ndCm77747V1xxBSklkwOSpI1igkCSJGmK6Onpobe3l/b2dlpaWmhvb6e3t5eenp5GhyZJmgZMEEiS\nJE0Rg4ODtLW1jejW1tbG4OBggyKSJE0nJggkSZKmiNbWVpYtWzai27Jly2htbW1QRJKk6cQEgSRJ\n0hTR3d1NZ2cn/f39rF27lv7+fjo7O+nu7m50aJKkacC3GEiSJE0RHR0d3HrrrRxwwAGsXr2aWbNm\nccwxx9DR0dHo0CRJ04AlCCRJkqaIvr4+rrrqKnbaaSc222wzdtppJ6666ir6+voaHZokaRowQSBJ\nkjRFnHLKKbS0tLB48WJuvPFGFi9eTEtLC6ecckqjQ5MkTQMmCCRJkqaIBx54gEsuuWTEaw4vueQS\nHnjggUaHJkmaBkwQSJIkSZIkEwSSJElTxS677MKRRx454i0GRx55JLvsskujQ5MkTQO+xUCSJGmK\n+NznPseJJ57I0Ucfzb333stuu+3GunXrOOussxodmiRpGrAEgSRJ0hTR0dHBOeecw5ZbbklEsOWW\nW3LOOef4mkNJ0rgwQSBJkjSF3Hrrrdx11108++yz3HXXXdx6662NDkmSNE1YxUCSJGmK6Orq4oIL\nLuDMM89k7ty5rFixgkWLFgFw7rnnNjg6SdJUZwkCSZKkKeKiiy7izDPP5KSTTmKLLbbgpJNO4swz\nz+Siiy5qdGiSpGnABIEkSdIUsXr1al7wghcwb948FixYwLx583jBC17A6tWrGx2aJGkasIqBJEnS\nFNHS0sKHPvQhrr76atatW8eMGTM49NBDaWnxkk6StPEsQSBJkjRFbLPNNjz++OP8+Mc/Zu3atfz4\nxz/m8ccfZ5tttml0aJKkacB0syRJ0hTx2GOP8b73vY+PfvSjrF69mlmzZnHsscfy7//+740OTZI0\nDViCQJIkaYpobW3lne98J08//TT9/f08/fTTvPOd76S1tbXRoQHQ19c3on2Evr6+RocENG9cktRs\nLEEgSZI0RXR3d9PZ2Ulvby/r1q2jv7+fzs5Oenp6Gh0afX19dHd3D8c2Y8YMOjs7Aejo6DAuSZoC\nLEEgSZI0RXR0dNDT00NXVxf77bcfXV1d9PT0NMWNbk9PD729vbS3t9PS0kJ7ezu9vb0NT140a1yS\n1IxMEEiSJGmjDQ4O0tbWNqJbW1sbg4ODDYooa9a4JKkZWcVAkiRpimjm4vKtra0sW7aM9vb24W7L\nli1rePsIzRqXJDUjSxBIkiRNET09PSxcuHBEFYOFCxc2RXH5ofYR+vv7Wbt27XD7CN3d3cYlSVOE\nJQgkSZKmiBUrVrBq1SoWL148XILg6KOP5t577210aMMlGLq6uhgcHKS1tbUp2kdo1rgkqRlZgkCS\nJGmKmDlzJl1dXSMa3Ovq6mLmzJmNDg3IN+PLly9nyZIlLF++vGluwps1LklqNpYgkCRJmiLWrFnD\neeedx5577jn8msPzzjuPNWvWNDo0SdI0YIJAkiRpipg7dy6HHHLIiOLyCxcu5Jprrml0aJKkacAE\ngSRJ0hTR3d1d8S0GzdBIoSRp6jNBIEmSNEXY4J4kaSKZIJAkSZpCOjo66OjoYGBggPnz5zc6HEnS\nNOJbDCRJkiRJkgkCSZIkSZJkgkCSJEmSJGGCQJIkSZIkYYJAkiRJkiRhgkCSJEmSJGGCQJIkSZIk\nYYJAkiRJkiRhgkCSJEmSJGGCQJIkNVhE7B8RP4+IuyLi1CrD/F1ErIiIOyPiismOUZKkTUFLowOQ\nJEmbroiYAfwbsA/wAPDDiLg2pbSiZJiXAx8B9k4p/SEi/qQx0UqSNL1ZgkCSJDXSa4G7Ukq/Simt\nAa4EDi4b5hjg31JKfwBIKf12kmOUJGmTYAkCSZLUSC8B7i/5/gDwurJhXgEQEd8BZgCfSCl9q3xC\nEXEscCzAjjvuyMDAwLgEuHLlynGb1nhYsmQJl112Gffddx+zZ8/miCOOYMGCBY0Oa4RmW2dDjKs+\nxlUf46qPcdVnsuIyQSBJkppdC/ByYD6wC/DtiHhlSumx0oFSShcCFwLstddeaf78+eMy84GBAcZr\nWhurr6+Pyy+/nMWLF7Nu3TpmzJhBZ2cnc+fOpaOjo9HhDWumdVbKuOpjXPUxrvoYV30mKy6rGEiS\npEZ6ENi15PsuRbdSDwDXppSeSSndDfwfOWGwyenp6aG3t5f29nZaWlpob2+nt7eXnp6eRocmSZoG\nxkwQRMQWEfGDiPhJ0XLw6ZMRmCRJ2iT8EHh5ROweETOBdwHXlg1zDbn0ABGxPbnKwa8mM8hmMTg4\nSFtb24hubW1tDA4ONigiSdJ0UksJgtXAX6eUXgW8Gtg/Il4/sWFJkqRNQUppLXACcCMwCHw5pXRn\nRHwyIt5eDHYj8GhErAD6gQ+nlB5tTMSN1drayrJly0Z0W7ZsGa2trQ2KSJI0nYzZBkFKKQEri6+b\nF39pIoOSJEmbjpTSDcANZd0+XvI5AScVf5u07u5uOjs76e3tZd26dfT399PZ2WkVA0nSuKipkcLi\nHcW3Ay8jv2bo+xWGGW45ePbs2eMZ47Q159TrR3y/54yD6h6m3v61qBRHs6tlXU7GNCRJmkgdHR1c\nfPHFLFiwgJQSEcE+++zTVA0USpKmrpoaKUwprUspvZrccNBrI2JehWEuTCntlVLaa4cddhjvOCVJ\nkjZ5XV1dLF26lM9//vN885vf5POf/zxLly6lq6ur0aFJkqaBut5iULxOqB/Yf2LCkSRJUjUXXXQR\nZ555JieddBJbbLEFJ510EmeeeSYXXXRRo0OTJE0DtbzFYIeI2K74/DxgH+BnEx2YJEmSRlq9ejXH\nHXfciG7HHXccq1evblBEkqTppJYSBDsB/RHxU/KriG5OKV03sWFJkiSp3KxZs7jgggtGdLvggguY\nNWtWgyKSJE0ntbzF4KfAnpMQiyRJkkZxzDHHsGjRIgDmzp3LWWedxaJFi9YrVSBJ0oao6S0GkiRJ\narxzzz0XgI9+9KOsXr2aWbNmcdxxxw13lyRpY9TVSKEkSZIa69xzz+Xpp5+mv7+fp59+2uSAJGnc\nmCCQJEmSJEkmCCRJkiRJkgkCSZIkSZKECQJJkiRJkoQJAkmSJEmShAkCSZIkSZKECQJJkiRJkoQJ\nAkmSJEmShAkCSZIkSZKECQJJkiRJkoQJAkmSJEmShAkCSZIkSZKECQJJkiRNc319fcybN48FCxYw\nb948+vr6Gh2SJDWllkYHIEmSJE2Uvr4+uru76e3tZd26dcyYMYPOzk4AOjo6GhydJDUXSxBIkiRp\n2urp6aG3t5f29nZaWlpob2+nt7eXnp6eRocmSU3HBIEkSZKmrcHBQdra2kZ0a2trY3BwsEERSVLz\nMkEgSZKkaau1tZVly5aN6LZs2TJaW1sbFJEkNS8TBJIkSZq2uru76ezspL+/n7Vr19Lf309nZyfd\n3d2NDk2Smo6NFEqSJGnaGmqIsKuri8HBQVpbW+np6bGBQkmqwBIEkiRJU4iv7KtfR0cHy5cvZ8mS\nJSxfvtzkgCRVYQkCSZKkKcJX9kmSJpIlCCRJkqaIZnxlX0Ss99fe3r5eN0lS8zNBIEmSNEU04yv7\nUkrr/e226Lr1ujWS1TIkqTZWMZAkSZoihl7Z197ePtzNV/aNzmoZklQ7EwSSJElTRHd3N4cddhhb\nbrkl9913H7Nnz2bVqlWcc845jQ6taZVWyxgYGGD+/Pn09vbS1dVlgkCSyljFQJIkaQpqdLH9qaIZ\nq2VIUrMyQSBJkjRF9PT0cNVVV3H33XezdOlS7r77bq666qqGNlLY7IaqZZSyWoYkVWaCQJIkaYrw\naXj9uru76ezspL+/n7Vr19Lf309nZyfd3d2NDk11srFJaeLZBoEkSdIUYSOF9RtqZ6Crq4vBwUFa\nW1vp6emx/YEpxsYmpclhCQJJkqQpwqfhG6ajo4Ply5ezZMkSli9f7g3lFFTa2GRLSwvt7e309vZa\nvUYaZ5YgkCRJmiJ8Gq5NldVrpMlhCQJJkiRJTc3GJqXJYQkCSZKkKcJ62NpUDVWvGdr3h6rXWMVA\nGl8mCCRJkqaI0nrYAwMDzJ8/n97eXrq6ukwQaFqzeo00OUwQSJIkTRGNrof9qtNv4vGnnqlp2Dmn\nXj9q/22ftzk/OW3f8QhLm4iOjg46OjqGk2OSxp8JAkmSpCmi0a85fPypZ7jnjIPGHK6WG7ixEgiS\npMlnI4WSJElThK85lCRNJEsQSJIkTRHWw5YkTSQTBJIkSVOI9bAlSRPFKgaSJEmSJMkEgSRJkiRJ\nMkEgSZIkSZIwQSBJkhosIvaPiJ9HxF0Rceoow70jIlJE7DWZ8UmStKkwQSBJkhomImYA/wYcAMwF\nOiJiboXhtgZOBL4/uRFKkrTp8C0GkiSpkV4L3JVS+hVARFwJHAysKBvuU8CZwIcnNzyV2rr1VF55\nSdVCHiNdMta0AA7a2JC0Cenr66Onp2f4FZ/d3d2+4lMaZyYIJElSI70EuL/k+wPA60oHiIi/BHZN\nKV0fEVUTBBFxLHAswI477sjAwMC4BLhy5cpxm9Z4akRcTwyewcX7bznmcCtXrmSrrbYadZijvrVq\n0uN3W9anmeJasmQJvb29fPjDH2b33Xfn7rvv5uSTT2bFihUsWLCg0eEBzbW+ShlXfTb1uEwQSJKk\nphURmwFnAUeNNWxK6ULgQoC99torzZ8/f6Pm3exPKwcGBtjYZazbt66vaZ41xVbjtMaD23LDNFNc\nJ5xwApdffjnt7e0MDAzwwQ9+kFe/+tV0dXXxqU99qtHhAc21vkoZV3029bhMEEiSpEZ6ENi15Psu\nRbchWwPzgIGIAHgxcG1EvD2ldNtEBdXX10d3dze9vb2sW7eOGTNm0NnZCdBUN5Yam9tyehgcHKSt\nrW1Et7a2NgYHBxsUkTQ92UihJElqpB8CL4+I3SNiJvAu4Nqhnimlx1NK26eU5qSU5gDfAyY0OQDQ\n09PDwoUL6erqYr/99qOrq4uFCxfS09MzkbPVBOjp6aG3t5f29nZaWlpob2+nt7fXbTnFtLa2smzZ\nshHdli1bRmtra4MikqYnSxBIkqSGSSmtjYgTgBuBGcDilNKdEfFJ4LaU0rWjT2FirFixglWrVrF4\n8eLhp85HH3009957byPC0UbwyfP00N3dTWdn53BJkP7+fjo7O030SOPMBIEkSWqolNINwA1l3T5e\nZdj5kxHTzJkz6erqGq7vPH/+fLq6uvjoRz86GbPXOBp68tze3j7czSfPU89QdZCurq7htiR6enqs\nJiKNszGrGETErhHRHxErIuLOiDhxMgKTJElqlDVr1nDeeefR39/P2rVr6e/v57zzzmPNmjWNDk11\nGnryXLotOzs76e7ubnRoqlNHRwfLly9nyZIlLF++3OSANAFqKUGwFjg5pfSjiNgauD0ibk4plb+f\nWJIkaVqYO3cuhxxyyIinlQsXLuSaa65pdGiqk0+eJal2YyYIUkoPAw8Xn5+IiEHyO4tNEEiSpGmp\nu7u7Ysv31neemjo6Oujo6Gja15dJUrOoqw2CiJgD7Al8fyKCkSRJagY+dZ5e+vr66OnpGd6W3d3d\nbktJqqDmBEFEbAX8F/CBlNIfK/Q/FjgWYPbs2eMW4Iaac+r1I77fc8ZBDYrkOeUxTRUTEXf59mjG\n7SVJ2rT51Hl66Ovrq1gaBDBJIEllxmykECAiNicnBy5PKX210jAppQtTSnullPbaYYcdxjNGSZIk\naYP09PTQ29tLe3s7LS0ttLe309vba3URSaqglrcYBNALDKaUzpr4kCRJkqTxMTg4SFtb24hubW1t\nDA4ONigiSWpetZQg2Bt4N/DXEXFH8XfgBMclSZKkCvr6+pg3bx4LFixg3rx59PX1NTqkptba2sqy\nZctGdFu2bBmtra0NikiSmlctbzFYBsQkxCJJkqRRWJ++ft3d3XR2dg6vs/7+ft9IIUlV1PUWA0mS\nJDVOaX36ocYTe3t76erqMkFQhW+kkKTa1dRIoSRJ0qamGYvyW59+w3R0dLB8+XKWLFnC8uXLmyY5\n0Iz7mKRNmyUIJEmSyjRrUf6h+vTt7e3D3axPPzU16z4madNmgkCSJKlMsxblb4b69HNOvb62Ab81\n+nDbPm/zcYhm6mrWfUzSps0EgSRJUplmLcrf6Pr095xxUE3DzTn1+pqH3VQ16z4GuXRDT0/P8D7W\n3d1t0kLaRJggkCRJKtPMRfk7Ojro6OgYfuqsqalZ9zGrPkibNhsplCRJKjNUlL+/v5+1a9cOF+Xv\n7u5udGiaJpp1Hyut+tDS0kJ7ezu9vb2+FlLaRFiCQJIkqUyji/Jr+mvWfayZqz5ImniWIJAkSZIa\noBlfvzhU9aFUM1R9kDQ5LEEgSZJUxnrY2lQ1w5syJDWOCQJJkqQyPT09LFy4cETx74ULFzZFEXBp\nIjVr1QdJk8MEgSRJUpkVK1awatUqFi9ePFyC4Oijj+bee+9tdGjShPNNGdKmywSBJElSmZkzZ7L3\n3nuPeIq699578/DDDzc6NEmSJowJAkmSpDKrV6/mqquu4swzz2Tu3LmsWLGCRYsWsXbt2kaHJknS\nhDFBIEmSVGbWrFkceuihLF68eLgEwWGHHcbVV1/d6NAkSZowvuZQkiSpzJo1a/jOd77Dueeey403\n3si5557Ld77zHdasWdPo0LQB+vr6mDdvHgsWLGDevHn09fU1OiRJakqWIJAkSSozd+5cDjnkkBFt\nEBx++OFcc801jQ5NdfKVlZJUOxMEkiRJZbq7uyveVPou+Kmnp6eH3t5e2tvbh1vl7+3tpaurywSB\nJJUxQSBJklSmo6ODW2+9lQMOOIDVq1cza9YsjjnmGG8op6DBwUEeeOAB5s2bN1waZNGiRQwODjY6\nNElqOiYIJEmSyvT19XH99dfzzW9+c0QJgje+8Y0mCaaYnXfemUWLFnH55ZcPb8vDDz+cnXfeudGh\nSVLTsZFCSZKkMqXF0ltaWmhvb6e3t9cqBlPUk08+ydFHH82+++7L0UcfzZNPPtnokCSpKZkgkCRJ\nKjM4OEhbW9uIbm1tbRZLn4IefPBBNt98cwAiAoDNN9+cBx98sJFhSVJTMkEgSZJUprW1lWXLlo3o\ntmzZMlpbWxsU0XN8ZV99Zs6cyUc+8hHuvvtulixZwt13381HPvIRZs6c2ejQJKnp2AaBJElSme7u\nbjo7O4ffYtDf398UbzHwlX31W7NmDeeddx577rnn8LY877zzWLNmTaNDk6SmY4JAkiSpzNDNdldX\n13DL9z09PQ2/CfeVffWbO3cuhxxyyIhtuXDhQq655ppGhyZJTccEgSRJUgUdHR10dHQM34g3A9tG\nqF93d3fFUheNLg0iSc3IBIEkSdIUMdQ2Qnt7+3C3ZmkboVk1a2kQSWpGNlIoSZI0RQy1jdDf38/a\ntWuH20bo7u5udGhNraOjg+XLl7NkyRKWL19uckCSqrAEgSRJ0hTh03BJ/5+9O4+To6z2P/75JpCw\nhMXIprIkAmJCICwBssPofgAAIABJREFUBOKVgKyKooAQUFFGEdAQb66XgNEfgowYvOACyJogKERF\nBJFNFCZIomxhDYwogkiQxZUlCyTh/P54qic9nVlhup+a5Pt+vfqVruqarpOa7p6uU89zjlk9OUFg\nZmZm1o+UsTaCmZmtGDzFwMzMzMzM2syYMYNRo0ax1157MWrUKGbMmJE7JDNrEI8gMDMzMzMzICUH\nOur6AHgqi9lKwCMIzMzMzMwMgObmZqZNm8a4ceNYZZVVGDduHNOmTXNbSLOVhBMEZmZmZmYGQGtr\nK2PHjm23buzYsbS2tmaKyMwayQkCMzMzMzMDYMSIEcyaNavdulmzZjFixIhMEZlZIzlBYGZmZmZm\nAEyZMoWmpiZaWlpYsmQJLS0tNDU1MWXKlNyhmVkDuEihmZmZmZkBywoRTpgwgdbWVkaMGEFzc7ML\nFJqtJJwgMDMzMzOzNuPHj2f8+PHMnDmTPfbYI3c4ZtZAnmJgZmZmZmZmZh5BYGZmZmYrHkk92i4i\n6hyJmVn/4REEZmZmZrbCiYjlbptNvn65dWZmtowTBGZmZpaVpP0kPSbpcUkndfD4JEmPSnpI0q2S\nNmtEXDNmzGDUqFHstddejBo1ihkzZjRit2ZmZtl4ioGZmZllI2kgcB6wNzAPuEfSdRHxaNVm9wNj\nImKBpOOAM4HD6hnXjBkzmDJlCtOmTWPp0qUMHDiQpqYmAFdzNzOzFZYTBGZmZpbTzsDjEfEEgKQf\nAx8G2hIEEdFStf2dwMfrHVRzczNHHHFEu1ZvRxxxhNu9daCzuf6a2n7Zw/nNzMrPCQIzMzPL6R3A\n01XL84Bduti+CbiprhEBjz76KPPnz2f69OltIwiOPvponnrqqXrvut/p6MTf7fHMzPonJwjMzMys\nX5D0cWAM8L5OHj8GOAZgww03ZObMmW94X6ussgr7778/kli0aBFDhgxh//3355JLLnlTz9uXXnnl\nldLEUqvMsZUxrrIeL8fVO46rdxxX7zQqLicIzMzMLKdngE2qljcu1rUj6f3AFOB9EfFqR08UERcB\nFwGMGTMm3swV7CVLlnDzzTdz6KGHstpqqxER3HzzzSxZsqQ0V8bLfJW+tLHdfEMp4yrr8XJcveO4\nesdx9U6j4nIXAzMzM8vpHmBLScMlDQIOB66r3kDS9sCFwIci4oVGBDVy5EhGjx7N/vvvz957783+\n++/P6NGjGTlyZCN2bysJd8ows7LxCAIzMzPLJiKWSPoC8CtgIDA9Ih6RdBpwb0RcB3wLGAJcVRTE\n+2tEfKiecY0bN44LLriAqVOnMnLkSB599FEmT57MscceW8/d2krEnTLMrIycIDAzM7OsIuJG4Maa\ndf+v6v77Gx1TS0sLkydPZvr06W1dDCZPnsy1117b6FBsBdXc3My0adMYN25c29DhadOmMWHCBCcI\nzCwbJwjMzMzMarS2tnL//fdz+umnt528LV68mDPOOCN3aLaCaG1tZezYse3WjR07ltbW1kwRmZm5\nBoGZmZnZckaMGMGsWbParZs1axYjRozIFJGtaPwaM7MycoLAzMzMrMaUKVNoamqipaWFJUuW0NLS\nQlNTE1OmTMkdmq0gyvwac/FEs5VXt1MMJE0HPgi8EBGj6h+SmZmZWV6VOeATJkxoq0HQ3NzsueHW\nZ8r6GnPxRLOVW09GEPwA2K/OcZiZmZmVyvjx45k7dy633norc+fO9cmR9bkyvsaqiyeussoqjBs3\njmnTptHc3Jw7NDNrgG4TBBHxW+BfDYjFzMzMrDQ8zNpWRi6eaLZycw0CMzMzsxozZsxg4sSJzJ8/\nH4D58+czceJEJwm64aRK/+fiiWYrtz5rcyjpGOAYgE033bSvnrZDw066Ybl1f/nmB97Uc9T+fEf7\n6E5fPEd36vGcOfbR2xje7O+3I909Z18ch97GXQ9v9liarSz8XrFqJ554IqussgrTp09vm4d95JFH\ncuKJJ5ZiGHgZee76iqFSPLHye6wUT/QUA7OVQ5+NIIiIiyJiTESMWX/99fvqac3MzMwabt68eVx2\n2WXt5mFfdtllzJs3L3dopeW56yuG8ePH09zczIQJE9h3332ZMGFCKYonmllj9NkIAjMzMzNbeXnu\n+opj/PjxjB8/npkzZ7LHHnvkDsfMGqjbEQSSZgC/B7aSNE9SU/3DMjMzM8tn44035pOf/GS7HvWf\n/OQn2XjjjXOHVlqeu77icC0Js5VXtyMIIsLjiczMzGylcuaZZzJx4kSOPvponnrqKTbbbDOWLl3K\n2WefnTu00vLc9RVDpUDnmmuuCSwr0AmuJWG2MvAUAzMzM7MalROh5uZmJLHmmmvyjW98wydIXagc\nmwkTJtDa2sqIESM8d70fOvHEE1m8eDEAEQHA4sWLXaDTbCXhBIGZmZlZBzwPu/d8zPq/efPmsdFG\nG7Xr4HHEEUe4QKfZSqLPuhiYmZmZmVnPlXWu/6RJk9p1o5g0aVLukMysQTyCwMzMzMyswWbMmMGU\nKVPaajYMHDiQpqZUCzz3UP6zzjqLMWPGtNWSOOuss7LGY2aN4xEEZmZmZmYN1tzczLRp09pdqZ82\nbVr2oo4bb7wxL7/8Mvvuuy977703++67Ly+//LI7eJitJJwgMDMzM6siqd1t3Lhxy62TlDtM6+da\nW1sZO3Zsu3Vjx46ltbU1U0TJQQcdxKJFixg6dCiSGDp0KIsWLeKggw7KGpeZNYYTBGZmZmZVIqLd\nbbPJ1y+3rlLd3eyNGjFiBLNmzWq3btasWYwYMSJTRElLSwsnn3wy6623HpJYb731OPnkk2lpacka\nl5k1hhMEZmZmZv1IWQvbWe9MmTKFww47jOHDh7PnnnsyfPhwDjvsMKZMmZI1rtbWVk455RTmzp3L\nrbfeyty5cznllFOyj2wws8ZwkUIzMzOzfqLMhe3sjSvTlJURI0Zw6qmncu2119La2sqIESM46KCD\nso9sMLPG8AgCMzMzs36irIXtrPeam5vZfffdefbZZ3n99dd59tln2X333bP/LseNG8fUqVM5+uij\nueGGGzj66KOZOnUq48aNyxqXmTWGRxCYmZmZ9RNlLWyX2+hTb+HFhYt7tO2wk27o8vF1Vl+VB0/Z\npy/C6tIjjzzCY489xtSpUxk5ciSPPvookydPZsmSJXXfd1daWlqYPHky06dPbxtBMHnyZK699tqs\ncZlZYzhBYGZmZtZPVArbVV/NLUNhu4oZM2bQ3NzcdmI5ZcqUhkx9eHHhYv7yzQ90u93MmTPZY489\nutymuwRCX5HEZz/7WSZNmsTMmTOZNGkSjz/+OBdccEFD9t+Z1tZW7r//fk4//fS247V48WLOOOOM\nrHGZWWM4QWBmZmbWT0yZMoWmpqa2GgQtLS00NTVlH5YOro/QWxHBTTfdREtLS9vv8qabbsreIaPs\nSSgzqy8nCMzMzMz6icqJ9oQJE9qu0jc3N5fiBLy6PkLlyvO0adOYMGFCKeIrm8GDB7No0SL23HPP\ntnUbbbQRgwcPzhJPdaHE6phqt8mdwDCz+nKRQjMzM7N+ZPz48e1a0JXl5Nv1EXpngw024LnnnmO3\n3XbjqquuYrfdduO5555jgw02yBJPRLTdrrzySrbeemvQALbeemuuvPLKtsfMbMXmBIGZmZmZvWmV\noenVPDS9c/PmzWPrrbdmzpw5HHroocyZM4ett96aefPm5Q6tLQm12YnXlSoJNWPGDEaNGsVee+3F\nqFGjmDFjRu6QzFY4ThCYmZmZ2ZtWqY/Q0tLCkiVL2uojTJkyJXdopRQRzJ49m0WLFtHS0sKiRYuY\nPXu2r9J3YsaMGUycOJH58+cDMH/+fCZOnOgkgVkfcw0CMzMzM3vTylwfoYwkcfLJJ/P973+/bd3J\nJ5/crhaALXPiiSeyeHFqZVlJoixevJgTTzzRrzGzPuQEgZmZmZn1ifHjxzN+/PgetRNc2e29996c\nf/75ABxwwAEcf/zxnH/++eyzzz6ZIyunefPmsc4667RbFxGlmJJhtiJxgsDMzMzMrEFqRwicf/75\nbYkCgFtuucXdAjqxcOFCFixYQETwzDPPeLSFWR24BoGZmZmZWYNUdwuo3DabfP1y62x5r732GkOG\nDEESQ4YM4bXXXssdktkKxwkCMzMzMzMrPUkMGjSIiGDQoEEeQWBWB55iYGZmZiut0afewosLF3e7\n3bCTbuh2m3VWX5UHT/H8cbN6WWONNVh99dUZMGAAq6++OmussUZbVwMz6xtOEJiZmdlK68WFi/nL\nNz/Q5TY9LbjXkySCmZlZmXmKgZmZmZmZldrQoUNZsGABCxcuJCLaChYOHTo0d2hmKxQnCMzMzMzM\nrNTOPfdcBg8ezPPPP09E8PzzzzN48GDOPffc3KGZrVCcIDAzMzMzs9Jba621GDZsGJIYNmwYa621\nVu6QzFY4ThCYmZmZmVmpNTc385Of/IQnn3yS2267jSeffJKf/OQnNDc35w7NbIXiIoVmZmZm1q+t\nNeIktrnspJ5tfFl3zwXQdeHK/q6n3Tug++Kbjere0draytixY9utGzt2LK2trXXft9nKxAkCMzMz\nM+vXXm79ZrfdKKBnHSlWhm4UPeneAeU6XiNGjGDWrFmMGzeubd2sWbMYMWJEQ/ZvtrJwgsDMzMzM\nrA7645X6spoyZQpNTU1MmzaNpUuX0tLSQlNTk6cYmPUxJwjMzMzMzOqgP16pLxtJ7Zb33HPPdstH\nHHEERxxxBBHRyLDMVlguUmhmZmZmZqUUEcvdNpt8/XLrzKxveASBmZmZrbR6XNyum8J26blgRS9u\nZ2ZmKzYnCMzMzGyl1ZPidj0Z/g0r7xBwMzNbcThBYGZmZmb9Xo8TNDd3XwzQzGxl5QSBmZmZmfVr\nPSkECCmJ0NNtV2Q9nloD3U6v6cupNe76YJafEwRmZmZmZiuRnkytgcZ3V3DXB7P8nCAwMzOzlVqP\nTiS6GZYOHppuyyvrlfqy8vEyy88JAjMzM8tK0n7Ad4GBwCUR8c2axwcDlwM7Av8EDouIv/TFvnty\ntdLD0u2NKuuV+l49XwNrNpT5eJmtLJwgMDMzs2wkDQTOA/YG5gH3SLouIh6t2qwJ+HdEbCHpcGAq\ncFjjozXrvTKeiJe5ZkMZj5fZysQJAjMzM8tpZ+DxiHgCQNKPgQ8D1QmCDwNfK+7/DDhXkiIiGhmo\nWW+V+US8jDo6BpJ69LP+ODDrG04QmJmZWU7vAJ6uWp4H7NLZNhGxRNKLwFuBf1RvJOkY4BiADTfc\nkJkzZ76hgMaNG7fcOk1dfruWlpY39Px95ZVXXnnD/8d6K0NsHf0eYfnfZaN/j46rdzra3yuvvMKQ\nIUParavn623CUxN6vnE3tREAztnsnDceTBXH1TuOq2ecIDAzM7MVQkRcBFwEMGbMmOhujnIXz9Nu\nuSfznXMoa1xQjtg6uqLsuDpX1rg60ui4HubhHm3nuBLH1Ttli2tA3fdgZmZm1rlngE2qljcu1nW4\njaRVgHVIxQrNzMysDzlBYGZmZjndA2wpabikQcDhwHU121wHHFXcPwS4zfUHzMzM+p6nGJiZmVk2\nRU2BLwC/IrU5nB4Rj0g6Dbg3Iq4DpgE/lPQ48C9SEsHMzMz6mBMEZmZmllVE3AjcWLPu/1XdXwQc\n2ui4zMzMVjaeYmBmZmZmZmZmThCYmZmZmZmZmRMEZmZmZmZmZoYTBGZmZmZmZmaGEwRmZmZmZmZm\nhhMEZmZmZmZmZkYPEwSS9pP0mKTHJZ1U76DMzMzMzMzMrLG6TRBIGgicB+wPjATGSxpZ78DMzMzM\nzMzMrHF6MoJgZ+DxiHgiIl4Dfgx8uL5hmZmZmZmZmVkjKSK63kA6BNgvIj5TLH8C2CUivlCz3THA\nMcXiVsBjfRjnesA/+vD5VmY+ln3Hx7Lv+Fj2HR/LvlOPY7lZRKzfx89pHZD0d+CpPnq6sr6vyhoX\nlDc2x9U7jqt3HFfvOK7e6cu4Ov0+skof7YCIuAi4qK+er5qkeyNiTD2ee2XjY9l3fCz7jo9l3/Gx\n7Ds+lv1bXyZiyvpaKGtcUN7YHFfvOK7ecVy947h6p1Fx9WSKwTPAJlXLGxfrzMzMzMzMzGwF0ZME\nwT3AlpKGSxoEHA5cV9+wzMzMzMzMzKyRup1iEBFLJH0B+BUwEJgeEY/UPbL26jJ1YSXlY9l3fCz7\njo9l3/Gx7Ds+llZR1tdCWeOC8sbmuHrHcfWO4+odx9U7DYmr2yKFZmZmZmZmZrbi68kUAzMzMzMz\nMzNbwTlBYGZmZmZmZmblShBI2k/SY5Iel3RSB48PlvST4vG7JA1rfJT9Qw+O5SRJj0p6SNKtkjbL\nEWd/0N2xrNruYEkhqXRtUcqiJ8dS0seK1+Yjkq5sdIz9RQ/e45tKapF0f/E+PyBHnP2BpOmSXpA0\nt5PHJel7xbF+SNIOjY7RzMzMrBFKU4NA0kDgj8DewDxS94TxEfFo1TbHA9tGxLGSDgc+EhGHZQm4\nxHp4LMcBd0XEAknHAXv4WC6vJ8ey2G4t4AZgEPCFiLi30bGWXQ9fl1sCPwX2jIh/S9ogIl7IEnCJ\n9fBYXgTcHxHnSxoJ3BgRw3LEW3aS/gt4Bbg8IkZ18PgBwATgAGAX4LsRsUtjozQrP0mrA5tGxGO5\nY6kmafeImN3dOrMVhaTBEfFqd+tWdpJ+CXR6MhwRH2pgOKVRphEEOwOPR8QTEfEa8GPgwzXbfBi4\nrLj/M2AvSWpgjP1Ft8cyIloiYkGxeCewcYNj7C968roE+DowFVjUyOD6mZ4cy88C50XEvwGcHOhU\nT45lAGsX99cB/tbA+PqViPgt8K8uNvkwKXkQEXEnsK6ktzUmOstF0lmSts4dRy1J60v6sqSLitEv\n0yVNL0FcBwIPADcXy9tJKktb7HN6uK6hJE2UtHYxSmmapPsk7VOCuDaXNLi4v4ekEyStW4K4ziyO\n16rF6Ne/S/p4CeLasPj93VQsj5TUlDms3/dwXcMVn2H/J+lGSbdVbpnC+T/grC5u2Uk6tLgQiaSv\nSPp5vUcylilB8A7g6arlecW6DreJiCXAi8BbGxJd/9KTY1mtCbiprhH1X90ey+JNuklE3NDIwPqh\nnrwu3wW8S9JsSXdK2q9h0fUvPTmWXwM+LmkecCPpCri9Mb39TLUVQytwUTGl8VhJ6+QOqPALUtLv\nN6SRa5Vbbl8jJS//AxARDwDDcwYkaVdJ/wOsX0ytrNy+RmrdndvREfESsA/wFuATwDfzhgTA1cBS\nSVuQ2qptApRhyt8+xfH6IPAXYAvgf7NGlPyA1A7+7cXyH4Ev5ghE0kaSdgRWl7S9pB2K2x7AGjli\n6sAVpM/X4cCppN/lPTkCiYjbu7rliKkDX42IlyWNBd4PTAPOr+cOV6nnk1v5FZnXMcD7csfSH0ka\nAJwNfCpzKCuKVYAtgT1Io1p+K2mbiPhP1qj6p/HADyLiLEm7Aj+UNCoiXs8dmFl/EBGXAJdI2gr4\nNPCQpNnAxRHRkjG0NSJicsb9d2ZxRLxYM7Az9zzWQcAQ0t+WtarWvwQckiWi9ioH6wDghxHxSElG\nxr4eEUskfQQ4JyLOkXR/7qBYdt7yAeCqDl5vuawXET+VdDKki5iSlmaKZV/Sd9KNSd9PK14Cvpwj\noA68NSKmSZpYnITfLilLgkDSw3T8OSUgImLbBofUkcpr6QPARRFxg6TT67nDMiUIniFlKCs2LtZ1\ntM08SauQMuj/bEx4/UpPjiWS3g9MAd7nOUmd6u5YrgWMAmYWf6Q2Aq6T9CHXIVhOT16X80i1MRYD\nT0r6IylhkOUPR4n15Fg2AfsBRMTvJa0GrAd42kbv9egz1VY8Rb2Pdxe3fwAPApMkfS4iDs8U1vWS\nDoiIGzPtvzOPSDoCGFjUkzkB+F3OgKpOPn4QEU9BW2J/SHElOrc5km4hXUk9uRhGXIYk7mJJ44Gj\ngAOLdatmjKfiekl/ABYCx0lan3JM7Zwv6a0UJ5qS3kMa5dxwEXEZcJmkgyPi6hwx9MDi4t9nJX2A\nNAVyaKZYPphpv73xjKQLSXWnphbTf+o6C6BMUwzuAbaUNFzSIOBwoHbu2nWkDytImd/boixVFsul\n22MpaXvgQuBDnufdpS6PZUS8GBHrRcSwogDcnaRj6uTA8nryHr+WNHoASeuRphw80cgg+4meHMu/\nAnsBSBoBrAb8vaFRrjiuAz5ZzBN+D/BiRDybOyirL0nfBh4jXd39RkTsGBFTI+JAYPuMoU0knSgt\nlPSSpJclleFkdwKwNfAqMIN0xTLLMOsOnFHMXV8TmAs8KqkMQ9ObgJOAnYq6UINIo1Vy+zSwK9Ac\nEU9KGg78MHNMRMRJwG7AmOJCwnw6rgvVaJNIfyc2L0YZXU7+aX2zS1gXoeL0YsrW/wBfAi4B/jtH\nIBHxVOVWrNqyuP8CXdcmaqSPkaaw7FuMqB1KnafWlKaLAbRViv4OaV7Y9IholnQacG9EXFdcAfsh\n6Q/zv4DDI8InDx3owbH8DbANUPmS+9eVtVJnd7o7ljXbzgS+5ARBx3rwuhSpKMx+pCFVzRHx43wR\nl1cPjuVI4GLS8NoAToyIW/JFXF6SZpASU+sBzwOnUFwti4gLitfluaTX5QLg036Pr/gkfRr4aUTM\n7+CxdSIiyxVC6z1JD0TEdpKOBHYgnZTPyTV8WNK7I+IP6qTQWETc1+iYykzSnhFxm6SPdvR4RPy8\n0THVKkY2b0Uamv5YkcDIGc9NwKXAlIgYXcR3f0RskzOuspL0WeAYYGhEbF6MgrogIvbKHBoAkkYD\n7y0W74iIB+u6vzIlCMzMzMzKoJOTtxeBp4pCydlIegtp+tVqlXVFN44csZS+TZikR4DtSIX2zo2I\n2yU9GBGjM8VzUUQcI6mjWhYREXs2PChA0k8j4mMdzMvOOh9b0qkRcYqkSzt4OCLi6IYHVaWTxMWL\nwMO5RulKuicidpJ0f0RsX6x7ICK2yxFPTWzDSSMshlE13T3nZ4WkB0hFVu+qOl4PlyGhImkiqctX\nJRH2EVItgrp1YilTDQIzMzOzsvg+6WrzQ6QTpFHAI8A6ko7LNSJH0mdI0ww2JrUVfA+pfVmWk0pS\nmzCAj5Lq8PyoWB5PGpFTBheSKqU/SCp+uxlpCkQWEXFM8e+4XDF0YmLxb6nmZUfEKcW/ZZh+0ZEm\n0pSMSsJnD2AOMFzSaRGRY3pGaeoidOBaUiX+X1KOmhsAr0bEa0U9scqIkLJcRW8CdqmMZpM0lfSZ\nX7cEQZlqEJiZmZmVxd+A7SNiTETsSJre+ASpUNSZGeOaCOxEGskwrogrW6eXqnZgu0fEYRHxy+J2\nBMuGxGYVEd+LiHdExAGRPAVkPzlXx/3Ns9W3qKqt8g/g6eI4DQZGk94PWUmaWNSSkKRLJN0naZ/c\ncZEuuI6IiIMj4mBgJOnkchcgV8eRMtZFqFhUvCdbojwtBW+X9GVSe8i9gatICYwyEMs6GVDcr2v7\nDo8gMDMzM1veuyLikcpCRDxazB1/Qnlbqy2KiEWSkDS4mMu+Vc6ACmtKemelNlQxjHjNzDG1UaqW\nvjVV0zKA0zKFU/HViLhKy/qbfwu4gHRimdNvgfcWU1luIRXGPQw4MmtUcHREfFfSvsBbgU+QapPl\nrq+zSURUj5Z5oVj3L0lZahFExH2S3keJ6iJU+a6kU0i/t7Yuaplrb5xEulL/MPA54EZS8cQyuBS4\nS9I1xfJBpBEYdeMEgZmZmdnyHpV0PlAplHpYsW4wy9p05TBP0rqkYbq/lvRv4KlufqYR/pvU8vcJ\n0gnJZqQv2tlJugBYgzRq4BJSJ6y7swaVNLy/eQ8pIhYUVe+/HxFnFnO0c6tk5g4ALo+IR5Q5W1eY\nKel60lVngIOLdWuSaXSPpEOBm4tj9BVgB0mnl6QA5jak5M6eLJtiEOSbJgWwOqng88XQ1uJ2dVJh\n4qwi4mxJtwO7F6s+HRH313OfLlJoZmZmVkPS6sDxwNhi1WxSXYJFwBoR8Uqu2CqKK4TrkE4EXitB\nPIOBdxeLf4iIV7vavlEkPRQR21b9OwS4KSKyToEoTiqfIU1b2QFYCNydq3hiVVz3k1773waaipPM\n7AXbiiKF7wCGk6Y9DARmFlOAcsYlUlKgcgI3G7g6Mp5kVb3WxwJfJ9UK+X8RkXt0CpIeB0aW4TOr\nQtKdwPsrn+vFZ8QtEbFb3siSImGxIe2LOv61XvtzDQJbIUlqKYagVa/7YnE1qLOfmSlpTJ3jmiHp\nIUn/XbP+oKItXcNiqSdJgyR9R9Ljxe16SZsWj60m6W5JD0p6RNKpb+D515F0efHcf5Z0RTEUsvL4\nzZL+U3z5MjPrleLL2I0RcVZEfKS4/V9ELIiI13MkByStXfw7tHIjDYedRWpnWgZbkoY0jwYOk/TJ\nzPFULCr+XSDp7aQRIG/LGE9Fw/ub99BE4GTgmiI58E6WFeDLqYk0FHyniFgADAKyFy4s6lr8LCL+\nu7j9LGdyoFA9OuXiiLiBdLzKYC6wbu4gaqxW/ble3F8jYzxtJE0gFXz9NXA9cEPxb914ioGtqGYA\nh5P+8FYcDpyYJxyQtBHpj9oWHTx8EOnN/mgf71OkkUKNrhL7DWAtYKuIWKrUT/wXknYkzTfbMyJe\nkbQqMEvSTRFxZy+efxowNyI+CakFEvAD4MPF498ifbCXYnirmfUvxefW65LWiYiyVP6+klRdfg5p\nOG710OoA3pkjqIpiTvEepAJtNwL7k5IXl2cMq+KXxbSMbwH3kY7XxXlDguIk9+eSNqgk0YE/5IwJ\n2lpm/rZq+QnghHwRtcXxuqQngXdJWq3bH2gQpQ4B5wAjSCfhA4H5EbF2xrCekXQhaXTK1GJ0T1ku\nDK8L/EHSPbSvQZCzJep8STtUpmAU31cXZoyn2kTS9+l/NmqHnmJgK6TiysofgI2LtiXDSH/sNiMN\nEd2JNLfoZ5X2OZJmAl+KiHslvRIRQ4r1hwAfjIhPSVqfVECo8of8ixExu2bfqwHnA2OAJcCkiGiR\n9BDp6spjwISINh/JAAAgAElEQVSIuKPYfjdScuDF4nYw6QT4LtJ8yXVJQ/zuKK5qfZP0JWwwcF5E\nXFiz/2GkxMhdwI6kuXondfJ//gtwGXAgsCpwaFHwan3Sl9G3k1qp7A3sGBH/kPRx0heFQcU+jo+I\npVX7XwN4GhgeES9Vrb8D+HpUtQYrtp0FHBcRd9EDkrYgZVG3qOy3OC5/Jl2FeaxYtwfp91mqdk1m\n1j9I+gWpQ8CvgfmV9RGR/USpjCQ9TBo5cH9EjJa0IfCjiNg7c1wDgPdExO+K5cGkq4XZEz+SPgSc\nRfpb+wLpu8UfImLrzHGtT7qg0q6oY0TknCPeaYvPEsR1L+ki1FWk736fJBU5PTljTGsA+wEPR8Sf\nJL0N2CYytWetVkyNWk7OTgaSdiLVm/kbKfm6EXBYRMzJFVOFpBZg74hY0qh9egSBrZCKyrF3k65g\n/IL0wf3TiAhJU4rHBwK3Sto2Ih7q4VN/F/h2RMwqsv2/ImWMq30+hRDbSHo3cIukdwEfAq6PiO1q\nYv2dpOuKx34GkC78s0pE7CzpAOAUUoXjJuDFiNip+JIzW9ItEfFkTQxbAkdVrsp383/+R0TsIOl4\n4EvAZ4r93RYRZ0jar9gvkkaQCnXtHhGLJX2fVNW4+grRFsBfq5MDhXtJV5ZuKeKYU2x7Xk+TA4WR\nwAPVSYniat/9pN/FY714LjOzzvy8uJWCpB26erwExccWFld4lxTTIV4ANskcU+Wq83mkZA9FXYRS\n1EYgzQ1/D/CbiNhe0jjg45ljArgC+AlpxMqxwFHA37NGlFRafN4ZEeOK71jfyBwTABHxuKSBxXeT\nS4vvJNkSBGUdnQIpEVAkEHcqVt0dES9kjume4vVU6QhTpq4PT5CKXt5A+xEXZ9drh04Q2IqsMs2g\nkiBoKtZ/TNIxpNf/20gnnD1NELwfGKllRXPXljSkZj7qWNJQM4qr8U8B7wJqT5i7U/liOgcYVtzf\nB9i2GNUAqTjVlkBtguCpmiH7Xf2fq/fz0ar/w0eK/8PNSlWyAfYijUq4pzgGq5O+BPZK8Qd0u2LI\n5zWSRkXE3N4+j5lZvUTEZUqFCjetjEzK7Kzi39VIVykfJF3p2paUgN01U1wV9xaf6ReT/p68QhqB\nVga3SjoY+HkJ5oZXWxwR/5Q0QNKAYrThd3IHBbw1IqZJmlhc1b29GA6eW1lbfC6QNAh4QNKZwLNk\nHs7f2egU0qiQrCR9jDTdZybpM+wcSf9buUiWS5EQKON30b8Wt0E0qI6EEwS2IvsF8O3iqssaETFH\nqS/zl0i1AP4t6Qe074lcUf0FovrxylDFRdRfJUu4lGXvVZGmJ/yq4x9p0zYctgf/54720xkBl3Uz\nbO7PwKaS1oqIl6vW7whcXb1hRPynGDq1H1UfypI2AX5ZLF4QERdU/dijpOTCgEpthWII6WjS3FIz\nszdN0oGkyt+DgOGStgNOyzVPNiLGFXH9HNghIh4ulkcBX8sRU7WIOL64e4Gkm4G1ezE6r94+B0wC\nlkhaRPpbFpnniAP8R6la+m+BKyS9QNXf74wqV06flfQB0rDroRnjqShri89PkL4ffoHU7nMTll1w\nyaWso1MAppC+k74AbVNafgNkTRCUVUR0Wcxb0jkRMaEv91mWYhVmfa64qt8CTCeNJgBYm/TH98Vi\neNP+nfz485JGFCeeH6lafwvQ9iYsvjDWuoM07J5iasGmdD/s/WVSUb/u/Ao4Tqm4H5LepdRntys9\n/T9Xm02qroykfYBKh4BbgUMkbVA8NlTSZtU/GBHzSXUNzi6mEqBUyXoRaUrE+sUf+Eobsb2pGfYW\nEU9HxHbF7YKaxx4H7ge+UrX6K8CtUceWL2a20vkasDNFH/OIeIDMhQALW1WSAwDF6KvaqW5ZSHqH\nUl2dTYF1Jf1X7pgAImKtiBgQEYMiYu1iOXdyAFJh3YWkk8qbSQn2A7NGlJwuaR3gf0gXGC4hxZhV\npG4i/4mIrwFfJdVrOihvVAAcFBGLIuKliDg1IiaRpmfktDhSUbu20SmkkUdlMKBmSsE/8Tnpm7F7\n95v0jkcQ2IpuBnANaYoBEfFgMS/sD6RCerM7+bmTSIUD/04aullpIXUCcJ5SwcFVSFn/Y2t+9vvA\n+UXBpiXApyLi1appCR35MXCxpBOAQ7rY7hLSdIP7lJ7w73Tzx7EX/+dqpwIzJH2CNET0OeDlSEUK\nv0KqIzCAdJXh8yyfwT+ZNHzssSIJ8Hdg16IGxNuAy4rkwQBSbYjetms5mjQk7c+kBMg9VH2pUiqI\n+G5giKR5pCKP3Y26MDOrtjgiXqz57G50R5iOPCTpEuBHxfKR9HyaXN1ImkqqUfMoy1qsBVXV8HOR\ndGtE7NXdukYrEuoVl2ULpEbV3+QXScWSS0PL+sFXplZuRBp+ndNRpBpV1T7VwbpGKuvoFICbJf2K\nZRfvDiN1Psmm+E59JPDOiDitqNuwUUTcnTOuXNzFwMyWo1QAcWlELJG0K3B+bXHFXjzXRsBNxXNc\n1JdxFs+/Fakn7AkRkfUPjJmtOCRNI42aOonUXeYEYNWIqE0KNzqu1YDjgMrV+d+SPl8bMfWtU5Ie\nA7YtigCWQnGs1iCNJtyDZa0h1wZujoh3ZwoNAEkfBaYCG5BiK8XUh2LI92dJFyTaLiZGxNG5YoK2\nfvCnkHrCV5J1ERHbZopnPHAEqW7THVUPrU36DpUtAVWMLl1IuhBzJKlm1Y8i4l+5YqpW1ASpXPm+\nIyKuyRzP+aTX1J4RMULSW4BbImKnbn40O0n3RUSXRWx7/ZxOEJhZLUlbAj8l/WF5jdTKsAwFiszM\nGkKpTdgUUnFYkaZ4fT33iTi0Tc8qS/FEACTdRGqV+0q3GzeIpInAF0mF2p5hWYLgJeDiiDg3V2wA\nkh4HDoyI1pxx1JL0O9IJ7xyWjQYhIq7u9IcaoDheu0QD+8F3pZhiORw4g5RIrHgZeCga2JaulqSp\nETG5u3WWVE6yJd0fEdsX6x6MiNG5Y+tOdcx99pxOEJiZmZn1D0V18m8BgyIie/FESeeQphK8g1Qs\n9lbat+I6IUdc1SRNiIhzcsdRS9LsiOjz+cNvlqQH3uiowXpShn7wPVG5Wh+ppea7SFMcb8rZJq+j\nq8qSHso12qImjtKNnJF0F7AbcE+RKFifNIKgT0+83whJ21TXneng8U9FxA/6dJ9OEJiZmZm1V3zR\n/xLLD7PeM1dMAJLmAHsCM6uudD0cEdtkiueorh6PiFLMrS+KJw6j/e/y8kyxVCrcv480h/5a2idV\nft7RzzWKpNOB35Vl2p6kScXdrUl96hvWD74nivfke0kFnWeT6iK9FhFHZojlOOB4UkHVP1c9tBYw\nOyKydzIo48gZSUeSaiHsQKoHcgjwlYi4KmtgtNXVGgz8ALgiIl6s9z5dpNDMzMxseVcBF5CKwy7t\nZttG6qh4YrarPbUJgKLLzijgmZpK5dlI+iGwOfAA7QsoZkkQ0L5TwQLSNJaKALIkCCS9XOxfwJcl\nvcayloc5r/BWujw1vB98DykiFkhqAr4fEWdKeiBTLFeS6j4tN+2hLPUHgOfLlBwAiIgrikTPXqTX\n/0FliTEi3ltM/T0amCPpbuDSiPh1vfbpEQRmZmZmNSTNiYgdc8dRq2zFEyVdAJwTEY8UrfF+TzoJ\nHwp8KSJmdPkEDSCpFRgZ/tK7QpC0Nilh8XLuWCDNASddtf82qWvSIzlH9VQr2lKvVlkuQztoSd+l\nZCNnJA3tYPXLOaeJ1Co6eBwEfI9UR0XAl+tx3Nxz0szMzGx5v5R0vKS3SRpaueUOCphAGmr9KqlN\n2EukQny5vDciHinufxr4Y3FitCNwYr6w2plLOiEpFUnvlPRLSX+X9IKkX0ganjsuSNMgJJ0t6SxJ\nXbZTbhRJY4oW0g8BD0t6UFIZknhfJLV3vqZIDryT1DkjG0kHSvoTqR3k7cBfSCMLymBtlo2cObC4\nfTBrRHAfqSX3H4E/Fff/Ium+3K8xSdtK+jbQSppedmBEjCjuf7su+3Qy1czMzKw9SU92sDoi4p0N\nD6bEaqp+3wBcVSmYVY/q2m9EUdxuO+Bu2l+xzFLYsULSncB5LOsHfzgwISJ2yRcVSPo+sAXt+9T/\nOSI+ny+qVGQP+HxE3FEsjyUN6c9eeK9sJD1IOoH8TURsL2kc8PGIaMocWilJuhj4WUT8qljehzRC\n61Lguznfk5JuB6aRPlsX1jz2iYj4YZ/v0wkCMzMzs3KTdF1Xj2fsYtACnAX8DbgNeHdEPCdpFWBu\nRLw7R1zVJL2vo/URcXujY6nWUVX5MrRWk/QHYERlSoakAcAjxVXLnHEtl3CqRw/4XsRTyvckgKR7\nI2JMkSjYvuiwkPW1JenEoj5DpfNJOzk7nnQ0JaTy/ixrV496cpFCMzMzs0LlS2xx/9DqKtaSvhER\nX84U2q7A06SruneR5p+WwedIc2I3Ar4YEc8V6/ciVZvPLiJul7QhsFOx6u6SFFC8SdJJwI9JJ0yH\nATdWprJkLCr3OLAp8FSxvEmxLrfbJV1Ieg9UjtdMSTsARMR9DY6nrO9JgP9IGgLcAVwh6QVgfuaY\nKkX/7s0aRceelTSZ9F6E9Np6vpj3/3q+sFLyguUTKi+SjuPpEfHPPt+nRxCYmZmZJdVXJGuvTma+\nWjkQ2BsYD2xLOvmeUTX/P5sitom52811RtLHgG8BM0knce8F/jcifpY5ro6msVRkm85SDGneiTQl\ng+L+vaSTktyjVToTjW5BWvL35JrAQlK9uSOBdUgt8vr8ZHJFIGk94BRgLOlkfDZwGuk1v2lEZEuQ\nSTqTVPj1ymLV4cAawHPA2Ig4sLOffcP7dILAzMzMLKmZU99uSHOJ5tQPJp2UfAs4NSLOzRwSku6O\niJ1zx9GRYpj13pVRA5LWJ83NzjqUv6w6m5JRkXtqRhmV7T0paV1gy2LxjxHxYs54qkn6NXBoRPyn\nWH4L8OOI2DdTPAOByyPiyBz7705HienKunp1y/AUAzMzM7NlopP7HS03VHES8gHSicgw0tD+a3LG\nVGW2pHOBn1A1lDnDsO+ODKiZUvBPStDJqzgx+QDpd9n2nTz3SIxKAqBoJ1gdV64pD0DbSe8nWf54\n5Zy7Xqr3ZBHPhaR2eE+SRsxsJuka4NiIeC1XbFXWryQHACLi30U7xiwiYqmkzSQNKsnxqTVQ0s4R\ncTeApJ2AgcVjS+qxQycIzMzMzJYZLanSY3r14j7F8mqd/1h9SbocGAXcSLpCOTdXLJ2oFPE6rWpd\nkCqp53azpF/Rvip/GVq+/RJYBDxM5nnO1SQdQ/o9LiLFJdLvMncHjxuBOynJ8Srpe3IKsCqwSUS8\nDCBpLVK3jK8Wt9yWSto0Iv4KIGkzMidfgSdISc7raJ/gLMO0qc8A04uaEiK1tm0qppGcUY8deoqB\nmZmZWS9JektE/LuB+3udZV9cq7+8iTT/eu1GxdIfSfooaX4xwB0RkX3kRUddDMpA0p+AXSPiH7lj\nqZazBkhHyvielDQX2DkiFtSsHwLcGRGjGh1TLUn7AhcDt7OsJsgxlRaDmWI6paP1EXFqo2PpjKR1\nABoxXcQJAjMzM7NeKtvJSkWjExdV+90Q+Abw9ojYX9JI0knmtEbHUhXTFsCGETG7Zv1Y4NmI+HOe\nyNrimArcGhG35IyjlqSbgY/WnmTmJum/gVeA64FXK+tzT30ok66STvWar94bRcvMQ0gtUd9TrL6z\nbMmoMikSA6cA/1Wsuh04rZ6JAk8xMDMzM+u9MrU0q3YrkCNx8QPgUtIQZ4A/kuoRZEsQAN8BTu5g\n/YvFY31e/buX7gSuKU6aFlOe0SAnA7+TdBftT8SzzfUvvEYqAjiFZVfsyzD1oUyiKPrX0edT9mkZ\nEfF60Ur2p6RETykUhUtPBLamaipZoztjdGI6MBf4WLH8CdJn7UfrtUMnCMzMzMx6r6xDMHMlLtaL\niJ9KOhkgIpZIWpoplooNI+Lh2pUR8bCkYY0PZzlnA7sCD0e5hvReSLrCW4q5/lX+B9jCV5u7tA4w\nh44/B8ryGvuNpC+xfEHTnCNBriDF80HgWOAo4O8Z46m2eUQcXLV8qqQH6rlDJwjMzMzMVhy5TgLm\nS3prZf+S3kO6Up/Tul08tnrDoujc08DckiUHAFaNiEm5g+jA40Cppj2UTUQMyx1DDxxW/Pv5qnW5\nR4K8NSKmSZpYdPG4XdI9GeOptlDS2IiYBSBpd2BhPXfoBIGZmZlZ75V1ikEuk4DrgM0lzQbWBw7N\nGxL3SvpsRFxcvVLSZ0hXWXN7Apgp6SbaD+XPXTn9pqKTwS8p11z/+cADkloo19SH0pEk4EhgeER8\nXdKmwEaVVnk5RcTw3DF0YHHx77OSPgD8DRiaMZ5qxwGXFbUIBPwL+FQ9d+gihWZmZmZViv70j0TE\nu7vYZmgJTpiWI+n+iNg+w34HA0uBrUhfYh8DBkTEq13+YH1j2pDUk/41liUExgCDgI9ExHO5YoPy\nVk6X9GQHqyMiss71l3RUR+sj4rJGx1J2ks4nTQ/ZMyJGFHUJbomInTKHBoCkUcBI2s/3vzxjPB8E\n7gA2Ac4B1ia1rrwuV0y1JK0NEBEvdbftm96XEwRmZmZm7Un6BTCh0qu7DMqcuOioq0NZOj1IGkfq\nVw/p+N1W83iWzg8dkbRKRCzJHUeZSFq7s5MiSZuW6T1aFpX3XnXCUNKDETG6BLGdAuxBShDcCOwP\nzIqIQ3LGVTaSupzmU8+RRp5iYGZmZra8twCPSLqb9oW0PpQroIhYKumxrk6KGp0ckLQR8A5gdUnb\ns2zqxdrAGo2MpTMR0QK0dLFJQzs/SJoVEWOL+z+MiE9UPXx3I2OpievEiDizuH9oRFxV9dg3IuLL\nOeICZlIcE0m3RsReVY9dS6bjVXKLi4RipSbI+pSn4OQhwGjg/oj4dDHS50c5ApF0Dl3Ubck8fWWt\nXDt2gsDMzMxseV/NHUAnypa42Jc0H3Zj4CyWJQheBnKdUPZWo+tJrFl1f1TNYzlrWxwOnFncPxm4\nquqx/cj3+6w+JrXzwl0LpGPfI02v2UBSM+mk/Ct5Q2qzsGh3uKQYNv8CaWh/Dvdm2m+3ck41coLA\nzMzMrEZE3C5pM2DLiPiNpDWAgbnjomSJi2L+92WSDo6Iq3PH8wY1er5tdHK/o+VGUif3O1pupLIe\nr9KKiCskzQH2Iv3uDoqI1sxhVdwraV3gYlJtkFeA3+cIpKf1KySdExET6h1PJ/vemFQXYfdi1R3A\nxIiYV699OkFgZmZmVkPSZ4FjSFcsNycNo7+A9IU7mxInLjYurga+TPrivwNwUkTckjesUlpX0keA\nAcX9jxbrRepjn0tZT8Q3KOZjq+o+xfL6+cIqr6LN6CMRcV6xvLakXSLirsyhERHHF3cvkHQzsHZE\nPJQzph7YvftN6uZS4EqWdYX5eLFu73rt0EUKzczMzGpIegDYGbirqsjXwxGxTea42hIXEbG5pC2B\nC2rmZeeI68GIGC1pX+BY0nDmH5ahSGF3Gt35QdKlXT0eEZ9uVCzVJC0lTVsRsDqwoPIQsFpErJop\nrg67PVTk7vpQRpLuB3aI4kRP0gDg3jK8H4vk2G0R8WKxvC6wR0RcmzeyzuUsuCrpgYjYrrt1fckj\nCMzMzMyW92pEvJbaiafq8pRjOPPnKRIXABHxJ0kb5A0JWDYE/QDg8oh4RJWDVwJFm7dNqPruGxH3\nFXcbmlzJlQDoTkSUYSTKcpwAeEMUVVeBizn/ZTnvOyUirqksRMR/iiRQaRMEmf1T0seBGcXyeOCf\n9dxhWV4oZmZmZmVyu6Qvk6rz7w0cD/wyc0xQ3sTFHEm3AMOBkyWtRUmqpkv6OqmQ4p9ZdqwC2BMa\n3/mhKq7BwMHAMNonLk7LFE9tAcB2Mh6n73X1eOZK82X1hKQTgPOL5eOBJzLGU21AB+vKfk6aM9l5\nNKkGwbdJn1u/I32e1U3ZfxlmZmZmOZwENAEPA58j9eu+JGtESVkTF03AdsATEbFA0luBslwp/xiw\neUS8ljuQGr8AXiQVans1cyyQ4gg6PhkK4J2NDafNnEz77c+OJXUy+Arpd3craWpSGdwr6WzgvGL5\n82T+HUvaJiIe7mKT7zYsmOVtXNulRtLuwNP12qFrEJiZmZn1E8Vc4iZgH9KJ3K+ASyLzFzpJ/9XR\n+oj4baNjqSXpauC4iHghdyzVJM2NiNo2h9YNSWtExILut1w5SRpImuZzZO5YOiJpTVI3lvcXq34N\nnB4R8zv/qbrHdAcwGPgBcEWlPkIZdFT/oN41EZwgMDMzMytIepguhuxHxLYNDKffkFQ9imE1Up2E\nORGxZ6aQ2kgaQ7paP5eqK/W1V+UaTdJFwDndXLlsuKJ2xJHA8Ij4uqRNgY0i4u7Mce0KTAOGRMSm\nkkYDn6uqim8FSbOAPUs4aqZNMQ0pIuKV3LEAFAVfjyZ1C7gbuDQifp0xnl2B3YAvkqYXVKwNfCQi\nRtdr355iYGZmZrbMB4t/P1/8+8Pi34+Tca5/2RMXEXFg9bKkTYDvZAqn1mXAVNJ0kVLURSiMBT4l\n6UlS4kKkE6bcSajvk47TnsDXSa0rrwZ2yhkU6fW0L3AdQEQ82NnIFeMJYLak60idKQCIiLPzhZRI\n2ga4nNRCFkn/AI6KiLk54yoKvn4FuJc0PWP7Iln25Yj4eYaQBgFDSOfra1Wtfwk4pJ47doLAzMzM\nrBARTwFI2rum9d1kSfeRahPkUMrERRfmASNyB1FYEBFdFrrLZP/cAXRil4jYoWiVR0T8W9Kg3EEB\nRMTTNc0xluaKpeT+XNwG0P7ksgwuBCZFRAuApD2Ai0hXy7OQtC2pZsoHSFMeDoyI+yS9Hfg90PAE\nQUTcTqo584Oqv0sDSCNoXqrnvp0gMDMzM1ueJO0eEbOLhd3ouPp2Q5Q4cQGApHNYlqgYQCpYeF/n\nP9FQd0g6g3TluXqKQe74ypjYAVhczGMPAEnrU46RF08X78OQtCowEWjNHFMplbw15JqV5ABARMws\n6hLkdA5p+sqXI2JhZWVE/K0YVZDTGZKOJSXD7gHWlvTdiPhWvXboBIGZmZnZ8o4GLpW0TrH8n2Jd\nbqVKXFS5t+r+EmBGJcYSqCRU3lO1rq3NYUY3sKxrwGqkFpGPAVvnDIo0vPoaYANJzaThzLlPkiBV\n5v8u8A7gGeAWlo2osSqSWuggAVWGmiCkFoxfpf0oqKwtGCPifV089sPOHmuQkRHxkqQjgZtIyeA5\ngBMEZmZmZo1QXD19X0SMriQISlTVupSJi4i4LHcMnYmIcblj6EhEbFO9LGkHUtvKrCLiCklzgL1I\nyYuDIqIMV+pV1sr8JfSlqvurAQeTEndlcDRwKsuG7d9B5s+wTmq8vEhKfJ4eEf9sfFRtVi1GzBwE\nnBsRiyXVdfSRuxiYmZmZ1ZB0d0TsnDuOakXi4oSI+HZZEhddFE8sS8E9JH0DODMi/lMsvwX4n4go\nw1XxdiQ9XJs4yBDD94AfR8TvcsZRS9Ifgb8APwGurvw+rWfK+JlWFpLOJA3hv7JYdTiwBvAcMLa2\nCGuDYzsBmAw8SKqRsCnwo4h4b9326QSBmZmZWXuSvg2sSjoZqa4CnnXeetm+5EvarKvHK7UTcpJ0\nf03dhrr3Ee8JSZOqFgcAOwJDI2LfTCEBIOko4DBgK9JUgx9HxL1d/1RjSNqZdPJ2EPAoKbYf5Y2q\nfCQNrVqsvLa+FxFbZQqpjaR3kUY4DKNqNHvO6Q8dfR5U1pUhaVdL0ioRUbcRIZ5iYGZmZra87Yp/\nT6taV4Z567MlnUt5EherAhvW1huQtDvp6lsZDJQ0OCJeBZC0OjA4c0zQvrr8EuB64GeZYmlTTBe5\nrDjJPBiYKmnTiNgyc2hExN3A3cWokLNJLSydIFjeHJbVt1gCPAk0ZY1omauAC4BLKE8XioGSdi5e\nX0jaCRhYPJZlaoakj0fEj2oSidXq1rLSCQIzMzOzGmWdt075EhffAU7uYP1LxWPZhuZWuQK4VdKl\nxfKnSSeWWdVWmi+urJ4LfDZPRMvZAng3sBkl6BYgaW3gI6QRBJuTRjeUZjRNmUTE8NwxdGFJRJyf\nO4ganwGmSxpCSqq8BDQV3RXOyBRTpbNDw9tUeoqBmZmZWY1ijv8pwH8Vq24HTss9579sJN0TETt1\n8lhphuZK2p9UdA/g1xHxq4yxbAv8H/B24FrgPFJiYBfgrIj4dq7YoG0+9keAPwM/Bq4tw3x/SU+S\njtdPI+L3ueMps6Ko3XEs+/yaCVwYEYuzBVWQ9DXgBVKCp7rt6L9yxVRRltouuTlBYGZmZlZD0tXA\nXJZdaf4EMDoiPpovqvIlLiT9qbOh55Iej4gtGh1T2Um6Czgf+D2wP2kExmXA/4uIRTljA5D0OVIR\nwH/kjqWaJEVESFojIhbkjqfMJF1Cmv5T/fm1NCI+ky+qpEj01IqIeGfDgymU7XO1iOl7XT0eESfU\nbd9OEJiZmZm1J+mBiNiuu3WNVrbEhaQZwG0RcXHN+s8Ae0fEYTniKmJ4ma47LKzd4JDSzmteR5Ke\nyHlyVEvSAOAI4J0RcZqkTYGNKvOzM8a1KzANGBIRm0oaDXwuIrK3hiwbSQ9GxOju1llSts/VIqaj\nqhZPJSUw2tSztaxrEJiZmZktb6GksRExC9qK7i3MHBPA5hFxcNXyqZIeyBYNfBG4RtKRpMJoAGOA\nQaRh6tlERMPn7vbQapK2JyUqAF6tXs7dKYM05eF1Ul2L04CXgauBDqeSNNB3gH2B6wAi4kFJ/9X1\nj6y0lkraPCL+DCDpnZSkIKCkNYBJwKYRcYykLYGtIuL6jGGV7XO1XQJA0hfrmRCo5QSBmZmZ2fKO\nBS6vzEkF/g0c1cX2jVKqxEVEPA/sJmkcMKpYfUNE3Fa9naS3RMS/Gx4gy7V8q3g543zs52hfgbx6\nuQydMnYp2rvdDxAR/5Y0KHNMAETE05KqV5XipLeE/hdokfREsTyMVJyzDC4lJRN3K5afIXU2yJkg\nKNXnamW0PvAAACAASURBVAcaOuTfCQIzMzOz5b0UEaOLyulExEuSylAZvJSJi4hoAVq62ORWYIcu\nHq+n+4BNSMdKwLrAc5KeBz4bEXO6+uG+FhF7NHJ/b8BiSQMpTkokrU8aUZDb05J2A6IowjeREnRX\nKJOiPd/TEXFrcWX+c8BBwC3Ag1mDW2bziDhM0niAiFigmqxPBseRWnuuQ/qM+BfwqawRZeQEgZmZ\nmdnyrgZ2iIiXqtb9DNgxUzwVZU1cdCfnCcCvgZ9VOhdI2gc4mHQl8/uk7gENI6nLec0R8fNGxdKJ\n75EqzG8gqRk4BPhK3pCAlBz7LvAO0lXnWwDXH2jvQuD9xf1dgJOACaT2qBeRfpe5vSZpdZYloDan\nqptBDhHxANDuc/X/t3fnUXeV9dnHv1cigiaEoQyCQBQFbDQMgVQiIBLrWKABB9oKr1LHdjFYKir6\n2qC0UhG1DH0dkAZEcAiCEH2roiABDNOTEQQVFWItQwWZ8mKEcL1/7H2Sk5PzZICw7/2cXJ+1sp7n\n3pvHc60krpX927/7/pXMA6ucofJcSZ1Mz/gZKikQRERERNQkvQR4KbBZz4PcOGCTMqlW0tbCxZqU\nPBV7X9vvXh7E/oGk022/V9LGBfIcspp7BooWCGxfKGmIaiykqN5AFx/7Vk9VeFv3NUmnAx8ok6iV\nRneNCzwC+JLtbwHfKr2nvst04HvAjpIuBPaj0Nt6SScMcx0A25/td78JJc9QSYEgIiIiYoXdgIOp\n2tC7H+QeAd7d9ycaMAIKF212t6QPAV+v10cA99Zt9I23zttuy17wYdm+Hbi9s5a0GNipXKJhvZUU\nCLqNlvQs209QFXje03WvFc99tq+QNBfYl6oAdXzBkZptPci0qFb8RYmIiIhoA9uXAZdJmmJ7Tuk8\nXVpZuFgHJbcY/A3VW8tvU72hv66+NprqAbMISdsCnwS2t/0GSROAKbbPLZVpNUrvER9OW3OV8jXg\nakm/ozpk7xoASS+mcBeIpN4zSO6uv+4kaacS0ztsf7zpzxwJZJfs+IqIiIhoH0mnAf9M9Y/s7wG7\nA/9g+6uFc7WtcLGcpC2oDgNc/gKq849+SVt2tT63iqSzbB9b4HP/k+ochI/W50o8C5hne2LTWdZE\n0mLbRToIhplCAVVxYIHtHZrM03aS9gW2A35ge0l9bVdgbMkRmpI6h5huQjUKdQHVn+HuwM22pxTM\ntgNwFtV2B6gKK8fb/q9SmUpKB0FERETEql5r+4OSDgPuBA4HZgNFCwTAYZJupX2Fi1Oo9hH/khXn\nDSwf2dfW4kBtvzX/J8+IrWx/U9JJALafkFRsbJ+ks+h/VkRn8kMpQ1S5+nUL/LHhLK1n+/o+135e\nIktPhoMAJF1CdY7Konr9MuDkgtGgKtRdBLylXh9ZX3tNsUQFpUAQERERsaqN6q9/Acy0/VD5SVxA\newsXb6UaX5YHtrW3RNKfsOI0930p2wZ+81O894yyPRKmdMTa261THACwfYukPy0ZCNja9oyu9XmS\n3l8sTWEpEERERESs6nJJt1O9qf+7ehb8HwpngvYWLm6hest8X+kgI8g/ApcDL5J0HbA1BcfQ2T4f\nQNLE7ge4tpD0LeBc4Hu2Gz9cMtabhZK+zIqi5tuAhQXzANwv6UiqMxwA/hq4v2CeonIGQUREREQX\nSaOoTti+HXjI9jJJY4BNbd9TONupwGFUhYs/o3oo/47tlxfOtQ9wGVWhYPlMc9uHFgu1liTNs71X\noc9+FtUBlAJ+ZvvxEjm6SboG2Bg4D7jQdvERhwCS/hw4mur/mzOBGbZ/VjZVrCtJmwB/B7yyvjQb\n+LztYgVYSeOpziCYQtXR8xPgWNu/KZWppBQIIiIiInqUfGgcTssLF7cCXwQW0TU60PbVxUKtJUnv\nsH1egc9dSDV68Ru2f9n056+OpF2Av6Xak30jcJ7tH5RNVZG0GdUb3o8CvwHOAb7ahuJKjEyS9rN9\n3ZqubShSIIiIiIjoIel0YA5wiVv0j6U2Fi4AJN1ke3LpHN0kzaL/oXtA+e6G+q3lEfWvJ4FvAN+0\nvbhkrg5Jo4FpwJnAw1RdDh+xfUnBTH9CdYDcUcB/AxcC+wMTbb+qVK5Ye3Xx6VRgAtVEAwBs71ww\n01zbk9Z0bUORAkFERERED0mPAGOAJ6jOHhBg2+MK52pr4eKzVFsLLmflLQYlx6oduLr7bepuqB+a\nPga8zfbowll2p2rl/wvgCuBc23MlbQ/MsT2+UK5LqbZjXEDV0XB3172bbe9TIlesG0nXAtOBzwGH\nUP1dG2X7nwpkmQK8Anh/nadjHHCY7T2aztQGKRBEREREjBAtLlxc1eeybU9tPMwI0tNFsIxqu8Fn\nCme6GvgycLHtx3ruHWX7gkK5DrLd7+9ZjCCShmzvLWmR7Ynd1wpkORB4FfA+4Atdtx4BZtn+RdOZ\n2iAFgoiIiIiapJfYvl1S39bSkm/E46lpY0szgKQbqKZSzKQqDPyqZJ6RQNLLWPXP8SvlEsW6kvQT\nqm0hFwNXAr8F/tX2bgUzjbd9V/39KGCs7YdL5SktBYKIiIiImqQv2X5P296It71wIemTwGm2H6zX\nWwD/aPt/l8xVZ2lNS3NPrt3aeAp/iwsq06ne9k4A/i/wBuBa28VGQ8a6kzQZuI1qAsspVO38n7Z9\nfcFMF1F1ESwDbqoznWH706UylZQCQURERERN0ltsz5S0c5ve6La1cNHR7/DEthzy1aaW5p5c2wKf\nBLa3/QZJE4Apts8tnKutBZVFwB7APNt71L9/X7X9mpK5Yv2SdJbtYxv+zPm295T0NmAS8GFgyPbu\nTeZoi1GlA0RERES0yEn114uLpljVFfXXd9o+qOdXG/b5j5a0cWch6TnAxqv575u0tG4b/oWkYyQd\nBowtHQo4D/g+sH29/jnVYWmlPcf2j6heJN5l+2SqAwtLe8z2k8ATksYB9wE7Fs4U699+BT5zI0kb\nUU3tuLwembnBvkV/VukAERERES1yv6QfAC+UdHnvzYKj8U6i2qt+MdUbrra5EPiRpBn1+mjg/IJ5\nuh0PPBc4jqqleSrw9qKJKlvZ/qakkwBsPyFpWelQ9BRUqPaIt6GgcrOkzYFzgCHgUaqJHhFP1xeB\nO4EFwOz68NCcQRARERGxoZP0bKoH8AuAd/XeLzUaT9IVVG+0JgPX9N4vWLhYTtIbgFfXyytsf79k\nnraT9GPgTVS/V5Mk7Qt8yvZqxzM2kKuNe8QF7GD7N/X6BcA42wtLZYpnRou2Jj3L9hOlc5SQAkFE\nRERED0lb2/6f1dxvdJ9sWwsXI4GkXYETgfF0dc+W3ppRHzh5FvAy4BZga+DNJR96JY2mKlJ8oFSG\n4XSfIRGDq995Js/gZx1p+6uSTuh33/Znm8jRNtliEBEREdFjdcWBWqP7ZG3/Ebhe0itaVrh4hP57\ndUV1eOK4prKsxkyqGefnUJ1S3gq259Zz2Hej+v36GXAoUKxAYHuZpP1Lff4azJU02fZNpYPEUydp\nou1Fq/lPzmgsDIypv27a4Ge2XjoIIiIiItZRW9pge7U1V0ltmFiwtiQttr1T4QyfB55PVVhZ0rlu\n+5JioQBJtwMvBu6iytUpQm2QJ82PVJKuoTrA9DzgQtsPlU0UvdJBEBERERFPi6Qt+1x+pD4NvLRZ\nkv4euBRY2rlo+4FykYal0gGATYD7qQ5z7DBQtEAAvK7w58d6YPsASbsAfwsMSboRmGH7ijX86Hon\n6czV3bd9XFNZ2iQdBBERERHrqMl9suuiVAeBpDupRs79nuohd3PgHuBe4N22h5rO1JXt130u2/bO\njYdZgzZ0ELSdpOcDo+vlf2+oB8mNdPV5F9OAM6kmBgj4SJOdKpK6p5l8HJjefd92WyaxNCoFgoiI\niIh1JOkdts8rnaNXqcKFpHOAizuTCyS9luqE/hnAGbZf3nSmtpK0iOHPbdjV9sYNR6o+XHop8CLb\nl9frzwGb1bfPtj23UK6TgI1sf6JeLwYeBJ4NnG/71BK54qmRtDvVGNS/AK4Azq3P49gemGN7fKFc\nrSz6lpACQURERERN0iz6P7wB7RgnuDqlChf9TpiXtND27pLm296zQKaptq+UdHi/+6X21Ncz1odl\n+66msnSr/+6favsn9fqnwMeA5wJvsj2tUK65wAG2l9Trebb3qt9AX227rYcqRh+SrgbOBWbafqzn\n3lG2LyiUK+e31HIGQURERMQKp5cO0M/aFi4KdjXcLelDwNfr9RHAvfVD3JOFMh0IXAkc0udesT31\nnQKApGOBC2w/WCJHH9t1igO1h21/C0DSewtlAqBTHKidUV9bJuk5hSLFU2T7wNXcK1IciJWlgyAi\nIiKi5epxeMOyfXVTWfqRtBXV/t39qR6+rwM+ATwE7GT7joLxWknSPwN/BcwF/gP4vgv+w1zSz2zv\nNsy9n9vetelMnc8GXtp74KWkjYFbbO9SIlc8NcNssXkIuBn4Z9v3N5ile0zrc4H/17lFe8a0Ni4F\ngoiIiIge9SnbpwITqE51B6CNB9uNBJLOsn1soc8+oc/lh4Ah2/ObztNNkoDXUu3J3gf4JtWe7F8W\nyHIV8GHbN/Rc3xf4V9uvajpT/fmfBJ4HHGP7/9XXxgBnA/fYPqlErnhqJJ0GLAMuqi/9FdXD+T3A\n/rb7dfxEg7LFICIiImJVM6jeiH8OOIjqAW5U0USM6MLFfgU/e5/616x6fTCwEHifpJm2TysVzLYl\n3UP1cPQEsAVwsaQrbH+w4TgfAr4h6TyqrgaAvYG3U20ZKeVjwL8AiyXdRfV2d0eqfewfK5grnpo/\n79nrv6iz/1/SkcVSxXLpIIiIiIjoIWnI9t7dh+91rhXOdS0rCheHUBcubP9TyVxrUvIAMEmzgTfa\nfrRejwW+C7yeqotgQqFcxwP/C/gd8GXg27YflzQK+IXtFxXItA1wDPDS+tKtwL/bvrfpLL3q8wZe\nXC/v6D3gLkYGSQuoRp/eWK8nA1+2vUcmCbRDOggiIiIiVrW086Am6Rjgt8DYwpkAnmP7R5JUH3Z3\nsqQhoNUFgsK2AZZ2rR8HtrX9mKSlw/xME7YEDu+dWmD7SUkHlwhk+776lPlTW/gAfgVwNXANcGfZ\nKPE0vAv4j7pQJ+Bh4J31tpGMrGyBFAgiIiIiVnU81b7Y44BTgKlUrdaltbVwsSYq+NkXAjdIuqxe\nHwJcVD+Q/LRUKNvTYflb++7tIott31YqF1VXw+clPUD1MD4buNb27wtmAjgKOAB4E/Dpurhzje1/\nKBsr1oXtm4CJkjar1w913f5mmVTRLVsMIiIiIkaIuh33NmBzqsLFZsBptq8vGmwNJL2j4AhGJO3D\ninMQrrN9c6ksHZIOAT4LbA/cB4wHbrP90tX+YEMkbQ+8GfgAsL3t4i8WJW1HNb7yAKqzQRbbfn3Z\nVLEu6sLAdOCV9aWrgU/0FAqioBQIIiIiInpI2hU4keqhbfmDke2pxUK1kKRZrDqybDnbhzYYZyWS\nxtl+WNKW/e7bfqDpTN3qvdhTgR/a3kvSQcCRtt9ZONeRVA/gE6nOR7iW6k39nMK5flnnuYiqs2G+\n7SdLZop1J+lbwC3A+fWlo4A9bB9eLlV0S4EgIiIiokf98PYFYIhqJBcAtoeKhaJ9hQtJB67uvu2r\nm8rSS9J3bB8s6desXMTozDgvOvlB0s2296n/ru1Vnz2wwPYehXP9Dvgl1d//q2zfWTJPR32o4/5U\nEwxup3rzPLvESMh46iTNt73nmq5FOSkQRERERPRow8SCftpauGgrSQJ2tL24dJZekn4ITKM6mG0r\nqm0Gk22/omgwQNJLqVrA9wd2AX5m+6iyqSr14XZHU2192MH26MKRYh1ImgOcaPvaer0fcLrtKWWT\nRUcKBBERERE9JJ1M9cB2KV0n4LegLb2thYtdqB50J7DygXtF39IDdI+qbJP6kMTHgFHA26jOk7jQ\n9v2Fc42jOq+hs9d/K+B620UP6ZT0GaqCxVhgDtU2g2ts/6pkrlg3kvak2l6wGVU3zwPAO2wvKBos\nlkuBICIiIqJH3Zbeqw1t6SfTzsLFtVQHj32OakrA0cAo28XHL0o6Hzi7Pj29FSSNpjp74KDSWXpJ\nWkh17sC1VC38/1U4EgCS3kxVELi3dJZ4+upCFLYfLp0lVpYCQURERMQI0eLCxZDtvbvf1rel20HS\n7VRt8ncCS1hxBsHuhXP9CDi8rae316382H60dJYOSYfSdfq97Vkl88Tak3TC6u7b/mxTWWL1io8r\niYiIiGgLSVNtXymp74nati9pOlPP57+w5OevxlJJo4BfSDoG+C1VK3gbvA7YgqpdHmA28GC5OMs9\nCiySdAVV4QIA28eViwSSXgZcAGxZLfU/wNtt31I416nAnwEX1peOkzTF9kcKxoq1t2npALF20kEQ\nERERUZP0cdvTJc3oc9u2/7bxULS/cCFpMnAbsDlwCtX+4tNsX18yFyw//f5dwCVU3QPTgHNsn1U4\nV989/bbP73e9KZJ+AnzU9lX1+lXAJ0sfnlhvfdizM9qw3qYxr3QnSMSgSYEgIiIiouXaWrgYCeoH\nyym2l9TrMcCcPFj212/UYkvGLy4EXtU5b0PSlsCP8+c4skjaATiL6iBMqA6bPL4tZ11EthhERERE\nrGKY/bIPAUO25zedx/b0+uvRTX/22pC0K3AiMJ6uf1/anlos1AqiayRk/b0KZUHSX1KN5/v3en0D\nsHV9+4O2Ly6VrfYrSR+j2mYAcCTQhkkBpwLzJF1F9ef3SuDDZSPFUzADuAh4S70+sr72mmKJYiXp\nIIiIiIjoIekiYB+gcwjawcBC4AXATNunFcrVqsJFh6QFwBeAIboexm0PlcrUUf+evZ1q8gNUWwzO\ns/1vhfJcB/yV7d/U6/nAq4ExwAzbry6RqyvfFsDHqUYKmuoN78m2i5/bIGk7YHK9vBEYb/uGgpFi\nHUmab3vPNV2LclIgiIiIiOghaTbwxs4J7vWJ7t8FXk/1MD6hUK62Fi5aMbFgOJImUT3wQjUqb17B\nLDfZnty1Ptv2MfX319vet1S24Uj6hu0jSufoJWmx7Z1K54i1V0/vmAF8rb7018DRpQtjsUIKBBER\nERE96tF4E20/Xq83BhbYfomkebb3KpSrrYWLk4H7qN7SL+1c7+wXjxUk3WH7xcPc+6XtFzWdaU3a\n+iAu6Te2dyydI9aepPFUZxBMoepQ+QlwbKejJsrLGQQRERERq7oQuEHSZfX6EOCi+oC7n5aLxTZ0\nPYADjwPb2n5M0tJhfqYJnRP5T+y6ZmDnAlna7gZJ77Z9TvdFSe+lapuPtZc3nSPPDrYP7b4gaT8g\nBYKWSAdBRERERB+S9mHFSdvX2b65ZB6A+vC4w4DuwsXlwGeAL9l+W6lssXYkbQN8m6rQM7e+vDew\nMTDN9r2Fck0a7hbwHdvbNZln+YdLs+hfCBAw1faYhiPF0yBpru1Ja7oW5aRAEBEREVGTNM72w/UI\ntVW0oWW+TYULSVNtXynp8H73bV/SdKaRQtJU4KX18lbbVxbOc9Xq7ts+qKks3SQduLr7tq9uKks8\ndZKmAK8A3g98ruvWOOCw0mM0Y4VsMYiIiIhY4SKqg/+GWPmtpSjYMt9TuPgVXWPnJG1ZsHBxIHAl\nVSdDLwMpEAzvIGA28BPbS0qHKVUAWJMUAAbGs4GxVM+fm3Zdfxh4c5FE0Vc6CCIiIiK6SBKwo+3F\npbN0SPqO7YMl/Zo+hQvb2es/wkg6GjiA6rC2R6jGCc62fdlqf7ABkl5BNRlj+ctE218pFojl+9RP\nBsZT5crf/RFI0njbd9XfjwLG2n64cKzokgJBRERERA9Ji2xPLJ2jWxsLFx2STuhz+SGqyQrzm84z\nkkh6HvBW4APAFrY3XcOPPNN5LgBeBMwHltWXbfu4cqmWTxb5B6runk4ubN9fLFSss3pU6/uo/gxv\notpicIbtTxcNFsulQBARERHRQ9L5wNm2byqdpVsbCxew/B/9+wCz6ksHAwup3kLPtH1aoWitJenL\nwATgXqrugWuBubafKJzrNmCCW/aQIOkG2y8vnSOeHknzbe8p6W3AJODDVIXE3QtHi1rOIIiIiIhY\n1cuBIyXdCSxhRTtz6X/EzpU0uW2FC2AHYJLtRwEkTQe+C7yS6o1vCgSr+hNgNPAg8ADwu9LFgdot\nwPOAu0sH6XGVpE9TnWuxfKSn7bnD/0i00EaSNgKmURVhH5fUqmLUhi4FgoiIiIhVvQ7YgmqPOFSH\nyT1YLs5ybS1cbEPXQxvwOLCt7cckLR3mZzZotg8DkPSnVH/frpI02vYOZZOxFfBTSTey8oP4ocP/\nSCM63QP7dF0zMLVAlnjqvgjcCSwAZksaT3VQYbRECgQRERERq5oGvIvqbaWAC4BzgLNKhqK9hYsL\ngRskdQ7YOwS4SNIY4KflYrWXpIOp/hxfCWxONQ3imqKhKieXDtBPW6csxLqxfSZwZteluyTlz7ZF\ncgZBRERERA9JC4EpnfFz9YPunNJv6iUdz8qFi2nAObZLFy6QtA+wX728zvbNJfO0naSzqQoC19j+\n79J52k7SP/W7bvsTTWeJdSfpSNtfHeZAU2x/tulM0V86CCIiIiJWJbpOSq+/V6Es3d4J7NtVuPgU\nMIdCnQ2Sxtl+WNKWwK/qX517W9p+oESukcD2MZK2BSZLmgTcaPu+0rkkPcKKUZrPBjYCltgeVy4V\nUG2p6diE6iDM2wpliXU3pv5adEpHrFkKBBERERGrmkHVMn9pvZ4GnFswT0fbChcXUT2oDbHioRLq\nsxGAzKgfhqS3AKcDP6b6/TpL0om2Ly6Zq3vMYj1a8y+Bfcslqtj+TPda0unA9wvFiXVk+4v114+X\nzhKrly0GEREREX3Ub3X3r5fX2J5XMg9A3Z77dqC7cHGe7X8rmEnAjrYXl8owEklaALym0zUgaWvg\nh7b3KJtsVZLm2d6rdI5ukrYAbrL94tJZYs0knbm6+7aPaypLrF46CCIiIiL6qMentWqEmu3PSvox\nKwoXR5cuXNi2pO8CE0vmGIFG9WwpuB8YVSpMh6TDu5ajqKYG/KFQnOUkLWJFl8poYGvglHKJYh0N\ndX3/cWB6qSCxeukgiIiIiIinRdL5VDPNbyqdZaSQ9Glgd+Br9aUjgEW2P1guFUia0bV8gmok3Zds\n/0+ZRJV6HF7HE8C9wMad8zhi5GhjR0qskAJBRERERDwtkm4HdqF6mFxCfQZB6akPbVe/re/exnLp\n6v77EupW/r+3/S8FMzwf2A5YaPuPkrYB3g+8w/b2pXLFUyNpru1JpXNEf9liEBERERFP1+uALYAD\n6vVs4MFycUYG25dQjawEQNJi2zuVyCJpR+BjwPZUZ1x8HfgEcBQruhxK5Ho/8FHgDmBjSf8H+BTw\nFWDvUrkiBlUKBBERERHxdE0D3kX1sCvgAuAcCo1fHMFKTqT4CnA18C3g9cDNwHxgd9v3FMz1HmA3\n2w9I2gn4ObCf7aE1/Fy0SM/4zOdKerhzi6rbqPQYzahli0FEREREPC2SFgJTOvvBJY0B5mSLwbop\n3EGwoHuCgqT/Anay/WSJPF05VmpH780ZEetXOggiIiIi4ukSsKxrvYyyb8Nbqx5V2fcWMLbJLKsE\nqM4b6Py53Q9sVo+xxPYDhWLt0DMib7vudcbjRaxfKRBERERExNM1A7hBUueQvWnAuQXztNmmq7l3\nRmMpVrUZ1Si67sJOZ8yngZ0bT1Q5sWedrQURz6BsMYiIiIiIp03SJFY+kX9eyTwjnaSTbJ9aOkdE\nbFhSIIiIiIiIaJlSo+Ak/cj2q9d0rWmSZrHikLuOh6gOU/yi7T80nypi8GSLQURERERE+zR6hoOk\nTYAxwFY9ZxGMA57fZJZh/ArYmhUjF48AHgF2pZqYcVShXBEDJQWCiIiIiIj2abrN973A+4HtWfks\ngoeBsxvO0s8rbE/uWs+SdJPtyZJuLZYqYsCkQBARERER0T6NdhDYPkPS2cBHbJ/S5GevpbGSdrK9\nGEDSTqyY+vDHcrEiBksKBBERERER7TOz6Q+0vUzS4UAbCwT/CFwr6ZdUxZMXAn8vaQxwftFkEQMk\nhxRGRERERDRM0guBY4EX0PXSzvahpTIBSDodmANc4pY9KEjaGHhJvfxZDiaMWP9SIIiIiIiIaJik\nBcC5wCLgyc5121cXCwVIeoTqsMJlwGNUb+tte1zJXACSXsGqBZWvFAsUMYCyxSAiIiIionl/sH1m\n6RC9bG9aOkM/ki4AXgTMpypeQHWQYwoEEetROggiIiIiIhom6W+AXYAfAEs7123PLRaqJulQ4JX1\n8se2v1MyD4Ck24AJbdv2EDFo0kEQEREREdG8icBRwFRWbDFwvS5G0r8Ck4EL60vHS9rP9kkFYwHc\nAjwPuLtwjoiBlg6CiIiIiIiGSbqD6o14q0b0SVoI7Gn7yXo9Gphne/fCua4C9gRuZOWOi6KHOkYM\nmnQQREREREQ07xZgc+C+0kH62Bx4oP5+s5JBupxcOkDEhiAFgoiIiIiI5m0O3C7pJtr1RvxUYF79\nxl5UZxF8uGykarqDpG2ptj8A3Gi7jcWViBEtWwwiIiIiIhom6cB+10uPOQSQtB0rP4jfUzIPgKS3\nAp8GfkxVuDgAONH2xSVzRQyaFAgiIiIiImI5Sc8HxtPVbWx7drlEIGkB8JpO14CkrYEf2t6jZK6I\nQZMtBhERERERDZH0CNW0AtVfl98CbHtckWCdENKngCOAW1l5ukLRAgEwqmdLwf3AqFJhIgZVCgQR\nEREREQ2xvWnpDGswDdjN9tI1/pfN+p6k7wNfq9dHAP9ZME/EQMoWg4iIiIiIBtWjA2+1/ZLSWXpJ\n+k/gLbYfLZ2ll6TDgf3r5TW2Ly2ZJ2IQpUAQEREREdEwSZcBx9peXDoLgKSzqLYSPB/YA/gRK09X\nOK5QtGFJWmx7p9I5IgZJthhERERERDRvC+BWSTcCSzoXC445vLn+OgRcXijDulLpABGDJh0EERER\n5TOsGQAACphJREFUERENa/OYQwBJGwEvA37bczhga6SDIGL9SwdBRERERETD2lII6JD0BeAs27dK\n2gyYAywDtpT0AdtfW/3/wjOW64ThbgFjm8wSsSFIgSAiIiIioiFdYw5XuUXZMYcH2H5f/f3RwM9t\nT5P0PKppAUUKBMDqpj6c0ViKiA1ECgQREREREQ1p8ZjDP3Z9/xpgJoDte6RyW/1tf3xt/jtJJ9k+\n9ZnOEzHoRpUOEBERERGxoZG0ZZ9fGxWM9KCkgyXtBewHfK/O+SzgOQVzra23lA4QMQjSQRARERER\n0by5wI7A76m2F2wO3CPpXuDdtocazvNe4EzgecD7bd9TX3818N2GszwVmWgQsR5kikFERERERMMk\nnQNcbPv79fq1wJuAGcAZtl9eMt9w2trKL2mu7Umlc0SMdNliEBERERHRvH07xQEA2z8Apti+Hti4\nXKw1amsrfzoIItaDbDGIiIiIiGje3ZI+BHy9Xh8B3CtpNPBkuVhr1NYH8ZmlA0QMgmwxiIiIiIho\nmKStgOnA/lRjD68DPgE8BOxk+46C8YZVqpVf0guBY4EX0PWS0/ahTWeJGGQpEEREREREtIyks2wf\nWzpHL0nzbO9V4HMXAOcCi+jqsLB9ddNZIgZZthhERERERLTPfqUDDKNUK/8fbJ9Z6LMjNhjpIIiI\niIiIaJm08q9M0t8AuwA/AJZ2rtueWyxUxABKB0FERERERHR8m6qVfxbtOixxInAUMJUVuVyvI2I9\nSYEgIiIiIqJ9Sk0LaGsr/1uAnW3/sXSQiEGWAkFERERERPucUepzJU2nfa38twCbA/cVzhEx0FIg\niIiIiIhoiKRZVK3xfXX2+ts+r6lMPdrayr85cLukm1i5cJExhxHrUQ4pjIiIiIhoiKQDV3e/9Ng+\nSXcAE9rWyj/c71vp36+IQZMCQUREREREACDp28B7bKeVP2IDlC0GERERERENk7QLcCowAdikc932\nzsVCVVrVyi/pEaotDmLlrRmqYnlciVwRgyoFgoiIiIiI5s0ApgOfAw4CjgZGFU1UmV46QDfbm5bO\nELEhyRaDiIiIiIiGSRqyvbekRbYndl8rna1tJI0GbrX9ktJZIgZdOggiIiIiIpq3VNIo4BeSjgF+\nC4wtFabNrfy2l0n6maSdbC8ulSNiQ5AOgoiIiIiIhkmaDNxGtef/FGAz4DTb1xcN1lKSZgN7ATcC\nSzrXM+YwYv1KgSAiIiIiIlrdyp8xhxHNyBaDiIiIiIiGSdoVOBEYT9e/yW1PLZWpza38KQRENCMF\ngoiIiIiI5s0EvgCcAywrnKXbFsCtklrRyt91NsIqt8iYw4j1LlsMIiIiIiIa1taJBWnlj9iwpUAQ\nEREREdEwSScD9wGXAks7120/UCpTm0nass/lR2w/3niYiAGWAkFERERERMMk/brPZdveufEwtL+V\nX9KdwI7A7+tMmwP3APcC77Y9VC5dxOBIgSAiIiIiIlpN0jnAxba/X69fC7wJmAGcYfvlJfNFDIoU\nCCIiIiIiGiJpqu0rJR3e777tS5rO1K2trfySFtme2HNtoe3dJc23vWepbBGDJFMMIiIiIiKacyBw\nJXBIn3sGihYIgLn0aeWXVLqV/25JHwK+Xq+PAO6VNBp4slCmiIGTDoKIiIiIiADa28ovaStgOrA/\nVSHlOuATwEPATrbvKJErYtCkQBARERER0TBJJ/S5/BAwZHt+03k6Rmorv6SzbB9bOkfESJctBhER\nERERzdun/jWrXh8MLATeJ2mm7dMK5Rqprfz7lQ4QMQjSQRARERER0TBJs4E32n60Xo8Fvgu8nqqL\nYEKhXCOylV/SXNuTSueIGOnSQRARERER0bxtgKVd68eBbW0/JmnpMD/zjLP9O2C4Vv070sofMdhS\nIIiIiIiIaN6FwA2SLqvXhwAXSRoD/LRcrDVqayu/SgeIGATZYhARERERUYCkfVjxwH2d7ZtL5lkb\nbW3ll/QO2+eVzhEx0qVAEBERERHREEnjbD8sact+920/0HSmddF0gUDSLKqzEPqyfWhTWSI2BNli\nEBERERHRnIuoJhYMsfKDr+r1ziVCrYOmW/lPb/jzIjZo6SCIiIiIiGiQJAE72l5cOsu6Sit/xGBL\ngSAiIiIiomGSFtmeWDpHR9tb+SXtApwKTAA26Vy33faOi4gRJVsMIiIiIiKaN1fSZNs3lQ5Sa3sr\n/wxgOvA54CDgaGBU0UQRAygdBBERERERDZN0O7ALcCewhPoMAtu7l8zVVpKGbO/d3XnRuVY6W8Qg\nSQdBRERERETzXgdsARxQr2cDD5aLU2lxK/9SSaOAX0g6BvgtMLZwpoiBk7aciIiIiIjmTQMuALYC\ntq6/b8PIvhnA54EnqFr5vwJ8tWiiyvHAc4HjgL2Bo4C3F00UMYCyxSAiIiIiomGSFgJTbC+p12OA\nOaW3GKSVP2LDli0GERERERHNE7Csa72svlZaK1v5Je0KnAiMp+sZxvbUYqEiBlAKBBERERERzZsB\n3CDp0no9DTi3YJ6O7lb+U4CptKOVfybwBeAcVi6sRMR6lC0GEREREREFSJoE7F8vr7E9r2SeNss2\nh4hmpEAQERERERFAe1v5JZ0M3AdcCiztXLf9QKlMEYMoBYKIiIiIiABA0gKqVv4hulr5bQ8VCwVI\n+nWfy27B+MWIgZICQUREREREAGnlj9jQpUAQERERERFA+1r5JU21faWkw/vdt31J05kiBlmmGERE\nREREREdnYsGJXdcMlGrlPxC4Ejikzz0DKRBErEfpIIiIiIiIiIiIdBBERERERGzo2t7KL+mEPpcf\nAoZsz286T8SgSoEgIiIiIiLa3sq/T/1rVr0+GFgIvE/STNunFUsWMUCyxSAiIiIiIlpN0mzgjbYf\nrddjge8Cr6fqIphQMl/EoEgHQUREREREAK1u5d+GrqkKwOPAtrYfk7R0mJ+JiHWUAkFERERERHS0\ntZX/QuAGSZfV60OAiySNAX5aKFPEwMkWg4iIiIiIANrdyi9pH2C/enmd7ZtLZYkYVOkgiIiIiIiI\njla18ksaZ/thSVsCv6p/de5tafuBpjNFDLIUCCIiIiIioqNtrfwXUW1zGKKaptCher1zgUwRAytb\nDCIiIiIiYrm2tfJLErCj7cUlc0RsCFIgiIiIiIjYwPW08q+idCu/pEW2J5bMELEhyBaDiIiIiIho\neyv/XEmTbd9UOEfEQEsHQUREREREtLqVX9LtwC7AncAS6sKF7d1L5ooYNCkQREREREQE0N5Wfknj\ngS2AA+pLs4EHbd9VLlXE4BlVOkBERERERLTGXEmTS4foYxpwAbAVsHX9/aFFE0UMoHQQREREREQE\n0N5WfkkLgSm2l9TrMcCc0rkiBk0OKYyIiIiIiI7X0aeVv1yc5QQs61ovq69FxHqULQYREREREdHR\n1lb+GcANkk6WdDJwPXBu2UgRgydbDCIiIiIiAmh3K7+kScD+9fIa2/NK5okYRNliEBERERERHa1t\n5bc9F5hbOkfEIEuBICIiIiIiOjqt/JfW62mklT9ig5EtBhERERERsVxa+SM2XCkQRERERERERESm\nGERERERERERECgQRERERERERQQoEEREREREREUEKBBEREREREREB/H8pV3+uQs0mrgAAAABJRU5E\nrkJggg==\n",
2076
            "text/plain": [
2077
              "<Figure size 1296x432 with 2 Axes>"
2078
            ]
2079
          },
2080
          "metadata": {
2081
            "tags": []
2082
          }
2083
        }
2084
      ]
2085
    },
2086
    {
2087
      "cell_type": "code",
2088
      "metadata": {
2089
        "id": "IvWaizMhRK0G",
2090
        "colab_type": "code",
2091
        "outputId": "66fb75c0-19fd-4516-b13c-10997b56d491",
2092
        "colab": {
2093
          "base_uri": "https://localhost:8080/",
2094
          "height": 1000
2095
        }
2096
      },
2097
      "source": [
2098
        "\"\"\" Statistics of the high survival probability population \"\"\"\n",
2099
        "high_surv_df.boxplot(figsize=(18,12), rot=90)\n",
2100
        "low_range_features_high_surv = small_range_Q3_Q1(high_surv_df, threshold, 'High survival probability population')\n",
2101
        "high_surv_df.describe()"
2102
      ],
2103
      "execution_count": 0,
2104
      "outputs": [
2105
        {
2106
          "output_type": "execute_result",
2107
          "data": {
2108
            "text/html": [
2109
              "<div>\n",
2110
              "<style scoped>\n",
2111
              "    .dataframe tbody tr th:only-of-type {\n",
2112
              "        vertical-align: middle;\n",
2113
              "    }\n",
2114
              "\n",
2115
              "    .dataframe tbody tr th {\n",
2116
              "        vertical-align: top;\n",
2117
              "    }\n",
2118
              "\n",
2119
              "    .dataframe thead th {\n",
2120
              "        text-align: right;\n",
2121
              "    }\n",
2122
              "</style>\n",
2123
              "<table border=\"1\" class=\"dataframe\">\n",
2124
              "  <thead>\n",
2125
              "    <tr style=\"text-align: right;\">\n",
2126
              "      <th></th>\n",
2127
              "      <th>original_shape_Compactness1</th>\n",
2128
              "      <th>original_shape_Compactness2</th>\n",
2129
              "      <th>original_shape_Maximum3DDiameter</th>\n",
2130
              "      <th>original_shape_SphericalDisproportion</th>\n",
2131
              "      <th>original_shape_Sphericity</th>\n",
2132
              "      <th>original_shape_SurfaceArea</th>\n",
2133
              "      <th>original_shape_SurfaceVolumeRatio</th>\n",
2134
              "      <th>original_shape_VoxelVolume</th>\n",
2135
              "      <th>original_firstorder_Energy</th>\n",
2136
              "      <th>original_firstorder_Entropy</th>\n",
2137
              "      <th>original_firstorder_Kurtosis</th>\n",
2138
              "      <th>original_firstorder_Maximum</th>\n",
2139
              "      <th>original_firstorder_Mean</th>\n",
2140
              "      <th>original_firstorder_MeanAbsoluteDeviation</th>\n",
2141
              "      <th>original_firstorder_Median</th>\n",
2142
              "      <th>original_firstorder_Minimum</th>\n",
2143
              "      <th>original_firstorder_Range</th>\n",
2144
              "      <th>original_firstorder_RootMeanSquared</th>\n",
2145
              "      <th>original_firstorder_Skewness</th>\n",
2146
              "      <th>original_firstorder_StandardDeviation</th>\n",
2147
              "      <th>original_firstorder_Uniformity</th>\n",
2148
              "      <th>original_firstorder_Variance</th>\n",
2149
              "      <th>original_glcm_Autocorrelation</th>\n",
2150
              "      <th>original_glcm_ClusterProminence</th>\n",
2151
              "      <th>original_glcm_ClusterShade</th>\n",
2152
              "      <th>original_glcm_ClusterTendency</th>\n",
2153
              "      <th>original_glcm_Contrast</th>\n",
2154
              "      <th>original_glcm_Correlation</th>\n",
2155
              "      <th>original_glcm_DifferenceEntropy</th>\n",
2156
              "      <th>original_glcm_DifferenceAverage</th>\n",
2157
              "      <th>original_glcm_JointEnergy</th>\n",
2158
              "      <th>original_glcm_JointEntropy</th>\n",
2159
              "      <th>original_glcm_Id</th>\n",
2160
              "      <th>original_glcm_Idm</th>\n",
2161
              "      <th>original_glcm_Imc1</th>\n",
2162
              "      <th>original_glcm_Imc2</th>\n",
2163
              "      <th>original_glcm_Idmn</th>\n",
2164
              "      <th>original_glcm_Idn</th>\n",
2165
              "      <th>original_glcm_InverseVariance</th>\n",
2166
              "      <th>original_glcm_MaximumProbability</th>\n",
2167
              "      <th>original_glcm_SumAverage</th>\n",
2168
              "      <th>original_glcm_SumEntropy</th>\n",
2169
              "      <th>original_glrlm_ShortRunEmphasis</th>\n",
2170
              "      <th>original_glrlm_LongRunEmphasis</th>\n",
2171
              "      <th>original_glrlm_GrayLevelNonUniformity</th>\n",
2172
              "      <th>original_glrlm_RunLengthNonUniformity</th>\n",
2173
              "      <th>original_glrlm_RunPercentage</th>\n",
2174
              "      <th>original_glrlm_LowGrayLevelRunEmphasis</th>\n",
2175
              "      <th>original_glrlm_HighGrayLevelRunEmphasis</th>\n",
2176
              "      <th>original_glrlm_ShortRunLowGrayLevelEmphasis</th>\n",
2177
              "      <th>original_glrlm_ShortRunHighGrayLevelEmphasis</th>\n",
2178
              "      <th>original_glrlm_LongRunLowGrayLevelEmphasis</th>\n",
2179
              "      <th>original_glrlm_LongRunHighGrayLevelEmphasis</th>\n",
2180
              "      <th>Mstage</th>\n",
2181
              "      <th>Nstage</th>\n",
2182
              "      <th>SourceDataset</th>\n",
2183
              "      <th>Tstage</th>\n",
2184
              "      <th>age</th>\n",
2185
              "      <th>Histology_adenocarcinoma</th>\n",
2186
              "      <th>Histology_large cell</th>\n",
2187
              "      <th>Histology_nos</th>\n",
2188
              "      <th>Histology_squamous cell carcinoma</th>\n",
2189
              "    </tr>\n",
2190
              "  </thead>\n",
2191
              "  <tbody>\n",
2192
              "    <tr>\n",
2193
              "      <th>count</th>\n",
2194
              "      <td>49.000000</td>\n",
2195
              "      <td>49.000000</td>\n",
2196
              "      <td>49.000000</td>\n",
2197
              "      <td>49.000000</td>\n",
2198
              "      <td>49.000000</td>\n",
2199
              "      <td>49.000000</td>\n",
2200
              "      <td>49.000000</td>\n",
2201
              "      <td>49.000000</td>\n",
2202
              "      <td>49.000000</td>\n",
2203
              "      <td>49.000000</td>\n",
2204
              "      <td>49.000000</td>\n",
2205
              "      <td>49.000000</td>\n",
2206
              "      <td>49.000000</td>\n",
2207
              "      <td>49.000000</td>\n",
2208
              "      <td>49.000000</td>\n",
2209
              "      <td>49.000000</td>\n",
2210
              "      <td>49.000000</td>\n",
2211
              "      <td>49.000000</td>\n",
2212
              "      <td>49.000000</td>\n",
2213
              "      <td>49.000000</td>\n",
2214
              "      <td>49.000000</td>\n",
2215
              "      <td>49.000000</td>\n",
2216
              "      <td>49.000000</td>\n",
2217
              "      <td>49.000000</td>\n",
2218
              "      <td>49.000000</td>\n",
2219
              "      <td>49.000000</td>\n",
2220
              "      <td>49.000000</td>\n",
2221
              "      <td>49.000000</td>\n",
2222
              "      <td>49.000000</td>\n",
2223
              "      <td>49.000000</td>\n",
2224
              "      <td>49.000000</td>\n",
2225
              "      <td>49.000000</td>\n",
2226
              "      <td>49.000000</td>\n",
2227
              "      <td>49.000000</td>\n",
2228
              "      <td>49.000000</td>\n",
2229
              "      <td>49.000000</td>\n",
2230
              "      <td>49.000000</td>\n",
2231
              "      <td>49.000000</td>\n",
2232
              "      <td>49.000000</td>\n",
2233
              "      <td>49.000000</td>\n",
2234
              "      <td>49.000000</td>\n",
2235
              "      <td>49.000000</td>\n",
2236
              "      <td>49.000000</td>\n",
2237
              "      <td>49.000000</td>\n",
2238
              "      <td>49.000000</td>\n",
2239
              "      <td>49.000000</td>\n",
2240
              "      <td>49.000000</td>\n",
2241
              "      <td>49.000000</td>\n",
2242
              "      <td>49.000000</td>\n",
2243
              "      <td>49.000000</td>\n",
2244
              "      <td>49.000000</td>\n",
2245
              "      <td>49.000000</td>\n",
2246
              "      <td>49.000000</td>\n",
2247
              "      <td>49.0</td>\n",
2248
              "      <td>49.000000</td>\n",
2249
              "      <td>49.000000</td>\n",
2250
              "      <td>49.000000</td>\n",
2251
              "      <td>49.000000</td>\n",
2252
              "      <td>49.000000</td>\n",
2253
              "      <td>49.000000</td>\n",
2254
              "      <td>49.000000</td>\n",
2255
              "      <td>49.000000</td>\n",
2256
              "    </tr>\n",
2257
              "    <tr>\n",
2258
              "      <th>mean</th>\n",
2259
              "      <td>0.528398</td>\n",
2260
              "      <td>0.394370</td>\n",
2261
              "      <td>0.154974</td>\n",
2262
              "      <td>0.236880</td>\n",
2263
              "      <td>0.577242</td>\n",
2264
              "      <td>0.083413</td>\n",
2265
              "      <td>0.497987</td>\n",
2266
              "      <td>0.041246</td>\n",
2267
              "      <td>0.051737</td>\n",
2268
              "      <td>0.758203</td>\n",
2269
              "      <td>0.023363</td>\n",
2270
              "      <td>0.116175</td>\n",
2271
              "      <td>0.531811</td>\n",
2272
              "      <td>0.546354</td>\n",
2273
              "      <td>0.624409</td>\n",
2274
              "      <td>0.293413</td>\n",
2275
              "      <td>0.191130</td>\n",
2276
              "      <td>0.505160</td>\n",
2277
              "      <td>0.744236</td>\n",
2278
              "      <td>0.569388</td>\n",
2279
              "      <td>0.101235</td>\n",
2280
              "      <td>0.387421</td>\n",
2281
              "      <td>0.403906</td>\n",
2282
              "      <td>0.117521</td>\n",
2283
              "      <td>0.414754</td>\n",
2284
              "      <td>0.332789</td>\n",
2285
              "      <td>0.251002</td>\n",
2286
              "      <td>0.586743</td>\n",
2287
              "      <td>0.678464</td>\n",
2288
              "      <td>0.441507</td>\n",
2289
              "      <td>0.047922</td>\n",
2290
              "      <td>0.713074</td>\n",
2291
              "      <td>0.246663</td>\n",
2292
              "      <td>0.223391</td>\n",
2293
              "      <td>0.659944</td>\n",
2294
              "      <td>0.754262</td>\n",
2295
              "      <td>0.610092</td>\n",
2296
              "      <td>0.443823</td>\n",
2297
              "      <td>0.305508</td>\n",
2298
              "      <td>0.088494</td>\n",
2299
              "      <td>0.495902</td>\n",
2300
              "      <td>0.740208</td>\n",
2301
              "      <td>0.863784</td>\n",
2302
              "      <td>0.036450</td>\n",
2303
              "      <td>0.027657</td>\n",
2304
              "      <td>0.059445</td>\n",
2305
              "      <td>0.841460</td>\n",
2306
              "      <td>0.076636</td>\n",
2307
              "      <td>0.374127</td>\n",
2308
              "      <td>0.098085</td>\n",
2309
              "      <td>0.397818</td>\n",
2310
              "      <td>0.038744</td>\n",
2311
              "      <td>0.066823</td>\n",
2312
              "      <td>0.0</td>\n",
2313
              "      <td>0.086735</td>\n",
2314
              "      <td>0.836735</td>\n",
2315
              "      <td>0.183673</td>\n",
2316
              "      <td>0.519520</td>\n",
2317
              "      <td>0.673469</td>\n",
2318
              "      <td>0.020408</td>\n",
2319
              "      <td>0.020408</td>\n",
2320
              "      <td>0.244898</td>\n",
2321
              "    </tr>\n",
2322
              "    <tr>\n",
2323
              "      <th>std</th>\n",
2324
              "      <td>0.204048</td>\n",
2325
              "      <td>0.207511</td>\n",
2326
              "      <td>0.142206</td>\n",
2327
              "      <td>0.166281</td>\n",
2328
              "      <td>0.199582</td>\n",
2329
              "      <td>0.170937</td>\n",
2330
              "      <td>0.212652</td>\n",
2331
              "      <td>0.113124</td>\n",
2332
              "      <td>0.146943</td>\n",
2333
              "      <td>0.190434</td>\n",
2334
              "      <td>0.043704</td>\n",
2335
              "      <td>0.096689</td>\n",
2336
              "      <td>0.230091</td>\n",
2337
              "      <td>0.198527</td>\n",
2338
              "      <td>0.265962</td>\n",
2339
              "      <td>0.124187</td>\n",
2340
              "      <td>0.101149</td>\n",
2341
              "      <td>0.223790</td>\n",
2342
              "      <td>0.107704</td>\n",
2343
              "      <td>0.179137</td>\n",
2344
              "      <td>0.152075</td>\n",
2345
              "      <td>0.195204</td>\n",
2346
              "      <td>0.210356</td>\n",
2347
              "      <td>0.087931</td>\n",
2348
              "      <td>0.074341</td>\n",
2349
              "      <td>0.180185</td>\n",
2350
              "      <td>0.161003</td>\n",
2351
              "      <td>0.190586</td>\n",
2352
              "      <td>0.181871</td>\n",
2353
              "      <td>0.195414</td>\n",
2354
              "      <td>0.098254</td>\n",
2355
              "      <td>0.203621</td>\n",
2356
              "      <td>0.208747</td>\n",
2357
              "      <td>0.211367</td>\n",
2358
              "      <td>0.147428</td>\n",
2359
              "      <td>0.130952</td>\n",
2360
              "      <td>0.218249</td>\n",
2361
              "      <td>0.214065</td>\n",
2362
              "      <td>0.217157</td>\n",
2363
              "      <td>0.126437</td>\n",
2364
              "      <td>0.207686</td>\n",
2365
              "      <td>0.201321</td>\n",
2366
              "      <td>0.158136</td>\n",
2367
              "      <td>0.080802</td>\n",
2368
              "      <td>0.089419</td>\n",
2369
              "      <td>0.175886</td>\n",
2370
              "      <td>0.185898</td>\n",
2371
              "      <td>0.103946</td>\n",
2372
              "      <td>0.200209</td>\n",
2373
              "      <td>0.116339</td>\n",
2374
              "      <td>0.200210</td>\n",
2375
              "      <td>0.086753</td>\n",
2376
              "      <td>0.096787</td>\n",
2377
              "      <td>0.0</td>\n",
2378
              "      <td>0.201240</td>\n",
2379
              "      <td>0.373438</td>\n",
2380
              "      <td>0.259082</td>\n",
2381
              "      <td>0.174567</td>\n",
2382
              "      <td>0.473804</td>\n",
2383
              "      <td>0.142857</td>\n",
2384
              "      <td>0.142857</td>\n",
2385
              "      <td>0.434483</td>\n",
2386
              "    </tr>\n",
2387
              "    <tr>\n",
2388
              "      <th>min</th>\n",
2389
              "      <td>0.070657</td>\n",
2390
              "      <td>0.028427</td>\n",
2391
              "      <td>0.002937</td>\n",
2392
              "      <td>0.029617</td>\n",
2393
              "      <td>0.092373</td>\n",
2394
              "      <td>0.001760</td>\n",
2395
              "      <td>0.053241</td>\n",
2396
              "      <td>0.000431</td>\n",
2397
              "      <td>0.000609</td>\n",
2398
              "      <td>0.066163</td>\n",
2399
              "      <td>0.002094</td>\n",
2400
              "      <td>0.028990</td>\n",
2401
              "      <td>0.010927</td>\n",
2402
              "      <td>0.058309</td>\n",
2403
              "      <td>0.000000</td>\n",
2404
              "      <td>0.174419</td>\n",
2405
              "      <td>0.075472</td>\n",
2406
              "      <td>0.064524</td>\n",
2407
              "      <td>0.355840</td>\n",
2408
              "      <td>0.130948</td>\n",
2409
              "      <td>0.004511</td>\n",
2410
              "      <td>0.034069</td>\n",
2411
              "      <td>0.072969</td>\n",
2412
              "      <td>0.008526</td>\n",
2413
              "      <td>0.277496</td>\n",
2414
              "      <td>0.027396</td>\n",
2415
              "      <td>0.007966</td>\n",
2416
              "      <td>0.178999</td>\n",
2417
              "      <td>0.090164</td>\n",
2418
              "      <td>0.022466</td>\n",
2419
              "      <td>0.000840</td>\n",
2420
              "      <td>0.031450</td>\n",
2421
              "      <td>0.021111</td>\n",
2422
              "      <td>0.000551</td>\n",
2423
              "      <td>0.145009</td>\n",
2424
              "      <td>0.405984</td>\n",
2425
              "      <td>0.000000</td>\n",
2426
              "      <td>0.000000</td>\n",
2427
              "      <td>0.014852</td>\n",
2428
              "      <td>0.001273</td>\n",
2429
              "      <td>0.111286</td>\n",
2430
              "      <td>0.045437</td>\n",
2431
              "      <td>0.170472</td>\n",
2432
              "      <td>0.000000</td>\n",
2433
              "      <td>0.000075</td>\n",
2434
              "      <td>0.000847</td>\n",
2435
              "      <td>0.068151</td>\n",
2436
              "      <td>0.002905</td>\n",
2437
              "      <td>0.087059</td>\n",
2438
              "      <td>0.003963</td>\n",
2439
              "      <td>0.102891</td>\n",
2440
              "      <td>0.001823</td>\n",
2441
              "      <td>0.006737</td>\n",
2442
              "      <td>0.0</td>\n",
2443
              "      <td>0.000000</td>\n",
2444
              "      <td>0.000000</td>\n",
2445
              "      <td>0.000000</td>\n",
2446
              "      <td>0.070881</td>\n",
2447
              "      <td>0.000000</td>\n",
2448
              "      <td>0.000000</td>\n",
2449
              "      <td>0.000000</td>\n",
2450
              "      <td>0.000000</td>\n",
2451
              "    </tr>\n",
2452
              "    <tr>\n",
2453
              "      <th>25%</th>\n",
2454
              "      <td>0.430321</td>\n",
2455
              "      <td>0.272667</td>\n",
2456
              "      <td>0.062894</td>\n",
2457
              "      <td>0.131484</td>\n",
2458
              "      <td>0.490475</td>\n",
2459
              "      <td>0.014631</td>\n",
2460
              "      <td>0.352950</td>\n",
2461
              "      <td>0.003349</td>\n",
2462
              "      <td>0.006892</td>\n",
2463
              "      <td>0.667108</td>\n",
2464
              "      <td>0.004981</td>\n",
2465
              "      <td>0.060847</td>\n",
2466
              "      <td>0.341917</td>\n",
2467
              "      <td>0.405357</td>\n",
2468
              "      <td>0.401630</td>\n",
2469
              "      <td>0.184755</td>\n",
2470
              "      <td>0.123213</td>\n",
2471
              "      <td>0.331705</td>\n",
2472
              "      <td>0.710336</td>\n",
2473
              "      <td>0.431955</td>\n",
2474
              "      <td>0.024018</td>\n",
2475
              "      <td>0.223070</td>\n",
2476
              "      <td>0.225167</td>\n",
2477
              "      <td>0.053090</td>\n",
2478
              "      <td>0.358123</td>\n",
2479
              "      <td>0.194806</td>\n",
2480
              "      <td>0.114654</td>\n",
2481
              "      <td>0.436501</td>\n",
2482
              "      <td>0.561502</td>\n",
2483
              "      <td>0.289276</td>\n",
2484
              "      <td>0.004651</td>\n",
2485
              "      <td>0.596031</td>\n",
2486
              "      <td>0.093633</td>\n",
2487
              "      <td>0.071632</td>\n",
2488
              "      <td>0.588443</td>\n",
2489
              "      <td>0.681380</td>\n",
2490
              "      <td>0.483976</td>\n",
2491
              "      <td>0.304503</td>\n",
2492
              "      <td>0.132036</td>\n",
2493
              "      <td>0.011489</td>\n",
2494
              "      <td>0.330578</td>\n",
2495
              "      <td>0.643010</td>\n",
2496
              "      <td>0.820629</td>\n",
2497
              "      <td>0.004838</td>\n",
2498
              "      <td>0.000901</td>\n",
2499
              "      <td>0.006484</td>\n",
2500
              "      <td>0.790131</td>\n",
2501
              "      <td>0.028910</td>\n",
2502
              "      <td>0.193198</td>\n",
2503
              "      <td>0.041229</td>\n",
2504
              "      <td>0.234117</td>\n",
2505
              "      <td>0.009861</td>\n",
2506
              "      <td>0.022517</td>\n",
2507
              "      <td>0.0</td>\n",
2508
              "      <td>0.000000</td>\n",
2509
              "      <td>1.000000</td>\n",
2510
              "      <td>0.000000</td>\n",
2511
              "      <td>0.416473</td>\n",
2512
              "      <td>0.000000</td>\n",
2513
              "      <td>0.000000</td>\n",
2514
              "      <td>0.000000</td>\n",
2515
              "      <td>0.000000</td>\n",
2516
              "    </tr>\n",
2517
              "    <tr>\n",
2518
              "      <th>50%</th>\n",
2519
              "      <td>0.534776</td>\n",
2520
              "      <td>0.374776</td>\n",
2521
              "      <td>0.090684</td>\n",
2522
              "      <td>0.199384</td>\n",
2523
              "      <td>0.591992</td>\n",
2524
              "      <td>0.024362</td>\n",
2525
              "      <td>0.490734</td>\n",
2526
              "      <td>0.006853</td>\n",
2527
              "      <td>0.015420</td>\n",
2528
              "      <td>0.816523</td>\n",
2529
              "      <td>0.009787</td>\n",
2530
              "      <td>0.095572</td>\n",
2531
              "      <td>0.527256</td>\n",
2532
              "      <td>0.555142</td>\n",
2533
              "      <td>0.695576</td>\n",
2534
              "      <td>0.262274</td>\n",
2535
              "      <td>0.183248</td>\n",
2536
              "      <td>0.533637</td>\n",
2537
              "      <td>0.759095</td>\n",
2538
              "      <td>0.561907</td>\n",
2539
              "      <td>0.038216</td>\n",
2540
              "      <td>0.352343</td>\n",
2541
              "      <td>0.389153</td>\n",
2542
              "      <td>0.103868</td>\n",
2543
              "      <td>0.424058</td>\n",
2544
              "      <td>0.314301</td>\n",
2545
              "      <td>0.223802</td>\n",
2546
              "      <td>0.578004</td>\n",
2547
              "      <td>0.728681</td>\n",
2548
              "      <td>0.473422</td>\n",
2549
              "      <td>0.010676</td>\n",
2550
              "      <td>0.768585</td>\n",
2551
              "      <td>0.181275</td>\n",
2552
              "      <td>0.142793</td>\n",
2553
              "      <td>0.681695</td>\n",
2554
              "      <td>0.774210</td>\n",
2555
              "      <td>0.579555</td>\n",
2556
              "      <td>0.377826</td>\n",
2557
              "      <td>0.247922</td>\n",
2558
              "      <td>0.035262</td>\n",
2559
              "      <td>0.510042</td>\n",
2560
              "      <td>0.801875</td>\n",
2561
              "      <td>0.921739</td>\n",
2562
              "      <td>0.010358</td>\n",
2563
              "      <td>0.002527</td>\n",
2564
              "      <td>0.011608</td>\n",
2565
              "      <td>0.914334</td>\n",
2566
              "      <td>0.042803</td>\n",
2567
              "      <td>0.341007</td>\n",
2568
              "      <td>0.058815</td>\n",
2569
              "      <td>0.367166</td>\n",
2570
              "      <td>0.017114</td>\n",
2571
              "      <td>0.039258</td>\n",
2572
              "      <td>0.0</td>\n",
2573
              "      <td>0.000000</td>\n",
2574
              "      <td>1.000000</td>\n",
2575
              "      <td>0.000000</td>\n",
2576
              "      <td>0.533706</td>\n",
2577
              "      <td>1.000000</td>\n",
2578
              "      <td>0.000000</td>\n",
2579
              "      <td>0.000000</td>\n",
2580
              "      <td>0.000000</td>\n",
2581
              "    </tr>\n",
2582
              "    <tr>\n",
2583
              "      <th>75%</th>\n",
2584
              "      <td>0.656266</td>\n",
2585
              "      <td>0.511193</td>\n",
2586
              "      <td>0.199957</td>\n",
2587
              "      <td>0.272924</td>\n",
2588
              "      <td>0.704737</td>\n",
2589
              "      <td>0.064233</td>\n",
2590
              "      <td>0.656271</td>\n",
2591
              "      <td>0.017747</td>\n",
2592
              "      <td>0.028883</td>\n",
2593
              "      <td>0.879602</td>\n",
2594
              "      <td>0.017262</td>\n",
2595
              "      <td>0.123925</td>\n",
2596
              "      <td>0.703208</td>\n",
2597
              "      <td>0.693611</td>\n",
2598
              "      <td>0.864959</td>\n",
2599
              "      <td>0.377261</td>\n",
2600
              "      <td>0.218982</td>\n",
2601
              "      <td>0.671228</td>\n",
2602
              "      <td>0.818600</td>\n",
2603
              "      <td>0.706582</td>\n",
2604
              "      <td>0.115934</td>\n",
2605
              "      <td>0.530085</td>\n",
2606
              "      <td>0.564948</td>\n",
2607
              "      <td>0.154561</td>\n",
2608
              "      <td>0.457865</td>\n",
2609
              "      <td>0.452166</td>\n",
2610
              "      <td>0.379228</td>\n",
2611
              "      <td>0.724608</td>\n",
2612
              "      <td>0.830862</td>\n",
2613
              "      <td>0.623529</td>\n",
2614
              "      <td>0.048946</td>\n",
2615
              "      <td>0.865874</td>\n",
2616
              "      <td>0.349531</td>\n",
2617
              "      <td>0.327083</td>\n",
2618
              "      <td>0.763775</td>\n",
2619
              "      <td>0.834138</td>\n",
2620
              "      <td>0.764391</td>\n",
2621
              "      <td>0.548064</td>\n",
2622
              "      <td>0.440099</td>\n",
2623
              "      <td>0.122947</td>\n",
2624
              "      <td>0.645167</td>\n",
2625
              "      <td>0.880065</td>\n",
2626
              "      <td>0.962616</td>\n",
2627
              "      <td>0.031135</td>\n",
2628
              "      <td>0.006254</td>\n",
2629
              "      <td>0.029610</td>\n",
2630
              "      <td>0.957657</td>\n",
2631
              "      <td>0.088221</td>\n",
2632
              "      <td>0.513287</td>\n",
2633
              "      <td>0.118922</td>\n",
2634
              "      <td>0.573665</td>\n",
2635
              "      <td>0.032011</td>\n",
2636
              "      <td>0.061394</td>\n",
2637
              "      <td>0.0</td>\n",
2638
              "      <td>0.000000</td>\n",
2639
              "      <td>1.000000</td>\n",
2640
              "      <td>0.250000</td>\n",
2641
              "      <td>0.599433</td>\n",
2642
              "      <td>1.000000</td>\n",
2643
              "      <td>0.000000</td>\n",
2644
              "      <td>0.000000</td>\n",
2645
              "      <td>0.000000</td>\n",
2646
              "    </tr>\n",
2647
              "    <tr>\n",
2648
              "      <th>max</th>\n",
2649
              "      <td>0.905877</td>\n",
2650
              "      <td>0.851042</td>\n",
2651
              "      <td>0.653763</td>\n",
2652
              "      <td>0.780239</td>\n",
2653
              "      <td>0.922113</td>\n",
2654
              "      <td>1.000000</td>\n",
2655
              "      <td>0.924444</td>\n",
2656
              "      <td>0.564364</td>\n",
2657
              "      <td>1.000000</td>\n",
2658
              "      <td>0.966960</td>\n",
2659
              "      <td>0.264958</td>\n",
2660
              "      <td>0.528194</td>\n",
2661
              "      <td>0.907618</td>\n",
2662
              "      <td>0.922701</td>\n",
2663
              "      <td>0.949942</td>\n",
2664
              "      <td>0.598191</td>\n",
2665
              "      <td>0.587193</td>\n",
2666
              "      <td>1.000000</td>\n",
2667
              "      <td>0.908030</td>\n",
2668
              "      <td>0.919687</td>\n",
2669
              "      <td>0.791420</td>\n",
2670
              "      <td>0.856806</td>\n",
2671
              "      <td>0.856777</td>\n",
2672
              "      <td>0.364704</td>\n",
2673
              "      <td>0.642372</td>\n",
2674
              "      <td>0.807656</td>\n",
2675
              "      <td>0.575810</td>\n",
2676
              "      <td>0.893988</td>\n",
2677
              "      <td>0.907959</td>\n",
2678
              "      <td>0.749105</td>\n",
2679
              "      <td>0.568396</td>\n",
2680
              "      <td>0.970061</td>\n",
2681
              "      <td>0.958317</td>\n",
2682
              "      <td>0.953010</td>\n",
2683
              "      <td>0.862182</td>\n",
2684
              "      <td>0.992465</td>\n",
2685
              "      <td>0.986456</td>\n",
2686
              "      <td>0.950508</td>\n",
2687
              "      <td>0.847394</td>\n",
2688
              "      <td>0.586096</td>\n",
2689
              "      <td>0.892450</td>\n",
2690
              "      <td>0.969727</td>\n",
2691
              "      <td>1.000000</td>\n",
2692
              "      <td>0.524767</td>\n",
2693
              "      <td>0.555568</td>\n",
2694
              "      <td>1.000000</td>\n",
2695
              "      <td>1.000000</td>\n",
2696
              "      <td>0.641848</td>\n",
2697
              "      <td>0.838058</td>\n",
2698
              "      <td>0.673589</td>\n",
2699
              "      <td>0.851650</td>\n",
2700
              "      <td>0.599560</td>\n",
2701
              "      <td>0.620896</td>\n",
2702
              "      <td>0.0</td>\n",
2703
              "      <td>0.750000</td>\n",
2704
              "      <td>1.000000</td>\n",
2705
              "      <td>1.000000</td>\n",
2706
              "      <td>0.906940</td>\n",
2707
              "      <td>1.000000</td>\n",
2708
              "      <td>1.000000</td>\n",
2709
              "      <td>1.000000</td>\n",
2710
              "      <td>1.000000</td>\n",
2711
              "    </tr>\n",
2712
              "  </tbody>\n",
2713
              "</table>\n",
2714
              "</div>"
2715
            ],
2716
            "text/plain": [
2717
              "       original_shape_Compactness1  ...  Histology_squamous cell carcinoma\n",
2718
              "count                    49.000000  ...                          49.000000\n",
2719
              "mean                      0.528398  ...                           0.244898\n",
2720
              "std                       0.204048  ...                           0.434483\n",
2721
              "min                       0.070657  ...                           0.000000\n",
2722
              "25%                       0.430321  ...                           0.000000\n",
2723
              "50%                       0.534776  ...                           0.000000\n",
2724
              "75%                       0.656266  ...                           0.000000\n",
2725
              "max                       0.905877  ...                           1.000000\n",
2726
              "\n",
2727
              "[8 rows x 62 columns]"
2728
            ]
2729
          },
2730
          "metadata": {
2731
            "tags": []
2732
          },
2733
          "execution_count": 23
2734
        },
2735
        {
2736
          "output_type": "display_data",
2737
          "data": {
2738
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAOSCAYAAAAieEiTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdcYxc930g9u/TLi0TjMr8kdS1o5MY\nFA4w1lBqT3e53t3+wYetSdsM7AQteje6a+3zQIbsuwVbNyeuMkVYphibDOIAqhpJh9y4pgvoJYcC\n5+hEW6JBzeIwDa6I84eUjQcHBImi8Fzg2qIhJJUn77Kvf1AzmtldkbOc2X1v3n4+AMF5v5nfvO/s\nvnn75ju/3/eX5HkeAAAAAHdyT9EBAAAAAPNBEgEAAACYiCQCAAAAMBFJBAAAAGAikggAAADARCQR\nAAAAgIksFrXjn/qpn8qPHTv2gfe/8847ceTIkbt+/mn7lyGGee9fhhjmvX8ZYpj3/mWIYd77lyGG\nee9fhhjmvX8ZYpj3/mWIYd77lyGGee9fhhjmvX8ZYpj3/mWIoez9//AP//D/yvP8p3e8M8/zQv49\n+uij+e10u93b3n8n0/YvQwzz3r8MMcx7/zLEMO/9yxDDvPcvQwzz3r8MMcx7/zLEMO/9yxDDvPcv\nQwzz3r8MMcx7/zLEMO/9yxBD2ftHxA/yD/gsbzoDAAAAMBFJBAAAAGAikggAAADARCQRAAAAgIlI\nIgAAAAATkUQAAAAAJiKJAAAAAExEEgEAAACYiCQCAAAAMBFJBAAAAGAikggAAADARCQRAAAAgIlI\nIgAAAAATkUQAAAAAJiKJAAAAAExEEgEAAACYiCQCAAAAMBFJBAAAAGAikggAAADARCQRAAAAgIlI\nIgAAAAATkUQAAAAAJiKJAAAAAExEEgEAAACYyB2TCEmSfDNJkn+bJMn6B9yfJEnyPyZJ8idJkrye\nJMlfnX2YAAAAQNEmGYnwrYj41G3u/3REfPy9f1+KiOemD4tpZFkW9Xo9lpeXo16vR5ZlRYe0a1V4\nDQAAZeHaiiqownE87WuYtn+SJJEkSaRpOry9W4t3ekCe5/8ySZJjt3nI5yLi23me5xHxr5Ik+ckk\nST6a5/n/setomFqWZdFqtaLT6cTNmzdjYWEhms1mREQ0Go2Co5tMFV4DAEBZuLaiCqpwHE/7Gqbt\nP0gYHDp0KH7jN34jfvmXfzk2NjYiSZK49XF+MrOoifAzEfEXI9vX3mujAO12OzqdTqRpGouLi5Gm\naXQ6nWi320WHNrEqvAYAgLJwbUUVVOE4nvY1zOJncOjQofjxj38cDz/8cPz4xz+OQ4cO7fp1JJNk\nHN4bifBSnuf1He57KSIu5Hnee2/7akSczfP8Bzs89ktxa8pDfOQjH3n0d37ndz5wn2+//Xb8xE/8\nxGSvYg/6lyGGu+m/vLwcr7zySiwuLg77b25uxqlTp+Lq1at7vv9ZPEeZXkPR/csQwzz3T9N0W1u3\n293XGKrQvwwxzHv/MsQw7/3LEMO89y9DDPPcf57/pszi2mpWrz9ivo+DMvQvQwy77b/y5yt3fMwz\nDz5z2/tn+RkhYj5fw7T90zSNp59+Oh5++OFh/9dffz3OnDmz7f2cpukf5nn+13Z8ojzP7/gvIo5F\nxPoH3PdPIqIxsv2vI+Kjd3rORx99NL+dbrd72/vvZNr+ZYjhbvo/9NBD+auvvjrW/9VXX80feuih\nfdn/LJ6jTK+h6P5liGHe++d5nj949qVCY5j3/mWIYd77lyGGee9fhhjmvX8ZYpj3/nk+n39TZnlt\nNe3rH41B//mNYd6P47uJYeuxv7X/JO+NaV/DtP0jIj906NBY/0OHDuW30gLbHvuD/AM+y89iOsOL\nEfFfvbdKw38SEddz9RAK02q1otlsRrfbjc3Nzeh2u9FsNqPVahUd2sSq8BoAAMrCtRVVUIXjeNrX\nMIufwcbGRnzoQx+K119/PT70oQ/FxsbGrl/HHQsrJkmSRcSJiPipJEmuRcS5iDgUEZHn+fMR8d2I\n+ExE/ElE/L8R8Q92HQUzMyiosbKyEv1+P2q1WrTb7bkpNhJRjdcAAFAWrq2ogiocx9O+hmn753ke\nSZLExsZGnDlzZqx9NyZZneG2Eb031OEf7mqv7KlGoxGNRiPW1tbixIkTRYdzV6rwGgAgInZcPmu3\nF2wwLddWVEEVjuNpX8O0/Qd/f6b5Gc5iOgMAAB9gMIf0wbMvjdaUAoC5JIkAAAAATEQSAQAAAJjI\nHWsiAABQHDUVACgTIxEAAEpMTQUAykQSAQAAAJiIJAIAAAAwEUkEAAAAYCKSCAAAAMBEJBEAAACA\niUgiAAAAABORRAAAAAAmslh0AABAdSVJsq0tz/MCIuEgcxwCzI6RCADAnsnzPPI8jwfPvjS8DfvN\ncQgwO0YiUEm+cQAAAJg9IxGoJN84AAAAzJ4kAgBQalmWRb1ej+Xl5ajX65FlWdEhAcCBZToDAFBa\nWZZFq9WKTqcTN2/ejIWFhWg2mxER0Wg0Co6Og+CR81fi+o2NsbZjq5eHt48ePhSvnTu532EBFEYS\nAQAorXa7HZ1OJ9I0jbW1tThx4kR0Op1YWVmRRGBfXL+xEW9cOD3cHhyHA6MJBYCDwHQGAKC0+v1+\nLC0tjbUtLS1Fv9+f+DlMhwCA2TESAQAorVqtFr1eL9I0Hbb1er2o1WoT9TcdAqZjOgewlZEIAEBp\ntVqtaDab0e12Y3NzM7rdbjSbzWi1WhP1H50Osbi4GGmaRqfTiXa7vceRl4vRGNytwXSOwb9vferI\n2PbWBANQfUYiAAClNRgtsLKyEv1+P2q1WrTb7YlHEcxiOsS8MxoDgFkyEgEAKLVGoxHr6+tx9erV\nWF9f39UH38F0iFG7mQ5RBUZjADBLRiIAO0qSZFtbnucFRAJw9wbTIQbfwg+mQxykD9BGYwAwS5II\nwI4GCYNjq5fHlrYCmCfTToeogmmLUwLAKNMZAIBKm2Y6RBVMW5wSAEYZiQAAUGFGYwAwS5IIAAAV\n12g0otFoxNraWpw4caLocACYY6YzAAAAABORRAAAAAAmIokAAAAATEQSAQAAAJiIJAIAAAAwEUkE\nAAAAYCKSCAAAAMBEJBEAAACAiUgiAAAAABORRAAAAAAmslh0AJRPkiTb2vI8LyASAAAAysRIBLbJ\n8zzyPI8Hz740vM38SZIkkiSJNE2HtwEAAKZhJEIJGQnALAyOmWOrl+ONC6cLjgYA5tN9tdU4fml1\nvPHS6P0REf7OAgeHJEIJ+fAH1SAhCDD/3upfGLseW1tbixMnTgy3j61eLiAqgOKYzgCwR0wNAgCg\naiQRAAAAgImYzgAAAOxITQhgK0kEAABgR2pCAFuZzgAAAMCBkGVZ1Ov1WF5ejnq9HlmWFR3S3JFE\nAAAAoPKyLIszZ87EO++8E3mexzvvvBNnzpyRSNgl0xmgpCwPWDy/A8rAcQgAs/Hkk0/GwsJCfPOb\n34ybN2/GwsJCPPbYY/Hkk09Go9EoOry5UbqRCEmSRJIkkabp8DYcRJYHLJ7fAWXgOASA2bh27Vp8\n+9vfjjRNY3FxMdI0jW9/+9tx7dq1okObK6VLIrhYAgAAgHIqXRIBAAAAZu3++++Pz3/+89HtdmNz\nczO63W58/vOfj/vvv7/o0OaKmggAAABU3q//+q/HmTNn4otf/GK8+eab8cADD8Tm5mZ84xvfKDq0\nuWIkAgAAAJXXaDTi6aefjiNHjkRExJEjR+Lpp59WVHGXjEQAAADgQGg0GtFoNGJtbS1OnDhRdDhz\nyUgEAAAAYCJGIgDAHtppqWIrDwEA88pIBADYQ5YuhuklSRJJkkSapsPbABRDEgEAgFKTjAMoD0kE\nAAAAYCKSCAAAAMBEJBEAAACAiUgiAAAAABORRAAAAAAmslh0AAAA7K2dlkS0wgEAd0MSgUp55PyV\nuH5jY6zt2Orl4e2jhw/Fa+dO7ndYAFCoQcLg2OrleOPC6YKj2T+uCwBmTxKBSrl+Y2Ps4mhtbS1O\nnDgx3B69cAAAqs11AcDsqYkAAAAATEQSAQAAAJiIJAIAAAAwEUkEAAAAYCKSCAAAAMBEJBEAAACA\niVjiEQCYuUfOX4nrNzbG2kaX0zt6+FC8du7kfocFAExJEgEY48IfmIXrNzbijQunh9tra2tx4sSJ\n4fboeQUAmB+SCMAYF/4A45Ik2daW53kBkQBA8dREAAC4jTzPI8/zePDsS8PbAHBQSSIAAAAAEzGd\nAaCiZjEE2zBuAABGGYkAUFGzGIJtGDcAAKMkEQAAAICJmM4AAABwB6b4wS2VG4mQJEkkSRJpmg5v\nAwAATMMUP7ilckkEb24AAADYG6YzAABwW4ZxAzBQuZEIAADMlpGeAAxIIgAAAAATkUQAAAAAJiKJ\nAAAAAExEEgEAAACYiNUZAACA0rNKCJSDkQgAAEDpWSUEysFIBACAPfDI+Stx/cbGWNux1cvD20cP\nH4rXzp3c77AAYCqSCAAAe+D6jY1448Lp4fba2lqcOHFiuD2aUACAeSGJAAAl5FtsAKCMJBEAoIR8\niw0AlJHCigAAAMBEJBEAAACAiUgiAAAAABORRAAAAAAmorAiAADcxrZCpi+Pr5QCcJBIIgBsYWk9\nAAZGV0mJuPX3YGsbwEEiiUCl3FdbjeOXVscbL43eHxHhDz+3Z2k9AADYmSQClfJW/4IPfwAAAHtE\nYUUAAABgIpIIAAAAwEQkEQAAAICJSCIAAAAAE5mosGKSJJ+KiKcjYiEi/mme5xe23P9A3KqB/5Pv\nPWY1z/PvzjhWANiVJEm2teV5XkAkAADVcMeRCEmSLETEb0XEpyPiExHRSJLkE1se9t9FxD/L8/w/\njoi/GxHPzjpQANitPM8jz/N48OxLw9sAANy9SaYz/HxE/Eme53+a5/mPI+J3IuJzWx6TR8S/997t\noxHxo9mFCAAAAJTBJNMZfiYi/mJk+1pE/I0tj/nvI+JKkiQrEXEkIv7TmUQHAAB36b7aahy/tDre\neGn0/oiI0/sZEsDcm6gmwgQaEfGtPM+/kSTJ34yI/yVJknqe5//f6IOSJPlSRHwpIuIjH/lIrK2t\n3fZJ73T/nUzb/+23357qOabtHzHdayh6/7OI4W76jz5+p/67eb4yHAMR+/9e8DOc7c/gbh4/qgzv\n5WmfowzHQdH7v5sY5v29OOv30TweR2U6l8zqOebpd/BW/0J861NHxvb/Ez/xE8PtL7z8zl3FM8/n\nwyq8l+9mn1Xb/zweR2Xqf7fPMe9/l2fWfzBH9IP+RcTfjIhXRrafiointjzmjyPir4xs/2lE/Pu3\ne95HH300v50Hz7502/vvZNr+eZ7n3W630P7Tvoai9z+LGHbbf2vMW/vv9jUVfQzk+f6/F/wMZ/8z\nqMJ7uejXUPTPoArH4byfj+8mhln3L/p3WIb3ctHvpaJ/B3fb53YxlL1/Gd/LRf8Oit7/LJ7joPe/\nm+eY97/Lu+0fET/IP+Cz/CQ1Ef4gIj6eJMnPJknyobhVOPHFLY95MyKWIyKSJKlFxIcj4v+8u7QG\nABERWZZFvV6P5eXlqNfrkWVZ0SEBAHDA3XE6Q57nm0mS/KOIeCVuLd/4zTzP/zhJkl+LW9mJFyPi\nv42I306S5L+JW0UWv/Be9gKAu5BlWbRareh0OnHz5s1YWFiIZrMZERGNRqPg6AAAOKgmGYkQeZ5/\nN8/zn8vz/D/M87z9XtuvvpdAiDzPf5jn+d/O8/yRPM//ozzPr+xl0ABV1263o9PpRJqmsbi4GGma\nRqfTiXa7XXRoAAAcYBMlEQDYX/1+P5aWlsbalpaWot/vFxQRAADMbnUGAGaoVqtFr9eLNE2Hbb1e\nL2q1WoFRAXAQHVu9PN7w8vvbRw8f2udogKJJIgCUUKvVimazOayJ0O12o9lsms4AwL5648Lpse1j\nq5e3tQEHiyQCQAkNiieurKxEv9+PWq0W7XZbUUUAAAqlJsIesCwbMAuNRiPW19fj6tWrsb6+LoEA\nAEDhjESYMcuyAQAAUFVGIsyYZdkAAADKKUmSSJIk0jQd3mZ3JBFmzLJsAAAA5ZTneeR5Hg+efWl4\nm92RRJixwbJsoyzLBgAAQBVIIszYYFm2brcbm5ubw2XZWq1W0aEBAADAVBRWnDHLsgEAERH31Vbj\n+KXV8cZLo/dHRJzez5AAYGqSCHug0WhEo9GItbW1OHHiRNHhAAAFeKt/Id648H6SYOt1wbHVywVE\nBQDTMZ0BAAAqLsuyqNfrsby8HPV6PbIsKzokYE4ZiQAAABWWZVm0Wq3odDpx8+bNWFhYiGazGRFh\nyi2wa5IIAMDMqQcA5dFut6PT6USapsNpNZ1OJ1ZWViQRgF2TRAAAZk49ACiPfr8fS0tLY21LS0vR\n7/cLigiYZ5IIAAAl9Mj5K3H9xsZY22jy5ejhQ/HauZP7HRZzqFarRa/XizRNh229Xi9qtVqBUQHz\nShIBAGAHRX+Iv35jw2gOZqLVakWz2RzWROh2u9FsNqPdbhcdGjCHJBEAAHbgQzxVMah7sLKyEv1+\nP2q1WrTbbfUQgLsiiQCwhYJwAFRNo9GIRqOxLRkGsFuSCABbKAgHAAA7u6foAAAAAID5IIkAAADA\nHa2srMSHP/zhSNM0PvzhD8fKysq+7v/UqVNxzz33RJqmcc8998SpU6f2df/cIokAAJRalmVRr9dj\neXk56vV6ZFlWdEgAB87Kyko8//zz8bWvfS2+973vxde+9rV4/vnn9y2RcOrUqbhy5Uo88cQT8S/+\nxb+IJ554Iq5cuSKRUAA1EQCA0sqyLFqt1nBpuoWFhWg2mxERKssD7KPf/u3fjosXL8ZXv/rVWFtb\ni69+9asREfErv/Ir8cwzz+z5/r///e/Hl7/85Xj22WdjbW0tnn322YiIeP755/d834wzEgEAKixJ\nkkiSJNI0Hd6eJ+12OzqdTqRpGouLi5GmaXQ6nV2tb28kA8D03n333XjiiSfG2p544ol4991392X/\neZ7H17/+9bG2r3/965Hn+b7sn/dJIgBAheV5Hnmex4NnXxrenif9fj+WlpbG2paWlqLf70/UfzCS\n4ZlnnolXXnklnnnmmWi1WhIJALt07733bvvW//nnn4977713X/afJEk89dRTY21PPfXU3CXHq0AS\nAQAorVqtFr1eb6yt1+tFrVabqP8sRjIAEPH444/H2bNn4zd/8zfj3/27fxe/+Zu/GWfPno3HH398\nX/b/yU9+Mp577rn4yle+Em+//XZ85Stfieeeey4++clP7sv+eZ+aCABAabVarWg2m8OaCN1uN5rN\n5sRJgGlHMgBwy6Duwa/8yq/Eu+++G/fee2888cQT+1IPISLilVdeiVOnTsXzzz8fzz33XCRJEidP\nnoxXXnllX/bP+yQRAIDSGhRPXFlZiX6/H7VaLdrt9sRFFQcjGdI0HbbtZiQDAO975pln4plnnom1\ntbU4ceLEvu9/kDAoav/cYjoDAFBqjUYj1tfX4+rVq7G+vr6rVRkGIxm63W5sbm4ORzK0Wq09jBgA\nqstIBACgsqYdyQAAjJNEAAAqrdFoRKPRMPwVAGbAdAYAAABgIpIIAAAAwEQkEQAAAICJSCIAAAAA\nE1FYEQBK6L7aahy/tDreeGn0/oiI0/sZEgCAJAIAlNFb/QvxxoX3kwRbVxY4tnq5gKgAgIPOdAYA\nAABgIkYiAMAeeOT8lbh+Y2OsbXT0wNHDh+K1cyf3OywAgKlIIgDAHrh+Y8N0BACgckxnAAAAACYi\niQAAAABMRBIBAAAAmIgkAgAAADARSQQAAABgIpIIAAAAwEQs8Qiwg23L7738/vbRw4f2ORoAACgH\nSQSALd64cHps+9jq5W1tAABwEJnOAAAAAEzESASAGXvk/JW4fmNjrG10esTRw4fitXMn9zssAACY\nmiRCifjgAdVw/cbG2PSHtbW1OHHixHB7W70FAACYE5IIJeKDBxGSSQAAQHlJIkDJSCYBAABlpbAi\nAAAAMBFJBAAAAGAipjMAY+6rrcbxS6vjjZdG74+IOB0AAMDBI4kAFTNtYca3+hfUZAAAAHYkiQAV\nozAjAACwV9REAAAAACYiiQAAAABMRBIBAAAAmIgkAgAAADARSQQAAABgIlZnAADYwX211Th+aXW8\n8dLo/RERp+N2tq2I8/L4krsAMG8kEQAAdvBW/8JUS+aO9h08fmsbAMwb0xkAAIDKy7Is6vV6LC8v\nR71ejyzLig4J5pKRCAAAQKVlWRatVis6nU7cvHkzFhYWotlsRkREo9EoODqYL0YiAAAAldZut6PT\n6USaprG4uBhpmkan04l2u110aDB3JBEAAIBK6/f7sbS0NNa2tLQU/X6/oIhgfpnOAFTOI+evxPUb\nG2NtowXQjh4+FK+dO7nfYQEABanVatHr9SJN02Fbr9eLWq1WYFQwnyQRgMq5fmNjqorqAEC1tFqt\naDabw5oI3W43ms2m6QxwFyQRAACAShsUT1xZWYl+vx+1Wi3a7baiinAXJBH2QJZl0W63hyeoVqvl\nBLWPtn3L/PL4MHYAAA6eRqMRjUZj2whFYHckEWbM8jHFGh3CHnErobC1DQAAgLtjdYYZs3wMAAAA\nVSWJMGP9fj+uXbsW9Xo9lpeXo16vx7Vr1ywfAwAAwNwznWHGPvaxj8WTTz4ZL7zwwnA6w2OPPRYf\n+9jHig4NAAAApmIkwg6yLBsbSZBl2a76J0ly220AAACYR6UZifDI+Stx/cbGWNtolf2jhw/Fa+dO\n7nkc0xZG/NGPfhTf+ta3xpaPuXjxYnzhC1/Y48inV5bfAQAAAOVUmiTC9RsbY1X0ty69sm3Zvj0y\nWhhxEEOn04mVlZWJkgi1Wi3uv//+WF9fH/bvdrtRq9X2IfrplOV3AAAAQDmZzrBFv9+PpaWlsbal\npaWJCyO2Wq1oNpvR7XZjc3Mzut1uNJvNaLVaexEuAAAA7JvSjEQoi1qtFr1eL9I0Hbb1er2JRxIM\nRiuMTmdot9sTjWIAAACAMjMSYYtZjCRoNBqxvr4eV69ejfX1dQkEAAAAKsFIhC2MJAAAAICdGYmw\nAyMJAMph2iV3ASgP53SoBiMRACilaZfcBeaf5aerwzkdqkMSAYBSmnbJXaojSZJtbXmeFxAJ+20W\ny09ve8zL40kI9odzOlSHJAIApTTtkrtUxyBhcGz18tgHSriTrceLY6g4zulQHWoiAFBKgyV3R+1m\nyV0AysM5HapDEgGAUprFkrsAlINzOlSH6QwAJZVlWbTb7eFys61W60DNG7XkLkB1OKdDdUgiAJSQ\nKta3NBqNaDQa24qpATB/nNOhGkxnACih0SrWi4uLkaZpdDqdaLfbRYcGAMABJokAUEKqWAMAUEaS\nCAAlpIo1AABlJIlQQVmWRb1ej+Xl5ajX65FlWdEhAbukijUAAGWksGLFKMYG1aCKNQCw1UFfuYly\nkESomNFibIPKt51OJ1ZWVpxgYM6oYg2zkSTJtrY8zwuIhHk2ehwlF2/97zhiP/mykLKQRKgYxdgA\niIh45PyVuH5jY6zt2Orl4e2jhw/Fa+dO7ndYhRh80Du2ejneuHC64GiYV4PjSGKXoviykLKQRKiY\nQTG2NE2HbYqxARw8129sjH1g3vrBZzShAED5+bKQslBYsWIUYwMAgOqxchNlYSRCxSjGBgAA1TP4\nsnBQE2HwZWG73S46NA4YSYQKUowNAACqxZeFlIUkAgAAwBzwZSFloCYCAAAAMBFJBAAAAGAikggA\nAADARCQRAAAAgIlMlERIkuRTSZL86yRJ/iRJktUPeMx/kSTJD5Mk+eMkSV6YbZgAAABA0e6YREiS\nZCEifisiPh0Rn4iIRpIkn9jymI9HxFMR8bfzPH8oIv7rPYgVAABgLmVZFvV6PZaXl6Ner0eWZUWH\nBHdlkiUefz4i/iTP8z+NiEiS5Hci4nMR8cORxzweEb+V5/n/ExGR5/m/nXWgAAAA8yjLsmi1WtHp\ndOLmzZuxsLAQzWYzIm4t2wjzZJLpDD8TEX8xsn3tvbZRPxcRP5ckyf+WJMm/SpLkU7MKEAAAYJ61\n2+3odDqRpmksLi5GmqbR6XSi3W4XHRrs2iQjESZ9no9HxImIuD8i/mWSJMfzPP/L0QclSfKliPhS\nRMRHPvKRWFtbG3uS0e233377tvdPYreP32qnGPa6/yx/BkXv/25jmGX/iOmOg6Lin/b3UHT/UfP6\nM7zd8+33/ot+H8ziOQ7quaDo92LRx+Gs34d322ea/lU6l0zTZ1b9y3AcTfv6iz6fFd0/ovif4bQx\nFLH/fr8fN2/ejLW1teH+b968Gf1+/65iKfo4mMf+//DqO/HOxnjbsdXLw9tHDkX81vKR2z5H0X9X\nS9M/z/Pb/ouIvxkRr4xsPxURT215zPMR8Q9Gtq9GxF+/3fM++uij+agHz740tt3tdm97/53s9vE7\n2RrDXvef9c+g6P3fTQyz7j/tcVBE/NP+HoruPxAR2/7djSJ+hnd6vv3ef9Hvg1k8x0E8FxT9Xiz6\nONyLvynT/h6Lfi8Xvf+77TPL/kUfR/N4fVi2/mX4GRb9N+lu9v/QQw/lr7766tj+X3311fyhhx66\nqxiKPg7msf+8/13d7/4R8YP8Az7LTzIS4Q8i4uNJkvxsRPybiPi7EfHYlsd8JyIaEfE/J0nyU3Fr\nesOf3l1aA6iCW+eeWxneNy6cLjgaoAij3/BERMTL728fPXxon6MBKE6r1YpmszmsidDtdqPZbJrO\nwFy6YxIhz/PNJEn+UUS8EhELEfHNPM//OEmSX4tb2YkX37vvZJIkP4yImxHxj/M8/7/3MnAAoLy2\nJg8lFIGDbFA8cWVlJfr9ftRqtWi324oqMpcmqomQ5/l3I+K7W9p+deR2HhFffe8fd+m+2mocv7Q6\n3nhp9P6ICBdgHAxZlkW73R7+oW21Wv7QAgBzq9FoRKPRiLW1tThx4kTR4cBdm1VhRWbgrf6FsW9p\ntp5gtg0LhYqyDBJAtVQhMVyF1wAwC5IIQOmMLoM0SKZ1Op1YWVlxwQYwZ6qQGK7CawCYFUkEoHT6\n/X4sLS2NtS0tLUW/3y8oIuCgUhxyelVIDFfhNQDMiiQCUDq1Wi16vV6kaTps6/V6UavVCowKOGgU\nh5yNKiSGq/AaAGblnqIDALxhW6wAACAASURBVNhqsAxSt9uNzc3N4TJIrVar6NAA2KVBYnjUvCWG\nq/AaAGbFSASgdCyDBFAdg8TwoJ7AIDHcbreLDm1iVXgN00qS5P3bF2/9f2uBNuCgkUQASskySADV\nUIXEcBVew7QGCQN/lwFJBACAErqvthrHL62ON14avT8iYj5qNFQhMVyF1wAwC5IIALAHqvQBkOnc\n7TDwt/oXxgo5bv3wum3lCADYB5IIAPABRj/8DUw6B9gHQAYMAwegSiQRAOADDD78HeSl/bIsi3a7\nPZwH3mq1DtQ8cIBHzl+J6zc2xtpGE8FHDx+K186d3O+woDCSCADAjrIsi1arNaxIv7CwEM1mMyJC\nIgE4MK7f2DCyDEbcU3QAAEA5tdvt6HQ6kaZpLC4uRpqm0el0DtSydgDAOEkE9kSWZVGv12N5eTnq\n9XpkWVZ0SADsUr/fj6WlpbG2paWl6Pf7BUUEABTNdAZmzvBXgGqo1WrR6/UiTdNhW6/Xi1qtVmBU\nAECRJBGYudHhr4M5Y51OJ1ZWViQRYE4oIkVERKvVimazOUwKd7vdaDabpjMAwAEmicDMGf4K808R\nKSLeHz22srIyXJ2h3W5LCAPAASaJwMwZ/spBd19tNY5fWh1vvDR6f0TEwVwukPnTaDSi0WhsSyQB\nAAeTJAIzZ/grB91b/Qu+xWcmth0rL49PKQEOjizLot1uD0cFtVoto4KAQkgiMHOGvwJMbzQRFXEr\nobC1DTgYFK0GysQSj+yJRqMR6+vrcfXq1VhfX/cHjrmUJEkkSRJ/fvEXhrcBYL+NFq1eXFyMNE2j\n0+kY5QkUwkgE9oQhd8UxH3928jyPiO3TEQBgPylaDZSJJAIzZ8hdsczHB4BqUbQaKBPTGZg5Q+4A\nAGZnULS62+3G5ubmsGh1q9UqOjTgADISgZkz5A4AYHYUrQbKxEgEZm4w5G6UIXcAAHdP0WqgLIxE\nYOYGQ+4GNREGQ+5MZwCA/fXI+Stx/cbGWNtobZyjhw/Fa+dO7ndYAMwxSQRmzpA7ACiH6zc2FNsF\nYKYkEdgTjUYjGo2GpfEAAAAqRE0EAAAAYCKSCAAAAMBEJBEAAACAiUgiAAAAABMpTWHF+2qrcfzS\n6njjpdH7IyJOBwAAAFCM0iQR3upfsAQRlZFlWbTb7eESl61WyxKX+0hSEgCAUa4PZ6c0SQSoiizL\notVqRafTiZs3b8bCwkI0m82ICImEfSIpCQDAKNeHs6MmAsxYu92OTqcTaZrG4uJipGkanU4n2u12\n0aFxQDxy/kocW708/BcRY9uPnL9ScIQAB0+WZVGv12N5eTnq9XpkWVZ0SLsy7/EDs2MkAsxYv9+P\npaWlsbalpaXo9/sFRcRBc/3Ghkw7QInM+yjFLMvizJkzceTIkcjzPN555504c+ZMRMxH/MBsSSLA\njNVqtej1epGm6bCt1+tFrVabqL/5WgBQLaOjFAeJ3U6nEysrK3PxIfzJJ5+MhYWF+OY3vzlMgjz2\n2GPx5JNPzkX8wGxJIsCMtVqtaDabw28but1uNJvNiaczmK8FANUy76MUr127FleuXBlLgnz729+O\nkydPFh0aUABJBJixQUZ+ZWVluDpDu92WqQeAA2raUYoAZaKwIuyBRqMR6+vrcfXq1VhfX5dAAIAD\nbDBKsdvtxubm5nCUYqvVKjq0idx///3x+c9/fiz+z3/+83H//fcXHRpQACMRAABgD837KMVf//Vf\njzNnzsQXv/jFePPNN+OBBx6Izc3N+MY3vlF0aEABJBEAAGCPNRqNaDQa22odzYNBsmNQ3+nIkSPx\nta99bW6SIMBsSSIAUFpJkmxry/O8gEgADrZ5ToIAs6UmAgClled55HkeD559aXgbAIDiGIkAAACU\n1iPnr8T1GxtjbaNLXh89fCheO2e5SdgvlUkiOLkAAED1XL+xEW9cOD3c3jqlYvSaH9h7lUkilOnk\nkmVZtNvtYfXdVqul8AwAwC7dV1uN45dWxxsvjd4fEXE6ANg/lUkilEWWZdFqtaLT6cTNmzdjYWEh\nms1mRIREAgDALrzVv1CaL4kAuEVhxRlrt9vR6XQiTdNYXFyMNE2j0+kMl8QBAACAeSWJMGP9fj+W\nlpbG2paWlqLf7xcUEQAAwPQefvjhSJIk0jSNJEni4YcfLjokCiCJMGO1Wi16vd5YW6/Xi1qtVlBE\nAAAA03n44Yfjj/7oj+Kzn/1s/PN//s/js5/9bPzRH/2RRMIBJImwgyzLol6vx/LyctTr9ciybOK+\nrVYrms1mdLvd2NzcjG63G81mM1qt1h5GDAAAsHcGCYTf+73fi5/8yZ+M3/u93xsmEjhYFFbcYtrC\niIPHrKysDFdnaLfbiioCAABzrdPpbNv+6Z/+6X3bf5Ik29ryPN+3/XOLkQhbzKIwYqPRiPX19bh6\n9Wqsr69LIAAAAHNv8OXqB23vtTzPI8/zePDsS8Pb7D9JhC0URgQAABh3/PjxePHFF+Nzn/tc/OVf\n/mV87nOfixdffDGOHz9edGjsM0mELRRGhHKYpjYJAACz9frrrw8TCb/0S780TCC8/vrrRYfGPlMT\nYYtBYcRBTYRBYcTdTGcApjNtbRIAAGZvkDBYW1uLEydOFBsMhZFE2EJhRCjeaG2SwR+pTqcTKysr\n3osAAFAgSYQdNBqNaDQahWTYjq1eHm94+f3to4cP7em+76utxvFLq+ONl0bvj4g4vacxQITaJAAA\nUFaSCCXyxoXxD+jHVi9va9tLb/UvjO1vaxJlW4ID9sigNkmapsM2tUkAAKB4CisCpTOoTdLtdmNz\nc3NYm6TVahUdGgAAHGhGIgClozYJAACUkyQCUEpF1iYBKIsiayXBqCzLot1uD5P7rVZLch8OKEkE\ngA/gggkoUtG1kmbJ+XS+WXoZGCWJALADF0wAs+F8Ov8svQyMUlgRYAejF0yLi4uRpml0Op1ot9tF\nhwYwV5xP55+ll4FRkggAO3DBBDAbzqfzb7D08ihLL8PBJYkAsAMXTACz4Xw6/yy9DIxSEwFgB4ML\npsEc3sEFk+G3zIv7aqtx/NLqeOOl0fsjIuazSB/zxfl0/ll6GRgliQCwAxdMzLu3+hfGKvlvXS51\n29KBsEecT6vB0svAgCTCHkiSZFtbnucFRAJMwwUTwGw4nwJUh5oIeyDP88jzPB48+9LwNgAAAMw7\nSQQAAABgIpIIAAAAwEQkEQAAAICJSCIAAAAAE5FEAACAO8iyLOr1eiwvL0e9Xo8sy4oOCaAQlngE\noHQeOX8lrt/YGGs7tnp5ePvo4UPx2rmT+x0WcEBlWRatVis6nU7cvHkzFhYWotlsRsSt5SsBDhJJ\nBABK5/qNjXjjwunh9ta15UcTCgB7rd1uR6fTiTRNh+ejTqcTKysrkgjAgWM6AwAA3Ea/34+lpaWx\ntqWlpej3+wVFBFAcIxEAqBzTIYBZqtVq0ev1Ik3TYVuv14tarVZgVADFkEQAoHJMhwBmqdVqRbPZ\nHNZE6Ha70Ww2o91uFx0awL6TRNhBlmXRbrej3+9HrVaLVqtlvhsAwAE1uA5cWVkZXh+2223Xh8CB\nJImwheq7AABs1Wg0otFobBvZBHDQKKy4xWj13cXFxUjTNDqdjuFqcyZJkkiSJP784i8MbzNfrMcN\nAADlYyTCFqrvVkOe5xGxfR4088GIIAAAKCcjEbYYVN8dpfou7C8jggAAoJyMRNii1WrF3/k7fyeO\nHDkSb775ZjzwwAPxzjvvxNNPP110aHBgGBEEAADlJIlwG4Mh8cD+sh43QDk8cv5KXL+xMdY2ukTq\n0cOH4rVzJ/c7LAAKZDrDFu12O373d383/uzP/ixeffXV+LM/+7P43d/9XcOoYR8N1uPudruxubk5\nXI+71WoVHRrArs1zodjrNzbijQunh/++9akjY9tbEwwAVJ+RCFsYRg3Fsx43VTH6jW1ERLw8/g0u\n1adQLABVI4mwhWHUUA7W42bevXHh9Nj2sdXL29qovtFCsYPzWafTiZWVFUkEAOaSJMIWg2HUg28M\nBsOoTWcAdsM30ECEEY4AVE+pkghluOg2jBqYlm+ggQEjHAGomtIkEcp00W0YNQAwC0Y4AlA1pUki\nlEmWZdFut4cjEVqtlpEIAMCuGeEIQNVIImyhijIAAADsTBJhC1WUmQWjWWA699VW4/il1fHGS6P3\nR0SoM0H5+XICgKqRRNhCFWWm5YIRpvdW/8JYXZytNWq2FeKFkvLlBABVc0/RAZTNoIryKFWU2Y3R\nC8bFxcVI0zQ6nY4iWgAHkC8nAKgaSYQtBlWUu91ubG5uDqsot1qtokNjTrhgBGDAlxMAVI3pDFuo\nosy0rAkOwIAlHgGoGkmEHTQajWg0Gtvm4MIkXDACMODLCYDy2FZT6eX3t48ePrTP0cwvSQSYMReM\nAIzy5QRA8UYLNkfcSihsbWMykgiwB1wwAgAAVaSwIgDAHsqyLOr1eiwvL0e9Xo8sy4oOCQDumpEI\nAAB7JMuyaLVawzo5CwsL0Ww2IyJMcwNgLhmJAACwR9rtdnQ6nUjTNBYXFyNN0+h0OortAjC3JhqJ\nkCTJpyLi6YhYiIh/muf5hQ943H8WEf9rRPz1PM9/MLMogV1ReRagHPr9fiwtLY21LS0tRb/fLyii\ngylJkvdvX7z1f57nBUUDMN/umERIkmQhIn4rIj4ZEdci4g+SJHkxz/MfbnncfRFxJiL+970IFJiM\nyrMA5VGr1aLX60WapsO2Xq8XtVqtwKgOnkHCQMFjgOlNMhLh5yPiT/I8/9OIiCRJficiPhcRP9zy\nuP8hIi5GxD+eaYTAvjOSAWA2Wq1WNJvNYU2EbrcbzWbTdAYA5tYkSYSfiYi/GNm+FhF/Y/QBSZL8\n1Yj4K3meX06S5AOTCEmSfCkivhQR8ZGPfCTW1tZuu+M73X+7x7/99tvb+u/2+XZ6jt0qsv/dxF+2\nn+FB7T/r38NuHv+tTx0Z2/7Cy+9sa9vL/W9Vhp9h0eeCot7LRf8Mp91/ke+jvXqOIs/pRb8PZvUc\n+93/ox/9aPy9v/f34otf/GK8+eab8cADD8Tf//t/Pz760Y9OfW67mz5Fv5eKvjaZxXE8r9cWZel/\nt89R9HFQ9P5n/Rzz3j+imL8pZToOCu2f5/lt/0XEfx636iAMtv/LiPifRrbviYi1iDj23vZaRPy1\nOz3vo48+mt/Og2dfuu39d3p8t9ud6vl2eo7dupt9zrL/buMv48/wIPaf9e+h6ONwv4/jnfY57c+w\n6HNBEe/lon+G0+6/bO+jWTxH0X8Xi34fzOI5iu5fxM+wbO+loq9Npv0dzOI5Dnr/u3mOWR0HL7zw\nQv7QQw/l99xzT/7QQw/lL7zwwr7u/4P6342if49F9y/ib0rZjoO97h8RP8g/4LP8JCMR/k1E/JWR\n7fvfaxu4LyLqEbH2XtGa/yAiXkyS5LO54ooAAEDBLLcKszPJEo9/EBEfT5LkZ5Mk+VBE/N2IeHFw\nZ57n1/M8/6k8z4/leX4sIv5VREggAAAApWC5VZidOyYR8jzfjIh/FBGvREQ/Iv5Znud/nCTJryVJ\n8tm9DhAAAChWlmVRr9djeXk56vV6ZFlWdEi7YrlVmJ1JpjNEnuffjYjvbmn71Q947InpwwIAAMqg\nClMBLLcKszPJdAYAAOCAqsJUgMFyq91uNzY3N4fLrbZaraJDg7kz0UgEAA6W+2qrcfzS6njjpdH7\nIyJO72dIzKn3ii7fun3x1v+3ij4D86IKUwEajUb8/u//fnz605+Od999N+699954/PHH52YkBZSJ\nJAIA27zVvxBvXHg/SbC2thYnTpwYbh9bvVxAVMyjQcJg6zEEzI8qTAXIsiwuX74c3/ve98amZPyt\nv/W3JBJgl0xnAAAAPlAVpgJUYUoGlIWRCAAAwAcafFO/srIS/X4/arVatNvtufoGvwpTMqAsjEQA\nAABuq9FoxPr6ely9ejXW19fnKoEQ8f6UjFHzNiUDykISAQAAqLQqTMmAsjCdAQC2eOT8lbh+Y2Os\nbbSY5NHDh+K1cyf3OyzYNSutwC1VmJIBZSGJAMyUD19UwfUbG1anoBKstALvazQa0Wg0rBYDU6pM\nEkGmHcrBhy8AAKiuyiQRZNoBAABgbymsCAAAAExEEgH2QJZlUa/XY3l5Oer1emRZVnRIUAjvBQCA\naqnMdAYoiyzLotVqRafTiZs3b8bCwkI0m82ICBWAOVC8FwAAqkcSAWas3W5Hp9OJNE2HtTk6nU6s\nrKz44MSB4r0AQBUo4A7jJBFgxvr9fiwtLY21LS0tRb/fLygiKIb3AgBVoIA7jFMTAWasVqtFr9cb\na+v1elGr1QqKCIrhvUBVJEkSSZLEn1/8heFtADioJBFgxlqtVjSbzeh2u7G5uRndbjeazWa0Wq2i\nQ4N95b1AVeR5HnmeR7fbHd4GgIPKdIYKyrIs2u129Pv9qNVq0Wq1zD/eR4Of9crKyvB30G63/Q7m\nkPfSdLwXAACqRxKhYlRDL4dGoxGNRmPbnDnmh/fSbEzzXtg2x/Tl97ePHj40g+gAANgtSYSKUQ0d\nZsN7qVijBawibiUUtrYBALD/1ESoGNXQYTa8lwAAYDsjESpmUA09TdNh226qoRs+DLdM+16CqlAb\nBAAYJYmwg52WbpqXSsyDauiDedyDaujtdvuOfQ0fhvdN814q2n211Th+aXW88dLo/RER3tvcmdog\nAMBWkgg7GCQM5vFDtGroMBvz/F56q39h7Ny1tajhthFH8AGKrg3yyPkrcf3Gxljb6PF79PCheO3c\nyT2Pg+kZ0QJQHZIIFWRlAJgN7yUOuqJrg1y/sSEhVgFGtABUi8KKAMCOBrVBRqkNwm6NjmhZXFyM\nNE2j0+nMxfQwALaTRABgz2RZFvV6PZaXl6Ner0eWZUWHxC4MaoN0u93Y3Nwc1gZptVpFh8YcKXpE\nCwCzZToDAHvCEOb5N8+1QSgPq90AVIskApSQpTapgqKL8jEbaoMwrXle7YZysOoQlIskApSMpTap\nCkOYgYhbiajf//3fj09/+tPx7rvvxr333huPP/64ZCITs+oQlIuaCADsCUX5gIhbU5suX74c3/ve\n9+L73/9+fO9734vLly+rkQIwpyQRANgTivIBEVZnAKga0xkA2BOK8gERpjYBVI2RCADsmUajEevr\n63H16tVYX1+XQIADyNQmgGoxEgGoJCtcAJTDtKszOJ8DlIskAlA5VrgAKI9ppjY5nwOUjyQCAAB7\nqtFoRKPR2LY0HwDzRxIBAKikR85fies3NsbaRofGHz18KF47d3K/wwKAuSaJAABU0vUbG2ND37d+\nC75trj0AcEdWZwAAAAAmIokAwJ7Jsizq9XosLy9HvV6PLMuKDgkogHMBQHWYzgDAnsiyLFqt1nBZ\nt4WFhWg2mxERE1VlB6rBuQCgWoxEAGBPtNvt6HQ6kaZpLC4uRpqm0el0Jl4bHqgG5wKAapFEAGBP\n9Pv9WFpaGmtbWlqKfr9fUERAEZwLAKrFdAYA9kStVoterxdpmg7ber1e1Gq1Pd/3fbXVOH5pdbzx\n0uj9ERGnA9h7RZ4LKJcsy6Ldbke/349arRatVsuUFphDkggA7IlWqxXNZnM4D7rb7Uaz2dyXIcxv\n9S9Y2g9KoshzAeWhNgZUhyQCAHticFG4srIy/Nap3W67WIQDxrmAiPHaGIPEbqfTiZWVFccCzBk1\nEQDYM41GI9bX1+Pq1auxvr7uQhEOKOcC+v1+XLt2bWypz2vXrqmNAXPISAQAAGBPfexjH4snn3wy\nXnjhheF0hsceeyw+9rGPFR0asEtGIgAAAHsuSZLbbgPzwUgEAIAK21ZI9OX3t48ePrTP0XBQ/ehH\nP4pvfetbY7UxLl68GF/4wheKDg3YJUkEgJKyFBYwrdFVSiJuJRS2tsF+qNVqcf/998f6+vqwsGK3\n27XUJ8whSQSAErIUFgBVYqlPqA5JBIASshQWAFViqU+oDkkEgBLq9/uxtLQ01ra0tGQpLADmVqPR\niEajMUyOA/NJEgGghGq1Wpw/fz6+853vDL+x+cVf/EVzRwEAKJQkAkAJpWkaFy9ejIsXL8YnPvGJ\n+OEPfxhnz56NJ554oujQAAA4wCQRgFLaae3oPM8LiKQY3W43zp49G9/85jeHIxHOnj0b3/nOd4oO\nDQCAA+yeogMA2Eme55HneTx49qXh7YOk3+/HuXPnYn19Pa5evRrr6+tx7tw5NREAACiUkQgAJVSr\n1aLX60WapsO2Xq+nJgK7cmz18njDy+9vHz18aJ+jAQCqQBIBoISsp8203rhwemz72OrlbW0AALsl\niQBQQtbTBgCgjCQRAErKetoAAJSNwooAAADARCQRAAAAgIlIIgAAAAATURMBgNJKkuT92xdv/Z/n\neUHRAABgJAIApZXneeR5Ht1ud3gbAIDiSCIAlFSWZVGv12N5eTnq9XpkWVZ0SAAAHHCVms5wbPXy\neMPL728fPXxoz/f/yPkrcf3GxgfGdPTwoXjt3Mk9jwOYf1mWRavVik6nEzdv3oyFhYVoNpsRcWvp\nRwAAKEJlkghvXDg9tn1s9fK2tr12/cbG2D63ru2+LclBaWVZFu12O/r9ftRqtWi1Wj64sa/a7XZ0\nOp1I03R4Lul0OrGysuJYBACgMJVJIsCs+AaYMuj3+7G0tDTWtrS0FP1+v6CIAABATQTYZvQb4MXF\nxUjTNDqdTrTb7aJD4wCp1WrR6/XG2nq9XtRqtYIiAgAASQTYxjfAlEGr1Ypmsxndbjc2Nzej2+1G\ns9mMVqtVdGgAABxgpjNQSkXWJBh8A5ym6bDNN8Dst8HxvrKyMnwftNvtuZtSkyTJtjbLNAIAzC9J\nhBIavehOLt76/yBddBddk2DwDfBg/4NvgE1nmMx9tdU4fml1vPHS6P0REftb9HReNRqNaDQa24q0\nzpPBuauIYrcAAMyeJEIJDS665/mDwzSKrkpflW+Ai/JW/4JVSgAAoKIkESidMtQkqMI3wAAAALOm\nsCKloyo9AABAOUkiUDqq0gMAQPmcOnUq7rnnnkjTNO655544depU0SFRANMZKB01CQAAoFxOnToV\nV65ciS9/+cvxmc98Jr773e/Gc889F6dOnYpXXnml6PDYR5IIlJKaBGB5RACgPL7//e/Hl7/85Xj2\n2WdjbW0tnn322YiIeP755wuOjP0miQBQUpZHBADKIs/z+PrXvz7W9vWvfz2ee+65Pd/3I+evxPUb\nG2Ntoyt+HT18KF47d3LP4+AWSQQAAABuK0mSeOqpp4YjECIinnrqqR1HTs7a9RsblhAvEUkEAAB2\ndF9tNY5fWh1vvDR6f0SEkVLMhyzLot1uD2tutVotNbd24ZOf/ORw1MFnPvOZ+MpXvhLPPfdcnDxp\nBMBBI4kAAMCO3upf8O0flZBlWbRareh0OnHz5s1YWFiIZrMZESGRMKFXXnklTp06Fc8//3w899xz\nkSRJnDx5UlHFA8gSj/z/7N17nBxVlQfw38k7BAgoGhQkQXxNGEQe6wOj0kZAnuITBlQkIwjKbBRX\nEuhdIa4tGVxcs6ME0Qmiqw0+MCJJCBg6akCQNwkZUSQEo4LiagiBQAJn/zhVMzWTnulbdStTVT2/\n7+fTn5numVt9u7v61q1T955LRERERNTUKpUKuru7USqVMGbMGJRKJXR3d6NSqWRdtUJZvnw5Xnjh\nBdRqNbzwwgsMIIxQDCIQEREREVFT6+npwYwZM/o9NmPGDPT09GRUI6LiYhCBiIiIiIiaWktLC1at\nWtXvsVWrVqGlpSWjGhEVF4MIRERERETU1MrlMtrb21Gr1bBt2zbUajW0t7ejXC5nXbVYqtUqWltb\nMXPmTLS2tqJarWZdJRqBmFiRiIiIiIiaWpg8saOjo3d1hkqlUqikikwOSXnBkQhERERERNT02tra\nsGbNGqxYsQJr1qwp3Ik3k0NSXnAkQhPiGrhERM1DRPp+77SfqppRbYiIRqbtljO9oe/+5Iljh6UO\nTA5JecEgQpPhMCciouYSBgxWrlyJww8/PNvKEBGNQI/MP7bf/Wlzl2z32HAIk0OWSqXex5gckrLA\nIEKTiQ5zCjuc3d3d6OjoYBCBiIiIiKigyuUyTjrpJEyaNAnr16/H1KlTsXnzZixYsCDrqtEIw5wI\nTYbDnIiIiIiImlt0qhvRcGMQoclwDVwiIiIiouZTqVRwzTXXYN26dVixYgXWrVuHa665hokVadhx\nOkOTCdfADXMihGvgsnEhorjykESKiIiIDEccU14wiNBkmmENXCLy5xsAyEsSqazs0jIXB1w1t/+D\nV0X/DgAj5/0gIqLsMbEi5QWDCE2ora0NbW1tzORNNEKN9ABAGjb1zO/3ng1sT7cL0hAREe1gHHFM\necEgAhERERERUc5xxDHlBYMIRJQrB867ERuf2drvsehV38kTx+K+C48c7moRERERZY4jjikPGEQg\nolzZ+MxWDiMnIiIiIsopBhGIiIiIciy6Hrx02k9Vzag2REQ00o3KugJERERENDhVhaqiVqv1/k5E\nRMmICEQE6zuP6/2d4mEQgYiIiIgo56rVKlpbWzFz5ky0traiWq1mXSWiQmJg1h+nMxARERER5Vi1\nWkW5XO5d2m/06NFob28HAGbmJ6Jhx5EIREREREQ5VqlU0N3djVKphDFjxqBUKqG7uxuVSiXrqhHR\nCOQURBCRd4vIgyLykIjMrfP3c0VkrYjcLyIrRGRq+lUlIiIiIhp5enp6MGPGjH6PzZgxAz09PRnV\niIhGsobTGURkNICvAzgCwAYAd4jIdaq6NvJv9wA4VFWfFpGzAVwC4KQdUWEiIiIiopGkpaUF8+bN\nw+LFi9HT04OWlhaceOKJaGlpybpqRDQCuYxEeCOAh1T1YVV9DsDVAN4T/QdVranq08Hd2wDsnW41\niYiIiIhGplKphM7OTsyaNQtLlizBrFmz0NnZiVKplHXViGgEcgki7AXgj5H7G4LHBtMOYJlPpaj4\nRnoG4XC5mFKpxKVjFsLn6AAAIABJREFUiIiIyEutVsOcOXOwaNEiHHvssVi0aBHmzJmDWq2WddWI\naASSRktaiMgHALxbVT8e3P8IgDep6jl1/vfDAM4B8A5VfbbO388EcCYATJky5ZCrr7560Of92A2b\n8e13T4rxUvzLf2rFZmzeOvjfJ40Fvj5z8G12rO9o+BxdU7uc6/PUU09h5513dv7/tMsn/QxWrFiB\n7u5ufO5zn8O+++6LdevW4ctf/jLa29sxc+bMWNvK+j3I6j1McxvDXX7g/w98Dxttz7e8yzbjyno/\nyLp8HuoQ9zPgfpi/509SPm+fY9bHFN/ywPC36QMVfT9OYxtJys+cORPLly/HmDFjestv27YNRx11\nFFasWLHDnz/N8km2wf0w/W0UrfyOOC5nXYe8fwalUukuVT207h/DtTEHuwF4C4DlkfvnAzi/zv+9\nC0APgJc22qaq4pBDDtGhTJ1z/ZB/byRJ+YFlarVarG36lh9oYPm4fMsn/Qz2339/vfnmm/vV4eab\nb9b9998/9rayfg+yeg/T3MZwl8/b9yhpmaHqMNzPn3X5PNQh7mfA/TB/z5+kfN4+x6yPKb7lVYe/\nTR+o6PtxGttIUr6Z+lZJtsH9MP1tFK38jjguZ12HvH8GAO7UQc7lXaYz3AHg1SKyr4iMA3AygOui\n/yAiBwH4BoATVPWvDtukHSjrqQRpZBDO+jUQERER5UW5XEZ7eztqtRq2bduGWq2G9vZ2lMvlrKtG\nRCNQw9UZVHWbiJwDYDmA0QAWqeoDIvIFWHTiOgBfBrAzgB8Gc78fVdUTdmC9aRDVahXlchnd3d14\n/vnnMXr0aLS3twMA2trahqUOLS0tWLVqVb9kP6tWrXLOIJyH10BExTdt7pL+D9zQd3/yxLHDXBsi\nouTC/k9HR0fv6gyVSoX9IiLKRMMgAgCo6lIASwc89vnI7+9KuV6UUKVSQXd3N0qlElauXInDDz8c\n3d3d6OjoGLYDTRgtD4MAYbS8Uqk4lc/DayCiYntk/rH97k+bu2S7x4iIiqStrQ1tbW29faORhoFh\novxwCiJQcaQxlcCXb7Q8D6+BiIiIiPKBgeE+1WoVlUqlt49dLpd5kY2GHYMITcZ3KkFafKLleXkN\nRERERER5wSm/lBcuiRWpQJoh8U4zvAYiIiLqIyIQEZRKpd7fiSie6JTfMWPGoFQqobu723nKMFFa\nOBKhyTRD4p1meA1ERETUx1YLG9nD0Il8ccov5QWDCE2oGRLvNMNrGMmY/IiIiIgG4nx+P5zyS3nB\nIEITYgPN9yBLvsmPdmmZiwOumtv/wauifwcAXsUiGi5sT4koDZzP7893BTSitDCI0GTYQPM9KLpN\nPfP7BR0GjkbZbpQDEe0wWbenDCoSNY88LOFdLxdHONWmCDjll/KCiRWbDBOu8D0gonwJk8it7zyu\ncAnlsm5PN/XMx+rTVvfeuqZ29bu/qWf+sNSDiPzlYT6/qkJVMXXO9b2/F01bWxvWrFmDFStWYM2a\nNQwgUCYYRGgyeWigs8b3gIjyJOyo1mq1wnVa2Z4SUVrC+fxRnM9PVEwMIjQZNtB8D4iI0sL2lKhP\ntVpFa2srZs6cidbWVlSr1ayrVChcwpuoeTAnQpNhwhW+B3kRHbItnfazSFdgiYjtKVEo6/wgzYDz\n+YmaB4MITYYNNN+DvAgDBlymk6i42J4SmTwkBWwGXMKbqDlwOkMTYsIVvgdERGlhe0rE/CCUH5xW\nQ3nAIAIRERER0RDSyA/Ckz/yFU6r6erqwvLly9HV1YVyucx9iYYdgwhNiAcpIiJKC48pRP5JAXny\nR2nIetldohBzIjQZJv4hIqK08JhCZHzzg6SRU6FaraJSqfQ+f7lc5vdwhOG0GsoLjkTIIZ+rPoxQ\nEhFRWtI4pnAkAzULn/wgvid/HMlAAJfdpfzgSISc8b3qwwglERGlJa0TH45koJEuPPkrlUq9j8U5\n+ePqEARw2V3KD45EyJlKpYJTTjkFHR0dOOqoo9DR0YFTTjnFuXFghJKIiNLie0zh6Dgi45tTgReJ\nCLDga6VS6XeewGV3KQsciZAza9euxdNPP73dVZtHHnnEqTwjlERElBbfYwpPfIiMb04F35EM1Dza\n2trQ1tbWOyKFKAsMIuTMuHHjcM455/QbrnbOOefgggsucCrve5AiIiIK8cSHKD0+J3+8SNQcmByT\nmgWDCDnz3HPPoaurCwcddFDvQaKrqwvPPfec8zYYoSQiojzgiQ9ROniRqPiYI4aaCYMIOTN9+nSc\neOKJ/Q4Sp556KhYvXpx11YiInB0470ZsfGZrv8emzV3S+/vkiWNx34VHDne1KCbfTi9PfIjSw4tE\nxcbkmNRMGETImXK5XLfDxqs2RFQkG5/ZikfmH9t7f2CnNxpQoPxKo9PLEx8iIuaIoebC1RlyJo2s\nq1yTm4iI0sBOLxFROriCGjUTBhFyqK2tDWvWrMGKFSuwZs2a2AGEcrmMrq4uLF++HF1dXSiXywwk\nxMRADBERO70hHhOIyJfvMp9EecLpDE2G8638MfENEZFhYkQeE4goHcwRQ82EIxGaDIee+osGYsaM\nGYNSqYTu7u4R1WkmIgLSmWJXdDwmEFFafEYbE+UJgwhNhkNP/TEQQ0TUZ6R3enlMoLRwWgwRNQtO\nZ2gyHHrqLwzElEql3scYiCEiKp5dWubigKvm9n/wqujfAeBYDIXHBEoDp8UQUTPhSIQmk5ehp0WO\ntjPxDRFRc9jUMx+rT1vde+ua2tXv/qae+Q23wWNCc8i6X8JpMZSWrPdlIoAjEZpS1mtyFz3azsQ3\nREQU4jGh+PLQL+G0GEpDHvZlIoAjEWgHaIZo+0ifA0xERH14TCi2PPRLmLPKiAhEBKVSqfd3cpeH\nfZkI4EgE2gEYbSciIqK8yEO/pFwu46STTsKkSZPw6KOPYp999sHmzZuxYMGCYatDHqgqAGDa3CV4\nZP7Q+Uhoe3nYl4kAjkSgHYDRdiIiIsqLvPVLwhNporjyti/TyMWRCJQ6rhBBRETUPKbNXdL/gRv6\n7k+eOHaYaxNfHvollUoF11xzDUqlUm/Oqlqtho6ODk6PIWd52JeJAAYRUlf0A20amISKyETnekqn\n/eQVKCIqkoFDzos4DD0P/RIOQyfAEiNWKpXe/bBcLsfaD/OwLxMBDCKkqhkOtGnJeoUIojwIAwb8\nHhARZSvrfkk4DL1UKvU+xmHoIwtXVqBmwpwIlEtcA5eIiIiaRTgMvVarYdu2bb3D0MvlctZVo2GS\nxsoKYSCiq6sLy5cvR1dXF8rlMvvJNOw4EoFyh5FaIiIiaiYchk5pTGmJBiLCUTXd3d3MrUHDjkEE\nyp0iN5AHzrsRG5/Z2u+xaJ6MyRPH4r4LjxzuahUOc4sQEVGzyXpKBWUrjSktzK1BeZG7IAITkVGR\nG8iNz2ztlwdjYEdhu5Nj2g5zixARNQ8G1/v4JtWjYktjZQXm1qC8yF0QgYnIiA0kERFRc2Bw3XCq\nJqUxpYVLPFJe5C6IQMQGkoiIiJpJkadqNoO8jIjxndLC3BqUFwwiUO60tbXh1ltvxdFHH41nn30W\n48ePxxlnnMEGkoiIiAqpyFM1m0EzjYhhbg3KAwYRKHeq1SqWLFmCZcuW9Rvyd9hhhzGQQCNCXq6Y\nEBFROvIwVZM5GYgoLQwiNKFocspQkZJTcsgfjXTNdMWkyLhKCBGlJeupmszJQERpYhChCYUBg6Jm\nteeQPyLKGlcJIaI0ZT2XnRdoiChNDCJQ7rS0tGDevHlYvHhx74H2xBNP5OoMREREI1QzLAGe5Vx2\nXqBpHkUfcUzNYVTWFSAaqFQqobOzE7NmzcKSJUswa9YsdHZ29ptHSERERCOHqkJVUavVen8nd2FO\nhigun11M4f4/dc71/C5QZjgSgXKnVqthzpw5WLRoUe9IhDlz5mDx4sVZV42IiIiocMrlMk466SRM\nmjQJ69evx9SpU7F582YsWLAg66oRUQExiEC509PTg3vuuQdf/OIXe4f8bd26FRdffHHWVSMiIiIq\ntHrD4YmI4mAQgXInD8sgEZGfXVrm4oCr5vZ/8Kro3wGAiQqJiIZDpVLBNddc0y+xYq1WY2JFIkqE\nQQTKnayXQSIif5t65nOZSiKinGBixXQ0Q4JPojQwiEC5k/UySERERETNhCtfpSMMGGSxwgZRnjCI\nQLmU5TJIRERERM0kXPmqs7MT06dPx9q1azFnzhycddZZWVeNiAqISzzmULVaRWtrK2bOnInW1lZU\nq9Wsq0REREREBRVd+erYY4/FokWLMGfOHNRqtayrRkQFxJEIOVOtVlEul3vzAYwePRrt7e0AwOH8\nBcBkckSUtmq1ikql0jsEuVwu83hARLFw5SsiShODCDlTqVTQ3d3dL3tud3c3s+cWBJPJEVGaGFiu\n027e0Hd/8sSxw1wbomLiyldElCYGEXKG2XOJiCiUh8ByvTXlhysbeTQoC1hAYeBjRNQYV74iojQx\niBCRh6HojBQTEVEoD4HlMGDAE3ii4mpra8PFF1+Md77znb2PHXDAASNmRBMRpYtBhIg8DEVnpJiI\niEIMLBNRGo466iisXr0aZ599No455hgsXboUCxcuxFFHHYXly5fv8Oc/cN6N2PjM1n6PRfvVkyeO\nxX0XHrnD60FE6WAQIWfCiHBHR0dvEq1KpcJIMRHRCMTAMlHzyDJJ6k033YSzzz4bl112GVauXInL\nLrsMAHD55ZcPy/NvfGZrKhfqotOrpNN+Dtf0KmoeTFjsj0GEHGpra0NbW9t2DSwREY0sDCwTNYes\nk6Sq6nYrMVx88cVYuHDhDn/uNIUBA/aRKamsv4vNYlTWFSAiIqLBtbW1Yc2aNVixYgXWrFnDTg5R\nAUWTpI4ZMwalUgnd3d3DNqpIRHD++ef3e+z888+vmziVdpxqtYrW1lbMnDkTra2tqFarWVdpxMn6\nu9gsOBKBqA4OcyIiIqK0ZJ0k9YgjjugddXDMMcfgk5/8JBYuXIgjj2QeguHCK+D5kPV3sVlwJALt\nEEWOtFarVcyePRubN28GAGzevBmzZ88u1GsgIiKi/AiTpEYNZ5LU5cuX48gjj8Tll1+O448/Hpdf\nfjmOPPLIYUmqSIZXwPMh6+9is+BIBEpd0SOt5513HrZu7Z9BeOvWrTjvvPMKUX8iIiLKlzwkSQ0D\nBswnkA1eAc+HPHwXmwGDCJS6aKQ1PFB1d3ejo6OjECfhGzZswJ577olFixb1BkFOOeUUbNiwIeuq\nERERUQExSSpxyd58aGtrw6233oqjjz4azz77LMaPH48zzjiD38WYcjedocjD4MmkEWnNej8499xz\n+w03O/fcc4f1+cmSQIkI1nce1/s7ERFRUTFJ6sgWXgGv1WrYtm1b7xXwcrmcddVGlGq1iiVLlmDZ\nsmW46aabsGzZMixZsoTnnDHlaiRC0YfBk/GNtOZhP7j00ktx6KGH9g5zuvTSS4fleakPl3HKB67J\nTUREAJNO++JolHwo+ojpvMhVEIEfanPwnWtUqVRw4IEH9htmdPTRR8dqaH0OdHvvvTc2bdqEWbNm\nYf369Zg6dSq2bNmCvffe26k8UTNhMIeKbtrcJf0fuKHv/uSJY4e5NkTFlIcLPM2gra0NbW1tPKZm\niLkp0pGrIAI/1ObgG2l94IEH8OCDD6KzsxPTp0/H2rVrMWfOHGzbts2pvO+B7pJLLsHs2bP7PTZu\n3DhccsklTs9PRET58Mj8Y/vdnzZ3yXaPEY0UPhdYeKGPmgVzU6QjVzkRuORG8/CZ9yciOOOMM3Du\nuediwoQJOPfcc3HGGWc4z4n3XUKnra0NCxYswKRJkyAimDRpEhYsWMCDJBERERVSeIGlq6sLy5cv\nR1dXF8rlsvM8cF7oo2bB3BTpyNVIBC65QYANn166dClqtVrvfrB06VLnedhpHOg43IyIiIiahe9I\nAl69pWbB3BTpyFUQgR+qnwPn3YiNz2zt91h0LujkiWNx34VHDne1Yhs/fjxmzJjRbz+YMWMGHnvs\nMafyPNBRiEkBiYiI/C+w8EJfOuqNqmW/ZPjxYqG/XAURgOw/1CInYNr4zNZ+cz0HvofbvbacOuOM\nM3D55ZdvlxPhrLPOcirPAx2FmBSQiIjI/wILL/SlI+yXMD8LFV3ugghZYgKmfOjq6gIAXHDBBb2r\nM5x11lm9jzeS9YGuyIEoIiIiaj5pXGDJ+kLfSNcsI46pOTCIQLnU1dWFrq6uxAeqrA50DEQRERFR\n3mR9gYX8NcuIY2oODCIQNSnmAyAiIsqPrOfDj+SRBLu0zMUBV83t/+BV0b8DAC/6ELnK1RKP1Dyq\n1SpaW1sxc+ZMtLa2Oi8hROlRVagqarVa7+9ERESUjfBYPHXO9TwuD7NNPfOx+rTVvbeuqV397m/q\nmZ91FYkKhUEESl21WsXs2bOxefNmAMDmzZsxe/bsQgUSGAQhIiIiIiLaHqcz0HZ8h8Gfd955GDNm\nDBYtWoTnn38eo0ePxqmnnorzzjuvEHPvqtUqyuVyb/Kh0aNHo729HQAKUX+ivGCSUSIiIqLmwyAC\nbcd3WbwNGzZg7ty5/ZL3nHbaaZg/vxhDxSqVCrq7u1EqlXrfg+7ubnR0dDCIQOSISUaJiPIl65wM\nRNQ8GESgHWLhwoXYfffdAdh0hoULF2ZcI3c9PT2YMWNGv8dmzJiBnp6ejGpERDT8uJwYNZNqtYpK\npdJ7caNcLo+4CwNhwIBBXSLyxSACpW7UqFF48sknMXHiRADAli1b8OSTT2LUqGKk4GhpacG8efOw\nePHi3s7GiSeeiJaWlqyrRkQ0bLicGDULTlMkIkpXMc7qqFBeeOEFABbxfuGFF3oj3+HjeVcqlXDx\nxRfjiSeewAsvvIAnnngCF198MUqlUtZVIyIiopii0xTHjBmDUqmE7u5uVCqVrKtGRFRIDCLQDnHy\nySdjjz32wKhRo7DHHnvg5JNPzrpKzhYvXoxddtkFEydOxKhRozBx4kTssssuWLx4cdZVIyIiopg4\nTZGIKF2czkA7xM0334xqtdo7bDDucMEsk/9s2LABN954I4444oje4bs33XQTjjySc3+JiIiKpqWl\nBatWreo3onDVqlWFm6ZY5LwOu7TMxQFXze3/4FXRvwMA8zQQFQWDCJS6vffeG5s2bcKsWbOwfv16\nTJ06FVu2bMHee+/tvA0m/yEiIqI0lMtltLe39+ZEqNVqaG9vL9R0hqLnddjUMz/zHCtcdpgoPQwi\nUOouueQSzJ49u99j48aNwyWXXJJRjeLZe++9cdppp+F73/teb2fjtNNOixUEISIionwIT7KjS09X\nKpVCnHyHuPy0n2ZYdpijOShPGESg1IUHs0qlAhHBpEmT8KUvfakwB7kwCDJr1iw8+uij2GeffbBt\n2zZceumlWVeNRgh2FIiI0tXW1oa2trbtroAXBfM6UB5GcxCFGESgHaLIB+toEARA4YIgVHzsKFAz\nKfI8bqK84PLTRJQnDCIQ1VHkIAhRKJqgVDrt53AlKCUCij+Pm/xxZFU6SqUSOjs70dnZienTp2Pt\n2rWYM2cOzjrrrKyrRkQjEIMIRERNKgwYMBhGWeE8buLIqnTUajUcd9xxuOCCC/Dss89i/PjxOO64\n41Cr1bKuGhGNQAwiEBER0Q7BedxEwIHzbsTGZ7b2eywaPJk8cSzuu3DoZaTXrl2LzZs3Y9myZb2j\nesJVsCj/0tgHiPKEQYQdgEOIk2uWRpb7ABGRzeNetWoVSqVS72OrVq3iPG4aUTY+s9V7NMa4cePQ\n0dHRb1RPR0cHLrjggoZl89K3GslLLKaxDxDlSdMFEfJw8sYhxMk1SyPLfYAoH/JwTBjJyuUy2tvb\ne3Mi1Go1tLe39yauJSI3zz33HL72ta/hoIMO6v0ufe1rX8Nzzz3XsGwe+lbNsMQiEfVpuiACT96I\niCjEY0K2wrwHHR0dvRnlK5UK8yEQxTR9+nSceOKJ/b5Lp5xyChYvXpx11YhoBGq6IMJIlqcMyNGr\nfyFe/SNyN5KHfVJz4Wo3RP7K5XLdlU44qoeIssAgQhPJUwbkMGBQ1OFqDIJQljjsk9LEKR1ExcdR\nPQTwAgPlB4MIRHUUPQhCRBRqhikdDIQQcVTPSMcLDJQno7KuABEREdFQVBWqilqt1vs70UhTrVbR\n2tqKmTNnorW1FdVqNesqEdEIxZEIlKq8LCOUVNHrT0RERM2nWq3WzYkAgFMaCiBPecuI0sAgAqXK\ndxmhrBvZPCyDRERERBRVqVTQ3d2NUqnU2zfp7u5GR0cHgwgFkKe8ZURpYBChyRQ94QobWSIiovxh\nXops9fT0YMaMGf0emzFjBnp6ejKqERGNZAwiNBEmXCEiIqIdoRkSdBZZS0sLxo0bt93j+++/fwa1\nIaKRjkEEopziVR8iylLW08uoeRR9lKSvNL5L5XK5NyfCx5Y+iW8fsyva29tRLpeH5fmJiKIYRCCK\nyNOBlld9qBkwGFZcnF5GaeAoyXS+S2Heg46ODjy6tgcdy1pQqVSc8iHwu5wPIz2YRs2FQQRKVRon\n4Vk2sjzQEqWr6MEwBkGIKC/a2trQ1taGaXOXYM0IC8QUHYNp1Gycgggi8m4ACwCMBvAtVZ0/4O/j\nAXwHwCEA/g7gJFV9JN2qUhH4noSzkSWiPCl6EISIii+N5ad5Fbx5MLhNedAwiCAiowF8HcARADYA\nuENErlPVtZF/awfwD1V9lYicDKATwEk7osJEOxoPtJQX7ChQ1tge5kO1WkWlUkFPTw9aWlpQLpe5\nrF/B+HyXfJef5gWaPs1wXC16cHvChAl49tlne++PHz8eW7ZsybBGlITLSIQ3AnhIVR8GABG5GsB7\nAESDCO8BcFHw+48AfE1ERIv2rQwUvYHJuv5F7nSGB9Xoexgq0j5AzaHoHQUqNp545EO1Wu1NqPf8\n889j9OjRaG9vBwAGEgrC97uUp3xNvrLuo2Z9XM369WctDCBMmTIF8+fPx9y5c/H4449jwoQJDCQU\njEsQYS8Af4zc3wDgTYP9j6puE5GNAF4M4Ik0Kjncsm5gfGVZ/7ROwrNuZIu+DxARpSXr9jgNRX4N\nlUoF3d3dKJVKvcek7u5udHR0FCqIUOTPIGubemwW8frO47b729Q51ztfoMnDZzDS+1cj/fWHAYTH\nHnsMK1euxGOPPYY999wTjz/+eNZVo5ikUeMhIh8A8G5V/Xhw/yMA3qSq50T+Z03wPxuC+38I/ueJ\nAds6E8CZADBlypRDrr766kGf96mnnsLOO++c6EWlUT4PdSh6+TzUoejls6xDqVTa7rFarTZsz59W\n+TzUoejl81CHopfPQx2KXj4Pdcii/MyZM7F8+XKMGTOmt/y2bdtw1FFHYcWKFc7baZY2PevyPtvg\nZ5CfOhS9fJJtdKzvaPg/XVO7dlh5wL4DV155JaZNm9Zb/0ceeQSnn356w+9CGs8/UNz38GM3bAYw\neEBv0ljg6zMnDVo+688gbvlSqXSXqh5a9x9VdcgbgLcAWB65fz6A8wf8z3IAbwl+HwMbgSBDbfeQ\nQw7RodRqtSH/3ohv+TzUoejl81CHopfPQx2KXj4PdSh6+TzUoejl81CHopfPQx2yKL///vvrzTff\n3K/8zTffrPvvv/+w1YHl81WHopfPQx2KXj4PdUhSHoBOmTKlX/kpU6aonZLu+OdPexvNXh7AnTrI\nufyohuEI4A4ArxaRfUVkHICTAVw34H+uA3Ba8PsHANwcPDERERERJVQul9He3o5arYZt27ahVquh\nvb0d5XI566oREcUyfvx4PP7449hzzz3xyCOP9E5lGD9+fNZVo5ga5kRQy3FwDmy0wWgAi1T1ARH5\nAiw6cR2AbgDfFZGHAPwfLNBARERERB7CvAcdHR29qzNUKpVC5UMgIgKALVu2YMKECXj88cdx+umn\nA+DqDEXlklgRqroUwNIBj30+8vsWAB9Mt2pERERE1NbWhra2thGbjI2ImkcYMGB7Vmwu0xmIiIiI\niIiIiBhEICIiIiIiIiI3DCIQERERERERkRMGEYiIiIiIiIjICYMIREREREREROSEQQQiIiIiIiIi\ncsIgAhERERERERE5YRCBiIiIiIiIiJwwiEBEREREREREThhEICIiIiIiIiInDCIQERERERERkRMG\nEYiIiIiIiIjICYMIREREREREROSEQQQiIiIiIiIicsIgAhERERERERE5YRCBiIiIiIiIiJwwiEBE\nREREREREThhEICIiIiIiIiInDCIQERERERERkRMGEYiIiIiIiIjICYMIREREREREROSEQQQiIiIi\nIiIicsIgAhERERERERE5YRCBiIiIiIiIiJyIqmbzxCJ/A7B+iH/ZA8ATHk/hWz4PdSh6+TzUoejl\n81CHopfPQx2KXj4PdSh6+TzUoejl81CHopfPQx2KXj4PdSh6+TzUoejl81CHopfPQx3yXn6qqr6k\n7l9UNZc3AHdmWT4PdSh6+TzUoejl81CHopfPQx2KXj4PdSh6+TzUoejl81CHopfPQx2KXj4PdSh6\n+TzUoejl81CHopfPQx2KXJ7TGYiIiIiIiIjICYMIREREREREROQkz0GEKzIun4c6FL18HupQ9PJ5\nqEPRy+ehDkUvn4c6FL18HupQ9PJ5qEPRy+ehDkUvn4c6FL18HupQ9PJ5qEPRy+ehDoUtn1liRSIi\nIiIiIiIqljyPRCAiIiIiIiKiHGEQgYiIiIiIiIicMIhARERERERERE4YRIgQkdEi8pmM69AhIrtn\nWYeiE5EXp7it3UXk9Wltj+IRkZ0yfO5JIjIq+P01InKCiIwdxudPbT8uMhGZKCKvTVjW6z0Ukbe6\nPLYjFX0/yFP9RWRXEXlReMu6PiNJ1n0bETk+bM/zIIu+RRrfRZ/2uNmIyCgR2TXrehSNiIx3eWyQ\nsiIiHxaRzwf39xGRNyasx7D2L0XkZyJy3WC3Ya7LS0Tkv0RkqYjcHN7ibic3DepgROR0x/97nYjM\nFJGdBzz+bteY7gK6AAAgAElEQVTnUtXnAbTFrOLAerxVRG4Skd+JyMMisk5EHo6xiSkA7hCRH4jI\nu0VEYj7/m0XkDhF5SkSeE5HnReTJGOX3FpGfiMjfROSvIvJjEdk7Zh2miEi3iCwL7k8XkfYY5S8V\nkf3jPOcAt4nID0XkmLjvX/D8K8POJoC7AXxTRL4ScxuvD0463xfeEtTjMBE5RUQ+Gt5ilPXaD4MG\n5gIRuUJEFoW3GOV3E5F/FZGviMj/hLcY5Q8TkbUAfhvcP1BELnMs+6Khbq51APBLABNEZC8ANwL4\nCIBvx3gN44PP7wIR+Xx4i/H8vvux1/cwKOO7H+0kIv8hIt8M7r9aRI6LUf54APcCuCG4/4aYB1uv\n9xBAl+NjQxILUL9crMOzj4jsE6O472uAiMwIj6XBd3vfGGUza4+j7We9W4ztfEJEHgNwP4C7gtud\n8V7Gdtsctr5J8P+JjwdB+deIyDdF5EZJ0GkU49N59+3beLUlAE4C8HsRuUREXhfnuSN1+KCI7BL8\n/u8icq2IHByjvFffIni+YyV5MMT3mOLbHkNEZgfvgQTHp7tF5MgY5feT4IRTRA4X62fsNozlvx/U\nfxKANQDWisjnYpS/JCg/VkRWiPW1P+xaPtjGW4PnR/Cd/IqITI1R3reP7vtd/LXjY/VcBuAt6DtX\n2wTg6zGe26t/GdlGkpPw/wJw6RC3WDzbo+8B6AGwL4B5AB4BcEfcOkBVc30D8KjD//wrgAcBLA7e\niPdE/nZ3zOf7bwBfA/A2AAeHtxjlfwvgaAAvBfDi8BazDgLgKABXA3gIwJcA7OdY9k4ArwJwD4DR\nAE4HcHGM574pKDMmuH0MwE0x678MwIcA3BfcHwNgdYzyHwdwC4DbAZwFYHKC9+8IANXI+/eaGOXv\nidRjXvD7/THKLwo+h6sAXBncFsV8Dd8FcCuswewKbv8zXPth8Nydwef4/vAWs/xXgn3ptPAWo/zt\nAF4RfhbBY2scy64D8HDw83kATwD4e/D7uhh1uDv42QHgvOD3e2OUvwHANQDOA/DZ8DaM+7HX9zCl\n/Sh8/WuC+zvFfA/vAjB5wH4Qpy1J9B7COimfBfBHAOdGbheF72eMOnQE++ADAFYHtzjtie9+cCGA\nnwH4XXD/5QBuiVE+s/YYfe3nEgD/APDj4PZ/AK6PUYffA9gjTr0dtjlsfRN4Hg+CbdwH4GwAbwRw\nSHiLUX4hrLPeE9zfHcAdCfaFpH0br7YkKLMrgE8AuA120nImgF1ilL8/+DkDwEoAxwK4PUZ5377F\nu2Cd/z8AmA/gtQnef5+2xKs9DvfD4OdRAK4FsH/M78K9sGPZqwD8DsCXASwdzvLBz1NhJ35jY36G\nYfn3AugO3s+4x5T7g8/yQFhf/1MAfhGjvG8fPdF3EcCeQbvTA+Ag9J1jHQ7gt47PHfbLovtg3Pcv\ncf8y8v83AmgPXss7YP3+zjjb8L35tEcA7opuI/g9VnuuqvkIIgRfiHq31QCedSi/GsDOwe/TYCdw\nswfuaI51qdW53RyjvPMBpcF2DgTwVVgnfmHQUFziUO7OOjuG83tQryFwaRwG/P8dA5837jaCMq+F\nHSjXA/g+gFKCbZQA/AnAPwH8AsBbHPenlwWNxL8MfD8dyq9N4fPvQbAEa8LyXvthks9rQPlYwbvB\n6u95oPgmgGMi948G8I0Y5e+BnUzeBmD/cN+IUT7WQanBtpLsx97fwxT2ozvr1MH5cwRwW53yzt/F\npO8hrFNwIYC/BD/D27kAXh3zeR9CzEByyvvBvbAOp9d7mFV7HJS7EcDLIvdfBmB5jOe9AcBOCeqb\ni76J7/Eg2MZdnuW9O+9BGd++je/zvxjAp2FBnWWwAFOHY9kwCHAxgFMSfI5efYvIdibDAnp/hAWX\nTgcwNuY2krQl3u0x+k58FgB4b4L3MNwPPxd+bsNc/gFY4OCHAN4Rdz9E34n3twC8O275Aa/h8wDa\no485lvfqGyT9LsIuJtVgowei51g/BfA+x+e+HXaBNHwPXhLn8wu3kaT+A7YR+yQ8+P4PdjxJ0g4k\nbo8i3+XlsODDQQD+ELcOY5APU2BRyX8MeFxgDWQjo1T1KQBQ1UdE5HAAPwqG98QasqWqpTj/X0dN\nRL4Mi7A+G9nu3S6FRWQ2gI/Crlx9C8DnVHVrMHzt97Do31CeFpFxAO4VkUtgneA4Q9/+Hgytqgb3\n22BXcePYLDb3TgGbYgFgY5wNiMhoAK8Lbk/ArqKcKyKfUNWTG5R9MYAPw4afPw67EngdgDfAGv5G\nQ3m/APtirVLVO0TklbD33tWvRWS6qq6NUWagNbCo7V8SlvfaDwFcLyLHqOrShM//XRE5A8D1A57/\n/xzL/1FEDgOgYnkIZsM60nG8WVXPiDz3suA74erTAM4H8BNVfSDYD2oxyt8qIgeo6uoYZXqlsB97\nfw/hvx89JyITI3XYL7odBw+IyCkARovIq2FXdl2OCQieL9F7qKq/APALEfm2qq4PtjUKdkLoPD0s\n8EfEf997pbAfPKeqKiLhZzApQR2ybI8B4BWqGm0LHwcQZ0rI+bDv4+3ovx//a4Nyeemb+B4PAOBn\nIvJJAD9BsjZ5a7AfhPvRSwC84PrkKfRtvNoSETkBdrL9KgDfAfBGVf2r2LzotXCbpvQnEfkG7Gp+\nZzAsPk7/yrdvMfD7dA9sZMIM2Ana4THKJvkuerXHgbtE5Mbguc4PhmM770ew/bAN9nqPDx6Lk6vI\nt/w3YAGo+wD8MvguxzkmXC8ivwXwDICzg+/RlhjlAWCTiJwP+yzfHnyH4rwG375Bou+iql4F4CoR\neb+q/jjG80X9D6wNe6mIVAB8AMC/x9xGGv3LrcHPv4jIsQD+DKDRdNk4Uz5c+LRHXxSRybARl12w\nUVrxcwLGjTrsiBtsSM+MQf72fYfyNwN4w4DHxsAOFM/HrMuUoD7LgvvTEUT6HMvX6tzijGSYB2Dq\nIH9rcSg/FcCEYIe4EDak/FUxnn8q7KDyNwB/hQ3D3Cfme3gwbPjrxuDn7wC8Pkb5/4ZdvfsG7EAf\n/duDDuV/B+A/AOxd529z0t5/6zzHO4LX/iASRhmD/eYfsA7HdeFtGPfDTbAD+zOwA+QmAE/GKP8p\n2BWOR2DTCtYBeDhG+T1gnaPHg/3wfxF/WtBy2MFlWnArI8bVywHbGgVg15hl1gJ4Lul+4Lsf+34P\nU9qPjoBd5fpb8Hk+AuDwGOV3AlCBzdW7M/h9wjC+h9+HtaWTgs9zA+zkJ8572A1gFexEtndqxDC+\nhn+DtaUPAzgDNozb6cprUD7z9hg2xXA5bHrdx2BXkLtivIbfIMH0KuSkbwLP40GwjXV1bnHa5FOD\n590QfA8fBPDBGOV9+za+bclVAN4+yN9mOm5jJwDvQzAaCTaq4Mg4n4PPDXbytDZoS1424G93OpT3\nbUu82uNgG6Ngx6bdgvsvRrz+4XTYiWRbcH9f13YkjfKDbHNMzP9/EYDRkfd0z5jl94QdR94W3N8H\nwEdjlPfto/t+F/eE33nW62B9zHNc2o465dPoXx4HGxHUCmuf7wJwQozyUwG8K/h9ImJMq4psI9P2\nSFVteFzRiSX+26aqj9X521tV9ZYY21oGm4NZVtUDRWQMbHjIAenVeMjn/66qfqTRYw22MRF24v9g\n6hV0r8MY2PBXgXU0tzYoEi17OoAfqOrmOn+brKpDRkxFRFRVxbLmqqpucnze81T1EhHpQhBhjdLG\nV63C7TwEa+BXIxJh1+CKpuM23lHvcbUrpLknlnzvjar6RIZ1eBEskPZ22Of5SwBfUMcrbyLyfdiQ\n0edhnaZdASxQ1S87lp9a73HX/UBEPqSqPxjw2AdV9Ycu5YP/T/w9TEtwxePNQR1uG859ImwLPMrf\nq6pvEJFTYR2vubBhjM5Z1UXkwnqPq+o8x/KJ2rMB2zgCwJGwz2C5qt4Uo2wm7XGd7bwPlqsIAH6p\nqj+JUfYeVT0oyfP6SKtvkpfjgVhCwpmw/WiFqjpfvUupb+PVlojInrCcEAoberzd5zJIuV1V9UkZ\nJDFvo2NKin2L7UYHish4VXUakZHGMSUpEXmdqv5WBkn8pu6j2zIhIh9W1f8VkXPr/V1Vh0yQKSLv\nVNWbZZCEsKp6bRr1dOXbN/D5LvqcZw3yHdyURd8mKbFRumcCeJGq7heM6rlcVWcm2NaB6Dsu/kpV\n73Msty9sJNI0oG9WgqqeEOv58xRECIbEbFDVZ4Nhf68H8B1V/edwlA+2cYeq/ku00xF2JB3LT0bf\niQtg0bovNOpoRcrfraoHR+6Phs3Dnu5Y/nhYBtBxqrqviLwheP4hd4y0DnKROh+L7XdOpyzEgxxk\nNgJYr6rbHMofCmugdoE1cP8EMEtV72pQ7nhV/ZmInFbv72pDsRoSkV+r6ltc/ndH8d0Pg23sDuDV\nsJEtAABV/aVj2RsBnKiqTztXun/5eis5bIRdbflpzG1NqncC5FAujRPIRA18ULZfWzDYY0OU/xSA\n74XtX/B5tqmqcxbiFNqz98JGLmwM7u8Gu2KxuEG5n6FOOxRyPdCJyE2wq6XR9+BqVT3KsfwDsKG+\n3wfwNVX9hYjcp6oHupQfsK2dg7o/FbNcovYsLVm1x2kSkS/Brpb9DAmG8osN930gDIAEAZEWVb19\nOMpHtrMr+h9TG9Z/sJOWyDacTl5SeA98+za++2E7rC27GbYfvgPWljVcdUhErlfV40RkHaxdik5F\nUVV9ZYPyafUtfI8JvuXrtcsbYaMSvqGqgw7LF5ErVPVMEanV+bOq6jsbPPcPVPVDIrJ6QB0kKD/k\ncTmF8p9Q1W8kDQqLyDxVvVBErqxfXGcNVT7YxipVnSEimwZ5DU7LTQ7SJmyEfR//6lDe97uY+DxL\nRB6BJUX8B+x17wbgMdiogjNcjitp9C99TsJF5F5YMPP2yOtf7RJEGbCd2bDRhWEb/l4AV6hqw6lZ\nInIfbDTIwIudsQLTeQsi3AvgUNiHshSWbGN/VT1mOMoH21gJy0R/k6oeHBw4O1W17pWAOuV/DJu/\nGB4UPgLgQFUd8kAuNr/pAtiwlvDES2DDoa9Q1fMdn/8uAO8EsDLOzpnWQS7Y1lLYHK+BO6frlbfb\nYCdtYQbaVlgym8kAzlbVGxuUvx/Ap1T1V8H9GQAui3PyF9lW7HnQYkvF7IbtO6zOkeZgv+sC0AJg\nHCyRzOYYB4lE+2Gk/Mdh88T2hiVmezOAXzc60EfK/wSWdbmGeHOQw/JXwIashVdI3g8bfvti2BDc\nTzts4zDY3NudVXWf4IT+E6r6Scc6eJ1AJm3gReRoAMfAsidfE/nTrgCmq6rTsmr1DsoS84psCvtR\nojpI35XX98GGPv5vcL8NwOOq6jR3z/c9EJF/BTAHNv/1WNiw0f9V1bcNWbD/Nlph2fXDKyhPwIae\nPuBY3qs9q9PhBPo6/p9V1SGX7MyyPR6k7kD8TvO6Og83PPmLlL8HtkqTBvdHwTqcridfvuXPhM2n\n3wI7poavv2H9IyctLwVwGOwkGrDEereqqtM83aSvIcW+je9++CCAw1T178H9F8Ne/2tdnj9tcfoW\nYiMo9oK1g6egL4ixK+wK5pBLVqZ4TFkAS2QX5sw6CTbdUWHT/ZxHlcQlIi9T1b9IwhF+vuWbiYgs\ngSWNDgM6h8OG4+8LC6x9t0F53+/iSiQ8zxJbVvJHqro8uH9ksK0rYSNF3+SwjTT6l4lPwkXkdlV9\nU9gXERuJcXfcc5Tg2PoWDS6SieU7+rXjsfV2l/eqIR3GuRONbsg462rw//XmCh0Yo7zX6gaIsRzj\nIOW9sueizhzHeo812Eai7OmR8tciyIYf3J8O4EcAXunyXtb7zBEvc63XPGj0LUsWvcVd4tF3qU7f\n/XA1bARCuBzR6wBcG6P8afVuMcrfhmDOYHB/DGwu92g4rn4Bz2V8YEmj/gQLSApsDtuvYpS/H8Ck\nyP1JLt8NWPby02BZ8KPv3/sA7B7zM5TI/dGwK4lx9kPf/Wi714t4K1xsN8+33mNDlL8LkZwuwWfo\nu3JI3PmvtyKykgGsw3ZrjPK+7dl/wpa12yVo186ELd96EizY3Kh8pu2x42t0/l4k3H6970HsZd08\nynsvUQn/FS58X4Nv38Z3P7wVNkIzvD8uzvcwKPPWsE2HJbX7CmLkjELCvgUGz2p/HRyy2iO9Y8p2\n2efRl+nf6dgC4IMI5n/DchZdC+CgGHWYBEtYCgCvAXACYqxMkUL5S4LPcCyAFbC8AB+OUX52UF5g\nFznuRsx57AD2AzA++P1wWF9ltxjllwOYErk/JXjsRXDoI6XwXUyckwF1+g/oW/HDqW+ClPqXcT6z\nOvvQBbAVao6A5TqpJNjOakRyksD67E79K1gw8kJYMClcavPguHXIy+oMoayzrgIWTXsHInOFEC/7\n7jMiMkNVVwGAiLwVlpxuSBLMFwPww3pDhdR9vphv9tzz0RedG+qxoSwTkSO1QTRyCK/RyFU6VV0b\nvD8PizgltP6FWMbSKixCfhKAleH76vBeTleb/3gqLIHXXNjJiNNceFU93eX/HLbzkIiMVtXnAVwZ\nXAlyumqDhPthxBZV3SIiEJtz+VsRcb5iozFGrgxidwA7oy9j8CTY/LHnRcQ5I7eq/nHAPvN8jLL/\nA0vAFFovInFWb5EBz/c8+g+DHex57wNwn4h8Tx2GBg7hBgDXBN8FwE4kb4i5Dd/96E4R+QpsfXnA\nkiHFGcY+SUReqcHV8mAIYZzVBcoAVonIL2Dv/dtgJ9HOxDIv74/ItB7YVWFXk1S1Ft5R1ZUSb4UE\n3/bsBO0/euaKYITGHBG5wOH5s26PXayAdYL6kZSG8gN4OBiVsjC4/0lYokpXvuX/gL6r+En5rnCR\n6DWk2Lfx3Q8fAnC7iPwUth++B8D9EsxxV7fplgsBHBiMavss7CTwu7A+o4tEfQv1zGqf4jFlZxHZ\nR1UfBQAR2Qd2nAZsZImL/1DVHwYjkt4Fe+2XA3C9KvpLAG8Tm5p2Iyxf0UmwxJ/DUf5IVT1PbKre\nI7BAzC/RN1qukVmqukBEjoJd+f4IbB+K01/+MYBDReRVAK6Ajbr+Pmy0iYtXqOrjkft/DR77PxFx\nyS3g9V1U1buD0YZJcjL8RUTmALg6uH8SgMfFpke5rvKRRv9ygdjUlhsRf+WquQDaYUGAT8AuVH3L\n8XmjroS1aWF+oBNhoyNcHADb996JvvdNg/vO8hZEOB2WyKyiquuCDuOQw2pSLg/YUJCDYcEEADZn\nDHU6KIM4G9bYT4Z9Of4Plk26kXNhndtL6/wtzgfbAes4PwtrVJYD+GKjQpHhbntJ//lCuwKIe9C5\nDcBPguF6WxFz6CmAtSKyEP0bibViy5e4NDRhh/nCAY8fBLf3cqzYsi8nwoaxb5VgeTQXwfDR7f5f\nHea8Rfgu1Zl0PwxtEJu/vhjATSLyD9hVDCfSN3e0H3UcPgyL1N4bDHsT2Jz8LwUnXz933IbXMj4i\nMgXAlwC8XFWPFpHpsKitayOdqIGXYO4mgHvq7XfqPuRtDuwAdXZw/ybEP1D57kcdsGzg4RDam2CB\nBFefgZ1wPoy+0SCfcC2sqjcEJy5vDh76tMZLAHU5LANyCfbefQCW6T+Oh0XkP9B3LPow4p1A+rZn\nT4vIh2BXigB7DeHcZZd2Lev22MVgPdfwYkLdofzom2rUyFmwgOK/w+q8AvGCUb7lky5RGbVCRJaj\n/1B017YUSP4aPgub1uXbt3nAcz/8Q3ALhXOfd3F8fsCSZKqIvAfWN+gWy7XgKlHfQoKkfgCmSZ3E\nfo0CICkeUz4LC8r+Afad2xfAJ4PjsuuFgzCwfixsOssSEWnYR40QVX06eN8vU8vlde8wlg/Pm44F\n8ENV3egYxOp9/uDnMbCcbQ9IzA0AeEFVtwWBjC5V7QouMrlaKSLXo/9w/jC47ZJDzuu7KCIfBHBD\n8Nr/HcDBIvJFxxPw8Ap6mFfpluCx0bDpOi7S6F/6nIRPhI1O/iaAMD9MdLqXE1X9SnCB5K3BQ6er\nqut+8EEAr1RV1+BfXbnKiRAVRAlfoar3D0d58ZxzVmd7uwKAxl9TPLFgR/y5qsa5WhqWPRA2//sL\nAD4f+dMmADVVHbhO9lDbWgeL8q/WBDuY2OoSn4StfQxYI3EZrOO7k8ZMTJbg+b3mQYvI+yN3J8Dm\nwv85TodPbN7e47Ahl5+BzTW7TFUfct1GsB3v/TCIGE+GNfpODY7YfNPQBFiD9SJV/fwgRept42Ww\n5DOADZn8s2vZoPweABbArnYILGI8W4M5sQ7lvVdqCU5gw/34Vy4NvORw7mYW7VnkucfDptMAwG/V\nMRN5pPxesOBDNPmRa4LQ+1X19ZGfO8OWpYqTE2F32PJ2vfsBgIvitKk+xNaiXwALgCksyPsZ2FSd\nQ8JRJkOUz7Q9diENksOJJXo9LbwSH7Qt31bHBJtZE5HfwJYJHTj/NtaIL/FY4SJrae2HkjDBaVD2\nF7DRXKfDTjz+CuA+12NC0r6F+Cf1S+2YMqA9flCHSKY4SPnrYW3PEbCLc88A+I265xq6B7Yf/Dds\nWcAHJEZSuhTKz4cFgZ6B9U92A3C9Os4vDy4y7QULwBwIO/ldqaqHuJQPtnE7gK/CLhgeH1w0XaOq\nrY7lBRY4CE8+bwHwY9f+uu93MXI8nQGbbvdfAD7v+h6mQUReDgsC9MBGJWxw7RcE5R+CjSyKfRIu\nllPiXeH7FLRJN6rqYQm2NRo2HSXav3nUodxiAGeqQyLNIbeTpyBCEBU6AfZm3AVroG9R1bpLqqRZ\nXiyh4MdgiRnvjPzpSQBXaYNhj+K5/EtkO14Z1UVkBWyOnHMW/gHlx8YYVjTYNn4Jy8DuOrQoWjZx\nICSyDe+VCepsc4wmHAYoNiJjVdwGQhIs1em7H4rnUlYNtn1XzAOlz8nfaFiU33WIYr1tJMognPZ7\nKAkysgfl3grgIvS9h3GSsaXVnr0GwL9h+wzGzlefxRITTkf/VUK+41g2nPv/ACJXC9R9dYffqOob\ng4P++wD8HTb391Wu9fe1I9qzGM+dy/a4znM0CiL0qGpL5P4o2OfYMliZAeW9lsNKoXwmS1QOqMNL\nYCMKpqH/axhyhJ2kN6XEi3gmOA22sSfsItMdqvorseH8h7u2R4NsM3HfwuM5Ex1TgrKJ2+Og/E4A\n3g27yPT7IKB3gDpOfxWRt8OOKbeoamcQJP2060Ua3/LBNl4EYKPa8PedYEklXZcLHQW7YPewqv4z\nuOCyl8a4YCo2KvIs2MjpatC+fEhVO123kSXpSyh4MWw/+L5rGxe0Q+dhwBTDmH0Kr8ThwTYSn4TX\n60e69C3rbKcDdmx9HH3TZVXdEiuuhK1geAf6j26LtcRj3qYzTA463x+HnQBcKJZ9coeXV885Z+ib\np1tvaFycSM0ZqhrOH4aq/kNsTVHXZdmeArBabGmz3mXtYjSQ04Iv9sCDhOswdMCG6q4Uu5Ib3Tkb\nnngEjfIL4rD++BAWwTLKh0ObPgK7ouyaUb5upxd986fiejVsOK0ziSzVCWBfcVyqE/774fcBHAcL\nwinQb5iwwhLnNCT9576OggXnnNubwU7+YHMPGwr2o6kiMi5JpDiwOTjAa1CnN8NtHxj4HoYE8d7D\nT8CuYG+JbMe5PGzqxGeCejjnggik1Z79EDbf9VsJ6oDgytvhsPZoKYCjYVdkXTutJwJ4rcYcvRDx\nM7FpPV+GJcBSAN90KSgiX1XVT8sgy1XGOFj7tmcTYPMvB3a6Gk6vykN77KjRcGDfofyLYd+nn8F9\n3m2a5ZeJrdAQe4lKSWmFC9jw/1/B3rc43+Xjh/ibwnFKiViOJ5++yRUAztUgP4nYMuDfhE1zcRKc\nKH4lcv9RuLdFCJ43cY6VFIJRXseUFNpjqC37fK2IvDQIwgCWYM61/C8R6Qeo5ctxDgD4lg+8HMC7\ngrY15PQeqOoLYqN1XzOgvDNVXYtInVV1HSxZrhPxX/3L97v4J7E8OUcA6BQb3eI6Xfd7sOmRx8EC\nKafBklvGMRvAv8AS0ZdE5HWwqatx7AbgtyKS5CR8s4gcrMH0DRE5BPFyTYVmw/o3TqNrB6g7qimu\nvAURxgRRyQ/BhukMd3kAuEVEujFgHrSqDjmXWVXD5GU/V9Vbon8Lrgi6Gi0iosEQkeBK0LgY5a/F\n9gflOJ3+K2E713/D5o2ejnhz8QFbKmUdrN5x6h7yDYTsp6rRKQXzJN6cN99Oe9hpC08aH4MNYYzj\nIthQuZUAoKr3Bh2IIfnuhxos96WqDZ+rgej8122wBESu89UA/5M/wIJZt4jIdei/HzldRYflKbkO\nwH4icgtsaasPNCqU4nv4bwBaNcYc/gE2quqyJAVTbM+2qerCxv82qA/Ahnzeo6qni+WpcE1gBdg+\nMBaRg7yr4IrRCrVRYT8WG4Y7IcbJdJgD4b/iPvcAvu3Zd2Gd9KNgJyunIkZuEGTfHgPoHZX3CvQ/\neQrn0M4cqqyqniP9h/JfofGG8m9RS7SalG/5tuBnNLGu08mfqjrN+ReR3XXoKTY7qWrc41hqiYbh\n3zfxTXA62MnXU6o62bG8b44V32CU7zHFtz2GiJwA6x+8HDZaeB9Y+7S/Y3mvK9EplPcKpAx2FRwx\ncsOkcBL/NQAnw4L8hwL4KGylCle+38UPwUaj/FcwGuNlsFX1XLxYLRfJbLXlFH8RnMjH4ZU4POBz\nEv5pWKLZP8POE/aEBbbj+iMSXtxUW7J8CiyYAtiUotijKvIWRPgCLBHgLap6RzDM6PfDWB7oW5Iv\nDEL8Dhb1ck2m1oXtkzDWe2wwXhnVdcAcSRF5BayxcDVRVVcEgYz1AC4SkbvQP09CozoMOT/PQb1A\nSBy+GeW9Or2unbYGtur2CXviBIMS7YdSJ3t2vwo4ZtJWj+HPgcQnfxFhIq1RiJc8CwB8MwhDRFao\n6sxGjw3BNyN7TUS+DPsuxc0eHPJtz34mIp+ELWEU6wpq4Jngys02sSG4f4WdSLp6GpZAaQViJqQL\nnvfrsOeIVeQAACAASURBVASACAJacVYGCVeheIOqLoj+TURmw0Y4ufBtz16lqh8Ukfeo6lUi8n3Y\nFWVXWbfHEJH/hE03/AP6X0F9J+C2P6kNm0/6OnwycXuXTyEg6aLuChcR14vIMaq6NM5GJaWpUfDv\nm/gmOAX8T74O074cK/NE5FLYKg2ufINRvscU3/YYsDnwb4YFqA8SW/HowzHK+16J9i3vG0hJ4yq4\n98U+9Vv9y+u76DkaJeyD/SUY1fNn9E1RcuWVOBzwOwkPzk9fB+tbAjH7lhHhqO8liDnqWyzZ8pdh\nFyoFQJeIfE5VfzRkwQFyFURQ1R8ispRgMMzo/YOXSLd8YA9V/YGInB9sY5uINBy6JyJvgQ2Le8mA\ng+WusGi1K++M6kGk9YOwqxcvh3XgXT0bXIH7vYicA0uAs3ODMgOfv4b6w3edIq1BRzd2PoCIswB8\nR2xaAgD8A3agcJVGp/f12H7IYZwObKKlOlPYD8MRBBNgnaT7YA3M62G5Qt7iUvmggf4otn8PXK9e\nJj75i/yvbzALsNEg02Cv4WARaTj/U2yI4k4A9giunkaTtO4V47l9M7KHSYoOjTzmlD04xfYs/N5F\nrzLEmZJxZ7AvfRM2LeMp2FUbV9cFt6RWiCVKvTYcHZbAabDEhlEfq/PYYHzbs7Bz8k+x+cyPIcb0\nqhy0x4BdudpPY05NkvSG8vsuh5WovAxvPoFGU0JmA7hAbAm0OKsuDTU1Kg7fvsks2FD+a2Hv/a+C\nx2LxPPkK+xFPiyV2+zuAl8V4et9glu8xxbc9BuwCyd9FZJSIjFLVmoh8NUZ53yvRvuV9AylpXAX3\nDaj5rv7l9V0Uv9EoXwyOJZ+FXdDYFXZl35mqvjf49aLgfGUyYi5/7XsSHgQN1sR5zjoeDW5JRn2X\nAfxLGPgIzht/jr5VnJzkKoggloRrIYApqtoanIidoKpOy7/4lg8knQc9DvYlGoP+B8sn4TAEOqSW\njHAh+tZidiIiu8CG258Ci4xfC2BfVd07znZgHYWdYCet/wnr5Hw05jb+LfL7BFggxzlxkCTPBxBO\n//iIWjb9pBnlvTq9IrIIdtI9cD5/nA5fdKnOKmyEzX86lPPaD8MRBCJyLYCDVXV1cL8VNsXC1VJY\nFvh+2cRj8D35S2PY4ncB7AcbchgGEhWNhy1+AnZQezmsoxV2zp+EXcly9Q3YknSJ3kPP0SBptWde\nV1BV9ZPBr5eLyA2wBFbOeXJSOAH+BGxayzYR2YIYJ58i0gZrj/cVm1IT2gW2VGZDKbVnVwTBrH+H\nfad2hi276SQH7TFgna3dYB1OZ66jwqTxUH7f5bCSlk9riUoXQwbJko6w02BqVApB3YF9kxIcj8vB\nfnhtCiPkfE++rpftc6zEuUjkG8zyPaZ4tceBf4plo/8lgO+JyF8RmSblwPdKtG9530CK91Vw+AfU\nPgLbb8+B5U16BeLlqKn3XYxznuAzGuUfalMKNwbPG3eKZT9BICmJVE7CfTRqU0WkS1U7BvnzqAEj\nJ/6O+FPXAVXNzQ02vPONsGFC4WNrhqt88P8Hw5Yr2Rj8/B2A1zuWHQ1bJiXJa/9B8HM1gPsH3hzK\nPxO8/rcBvatuPJzCZzIawKkpbOc3Mf73LlhkMOl+cJtnXfcNfu4KO0j2PuZYfq3v+5XC+z3Vs/wD\nLo8NUf7uHLwHN8ISyvUAeAcs10VnjPI94Xcp4fN3eNb/Hp/ywTaOhQVSPh/ehnk/2gl28npFcP/V\nAI6LuY29YCdQbw9vMcoeD+BBAOuC+28AcN2O2ucGvnewubO/Dva/8HYwgDExtpO4PYN1Cj7k+Toy\nbY+DbRwK6ygvR1+AMbXPsVF7Bevwv9Rj+77lbwTwssj9lwFYntbrd3kPgv/ZHdbHSvJdfCVsLv/f\nYMGgn8ICKy5lR8PmT/u8vhWw5Ns+25gKC0jvChtO/hXYdKEk2xoftz4AHgIwzqP+XscUWI6Yho81\n2Mak4PMcAwsC/StsdIBr+eOC9qgVQC1on04YrvIDtjUNjucHg5R/B2xFuVifKWwI/c6wvApXwoKJ\nb45RfrbLY0OU/6DLY0OUvzP4eR/sZBawpVJdym7XTrm0XWnfYKtKRO+PGvhY1reh3hdYIHM5bFTk\nx2DTqpz7x+EtVyMRYIl7fiP954HHWfrGtzzUYx60Wibrl8d5vojZwc/jEpY/HzZX7zIAVRG5Jk7h\n4CrRp2Ad9utg0yg+BRsydD9sHpnrtqJR3VEADoE12q7q5QOIEzW/J7jy90P0TwTmetXmx7Cr8NEr\nZj+CvQ4XvxaR6WoZdGMZcMVyO+qe0f1psfnwSZfBuV9EvoW+uX6nwvYDV98VW1XkeiSYCy/+iYMA\n/2GLa2AJb/4So0wvVe0Sv+WwEmdkB1JJ4gX470dXwjppYQb0P8G+l9e7FJa+VTrWov9oENf1nC/C\n9glKnfch8chroTbMdD0cpwANIXF7pjbs9jwAP/B4/qzbYwC4CpZ9POnIpkYaDeX3ycSdRvlXqGq0\nHXocNgQ4TUO+B+KfEO77AL4OIBxKfDJslF3DteGDvtWMRv/XgG+C0PA7DdjqBolGVojIYYhM8xOH\nKXIRiUbkRCQ6pkh6U/SgqtFRB1cN+o+Dlw+PHb1XooezPADIgOWnReTt6rj8dPD/owFMgSUgB6yf\n8ahreVUN+zFPwfIhxOU7xe58RKaOD/HYYGKPRpH0plim5QbZfsUfp3wxYgfTU2FB1C+I5YXYU1Xj\n9s8SU9XPiU3VDEdxxE02DCBn0xkAPCEi+6FvKsEHEK8D71s+/HIfg75G/sigkXdN/nNvkg6Tqv4l\neO5va4Ihd6r6VQBfDTrIJ8OufLxcROYA+Imq/q7BJr4LG7b/awAfB3AB7EDxXlWNm0k7ujzgNlhD\n2R6jfKJ8ABETYENzop2bhtMJxBKd7A9gsvSfi7or+i/H1Mh3YIGEx2AHaue1W2EnHH+ENUy3o3Hn\ndjC+yYNOh+XlCINbv0S8KTbPwSKdZSD+UlJIZ5UQ32GLewBYKyK/QYKOv/gvh5U4I3vAN4kX4L8f\n7aeqJwVD+6GqT8uAs9EGfFfpSHQCnGanWTyX00LC9izi5yLyb7DPMXpMck1umUl7PMDT6pdQrpFG\n+S4u9Ny+b3nfJSoB+K1wAf+EcDup6ncj9/9XRFwzsgP+wSjflavCYdMXIXICGdTBdYnEpFPkQr7B\nqKTHlLSm6IV5PjphU3QEMfOTBMPGz8D2+Zac8lukUN4rsC0iHbD24HH0n5Li0j8Mt/EaWJ6hgfth\noxwrg02x2xUOU+xE5GjY+dFeIhJtj3dFvAu274GNnv4M7GR6MhoH5VKZYpkWz5Pwy2Cf/TthCwJs\ngl28/JehCqVNVX8cPG9ieQsifAq2lu/rRORPsJPPOFlbfcsDFqHdguRXPBJ3mDSFNbnVkkl+CcCX\ngqugbbATmFc1KPpKVT0AAIIr0H+BzSPekqAOvpmkk+YDCH1Lky1L91rYydJu6L+29SbYQcdVN2zO\nWZJ9aE/Y2rlhY78EQFVVH4i5Ha+r8GqJfy4HsFSTzSX/LGyYZ9KlpLxXCUH9BDyfiVH+ohj/W0/i\nLM7BfMe5qhprRNEAvkm8AP/RHM+J5SQIA7v7Id6KG76rdCQ9AU6t0wz/jO5J27NQuHTUpyKPxQlG\nZdUeR/1KRC6GjZJLutJIYpp83mxa5X2XqExjhYtECeGkb2TiMhGZC+Dq4Hmdr9wFfINRu2n9VVLi\n6IYdQ+5C3wlkHIcCmK7BeOIEEgejfI4pwfu2QEQ6VLUraR0ClwA4XlXjLDMb9VNYUsyfI9ln4Fve\nN7A9Oyj/94TlATuWXA7LyxDnNdwK69vvgf7LcG+C20jTP8MSbJ8A+w5Ey8fpW31ebbnYFxCMRgmC\nM4MuIRvpf3w7HBEU7NM7a7I8O948TsLfpKoHiyVlhar+QyzXStoGvWDjG8zrNXB+Qx5usDlTu2RR\nHg75B3bwa/8pbFhTN4D/CW8xtzEVwLuC33dCMK+/QZm7h7rv+LzvG+o2jO9h4jlTsKuEF3g+/69T\neh3jYZ2+vwE4J2bZ24Kfy2Hz4g8C8IcY5U+Ax1xy2BzenTxe+62wkQfXwpL/vBc2tWhY9qGgDu0A\nXu1R/jfBz7tgAQwB8NsY5e/0rP9/wAJi74dl5P8LgP8c5v3oCFiulr/BRjU8AuBwh3JdQdv3Y9g8\n4G8kaQ+D9q8C4A5Y56cCYEKM8l55LaKfY/TYghhzk33aszzc0qg/bO7ywNvNKdax7ucB6xw/Wee2\nCcCTDtv1Kp/y5/Ag/ObT/yRoTy6CXXX9KSzI3KjcOlgwcF2dm3feJs/9MFaOAAC3e9bhh4jktohZ\ndnSc48cg2/A6pgTbOAx2geOj4S1m+Vs8n//ejMsvg524Ji1fQ4ycOINs4y7P8pPQl4vgNbD+3tgY\n5cdGft8dMfNCDPJddDr3gk2L2jV4DWsBbADwOZ/3I+F7+D4Av4dNi4nVpsNGGY8O3wcAL4nbFgXl\nDmjw948N8beHALT4vg9hAr5cEJHxsA7vNPQfovOF4SgfbKMTlijmRtcyA8rvDesAh1dafgVLWLLB\nsfxp9R5XVae5Y2Lz0M8E8CJV3S+4+na5NpjDK7aMZThEUABMhC2zFycb+ZVD/FnVfbjYa2ArPExD\nvKFa4ZypT8OGwYd2hU3LONDx+X+jqm90+d9Byl8G62wNnHfodMUk2I+PhY1GmAa7+rZIVf8Uow7H\nwfa9V6DvKvw8/X/2zjtelqrK/t/1AAVEohkkiIj6UxQEQcWEgglHEUliwoQ6I2AWYUYwoRgBRREJ\nokQHUVBJAo8MEiUIqIARMY0iokTX74996nZ13+6uU3XqvXudz6zP533e7b69T9ftrjp1zt5rr2Vn\nOR6kqv9mwELb66fnrnZiq2TEn0C0hpxFByspSRsRwoYrElXPFQjRl4tz4tMYhzGGrtriPNybqPyt\nSSQCzgHOdWZ7TzoPPkhUod9N9C9eaTurh1HSJ4A/0p2GXh/r/sTmuRXDqfQ8SmOsQvRPi0hKNLJT\nJs2DFXLnwz6gkR7m9P659GMknQM8n9ClqJI5r2+aj3qcz5YlHCZWt/2WdE9Y14Pe4Kb4OZ2P+8I0\nKr+klbtcV/WxPd3doVO8+rOoRNLxwNuc6WXeMNazSbZo7u5Y0fY9O7lv1SjcmxJzWYUHAv9sWhul\nMTZIP25LLP6/RQtGjKSTiO/xgURCvmuL3HeIxGZ2//xIfNE9ZVI7Rs59XYMW0WcTjMtv02199FHg\nAtttWCzF8ZIOIL7DVQmGYSv7aQ36+P8fwXr93kh8Y8t0jdWzC6GLcQLd9JIuI9Y2KxEC8pcAd9ve\nMTN+IZF4WJJYG/2e+EynshEkvQ14O8GCu7H2qwcSyaWJzHFJS9q+V9KVtp8saUdCpPgDRFIlux2k\nD0j6GR0ZNenYtyOO/2sEa3VP27maEtU45xLFxsOBI9us7ySdb7uzq8XMOPMsiXAKkdUZoorZ/szE\noB7j0xhbEZTjBbTzQq7iTycyZVXv36sJd4PNWxxDZ0sySVcSQmIXd9n8zQdI+hFB1Rr9Hi+bGMTM\nwuY5RO/2l2u/uh04yfZPM9//cwSFevRGm0WdnZBMyUqiSDqCUA3+PnCM7VIf2U6QdJHtTSRdUTuP\nrsqdqEuTYWPGWwLY3nYbgc+taw+XJtgMt+QmMmrjLEO0s7wHWNV2axEfSWvS0g5L0s1jnrYb+m8l\nbWb7TE3wmM9drPUFjYhQpWPIFqFKYyxFXBe/ydkE1RbtY9Fi0d550VwbYw1ikbUUQflcATjQ9s8a\n4vqaz44l5tLXps3XssSC78mZ8XM6H6exPg7sa/sv6fFKwLtt75kZP5bK35QIaXF8l9veoPmViyy+\nMYkhaUOCPXANLTawkpa3/VcNCybPoE3yRQVCs5LOJvrAD6rdk66x/YSGuDWAtQih3g/UfnU7Uf1s\n7OVWeMlPQuN5lK6FaQNktbukhOT6RBKivjbJnc863VNq8dfRsR2jtMhUS6iJqELfzUD3qHGN3kN8\nUWJboZE0Lb5RqDN9f9XfMGaI7O/xcged/h1E6+i+1eY8M/4KhzXjmwjR1w/lrA8V7aUrMeZabJpH\nasd8LZGIOwr4gu2z26xN+0LpJlyhKfM84rs8o0syIo2zDvAGwkb4h8Bhtk/PiNuPgmTezDjzLInQ\neENYlPFpjJsJ0Y+rO06Usy7ElhfnjCe37bXUwpM7xV9se+PaRb4kQZlpI9qyKUHjPkzSg4jWkHE3\nn0nxKxC9e89KT52d/oasLJmky2znOiGMi1/DAxXlLvHjFgy9LTgb3vufDBYH9fMvK5kl6X3phlBl\nzYeQu/mRdAiRaf8Awe7ZhaCwvTUnvivU4BJi+2UFYy8AzrP99MYXx+v3JBhFywFXEKKI53pYJX1c\n3GMd/cJjNwW5yaiukLR3uqmXJLPGnj+1QXLPo0qE6lpqIlIZG5cvAwfYvjbNJxcSG9iVgffYProh\nvlq0v4K4UVZaFDsAv3NDxaQ2TudFc1/oYT671PaGIwnBHzmfyTCn83EaY+bYa89lb7wl3UBQPxdJ\n1Xzc8S3m+MbPIi2+D2JEq6dpAyvpu7a3HNnAzPzfYuPyIcYIzdrOEkWTdIntjUbO4+y11XyBpIcR\nhR4Dl9i+tUXs2GREbhKiFJK+CezSdA/83w5F//pjie/whi7zSlrr2PbtfR9fxntfQTACPge8Md1n\n2zBNrwa2IKroe9i+pMtGXtJDGE4oTmTY1PY07yC0E64iGLurA9+w/cxJsYsCJZvwCQnZ253pBDhm\nvCUIrY79idYKEW3ZE4+lZH1Yx3wTVrxA0hNtXz1H8RDK+NcULBr/JOnVDFSUdyDEgHKxFwWWZITw\nyAeBZSRtTkwUJ+UGpxv9hgTd6jBCEfUbDNozcnAoUe3YNj1+TRprbGV0DE6S9HY6UrWA+0v6Ci3p\nt7XXdbX9Kd7A285yIJhSeaqymZfmjDMFncTUJB1ne9t0kxn3GTTdZPp0CRnFOoSITC5eQSgOf49I\nhF3oPDGldxEtReMYUCbTEk1RfX8bg2TcQqIKN/VGkxIIC4CTbXe19is9fyp0FaF6Zi1htRPwE9sv\nTwvwkxnMr2NRLaolfcb2hrVfnSSpzd/W2eZz0jVQO8bcBVfRfEa5uOWczscJSyjE/O6CGXbQ/VvE\nl1rjNaE0yVQan+N40snhIiUQBDx72iI/A52FZhOK3LfUg5CYojXrQ0RrhInE8oedKZKXKrf/BZyZ\n3v8ASR+2fWhOfKq6PpSBivsP3aI9pes9pYYix6J0DI8irAQ3IT7DC4HdWhaqXsHgOzjX9rdzY0vj\nJb2YSMbdSHyHa0na2XaW85GCEXQYyWFA0m3AG9zA7BoZY2libT/zNxBty7lC6LsRDh0npATCo4jW\n01x8mFgTnpcSCI8i9AFyj/+lwGcJ4eLfE0zF64hWj0moWztW7XHvJFjjrb7/nrA80fK9Re05kyf0\nejnRWvdn4hxaEbhV0u+AN+eeC4qWrp2IZMrpRHvF5Qoh7QunHYsz22obj2EOCyyzIOnHhIvAzbS3\nxiuOT2McTvTrnEzLfqUUvwbRO1x5g59PZG6zbr4qp5EvIAThtiD+/lMJdeysL1rRDrE+wV5o/f7V\nGKPVgTYVA5VT7jrRb2vxYx0A3KCtIemltk9Sz1T+Ce81tfIkaYNFXfGe8L4Pd9iVrjHu900VyXo2\nPGVXO7uEaJi+aKIffXeHom7uGMsTCbRNCbrY722X+pXnvvdXCQp8dd68BrjP9psy4y8d2UCXHMuy\ntv/eIe5kYBvbf2sZV5//vgd80/bho7/LGOc64CUO1xokrUWIwT0uM/4sOvYwT7oGamNkVed7mM+2\nIBKCjycET59BaDIszIyf0/k4jfF+wjGnqp7sRAi97psZ34nK3+L45rqdIYeJ8Fnib+/kcNGmUjkh\n/oe2n6rox34u0U5wne3HZsY/inDfejqx+L6ZaBXNvY469zDXxjid0Mapkh87EkKxz8+Mv4Gw3v1T\nerwK0VrU6HKRXr8tYZ28kLivPZMQlfvvzPjSe0oxE0LSRcAXGSSCtyd0HjbOjD+QWOfX7U5vtP3v\nk6N6jb8e2NKpHS0ltr7X4jy+Cvh32+emx5sS7W1t1tjHEddPdR6+inAf2SZ3jLlEuidsBvzAwS54\nLvBq2xOt4CX9ltBEmdTKka19N9eQdDDw37ZPTY+3IBi/hwH7tbgWziZE+L9p+x8jv3uNhy11q+d7\nYStXmG9MhBfNcTwMVIPvl/61QrqhlSxMSj25lyFE+A6GmY1YJZKYg7ttW1KV7X9Ai/eu8A9Jm9o+\nL43xDAZ2c41wuUXkvba/VBB/R+3npQnbx8aFh+2K8XHs6KZX0RbSJ5oqT59JVdv/TseTpa2gYe/g\nWWhadDvRHHMXdmMwUxFxWJ7+uksCIcU/sPlVk6Ho330mIQS1IcFSOndq0HD8VcRC5TjbNza9fgw2\n8jDl/Mx0883FDyS9hwJhRoU43iFES8fqkp4E7Gz77ZlD/B24UlIrESrgLwpRx1uITe8b0/EsScxn\nuXgnsFDSTcQ1swZh35iLvVq8dgj1ayAlFNax/YNURW9z7y2az2yfljZulbjlrm5hvToP5mNsfzJd\nT5UI3keqBVgmvkZUobtaNzchhwmwKONzUCXeNqk9l82MAi6XtJHtNhavdVwqaUXClu4yQmj2whbx\nv7D9/LQmWeD2NPDflSQQEh5uu87I+6ik7Sa+ejb+RGz+KtxOO6bqHsR94fcAkh5MWBVmJREovKc4\nmBD1uWxZQmiyDZYd2dx8Q9J7W8RvRqjKV2vUrxHtcosr/nYP69ncxPB32oT7qgQCgO3zJDXqcozg\nCbYfX3t8ViqiTkXp+m5SgW0Q7ka2asI9tv8kaYGkBbbPkvT5hpjfzodEQU+b8E1sz9jGp3v0p23v\nrBDBzoLtiVor4xIICX2xlYH5l0T4qO3X1J9QCFu9ZsLr+47PEjeZBo2nar2zqoRloNST+wxCCbyq\n/C1DVJ+y+sCB4yQdBKyocHp4A3HTb4O3AkcoepkhqgZTRWlgcHGmn7dxTalU0sdtfzDz/Yvotx4R\n4pT0aeJ7yMUPJb3F9kUpfmtCSKaNN3wTpjJLbD83JRG2BQ5KFfVj3aBkTTBofkWcexfTcXGr7tTR\nJ0mqPH9FtOVUPV458fVjmFqZy6jAfYJIGuxP9K627Vd7KVHlOE6hdXEskVDIpQTfJ2ntKgGR5pY2\nntDV4rZeYTHBtMrF54EXENVLbP9I0rOmhwzhxCq2JXYmPveHEVTXqm/4eUR7SRZsn5KSsVWV6Hq3\naK1wIX0YQDXHHEKkcTWiMt+oCp9QNJ8pRCaPIir3dzS9vhY3L+bj2utPJhiCXdCJyl+Hprg7kPFd\nlsY3Dd/0Ands06thY2BHSb8gkpKtmJ61xOOXFSLYrYRmgZtT3LFEO0BbXKoQGS0REjtN0vZA1Sb2\nStqtDX4GXKxwWTChv3WVEk3bzYzXBSPzz58IOncuiu4pY+ayVWk3lwGcLOkDwDHEZ7Ad8H2lPvGM\neeFnRB98laR9ZHouF6Xxl0r6PnEOmGAoXpLWPDnn09lpjX00g79/YbVeyViXQCT0NqmtMTcmb1NY\nur4bd/9Ylmg9XYX8vcpfJC1HrK+OlPT7CWPXsTgSrTnoYxP+WwW77pj0eDvgd6nom53k1viWydvS\nsX3UY9qsqmKne2JGz7d2hiFKXvpArx7JuC2y+BTzYOB9RG9OXfAjt4+5iKpVChW2EqTXb06tHcIZ\nSp8p7sfEYvVo2zemjSu2/zo9ciZ+5vsb8122EdEqot+OGW8lYhP56MzXP5HQhVhI9HytArzJmTaf\nme/R5vN4InFOb2d7KrsmXTObE1oe6xEbtqNtt8nU90IdbRg/R438IsJC5yriXF6PmFzvhDyhTBU4\npYyMsw7wnwT9NqtyI+l5BL2tXkXfyXab3sUiaESoNT2XLcpX+N5LEFXzrFayKeN0tmhUIX04jVHk\nmFM6nykoyNsRfZOXEAuX77qB4TMf5mP1ZHGocip/kbtDaXwao8iiUuUOF51a1EbGqPein2f7hBax\nyxKswO2Jef27hIPReZnxxUJi6Xx8AIOF/gJqQshN56MKFfolfYq4j9Wp+FfZfn/DoVfxRfeU0rks\nvX6a9kHjvKCgcG9EtJiRfr6U2DzlVNNL40tdJoqcPtIY1xG6ZVVBYnXgBkLDaWJir6/1XRrrgcCu\nBEvwOOAzuQl2BZvoH8T1syPhWHTkuE1vLabIhnc+QcFMrmurnE/oTNxGrDezklqS9iWSgEelp7Yn\nkjq3ApvafumU2NOJVtP6/eAY2y9o87fMCyaCpN0JAbWq6ggxwd1N9MAt0vgRHElkurckKuqvA/7Q\nIr6IqqWOntw13KFaP7ykp9CilSC91+mSLq7ev8XFuwNxEp8m6U/Eje5YQi00B5rw87jHE+FC+u1I\ndm8J4MHEBZ77/ldL+hghEng78Kw+EwjVYU79pfQ4YoHxSga+0O9uGtT2fcApwCkKWtUORJZ8b9tf\naHF8fVBHp+EMYiE5DbcQIjVXA1V7wl7OVwOfcUoB1lJLp5Q0xhrE97AdMdm/LyOmqvreRIhBVv2y\nN7ilQKEKLNUSfpU24VaIcu1KRmuPygU2q3aW7QkBpk7QBItGIPczKKUPA9xl+25J1TEtSQOTqI7S\n+czRr3x2WkBuRtiVHkoIQ03DnM/HLmxJqqGUyr8tsLa7uzsUxU9KQpCOP/P+/CLX2CO2/6wQictK\nIlTJAo0oqudCs3vRd5b0fGf2ojs0WY4jmF0rEYzPs8mk07sHIbHS87EpSTAJSqKitt9bS8QAfCUn\nEdPjPaVoLoNe2qOmUeoXeXzpeeRyRhDACzu+d/H6TsEYeRex+f8asEFTQWcMliLWJQDfdoZz23xL\nIHTdhKf78H62d5zwkjasmOePJPOv1sAK89UNsQ+ujh1m7gdthMdnAufNP2CfuYxPY1yW/r+q9twl\n/kQH/AAAIABJREFULeI/SdjirUlked9HUNlXBlbOiP8RoZ77VOAp1b8W778RsdA4l1AO/lnL+J2J\nLNbPiRvOzcBNHT7HTQgF1V8Sqq9vzoi5fNzP4x5PiH9f7edtRn738Yz4R6b/16j9W5VIpmzZ4m8/\nhKhcrkVQwa8nhHRy45cgaNfTXjP1XCLaaHYFHtHhu7s/4UzwTaJy+Z/Aqi3H2I9IXOyQxnoF8Iq2\nxzJl/CsyXnNtznNT4i8jMuRX1J67ukX8xYQK7+7Ao1rEXV7/v+Az+lC69n5HVJ9uJcR82ozxICKx\n+jtCRfkbwCoZcQ9P/68x7l+L9/8c8AWCAbBB9a9F/HUkxl3Hz/DqkccL2pwDKWZfIsl9PVEFOgH4\nWEZc0Xw28vpliI3s8cScfkDueTjuXMw5N3s+/pXH/Fuq6/fa4Tw4HnjIHMbfQNg+l/wNVwH3Hzkn\n2syH/0YosN+RzqF/toy/vn4tpmvpupZ/w7OBA4m1yXHA1hkxx9V+/uTI707r8Dmulz6L1vc1Qlvn\nBOK+cFX1LyOuuid8veN339c9pdNcNjLGEunz24XYjL4LeFeHY1m+Ph8srnhiXfdZQvm+atc7sUX8\niulv/yzRsrc/sH+H418pnYut7osUrO8IVt6NhMXich2O+f7A4cBfCNvsK4l250NL57fF/Q+4csxz\njevS9Lrz+vh7if3iU2uPNwJ+lHMsxPp29drjNbrMD/OtnWEr4EynrJRChOc5zrRfKY1PMZU7wqnE\nxX0LsfBeOzO+lKpV5MmdxliK4Uxzdi+3pJ8CT3ML4a2G8Z5DbAQeb3uqYIik+xj0WtbFIAUsbXup\nhvgi+q1CdfeFtn8+8vxOwJ4tzoHdiEyj0+MVgM96ivLsmDG+Q7TBdLbU6kLFl3QE8ATCx/sYZwoy\njhlnHOXPbulBO2X8nO/zaOJ8qitpL2d7h8z3KHVKWbfNZ1+LO52o7mzEGCFHZzIhEgugslR7kpKl\nmu3NM+OXAI7w5Ix5NhStTXVmVW4//zjqp51PIy/yNZ9AH77adiOjpDaGiJ7RVo45pfNZ7bXHEUnp\nqp/8bNuNfZdzPR+PjPVzxlhiEcmtRksslVP5i9wdeog/HnibW+pxjIxR6nDRWlF9JP67RDK9YjSs\nAXzBUyi3I/E/JzYex9FC32Nk/h49D7OdXtLrDyXmg2sZtDRk39cU7gzvZUTg082uRdcAHyd6zmcx\nW93Qh9/jPaXI/SuN8X2ipXD0M8hiaUh6C8EMvTPFV61Nue1dpfE/IgpFo8ef5VAh6QLgojHx2T3q\nk5hJTffF0vWdQtvpLlLbRP1X5LXzfJhgBr7VSRhV0RbxRUI49T/bHM9cQiFWvFW1Rk/z2Qk597X0\nPTyOSEDVRa9bsS4lbUQkYJYjvoO/EtfnjwlXqokW35JeQOjdnZ1inwm8xe0Ei+ddEmFcP38bO6+i\n+PT6LYlJ9pGEVePywN62u4iDZSNRhCAylL+nQISqhMKsEC56hTvYudXG2IioQG9NVCyOISxI2qgQ\nTxt/bD/8yGJh6HvPOQ8StfPzxMX30/Tc7oR9zovcf0vCtGM5h6Dg/pDhSSb3Zj9Dxbe9ljKp+Okm\nMdPjWf8VLYUNFyUykwhLM+yJfQ7wJWe6PUg6hGib+ABxLu9CVD/fmhn/UGLh9wjbL5L0eCJBd0hD\n3P2IysLXic3nEFosVoos1dIY5wGbuTsNe2dgb5IORXo6e8FWChVYNNbGqNOHz3W7Pu4liGpt9mde\niy2az2qvfQGx8bsvPd4U2MGZNPKu6Ov40+uLLLHGvV/LRMy1hDd8141DaXwvFpWSXsRABO/0NgtG\nJcvYtIla3/Y/laGPohD2NMHqqveiP5UQKn1O5vsv76SvpLDVexWwve1p3vJ9J7N+7BYaW2Piz3MH\ni+B0ze5IsIlG16KNSYwe7ykPAO6szSVLEOyW7PVim0T8hPiiQlcP8Rc3zTcN8UV2rmmMG4Antr0v\nz/X6LiXDnjp6vihEFi+y/YRF+f59omQTrgnaKLmJtDHjrZDiG9tC0usXEK3OZzJo8buoyzUxLzQR\nahinMtvmGEvjsf3d9ONtxMK7FRQsgPrGZSFwkJvZAJfBjKc9DGebTaaiejo5n0MkEb5P2F6eR34P\n8O7ABQpNhDaWbFW1Zzvgf4jEwTMW0cZ7Uj+8J/w87vHsYPv7ku4i1INfTtxsn0poGmT3fClE9PZh\ndiKnzcapNCO7F3HsC9N7XympsRfRdpbS85RETq8etNMOoekFKVnwOUlfJIRSf5ObQEioO6UcRbic\ntLEYOpzY5OyRHv+EqARPTSKkhcFFkp5uu40eyyhKLdUgaMPnK6yhumTM30PYUXVdsHVKxNSwV8f3\nfTTwUNvnpyrft9Lzm6qmbt4Eh67DDZJWd3tWUdF8VjuGUyWtL2kHYhNyM+nvyYGkr3uM69Hoc+Pe\nesrxtq1elFpiLaHUVw6gYGllW2lR7u5QGt+LRaXLHC4qRfVzyFdUh0hm94HlJL2RSB48kbjHbp8R\nt6yk9Yn14TLp58oxqI1dLMCFkh5vu9FObwI+JOmrxBom2yHCIR55Xkrk5M599fi+7iml7l8Q66st\nbJ/W8RhuJN+yfFHE75fW2afRQaQV+LrC5eK7dHeruYZgY7ViJuWu7xYh/jku4WT7b0q28v8KSJvw\nFYh9SLUJ3y13ndM1WTDmOFYg2laflR6fTRQLpyYTUgL4fQ6mwnenvbYJ8y2JcKlCRfmL6fG/E4vf\nRR7f4+bnS4RoyIHp8WvSc7OyvyPjl4rNVHglAwrzTmkR/o2GmDoOIrJTXRYrdxLtAD9tGdcWkzaQ\nlT1g3Rqwen2WEJTtMxTtCwuBC4gqbJuNJ8TG8UNEG8dzCdpoq8nb5X7M99i+TRr6qPqcpCclcort\nbzKrtxMtpSR9mej5vjZNshcSonorS3qP7aMnxY5gB9t7MEgCIOkTBDMhBw+yfVxis2D7XgVFfCok\nfd72bsCh426sTdXHlDQ5yuWWahALrhuJ87eLqFjpgu1wOiRiKhRcR58nEqqjuC39LouCnbAScK2k\ntqyiovlMIdK7Q/pXiavK7YW9hiq9CjG1nJa74vm4hlJLrCOBMzRos9qJ2Jjn4lxJ+9DR3aGH+M5J\nCBU6XEjaBjiJsCP8B/BOBorqjUnVepVbHexSFfTzHQh9ouMIuu53WizEf8tAnPVWhoVab5398qk4\ngkgk3Ep8j61sLonz7rHEGnGmHYKGpJ6kzWyfCfxZyUqwjqYkROk9pYalbVcJhGrzt2xmbIWLgBPS\nRuwe2lfBOxe6eop/IrGu34zh7zBXpPVuQltgD4ZFUtsUmfYBrkiV/c7MpDmAFa1k49bwnZOjixul\nm3AVugDWcCiRUNo2PX4NsV6aNUeMwQ8kvYdYF9TXJa0ELOdbEuEdRAX22PT4dIY9zhdlfB/enxBK\n3nV635kK+l8WFBTstzOw/jgX+HKLjew/0gl+r6IP+fdEa0YulrL9rhavr+Na4IkKS8FZaLrRtcDY\nzbDzrfMmVdGrxZaIKtXzgN8rduJtbnLLpGSEHL2Oeyko5dmqwCr3Y75W0quICtw6BBX/gtz3zznE\ncU+6Bw/anOptw0T3TA9aDnYCfmL75ZIeRlThcpMIW0u60/aRAJK+QLvK1R2SViGdr5I2IdlINaBy\nd+lawfsJ8GlJDycW3UfbvqLtIGmD9hiXaSKULtg6JWIqFFxHD3Vy9ajD4byyZu77J3RiFeXOZ1Nw\nPXH/2NLJMkrSO3ODVeh61MPx1/EqIjH7bZixxHoVkRDadkpcdSyflHQVg+/9I27X+1nq7lAa3zkJ\n4XKHi1cRhZlTibnz1C7zu2bbpR4gKccu9QtEIvhVti9NY7Vh4vShhl/hEGKh3pURspHtdZtfNgvP\nJoo745KXjUkIyu8pFYrdv4gkztMIbZkuhY2SQlcf8dsQQsldnVreDTy6KzsvoRdm0hxgBaKwO279\n+C/DREgo2YSXugBWWNv21rXHeytsWHOwXfq/vkdum8yaX0kEh1BObpWv1/g+Nj8J99XprpIexcBa\nLAdHEL3LB6THryJuANtkxpdSmE9Omf+TaE+12nLK73JudIsLY6vouYutSUmIGu5KWfafSvoP4DeE\n8Ekb/DvJjzkd20/Vzn6lTsU/mlgAfqTlMUzD2AlfQXufHJSfKe9avYXY5FTYnFAhxvatI8yMJmwN\nnKjoI3wh8Be3EMckVKdPBNaWdD5hFdpoL+kkEufMPtUx8fsRlMs1CLrvoQr69tFEQuEnmePcJ2kN\nSfcrWDCVLti6JmIqdL2OVpzyu+xEUkrEHNTAqskZZ1OCTXGYwmP6gbanifhCVCO2B85KTJRjyGgD\nqmB7H2AfSfvYHsfKyD32ru0Q9WP5IzGnjcPPJB1ge9LvqzE6U/lLN6I9bGRLkxB13aU6bndDq6Xt\nrVJBYiviOzhEIfx7dMs5qqtd6sOJ9c9nUiL4OKKS3wrpWnwJs+2z24iZ/cFl+lgXqEM7hO0Ppf87\n2QuW3lNq2BX4pqRbiLnkYQw2I7n4FXBNxwQClBW6+ojv1EpQw88oY+dBeXvUnMD2mnN9DD2iZBO+\niu1DJO3qgQXzJR2O4R+SNnW0OyHpGWQm9dwT+32+CSsWUTx6iH8dMUlWmeLrCOuVbF91SZsRFNyb\niEl2DWAn2+NUxsfFzxLuGffcmLhn2D5fw32fa9KSwqzx7hL2YhJCy4FainItgvipwjgKYcnriBvN\nR4js6762L2rxHhfb3rg61kQhvtwFgkR9YtJnIOkPxCLhaGLjNtxPkS/g9Oxxz+fEK8T0PkMkb84C\nHpsSCEsSi5epG7qRxfYDiern+SQmSRu6V3rPdYnPoa1TyjOInv41iEVvKxXpkbHWJ6hv67WpEKtQ\nRbiHa20DIqH6BGLx9mDCLjCL3dX1OlI4e5xp++CR598EbG47e+GsQqcVRf/thsC6th8j6RGEUO0z\nMuMfQFDRdyA2nUcQKtLZPcmSVmVwHgJg+5zM2FExuyUJW7vOAnVN71F7vojKXxun1N2hKL4PqNDh\nojbOKkQy9O2ENV4W01HS1bafWHu8gLAjG8tcnDDGasTifQfgAcR5/MHM2CJXgDTGgcTnNlpkySqQ\nSLqOYETdTId2CIX+x9bMToRkafWU3FNSEmYXghnSyf0rjXM4sdE6meHPMPee8nHCgrxLoauP+IWE\nQ8cldHNaOYHYo5xFN3Yeirbtu+jeHjWnUFRzdgTWsv0RSasDD7P9w4bQ/xVQoQtgbZwnE6yUFYhr\n+X+A17dYH3UW4a8wr5gIlFM8OsenBMJuRPXwcuIL2QD4lCTb/vq0+DTGEoQewToMT7J3TY6ahcsl\nbVJtOCVtTF6Lxf5En+qF6bjxiFVhDvrITqlADE2F/fCZKM2cTa3m2a4yin8j6PRdcLakikq8ObFg\nOynr4HpIhuW8zYTnH0ZU/3cgWDTfIypW17YZ3GWaEDsT18PDCLGbqu/1eel4mlAXOa3+f0n6l5Vp\nTgvtVxH9rxDfwS3EJJ+LQ4j+48tox2aqjmFJQlh1e+JvX0h7ocFSTYQSZhNEi9SzqSViyNAXkfQf\ntr9A9+toN6Jvd0cGujobAvcjKrJtUMKqIb3f+sR9Cdu3KGyxsuBg6B0FHJU2r68kfL6zkggKHZDt\nCduo6jw0IbA3La6oHaIPuJzKX+FF9c2q7T8r3HxykwBF8T0lIU5nssPFgUCj4nx631cQG/mVaWYR\n1HFKWjTX7VK/3yIeh1DzZwhWwjrEfSYXq/WQhF+GmMe2qB8W+SzLFxa+/3cIJtZl1ObTFuh8T3Ew\n03aw/TkiodsVN6d/90v/2qL6zuvsqDY07NL4scr6LfDt9K8ExcykOcaBRCJvM6LQdjtwPAO9lH8J\nFGzCP6rQ63o3AxfA7FbD2ntdSWgPLZ8e/7UhZAYqF+GPceYZE+Ey209RzQJG0iW2s06sknhJFxF2\nQT8feX5Nwk91kzFh48b5oe2n5rx2Qvx1xIK5qlqtTiyc72VKxjod/1XAyxmIT80gN8sp6bXjnm/J\nxjiZJIbm8KdfkhB6zKo4lFbuMsYvstiZUvXqi8pfVWla+zFPS4YBn2+RDJuayJG0ctNGMFVNdkjv\nvXfa1GVBtV5222unBeOXbZcmkBY5JD2OoPCfSviai7jpb04IdV6fOU4nK6m0Wd4BeDFhp3YMIUSW\n5as+YczlIIS0WsYVMZvGXWs512/1mq7XUW2c5xIsCIhr4syR3ze1NhWxalJ8ZdVZ/U0PAC5ssyHS\ncDvEg4l2iJsyY28gGCxdNi2osB0i8z2a2GGdqPy1+KsIKn7d3eFSN9gL9hhfZFGZXj/EBKiOy/Z6\nGmOPXXvNckQiawdiHjuRmFMWtriOBKxGbBJK7FI7tyNI+iRwhru7AnSGBsKISFrLtVYkSa9owWS4\nxgU2eF3vKbX4zxGtJKN94EUVcElL2r63ZIxFDUmPre7dqjF+0+OZwt+U+BmL0jG/6+Le8y+L2r2s\nbgPcaBc7nzBpE267sWW1h/ee2o6TMydKupqBCP+TUvH3G7Y3b3Ms842JUN3QfyvpJUTlbtzNf1HE\nLz+ucm/751WWJxPnKwTYuk6yXTPVWxLWOy+gnaPFKOoJl6WJCubltMtOFYmhUV65a0KrxvgWeBpT\nqPxtYPufhK7FwU2vHcHbgK1GzuUzJW1NLPwakwguFDZMyYOXEIvONQlWQPZiMaFUE4K0WXozsxed\nTZ7aGwG/qhgMKbG2NfALYK+MKvpHgF0dyr31cbcGPpbGysFZkj5FVLnaUBZ3JyrP7562wc3cAD+B\nOGdWTo//CLw2l1nijswmRe/zqgxbskFk7LPVwAuuoyr+LIJ2OgmTXErqY5ytDqr0NRwn6SBgxZRc\newMt/h7V2iGI5O5SxHea1Q5BtOYtRbfKJ7Z3V0E7RCaa5trLGUPll5RL5S91dyiNL7WohO4OFz8H\nTiGqh6fmJl7qsG1J309JjK7aSCcxux2hTRWssyuApONsb5t+/qTt99d+d5rtLSZHAyFoWM0TxzM8\nZ+xJ/mdygaQneozoaya63lMqVImmevtEVgVc0nm2N00/j2qi/JCGeVTJQS39vI3tb9Z+93E3tLWU\nxhP31OoYL2T4eA9sOn6CCbhBer8zRgoi386IRwOXDRT99PvVfne47dc3jTFPcE+adyqtowfzryUQ\nCR2c8DTB/a9CbrGXbqzQUZSK8APzL4lQSvEoiZ8mRtFGfbbTJKuga9/jUPNH0rpEJfEXOVlq23+U\n9E2ihaBEGX9InEoh0jiL2dCAUjG0Tmrm6b0WRzvEIqPyp+zgtEmmqfrYVzKsUyJH0UP/BCIzu7ft\nrrTHu2zfrSSEqGCztKVNfYdQp/8B7aibBxEJOSQ9C/gEISj2ZIKG3ZRpfuK4bLTt4xW05FxUFaMN\n68PQMJc43yaocQNM/L3vSptpJD2H2MBm+YJLWopIbD0rPbWQEBps2oi8AHg9Ub38DINr7naCIt+E\n9TSg0A8dEi164TPQmChUd1V6AGx/WsEu+SuRCPgv26e3OMaidghCBOxKSaPe9rnstk7tEC2xX8Pv\ni6j8LnR3KI2nPAkB3R0uHmn7HxDJC0mPsn1Dy/eGaNXcyIN2v7YobUcocQVYp/bz5kQ7UIUHZ8Rr\nws/jHk/DpsDrFQyvLhaTne4pMy8sEwh9QO3nUTZFzmewPbBv+nl3kmBywgtpvi+Uxpd+h/XXjBY3\nc8+BZ9V+fh3D89680MvKRFVYeoikjxFrqsWmD9MTumzCS93/gHY6LlNQKsIPzLMkgu3Kb/M2oPVk\nVRj/uHSTH4VoYXlRMMmeQtBufyrp0cSXeSSwZbrxNtJBUwV5e4Z9kEtxB9C2mvhuZqvS57pLFPXD\n91BF75yEsH0f8T2eogGVf6GkNlT+yuGiUnytmAOvJm8T3VcyrGsi59XEObMrsIsGbghtN29nq6Mm\nRA3L1itGLbBE7RzZDviK7eOB45VnnzOtbSC7paBwwZaDnIXLA1wThbW9UEGnz8WXiCr2genxa9Jz\nb5oWlBKhX5O0dfrs2+JqFwg6tkDONdlVlZ70+rUI6vfp6fEyktYclyycgLtTJbhK6rb5/iDm8hJF\n+q0IUcjWTAZJJzE9qfpv6f/DG4baxPaba3GnSfq07Z3TXN0IF7g7lMb3kITo7HBRSyC8lKio3w9Y\nSyHq9eGmxHINGwOvVgg83kH7DfDJkrZw93aEEleAaTE543nCz7nxFV7U4rWzD6LwnqICvSvKP4M+\nN/Fd4kuPv49zYNrf8C8D20cqbM+fR/wdL7d93RwfVlu03oTnFngnzcVjXrcaUTCvWIXnEizYXzfF\n2n57+vHLCvemViL8FeZVEkFhh7gfkS3+J/GFvNP5vZsl8Y/rdNCzj2EVItu/KTExnEfcaP/UELqS\n7Z+mn19HVLDfIel+xAma21Na1E4xsmhbQPT7HDc5YjZsX6boA66LoWVPeOru7V6hcztED0mIIip/\njYmy+cgm6P2SLqfZwrSvZFinRI7tRtE7yKLSf4BIql1NCCV+H/hqztg1fFfSi223Eu8iqMNVj+bz\niHOxQs6c+RCN71kTGVWrMbEG/kj02zXZ+rVBzsLlJkn/yXAyK2s+TtjIw32OZ0rKUg5OWC1l+W8n\nbtYbAB8o2EjMBRZ4uH3hT2SIQ9bwTYaZH/el53JFqIraIUqYbQkl7RClvvYVOlH5VejuUBpfR2kS\nIwNN7S17ES1mC9PxXJkSXLl4QbfDmkHndoSEm4ikfhdXgGUVbVULGG6xEnmWr49SaCap9jPpceNn\nqIGmx+3VYROWw7maFH3dUw4n6V2lxz8h1po5SYQVJW1FfIYrSnpFdXiEunwT5noTv5qk/YnjrX4m\nPV41I75aF4jhNULWuiBhgULcdEHt52ptne26NNdI7ORrbX8xPV5e0sa2L57jQ8tGX5vwCchtNTyM\naLOpirSvTs816hqka/FM27c5mMorSnq57Vain/MqiUB8GF9koH69PdFfnisE0zm+tnlbkQF17Se2\n29DwIRYp5zDoe96RmGSf33QItZ83I+ivOCjdbXqFOvesJdQXbfcS7RSNWa06FBY4r3ei8St6zL9K\n9A/loLQfvnM7RMJcU/nTcGHbmR48nbyNR1/JsNJEThOmUuld2MuesCvwQUl30W7ReTTBhPgjwd44\nFyAxhHLmg4OZ3LOWkwgZF7smsIekvWy3bS8qwRuAvYkeWhOfxVRNiRHcJ2lt2zfCTKK3TWvJG2zv\nJ+kFwCoEk+HrNDsLfDNtEHdxqIkvKuQkR8ep0rfZDC5p++7qQbonZKuau2M7hFIfuCa0WLWoIHdu\nh3C5r32FTlR+F7o7lMb3mYToAffYvq3GLoOMzVe6d38QeDSRFN7HLVTEayhpR4AyV4DfMmB43sow\n2/PW2S+fhZfVfh5NjOUkyuqOQRWWSwnZN2Wwkvq6p5ToXZ0N/Fvt55fWfpfT2vQkRYuamO34svTk\nsN7i31v7eZSWnkNTr68LRtcIuQWSFYhzoToP6sXB+aOS34wvMbz++9uY5+Y1+tqEF+LBtg+rPT5c\n0m6ZsR9yTdjW9l8U+kmtjn++uTNcNbowUQvFzpL4VEE+iHA3uJm4SNcgqshvrS/iGsaZpZ6rMarI\nY+K+QdyMfkNUYdey/feU1Dg79zOYD0gL/v2IKvyqhLbDG1uwITp5u4+MMauKbvv2prgU20lNPSV7\nqqRD/cJqveCTtAGRUawy9H8hNlTZKsgjn8EyxGYk9zO4kpTI8UA9t/E8bnFss9TGq/egTBOiF6RM\n+cOB05xcDSQ9Bliu+g4y2BR9H9PKwA9c4CwyMt7Y76BPSNqMqF7dxGBO3cm1FomG+Eo9fj9CDf6E\nNsetQrecNMZKRK9jXRSwOgcaXUrS615Bd1X604EDbJ+YHr+MSI5kJfRStfi3tu9Mj5cBHtq08ZD0\ncNu/TfPILFSJ94z3f92E+GyGg8KdZR9m22lls6saxp9KH1W5u0NR/OKAmh0uDiGSvx8giiS7AEvZ\nfmvDuKcQG59ziHa9B7qDAJykc4DnpATz/4GZeeUttjsJcre9p6QC0dbA6Q51/U2AT9oeu2b6P/wf\nxkFj3GDG7d/mMyb8Db2sqZrm4trrziD2CVWBYgdifdW4NpiwX269xp9vTISTJX2AqOab5CNc3YAz\nFmsl8XsSlMtHVhsthfjUF4nKdm51+zSFLkHVAvBKwlasCW8mKqdrAlvY/nt6/vG0oHRK+q9xz9v+\n8Ljna3F90i5PlfRWQszqj8D6Tkr3mThbBf3wpVV0zzGVP1VQn+2wXVkhjd2KETPmM1iNdkyCPoQN\np2HSWKWaEENIG8B1GN54NFY9PMauyfZPRp4ay6bQgOY4aexcBd7RuP/RSBlwEtSTwGjawG7jYX/6\nY2w3UpPTMTyJ+PzXTU/f4Ha98ZdJOo2g/O6e5uQ2m4jS9q6PEAKPNzI4/2aYXdPuKYm58lDb5zvE\ncb+Vnt+0zs7IwFuBI9PfIaK3e6wV7wR0aoew/dv0/y9U4C7RJlkwBYcRTILPEXpHO9GuJaQJTfTR\nUneHovjFlIRomlveQdDY7yIWracSTjRNeLjtiv5+qqItrwtK2hGQdBbjGTW5LM1qnKcz2/Eny71K\n0jOItpDKqaRaX3VKhtn+lqTOgnRt7ikJ72K23lUrS7tUsNua2Z/h1DXqyBhLAA8diZ9qkTjhGppB\n0/5CmfosU+KL1wWpuDRtjCKrzcWImyTtQrAPINb4bdok5wPG3X/62lPnXpNvIDQRPkecmxcQ65Uc\nXCrps8QeF2LN3drZb74xEab1ZjVOtCXxkq4BnlrbvFfPLwdcNMoumDLO7YQK7X3EibCAWnW6zWZ8\nwvjH255oESfp3bWHSxObsuvcYGvXJxQ91NsSm9j1CIeMd9v+XmZ8qbd7URW9vgG3vXaqgn05t/KX\nMX6Oz31RBbWHz2Bfgv3wWmLx+Hbgx7XFYBEyql59+KK/iUjMrQZcCWwCXNh20djmGNPzVeWoLfAY\nAAAgAElEQVT1GUQS8Nj0eBviM5xauZvyfs8F/jP3+CV9B3hH0+KqYYxx38NiYwKkueDJwE0Out0q\nwKrO7D1MG4dRuMVneAPhtpHFRBuJ/S6wu0fs2CQ9Efi47ZeOj5w43nIAtv/WMm5cxaQNw2/UXeKZ\nQKO7hPprh0DSZbafUp/Dqudyx2gYv2k+OpjJ7g772Z7aMtlD/M8Zk4QAcpMYjZD0ejcLVFavXYIQ\nXW1sS1BQ7p/DYGF8Vv1xRnGoGudD4553plK5pPq5sjTx+d9r+3058WmMrxNJ+SupOY3kJoYlXU+s\nhy6rxeNmzaxJ4y1H6Bo8ufHF4+Oz7ykKQdg1CKvjhxDf3w1tE1kKZsptzP4MPpMZ/w4iofg7alaf\nTfNJ2h+MtoTU3r5xfzGVbeFmpupYRlYtvjHZOuF+Vhuin7XNooaixWl/IhlvoiCzW5vk9FxD0qHE\nGrm+CV/ZGSwrNdi05s7FqrU8T3tuQuwDiOL484nv4HTgY07M21zMKyaCO3qK9xT/z9EEQhrzb0qq\n1pnH0Id/5zRMnehGJ2JJnyaPCVGPeRKxUAQ4J3fBXsMqRELmH8CF6abxVcLysBEu74cvraKXajI0\nISfLWFRBpfwz6EPYcBqaPgOpmyZEHbsS1dOLbD9X0mMJZem+MPbzrBYDkt4GbOoQaETSl0n6CtMw\nYdO1MnAL7SrQnQVGa/inaiKjCoZOm/Oo9DyuWgDWa1cwm3mfUoeLa4gNW5fFzUPHLRRsXy1pzdxB\nRit31efQonL3B0n/5uF2iD/mvj/d3SV2Tf9vOfVVebgrJZR+Kuk/iLa/5XoYNxel7g6l8Z0tKnMr\nqE2LVklHEayY+4BLgOUl7Wf7Uw3HPtrHDYNebpMp+JubLJgSP5poOT/NjW2wIfD43ILGGNzmEMhs\nBY0X6l2J0BhodH4qvaekhPzHCUbWWkQLRVfHltXcsf0iYVfC7aVV4qWH/cVMkkDREra6W1idjiYJ\nJC07bs/RMMaidmxa5EgJyM/Z3n6uj6UQ7yA24VWR6HQGDNomHJjm/cOBIz3CNM5N5hIshNHk97jn\nZiElC5qE2hsxr5II6eR6CbNpTrl0tZJ4a1jptI5s+qyCrnal7TskvZr4Mj9fUg0cPc6Wr1+WqMRm\nQdKuRGvFt9JTR0r6iu0DcsewvZukh0qqKvc/tJ2jFtpXP/zZKrMHnCsqfx2lAplFn0FJIkf9UOnf\nABym1M5B0oRoeSh32r5TEpLub/t6Ses2h/WGlYDlgarStlx6rgmjmy4DfxrNEKtZk6FUYBRiA3me\npLMZVKHfMj1kCKXncV3MamkiuXdZbrzKLMkg+vCvUDDV6hTqnETMilN+l6PoXuE7DCp3XRwOStsh\nOrlLuKd2iIRdiXvZLgSFfjPCxagvNGWoOrk79BhfkoToy+Hi8bb/KmlHQhj0A8Q5OTWJYHvNPt5c\nhe0IGqazLwCeQp4rQB3XAA8jhBa74CxJnyLWV/X5pCmpOlqcMsFEefW0imYNWfeUKdgN+H+2/6AQ\nxz2S7ravFzRVYhvwK/IEjsdCsbDbEVjL9kckrQ48zHZWQkmFVqeSnka4WSwHrJ6Kdjt7oPafM8ay\nRGvJ6rbfomDLruuBzf28hcMBbQ1J93MHht98QbUJV7RY2i0Ygrafmb6zNxAtmz8EDnOG4DHMnENP\nBx48kmBcnsXs0jGvkgjEJudOovrZRTynJH5ctrxCmw3klwgV2CcB7yaqt18HFovwzMhGfAmiZy27\n14yoPm/sgZjcJwmrzOwkgqRtiEl2IfF5HiCpkf5Kf/3wpVX00iREMXrIOM/6DGw3JgT6SOS43Caz\nWBMi4dcKYdJvA6dL+jNBxewLTRuPTxAb0LPSa59F9MNOhTMF62h2uDhbHbQ9RsY4RdGHuUl6ajeH\n33wutmn5+tH3H6L8S3ok8PkWQxxOd0sygK8Bn6TbPeVSSW8eve5SVa8N/byocufQXthEHdshGO8u\nkW2bqtntELn3gxnYviT9+DdCD6Fv7Nfw+07uDj3Gd05CuD+Hi6UkLUWIT3/B9j1qwdIEkLQes4s8\n35oYMIz31H6eaUdo8fZ1h4N7CQHtN7aIB3gQ8OO06G+bVIQBY2TD2nONSdUeWBgz9xQN9ARWUbSH\nNeoJAHfb/kN67U2Z7JlJ2BR4vaK94C6Y0YXILRJV2hjfo4M2BsHc+SfxmX+EsM08nnzL3L0oszr9\nPGF3emKK/5GkZ7WIh7inXcZA6+Y3hM7NvE8iJNxEMIFOZJihmPsdzjkUbYlHEIweFG5er3OmK5uD\n4bwn4eyxP7B+SnB9MGNOvB+RhFqS4QTjX2mpUVKK+aaJUKTOWRrfB5R6KxUCh7+xfYha9nI3jD+1\nH1nDStr3Ar9zolNnjn81QV2tlLyXBi5xC8VORQ/k5h6hvzq/B7e4H74EKtRkyBi/sac8bZ4/RGw8\nISyRPpy7mZa0q+39mp4bE1edP2MTObaz6E8KJe31gU5UevWgqj8y3rOJROEpOdnvHDaFpijzp3No\nE+JmWS0cL3Y7gdGmY2yaC3rR9pD0bwzOw4U51Y5UrTmUsNb8J7Ct7QvavO+EcUV8L4/PfP0ltjeq\nf1YaoxHQFN/xWB9KuPvczSBpsCGxANgq91yQ9BXCnaFT5U79CJltzUB8sK27RNH9IMU8hmClVIJ0\nQHMVWoViaC2Ob6q7Q2m8pAcR94NNGSQhPkxUZFe3/bOM9yhyuFD0on8A+BHB+Fwd+IbtZ04NHMQf\nSmgkXctwL3tnvaa+7xMZ79fJuanH938MkUxZkxbXQS2+q57A7xkksCDs02ceu4VYsMrdXkq1Mao1\nev2e0EYj5iLbm4zEZ+89NOI+1vb90+svtb1hyRhzidLvcD5A0gXAHk5OU5KeQ2gdPX1qIDPJ1J2I\nefR04BDbl0t6BKHbNfYaGTPOGtV1k9acy7mbfW5nzDcmwsmStrDd5AG+SOIlPQzA9q1pofNM4Hrb\nP24xzO0KD91XA89KX+xSLY9jWr/V+yfELEv4OFcn1LqEteLPiYVsLg4DLpZUxbyc/KpdhU701xqk\nDv3wfVTR0+vmmsoPsQG7hkGV6jXEd/OKzEN5HbOra68f89wQaufP5iMb1PcrVLVze6hKqfSlvfQA\nSNqUqMQflq7pVYkK1FS4kE1h+5+Svpg+w++0OeYWaEpqFWt7SPoEUaE5Mj21q6Sn2/5gQ+jHgGc6\nWkg2BvalAxtL0gEM/s5KZLHNOXBHqrY5jbcJ7aiw50rah6gataEfY/t3wNMV4mWVMO/3bJ9Zf52a\n21JKK3el7RDYPp6o1nVB6f0Aosr2ZWJOzvWlh/6o/E1ocncoineweSYlGX6WmcTo7HCR1jG/s71q\n7blfpnFysUlu8m/CMXRqR5C0EfCrKmkn6bVEUu0XwF7T5vFRlCYL1NE9q4bqOvgq7a6DCp30BBhu\nK4MOKu41FBVjetho3pPWadU94cG0Y5ldK+lVwBIpMbcLoYqfi1+lNa0VzJ5dgetaxAPcnfYJ1d+w\nNh3n9rnAv1KyYAoe4JpVte2FCrHCHBxA7Ks+6NCOq8a4Re3cVvZROOFl69SMrKlmoU1CEOZfEuEi\n4IR0w7qHwWIp19Ggc7yknYkNkhQU/tcTm7h9JO3r/B7a7Qia4htTMmJ1GnoGR45jar/VlATJKUT1\n/KcKa7ELiYX/lpI2bqogS3ovcLTtzyq8gCtBs51sX5F7/NWxqID+Svd++KJ2iD6SEKWbzxrW9rAL\nx94Kx4WpkLQDcf6tpaCKVXggg978HHRK5FRwOZW+tJe+ynZvSNgLHkYk875B/oK/VJjwjFTB/ZY9\nJ5SvPrQ9Xgw8OSXWkPQ14AqgKYlwr+3rAWxfrOgb7IJL62MSc1Sj8nAN4yzJtmkRXyXSNqk91+o8\nTAuNaaraU9tSgBflvtcEdGqH0GTbX4gF641EJeaMhqFK7wcQ59OXml82jMVVIZ4HyJnTlrF9hiSl\nZPFeki4Dxm5s60hJ0fcxsK4mzWlt2gkulPT4lkWZOrq2IxxEKJCjoI1/gkjIPBn4Ci3ovyPXxP2I\ne8odLdaodQ2CGfes3Pen43VQQyc9Afdj01rhewy+x6WBtYAbgP+XE6xyq879icLaQyR9jPj+22zc\n6lanRxFM1Y+2iH8rUcxZlWhDOI18Qb4KexFr/kdKOpK4/l/fcow5Qw/f4XzATQonuvo+I8um0vbE\ngortr0/63Rh00am5dMrvWmO+JRE+CzwNuLrjorsk/j+ISWwZIkP96JQEWIlYAGYlEVK2+7O1x78k\n+mZysRfd+q1Wsv3T9PPriMX2OyTdjzipmirIjyBu8j8nFntHO/XA5UKhhXCS7fdKegWDRMRXnEl/\nVUE/fA9V9L40GfpQxf+HpE1tnwegEOz8R0MMREb8t0TvZt2p43agjctGkbChalR6whJrVaKCkkWl\ndz8qxFsRm8DL05i3tNzMlrIpdiY2sfdKupP2SdEmNGkynK1+tD1WZJCAyhUie4iGBX+GHjuz97GH\nxeu1BANiXeLzuoF2ybDFoYY99Xt0CBOOMmraOBN0EjLzFKehNE8/gRBs3NT2X6aM814Nt0Nk3w9q\nOEnS24nFf50RkmsPWETl/1+CUoeLH0h6D7PZYbnJ6SOINcatdGDUuLu6/hK1Y9yOOP+OB47PScyP\nHMPMNaHIzr6M4QRjU3ype1bRdUChnoAK2ynSa4daYxWaO9mighRqY9g+MiXPnkecgy+33SaR81iH\n1XVXu2vZ3rFjLEAlrHoZce4J2NUF2kNzgFJ9k/mANwB7MxChP5fMNfKEguVtxAb/oy2YQq11anpO\nCM67JMKvgGsKqnYl8fc47Fb+LunGivpm+89NXwqApPNsbzqmetN243CP7ds0bGeW8/fUX7MZKROV\nKpGNVC3b70yL/GcR/W7/qehlPZqopN6ecQyvAr5Yqzq913Yryl2q5O9AWMB0VeDtVEXvIQlRoQ9V\n/LcCR9Q28X8mQ408/Q2/IJJpnVCSyKmhiEqvQk2IhLttu7p+lU81A8rZFNM2YU1QP20xfdh0Vu4E\ndXHI3TPiDmZY8Gf08VRMYQW1pfJf6NBSubY29uVkWCCl134c2LfaJKek8rttt6lcNWHq/N4Do6a0\nHWL2Ace8/iNFy9GZNHyeLmuHgMHcV6dVZ9sDUkDlz0R7/9F+43NQ6nCxXfq/XjVt8x0cQrTltRIp\nVXk7whKSlnRoQz2PYXeZzmvgtM78dro+u1qltXLPovw6+GX6d7/0ry1K2ylmwdELPtGidMzri6w6\nJe0PHGP7i7kxI/iMovX5v4FjnSmkV8P5qVh3LHD8tATsJCi0Xo4CTnS+w8a8Qel3OB/gaEFsRf2v\n4WTi+jkqPd6emAtuJcSgXzo+bBYOIlrWfwSck9arUzUR1LNO0HxLIlRZ0pPpprpaEm9JS9m+hxC7\nAEAhLJizAd00/d9545DQtd/qqpTV/g3waIIihUKdPgvppng2UcH8D4IC+AnCcWLZjPitJC1PVIDf\nARwi6TsEq6ENrbS0H77UHrBTEqJ2nEWbz4S/pk388mnMv2YyUqo/oDPtsqdETimVvlQTAuA4SQcB\nKyZmxBtooXNRyqZIY6wErMNw9fOcpjj30BbjAm2P2hhHK9qbKnHB9ztDEND23ikRsovtz3V461FL\nslZIi7xVCRbG+gw2acuTMZfV8CLX9B9SUvnFtKO/lqKUUVPaDjERtr+saAWchTEJ9TratEOUVKEr\ndKbyZ6LJ3WFRxzcmIVzocNHDd/AH211sAUvbEY4m1jR/JNh856axHk1Lar+CYVlhAZHcu7NF/Dj3\nrI/kxpd+B0696Oru1FLaTsEIQ63StrilRXypVedlwJ4K3bATiIRCNsXb9nPT/WVb4KC0RjvWdlZL\ng+3HSHoqsXHcQ9KP0zF8o8Xf8GkiqfcJSZcQIpffdRJEn+/o4TuccxSycp7vYaH4qzUQ/Hx17jHY\n3p9oz6nwC4UG0zT0qhM035IIN6d/XbOkJfFbkSZ327+uPb8KYdWYBYXtR1U9/LHta6e9fgzq/VZH\nE1S3nJvMm4lKw5rAFolVAUHfbHXSpL9he2KS+iN5lUcgNruELdrXFIJmrwT2VyjZPzJzmM798D1V\n0eeUyp9wPLCBh5VW/5uYbBvhQtol5Ymcs1VGpe+kCVGH7U+n9/4rUcX9L2f68CaUsineRFyTqwFX\nEp//heT303dqi5lSxa/isyvQks5wuDmcOOa5qagno3Lfr4algId6RP9A0daT42rwAqJHdDWirafa\nZN1Os55DHUtIur/tu9L7LwOU2JuNQ9MGsJRR8wuVtUM0vsWE9y1uh5C0me0zRzZv9ffItQfsROXP\nrdrYPnxRxLdAYxJCHR0uavGl3vRXSDqKuA/UizxN32FRO4Ltj0k6A3g4cFoqlkBsXmbEKNUscArD\nFcJ7iSpgm8pdPTl6L+GSkD2fKKjLb6PmlgMclIpfOfFPINo067Z0r22xTi1tp4BhRtq9hC1htt0r\nhVadDjr319JGdmvgkylZv06LMW4l1rVnAe8jkpHZugi2fwj8UMF0+yyxZs5OIqSi3NlpHt2MWP8f\nSiTJ/xXQh93qXKOElbOEpKem86BiW1WFxsa2Dkmvtv2NkYRcHRML5/WCrqaL+GdhXiURSrOkJfGj\n1b6UXVySyFw3bpzShvM7hO3Rj4iL44kKBeOXOdN2I23+91CIO9p5bQQ4FD4/Meb5C6gxGSQdP7I5\nq55fh0gcbE9cEMcQyYgsoZAx461EVI23I25YbTzBO/chl1bRe0pCdN58Snosoc2xwsjCeXlq1ew2\nSIumtrTLUmHDUip9V02IIaSkQZvEQR2lbIpdiQr+Ral68Vjg4y3iu7bFFGt7KBhYywIPStdyvZK/\n6sTA2eiajPo845OXf02/m0r3qy0Ut04bjq44khDIPCw93olY8LVC+gwfyfDmrfoMmhIypYya0naI\n3uH8dohnp9+P+77NoB+1CV2p/KVVm6L4npMQXR0uKhxGmTf9MsTGc4vacznfYXE7gu2Lxjz3k5Gn\nmgROsT3E4EjX9dsJN5qpkLQqwTy4Kt1XHkLcX19PaFLl4EvE9Xtgevya9NybMuO/ArzLw7Z0BzP4\nTptQ2k4xs06vkJJbXyA2wjnxs9gYaX3QFo8mCn5r0ELcUtLjiHXtK4ki27G0KzRWbN3tiSLTCcR6\nsRXSBvCl6Vg2oMN9aa7QA6tpPqCElfMm4NC0VxWxrnljKhDskxFfFRJKWmanivhnj+M5EQ0fj9Es\nKXGBZmdJS+PTGDsTYhl3Mrh52w0CTIo+q7uB93mgZL6A2Ngv40wP6ZSROpTByXEb8AbP7iHqBE3w\nlpd0I8F8OMbte7yqMZYjJscdCPrtiUQyYqFbnGgq7IeX9DniRtupiq5C72mN+ACnzeflORVgSS8j\nRFL+jVr1l6igHpOSQjnHMI52+WzbnbUSFickPYkQ4hrShLDdKA6pyTTqVvokkvYlWCivJSpWbyfY\nRVmCSpIusb1RqpZtbPsuSdfazlKhTmPMaovJTSyOu9aVKHMZsbsCuxGL2zrV9K/Awba/kHkM41wJ\n3FT9rD67Cb+72iPiXFPG2ZXY/NxOLJY3AD7gFjbAkl7EYKN/uu02QmhI+gixUbiR4XtKDrNKBJvi\nscTmS8CpbsGoSeff+sQc1NrXPGP8sfeUxRX/vxmSptqiukWboKTLbGcx2SbEz4k3vaQ9CJeYPxJF\nmg1sW9GO8DXbvSTDpp2Hkh5JJHUfQaLAEwmA1xDtmrs2jL0bwTD9GcE8OBD4JHGP29f2bzOPcdbn\n3eY7KI0vgaT1iE3LI4BvA18kkgcbA59xQ9tbKvBsSySxT7Z9raQtCWbZMrlzSLqvb0XMx8cA33YL\nXQJJF6a4b9rObsOoxd9M/P3H2b6wbXwa4zgi8XAKsc49u9p3/CuglFEzHyBpL+D3FLByCgqVxVC0\n821G7M+q+Tx7bVVhXjERKM+SlsZD9Lg8we2VTp8PrFe/kB22SB8kqrG5OAR4u+2qb29TYhHcy4KP\nydTTtaufRzYuywBLZm5cfk5MagcSC92uE0JpP3xpFX3OqPy2vwN8R9LTut5gEsbRLl+WG9w1kaP+\nqPQlmhBnAA8jKlzHeIKmQAZK2RS/VmiSfBs4XdKfCTGwLKi8LUbqqO1hez9gP0nvsH1A7jGPGacr\nq2ialssyLcZ5g+39JL2AaE17DZFozk4i2D6ZEELqim2J9py72wamzdL30429K6OmqB0ixZQwKZqQ\nI1w8jrZ5G3CZ7Rzr21Iqf5G7Q9f4NkmCDJRS0Yu86RObZ5yt29RWQffbjjD1rab87gjiHng88EJC\nRf1KYs2X0171FqL1438Utt8/AZ7RoTh0n6S1bd8IIOlRtGOVdLalS+/32nHP285xIDuYYE1cSOi0\nXElUz3d0Xi//IcQc9EPgAEm3EMWRD9j+dkZ8hRuBp3VY4wNg+2npOli9SzzwqDQft9HmGcUhwA5u\nKVw+j1DKqJkP6MzKGV1fS2pbKN1/2u9t5wg+dhXxH8J8SyI8oEoAANhe2HLBUxoPMcH8vfFVs3G3\ng243BNv3Ssq+0QL3VQmEFH+epMVmfTJm47Ia+RuXRzraKpreY2xLRQ1F/fAFG5cKc03lB9hK0rUE\nhf8UIon0TmeK73iEdtkBXRM5fdlkdtaEsP3yNEm/AjhYQc0/lkgoZGeJXShMaHur9ONeqSK/AvFd\n5qJIk4FygVGA28YtHDMXjUh6KNHC8QjbL5L0eGIB12SZe6mkN9se+uwVOhNtFt7VHfLFwBGpetUo\nQtcXmyXhGiIp8vsWMXVcLmkjD4Tx2qK0HWIsk4I0H7a5pgqwYfpXJWO3JCxr3yrpm7b3bYjvg8pf\n4u5QFF+axEgopaLvRZk3fb3tYWmiGpxVyXVP7QgFWNn2XunnUxV21ju2qP7eWV0ntn8p6YYOCQSI\n7+4sSTcRc9EatBPJ7GxLl1Bnhy1NrAsvJ8/G/P4etN3cIGkX2+9r8d4bkgp16Z5+K7FWzLXDq3Aw\n8CpJj7L94ZTUeZhTf3oTVE4D30TSIYQmy+oK1uXOttvYXJ4L7K7QcuiiTzLX2GiE/XKmwg3uXwYu\na8koLZTW5469iXtLW3QV8R/CfGtnOIGYkOobj6fUFuOLND6NsT7xZV7McLZ+amZH0vUEjX90gSrg\nG7Yfl/n+nycqbUcTN/jtiNaKb6TjyK2GTxp/KnU0bdafClxcQnEpPIYLCXvIej/8p51Jxe9aRZ9P\nkHSl7SdL2opYML8LOMcNtENJBzCdCZBlSVO9f9NzU+I7Uek10ITYl+HF7vLEOZHdCpDGW0D0Hu4P\nfNwZTi2lbAoNKw+Pi8/1ti9pi5lxRiihzKXzqcLMotF2kyJ6FX8yMZ/ukZglSwJXNM0nKflwAtEi\nVt0wNyQWbltlVv+q6ueqwFrAkwjxooUuoHW3haQNCb2caxi+p2QtOtO9ZR2CTXQH5Fs0poRJaTvE\nDcATuzApMsdvbGeQdA7wYiedI0Xr3PeIqvBlth/fEF9K5b/M9lPq98I2Y/YQfx6DJMRLSUkI2325\nS2RBIZZcedNf1LWam8ZaAJxnuw1TdNp4i6ytJm1wnsNgfXdW/XHTnC7p9wQFvsL29ce59+U01v0J\nfROAG5xEX+cCCqbdMbZfmPHa0TXykYQtePUZTl3bjq4fctYTE8b5EmExupntxylYVqd5QvvcmPgi\nGrikiwk9hRNr8dfYfkKLv+FY4r74WttPSKyGC3LXZ3MNhc3yNh5m1Px3l+9zrqACodnS9fVIXKd5\nLx3/Hgw0ak4FPuqWDh/zjYlQz5Ka9lnS0ngIO6EzaellTGRFJ21Qsha8CdUmcTSztD6Z1XBNV9x8\nf0N4qZhcDprGeytwRK2C+mfa+VkXZfm6JiFKN58jWCr9/xKi926UdjQJ2VZFDSgVNpS6UenXJZIm\nKzLcknE7mcJLtffbAXgmcB6x8Tx3etQMStkUdeXh1YnzV8Tf9EtiQ5uDs9W9LaYPm048ouVSLRpb\nDPEg28dJ2j2Nd6+kxkqw7d8BT1fYFVWLq+/ZPnPkeJoozG8kmEU32f572gRlV+4mJIRud7tWra8R\n/c9t7ykVXtAhBuitHaKUSdFHO8RDGKbO30O4d/xDeUy/Uip/J3eHHuM7W1SqJ4cL9e9Nvw7xvfaF\nnLaYrufhCsS8Xr8JV3E5bI73jjxuxUJQWFuOw8aScINtsCa0kiTYdldl/DvIv5+NrpHrj3PWto+V\nVGkiCVg7Pc5OqiZs7LDSu4II/LOkNm5uxTRw278aiW/Ljlrb9nbpHk+6t2UtEOcJ6owaCFe5Uvbs\n4kaJ0GwvwuEJnfZnTiL+6V9nzIskgoKa9EDbfyAoFdXzDyHjgy2NH8FStifZZkyE7ee0jZkwThEV\nXw1UKzcLinXeuPSIkn54KLcHnGsqP8CJKXP/D+BtClu2xgyhQ5V+BuruB12ayOlEpXcPmhCSfp7e\n7xiiNefe9PwG6T2mVjzSIh1Jm49keN+fMuhTHS6caG6SDgZOsP399PhFhGhmLkrbYkq1PcahzaIR\n4I60ca/6qDehhTe7oz1tnDhjhSYK86bp//U6rrEuJzYd9UTQrZJ+B7zZeZTkvzv8nDvB5RaNpe0Q\n+xD2fF2ZFH20QxwJXCzpO+nxS4GjFO2KP86IL6Xyd3V36Cu+JAnRl8NFkTe9Bi1CSv/fSnNRozeU\nnIe21yx579H7cgeMJiEgjn09Yn5aYszv6xi3sXkk8M6M2Blo2C1kAdFe882c2B7WyFls3gzco2Dq\nVfekB9MuuVtKA/9VKnJYITC4Ky3cIRKK9EnmCgrh+F+lhOg6xLrm5YRG0b9UOwNliZy3Ee5RKxDz\n4f/QrjWsGJJOJ9ggf0mPVyJYRa2KFvOinUHSV4BTRjPiCir3FrbftijjR2I+TtBGR72Mm+hqUzeY\nudn+NNZLCEp3vffxw5MjhmJLqVYLiI3LDPUV+Kp7PFHU3M4wi6amdtTP0naIOaHy1wCA0JcAACAA\nSURBVF67gKCMXg/clqrKDyASZbk07rpTiYA/0M7pZC3bN48mcmzfnBFbTKVXKCh/lA6aEJIWMrxI\nrE/sdr6Y2pXAv4+wKQ5scR7Muu7aXIulUEdnhJExxi4abWct/lPi5gCCTXANYXG2je1eFgwZc0k9\nAbo00ap1WYtz4GCCZnlqerwF4S1+GLCf7Y0zxvgscS85keF7Sq5bzIxFo+3HSHoE8R1kqdKroB0i\nxV9LMPSGmBTOFP1TT+0QiraQ6m8+33ZfrKt5j7T4vo5IYn2EqIzv6zFaAYvhWOre9C90O32QRYaM\nuaD4PJR0hu3nNT03JX6cZedtBIPwoBYJmWcAewIrAR+znV3oUVDHP0gwLT8HHJL7mWjYLeRe4Be2\nf50Z29sauQSSdmTYFvGVwJ62s5IhGk8D/4gz20okPQjYjxBjF7GB3qUFK4pU4NuTuB+fRtInsb0w\nd4y5QCrCPN8hMPosIhH5DoIt+DhntknOB0i6gGAvnZ+YLWsTTi3Zzm719XXL965rNi3LQMcvW7Np\nwj6ldWvEvGAiELoFbxl90vYJkj66GOLr2CH9X/coz6lYTPMtz872S/oycVI8l6g6vpJQo81FKdVq\nGeBQJ0GztGBYhpZik+rQUqFBP/wKIzec5aklVDJQWkWfKyo/QOXq8cX6xeygj7ahkJY6lZQIG/ZB\npd/C9vtSIvDnBAvkHJI2SMP7PweCoTS6KFOwlnJRKkx4i6Q9GRzzjmQIiamnthiXC4zCsM99q0Vj\nwrVEJXRd4gZ3A+0E6ZowdW6zPTQvK6zaPt9i/E1sz7TR2D5N0qdt76zoTc5BdR1vUj808oVat0pj\nXJ6O4RZJbfyhO7dDJBQxKShoh5C0fEpgrkyoyN9U+93KGcn9vqj8pe4ORfE1Fsnf6Ej7VaHDRRqj\nyJteYfO3JsOfQZsCS0lbTMl5uDThzf6gdAzVAmt5QnMlFzcRidSj0+PtiFa9xxD359c0HMfzCKtJ\nExo/bbRNHktsPNcHPgW81WPEwKfELwFc66SDoWgBeL2kdzpP86tojTyycao+/xlmS24yy/aRqdj2\nvBT7ctqx42bRwBUaBdtlxv+RWAvMQNKnCWe43GM4PW3IK32SXQkh9PmOJWpz9nbAV2wfDxyvdmzh\n+YAP0VJodsIcTLVfc4ZmV3pdm/v/JPxTIcz5y3QMa9ChNWK+JBGmWZ3kLDhL42fgjoqbLlfDr/B0\n2+spfLz3lvQZ2tmLlVKtziAypBX9fRki05ktfqTuLRW99MNT3g4xJ1T+EZwhaWvgWx1ZIJ2cSnpM\n5JRS6btqQtRxAbOp7uOem4W0YHp2Oo+6ChPuQNxoTkiPz2GQpJyGXtpi1IPA6Gi1WdKmkna3/e+T\nYkZwoYOBM8OASYufuRJQ+jXtaLG/lfR+BjoQ2wG/S+dHFgW2h2ROkUWjy9shzpW0Dx2ZFJS1QxxF\nXA+VzkiFihLflNzvi8pf6u5QFF+ahEgocrjQsDf9F2jpTS/pUIJRdi2Da6dNgaW0LabkPNwZ2A14\nBMPaCH8lPotcPN3DAn4nSbrE9kaJ8TMWCnbqHsRmd8+qwJELSd8kCgCfIVoY7gOWr21empJx2xNs\npDsk/RT4GNH2eQkjG+JJKF0j97Rxqsa6nmB6AiDpl3S3bATIYrlOwba0SCIAOFwpvlc9TvfVkr9h\ncWAJSUum5NXziHbTCvNlP5qFcYkcNwvN9nYO94A9gPMU9pIi9MNmFeObMF++tN9LeqpHLFYUFL4/\nLIb4ekyJD241Rud2BAYV778raKt/IvyRc/EO4uS4i8h2n0rQH3OxtGv987b/pvZ+tnsRi42FaYwr\nczbx7qEfPqFzFT2hcxKip80nxKLlXcC9ku6kZbad7n7QfSVySm0yO2lCAEh6GFEdWkbhtlKvGmWd\ny32wKdLCbNcOcUWaDDWU2giRjmN9QkV7G+BmMhb9fXwHuYfXcBx1t5IFxHnZRhPiVUQi5ttpnPPT\nc0sw+FynH2C0yO3r4d7Dd9veM/MYSi0aZ9ohiO9/KYIdk9UOQTmTorOwpO0tFTudZ1cVk5bxH0r/\nlyb577X9pTmML01iQLh0bOCBw8WHiE3Is4iNcZNNZqk3/SZucNFowLZEH3LXdoSS83C/lBT/oO02\n66lRLDdS/VudQUJv2t91EpEA/RPwPklD1ogZiZCNiGv2PcC7GWnxozkZtyfB+P2ZokXtQuCVbtFG\nUUHdbX/rY9STog8iWj0bWy2nDVkQ2wf6eP+5/htycDShu/ZHYm13LoCkR9OCDTKXSOd/Hb9N/6+e\nru2J6wvbey+6I2sH26ekv6W6r++WkQSZhfmSRHgvsVA6nGE7r9cSVjiLOr6OEh/cPtoRvqtQQP9U\nel/TQkytolpJ+mQ89O0t3hsi07xBdSFIegrtxSlLWyq2Sln5Vv3wPVbR55rK30fWfdQP+hwWk7Bh\nGqdz9VWhCXEScQ1UmhB/B16WOcQLiIrVagyrQd9O9ILmoohNkaqH72E2fTd38yUVtMVQIDCajv3/\ns3fucddN5fr/Xt6cIqdIitAByaH6UY4VbSqHYpeKqGQrOzl0DtleqWyHlAg5y6nCTg4pEl6nnHl5\nxaZ2pZJKhSKh+/fHPea75rOetdYcc4zxPGu9ta7P5/msZ6617jHHWmvOcbjv677u7cPfH/DvQC1+\n1/pv8CU6C5y2v0EuhbmeN/80nrN4bey5w6S6R5+X75d0lHVVsOiBt5jZ3M9srga+Bb4w7wtJC5rZ\nk2Z2uDwH9lHcEfBf1oLGTGY6RAEmRa6wpEm6GEjWElE+lT+3ukOufa4TAjIrXJjZDyRtIGklJt6L\nsQGW6yWtbmYxQpi9kFslJPc6fCasK3KcCB/Ho38/xcfElYEPB3bRoNSQrHvQMoUhcTbU/aGtWyXd\nl+JACDiVUPY3HP8vPr9EORF6OEUXoJ1TtBdiKnv0Y8+JDnNykH2/0s+ijANg+AJ3DTCzL0i6HA+M\nXmpmdQd/0zw6KvhSeFwIvw7vwH+/tfD1RiMrRdLyuFZUdc1ejTMZ2qSKZiOsb2KqSfTFSAgrAsgr\nKexOp5zXHOBoM4uaMHLtB7QbXQc3vH+2ddIR1pKr419iZhsnnHtBnBkQvRkN7IuT6dBmHgE+YHEq\n4pX9N/HcbQHPB94Vax/aOAlPi/gMLkK2J171YrdI+9vN7JXyfPit8Ij8LDNbu8HubXh+21tx6m2F\nx/DfcGBaR80JcSgT1ZAXw4UaXxHZ/y/jk0rrzaek1czsnn4TVuwGtqvNGXh6Q7R4izKEDYN9FpVe\nmTW/QxtvN8+3S7XPEiaU1xY/Dndszo3etbgXX40vkiakxbRwYiQLjEr6Bz6x7VItHiX9zMxi1eyr\ndnJ/g54U5haOmCmFIgRT5WXI1rUgvCXPK7+5aTyp2pZ0upkNzJVuaOdGM3tNrb1F8DSTWGHFLCaF\nMoUlQxun4fN5UoUJSWfRm8q/Ep4u1UTl7xXltNj7oYD9THzznOqEIDDTtgXqFS4uwBfFx5vZQFq6\npNPxvOvb6YxnZmZ79reaYP/6cL7fhs/QVuBzndD31CohJa7Dw/EofGqaYbWuWy0c3mst67LnQtIL\nmZwW01Qi8ldMdMh/rH5skbncoa0qfWPuHK92wtW3E5yiNfvZTdeRJrLSJrwEvM8aWJ591gNz0eRs\nDWNAt9Bzzbx5LFBvYU5Cm5uaWatUtzHSIel/gAPM7M5wvAYw0yLEIeWVEc5iIlP4PWa22VT1d6ow\nMk6EGEg6ryuyNuX28hIsd5nZqpHvv8HMXivpxzht+GFcjOalLc65AZOjl7FMiNm4onxFE9oIV5SP\nraFbfebq895r7Wqio4nqtVWFh4NiJ0tJc8zsFZJOxJXRvy/pjiYnQs0+KYqe64SotZO8+ZR0vJl9\nsMAG9ixc2+EZPG9xMVxN/rBI+yRHTs3+PHyxV0VXdgLWNrMoKn2hxdoSeB31ZE2AHKhFRZEetiUq\nXKyNM6gmaHuY2ez+VnNtt8FZXBviTqRv4lVaWmnGSNoLd4Q8hlOxXw18xppLzVb2SYrq6i9O2bam\neNN5YpwIn8Y3bKeEp3YGLojYuN6F034PokeJN4sXBfwEXp1hMzwv/APAWWZ2VKR9brWZElVCcitM\nzAK2sA6Vf1Gcyv9mnI2QQ7OfcuQ6IWrtJFe4kPQTYPWM8fh+fB7prvLxi0j73CohJa7Dx3CBxWdw\nB3vbNMOk9V2p8UzOUH0XXha17gga6IgJ0f++sBY0bXn1pLcDlwWn5nrAIWb2+sGWc+2TnKKSBupa\nWX4ZzimHJlbHmITYe2GMfFT7lKbn+thmVYAbJYxKOkMsWk2YKfbqXdLs2y3OkZWO0M/bT2Q6BfBM\n5UAAMLNrJEUr8Aasin/uhYBXS2qlCWH5KRXJ+fABSekQNgJUfqCiKe9iZjEaBv2wurmWw3twYc7P\n4BHxKCcC+cKGyVT6gFxNCHB6ZLImQC6bggwKs5VJi0nW9jCz84HzwwLtbbio2PMkHQt8J9YJgDMn\njpT0JuC5+G9wOi7WGoNUCvNWzW+ZHpjZIcG5W6VeHGShZGQDdsNFy7r1SSBCkE7l0iFmVG2FdhcG\nYitTlKoS8ia8nF3F6JuFM3NikUTlV2Z1h1z72vuSBJ9DH7IqXNRwF85MfLDpjX3wezO7oPltfZGb\njpB9HVpmmmHG+q7UeLYNXio2qhxhhVgngVx09+CGt30cD9K8RNK1eLWKNqX9kjRiKieBpDUtRI9T\nIK/scBKeGvenBPvzgv33rYUwKXScBHLx8ovb2o9RFLNDoLNefasxQBPwsKQd6VRp2R4POE8b5CUp\nf2VmT8qrt60FfMMC4zC6nUSn8lDQJvqRaq+MOrg92kpJR8j19n8Fr6hwNj45vQvfgJ8BzdS94HF+\nA+5E+B7wFuAaa1G/VRkpFfJ8+PVw5dwqH34RXDjnt5Hnz42iD43KX/Ou517rc3ARubNwGvBVLdkc\nB+PU1ydwkcwlgIvM7LWR9slU+lLI9fYWYFPkUpiT02KC/aRrKJMdsSQurvguC3XRJS05aCGlTlrX\nkcCV5mV3o1NVlEhhlgs1LWtd+gfhOvytmf005vwR/ctOuxnQ9nZmdo6kD5rZ8Qn2pdIhkpgUNftc\nYcmK0fIfuOOkKst2gsWzKZKo/JIONLMDJJ3S42Uzs4E6MwXss50Qki4yF6is6NRzX6LdeHQFPqfc\nSFo6wTH4PHJhl30soyYrHaHEdRjs3kpnbr/SzKJzinPXd6GNFXFRwR8Gh96zYgM1ki4BtrOaeHZJ\nxK5bJD2LWtlfa8923Ywa07WNU1TS1bgT9FTgzLZO+jC37IyvrW/Gx8VLY39TSf8W7NfDBVNPsd6l\n0Ae1cQaee38eXpL9ngaTMQpDXvb1P+mMBbOAYy2CcR3u4aPw39DwqmF7mNkDU9TdXn24HU/xWwnf\n630XeIWZbdGqnbEToe97F2Mi3SzKWy9pd3xgqk9U25vZMZH25+A05iRvvwbnbZk1UPfktLm1gdtC\nFHNZ4AxrkaujzJSK3IW58tMhhkbll+dKGS7weXX36y0WbHsCn8ZFX7bES/+cYRHaHIUcOUlUehXU\nhMh1ZOQ6IXLR516OuYeLaHtE9nHgmBo2Ty8EVsbHlRn4wjvKkaFECrOki4B9uiNOktbE66sPqlke\nDUnvN7NT+7xWr2s+4SUiWDW5DkUVSocIbb2FDpPiMotjUlS2WekQ4f2zcQX3v4bjVroOwSaZyj8s\n5Dohau0IWMESKlzU2uhJpW66F2v2uZ8hN8WvxHX43/jcfGZ4antc32SfSPvc9d2ueBm2pczsJfIy\n3sdVTt0BdpUewAvxcfhyJjpionQtIvrXuHYL9/I3gW+lOHPlIqnfMrNfJ3aT8L19AHeK3wicavHs\nuqqN+fD14bE4q+QUPGU0dq+wOH797Ac8gLMpzoh1qIQ9yva4Q8LC+c+OdSiNMTyoJpg96Lkp7kO1\nvvgk8DczOypl7zWvpTPkKpg22kv6IF6W7m/4ojW2HnWFXc3sa9WBuRL3rsBAJ4I6aRTPAe6WlOTt\nt3zK3hNm9g9JT4dB6ne4Mnob5KZUXC7p7aTnw+emQwyTyr8lnjd+Oh0V2NYwp33WqZ+/kBR1bYTf\n/2v1wSQs3v86wKwbqVT6j+GLpF6fvU1ZOXAv8WlhshbwR2BgXmQXnpC0UZcTolWlErnYTpUaBMTr\nm2Tcy6XKdMag6cbYBY9e/szMHpf0XHzRE4tUCvOy3Q4EADO7U64uPxDqL2BVtfPW8HjqgPfkVlh5\nWNKlwMqSJtHAI+aErHSIrnNdgqdFpSArHSJATCxt+Axx83kRKr8yqzuk2luhEpVm+RUuYp0FA+xz\nP0Pu2qbEdbgF8EoLNHK54OdtQJQTAViajPUdLh7+GuCGYHefXFS8CZXD7BYm6j3BgHEuATFtbY1H\n8b8tF/D9FvDtFg6u5wCXSvpjsD3HzB5q1Un/3j6Lfy9fBV4VHG37xjhXJa2Fz2Nb4GyAM4GNgB/R\nKW89yP65uJjeTvj1U9m/D2cCx3yGRyWdizOP98aZVp+U9FWLZGiNkY7giDqYyeu7mL3iUfg6v+m5\nqcRT8pTZ99FZHzRWGenGyDkRwsD+IutN7/n0VNvjEZs1LKFeZsAMSao2v3KBtAUi7A5PPN8kSNoS\nj0TWL+zPRZrfLNd0OAGfcP6CC9y1wVXynLV6SsWVVXQ5IpqcnA+v/PKAkO+ESN58mgvI/VjSBmb2\n+37vU0NpuTBJHYBPTAZcgzvHYvOuch05qWUyS2lCEBbnExwZLZvYDfhGcEJAYFPEGqtPahDx5WKT\n0mKskLZHJJqujY3C41otHXEVrpan1rSlMC8x4LWFI85bcjzuVdrrsYiIU65DcTkz+88QXUhJh8hi\nUtRwJj6e1NMh2oqYnQLcIOk74Xgb4krCnYU71G6hB5Wf+ODAOvSu7rCbpMbqDrn2uU6MgFslrWst\nK1wUYNR8yswOVR91/NgouPLTEUpch+BjS+V8WnzQG3tgZsL56njSzP5ejaXytIDG+dk6egB7mdmR\n9dfkqUKl0DjImwtpHgocGjZi+wOH4Cy1RpjrMxwYNvLvwtebvzKzf4vqYMcBsCW+3tjavGzlCwhi\nzg32t+B6LCfhIsHVvHRDWOs1nf87uKP/9HDuipXyLUlR7Ch5Ss3OwEvx9cRrzOx3clHzu/EN6RhT\ni1Pw9dmX8RKsO9NQglvS+sAGwDJdY/piRF7/BbEzvsb9gpn9Xwjynd5gMwkjlc4gFws5HFjAzFaW\n9Ep80RxL4c6yD218H/h3c3HA1pB0GF4+5+vhqQ8BD5jZxyPtF6HDBlgFLwV0SQuK03HAs/GL+kRc\nsOZGM9ulwW5DM7u2y1O/ErCYRai5d7WVlVKRC2WkQ2iIVP6W/WyikV+G52jVRV/e0GKirVSon8Yd\nKLELxiwqvQppQoS2cstMrhwG1wlsCjPrpXXQyz4rNUj5mgxZ2h6R52i6Duu1xBfCo2i3xI4BfcaS\nxjFE0tnAj8zshK7n/wPYzMzeFXP+EpD0c5zN9Sf8PloCL3P3EM5cG6gVI2mZQQ7FAXbF7qVcKCMd\notbGq+k4pa42s9si7UpQ+bOqOxSwzypRGdrIqnAR0X5PfRRJW5vZheqjjm+Rqvi95vW213budRgi\nd/8NXIF/f6/DN5LfatHGsnhKBPjaLFo0NozpfwbeC+wBfBi428z2i7TvpZNTTNdF0r5m9sWI962I\nOwDehbOKvmVmrRylkp6PpyO8G1+fxabLXoWvjc81sye6XtvJzAZupCS9OCfAIWkTMxtYLjKijdOA\nk6xHaU5JbzSzy3PaH6MZCvpSku40szXrzw2weT0eWNoNL/9d4THgQjO7byr7PBUYNSfCLThd+Urr\n1H+d+wNNtX14/6sIUQ8ScsbCJvRD1CYqvDTaM/2tJn2GjXEl6mvx8nx/t4YazjX7SsiselwUd0IM\nzIWv3RBDW3CqUD68MssD5k6quZvPyHM0bd7uMrM1up5rdS8k9iurTKYKaUKEtnI34VnChOqUoroF\nd+o9BvzEzFZrMK3sc4Uhs7Q9Is/R6l6RtALwFcso1Rt5nmXxqhh/x6PQ4JuwBYBtWzgEcyiLVRsn\n4AvWH4TjzfESZ1UObU+xUklfMbO91Se1ouleKHUvKZ1JMTLIHfvCBnzN6jPLRZPvMLPVYu6BAvbZ\nJSrDxm1ShQuLLLEY0X7TnLSQdYmOSVraIlmf8lz6dW1iOsLNTY7p0pC0HBOdAFFjSbB9J86SvBJ3\nQmyMO9fPjbSfD08Rq5fPPrFpnROcHzvgTrj6WPAc4B/WoKlQa2dl3HmxEhM1w9rMyzfgtOlzcOdB\nqw25vOLRO/GqDufgqRB3t2kjF8pj+6KMNMcxRgOSrsPvp3PxNJZfA/9tZqtG2K5Yjbvhnl7U2jNl\ns6DJQrtAu7UNjF46w1M2Of+8zSYw1x6cQfAjuoS8YmGeK3ds+EuBzHOHd8HFCA+VdEcL+8qz+ric\nnvUwsFyE3VOSjgeWlzQpBznWiVIhcZAtlQ+fWx5wWFT+krhU0rvplCd9B77gGIhcR47lU+mLaEIE\nJGlTqMOmWFwTVdEXo3Y9RyA3NShXkyFX24Nw3iXxSHp90VhdB1GLzxp+Bby8xbmTKMzmObIbyHVA\nKmfaxWb2o672B1aXIIGy2APrmdlcLQozu1TS4Wb2obCZ7IcqIpaaWlHqXrqVHkwKSQOZFCqXDlEC\nSVT+Gs7E6cr16g5nyVlqMRuYXPukEpVd2IaJFS5Ox8emUtTnpsHlRnmlkR8DhDn2YGCVyPaT0hGm\n4DqcD/gDPh6uImmVXhHhPtgPd4T8LvRtGeCH+PogBtvgZdgaSxp24Tq8NOfSTBwLHiO+LB3A+TiN\n/0IS1scB77WW1Qi6sAKwt8Wn8UxArmNYfdi+Lc6fleYY2lgPv29fjjvGZwB/neYx9V8de+HXwZ64\nePEmxKe7HixpN5yFcxOwmKQjzSy2BHsJrFP7fyGc1dMrYDAYZjYyf/jgtAM+qL0Mv0mOmy770MZt\niX3/dni8M5x/wl+b8+NlP36Ml9sAuLOF/f74Iu/tOGX2QbwueZPd0jgt7Bf4jTDhr+V3cRw+ID6A\nL8DvxKlXTXbbhccXD/k6fAyfIP+O11Z/DBcKbLJbLXzvPwX+vfb3fmBO4T72vE6rvtY+w1Ph7x+R\nn+H48HhFj78ftejfofime35cCfr3wI4t7JdpeP2oiDauBzaqHW+IK7o32b0N3zw+HB6rv68CGyT+\nXisBa7W0WRuvrvHz8HdbmzbwhdI9wW5+PHJzQ8s+HBTu4ysTr4Ojwvf2VeBofLF0Rs51Dtya8hv0\naX9gW3iUF2pjcPVci3NciuvxrBj+PoUz1GbEfpbw2w28JwbZZn5HJwBvqh1vjjvb12t7PQ3rL9wH\nz4SxeTZhnm7Zxjr4wnEvYJ2EPiTb4/P6rfh8egAuCPdfeMrZmZFtzAYWqR0v0vY7aGi/6V5aE18w\nH4Y7BL4PLN/yHG/BnWqH16/JabyODglj8cX4RvpCvNxprP2dXcfzdT/XYH8KvkY7HWeXPWuaP3/2\n/Q4si6/VLwnHq+MaSG3a2AjYOfy/DLByC9trcOf37DAez8TTHGPtZ3c9LoqnV0VfA+F3v6P2fVzW\n8vPfjOsh3BbmkZ2Bg6fzWhj/Nf5GfdeowO3h8T24U2/+kmNxRp9brW3MbOScCM8GvhAmmpvD/wtN\nl31o44t4NHw53CuzFF5Op8luufC4Yq+/Fud/HU4D/3Q4fjHw1cTvc0Fg8RbvnwF8rMDvmDTIEhYh\nJG4SgNXC46t7/U3VdVs7f/HN54BzvX+KPkMRR05tkNwWXzAsXk2ahfrZeI3gKsnVJvwXtN+Er5/Z\nx8tjnhtgv3J4XAzXJpn7XITtfLiAz1LAjPDcIsDzW36Ge3GNmdTvoO6MfA+wYUv72cCCteOFKeiQ\no8FpjEfw5sOjtx8J1/O9Lc+xNO5MuQ3fCB6FL3wXAF7aYDsTj3r+EWcC/B74r8jzfiU8XojPKRP+\nWvR/0ianNrbfHmG/VI+/+Uv9hpGfYcUwHuwR/tYmYl6u3Xe9PkPMuiDLvqutXCfGndTWQ3j0KXoD\nG9F+zJi8De7g/k3TtT8F10D2dRjGwwUz+nAYzgh8f/i7BGdatWljfjxd8Ex8XjuxhW0VZKj/PYCn\nfjXO+XiQ7gA80JW0tgqf+Z10NtHPanMdhvNfCPxvOH4BXrI11j7LMYynsIAH+l6Ar7PvT7C/BZ/b\nBdzT8ju8OTzOrj2XFAAd/03N36DxEJhDJ6Xn9eG5YuvjyP7V90fr4DoNrfswUukM5mKG+0k6xA/b\n1TvNtQ/YPjzWS/YYDSrOZvagvBLDqZZRisicFjerdvwznC4DgBpU+cN7NqCWsyYJi8i3MhcRfDdw\nRFrv5yI1pSK3pFlWOsQIUPkrITobcI7G0nI92nwJfl1vb835o/vgA9u55JWbKUKlz4F1VWfAxcTe\nTTx9c1tJc2gpTChpIdyhuXSg31cffDG8TncsktNirEyZTnBNiSXwUq+tYZGiaQNQSlG9H/reawHd\nlMVNaVcmFPOc735j9v39xnS5evOGOP35/8JzLwaOlfRRM/tyw6lz0yEqPCjp03htd3AxtIfCfBdD\naU5KhyiMVCp/bnWHLHsVKlEZcAppFS5iMXCAl3QS8BJ8HF0FuChc+19rsCuVjlDiOvwZPrfFppBM\ngJl9MqTIVQKhx5vZdwbZ9GjjKUmX4N/JwnSu7Rh8BU8pOwv/Dt6N/ya3AifTXF5wTVxbaFM6937j\n2qoLS5vZtyXtA2BmT0uK0gwL2BZ4VegzZvYbSW3K6T4Z8tDvk/QRPJd90Rb2F4Y0xcNCHwwfS2JR\nogLa45IWAG6Xi20+SPs0uzGGh6/jwa07gFlBr2ZaNRGYuE96OvTnnW0bGTVhxXXxgawaEB4BPhC7\nyMi1LwFJl+PVHaIU4BPabxIvOh2fFG6nU1fbLF4Y8sv4JPktahuOpg10Vxv7JH7NnwAAIABJREFU\n44uzNwJfwwfZE81s/wa7Bejk8E6aFK2hTrWk7czsHCWq50o63sw+qERF+Fo7yar4cvXWvmj6Dmrt\nvABfIGyPT/wH4xoPdzbYlRJjOxif7J/AFfmXAC6yPiJybTHoPghOg93xDft38ZzT3YGP4577qHKf\nShQmlJfM2huPUvyazuL6UeAEMzu6wT6rwkWtnSyB0dDGOvh3eBct6prLK1MMWvhHK8KrgLL/gLZH\noXJBzz5Iug2vJPGHrueXAS61doKWywBYWpWHpZlYLvZavFzsI3g55fsb7JOEJUtCLsq3fnCkEbQI\nro+5DqW86g459pIuMrOtNFkEq7qPWolgKbHCRc2+rz5Kk1ND0t74723heHHgCGuoHFUKOdehOuUp\nX4izWC4nQXi7T9u/NLMXRb73LbgT7w14itm38bHg6Uj7O7rnr9o8N+m1Hvb3A6ubl6JOgqQr8e/9\nMvPqMesBh5jZwLVPzb4SLK6qz0Tfy8F+XeAn+JrkIHxePcyCVkeD7Xy4xs114XhBnN0TW/FJeArP\nA+F4JdIqoK2IV/dZAPgozvQ8pmksHmP60HZtIelZsffxKGHUnAizgd3N7OpwvBF+Y8QODsn2kjY1\nsx9popDaXJjZwNqxtXa+i3tJL2PiJjx5kulqv8mJ8BN8kE/dNGRtoHu012qQDTYDS5oNiNxllTTL\ndULU2plyVfwB5/4g7jh4Ib7A+DbwXTNbOdI+y5ET2sgukxlxjr6K5uEe/BO+gX4jLkomYC9rIcYk\naY6ZvUJSVQ7q+zELrZr9HmbWWrRMmRUuau0klensamMO7jWfIDQb4dBbcdDrVkgRPheDrqPw+iq4\nI2dFJm6cipWpHeBEmFRhJea1rvfNxNMw5sN//6fxXM1oJfGIcwxkx6lHZQR1qgdFVxvJ7OOdOKPj\nb+F4IeCm7n4Nso99b2n7XCdGKUg6CKfg/5SOQyN5bZBw/qwqITnXofqUp6xgGYwrSQ+Y2QqR7z0b\nD/BcYqFKRctzXY+LxFZCju/AU1jXi7kXJZ0PfNBalKXs0car8SDTGrhzehngHbEbaUmfwDXPNsOD\nIx8AzjazSYLgPWxn4A6LTyR2v3HOiLDPHUtm4OKaURXbxhgOel0nknY0szPkLMNJMLNcFng0lFkC\nvcJIpTMAz1QOAAAzu0ZSG89Mjv3r8aoMW/d4zXAaZAz+p8V7pwJ3Ac/H6U2tYRmpGHUoMaUi9KEp\nWrZhn+dz0yFGhsqvdAXho/HN8w5mdnNoK9qhFCIMP5a0QYojJ7RRiko/CEcOeO3F1qnbeyJ+L7zI\nusqLReACeWm2J4D/DNHcxjZCpOOByoEg6b145OUXwMxB0TookxYT2mlD8eyHx2MWZz0wP64ef239\nSXmFiUZHkgoqqg+KntJcXeIcXCj2BDrMrunCoGhfYyRQ+ekQseg3HlfITYcogVwqf251h2R7MzNJ\nF+OMsmHinXjFm6QodMacViE3HSH5Oux2EkiaH98E/zpnQ101H/1Gs+2Dg3Zj4IfyMpfPsvjU3ffg\nc+cx4bw/BnYM7Xwkwn4J4B5JN9GCmdb1GW6VMy5XxX/He3GHeZQTwcwOl7QZzuxbFdeIuSzS9pkQ\nXMxBbvWurLEkfIYVJS2Qei+OkQ9Ja9pgZm+vNeoi4bHE2iwXJ+P7xSqFYSd8nowqgV5h1JgIX8Fz\nvM7GB7h34Yv2M6CZUp9rXwphQH6R5ZWx6dd2Ty+oOrn0z8EFpG4kYZCX9F+9nm8TuVJmSkVE+/0i\nd7npECND5Zd0DZ3SclsTSsuZWc/fp2b3XLxUy/a4M+nbuAhjVKSjRf+aGDFJVHpFakK06VsKMyWH\nTSHpVuDfzOyPkl6HL1r3wO/Ll5vZOyL7kJQWo0xtj662jsDHkQuYOJ40jcUXAft0T7KS1gS+aGa9\nnLXFkRs9lXSLmU1padYBY/oz9Ha8CWd3zd/jtQntUigdouE8TWNBVjpEKSiDyh+ciS/D80b/Cu3S\ncgrYnwYcneHEyIak84D/TN00p85pNfustJic61Be1u8oM5sTInjX42ubpYBPmNnZDefuGXnEr4P9\nzCyqtJqkXXHdp6XM7CXBMXOcmbUttZsE9Um3bFpbRbQbndKRay/pWJypeQ4T2cKxbOMshl8YC16K\nBxVajwWhjW/g5R0v6PoM0xbJ/leHpKtxUc1T8Qo5U5LCPlXoxTyKYSNNamfEnAi9qPQVGhd+ufah\njdOBj1QXRPD6nhw7SEvaGheyWsDMVpb0SpwiEu2pbWj//dZDVK/f4F4hdpCX9PHa4UI4Hf8nZvaB\nFn3MSqmIaL9p0ZqaDjEyVP5q86Ia9a3thkbS8rgjbXt80vuOme0ba9/QdtNvkDTRlriOuzZfwh2L\nj8f2odZOEm1RtZQHSV8Dfm9mM8Nx9CCtdE2GItoeoa2kNiTdZGbr9nktms6pfArzvcCaqREbeTrA\n73D18roTpY2gXdM5eo7pLeyXNLM/9Xg+Ox0i8vxZuhL9xuNRQlgHLIlHgMHFj/9skWk5BeyznBAl\noER9lJp91pzWa9xQwbSYQdehQmpb+H9v4A1mto2k5+OpBQPnCUkHDHrdzA6M7OPteGDihuqcLcfT\nZYBdqbFEw/mj13dTAbVI6ci1V0ektw6bru9AfVL9YseC0EbP6yn2OhqjDIIT7wN44O5G4BQbwIqR\nNJDVaYUCrTGQpzZ90syuCccbAoeb2fpt2hmpdAbLpNLn2gdcg9MeP4Z7Kz+JC7LFYiY+yF8Z+nS7\nnEI6ELER2H6LzWpzFTasT5hTylcBVsNL6kTBzCZUNggR5bZCZlkpFREYmBswyIEQ0JN+a6NF5c9V\nEMbMfoUrsH4pDHbbN5gUgyVS6XMjGqGNGTHv67f5qiGVtjhDHZGcN+KRowptxtzUtJhqEtvFMrQ9\nIGtMXWLAawu3aCeXwpxVXYJOJYa6wGWMKn/2mN4Cl9M7/SorHaIFcsuuNKVDjAJSqzuUsn8TPZwQ\nkbalcBpwCF36KC2QO6dNdVrMoOuwfr9shkexMbPfxozJLZwE+5jZwQPe8qSZ/b06p6Rn0SIdAncC\nXY2LDUenZ6mTXlZVFZn7Ei3Ty/ogN+DUJiVk55QThOtsYTP7SzheDxc2BC+vGJVSUjkLJL0QL6sO\nXvI0GmNnwWjAzO6T9FngZryU+6vkN+e+1pvZUl+vHIgzo4aF/wROC8wq4WWk39+2kZFyIgBI2hJX\nJq/nzLWh0mfZm9nX5WJiV+D1uV/VJoIMPNVjsR8zweWW4aowC9hYngd8KXATPtmmirA8G1g+5o2a\nmFJxt6SklIoIDMqHz0aqE6KG3Jw5KFBaTl26FHgUqxR6rpxUiEqv/PzZGPTbfFX4EB79f1pSG9ri\n2cBVkv6ApyJUQq8vxamzsUjSZKCctgeSvojXMf9zOF4S+LiZfbbB9GZJu5rZhNJXkv6DiRNpEy6j\nP4X5GKApRehg4DZJSdFTixQk7YNSY3oT+u1i1pbUq2yUqN1TBTCl4/GIYBdclb2q7nAITmmPdQLk\n2uc6IUogVR+lQu6ctgO+6D6fTjrCDvhGrHVpspb4s6StcMfHhvjvWW3i2zhFm7AdPmb1w1WS9gUW\nlusCfBi4sEX7zzazT7ftVGpQoA4NrtizbIT9oJSQRmeUpFfgmh4XhOMv41UNwFOFmtYmh+DO6EPD\n8dm4k3oh3Nk98HuVl7Scv7YfuR53BC6AO+gG/e5VGxvhmk/fCMfn4ik1AJ83sx81tTFGGUhaC0/J\n2hJfp2xtrvfxAkIqb7eN1bRVJO1t+SWwk2FdJdBtYinxaIxaOsNx+CSzCXAirhx7o0WWAMq1D23s\nBOyPT1Zr4RGAnc3sjkj7k/DNyWfwxe6e+MCxW2wfcqBOhYI9cK/poWqnKF8f6Gfgyrmfs4aydME2\ni4oeG7nLRQH67ZRQ+UtCU69L0S+tplSZzKz82chzZKksN7S9HrAcnntebRxWARa1Tkm0vkwI5Wky\nFNH2CG31UhhuvH8kLYunAPydjtNgHXzBtG2sYzaXwqz06hJFqvVMBwqMZ/3SIeaJ8Xg6oALVHTLt\nk0tUloIS9VGmC4MYgpH2g8oGr4JHGp8PfKWa+yS9CdjczNqwVQf1oalazHy4A2NzfF3xg25HbUP7\nnweuM7PvJfRtBjDHzFZraxvssyr2KDMlJIxnB1unPOPd+Fr/2cDbzWybBvvb8Hv46erYzKrI89Vm\nNlCwUa6VtHHtHq7sZwBXNdkHm8uBPczs7nB8Jx49XgSPfr+5qY0xykDSVbg47zlm9kTXazuZ2ekN\n9kOd9yQtAbyXyalNrfYIo8ZE2CAsDmeb2YGSvkQLKn4Be/CN/0bm4kFny9WcT8NF0WKwB7AfPsme\njacCHBR78gIRWElaH2ceVM6T+WLPj+deV3gaeMgia5dafkrFsCN3RVDIa59bWm4dEnQpYjcOvRwI\nAaWo9Aub2eWSFBYXMyXdAhRzItDnc5ZgU1iPmtNm9r9dT/VlQlheWsyWdLQ9vtTw3ibMkLSghXJi\nctHYBZuMzOwhYANJm+Aq5gAXd0dKBjlSAnIpzKnR01LVeqaLVZODftfhP8V4XAi51R1y7cVE+vkz\nTP/3Vo1F69WeM5xR0BfqUSmpjlLOKPLTYvp+n2HsnrRBCwypuemeak5HaMLA+drM/oEzUOY6DiRd\na2axn30vYF9Jf8cdvNEBjuDIvlfSiyyh3Kh1aPx7AKdbYLe1sD8w2D/XzB5ue35gOZtYHvlRMzsv\ntPmhCPv5utbCnw79MklRaTmVAyHgyPDcM2FejcFilQMh4D4LKX1yQe8xpglm1jdo2uRAGBF8D6/O\nkpqeBoyeE6Hy5jweKCEP49G86bKn2xtpZjdKek0L+8dxJ8J+bc5bwyl0IrCbECKwLez3wunM3zFX\nEn4xnpoxEJKejadiVAP9qsAWOAX+OwNMeyEppaIpOlgQufTbKaXyB+SWlkvVpcjdOJSi0mdrQmTg\nY7iOQa8NeOOiuQWaNgFJaTFWQNujhjNDPyoxqp1xp2psX65g8PjTlFKSS2G+OiyuWkVPzeyA8JiU\nP9uF3DG9CbmbyZ7289B4POUwsyMkXUmnusPO1qK6Q649+U6IbFi6Psr6wAN4UOUGRtdpVOI6bEpH\naELKdxNd1aBAgGNJYI48VbVeFaCNI2hZPN3tVrzM3A9aBjt+LBeYPAUXtYy1nfDZzazuDHtehP0C\nkp5jQfvAzC4FkOeUx6SHLSppfguiwDU2y4JALEt1gtaQmdWZco0pIWOUg3qn5zyC6yN8vpejSxNL\nVz9bnXTDaWcr4xWe+qUIRWPU0hn2x3P83gh8Df+yTzSz/afDPrSxEB7B79ZViFJuDRHkTzCZItKq\npJgyVPkb2u9XmWAWHj2+T567fSO+gVgdp11+psU5clMqkiJ300i/nVIqf2gr6zcPfUgu9Zlx3lJl\nMtcFfoJPmgfhuYuH9orwZ/S1X2m97czsHEkvzmRTNJ1/qGkxsXQ6SW/Bx1SAy0L0rQia6LsR9gMd\nIbn3onrn4T4C3GKeUxjTRolKK0viApP1OaVKi1nKMqpFRFyHIz0e/6tAGSUqC50/SR8lsIY2w4V9\n1wIuBs42szmF+9ev9PO0XYcFxrN9zeyLLW3alDcUHsxZ2cwOkrQCHqG/MdK+SInH0I/NcYfqOngp\n6pPM7KeRtv+Gq+KvG2xPtclMv267K4DPmNkNXc+vB/y3mb2hwf5j4by7VUwMeYrGscCPzGxgACbc\nP8/Hq789Hp5bBDga+K2Z7TPIPrz/Qryk58Vdz2+Fl1/dsqmNMcpAXoL7GeCs8NS78dSY3+Js9mkp\nY50KSR8F/gJcREblqZFyItQRvHMLWWLtzVR7Sefgecg74DWE34OXONwr0v4OPIJ8C7UIsjWriFf2\n1+ELhXNxOu2v8QFu1RYfY1D7/Sba+gL3ILwO8e7ysoe3WGTuZrC/DRf8+TLumJijdmWIkvLh+01w\nFZomutzFRsnNpzJLy+VO9hkbh+wymSWgiPzNfpuvmhNsSnPWprr9UT9/iT5Mw290Fr7IrcTLtgJm\n407ic8zs0D6m9TayxvQwHr8f+Cmd8amVU7Kh/SYnwlDG4zFGC702yG3vv7Au2x44DDjQIrSWcvoX\nnp+26zDiXloZT3ldiYkOwaa1RU9tFtyxfJyZLRPZv2Nx6vKmZvby4Ai61PqU451KSFobH0vejLPV\n1sOd1J9q0cYmwBm4s/0O3ElwfZ/3vgb4FnAqLoQI8P9wcc93xThSJO0G7BvOJ+AxfCw/NsJ2BvAF\nfF30i2C/As4o+qxFpA2HAN/FwHVdn2EDYKsmR8oY5dDrXq+tHaP3O8OCpN3x6/HPTFxXtEqzHDkn\ngiYrymNBiXSa7Cuxk0q8a37c679eozFFIshTGoEd4ESYbUGkSdK1wGFmdn44jmYRhPe/DmdjXGtm\nh8hTKva2SMGOEpG7FBRwQhTbfEr6v95dmJ486tSNQ81+Gcug0itfEwJJ38VFiFrlb5ZiU0Scp9+i\nt2RazKDzDxISq9PuJrzEENgQqfap0dOa/SxgC+uU9VoUX8S9GXeurh7RRtaYLuleYE3zNJXiaIqe\nDms8HmO0IBd3XNcm6qPcbGaviLBdENdq2R5fn10AnGxmvy7Yv54MwelExL10B75pbCv0esqg1y0y\n7aq2Rpnbz5j1Xcn5QNJeuKDbH3AB9PPN7CmF9EUze0mD/XOBHYGdgIfw7/MCnHl5jg2oqCPpecBH\ncKYxwBzga+YaPtGQ9BwAiyzr2GW7MPDScHi/dYnyRdgviAc365/hLAuirWNMD8K9vGvlfArz/Ilm\ntnbTODAKkPQz4DVm9oecdkZKE0F9FOWBKCdArn3AU+Hxz5LWwKkpjflSkqoyKxdK+jCJEWQzuyn8\n+xd84zZdmC3pcDxK9lJcywC5gmcrmNksXBehOv4ZXqWC0GZTLnZWPnxqFL1AROJhSZcCK6uHmFSb\nzeegiTAGcoreUcDLcUX8GcBfW0z2WcKGgxwIAU1CULmaEJCev5ktTBjDhKCTItCNoWsyWAFx0Nw+\nFMJbzGzf6sDM/iRpCyDKiYCP/U/Wjp8CljWzJyQ92cdmAgqM6XfhDojfJdgCc50nPdMh6H8dVhjK\neDzGyCFJH0XSN3Bx1e/h7IO72pxU+WK/VTvTcR2e0/D63yxB6LVyEkiaYWap8yHAU2FustDeMkSI\nqhWeD5YC/t26qjGYiwlv1cemjuvxuXkbM/tV7fmb5RXa+sLMfidX1T+47ea9QtjEbw2sJC/xWbUd\nW0r+MuAqPEDx87bnD068k9vajVEc/wGcHAILAh4FdpGnqMwLIpf3A4/nNjJSTgQSFeUL2gMcHxZc\n++PezUWJ2zjdgg/M1aL4k7XXDIiaqEpEYJtO0ef5XXFRxpXwkkXVxbU65VW6mzaQufWks4TMMhYb\nJTafpUrLHY3naJ2D3xfvBVZp0ZVhChsCPB1DEWxAtBZKHVZAmNAilKwHOBZLVbhoQqOQWM05Wsdj\nFsShYpC5gW1svuH1pOoSNZyJC9p9NxxvDZwVFgp39zerdTB/TD8YuE3SXSTom6hPOgTBGRXh4B7q\neDzGaCCwCmfTuWcPsjh9lB1xJ+5ewJ7S3Fs2Nopdav2RfR2qIR3BmvUMjpSXKryUtDKZ90k6DzjF\nJqr0x+KreIDreZK+gJdBj3WoFpkPLIjWBlZAfX31SzP7SUQTq/Zb45vZIRH27wWOlfRHfCM/C7jG\nBlcJquO7BF0cJjqYY7ETsDFeCe6w4Iy+2sw+GttAWB8egju5RWGG4BjNCMGBNeXCmtjE1PlvD6dX\nrfBX4Ha5Vkh9LGpV4nGk0hnkegR7mllbRfki9qMAZWoqRLSfRfmTdJ6ZvT2zD1Odx5xFvx0mlV/S\ngWZ2QB/6olm8wOfNZraOJqapRFOscinYEe030dBnkqEJUWtnReBlZvZDeQWSGSkUxD5tN32GWXhZ\ntFZMCGWmxcRG7iLb+jnuAPgTvlBZAmdnPYRT+QaOS/02sKWcok3jmbw85Nb4BgL8Xr7AIrQMam2s\nQ8fxea2Z3dyyj7k6OXOAr9OSAl2zn9J0iIjzj9MhxmiEmsu95rZfQuA0KR2hZn8wvon8ac0+ejwM\nNPp303GAnAx808weHWg4sY3VcEeQ8Oo4j5jZbyJtf07GfBDa2Bo4AngBPseviOuONabFBPtlgE8x\nWfy81Zwir+D2Djz19gVmFhVUlXSXma3R/M6BbSyHlxHeGHdo/dLMJpUQHWB/P7B1pNNljClAcB4c\nALwuPHUV8DlL1PGbbkjqGQgws+jqWzAiTITaovc5wN2Bfhwdccm1D20MLHVhZkc0tRHaWQgXFdwo\n9OlqXPgmNl8pKQJbivIXgSmnoBaI3OVG0YdG5bdypeUel4sc3i5XkX2QFlEXm/q0mqYIcjXAJTF6\nACTtiqcFLIWnOb0Q38zlRr9jkcSEID8tpiRz6DLg3CriKGlzPIJyCnAM8NoG+3cCL2m7gS01nqVG\nTyUtZmaPhsjbz8Jf9Vrbagi5rJrHLYECXUNWOsQIjMdjDBGaJn0UGsq9ZjAEK5S4DpPSEWrYDnhx\nqkMvOMBPAE6QazidBXxZ0rn42HZ/RBv34OLhAEj6JfFlInPnA4DP4yKKPzTXH9sEZ6vE4kxcIHEr\nYDd8rdC05poLSTvim/c1cV2Go+mhfTQA10la08zubGFTP/9Pw3nPwh1Se5hZY0pJFx4aOxCGjpPx\nubUqNb0Tfh/0E0EdKbR1FvTDSDARlC9ol62+K+kfuJbCJbgDYsImx8wObGojtPNtXLH1jPDUDsAS\nZrZdpP1MEiKwJb6DyP6VEA2MER/KidzlCpkNpUJG13uySsuFCPxDuB7CR/Hv4JiYRUawn9K0mlxG\nTOQ5bgdeA9xgHRGpYqq5kb9jayaERqTCRejLpO9LHdHZ283slQ325+Glp1ptYKdrPBtw/ovMbCu5\nwGl9kqw2Tm2cWTPJq7RyRLC7gAQKdGBSfBdf8KSkQwx1PB7jXwMR64JchmD2dShpB+BlJKYjSDof\n+GDb8bBmPwNPm9wZT6k4Hd9Ubwx80czapCxWbT5gZitEvjdrPgjvr1iSdwCvMtdCaFMCvGKU1FmW\nN1lkhQlJf8CZIMcBV5jZzyPt7sTngmfh18DP6OwVrOpLRDt74evLFXBnzlXALIsrb1ltUF+Pl4s8\nn4nXYWy66xiZ6HW9x94Do4ACTllgRJgI1YJQnmf6RBhUVgFWwzf1U2of8CpcOXhLfLF0NnC5tfey\nrGETFbuvkNQmdy0pAjudG4sCaMrFzorcFYii5+YAl8A69C4tt5ukxtJyZvYLef73crEOsC4kCRvm\nRpBVThMC4Ekz+7tCDq5cBKmk13QgmyKVCWEFNBnC6yUmiQflKQHfDMfvAh4Ki9mY6ElSPn/ueJYb\nPQ0OBAGvt5bVPXogl1VTbazqFYLaCGyehufPTqBgt8Cwx+MxRgAqkA/fgKaxOZchWOI6XBOPOG5K\nLR2B+HtxCeAeSTeR4NAD7sPLIR5mZtfVnj9XXhUrBW3mxNz5AFy0fFFci+BMSb+jlu4Xgep6e1DS\nlsBv8Dk2Cma2tKRX4DT0L4R58l4z26nBNEb0Meb8R+LaGIvi1+FMYHlc/LoJW9f+fxzYvN40MHYi\nTB+ekLSRmV0DIGlDIEmsc0goolU0EkyECmFC2BhXVb8WuAn4u5m9Zzrsa+1sgDsU/g34tJlNohQP\nsD0DOLrybkt6LbC7mb23TR9SUcq7NKD9vtGC2A1kxDlmkhe5m2pxyiw0RVzCe7JKy8nzDg8HFjCz\nlSW9Es/Xiv0NknKWC7CKimhChLYOxWvgvhcXw/owcLeZ7RfbRkP7Tfn4Q2VC5EbuQhtLhzaq9Kxr\ngc/hrJgXNTFblJ/PP1Rl/5K/17DQJkrXx34m/8Tj8RhxUIF8+Ib2m8azLIZgietQnou+uiWmI/Sb\nH1uMh4tWa4KW5z2K/k7V9zU5VWvtZM0HoY1F8M3WfHipwsWBM83s4cg+bIWnH6yAV6BaDK/6EbVO\nl7QYnlJaaRIsDfzYzKICRbnONElfwr+/RfFKE1fjwopTKaI8RmGENfVp+PUr4I/A+83sjqF2LBIq\npFU0ak6ESlBsD9zrfGhLmlOWfWhjGTzHZTvc47l/S7rbT4BVgSp69SLgXuBpBlCeSkVgC20cFsYn\nhHt7vLa5mV3ax64IBVlOIe5hHrdxUD79duhUfkn34GJoT4XjBYE7zGy1SCfELXh05MqUDWzuxmEU\nIM9/3QX31gv4AV7Hd+CgV9AZdoOZvbb6vQIT4tZ+Y0BbRCy6p1zQLoINkbuBzaUw5y74TsOdwjc1\nvnmybakx/Ys47frP4XhJ4ONmFqWqrvx0iKGOx2OMBiSdQP98+CPNLCYfflD7TekMuWmK2dehMtMR\nciHX3NqFyaKCA53r6iOiVrMvkx/dPB/MwLUQNklsfwYunv7ljD7OBq4Jf7NsYpnIGPufkyc2/A7c\nafBQ+97PbaOXLscjwM1m9t0er40xRQhOKayFuOkoINcpW2Ek0hlqkKT1ce/kLuG5NvSKZHtJH8Cd\nBwvhX+o7EyeKaIXVLrwe/yG37vFaG5pSFuWvHsEGJkWw+zkQwmtFUirMbOXMJnKFzIZC5e9Cbmm5\np8zsEWkC476NxzCLgp0bQVamJkQ41z8IIlQx76+hlDDhVZL2BRaWtBnOhLiwwaYkpkPQrqlc69Vy\nRfKkDSyZ4xlwKz0WfJJio6evBXYMC8e/Qqv811Jj+lvMbN+5hmZ/krQF8aXZstIhRmA8HmM0sJ6Z\n7VodmNmlkg43sw8FJ3cjlFHu1fLTEUpch0npCOqkV4neGiux4pSn43n0b8IZAO/BHSsDUcpJEIGB\n84F56eN/SFrcElTsg/32uFM5CdbRUUidC7PEJc3sXElvVSf95Coza7suWAhP1z4nHL8d+D9gbUmb\nmNneLdsbIxJ91qZUa22LFOEfARRJ2x41J8JewD7Ad8xsjqQX4/lf02HY5/IjAAAgAElEQVR/Ii48\n9Qt8gN68vgGLmCSejW/cfhGOVwW2AH4RE3Gycqr8uRuHmTgF+8rQn9vltZGjkbqBLBW5Ay6U9GHS\no+ipi41iqvhmdpCkS+hMyrtZp7RcTHrOHLkI1Izwe+wJXNdgUz9/7sYhN98qWRNCHQGknmjaAJZy\nhgGfwZ2ZdwIfAr6HjzOl0FThYhS0PXLz+XPHs1w18Tfh6XEbh+NZeIpMIwqO6TMkLWhmT8JcpljU\npi2cPzXqNyrj8Rijgax8ePUp90oYC5quhwIMwRLX4QEt3jsXZvacFLseeKmZbSfpbWZ2mqSzaFFZ\nIHyHn8BFGYeVWvQX4E5JlzGx9HFsffprJR2NV2io28cyq9bAnTFL+aF+j6d03BV5/ixnWnCqvwYP\nFAHsKWn9uqM4AmsBG5rZM6HNY/HrYCN8vTHG1KHUvTxUFHDKAiOWztCEJqpUjr3yc7lnAbuY2X2S\nXorXhj8T30jfaGb7RPYxV5U/l/L3YzNbr04tVE0FN7KNJAqyCuXDF6DfzmRIVH5NLC03CbF9CE6t\n/ZhI5T/IGkqNlto4KJNKrwxNCHlFBIDdw+Pp4XFH/wj2mcg+DDUfvwmahgoXEX3IrtbS0H7ueJZb\nXWIvvELG/+D30TbACWZ2VIvPkDumfxofR6txcWfggkGOtC77pHSIURmPxxgNKF8f5V48RS9VTyA3\nTXGo12Fwtswxs9Uy2rjRzF4T5scP4zT6G1usbaY0tShmPlBmfXpJvQKDFusIkdO49zOzK8LxG/DK\nFhtE2l+KlyOtO9M2w9cmN0V8/tnAKy2UdQzXxW0t19j3Aq+p2BySFsevg1UVke46xhjhPprkAGjr\nUJzXnAhZC9YSC15J55nZ23s8X98sHQQsZWa7y8u13dK9kB3Q/ln0jsCuBDSq8udC0kn4APkZPGK3\nJzC/me3Woo0pz8WeShRwQiRvPlWwtFwKCm4cckWwsjQhgs2k97UZAzKcYVlMCJXTZJhyQbum3yJ1\nA1uwfyUWfOub2V/D8SLA9S0XfNljuqS30KF7X2aBWRF5/qz7YIwxYtAU5FFiudea/dDWECqUjiBP\nT9zDEiu+SPoP4Dy8SsSpOCtrfzP7eqT9lH6H88IGVj100no9N8C+7kwDd6YdSLwzbTbwhiogFAJG\nV7acU3bB09muxK/B1wFfxKvKzTSzT/a3HqMEJC2PC3tWbOGrgb2spcbGsCCpPg4shO/3njazT7Vp\nZ9TSGeYF9NvE1SeWTYHDAMxLzLUpq7U88OpaBPYAPAL7Otx7PHDBWWDjsAcewX4SH5B+gEcA2yCL\ngpwauSsVRbchUvkts7ScpIEKxU0bUCtHwc6l0udqQoBTFTc0s2vDwQa0S6lIzcevSkH1ZEJEnLdU\nWkyStkdLNJVrzcrnLzCe7YDfi+fTiZ7ugJfTemdMF5j43T1DcxpJN7LGdAAzu4T4csXdyEqHGPZ4\nPMY8gyZ9lKRyrzUkpSOUuA6tXDrCkniq4Y1MpOI3fgdhTfWomf0JT6tKCShMdWpR3/lA0tuA5c3s\na+H4BmCZ8PKnzOzcQQ2HTdtK1imp9zE668qzmjbvNfxM0v5MnJejKyOY2R/wdXIvxPShug+uoOMA\niGJH1vpwkqTv4WkRAPua2W/C/2MHwvTgFOAsXIQf/Do6BQ9SjDx6sI+uDeNSK4yZCIXakJd2/C2+\nYf4MsLKZPS5pCVw4JdbLmavKX4SuJlccNTN7rI1dsM2lICdF7nKj6KUWvSWYGEosLSfP73sAdwDd\nQNeGx+IrZGQLG+ZC0jp0FqbXWkcTItb+1figvnh46s/AByw+dzKXTTHUCHBO1KkgG2I2sG7XBvZm\nM3tFpP1U02+boqcfw51f3wlPbQOcamZfaXGOpDG9Fv2c9BLtop+56RBDGY/HmLfQNLYpv9xrEkOw\nILuuRDpCbonHm81snYzzp36H2fOBpGuBd5vZA+H4dpxdtQhwipkNFNaUdDZeCvKicHwvcDwerFjN\n4kvBL4kzB6q0nKvx6P1ArRtJXzGzvft9Fy2cYUhaDqiqFt0IrGhmN0TYrWZm94S1zSTErm3GyId6\npEP2em5UoYkp0/MB/w/4auz6tsK8xkRoGwEqbT8Iu+LR15WAzc3s8fD86rSLLOZGYLMUiIMD4GSC\neIikR/CNV/Si3fIFO5IidwWi6KXU1Euo4t8qaV1rX1ru+bgndHs84noxcLaZzWnZTrKwIaRHkDVR\nE+Jn1CIEkpaKjZiEBd/rzWxteb4g1l4NOpdNkcWEUL4mQ07UqRQb4kzg8toCfme8tnIsplrZv0lN\n/AhJV9Khru5sZre1PEfSmF4q+mlmhwRnTrVIP8hapEMwvPF4jH8uPG5mvUrTRcESGYKlrkPzygD3\nSnqRJaYjxDoLBuCHkj7BZFHBqHkx9TukzHywQOVACLjGzB4GHg5jYRNWrRwIAY+b2ZcAJEWLSwYm\nxwQRR0nfwlPdBqFiLmR/F2b2IF6xqDr/jXg5+CZ8HN9rfKlXs8QLFo+Rj4cl7YgH7MDX3A8PsT9t\ncQudFK2n8eoeuwy06IF5jYmQJSSWax/ayMr5Uh9Nha73JEdglSkKGBabu5vZ1eF4I+AYa5evlUVB\nLsDGGGoUPZeJEdq4B3gZ8HPal5ar2lgQH9gOAw40s6Nb2CYLG4b3J0WQVVATQkGEKvb9pVGACZGk\nyVCzHwlBO+Xl889kCkVOp4sZkjmm9xJZfawaH6ca8/p4PMb0oOlakHQEfg+3KvdakCGYfR2GefFV\nePQ4Oh2hIKsoV6/pvb2eN7NvxNjnQNL9ZvbSPq/91Mxe0mB/d33dUQ8qSPqJmb08o2+/NLOYTfyU\nQNIDZrbCsM4/RnvIBbyPAtbH7+3rcL2TBwYa/pNhJJgIsVSpfg6AXPse7S2MC6Tc2+PlT8e0MQA9\nB/tSEVg6kdJ6XpT1O28PPFM5EADM7BpJT0faVsjNxc5lY+RG0bMWGwWYGJBRWi4s8rfEHQgrAV+l\nQ8eOxfOoLfSAp4BlzewJSU/2sakjKYJsmZoQXcgtBZXsDCvEhEjVZKj6mavtUYINkZvPnzueDQ0F\nx/RbgRWAP+GbjiWA30p6CNi1n2Ou1MaFIY/HY8wzaNJHSS33WoohWOI63D/yXBNQkFWUO6avW/t/\nIdy5eysQ5UTInA9ukLSrmZ3Q1eaHcKdMEx6TtIqZ/W84Z+VAWA1onXbbFsoUTG5AVDS3nyOt1oex\nzsz0Yflu56GkDfF04pFHqWtpJJgIyi+vmGXf1dbWOF1pATNbWdIrgc81eZpbtN9PU2Goqvy1fnwF\nWBin6BhO8fobcAbEbcBUQAE4M3KXG0XPUlPPZWKENpJKy0n6BrAG8D3gmxZf+7i7nf2BbYH6xuEC\nnEZ3vDXkHxZgxCRpQnS1kVsKKrekWBYTQomaDKUid6Gt1AoVpTawU4pcZllD20XGdEknAOdWDA5J\nm+NKyqcAR5rZawt3vVcfhjYejzFcxAZpRh2jcB2msorkGlXLmtl94Xg7fJ0G8AMzeyixP0vg64Q3\nR74/mR0n6Xm4wO2TuOMCPA97QWCbps8g6c14QOQLXfb74qr4Ax3V6qMjgI/HF5nZcg32K9befzGw\nRf314OgfZN/vPhKwqZk1pnRooq7H1nTWqKELY52Z6UKvvdx0MRtLQNLFwAb42hJcBP464Pe00YoZ\nBSfCKCFE+jbFS668KjyXvaGptd/3IgsR2BVSIrAFKX+9Nl61ZqKisDNJ2EB2Re56nTx2A5pLvx0K\nlb+rjaTScvJKIFXUPbkUVWgrZ+OQS7s8DTja2mtCFEOuM0zSl4H5SWdCJKXFqKCgnYZUrrWkI6Th\nPNkpbg3tJ4/ptTYmzT+SZpvZWooQcsrZuIzCeDzGcFEqSKPMcq/KZAjmXIelnKKSfk4PVhHQxCo6\nHriuGqsk3Y+zuxbGWX/RJbi72p0fuKvJMV17fwnR6E2BSlh3jpn9aND7u2zXAD5Vt8evqcZgScPa\nFjPbpEU/Wm8WSwY7Q3vjsXMIkLQ+vvneG3emVVgM2NYiRfSHDXn56/eZ63MgF/s81cze1KadkUhn\nqKBM6myufcBTZvaIr/3moqSnpa+4o5lZ8A6lOCyKUP7aDKQDkEpBPguP+leCHxWq2syxv2Mu/XYo\nVP4uJJWWM7Mo4T5JS5oLDHU/X4SCbfm0y9cCO4ZFV6omxOJ41OR14amrcFZRbFpBbjmsanP3udpz\n0eJHlpgWY2UF7XLLtabm82eNZ7HR06l0IIT2c8b0Cg/KKyx8Mxy/C3hInjITUz44KR2C0RmPxxgi\n2m5uBiCr3Cv56QjJ16GVK/F4Gf1ZRcfg814vrAt8qHb8mIWqMoEdEIWucXE+fK18Tov+lxCN3gRP\nz7yuCpLEIjgLeuo6RNiWWNsmo+B9NLfJwu2NEYcF8Gv+WQQB+oBHgXcMpUdpWKFyIAQ8RJy45wSM\nFBMhhypVwj60cRJwOV6m8e24iuv8bTy9GqCpIGlzM7t0gO0oRGC3xD29dUfM5/pbFD13duQutJMT\nRR8qlT+0kV1arqH9KUmrKciIWZEemhDWQBnsauM84C461QB2AtY2s4G5YDX7oQoTKl+gtISQWG65\n1p+TEHnLRemoT2ZfssZ0SUvj81pVkuxa3DH1CD7PDKxNrox0iFEYj8cYDRQI8uSWe81OR8i9DjOc\nopV9Equo207SGlX0XdJdZrZG5Pnr4+LTwC/M7FcxtsG+hGj0zvi8vj6uZXA1MMvMvjvQsGO/CvAJ\nPL00NV10gx72A3UhNDEd4ky8+tXcwI7FMww3BGbSmdeTUpZT2BBjlIOkFav1aHCsLWpmjw65W9GQ\n64W9jE51iXcD99mAktc92xkxJ0IWVaoQ1erZwH7A5vjN/QO8JNbfIu2zNBWUqcpfgPJ3HF7WbhPg\nRNyzdqOZNZb+KLiBTEofUSH6bWhraFT+WjuvplNa7mprX1puUNuD6tPnpNWUqsmdpAnR1cZQ6/jm\nMiGUr8mQpe1RAjkb2PD+eV7ZP3dMj2j/qEETf+rGZZB9ZL+KjcdjDB8FgjyfDnb1cq8XxI5DSkxH\nKLwu+DkZTlE5hfhyJrKKNsMdITf12xSGueBNZvbbrudfCFwSM5YE5tKSZvaHcLwA8H7go5ZR2SAV\nkp4PvBN3CCwZy/YoMC+eDrwEuL1mb2a2Z38rmtIhrIVz/x7go0zuf2N5wC4myevw4Eq9E/OEPsk/\nA8L6ajf8N7wJT2c40swOG2rHWkDStnTWp7PMrK0A+8g5EZKExErZd7W1GD4wtFJ9VaamQm4ENnfj\nUFtcVo+L4pPUxoPsgm2pDWRS5K5AFP1fZtHb5MVO3TiUghI1IbrauB74pJldE443BA43s/Ub7Eo5\nw3KZELmaDCUid7lsiNwNbO54ViLFLQu5Y3pE+033ctLGpWY/lPF4jNFCoSBNTrnXJIZgyeuwgFM0\niVUkr0e/F/BxoAomvBoPWH3VzE5vOO+7ga/jTsz7cHHCk/HNz0E2DRWLam2ciI/HD+EshGuAW80s\nqgpYgXnxJ8DqNqTNj6Qbmq6TAbYjw7D7V0e1fpH0Hvxe/Ay+rioSHJhqhDX138zsGUmrAqvie71W\npaNHShMBHySfjacQHIRvxt830KKsfUXXOpmQ6yLpEby2eyztNldTYRsmRmBPx0slxkZglwdeXds4\nHIBvHF6Hez6bvP5PhMfHJb0AeBgYqFpbwcrlYiflw1t+ecCsHOBSm88Rwa2S1m27cahQIIKcpAnR\nhd2AbwRGAHj0KGY8KFVS7CVm9vba8YGS2kTPczUZcrU9IL9ca24+f+54dgqd6OkmhOhp2w+Ridwx\nPRc74N/B+XQ2LjsAM/BIYBOGNR6PMVrIzoe3jHKvZnaQpEvoMAR3sw5DsG+KYeHrcD0z27XW9qWS\nDjezDwVmxEAEFkA/1tD9/VhFZnaGpD8An8dTTQ0XFfwva6hKEPBZ4P+Z2f1yhuP1wDvM7MIGu27k\nzgcAz8XHnj8DfwT+EONAqAV3cufFu4DnAw82vXFAX1qnQ9RwhaTD8Pmg3v9GR87YSTBSmF8uTLoN\n7mR/StLoROWbMQvYWC5w+33gZnx9NjBduxsj5USwRCGxUvYBJwEfNrOrASRthC9EY71LcyTtAMwI\nUbA98bIZsdgFn6iqCOwh+IAfu+DM3ThcJC/7cxguyGV4WkM0Cmwg30SPyF3Muc3ShcwKLDZKbT6n\nA00b8lxhw1wRrFNwEay6JsRJkeeu8KiZrR1YRQSWSaPgY0Fn2BOSNupiQjzRYFNHqkBphRKCdrki\nobkb2NzxbGEzu1ySQuR/ZmCLRevkFEDumJ6F1I1LDUMZj8cYOSQFaZRZ2UAFxH4LXoe5TtEmbNjv\nBTP7Pr7Y7wtJ+5jZwT1e+nvFcjCzWyXdl+BAgAKi0Wa2bejry/Gx5QpJM8xs+QbTKrhTrV1S58Wl\ngbsl3cjETXxsynHPdAgg1olQsRDWqT0XLbgc+lBEV2GMLHwdT1G8A5gVGIfzjCYCnonwuKRdgGPN\n7NCWQa65jUxB39JQgDpbgmo1KbeuiS7a9d5cTYU7cfGhv4XjhXDKaWw6RJYoYFdbCwILWbyafWWX\nS0HOyodPpd/W7IdK5c9FWNDMMbPVBrxn4OIrl4KtMlT6LE2IXvdtGypkrjNM0tr4wmICE8LMZsec\nvwSULyQ2k0yR0Ib2m/L5c0VOi6W4pSJ3TI9oP6vUV9P8NuzxeIx/bahQOkKJ61CZIqcR7WeJ5fWz\nl/Qr4IjaUx+rH5vZEd02fdqfSb5o9Fb4uuJ1uKbEj/H5/eTYNnKgPikBsVF+DTkdIvQhWVdhjKmD\npGfFsGpGAZJuAz6MszR3MbM5KXufUXMi5AqmZNmHNr6C1949G58k3gX8DTgjtBWbO5aqqZCtyl9g\n45BD1creQCozH1754pS5Toihi8GF6PMeiYyKEhuHodWGl7QaTvk8lInRisVwjYRYNfBcZ9jKZvZ/\n3UwIM+slvFm3y0qLUVkhsSmtUBGzaM4Zz1RATTwXJcb0hvbfbxmlKiOcCEMdj8cYDRQI8iRXNggM\nwawqIdNxHUaweprsc50IPedWeRpYX5jZgZHtZ88HclX4q3HHwW9i7Wr2vebFR4A7zex3bdtLOP85\nwJ42sTxeG/ueLDhrUQFNGboKY+RB0o7m6UW91vnRDrlhQ9LrcFHTa83sEEkvBva2BoHRboxUOgP5\nVKlsqhWwdnjsHnRfRQTlSJmaCmZ2hKQr6URgd46JwJag/IX35lK1IJ+CnJsPn0y/DRg2lb8ElsRT\na27EPwPQSr03l4I9zNrwq+Lf+RJMTC15DNi1p0Vv5Objnxfs6xS3c4EmJkRuWkyWtseEk5k1pn9M\nBUqNZ1YmxS0LGWN6XYm7V7tvDY+nFujmwK4w3PF4jNFAbj78rfSobCCpsbKBWZF0hOm4DvumI0Si\nre5PN3qOFy2cBP3SIap2sucDM/uIpGWBdQPb8MaWm/9d8PKQVbWEN+Bz3cqSPmfNIpP19JoFgPmB\nv1pDWk0NWekQ1NZjuNjvVrijuw2SdRXGyMYi4TGqmsiowsxmUavuYWY/w1PVgHiH6Kg5EXIFU3Lt\nMbNNYt/bB7maCtVA0HYwKLVxWId8qlbuBjI3Hz5XyCx3sZG7+SyB/TPtszYOliiCVQLm9aa/K2l9\nM7s+o6kkZ1iNCbF4V9RkMWoVAvrBMjUZrICQWC4bogCKjGe50dNSSBzTD5+KvvRA03097PF4jNFA\nbpDmMvpXNjiGTq54P2SJ/TJvXIdHZtrnOiG2w6vZTGy04HwgaTt8bLsS7+9Rkj5pZudGNvEs4OVm\n9lBob1k8yPVafK020IlgtVKSYZ58G7BebP9xLYJkmNmX6seSDsfTntsgW1dhjDSY2dfDY5Rjbh5G\nlEN01NIZsqhSpai3krbENwH1kmBRVKNedLJcilosClH+sqhatXZyUyqS8+EL0G/nWSp/Vz9WBF5m\nZj+Ua3XMsMj0mlQKdkkqfS4kHYqrWT+BC1KthdfEPiPSPrWk2Nvw7+ut4f0VHgO+aWZRQqu5aTHK\n0PZQoXKtEecZVN+9xHiWneL2z46YdIhhjsdjjAaUmQ/fazxSu3KvuWmKU34d9lvrxbKKCpx/XzP7\nYoZ9v3SIYvNBGJM3q9gHkpYBfmhmaw+2nGt/t9VSYsM8McfMVk9dX03nuqzHuZfENXJeOozzj9EO\nkr466HVrmQ4wqojdt44UEyGXKlWCaiXpOFyBeBO8KsE7gBtbNHGVpK8zUVPhyrAIm1K6UQ7lrzbJ\nPYdEqlYpCnI4X0rkbu7pyKPfzstUfgAk7Qp8EFgKT095Ib6ZeuMguwqpFGwKUukLYHMz+5SkbfGF\n57/jkYooJ0Iqm6IgEyI3LSY5cpfLhmiBvpG3nPGshhIpbkOFvMrPwXht9bpju6nkbLF0iCGPx2OM\nBnKrxeRWNshlCE7HddivvSKsInl1oT2YrFlV3cvJDoSqqZ5Plp0P5rOJ6QsP067s7pWSLsLTa8DZ\nLFeG9VXj9dDFppgPn2OjhM+DfVY6hFxot7KfASyD6/VEQwV0FcZIRj0AcSCTU9//pTASToRcqlRh\n6u0GwTM+28wOlPQl2tU1ztJUKIDUjUOJSW5UNpC59Nt5lspfw+7Aa4AbQp/uk/S8Ng2kbBxKUOkL\nYv7wuCUuhPiId20wCjrDtpU0h0QmBPlpMbnaHslsiIIb2FwKc3aK2wjgFHw++TLu3N6ZuEX3dKVD\nNKFEudYxhowCQZrccq+56QjTcR32dIpapPJ/BM7H+3whZUpKdmPgBJnLjgv4vqQf4IE2cGdSmzX2\n7rjjoFpffQM4z5xWHZOOXNcaehoPMEQzQSw/HWKrrvM/BCzYwh7K6CqMkQAzO636X9Le9eN/MkTt\neUYinSGXKlWYanWDmb1W0o/xyOXDOFVqnqAaFaD8LQI8YWb/kOcTrwZcYhEKysE+m4JcApn0238G\nKn91Hd9mZq+S9Czg1umiEOdQ6Qv24WA8HeEJ3KGyBHCRNagaq1xJsdvN7JWBCbEVXlZrVgvaZlZa\njDLLdIY2kipUqE8ZrQqxi+oC49mUVpeYDiiUJa3fU2pRqnQUkDMejzFcFA7SDDpPU7nX7HSE1Ouw\nVDpCKquoZj+lqvxN6RCp80GPdv6dib/Ddwa9fyoR0gk+bGZfyGgjKh1C0guB5YDZZvb3ENjZG3i/\nmb0g4/wLAj8wszektjFGe8RS/kcRktY0szsHvB5V9WkkmAi5VKnCVKuLJC0BHIZHYQ1Pa4iGMjQV\nCiCX8jcL2DgMrJcCN+Ge4qgIeiEKcjZy6Lf2z0Hlv0rSvsDCkjbD68Fe2GBTErkR5CxImg//vIcB\nj5jZM5Iex6MGA1GQTZHEhKghNy2mhJBYEhuiYOQtazwrED0dBTwZruf7JH0E+DWwaKxx7salBDLT\nIcYYLnKrxcSiScgrOx0h4zosxepJZRVVODKMwZeSoMpfIB2iiGh0cDzNvW4k/dLMXtTQ92vMbKOu\ndALoOJYHphNIWgEXnH4BHiD6JvA5YCc6rIhGpKZDSNob2A+4H1hQ0jHAITiTItch/Gz8txljjFgc\nE5xPpwJnmtkj9RdjHAgwIkyECrlUqUJUq3p7CwILdX+5DTY9NRXMbJe250+B8kUBbzWzV0vaA1jY\nzA6VdEds9DS0cRpw9LA2kMPECDEx5sO1HTbHr4MfACfaNN3wuRHkQn3IEkvKZVOkMiG62kgWKC0U\nuctlQ+RG3pLGs+mKnk4H5GWDf4JfPwcBiwOHmtmPI+2vobNx2ZqwcTGznnm1Y4wxDDRF9VIZgqOE\nXFZRmFN2An5KJ53BLLLajFzU8CTgzpp9W2ZYcdFoSQ+Y2Qopti3OcQVwFa5v9ebwdzueYvjbFu3U\nGc9VOsTxZvb7Bru7gY3M7I+SXgT8L7ChJYj8qo+uQuw6f4x0dDmxng08Xr1EhDNrlBDWZx/Aq7Lc\nCJxiZpe1amPEnAhZVKmCVKsNmOyp/UakbaU2XD0uiqcDbNxoXAC5GwdJt+FR6y8Du5jZnLabqVHY\nQA4To0DlHzZKUOkL9OFwfMHwPynOkxxnWHDirAfcQ4cJsQjwnKYFiwqlxYSFxrpm9rdwvBCuAt3m\nXk6qUFGzz9rApo5nmqbqEvMC/hnSIcYYPkoHaXq030gNTk1HKIUCTtHr8P6fi7M7fg38t5mtGml/\nP16C++8tu17ZZ6VD5M4HA9qNYSL0nA8rNM2L3cEwSb8CXmRmWdoSsekQ3dd32+BcV1sr1g7n6ipU\n8+QYY8RCLmy7DfBV4FF8v7ZvbKBlJNIZasilSmVTrSSdjqvZ306HOmc45SgGT4THxyW9ANdUWC7S\ntgRyKX97AfsA3wkOhBcDV7TsQ25KxbyOoVH5uzzUkzCNjpxRqMn9IVyH4GlJf6O9pzhZmNBcU+Rr\n9chMmOBjJvlSaTHZQmKWLxK6sJldLknBgTRT0i1AbBQ8aTyz6asuMeWQa9N8EliRiY7tWJHerHSI\nMcYIyK0W04SY+3rYaTG56Qh74dHLPXFW0aZ0ql7E4C6ckfS7pjf2QVY6RM580McJBf67x4xH1Xwo\nfE39GzrXTNS8GDb8lc3DwOKBPRrjhMhNh1heE8sDLlc/tsjSgHJdhWWYqKvwOeD9oW9jjNEISWvh\n49eWwGXA1mZ2a9i3Xk9kmtqoORGeR21gA54CljWzJyQ92cempD34JLl6Bu07W1MhE1kbBzObhW/6\nq+Of4RMeQKP4Ue2cw95ADhPZqvgZqJR/dw+Pp4fHHRngXJgC5JbJzIbVVJQTkesMu1zS22nJhLBC\nmgyWru3RzYbIqVCRu4HNGs+mOno6TTgHL896AhMdKrHI3biMMQYUyocfgL7lXkcIWU7RWmDhL/gC\nvi2WAO6RdBMtS3AHrIlvejellg5BQ9WwQvPBoPm48be3mr5NYurE4vh1WndWVc6TGCfEN/B0iPPw\nVIib8WDjWpHpEJ/sOk5JY5hKXYUx/rVwFL6W2tfMquA3ZvYbScfyqpMAACAASURBVJ+NbWTU0hly\nqbPZVCtJ5wB7mtmDSR9iYlutNRVKYCopf5GUw+xc7HkZI0LlnzTJxvx2Bc+fTaXPOPdqZnZPuA8m\nITbqonx9kceARXC6YWsmxDDTYlSuQkVWPn9oI6fSSpEUt2FinHowxihAifnwKlTZYBRQIB0hi1Wk\nPlVvLF7TICkdotR8EHmufczs4Ib3TLsq/lSlQ7TsQzFdhTHGKIGRciIAWUJiOfa1ie45wCtxkYkU\nT2+WpsKoI9KJMLQN5Cggd/NZqA+3A7ub2bXheAPgGDN75TSdf2giWJKON7MPyoWUumEtFmxDdYZp\nyAKlgQ0xdJHQHEiaBWxRi54uikdP34yzEVYfZv9iIGkmTl/+DhPnpFhtjNx0iDHGSA7S9Nv4Vojd\nAI8Ccp2icmHD4/Ao9FxW0XRtAiWdD3zQzFqnQ0zXfBC5xkx2Iki63Mze2PRcD7s7gDfQYTJcUT9u\nMR73cqo9gjMbvl6tm/vYFtNVGONfG+qd+lxdh583s4f/f3v3HmxZWd55/PtDE40gXspLpgZFnEIZ\nHFA79AhBJZJ4KRSr0VEjYimikVhBGBMnt9IGqYqKeEEsNfaQhiF2zMB4aymDjMSAiIrdCNhKJkRb\nZywvcbygDCKSZ/541+6zzjl7n73Wet+z19r7/D5VVPfe+7xrrUN377PX8z6XRscZQhBBmY3EctdX\nxyg113xsT4Wm9U5D1/ANfu67KOfo++azOucmUir4A6qnfgy8oukufMFrmHkTLEkviIjLJD26Ksfp\nepxOwbCCmRC9NyjNzYbo+wa26+7pkFS7fyu1yQbp9cbFFkfuJs9G1zWrSEsd4Ud9cfa9RLvsts8A\nR5JGd7feJJtFdtyk9+UVpWmvA95Rfz0i3sEaqp/f+5MySH6LpWDAgcDfRcRhU9bvJZWAjOvd0eb9\n+AJST4NRH4UXkRraBXBgRLx0jbXfJ/ViGPnd+uNFuc+w9SfpPNLngR3VU79LKnv8LinbZdxI31WG\n0hMht5FYdiOyUZCguuG7M1JjtMcAhwGfbPZtAPk9FYauSfOjzrXYCyJ7nnXWyVO31eMi4vGSHgAQ\nMy6pqc7ZVxOsPyXVkV8O5KQ8dq3Hfx3we6QdupWm1p/WDKFBaW6T0Nx6/lwfJP0Z1ndPd1Tv81/t\n4Xpai1otcEe/jIj3FbkY23BUqD+KMicbDEGBoOhOSa+hZVZR5Pf3GdmauX4WTaMnfXau/z/Yxto9\nFsZ5NXAWqflgvTfC7cB7pl5UxKNanm+S34yIzbXHOyXdEBGbJe2Zsja7r4JZ5XdWbAjfMtoklnRK\n04MMIhMB8lOlSqVaKTXJeQrpw/t1pIjtLyal6o1ZX6ynwhBJenlEXNz3dQzZEDIxJH0xIv7jrM43\nJJKuIn0Q2Qxcu/L1lqVJrbMpCmZCDKEsJisbYgj1/PO6eyrp+Ii4WtLzxr0eDUcw5ZZD2MZWqh5e\nmeNehyA3qycnq6jaHNgzbcd8Pc0iOy43Q0xr9FSo/h/+WUScm3H8TuUQta/9GvDM0b2KUm+DKyPi\n389LdpzNv+q97FUR8cXq8Wbgv1abj43/Hg4miABFUmezU61qkZgzSJ14z2tSd6SCPRX6MKFOa5+h\nX//Q9JXKXzv/O4FfAf6W2ljBWZYz9EXSr5IyEC4l3YQv07Q0KeP8o/eQrOZPAymLyWoS2tcNbIkS\nt75JOicitkraPubliIhXNDxOVjmEWYlNmlFAsf45bQhBxjb6vt4qo+qMtn8OBcsh1r1ptKQ/i4i/\nyFi/5s/drjfqueUQteOcQApE/XN1jEOA1wCfId3UTd1smvB5vVFfBTPYFzT4K9K0LJEyck4jZWg+\nOyL+e6PjDCyIkNVILHd9dYwbSf+g3wmcFhF7mgQnNOfNg+b9+m05ZTYVXASSHhoR/7LG603GlXY5\nb5FMCA2gQWluNkRfN7Cldk/NLCmwyZM12WAIugZFC2YVXQM8kbRJVd8cmMkmT4nsOEmHAGewuvl4\nke9hWpBA0vmkcdOtRi9X3/uoHOLbLC+H2BYRU0siase6D6lUGuAf29705/RVMKvLLXkeWhAhN3U2\nO9VK0lOBPyKlvb5V0qOBs6JhwxJN6KkQVWMvMxuG3EyBNY5bJBNiIGUxvWdDdFWqxK1vWt5QbOQn\npOkSX15jXZEbFzMossmTPe61b12DogWzijqPeCxRDlHi50GVRn0RcAupUSFQbqOqQSbCaPTyPcCd\ntMjGKFEOUR0na4Kbqh4K456TtCciHpdzfbb4quDBVuCp1VP/ALypbTBhaEGE3NTZWaRarbl7qcye\nCn3TAjQ/snJvEItsvYIIteNnZ0IMoCym64SKQdzAlihx65ukHaSGvTurp54D3Ez6EHpZRJw3YV2R\nGxczmE09vK2vruUQtfXZ2XGSvhART+py/obHX9e+ArnHV4EJbnJfBcsk6X8AXwEuqZ56KfD4iBj7\nmW2SoUxnGNnC8lSpS0ldWJumSuWub+LYKa8rIv6fpNOA90bVU6Hg+dfbdpaaHz2NqvlRr1dkXfwV\n6Q3ihdXjl5L+bFu9QVh3awUQKtPeS/qccDHSdULFcaSU5XFjgoL0Hj0Ls+gmvt4OAjZFxM8AJG0F\nriAFCHcBY4MIEbG1+vXUGV2nLbasaTHqedxrjoLlCF2zikY9DVa9RIueBqQ/vz2SupZDdP15UHdB\n9R72KZaXhJT6OXfZtC+Q9FyWNlg+ExGfaHH8T0t6Pi3LIWpKTHD7Q+Czkpb1VagyQy5Zc6VZ8u8i\n4vm1x+dImvgeNMnQMhGyUqVmkXrbpGkLHXoqDIUWoPmRgaQvR8QTpj23kfUdsV/vTIhS+s6GyLEI\nu6fV93DEqCSuqqe9KSIOa/J3uOuNi1ldgf4oWZMN+lSwHKFTVlEpOeUQtWNk/TyQ9GbSpsY/s1TO\nEE2DSbk9FSS9hdSv6IPVUy8GvhQRf9pwfedyiGp9kQluuX0VbGOTdD3w+oj4bPX4WOD8iDimzXGG\nlokgls8Sv4el5iWzWF/CmaQ59R+pAgiPBsY1uRuquyTtB/yTpD8gNZA5oOdrsvbulPTkFW8Qd/Z8\nTUNzQd8XMA9ysiEGcAObtXs6EB8k7f59rHp8IrCjCpJ/tcH6oxh/43K6pHW/cbGFcRpwdG2T5q2k\nBnVNMz1/GRHvW6+LW08Fs3o6ZRWNaPy0mZ9Gw55bJfoOFMiOewHw6Ij4Rcf1HyVlP+yk1lOhhROA\nJ0TEv8K+Xh83kj63TxUR9+9wzrqHAF+tskFyJrj9BkuBlMdLatVXwTa83wcuqUqfBfwQeHnbgwwt\niJCbKlUi1WqaNYMSEXEN6YPq6PHXgX21Tk3qoHt2JnA/0jWfCxxPau5m8+V04L9VbxAAP2KD/Dmq\n4bjSiLh4Vtc0wawDnH3o+wZ2FiVu6yoizpX0SZbKX06PiC9Vv2/SayfrxsWskrtJs1PSa5jxuNeS\nCgRFH0btewfuBh4eEXdKumvCmrrdwCNIP89FalL5XUnfI40HHJvVUbAcooSvkK77+x3X/zwi3p15\nDQ8k3TRBavDZSmY5xNltzzfm/GP7KgAOIlgj1fvV4yUdWD2+vctxBlXOAEVSpdY19VbSy3NuPuYl\nhdnmm6RDIuIb9TeI0XN9X9t6m5SyOVJiN6aE3PeSeaA0kuyE2g3sAaQb2GeRPngfvs7nn+fpEgdW\n/27H7T42vvnKLYcwg3030J2nxainca8l5ZYjSHoDcBJQzyr6OPB24AMxpQG3pG3A5RFxZfX4GcDz\nSRtoF8Q6NiwsRdJngCNJTcdb78RLOplUotapp4KkFwNvIWUIixQM+JOI+NuG67PKIapjPLw6BsAX\nI6JVQKVqrJjbV8E2oAmB0H0i4h2tjue/g0nT3csC5xl0EGGemx/ZknF/z9zbYjZm9V4yD/q+gVWB\nbuJ9kfSJiHhOdfNV//s02j1sdPOVe+NiNjLP/VFKKBEUlXQUS1lF19Wyipqcf1V/LUk3R8SRTXoe\n5ZZDlJDblyG3p0J1jH/D8pv477ZYezPLyyHuBdzYNDAt6YXA24DPkN7Ln0KqTb+8xTUU6atgG0+V\niThRRJzT5nhDK2fo0/l9X8BAXEZqfrSN5amLNgckHQY8DniAlneSPpDayM6NQP2NK/V7yZLcev5c\nsyhxWxdVAEHAcdFxJFt1nNxyCDOgWz28BjLutZBO5Qgrsoq+Xv03eu3BLUo6viPpj4EPVY9fBHyv\nupFt0h+gUzlESQUyAXN7KkCaOPYD0j3QYyQ9pipFbiqnHOLPSYHt7wNIeijwP4HGQQTK9VWwDaZt\nkGAaBxEqM0xxHnod9Nw2PzIAHktKsXwgy8fr/RR4VS9X1J9expUOpVxiCPq+gY2Id1Tps6Pd01Pn\nafc0IkLSFUDrzImCNy5mOYYy7rWErkHRHaSfy7sYk1UENA1sn0z6mfbRat111XP3Ymmc81quYnI5\nxHuBdSuHqPVlGH3P+16iXV+GrJ4KVUPQFwF7qGUyUOtlNsWbgRslLSuHaHEJ+60oX/i/tP9ccnbL\nrzdbRtJBpN5Qo89m1wJnRsT/aXUclzMst967l0Ovg5Z0NunNeW6bHxlIOiYiru/7OvqknseV9pgJ\n0btS9fy2r3v4eyLihpbripRDmNmSruUIVVbRI3KyihqcY83G3bnlEENQoKfCPwJHRkSTRpaTjpFT\nDvE20vX/TfXUi4BbIuK/tLyGrL4KtrFJuooU3Ly0euoU4CUR8fQ2x3Emwmqddi+b1kEPOYBQGXXw\nf33tuTaRchuGkyTtIY11/DvSD63/HBF/3e9lzVTf40p7yYQYiFI7b5Z2B0+RtBe4g6UgwJo1uKXK\nIcxKmNDQa5bjXjsrkdWTk1XUwrFTXs8th8hSnWdPRByWcZg1a7ob+DrwKywvS2mrczlERLy+Ku0Z\nZcd9ICI+staalcb0VbhQUqu+CrbhPTQittceXyzprLYHcSbCCl13Lyc1ixlxirPN0mhXQdJJpJu5\n1wHXRMTje760mZG0GfgaKfXxXFLt4nkR8fkZnb/XTIi+zWLnbSOQdDDwIFIDLkhptz+OiG82XL9q\n99Fs1pQ52aBPBZucdsoqanGdazbulvQQ0k34k1kqh3gTKZjzyIi4bT2ua8U1fAw4Y9Y/FyRdSPqe\n/y3weODTLM9keO2EpSuPM7YcIqcfgaRvRcQjW3z9TcDTV/ZV2Eif7yyPpE+TNrpGGTEvJpV7/nab\n4zgTYbVOu5fzHiRYsOZHliLtAM8mfUD7Sbqn2zhqH9R+RsoCmLW+MyF6NaOdt41gC/BKUu24SOmH\n20j1jE3slrR5vW5czBo6CNgUS5MNtpImGzyVlLE02CBCwayeTllFpUTED4BJ5Q63TSuHKORBwJ6q\nKeAdtWtb8ya8QE+FUdnJLtJ0mq62AI/NKYcYo+2HsxJ9FWxjewXpM8Q7Sf+ePge8vO1BHERY7Uzg\nfsBrSbuXx7OU4j/VHNdBL1LzI4OPK43XuxP4/SpS/fOer2mm1P+40qz3kgXhG9h8pwFHR8QdsG8n\n7HqaBxF6vXExq3SabDAUhYKiz2RMVlHutdXk7hRMK4co4Q1dFkXE/XNOGhGX1B9L+hXgPwDfbtlP\noEQ5xKrLa/n1fyfpSpb3VfhkweuxxXfQysCdpGOB/93mIC5nKEzSZ1mqgz6Rqg46It7Y64XZhlHt\nfh8N3Ar8JCLuqbpH379NA6B5V6X8vZ+087BvXGnMYIyVJVUg61BgL76B7UTSLaSRYD+vHt8XuKFp\niUJuOYRZCZLeAJwE1CcbfBx4O6kufPDjRnPLESSdyfKsoi3AtohoGhCcdvysxt3TyiH6ltNTQdL7\ngQsjYo+kB5ACsfcADwb+KCL+Zsr6rHKICT1BIP09+POIGNuEeI3j1fsqXNu2r4JtbOP+rXf59+8g\nwgq5u5fzXgc9z82PbImkGyPiiX1fR5/6/nc3gEyI3vkGNl/1nvwy0sQcSDceF0fEuxquX9cbF7Om\nuk42GIrcoKikm4FjallF+wPXT1vftHF3rvUMItTKEVa9RIsRj117KkjaExGPq35/FvBbEbFF0q8D\nn5z2eUnSmlmEKzMdxqxfsyFkRJyz1uvTtO2rYBuTpGOA3wTOIm12jxwInNS2r4bLGVa7jLR7uY3a\n7mUL814HfRTjmx+dLmnQzY9smU9Lej7w4di4kcKdkl5Df+NKc99LFkFuPf+GFxHvUBprNtp1OjUi\nbmxxiNxyCLPOSkw2GJDccgSx/GfBPTQrQTi/xTlyrFvjpNxyhJpOPRWAX9R+/3TSz2ci4rtN+kXl\nlkM0DRJI+tOIeHOTr125tMMa23h+lXRPem+g/m/yduA/tT2YMxFWyN297LsjfC5J1wAn1JofHUBq\nfvQsUjbC4X1enzVTRf33B35J6oXQKtq/CKpO2is17qRd4Pxzk4G0XrruvFk5ueUQZjlKTTYYgtys\nntysovWWWw7R8Bzj0vZ/GhF3N1w/dhLatObmkv6eVDrzbeDvgcOqAMK9ga9MK5HILYdoqms2iDMR\nrA1JB48yQquN7wMi4vbWx3EQYTlJZwPfp7/dy15V6XpHjN7QJd0HuCkiDnOKvFlzG/29BHwDOwRD\nv3GxxVdNNpj7ca8lgqKSNrG8lr1xVlHXxt2zKodoomrw+gjgR6RAzAOB7wLfA161Xj2LqvLCdwO/\nDrxrFCyR9EzgGRHxh1PWZ5VDtLjOiZ+zS/dVsI1LaeTu6aRA2A2kcoYLIuJtbY7jcobVRnVPr689\nF0DTOcDzXgf9QeALVd0ZpOZHO6ofll/t77KsCUmHRcSt1QeVVSJi96yvadY0nHGlWe8lC2I76f2k\nfgN7UY/Xs+EUKIcwyxKxMONeu5Yj7FP9DO76c3g7S427n0bVuLvBulmVQzRxFXB5RFwJIOkZwPNJ\n39t7SdNkVsntqRAR/4uUUbvy+SuBK2vnmVROkFUO0cJaO7trlYRcUPIibOEdXpWZvYQ02eNPSE3I\nWwURnIlQ2CJ0hJ/35kcbmaQPRMTvVal7K8UcBbM6k3RORGyVtH3MyxERr5j5RW1gOTtvZrYYcicb\nDEHfWT3z3rgbUnbaykw0STdHxJGSvhwRT+jr2qprGVtOkFsO0eL82Rm/GX0VbIOQtAd4ArCD9L78\nD5JucmPFjgruXv4yIt5X8NJmYsGaH21kV1W/nhYRX1/zKxdURGytfj21j/MPKBNiEDJ33sxsMTwJ\nOKVKZ5/Lca8DyOrJatzdtRyisO9I+mPgQ9XjFwHfUxrf+K/TFuf2VGhgUlrBq1kqhzgrlsZl/zap\nb1gplxU4xgtIf85mk/wlacrMTcA1SpO03BOhq1K7l/NaB71IzY82slEUvWtznkUyoX5w3ceVOhPC\nzGw5edxrttzG3ZI+y1I5xIlU5RAR8cb1ueKx1/CQ6hqeTPqseR3wJtLP5kdGxG1T1u9lHXsq5H52\nmpYFIOkQ4AzgUSwveS7Wl8L9y6wLSfeOiF+2WuMgQll9d4TPsSjNjzYySVeRfjBvBq5d+fosGyj1\nrWocM25c6aMAjys1M5uR3MkGlm8eyiEkXRgRZ6zx+jYm91S4ICLG9lRocf6sG/BpQYiq5Pki4BZq\nmRcxZbpEyWuwjUvSKRHx15OadEbEO9ocz+UMK+TuXkbEIeWvajYWqPnRRvZsYBNwKal+byM7CNgU\nS+NKt5LSDp9K6lmyrkGEvjIhzMwG6DTg6Npkg7eSxuQ5iNBQgcbdWeUQM3LslNePjohXjR5ExKck\nnR8Rr66mieXKLSeY1mXx5xHx7sxz5F6DbVz7V7+u1aSzMQcRVjuK8buXp0uauHu5QHXQuyVtnufm\nRxtZRPwC+Lyk34yIf5n0ddOi/QviYdRKioC7gYdHxJ2S7pqwpqRO7yVmZgsoe7KBcRmpcfc2lv+/\nbOpM4H7Aa0nlEMezNEVoXuT2VFiznCAi/iLz+qald19QbWh8iuUlzyX7BpXoq2ALKCL+svr1nBLH\ncxBhta67l8cBV5PqzFYKUgrfPJj75kcGawUQKtOi/Yug73GlvWZCmJkNiMe95stq3F3bHPoZqR/C\nPDqZ1FPhoyz1VDgZuBfwwgbrP0r6e7eTBkGHDqYFxo4AXkoK4IzOH9XjZidY/0CILShJa2bBRMRr\n2xzPQYTVOu1e9t0RvqBnMqb5UX+XY9ZNRJwr6ZMsBUxOr40rfckMLqHvTAgzs0EYwGSDRbBT0mvo\n2Li7QDnELKx5Ex4RPyDdQI9zW4Msy/UuJ5iWBfAC4NFV1mhX6x0IscVVbzx6Dikg15mDCKtl7V4u\nQB30FpY3P7qUlDrnukWbCwMaV9p3JoSZ2WB43Gu2UenB62vPBdC0cXduOcQsXJC5flqWZVY5QYEs\ngK+QJkp8v8n5JphFXwVbQBFxyej3ks6qP+7C0xnGkHQUS29E19V2L5usneuO8JJuBo6pNT/aH7je\n5QyLZZFHAA1pXGnOe4mZmVkpfU5ikLSTNfoFlJoc1WA6wptJ5QT/TK2coGk2Ru50hSob50jgBpYH\nMRp//5JOBg5lffsq2IIrMcXDmQiVgruX814H7eZHG0NutH+wqgCCgOP6GFc6oEwIMzObcwUbd2eV\nQ2Q6fwbnaCK3nCA3CyArfbyS3VfBrAQHEZbsIGUN7GLM7iXN08XmvQ7azY/mWNNof0RcPKtr6kPP\n40pLvZeYmZmVatydWw7RWdOd+gKmbXrllhNklUMU+v9Qoq+CbUCSfsrS59L7Sbp99BLpo/OBbY7n\nIEKl4O7lXNdBu/nR3BtKtH8IehlX2ncmhJmZLY5Sjbsj4pAyV9SdpEOBNwOHA/cdPV+wzHBaluUD\ngVsldS0n6JQFULt5G20m7HuJ9jdvJfoq2AYUEfcveTz3RFhB0i0RkbV76Tpos/5JupVUN7iXHsaV\nlngvMTMzg+6NuwuWQ2ST9FlSSv87SZtspwL7RcQbp6wr0lNB0nET1jftaXAbcHifWQAl+iqYleBM\nhNU67V66DtqGZAbR/nnQ97jSXjIhzMxsIR3F+Mbdp0taq3F3qXKIEn4tIj4tSRHxTeBsSbuANYMI\nFMqyLFBO0DkLQNK9gD0RcVjmNZToq2CWzZkIK3TdvRxSR3izrtH+RSLpTJaPK90CbIuImYwr7TsT\nwszMFoeka4ATao27DyA17n4WKRvh8D6vrwlJnyOVy15OCmx8G3hLRDx2nc9bpJwgNwugKnU+w6WO\ntggcRFhB0sGM2b2sIqbT1gp4hN8crG+jUU71lPo+xzv1oe9xpTnvJWZmZnVVYPqIiLi7enwf4KaI\nOKzJ2Oau5RAlSdoMfI20m38u8ADgvIj4fMP1vWZZFiiHuAZ4IvBF0ubCaP3UIEThvgpm2VzOsNoW\nlu9eXgpsA6buXvbcEd6s7i5J+wH/JOkPSNH+A3q+plnre1xp5/cSMzOzFXIbd3cthyimVt73M1KG\nZFvbWcqyfFp1jP2aLCxRTlCgHOINGecu2hTPLJczEVbI3b2UdAnwHtdBW59yo/2LoNp1eRlpJjak\nm/qLI+JdMzp/r5kQZma2WHIadw+hHELSY0gjJg+mtpEZEWtON6itz8qy7FpOMJQsgIJ9FcyyORNh\ntdzdyycBp0jai+ugrScFov1zbwDjSvvOhDAzszlXsHH3w6jV8QN3Aw+PiDsl3TVhTWmXAe8nZeXd\nM+Vrx8nNsnwQsEdSq3KC3CyAWhBi1Uu0CEJExD2S/lHSI106bX1zEGG17aR0sfru5UUt1vfdEd4s\nO9q/KCJiN7C7p9PnvpeYmZntIJUe7GLMLjjQtB9AbjlECb+MiPdlrD8TuB/wWlKW5fGkjMOmOpcT\n5GQBFC5F6BQIMSvN5QxjSNrE0u7ltW12L/vuCG8GIOkmUrR/F7Vof0Ts6u2iNqCc9xIzMzMo17g7\npxyiBElnk8YjfoTl0w3mYgx67nSFKptkpZ+OmmU2PEZWc0ezUhxEKMx10DYEG20Sg5mZ2SKr9wFo\nua5eDrHKLG/gqzHoYy6h2XSFrlmWpcoJcqYrVOv3Ao8AflSd+4HAd4HvAa/yRo/NE5czlOc6aBuC\nnZJew5xG+83MzGyZ3ZI2d2jcXaocIltEHJJ5iE49FQqWE3Quh6hcBVweEVcCSHoG8HxS+eN7SX3V\nxioVCDErxZkIhfXdEd4M8qP9ZmZmNhySbgUOBfbSsnF3qXKIriQdHxFXS3reuNcj4sMNj5OVZVmi\nnCDHuGwSSTdHxJGSvhwRT5jFdZiV4EyEwgbQEd6sRLTfzMzMhqNz4+6ICElXAK3LIQo5Dria1Mxx\npSD1EWsiN8tyN2PKCSStWU5QMAvgO5L+GPhQ9fhFwPeqpo3/2uQAfQdCzEaciWC2QEpF+83MzGw4\ncht3S7oEeE+HcojBKNBTYRuTywkuiIiJ5QQlSHoIsJW00RjAdcCbgJ8Aj4yI2xocYy/uq2AD4CCC\n2QKRdE5EbJW0fczLERGvmPlFmZmZWZbcxt055RClVCW/K/0E2BURX57B+bPKCdY7C0DShRFxxpSv\n6TUQYjbicgazBRIRW6tfT+37WszMzKyY3MbdncshCjqq+m9n9fg5wM3A6ZIui4jzxi0qmGWZW07Q\nqRyihWOnfwlHR8SrRg8i4lOSzo+IV0u6T+b5zRpzEMFsAfUd7TczM7OitgNfkFRv3H1Ri/VbWF4O\ncSlpykGjcohCDgI2RcTPACRtBa4AnkqaHjE2iEC5ngonk8oJPspSOcHJwL2AFzZY33m6QkHZfRXM\nSnA5g9kCkrSD8dH+RwETo/1mZmY2TJI2sdS4+9o2jbtzyyFKqEoqjhil/1c75zdFxGGSboyIJ87q\nWiZc35rlBOs9XUHS7ojYNOVrsvsqmJXgTASzxdQ12m9mZmYDFBG7SSn1XeSWQ5TwQVI2xceqxycC\nO6qAxlenLZ5BluW0coL1zgKY+ucRET8AJgU6bmvSV8GsBAcRzBbTw6iNPwLuBh4eEXdKumvCGjMz\nM1tMueUQ2SLiXEmfZOlm/fSI+FL1+5c0OESnngoF5ZZDuE5JYQAAB9lJREFUTHNBgWM06atgls3l\nDGYLSNIbgJOAerT/48DbgQ9ERJMf1mZmZrYgcsohMs97YETcPmG6ARHxw4bHuQY4oZZleQApy/JZ\npGyEwzOvc2o5wZT1Y7MAJO0kBR3Giojndj3nmHNlfQ9mTTkTwWwBFYj2m5mZ2QLJLIfIsYOUNbCL\n5TfTqh4/uuFx1jvLMre8Y1IWwPmZxzUbHAcRzBbIimj/16v/Rq89uGm038zMzKyEiHiOJAHHRcS3\nMg6V1VOhgRLlBKtExD+sx3EnmHWfC9ugXM5gtkAkfaL6Yf0NxkT7I6JptN/MzMysmHHTDToc4yiW\ndvyvq2VZrrVmJuUE00oJJB0KvBk4HLhv7fzFPptJenlEXFzqeGaTOBPBbIEUjPabmZmZlbRb0uaI\nuKHNogJZlrMqJ5iWBbCd1JjxncDTgFOB/RoduGEgxAEEmxVnIpgtoBLRfjMzM7NSJN0KHArsBe5g\nKUvyyCnr5iLLcloWgKRdEfEb9c9oo+caHPu4tV6fccmEmTMRzBZUp2i/mZmZ2Tp5JvAg4CnV42uA\nH09bVCrLsms5QcEsgLsk7Qf8k6Q/AL4NHNDk2h0ksKFxJoLZAuoa7TczMzNbD5LOBF4JfJj0uWQL\nsC0iLmy4PivLUtJnWSonOJGqnCAi3jhlXZEsAEmbga8BDwTOBR4AnBcRn2+yvjrGuvdVMGvCQQSz\nBSTpYMZE+yPim/1dlZmZmW1Ukm4GjomIO6rH+wPXN93gkHQJ8J6uWZY55QRD0TUQYlaayxnMFtMW\nlkf7LwW2AY2i/WZmZmaFCbin9vge2o0kfBJwiqS9dMuy7FxOAPlZAJIeA7weOJjaPVhEHN/0GoBf\ni4hPS1K1MXS2pF2Agwg2Uw4imC2m04Cja9H+twLX4yCCmZmZ9WM78AVJH6kebwEuarG+U0+FmjOB\n+wGvJZUTHA+8rMX6ztMVKpcB7ydt6twz5WsnyQqEmJXicgazBSTpFmBzRPy8enxf4AZPbDAzM7O+\nSNoEPLl6eG1E3NhibVZPhVy55RAlSidK9FUwK8FBBLMFJOl1pOh6Pdp/cUS8q7+rMjMzM+umQE+F\nrHICSZ8jBUAuB64mZQG8JSIe23D92cD3SZ/N7qqd/4dN1psNiYMIZgsqJ9pvZmZmNiS5WZaSbiKV\nE+yiVk4QEbsars/KApD0jTFPR5vJCoX6KphlcxDBzMzMzMwGLTfLct4mMYyTGwgxK8VBBDMzMzMz\nG7zMngpnk1FO0DULQNLxEXG1pOeNez0iPtzk/NWx5j4QYovBQQQzMzMzM1toueUEXbMAJJ0TEVsl\nbZ9w/lc0OX91rLNxXwUbAAcRzMzMzMzM1jCELIASfRXMSnAQwczMzMzMFlKpcoIC5RCvG/P0T4Bd\nEfHlJscwGwoHEczMzMzMbCGVKicoUA6xAzgK2Fk99RzgZuBRwGURcd4aa4v1VTArwUEEMzMzMzOz\ndSTpGuCEiPhZ9fgA4ArgWaRshMPXWFusr4JZCQ4imJmZmZnZQutaTlCwHOJW4IiIuLt6fB/gpog4\nTNKNEfHEJscxG4J7T/8SMzMzMzOzuXYU48sJTpe0VjnBccDVwIljXgugaSnBB4EvSPpY9fhEYIek\n/YGvNjmA+yrYUDgTwczMzMzMFlpOOUHBazgKOLZ6eF1EfKnl+s59FcxKciaCmZmZmZktuodRm6oA\n3A08PCLulHTXhDX7ZJRDHBgRt0t6MPD16r/Raw9uOt2hchCwqRYI2UoKhDwV2AU4iGAz4SCCmZmZ\nmZktutxygq7lEDuqr91FKn8YUfW40XSHSlYgxKwUlzOYmZmZmdnCyyknyJyuIOAREfGtzhefjvMG\n4CSgHgj5OPB24AMR8ZKc45s15SCCmZmZmZktpBXlBKs0LSfIna4g6ZaIOKLt9Y85TlZfBbMSXM5g\nZmZmZmaLqlQ5QW45xG5JmyPihobnW7rQsn0VzLI5E8HMzMzMzBZWwXKCnHKIW4FDgb3AHVRBjIg4\nssHaT0TEcyR9gzGBkIho01fBLJuDCGZmZmZmttC6lhMULIc4GHgQ8JTqqWuAH0fENxuuLxIIMSth\nv74vwMzMzMzMbJ3tlrS5w7od1a+7gC/V/hs9bmoLcCnwEOCh1e+f23RxpJ3fK1qcz2zdOBPBzMzM\nzMwWWmY5QXYWgKSbgWMi4o7q8f7A9U3OXzvGJcB7uvRVMCvJjRXNzMzMzGzRPZMx5QRNFkZESLoC\nyJmuIOCe2uN7qufaeBJwiqS9tAyEmJXkIIKZmZmZmS26LcArgQ+Tbr4vBbYBFzZc33m6QmU7abrD\nR2rXc1HLY3QOhJiV5HIGMzMzMzNbaLnlBDnlELVjbAKeXD28NiJubP4dgKQzWR4I2QJsi4imgRCz\nIhxEMDMzMzOzhSbpFmBzRPy8enxf4IamExtypyuUUKKvglkJns5gZmZmZmaLblROcLaks4HP066c\nIGu6QiEl+iqYZXMmgpmZmZmZLbyccoIhZAFIeh3wMqDeV+HiiHjXrK7BDBxEMDMzMzMzW1NuOUTB\n68jqq2BWgqczmJmZmZmZra3EdIVsEbEb2D3r85rVORPBzMzMzMxsCmcBmCUOIpiZmZmZmZlZI57O\nYGZmZmZmZmaNOIhgZmZmZmZmZo04iGBmZmZmZmZmjTiIYGZmZmZmZmaNOIhgZmZmZmZmZo38f9zj\nTUTLgjn3AAAAAElFTkSuQmCC\n",
2739
            "text/plain": [
2740
              "<Figure size 1296x864 with 1 Axes>"
2741
            ]
2742
          },
2743
          "metadata": {
2744
            "tags": []
2745
          }
2746
        },
2747
        {
2748
          "output_type": "display_data",
2749
          "data": {
2750
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABAgAAAJ0CAYAAACfqRGaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdeZxkVXnw8d/D9AwoqwpBkWUwLmlo\nicrEJbZmKu0CokDeGLVxQ1sRE1peFxy0jXsrGJNIwISghYhL4fJGQHCLQ4/aMS4QFdtpV5awuAAC\nMoDM9HjeP86tobqo6q5eq7r79/186tN9t3Ofe+vWXZ577rmRUkKSJEmSJK1sO7U7AEmSJEmS1H4m\nCCRJkiRJkgkCSZIkSZJkgkCSJEmSJGGCQJIkSZIkYYJAkiRJkiRhgkCStIAi4kcRsb7Fca+JiKct\ncEgzEhFPiYifzEM56yPi+vmIqYV5HR8Ro7Ocdso4I+LsiPj7RuPO5LvuVBFxXkS8ew7Tb4mIh81n\nTJIkLSYTBJKkWWl0QV9/cZpSOjSltGnRg5snKaVvpJQe1e44OkVK6cSU0ruaDNvxXUfE2yPi44sa\n3CKLiE0R8Yrafiml3VJKV7UrJkmS5soEgSRpxYqIrnbHMFNLMWZJkrQ0mCCQJC2Y2loGEXG/iPho\nRNwaEeMR8cYG1dkfExFXRsTtEfGpiNilSbkPj4ivFePdHBGfKvqvjYhUexFde6e3qOHwXxHxzxFx\nC/CuiLgtInpqxt8nIu6OiD+qrUYfERsi4rN1cZwREf9S/P+yYrnuiIirIuJVM1hPKSJeU0x3c0T8\nQ0Ts1CTmt0fEnhFxfkTcFBHXRsRbquPfW2ScVayfH0dEX82AaeOMiDcXcVwTES+s6d+0Cn71u46I\nI4A3A88vqtz/ICL+JiKuqBv/dRFxUZOyNkXEeyPiOxHxu4i4KCIeWDP86OKRhtuKcbvr4nhTRGwu\ntrWPVLej+houNev+4Q1ieEBEXFKs41uL//cvhg0DTwHOKpbxrPqypvqOqnFExPuLsq+OiCMbrQtJ\nkhaTCQJJ0mJ5G7AWeBjwdOBFDcZ5HnAEcDBwGHB8k7LeBXwFeACwP3DmDOJ4AnAVsC/wTuA/gP66\nGL6WUvpN3XQXAM+KiN0BImJVMe4ni+G/AZ4N7AG8DPjniHjcDOL6K2Ad8DjgGODlTWIeJi/vnuR1\n+RfAS4p51o7/C2Bv8nr/j5oL7OnifHAx3UOBlwLnRETLj1mklL4EvAf4VFHl/k+Bi4GDay/kgRcD\n509R1EvI6+AhwARQTcQ8EqgA/xfYB/gC8PmIWFMz7QuBZwJ/DDwSeEur8dfYCfgIcBBwIHA3cFax\njEPAN4CTimU8qcH0rXxHPyGv6/cB5YiIWcQpSdK8MUEgSZqLC4u7uLdFxG3Av04x7vOA96SUbk0p\nXU9xwVfnX1JKN6aUfgt8HnhMk7K2kS/c9ksp/T6lNJNG+W5MKZ2ZUppIKd1NvsB/Qc3w47j3on+H\nlNK1wP+QL+QB/hK4K6X0rWL4pSmlX6Tsa+QExlNmENfpKaXfppT+F/gAk5MWO2IGthbxvimldEdK\n6RrgH8kX3FW/AT6QUtqWUvoU+UL0qBnE+fcppXuK4ZeSv7tZSyndA3yKIikUEYeSk0WXTDHZx1JK\nYymlO4G/B55XJGWeD1yaUvrPlNI24P3A/YA/r5n2rJTSdcV2NMzkddlqzLeklP5fSumulNIdRTl/\n0cq0RZzTfUfXppQ+lFLaDnyUnAjZd6ZxSpI0n0wQSJLm4tiU0l7VD/C3U4y7H3BdTfd1Dcb5Vc3/\ndwG7NSnrjUAA3ymqmr+8yXiN1M93BLh/RDwhItaSkxKfazLtJ7n3YnNSIiEijoyIb0XEb4tkybPI\nd4dnE9e15PXVaNjewOpinNrxH1rTfUNKKTUqr4U4by0uypvFMlsfBY4r7pK/GPh0kThopn59rC7i\n3I+aZU8p/aEY96FTTDvj+CPi/hHx78XjAb8Dvg7sVVz8T6eV72jHtp5Suqv4t9n2LknSojBBIEla\nLL8kPw5QdcBsC0op/Sql9MqU0n7Aq4B/LZ79rl7Y3r9m9AfXT15X1nbg0+QL/37gkuKOcSOfAdYX\nz6L/FUWCICJ2Bv4f+W72vkWy5AvkJEaratfHgcCNTWK+mXtrUNSOf0NN90PrqqsfCNzYYpwPiIhd\np4ilFek+PXJNi63k2grHAR+bpoz69bGNvOw3UrPsxXIewOTlb7Yu76Rm24iI+m2j1uuBRwFPSCnt\nATy1Oll1kaaYtpXvSJKkjmOCQJK0WD4NvKlo/O2hQKPntltSNHpXTTbcSr5Y+0NK6SbyRdiLImJV\nUbPgj1so8pPkqusvpMHjBVVF+ZvIz6ZfnVIaLwatAXYGbgImigbnnjHDxTqlWDcHACeTq+Q3iqGa\n0BiOiN0j4iDgdUDtawX/CHhNRKyOiL8BusmJgFbjfEdErImIp5DbK/jMDJfl18DamNxwIuQ2B84C\ntrXwWMiLIuKQiLg/ua2Iz9Ys+1ER0RcRq8kX8vcA36yZ9u8iYv+i3YUh7l2XPwAOjYjHFA0Xvn2K\n+e9ObnfgtqKctzVYxoc1mrDF70iSpI5jgkCStFjeCVwPXA18Ffgs+cJuNv4M+HZEbCE3gHdyzfvn\nXwmcAtwCHMrkC8eGUkrfJt9d3g/44jSjfxJ4GjWJhKLGwWvIF4W3ku+QXzyD5QG4CLgC+D75uf/y\nFOMOFvFeBYwWsZxbM/zbwCPId7KHgecWz9S3EuevimE3Ap8ATkwp/XiGy1JNKNwSEf9T0/9jQA+t\nXSh/DDiviGeXIm5SSj8ht2VwZrF8zwGek1LaWjPtJ8ltK1xFbqzx3cW0PyVvh18FfkZed818gNy2\nwc3At4Av1Q0/A3hu8RaCRu1pTPcdSZLUcWLyI4qSJC2OiHg18IKUUksNvy1nEZGAR6SUft7uWBZS\nRNyP3IDi41JKP5tivE3Ax1NKH57FPK4BXpFS+ups45QkaaWyBoEkaVFExEMi4skRsVPx2rzX07wx\nQC1Prwa+O1VyQJIktU9XuwOQJK0Ya4B/Bw4GbgMuYOrXImoZKe7sB3Bsm0ORJElN+IiBJEmSJEny\nEQNJkiRJkmSCQJIkSZIkYYJAkiRJkiRhgkCSJEmSJGGCQJIkSZIkYYJAkiRJkiRhgkCSJEmSJGGC\nQJIkSZIkYYJAkiRJkiRhgkCSJEmSJGGCQJIkSZIkYYJAkiRJkiRhgkCSJEmSJGGCYFoR8aOIWN/u\nONopIv4qIq6LiC0R8dgZTvv2iPh48f/aiEgR0dXitDMav4XyXh0Rvy6W40HzUabuKyLOi4h3F/8/\nJSJ+0u6YWjGX7S0iDiy2q1ULEZskLSXFvvThizCfiIiPRMStEfGdFqfZcYxaSiLi3RFxc0T8qs1x\nzOVYuW9EfD0i7oiIf1yI+DpZcZ7wsCmGXxMRT1vMmKRGVnSCoNEPMSKOj4jRandK6dCU0qZpypnX\nC9kO9H7gpJTSbiml7y3UTBZyxxgRq4F/Ap5RLMctcyhruX/f8yal9I2U0qMWouyI2BQRr5jD9PO2\nvaWU/rfYrrbPMIbjI+KHEXFXRPwqIv41IvasGf6CiPhJRNweEb+JiI9GxB5ziTUinh0R34mIOyPi\nloj4eEQ8tGb4QyLi4oi4sdjO185lfpLap9jP3V1cmNwaEZdGxAHtjquq/pxrFnqBpwP7p5QevwDl\nd4SIOBB4PXBISunB7Y5nDk4Abgb2SCm9fi4FLcVET3GecBXMT/wRsX9EfKI4lt9ZHNufVTfOSETc\nFBG/i4gfRMQxc5znXhHxb8U5y13FOcxL68Y5KSIuj4h7IuK8ucxvmlheW8Txu4g4NyJ2bjLemoj4\nbLE/TLHCb/y2YkUnCJaKDrgQPQj4UZtjmKt9gV3ogOUo7ngsi9+ed8yn1+z7jojXA6cDpwB7Ak8E\n1gJfKRJaAP8FPDmltCfwMKALmPUJRUQ8F/gk8AFgb+BQYCvwjYjYqxjtD8CXgL+eRfnt3ldJuq/n\npJR2Ax4C/Bo4s83xzKeDgGtSSne2O5AFdiBwS0rpNzOdsMP2ywcBm1NKqd2BdNh6mbGIeCAwSj6G\nH0o+pv8zcEFEHFsz6snAQ1JKe5ATNB+PiIfMcp5rgK+Sv8cnkc9dTgHeFxGvqRn1RvK5yrmzmU/N\n/O4XEbs3GfZM4FSgr4jnYcA7pihuFHgR0NYaOEtGSmnFfoBrgKfV9TseGG00DvB44HLgd+SD7D8V\n/f8XSMCW4vMkcvLlLcC1wG+A84E9a8p9STHsFuDv6+bzduCzwMeLeb2imPd/A7cBvwTOAtbUlJeA\nvwV+BtwBvAv4Y+CbRRmfrh2/bpkbxgrsXCxPAu4EftFk+jOA64r5XAE8pWbY24GPF/+vLcrqalDG\nx8gXJncX83xjzfgvLdbxzcBQXdynAr8o1uOngQc2KPuRRfzV7+iyov+fAP8J/Bb4CfC8mmmOAr5X\nLNN1wNtrhjX6vncsZ6NlBTYBw+QLvruBh08z/2cBm4vv8gbgDU3W/R8DlxXLfzPwCWCvmuEHAP8B\n3FSMc1bNsFcC48U8NgOPK/p3F/HeRk6oHF0zzXnAvwFfKNbp04DHAv9TlPMp4ALg3cX464Hr635P\nbwCuBG4vxt+lZvgbydv3jeTtPgEPb7Dcw8B24PfFd3BW0f/Pge8WZX8X+PMm621et7dWvu+6+e9R\nzPd5df13K76rlzaIeTfyb/MLs9zfBfk3/sYGv/8x4G11/buKZVrbwn50Q/Gd3lNMV11P1W3rr+r3\nseSaSbcCVwNH1gw/GPh6Me1XgQ8y+bf1RPJ+7TbgB8D62awPP35Wwoe68xzyseWnNd17FvuVm4r9\nw1uKfcIDgevJyYXq/ufnwEuK7vOAs8nHsDuArwEH1ZS7Y989xTy6yfvw7cX+8LYmy7AfcDH5WPlz\n4JVF/4G66d9RN13D8ovYPwhcWsT+beCPa6ZremxuENsm4L3Ad8jnCxdRcx4CHE0+jt5WjNtd9928\nqdhH3gp8hJrjYc14TyMfR/5QLMd5LZY9ab/coNymx8uivHeRj2F3AF8B9i6GrS2+3y7gb4Ar6sp9\nHXBRg/mdB2wjX9BuKZZryvM44DPkC7rbyceFQ4v+J9SV9fn67a5mnpPOR4r18ivyecBUx/VdyOfh\ntxTr+LvAvg2W62XV+RfdPwM+U9N9HfCY2vimiP8apjhHqpvvu8jH7p3q+m8ArgKiwTSPJ/8mHj/L\n/ckA+Tph17r+zydv/7vV9X83xfY6w/k8Efh38u/iSU3G+STwnpruPuBXLZR9PZ43TP8dtDuAti78\nzBME/w28uPh/N+CJxf9rqbvwBV5OPpA9rBj3P4CPFcMOKXYIvcAa8onyNiYnCLYBxxY7r/sBhxc/\nmK5ifuPA/62ZXyIfmPYgZxLvATYW89+TfAB6aZP10DTWmrLvc5FWM/xFwIOK2F5P3vHuUrMs0yYI\nGn0fNeN/qFgHf1osV3cx/GTgW8D+5GTGvwOVJmVPmjewK3mn/bIi7seSLwgPKYavBx5drP/DyAmh\nY6f4vncsZ5P5bSJfdB5azG/Paeb/S4pEC/AAiov3Bsv1cHL1yp2BfcgH0A8Uw1aRL6D+uVjeXYDe\nYtjfkBMPf0a+cHw4OQO7utgW3kzeNv+SfHLwqGK688gHrScX62YP8gnfa4tpn0vedqdKEHyHfML3\nQPJ2fGIx7AjytnMocH/ygbnptles01fUdD+QfDB5cbFO+4vuBy309tbC9726bt5HABM0Pmn7KPCJ\nmu7eYp0nclLmGbPc3/1JUcbBDYa9A/ivun4zSRB8n5yMul/N9rVfsY08v4j7ITX72G3kBNUq4NXk\nhFDU7GffT97+esknHdV9yEPJJ2vPKsp+etG9z2zWiR8/y/3D5HOY+xf7l/Nrhp9PPnfYvdiP/RQY\nKIY9g7xP/qNiv/jZmunOIx8bnlrsD89g8rlTbYJgqnkcXztdk2X4OvCv5GPYY8iJhr9sZfpGw4vY\nbyFfLHWRE+sXFMOmPDdoUP4m8rG0p5j2/9Xsr6o3J55OPj6+kXx8XVPz3YyR950PJF+Mv7vJfNYz\n+VjaStmT9st15U15vCyW6xfFfO5XdJ9WDFvLvQmCncmJlNrkxPeAv26yHOfVLiPTnMeRz093L4Z9\nAPh+s7Lqt7v6cYp1OEGuubdzsVxTHddfBXye/LtZRT4P36PBMj2MnEDYiXzcu7b6XRXDbqW4iGfy\n76JR/NfQ5BypwXy/RV1SrOh/cDGfR9T0u4ScGEjkGoI7NSqzhf3JBcBHG/TvKtbt0+v6t5wgINdw\nemOxzL8A3kaD85Wa8X8APL+me+9i+Rqe89WMZ4Kgle+j3QG0deHzD3FL8cOufu6ieYLg6+QT6b3r\nylnLfS8YNwJ/W9P9KPJJcRfwVibvAO9PziLWJgi+Pk3s/xf4XE13IldFrnZfAWyo6f5HigvHBmU1\njbWm7KYJggbl3Qr8ac2yzDVBsH9Nv+8ALyj+Hwf6aoY9pDbuqb4j8kXLN+rG+Xfq7qLWDPsA8M9T\nfN87lrPJ/DYB76wZPuX8yReXr6LBwWiadX8s8L3i/yeRT6QarY8vAyc36P8U8gnhTjX9KhQ1KMgH\ntNqTy6dSc3FX9PsmUycIXlTT/T7g7OL/c4H31gx7+FTbHvdNELwY+E7dOP8NHL/Q29t033eDeb+I\nJplu4DTgKw36P7TYzh45k22iZvreIsZGd6hOpOauYtFvJgmCl08zzveBY4r/jwd+XjPs/sV8Hkyu\nRjsB3L9m+Me5dx+ygZrkZc22/NLZrBM/fpb7h8nnOduK/fWji2GryOceh9SM/ypgU033mcAPyRfB\nD6rpfx7FRXXRvRv5Tv0BRXcq9uFTzoPpL/APKMrdvabfe7n3Lvp0099neBH7h2u6nwX8uPh/pucG\nmygunIvuQ4rlXUWuHfrpmmE7Fetxfc13c2JdHM1qaq5n8rG0lbKb7peZ5nhZLNdbaob9LfCl4v+1\nTD7e/RswXPx/KPkccOcm8z2PyQmCmZzH7VXMd89GZdVud43mV6zDrUyutTjVcf3l5POZw1r4nV0H\nPA54AXAO+dzhT8iJposbxdck/mtoco7UYJ4/p0HygJxIS9TVoCQnko4EXjfd8kyxnF+lZnuvG/Yr\n4Li6ftMmCMjH/UuK7eZc8nnlfWo/NJjuF8ARdcvXyjmLCYIWPsviOeg5OjaltFf1Q94JNjNAzqb+\nOCK+GxHPnmLcahax6lryDmffYth11QEppbvI2exa19V2RMQjI+KSamMcwHvI2bJav675/+4G3bvN\nItZpRcQbImK8aEjtNvLd8frY5qL2eaG7uHc5DgI+FxG3FfMdJ59ItBL3QcATqtMW07+QfJFCRDyh\npmGX28kXUHNdptrvdMr5k5//fhZwbUR8LSKe1KjAyC0CXxARNxTbxcdr4jwAuDalNNFg0gPIO9d6\n+wHXpZT+UNPvWvLFaaPl2A+4IRV73Zrxp9Ls+5z0u6j7vxX123E1loc2GHcq87W9TRX/zcDeTZ6B\nfEgxfJKU0g3kzP8FjQqMiDcXDZFtiYizm8yzWn5L85yB+v3VSyLi+zXrqofJv58d67jY/0Fez/sB\nv63pV1/2QcDf1P1uemm8TJKyY4vzm12Ak4CvRcSDyb/J1dz3+F+7zzyH/Ps9L923cd/a85gt5DvJ\n+9WN08o8plLdJ9wxy+mbmWo/P9WxuZHafdS15OXdm7pjUnFcvY7mx9Nrue/6a2amZU85fc38a6dv\nto7qfRQ4LiKCnHj4dErpnimjv1fT42pErIqI0yLiF8X5zTXFNHM5F7sppfT7VuZPfgThy+Rn+m+M\niPfVtA9U72vkBMRTi/83AX9RfL42wxhbXe830/x4Xh2+Q0ppW0rpi8AzIuLoRgXWnENsidwwZkvz\nLM5l9q6fZ4t2JSeWrifXChivO6dsZgu5FmtV9f87GoyrGTJBMAMppZ+llPrJ1e1OBz4bEbuSM1b1\nbiTveKqqd8Z+Ta4+vn91QETcj1xFf9Ls6rr/DfgxucrQHuQq4DH7pWk51ilFxFPIVYKeBzygOAm5\nfZaxtbJDqHUd+dnlvWo+uxQXUq1M+7W6aXdLKb26GP5J8jOPB6TcQNzZ3LtMjeK8k3wntKrRyUTt\ndFPOP6X03ZTSMeRt7ULyc3GNvKco99HFdvGimjivAw5schF6Hbn9gno3AgfUNap3IPnORKPl+CXw\n0OLEoHb82Zj0uyAnMaZS/z3Ub8fVWJptDwu9vU1V/n+TH1/4P7U9I2I3coZ/U5Ppumj8vZFSek+x\nDe2WUjqxwSg/IR+A/6ZunjuRE1LN5tmKHcsaEQeRqyOfRL7juBe5Gm0r+4RfAg+MiNrfUu12cB25\nBkHtd7BrSum0OcQurQgppe0ppf8gXwD1kk/mt3Hf4/8NsKMR2nPIjwj8bdz3tYU7fpvFvuuB5P1w\nrSnnwfT74RvJ+4Tahsqm2q/Xm81+fqpzg0Zq91EHkpf3ZuqOScVx8gAmx14/bf36a6aVsqda9pke\nL5tKKX2LfGf+KcBx5AvrVk11XD0OOIbcVsGe5JoLMPW52F1MfS5WP03T+RcX1O9IKR1Cbq/h2eT2\nwxqpJgieUvz/NaZPEMx026z3VeD/NGgE+XnkY/3Pm0w31XnEbjWf/20yzyOLa59af03eBr7dcvT3\nznOc/CjGa8iPcfws8puUntvsrQSFH5EfBa36U+DXDRKZmgUTBDMQES+KiH2KTO1tRe8/kKtx/4G8\ngVdVgNdGxMHFgfM9wKeKu7mfBZ4TEX9etAj6dqY/ed6d/Czuloj4E/Jzu/Nlqlinszs5mXAT0BUR\nb2VyRm8mfs3kdTids4Hh4oKEiNgnWn99yyXAIyPixRGxuvj8WUR0F8N3J9+1+H1EPJ58oKpq9H1/\nH3hqRBwY+TV1b5rt/CO/juWFEbFnSmkb+Xv/Q5NydidnUW+P/Kq6U2qGfYd8wXVaROwaEbtExJOL\nYR8G3hARh0f28GI9fpt8gH1jEdN64Dk0uWtNvtCdAF5TjP9/yM91zsangZcV6+D+5CqUU6nfXr5A\nXqfHRURXRDyfXN3zkhann85ctrdJUkq3kx9XOjMijijW3VryOqg2NkmxHRxY/H8QueHDjbOcZyI3\nfvSWYh3tUtxF/DA587+jZfOI2IX8PCbAzkV3q6pJ05uKsl5GvgPZSozXkhuCfXvxO3gSefur+jh5\n3/nM4u7SLhGxPiL2b1igpB2Kff0x5HZtxlN+Leunyfu13Yt9zOvIvzPINyISuar1PwDnx+Q31zwr\nInqL85h3Ad9KKU26a93CPH4N7F+UcR9Fed8E3lv83g8j1+b8eKPxG5iy/AamOzdo5EURcUhx3Hon\nua2G6nIfFRF9ke88v56cGP5mzbR/F/lVdQ8EhsiN0rWilbKnMtPj5XTOJzeevS2lNJPXSk51XN2d\nvEy3kC/631M3baNj+PfJtRlWRcQR5Av0Wc0/IkoR8ehim/8dOfHT7Fzsa0CJ3N7D9cA3yG0NPYjc\nJkMjMz0HqffP5MRJOSIeXPw++snnTm9LKf0hIv4kIo6M/DaA1RHxIu6t5TAbHyMnHz4T+ZXfqyO/\nTeBfgH8ozm0otqldyI/aVI/VTd8akbKRlNJLyImui8iPUv+y+M03cj4wUPz29iI3fnpes3lERO25\nzJoipvm60brsmCCYmSOAH0XEFnKDPC9IKd1dVIcdBv4rcjWlJ5Kfo/kYud2Cq8mNgwwCpJR+VPx/\nAfkCbgu5VdCpqmS9gXyRegf57lyrB5FWNI21BV8mV3v+Kbl62u+ZedXwqveSL15ui4g3tDD+GeS7\n/F+JiDvIDbY8oZUZFdUVn0F+XuxGcpWuasM1kB81eWdR7lupuYPf6PtOKf0n+Tu5ktz+w5QH2Rbm\n/2LgmsjV6k4kV3Fs5B3k595uJ7fI/B8189hOvrh6OLlNg+vJz1eSUvpMsQyfJG9TF5Jb7t1aTHMk\n+UL1X8mtVv+4yXJsJd8FP55cvfT5tTHMRFH17V+AEXLm+1vFoGa/izOA50Z+t/e/FFnjZ5NPlG4h\n12x5dkqpWZW3RdveGkkpvY98Av5+8ndwNfkk6Gnp3ld2HQJ8MyLuJDdg9RNy436zneenyNvWa8nf\n1y+BdcBfpJR+WTNq9e0OkGsu3T2DeWwmt3ny3+QToEcXsbfqheT2M24hP7/4KYptoLhYOIa83m4i\n72tOwWOZNJXPF+ctvyPv919anIdAPtbfSW71fJR8TDg3Ig4nX8i/pDiWnE5OFpxaU+4nyQ2J/ZZ8\n5+9FTebfcB7FsMvIdwJ/FRHN9tX95LvHNwKfI1/8fLXFZW+l/B1aODY38jHyhcmvyI9xvKYo6yfk\ndXIm+Xj6HPJbIbbWTPtJ8hsCriI/9tfSa2xbLHuq6Wd6vJzOx8iJ4FYTN1VTHVfPJ59X3kBuaPtb\nddOWgUOKY/iFRb+Tyeui+mjIhUxtqvk/mHxD73fkRw++RpPaESmln5KPmd8oun9H/k7/q/j9NNIo\n/pYV32EveZvbXMz/fODvUkrV31eQb0L+hnzMPJncsN//zHR+xTzvIdfouI58Q+lu8jXAB5j8isG3\nFMNOJW+ndxf9WpnHHSmlckqpl3zDqeGrPVNKXyK30TBCPse9lrw/AiAifhQRtefOPynieCj52uVu\n7luLRoVqq9Fqo8h37W8jPz5wdbvjkTpBccdmjNzYUSu1WZa04k77O8mNjTaq2rcQ83wG+QT1aSml\n7y/GPGcqIj5FbkDsbdOOLGlRRMR55EbzWjrpX64iYhO5EdUPz2Laa8gN7baa7OhYkR+V/Q35jUs/\na3c8K1FE7EFOxn8upfTWRZrnauCL5CTO8cmLymXDuy5tEhHPiYj7R36O5/3kVoKvaW9UUntFxF8V\n1cAeQL5r8/mVkBwASCl9hHxn/M8XcZ5fIbey/MTFmud0iuq8fxwROxVVRI9h+rtAkqT2eTXwXZMD\n7VPUWngWsL14fHAx5rmN3P7AL8hvQNMy0fR5EC24Y8hVlYL8zO0LzLxJvIpcVXM7uTrfVG8VWXZS\nSjNp3Gm+5vn5xZ7nNB5MfkzlQeTHYl6dUmr2DKckqY2KmhBBfs2y2qh4DO8d0444v/O8nVz7UcuI\njxhIkiRJkiQfMZAkSZIkScqZ2vgAACAASURBVCYIJEmSJEkSC9QGwd57753Wrl27EEVLkrRkXXHF\nFTenlPZpdxwrwUzORe6880523XXXeZ3/fJe5FGJcKmUuhRiXSplLIcalUuZSiHGplLkUYmx3mVOe\nj6SU5v1z+OGHJ0mSNBlweVqA466fuZ2LjIyMtDxuu8pcCjEulTKXQoxLpcylEONSKXMpxLhUylwK\nMba7zKnOR3zEQJIkSZIkmSCQJEmSJEkmCCRJkiRJEiYIJEmSJEkSJggkSZIkSRImCCRJkiRJEiYI\nJEmSJEkSJggkSZIkSRImCCRJkiRJEiYIJElSm0XEuRHxm4gYazI8IuJfIuLnEXFlRDxuPuZbqVTo\n6emhr6+Pnp4eKpXKfBQ7r5ZCjNJ8cFtXJ1qI7XIhyowIIoJSqbTj/9nqamFmjwI+VdPrYcBbU0of\nmPVcJUmS7nUecBZwfpPhRwKPKD5PAP6t+DtrlUqFoaEhyuUy27dvZ9WqVQwMDADQ398/l6LnzVKI\nUZoPbuvqRAuxXS5EmdVkwOrVq3n/+9/PG97wBrZt20ZEkFKacXnT1iBIKf0kpfSYlNJjgMOBu4DP\nzXhOkiRJDaSUvg78dopRjgHOT9m3gL0i4iFzmefw8DDlcplSqURXVxelUolyuczw8PBcip1XSyFG\naT64rasTLcR2uVDb+urVq9m6dSuHHXYYW7duZfXq1bMuK2aSVYiIZwBvSyk9earx1q1bly6//PJZ\nByVJ0nIUEVeklNa1O45OFBFrgUtSSj0Nhl0CnJZSGi26NwIbUkqX1413AnACwL777nv4BRdc0HR+\nfX19fPnLX6arq4stW7aw2267MTExwTOf+Uw2btw45+WpljkXSyHGpVjmUohxqZQ5X+W5rS+NGDux\nzMFrB2c0/pkHndnyuAuxXS5EmaVSiTPOOIPDDjtsR5lXXnklJ598MiMjI82maX4+klJq+QOcC5zU\nZNgJwOXA5QceeGCaTwdtuGTSR5KkpQi4PM3guLuSPsBaYKzJsEuA3prujcC6qco7/PDDp/wuDj30\n0HTZZZellFIaGRlJKaV02WWXpUMPPXTK6VpVLXMulkKMS7HMpRDjUilzvspzW18aMS6VMjt5u1yI\nMoG0evXqSWWuXr065Uv9ptM0PR9puZHCiFgDHA18pkmi4ZyU0rqU0rp99tmn1WIlSZKmcwNwQE33\n/kW/WRsaGmJgYICRkREmJiYYGRlhYGCAoaGhOQU6n5ZCjNJ8cFtXJ1qI7XKhtvVt27axZs0arrzy\nStasWcO2bdtmXda0jRTWOBL4n5TSr2c9N0mSpJm7GDgpIi4gN054e0rpl3MpsNoY1ODgIOPj43R3\ndzM8PNxRDaIthRil+eC2rk60ENvlQpSZUiIi2LZtGyeffPKk/rMxkwRBP+D7RiRJ0ryKiAqwHtg7\nIq4H3gasBkgpnQ18AXgW8HNyY8kvm4/59vf309/fz6ZNm1i/fv18FDnvlkKM0nxwW1cnWojtciHK\nrCYD5qPMlhIEEbEr8HTgVXOamyRJUp2U0pS3TornJf9ukcKRJGnFailBkFK6E3jQAsciSZIkSZLa\npOVGCiVJkiRJ0vJlgkCSJEmSJJkgkCRJkiRJJggkSZIkSRImCCRJkiRJEiYIJEmSJEkSJggkSZIk\nSRImCCRJkiRJEiYIJEmSJEkSJggkSZIkSRImCCRJkiRJEiYIJEmSJEkSJggkSZIkSRImCCRJkiRJ\nEiYIJEmSJEkSJggkSZIkSRImCCRJkiRJEiYIJEmSJEkSJggkSZIkSRImCCRJkiRJEiYIJEmSJEkS\nJggkSZIkSRImCCRJkiRJEiYIJEmSJEkSJggkSZIkSRImCCRJkiRJEiYIJEmSJEkSJggkSZIkSRIm\nCCRJkiRJEiYIJEmSJEkSJggkSZIkSRImCCRJkiRJEiYIJEmSJEkSJggkSZIkSRImCCRJkiRJEi0m\nCCJir4j4bET8OCLGI+JJCx2YJEmSJElaPF0tjncG8KWU0nMjYg1w/wWMSZIkSZIkLbJpEwQRsSfw\nVOB4gJTSVmDrwoYlSZIkSZIWUyuPGBwM3AR8JCK+FxEfjohd60eKiBMi4vKIuPymm26a90AlSZIk\nSdLCaSVB0AU8Dvi3lNJjgTuBU+tHSimdk1Jal1Jat88++8xzmJIkSZIkaSG1kiC4Hrg+pfTtovuz\n5ISBJEmSJElaJqZNEKSUfgVcFxGPKnr1AZsXNCpJkiRJkrSoWn2LwSDwieINBlcBL1u4kCRJkiRJ\n0mJrKUGQUvo+sG6BY5EkSZIkSW3SShsEkiRJkiRpmTNBIEmSJEmSTBBIkiRJkiQTBJIkSZIkCRME\nkiRJkiQJEwSSJEmSJAkTBJIkqc0i4oiI+ElE/DwiTm0w/MCIGImI70XElRHxrHbEKUnScmeCQJIk\ntU1ErAI+CBwJHAL0R8QhdaO9Bfh0SumxwAuAf13cKCVJWhlMEEiSpHZ6PPDzlNJVKaWtwAXAMXXj\nJGCP4v89gRsXMT4tE5VKhZ6eHvr6+ujp6aFSqbQ7JEnqOJFSmvdC161bly6//PJ5K2/tqZdO6r7m\ntKPmrWxJkhZLRFyRUlrX7jg6SUQ8FzgipfSKovvFwBNSSifVjPMQ4CvAA4BdgaellK5oUNYJwAkA\n++677+EXXHBBSzFs2bKF3Xbbba6LsqBlLoUYO7nMjRs3Ui6XOeWUUzj44IO5+uqr+Yd/+AcGBgbo\n6+vriBiXYplLIcalUuZSiHGplLkUYmx3maVSqfn5SEpp3j+HH354mk8Hbbhk0keSpKUIuDwtwHF3\nKX+A5wIfrul+MXBW3TivA15f/P8kYDOw01TlzuRcZGRkpOVx21XmUoixk8s89NBD02WXXTapvMsu\nuywdeuihcy67tsz5tBTKXAoxLpUyl0KMS6XMpRBju8uc6nzERwwkSVI73QAcUNO9f9Gv1gDwaYCU\n0n8DuwB7L0p0WhbGx8fp7e2d1K+3t5fx8fE2RSRJnckEgSRJaqfvAo+IiIMjYg25EcKL68b5X6AP\nICK6yQmCmxY1Si1p3d3djI6OTuo3OjpKd3d3myKSpM5kgkCSJLVNSmkCOAn4MjBOflvBjyLinRFx\ndDHa64FXRsQPgApwfFFFUmrJ0NAQAwMDjIyMMDExwcjICAMDAwwNDbU7NEnqKF3tDkCSJK1sKaUv\nAF+o6/fWmv83A09e7Li0fPT39wMwODjI+Pg43d3dDA8P7+gvScqsQSBJkqRlr7+/n7GxMTZu3MjY\n2JjJgQ7jayilzmANAkmSJEltU6lUGBoaolwus337dlatWsXAwACAiRxpkVmDQJIkSVLbDA8PUy6X\nKZVKdHV1USqVKJfLDA8Ptzs0acUxQSBJkiSpbXwNpdQ5TBBIkiRJahtfQyl1DhMEkiRJktrG11Cu\nTIODg+yyyy6USiV22WUXBgcH2x2SsJFCSZIkSW3kayhXnsHBQc4++2xOP/10DjnkEDZv3syGDRsA\nOPPMM9sc3cpmDQJJkiRJbeVrKFeWD33oQ5x++um87nWvY5ddduF1r3sdp59+Oh/60IfaHdqKZ4JA\nkiRJkrRo7rnnHk488cRJ/U488UTuueeeNkWkKhMEkiRJkqRFs/POO3P22WdP6nf22Wez8847tyki\nVdkGgSRJkiRp0bzyla/c0ebAIYccwj/90z+xYcOG+9Qq0OIzQSBJkiRJWjTVhgjf/OY3c88997Dz\nzjtz4okn2kBhB/ARA0mSJEnSojrzzDP5/e9/z8jICL///e9NDnQIEwSSJEmSJMkEgSRJkiRJMkEg\nSZIkSZIwQSBJkiRJkjBBIEmSJEmSMEEgSZIkSZIwQSBJkiRJkjBBIEmSJEmSgK5WRoqIa4A7gO3A\nREpp3UIGJUmSJEmSFldLCYJCKaV084JFIkmSJEmS2sZHDCRJkiRJUssJggR8JSKuiIgTGo0QESdE\nxOURcflNN900fxFKkiRJkqQF12qCoDel9DjgSODvIuKp9SOklM5JKa1LKa3bZ5995jVISZIkSZK0\nsFpKEKSUbij+/gb4HPD4hQxKkiRJkiQtrmkTBBGxa0TsXv0feAYwttCBSZIkSZKkxdNKDYJ9gdGI\n+AHwHeDSlNKXFjYsSZIkSeoslUqFnp4e+vr66OnpoVKptDskaV5N+5rDlNJVwJ8uQiySJEmS1JEq\nlQpDQ0OUy2W2b9/OqlWrGBgYAKC/v7/N0Unzw9ccSpIkSdI0hoeHKZfLlEolurq6KJVKlMtlhoeH\n2x2aNG9MEEiSJEnSNMbHx+nt7Z3Ur7e3l/Hx8TZFJM0/EwSSJEmSNI3u7m5GR0cn9RsdHaW7u7tN\nEUnzzwSBJEmSJE1jaGiIgYEBRkZGmJiYYGRkhIGBAYaGhtodmjRvpm2kUJIkSZJWumpDhIODg4yP\nj9Pd3c3w8LANFGpZMUEgSZIkSS3o7++nv7+fTZs2sX79+naHI807HzGQJEmSJEkmCCRJkqTZqFQq\n9PT00NfXR09PD5VKpd0hSdKc+IiBJEmSNEOVSoWhoSHK5TLbt29n1apVDAwMAPhMeoeoVCoMDw/v\naC9gaGjI70aahgkCSZIkaYaGh4cpl8uUSqUdz6OXy2UGBwe9CO0AJnCk2fERA0mSJC178/04wPj4\nOL29vZP69fb2Mj4+PqdyNT9qEzhdXV2USiXK5TLDw8PtDk3qaNYgkCRJ0rK2EHeTu7u7GR0dpVQq\n7eg3OjpKd3f3vMSsuTGBI82ONQgkSZK0rC3E3eShoSEGBgYYGRlhYmKCkZERBgYGGBoamsfINVvV\nBE4tEzjS9KxBIEmSViQbMFs5FuJucnVbGRwc3LENDQ8Puw11iGoCp1prpJrA8REDaWomCCRJ0opj\nA2Yry0I9DtDf309/f/+ORgrVOVZyAsfkp+bCBIEkSVpxbIF+ZfFu8sq0EhM4Jj81VyYIJEnSimMD\nZivLSr6brJXF5KfmykYKJUnSimMDZitPf38/Y2NjbNy4kbGxMS+WtCyZ/NRcmSCQJEkrji3QS1qO\nTH5qrnzEQJIkrThWOZe0HNnehubKBIEkSWqriDgCOANYBXw4pXRag3GeB7wdSMAPUkrHzXW+K7EB\nM0mdZb7fOGDyU3NlgkCSJLVNRKwCPgg8Hbge+G5EXJxS2lwzziOANwFPTindGhF/1J5oJWn+LNQb\nB0x+ai5sg0CSJLXT44Gfp5SuSiltBS4Ajqkb55XAB1NKtwKklH6zyDFK0ryrfeNAV1cXpVKJcrns\n4wBqq0gpzXuh69atS5dffvm8lbf21EsndV9z2lHzVrYkSYslIq5IKa1rdxydJCKeCxyRUnpF0f1i\n4AkppZNqxrkQ+CnwZPJjCG9PKX2pQVknACcA7LvvvodfcMEFLcWwZcsWdtttt7kuyoKWuRRiXCpl\nLoUYl0qZSyHGTi6zr6+PL3/5y3R1de0ob2Jigmc+85ls3LixI2JcimUuhRjbXWapVGp6PuIjBpIk\nqdN1AY8A1gP7A1+PiEenlG6rHSmldA5wDuSbFa1WrV2IarjzXeZSiHG+y5zvZ7OrOn25l1KZSyHG\nTi6zu7ubVatWsX79+h3ljYyM0N3dPS/xdupyL3SZSyHGTi7TBIEkSWqnG4ADarr3L/rVuh74dkpp\nG3B1RPyUnDD47uKEqMW2UM9mS53ENw6oE5kgkCRJ7fRd4BERcTA5MfACoP4NBRcC/cBHImJv4JHA\nVYsapRZV7bPZ1Tti5XKZwcFBEwRaNnzjgDqRCQJJktQ2KaWJiDgJ+DK5fYFzU0o/ioh3ApenlC4u\nhj0jIjYD24FTUkq3tC9qLbTx8XF6e3sn9evt7WV8fLxNEUkLwzcOqNOYIJAkSW2VUvoC8IW6fm+t\n+T8Brys+WgG6u7sZHR2lVCrt6Dc6Okp3d3cbo5Kk5c/XHEqSJKmjVJ/NHhkZYWJiYsez2UNDQ+0O\nbcFVKhV6enro6+ujp6eHSqXS7pAkrSDWIJAkSVJHWanPZts4o6R2swaBJEnSPPHu7/zp7+9nbGyM\njRs3MjY2tiIukGsbZ+zq6qJUKlEul23VXtKisQaBJEnSPPDur+bKxhkltZs1CCRJkuaBd381V9XG\nGWt1YuOM1pSRli9rEEiSJM0D7/5qrqqNM1ZroVQbZ+ykJJM1ZaTlreUEQUSsAi4HbkgpPXvhQpIk\nSVp6uru7ecc73sGFF164o2G9Y489tuPu/qpzLYXGGWtrymzatIn169dTLpcZHBzsqDglzc5MahCc\nDIwDeyxQLJIkSUtWqVTi9NNP5/TTT+eQQw5h8+bNbNiwgRNPPLHdoWkJ6e/vp7+/f8fFd6expoy0\nvLXUBkFE7A8cBXx4YcORJElamkZGRtiwYQPnnnsuRx11FOeeey4bNmxgZGSk3aFJ82aptJMgaXZa\nrUHwAeCNwO7NRoiIE4ATAA488MC5RzZDa0+9dFL3NacdtegxrFSdsO47IQZJ0so2Pj7O9773Pd79\n7nfvuPu7bds23vve97Y7NGneLIV2EiTN3rQJgoh4NvCblNIVEbG+2XgppXOAcwDWrVuX5i1CSZKk\nJaB6Z7VUKu3o551VLTdLoZ0ESbPXyiMGTwaOjohrgAuAv4yIjy9oVJIkSUtM9c7qyMgIExMTO+6s\nDg0NtTs0aV719/czNjbGxo0bGRsbMzkgLSPT1iBIKb0JeBNAUYPgDSmlFy1wXJIkSUvKSr6zWqlU\nGB4e3rHcQ0NDK2K5JWm5mclbDCRJkjSFTm+BfiFUKhWGhoZ2PJO+atUqBgYGAEwSdAgTOJJaNaME\nQUppE7BpQSKRJEnSkjM8PEy5XKZUKu1IjJTLZQYHB70I7QAmcCTNREuvOZQkSZIaGR8fp7e3d1K/\n3t5exsfH2xSRatUmcLq6uiiVSpTLZd86IKkhEwSSJEmaterbG2r59obOYQJH0kyYIJAkSdKs+faG\nzmYCR9JM2EihJEmSZm0lv71hKagmcKptEFQTOD5iIKkREwSSJEmak5X49oaIaDospbSIkUzNBI6k\nmfARA0mSJGmGUko7PgdtuGRSd6fp7+9nbGyMjRs3MjY2ZnJAUlMmCCRJkiRJi+qwww4jIiiVSkQE\nhx12WLtDEiYIJEmSJEmL6LDDDuOHP/whRx99NJ/73Oc4+uij+eEPf2iSoAOYIJAkSZIkLZpqcuCi\niy5ir7324qKLLtqRJFB7mSCQJElSx6lUKvT09NDX10dPTw+VSqXdIUmaR+VyecputYdvMZAkSVJH\nqVQqDA0N7Xg136pVqxgYGACwgT1pmRgYGOCiiy6a1K32swaBJEmSOsrw8DDlcplSqURXVxelUoly\nuczw8HC7Q5M0Dx796Edz8cUXc8wxx3DbbbdxzDHHcPHFF/PoRz+63aGteNYgkCRJUkcZHx+nt7d3\nUr/e3l7Gx8fbFJGk+XTllVdy2GGHcfHFF3PxxRcDOWlw5ZVXtjkyWYNAkiRJHaW7u5vR0dFJ/UZH\nR+nu7m5TRJLm25VXXklKiZGREVJKJgc6hAkCSZIkdZShoSEGBgYYGRlhYmKCkZERBgYGGBoaando\nkrSs+YiBJEmSOkq1IcLBwUHGx8fp7u5meHjYBgolaYGZIJAkSVLH6e/vp7+/n02bNrF+/fp2hyNJ\nK4KPGEiSJEmSJBMEkiRJkiTJBIEkSZIkScIEgSRJkiRJwkYKJUmSpJb96Tu+wu13b7tP/7WnXjqp\ne8/7reYHb3vGYoUlSfPCBIEkSZLUotvv3sY1px01qV+jNy3UJwwkaSnwEQNJkiR1nEqlQk9PD319\nffT09FCpVNodkiQte9YgkCRJUkepVCoMDQ1RLpfZvn07q1atYmBgAID+/v42RydJy5c1CCRJktRR\nhoeHKZfLlEolurq6KJVKlMtlhoeH2x2aJC1rJggkSZLUUcbHx+nt7Z3Ur7e3l/Hx8TZFJEkrgwkC\nSZIkdZTu7m5GR0cn9RsdHaW7u7tNEUnSymCCQJIkSR1laGiIgYEBRkZGmJiYYGRkhIGBAYaGhtod\nmiQtazZSKEmSpDmpVCoMDw8zPj5Od3c3Q0NDc2pMsDrt4ODgjjKHh4dtoFCSFpgJAkmSJM3aQr1x\noL+/n/7+fjZt2sT69evnKVpJ0lRMEEiSJGnWat84UL2YL5fLDA4OLss7/rt3n8qjP3rqfQd8tH48\ngKMWIyRJmjcmCCRJkjRrK+2NA3eMn8Y1p02+8G9Uy2HtqZcuYlSSND9spFCSJEmz5hsHJGn5MEEg\nSZKkWfONA5K0fEz7iEFE7AJ8Hdi5GP+zKaW3LXRgkiRpZYiII4AzgFXAh1NKpzUZ76+BzwJ/llK6\nfBFD1BR844AkLR+ttEFwD/CXKaUtEbEaGI2IL6aUvrXAsUmSpGUuIlYBHwSeDlwPfDciLk4pba4b\nb3fgZODbix+lpuMbByRpeZj2EYOUbSk6VxeftKBRSZKkleLxwM9TSlellLYCFwDHNBjvXcDpwO8X\nMzhJqlWpVOjp6aGvr4+enh4qlUq7Q5LmVUtvMSiy+1cADwc+mFIyey9JkubDQ4HrarqvB55QO0JE\nPA44IKV0aUSc0qygiDgBOAFg3333ZdOmTS0FsGXLlpbHbdV8l7kUYlwqZc5HefXTNytzLvNZKety\nKZW5ceNGyuUyp5xyCgcffDBXX301r3/969m8eTN9fX0dEaNlLo0YO7nMlhIEKaXtwGMiYi/gcxHR\nk1Iaqx2n9qB84IEHzimopaL+9TX1r7xZqVpZL9ON47qVJAFExE7APwHHTzduSukc4ByAdevWpVar\nui9Etfj5LnMpxLhUypxzeV+69D7TNyyzwXgzsSLW5RIr86STTuITn/gEpVKJTZs28drXvpbHPOYx\nDA4O8q53vasjYrTMpRFjJ5c5o7cYpJRuA0aAIxoMOyeltC6ltG6fffaZU1CSJGnFuAE4oKZ7/6Jf\n1e5AD7ApIq4BnghcHBHrFi1CSQLGx8e5/vrrJz1icP311zM+Pt7u0KR508pbDPYBtqWUbouI+5Eb\nETp9wSOTJEkrwXeBR0TEweTEwAuA46oDU0q3A3tXuyNiE/AG32IgabHtt99+bNiwgU984hNs376d\nVatW8cIXvpD99tuv3aFJ86aVRwweAny0aIdgJ+DTKaVLFjYsSZK0EqSUJiLiJODL5NccnptS+lFE\nvBO4PKV0cXsjlKR7pZSm7JaWumkTBCmlK4HHLkIskiRpBUopfQH4Ql2/tzYZd/1ixCRJ9W688UbO\nO+88BgcHGR8fp7u7m/e9730cf/zx7Q5NmjczaoNAkiRJklai7u5u9t9/f8bGxti4cSNjY2Psv//+\ndHd3tzs0ad6YIJAkSZKkaQwNDTEwMMDIyAgTExOMjIwwMDDA0NBQu0OT5k1LrzmUJEmSmqlUKgwP\nD++odj00NER/f3+7w5LmVXWbrn3EYHh42G1dy4oJAkmSJM1apVJhaGiIcrm8o2X3gYEBAC+ctOz0\n9/fT39+/IO+wlzqBjxhIkiRp1oaHhymXy5RKJbq6uiiVSpTLZYaHh9sdmiRphkwQSJKkFalSqdDT\n00NfXx89PT1UKpV2h7QkjY+P09vbO6lfb28v4+PjbYpIkjRbPmIgSZJWHKvFz5/u7m5GR0cplUo7\n+o2OjtqyuyQtQSYIJEnSilNbLb76LHG5XGZwcNAEwQxVW3avJluqLbsv50cM1p566X17fmlyvz3v\nt3pWZdvgo6R2MkEgSZJWHKvFz5+V1rL7NacddZ9+a0+9tGH/mbJmi6R2sw0CSZK04lSrxdeyWvzs\n9ff3MzY2xsaNGxkbG/NidpZs8FFSu5kgkCRJK061WvzIyAgTExM7qsUPDQ21OzStYNZskdRuPmIg\nSZJWnJVWLV5Lgw0+Smo3axBIkqQVyWrx6jTWbJHUbtYgkCRJkjqANVsktZsJAkmSJKlD9Pf309/f\nv+P1m5K0mHzEQJIkSZIkmSCQJEmSJEkmCCRJkiRJEiYIJEmSJC1DlUqFnp4e+vr66OnpoVKptDsk\nqePZSKEkSZKkZaVSqTA0NES5XGb79u2sWrWKgYEBAN8KIU3BBIEkSZKkZWV4eJjjjjtu0isjjzvu\nOF8bKU3DBIEkSZKkZWXz5s3ceeednHvuuTtqELz85S/n2muvbXdoUkezDQJJkiQtez6PvrKsWbOG\nwcFBSqUSXV1dlEolBgcHWbNmTbtDkzqaNQgkSZK0rPk8+sqzdetWzjrrLB772Meyfft2RkZGOOus\ns9i6dWu7Q5M6mgkCSZIkLWs+j77yHHLIIRx77LH3+c4vvPDCdocmdTQTBJIkSVrWNm/ezF133XWf\nGgTXXHNNu0PTAhkaGmpYa2R4eLjdoUkdzQSBJEmSOkpENOyfUppVeWvWrOGkk06iVCqxadMm1q9f\nz0knncSb3/zmuYSpDlatGVJbg8AaI9L0bKRQkiRJHSWltONz0IZLdvw/W1u3buXMM89kZGSEiYkJ\nRkZGOPPMM30efZnr7+9nbGyMjRs3MjY2ZnJAaoE1CCRJkrSsNXoe/YUvfKHPo0tSHRMEkiRJWtZ8\nHl2SWmOCQJIkSctaf38/3/zmNznyyCO555572HnnnXnlK19plXNJqmMbBJIkSStIpVKhp6eHvr4+\nenp6qFQq7Q5pwVUqFS699FK++MUv8p//+Z988Ytf5NJLL53TskfEjs+1pz97UrckLVXWIJAkSVoh\nKpVKw6r2wLK+mz48PEy5XJ70FoNyuczg4OCsl7u20cRqmZK01FmDQJIkqUPN993+2gvlrq4uSqUS\n5XJ52T+LPz4+Tm9v76R+vb29jI+PtykiSepM1iCQJEnqQAtxt3+lXih3d3czOjpKqVTa0W90dJTu\n7u42RiVJnccaBJIkSR1oIe72Vy+Ua62EC+WhoSEGBgYYGRlhYmKCkZERBgYGGBoaandoktRRpq1B\nEBEHAOcD+wIJOCeldMZCByZJkrSSLcTd/uqFcrVWQvVCebk/YlCtcTE4OMj4+Djd3d0MD/9/9s49\nXMqy6v+frxwV1NR4wwxhlgAAIABJREFUNULEPBSEmqZmypuSKR4yfTMPG61QytQgDJNDu/fnkThU\n+BKGpIFaKR6yTEVFw42GeRYPwM4yTyGlecgURQHX74/7ns3szd7smefAnmHW57rm2jPPPLNmzXM/\nM/u5173Wd03YqHUXHKfSGTJkCHfddRdmhiQOOeQQ5s2b19Fu1TyllBisBs42s8ckbQ48KukuM1ua\ns2+O4ziO4zg1Sx5p8bU8Ua6rq6Ours4FBR2nAhgyZAh33nknZ5xxBkcccQS33XYbl156KUOGDPEg\nQQfTbomBmf3DzB6L998CGoGP5u2Y4ziO4zhOLZNXWnxdXR2LFy9m/vz5LF68uCaCA7C2LeHgwYO9\nJaGTmFpsE5oHd911F2eccQYzZsygZ8+ezJgxgzPOOIO77rqro12recoSKZTUD9gTeLCV504DTgPo\n27dvBq61Tb9xc1O/5vlJR2blTmbv0drnysPPct9zQxw7x3Ecx3GaU8ur/XlQaEvYb9xcv5ZxElGr\nbULzwMyYOHFis20TJ07k0ksv7SCPnAIlixRK6gncCJxlZv9p+byZXWZme5vZ3r169crSR8dxHMdx\nnJqkVlf7HacSqZY2odWQ5SCJ8ePHN9s2fvx4z+qpAErKIJDUhRAcuNrMfpuvS47jOI7jOI7jOJVF\nNbQJrZYsh0MOOaQpW+CII47gzDPP5NJLL+XQQw/tYM+cdjMIFMI4s4BGM5uav0uO4ziO4zj5Uw2r\nbI7jVA7V0Ca0WrIc5s2bx6GHHsrMmTM56qijmDlzJoceeqgLFFYApWQQHAB8FXhK0uNx2/fN7Lb8\n3HIcx3Ecx8mPalllcxyncqiGNqGNjY0sW7aMgQMHNmmXjB07tqKyHAoUggHeWaSyaDdAYGYLAS8G\ncRzHcRxno6F4la1wcTpr1ixGjhzpAQLHcVqlGoRDe/fuzZgxY7jmmmuagp9Dhw6ld+/eHe2aUyWU\n1cXAcRzHcRxnY6Aaaokdx6k86urqqKurq+hV75ZCfy7855RDyV0MHMdxHMdxNhaqoZbYcRynXJYv\nX87kyZMZOXIkQ4YMYeTIkUyePJnly5d3tGtOleABAsdxHMdxao5CLXFDQwOrV69uqiWur6/vaNcc\nx3ES079/f/r06dOsPWqfPn08+OmUjJcYOI7jOI5Tc1RDLXGtscf5d/Lmu6tafa7fuLnNHm+5aRee\nONfboTlOS6pBSNGpbDxA4DiO4zhOTVINtcS1xJvvruL5SUeus7218WkZMHA2LHPmzGHChAlNwbX6\n+noPrlUIHvx00uIlBo7jOI7jdCiSDpP0tKRnJI1r5fnRkpZKelLSfEk7dISfjuOE4MCoUaNYsWIF\nACtWrGDUqFHMmTOngz1zCtTV1TUrMfDggFMOHiBwHMdxHKfDkNQJ+BlwODAAqJM0oMVui4C9zWx3\n4DfAlA3rZenMmTOHgQMHcvDBBzNw4ECfNDkbHWPGjKFz587Mnj2befPmMXv2bDp37syYMWM62jXH\ncTLASwwcx3Ecx+lI9gWeMbNnASRdCxwNLC3sYGYNRfs/AJy8QT0skTlz5lBfX99U+9upUyeGDx8O\n4Ct4zkbDsmXLuPPOOxk8eHBT+cdVV13FoYe6JoTjbAx4BoHjOI7jOB3JR4G/Fz1eFre1xXDg9ize\nOOvV/gkTJjBr1iwGDx5M586dGTx4MLNmzUolDlYNGQmSmm6DBw9uuu84juNUH55B4DiO4zhOVSDp\nZGBv4MA2nj8NOA1g2223ZcGCBW3amj9/PrNmzeKcc85hxx135LnnnuPss89m6dKlHHzwwYn8a2xs\nZM2aNSxYsIC3336bBQsWsGbNGhobG9fry4b0sZiCj2lpaFib4DHsjhVceVgPgES2W3tNW36m8T2L\nz11MVseyGmz26tWLE088kR/84AfsuOOOXHzxxVx00UX06tUrE38r9XPnbTNLe/Pnz+fXv/41L774\nIn379uXkk0/O5DcDau9Y1qJNDxA4juM4jtORvARsX/S4T9zWDElfAOqBA83svdYMmdllwGUAe++9\nt62vM8GIESO4+uqrm9Kkv/vd7/KpT32KkSNHcuGFFyb6IP3796dTp04cdNBBTanXDQ0N9O/fP1GX\nhDx8LCaX7g13zE1us43XtupnDu+ThjyOZaXanDZtGqNGjeKnP/0pL7zwAjvssAOdOnVi2rRpmfhb\nqZ87b5tZ2ZszZw5XX301s2fPblbqNGDAgExKnWrpWNaqTS8xcBzHcRynI3kY2EXSjpK6AicCNxfv\nIGlP4OfAl8zslSzetLGxkUGDBjXbNmjQIBobGxPbLPQfb2hoYPXq1U39x+vr6yvGR8dJS11dHdOm\nTaNHjx5IokePHkybNq0idTaqoUQna/IodXJqC88gcBzHcRynwzCz1ZJGAPOATsBsM1si6QLgETO7\nGfgR0BO4Ida2v2hmX0rzvv379+f888/npptuauoVfswxx9C/f//ENrPuP96/f38WLlzI4MGDm7Yt\nXLgwlY9O5TNnzhwmTJjQdA7V19dX3OS7rq6Ourq6fLJQMqJWRUM9sOikxQMEjuM4juN0KGZ2G3Bb\ni23/r+j+F7J+z8GDBzN58mQmT57MgAEDWLp0KWPHjuX0009PZTfLiVMhI6EwwSlkJPhK4MZLrU5q\n86B4Jb3wfZw1axYjR47cqI+lBxadtHiAwHEcx3GcmqOhoYGxY8cye/bsppXasWPHctNNN3W0a01k\nnZFQ6Wzefxy7XTWu9SevarkvwJF5u7TBqdVJbR7ksZLeVncOM0tsM2s8sOikxQMEjuM4juPUHI2N\njSxatIiLLrqoaSK2atUqJk6c2NGuNaMaUrmz4q3GSTw/ad1Jf2ufvd+4uRvIqw2Lp4dnRx4r6cWB\ngH7j5rZ6vnY0tRZYdLLHRQodx3Ecx6k5CpOHYjwN1+lo8jova1GsL2vRUMepFTyDwHEcx3GcmqO+\nvp4TTjiBHj16NPUKX7FiBdOmTeto15wapvi8LLQQTHte5qFrUC1CilB7K+muY+GkxTMIHMdxHMep\naSqpfthxCrRV714uWbe9K0xAp0+fzrx585g+fTr19fUVmZVQV1fH4sWLmT9/PosXL66JCbK3OXTS\n4gECx3Ecx3FqjgkTJnDdddfx3HPPcffdd/Pcc89x3XXX+UW006EUn5fz58/P5LzMWtfAJ6CVjetY\nOGnxAIHjOI7jODWHX0Q7lUhjYyPLli1rphewbNmyVOdl1roG/t3Jlqz1IVxfxUmLaxA4juM4jlNz\neK9wpxLp3bs3Y8eO5eqrr26qHz/ppJPo3bt3YptZt73z70525KEX4G0OnbR4gMBxHMdxnJojDzG4\naqEaBOZqmZaaGGk1MrIW6/MJaHYUl2sU2nnOmjWLkSNHJh6fWhVndLLDAwSO4ziO49Q0WYnBVQOu\ncF7ZLF++nCuvvLLZ5G7KlCkMGzYsld26ujrq6uqaJqFpbYFPQLMgr3KNLMfbqT1cg8BxHMdxnJoj\nDzG4asAF5iqb/v3706dPn2bK+3369Emdvp91nXstdgfIA9cLcCoRDxA4juM4jlNz5LVyl/VELGtc\nYK6yKaTvNzQ0sHr16qb0/fr6+sQ2q6ktYa2Rx3hD5f8OOZWNlxg4juM4jlNz5CG0Vg3p+y4wV9nk\nkb4/YcIEhg4d2szm0KFDvSygAshjvKvhd8ipbDxA4DiO4zhOzZGH0FoegmNZ4wJzlU/W9eNLly7l\nnXfeWWfC+Pzzz6e2Xcm0pS2SVvQxa7Ie72r4HXIqGy8xcBzHcRyn5qirq2PChAmMHDmSIUOGMHLk\nyNQrd9WQvp/H53Yqm65duzJixIhmuhMjRoyga9euHe1arphZ022Hsbc23a80si4HaGxsZNmyZc1s\nLlu2rKJ+h5zKxjMIHMdxHMepSbJeucurbCHrloSucF5bvP/++0yfPp0999yzKWtk+vTpvP/++x3t\nWs2TRzlA7969GTNmDNdcc02TzaFDh9K7d+8sXXc2YjxA4DiO4ziOkwFZp+97LbGTBQMGDGCXXXbh\n8MMP57333qNbt24cfvjh9OjRo6Ndq3nyKgdoWV5RS61cnfR4gMBxHMdxHCcDshYcq/Ra4j3Ov5M3\n3121zvZ+4+Y2e7zlpl144txDS7LZ8rVN3LGuTac0Bg8ezMyZM5k8eTIDBgxg6dKljB07ltNPP72j\nXat58ihLWr58OVdeeWWz36HJkyczbNiwlN46tYIHCBzHcRzHcTIiy/T94lriwoX+2LFjK6aW+M13\nV/H8pCObbWvtc7c56W9BS1vFr2/rOad9GhoaGDt2LLNnz252Ht10000d7Voz8iinqXTyKEvq378/\nffr0YfHixU3fx4aGBu9U4pSMBwgcx3Ecx3EqEK8lTk+pWQ5QXqZDNdHY2MiiRYu46KKLmiaMq1at\nYuLEiR3tWhOVXE7T1jkE6bJlIJ+uIt6pxEmLBwgcx3Ecx6k5qqUF2sqVKzn11FN54YUX2GGHHVi5\nciU9e/bsaLeqhlKzHKD0TIdqI49V6qyp5HKa1s4hSJctUyDrsqS8bDq1RbttDiXNlvSKpMUbwiHH\ncRzHcZy8qYYWaC+99BKdO4e1nEJAo3Pnzrz00ksd6ZZTZRRWlBsaGli9enXTinJ9fX1Hu9ZELbfm\nq6urY/HixcyfP5/FixennshLYujQoSxZsoQPPviAJUuWMHToUBcqdEqmlAyCK4FLgF/m64rjOI7j\nOI5ToGvXrowfP57Ro0c3rVZOnTqV73//+x3tmlNFVMOKspfTZEdxoNP1O5wktBsgMLN7JfXL3xXH\ncRzHcRynwPvvv88ll1zSrH/9JZdc4v3rnbLJUjwzL7ycxnEqg8w0CCSdBpwG0Ldv36zMJqa9GqAk\ndWblRuBavkfL15fiQ9b1cKV8hqyPXRafIY+6wPbGpxKoBh8dZ2PBv29OpTFgwACOOeaYZiu/Q4cO\nrTj1ecdJy0svvcQ222wDeDmN43Q07WoQlIqZXWZme5vZ3r169crKrOM4juM4Tk1SX1/PNddcw/Tp\n05k3bx7Tp0/nmmuuqajaccfJgkI5zXPPPcf8+fN57rnnGD9+PF27du1o1xyn5vAuBo7jOI7jOBVI\npdeOb95/HLtdNW7dJ65quR+AZ+R0JHPmzGHChAlN51F9fX3FnEcQymnq6+s5++yzm7Z1797dy2kc\npwPwAIHjOI7jOE6FUsm14281TiqpheDG2j4wD/Jovzlnzhzq6+uZNWtWkwDg8OHDASomSLDZZpux\nYsUKttpqK954442mvz169Oho1xyn5iilzeEc4H7g45KWSRqev1uO4ziO4zjVx5w5c5q1apszZ05H\nu7QO1eBjrZJH+80JEyYwa9YsBg8eTOfOnRk8eDCzZs1iwoQJGXmdnhUrVtCzZ09uvPFG7rrrLm68\n8UZ69uzJihUryra1x/l30m/c3GY3YJ1te5x/Z9YfIxH+fXQqjVK6GFRGaNFxHMdxHKeCqYaV2jlz\n5vCtb32LlStX8sEHH/CXv/yFb33rW0Dl+OhkS2NjI4MGDWq2bdCgQTQ2NnaQR60zderUZuU0U6dO\n5bTTTivbzpvvrqqazJZq+M1wao/MRAodx3Ecx3FqmTxWarNeXRwxYgTvvPMOkyZN4vbbb2fSpEm8\n8847jBgxIpVdp3Lp378/CxcubLZt4cKF9O/fv4M8WhdJLFq0iMWLFzN//nwWL17MokWL2iy52Fio\nhuwOp/ZwDQLHcRzHcZwMyHqlNo/V/tdff50pU6YwevRoFixYwOjRo1mzZg1jxoxJZC8vWk4MNTn8\nTZtuX4vU19czfPjwplXqhoYGhg8fXlGT0EMOOYRLL72Ua6+9tpkGwaGHHtrRruVKtWR3OLWFZxA4\njuM4juNkQNYrtXmt9g8cOHC9jyuB4lr8hoaGTGrxa5W6ujomTJjAyJEjGTJkCCNHjqyobhgAw4YN\no3v37rzxxhsAvPHGG3Tv3p1hw4Z1rGM5Uw3ZHU7t4QECx3Ecx3GcDCis1DY0NLB69eqmldr6+vpE\n9l5//XUmTpzI6NGj6d69O6NHj2bixIm8/vrriX3s3LkzJ510UjMfTzrpJDp39qTSjZm6urpm6fuV\nFByAkGp/2223NQsI3XbbbRWV5ZAHWf9mOE4W+H8Dx3Ecx3GcDChMuoqF1tKu1Ga92n/66aczY8YM\n6urqePnll9l222158803OfPMM1PZdZw01GqqfR6/GY6TFg8QOI7jOI5TM+xx/p28+e6qdba3VDTf\nctMuPHFu+fXPdXV11NXVtaqaXi6F1f4bb7yxqXY87Wr/9OnTAbj88ssB+Pe//82ZZ57ZtN1xOoJC\nqv3gwYObttVKqv3QoUOb7i9ZsoShQ4cydOhQL6lxOgwPEDiO4ziOUzPk3QJt5MiRXH755bz33nt0\n69aNb37zm4kn33mt9u+///40NDTQ2NjIzjvvzP7775/YVqvH6Y51gy2Osz4qWUhx8/7j2O2qca0/\neVXLfQGObG3PNikEAvqNm7vOb1M55B38dGoHDxA4juM4juNkwMiRI5kxYwa9evXilVde4UMf+hAz\nZswASBQkyGO1P8u+661NZtJOcpzsaatVYCWtUFdyqv1bjZNaPaezDCxmQd7BT6d2cJFCx3Ecx3Gc\nDJg5cyZdunTh9ddfx8x4/fXX6dKlCzNnzkxsc/r06axcuZKGhgZWrlyZuhRgwoQJDB06tJmi/dCh\nQytipdbJh+KOEDuMvbViO0JUupCi49QKnkHgOI7jOI6TAatXr8bMmDJlCgMGDGDp0qWMGTOGNWvW\ndLRrTSxdupRXXnmFHj16YGasWLGCyy67jFdffbWjXatpaj09vK0sB6isTAfHqQU8QOA4juM4jpMR\nhx9+OKNHj2bBggWMHj2ahoYGbr311o52q4lOnTqxevVqZs+e3VRicOyxx9KpU6eOdq2mqbb08Dlz\n5jBhwoSmcoD6+vpUK/7FQQAvU3GcjsUDBI7jOI7jOBkxd+5cpk6dyoABA5g6dSpz56ab0GVdP756\n9Wq6devWbFu3bt144403Etlzao8sdSzyoE1RwQwEBR2nFvAAgeM4juM4TgZ07tyZTTbZhHHjxrFq\n1Sq6dOlCly5d+OCDDxLbzErhvJhhw4Y1E4MbNmwYkyZNysS2s/FTrGNROIcKOhaVECBoTVQwbTZG\nm/tWUMcOD4w4WeEBAsdxHMdxnAwotCXs1asXL7/8MltvvTX/+te/UrclzJI+ffpw1VVXcfXVVzet\n/p500kn06dOno13LhVInTWFf8IlT+9SajkVbgblKK4XIIzDi1CYeIHAcx3Ecx8mAPNoSZs2UKVMY\nNWoUp556Ki+++CJ9+/Zl9erV/OQnP+lo13Kh1EkT+MSpVFzHIj2lilLCxitM6VQuHiBwHMdxHMfJ\niOnTpzN9+vQ2J6GlkKeifSEFvNDWsEePHvzwhz9MlRreUidBk8NfV5/vONo6hyD9eZSljkVe53qr\nwZ4KKgcoVZQSPHDlbHg8QOA4juM4jlNB5K1oX1dXR11dXaogRjHFgYCsbDrpaO0cguzOo3333ZfD\nDz+c9957j27dujFkyBBuvvnmTPxM62Nrn7vSygEcp5LxAIHjOI7jODVDnkJeWXccyINa7Ddfymoy\ndOyKcjWx9dZbM3fuXKZMmcKAAQNYunQpY8aMYeutt+5o12qeSs+ccKoDDxA4juM4jlMz5CnkVQ29\n3KvBxyzx1eTs2Wyzzfjggw+YPn16k47F5ptvzmabbdbRrtU0fq47WeEBAsdxHMdxnITkUeudR5ZD\nnroGTm2xfPlyrrzySiZPDmITPXr04IILLmDYsGEd61gV4d01nErGAwSO4ziO49QUWabh5lHrnUeW\nQ966Bk7t0L9/f772ta81PV6yZEmzx+WQZ8lPJePdNZxKxgMEjuM4juN0KJIOA6YBnYBfmNmkFs93\nA34JfBp4DTjBzJ5P8l61moZbqxOxaiHr8WnTXgqbBerr66mvr2fWrFkMu+0/XHnEFgwfPrypM0Y5\n5FnyU+m4Nkb2dO/enffee6/pcbdu3Vi5cmUHelSdeIDAcRzHcZwOQ1In4GfAIcAy4GFJN5vZ0qLd\nhgNvmNnOkk4EJgMnbHhv1yWviVjWYmNvNU5qf6cybTrZkfX4lGqvHJtry1S2YMXArzDk+GGsem0Z\nQ67sw5afPYHxT2zB+CfmNtkstVSlFoX18gxUttV2FDZeIVJYGxzYdtttmTRpEuPGjePll1+me/fu\nHiQoEw8QOI7jOI7TkewLPGNmzwJIuhY4GigOEBwNnBfv/wa4RJIsxdVuWxfR5ZrMYyKWx+Sh8Npa\n7GJQoPizV9qkKesxb+t1aWx+0O9sNo/3N+8P2x27BTAgbrk93uK+ADyVyM+8J8ppxjtvm1mcl7Xa\ndrQQHPjnP//JggUL+Oc//8l2223Hyy+/3NGuVR0eIHAcx3EcpyP5KPD3osfLgM+0tY+ZrZb0JrAN\n8GrxTpJOA04D2HbbbVmwYEGbb9rQ0NB0/+2336Znz54A631Na1x5WI+m+4MHD273vcq1X2yzePJQ\nbLMc2vrcSXxrjbfffjsTO3nYLHz2Sv7cLc+hwpgnHe8sbRYHw16Y/MVW99lh7K0A9OhS3nFty0fI\n/lxPM0552qzE83LkCyNbf6IVMcXpO0xPbi+FzWImTZrEggULmj73pEmTOOWUU8o+Bll/7jxs5nks\nPUDgOI7jOM5GgZldBlwGsPfee1upK2dZrbLlsXJXsJnHSmCt2qxkH/M8h9LafL74ZZOyPS/zXvWu\nBpuV6ONTrWSBpLHZmr20NosZN25cUwbBQQcdxHbbbQdQtu2sP3ceNvM8lpukerXjOI7jOE46XgK2\nL3rcJ25rdR9JnYEtCWKFjuM4jkO3bt14+eWX2W677Xj++eebygu6devW0a5VHR4gcBzHcRynI3kY\n2EXSjpK6AicCN7fY52bg6/H+V4C70+gPOI7jOBsXK1eubAoSnHLKKU3BARcoLB8PEDiO4ziO02GY\n2WpgBDAPaASuN7Mlki6Q9KW42yxgG0nPAKOBNtoGOI7jOLXKypUrMTMaGhowMw8OJMQ1CBzHcRzH\n6VDM7Dbgthbb/l/R/ZXAcRvaL8dxHMepNTyDwHEcx3Ecx3Ecx3EcDxA4juM4juM4juM4juMBAsdx\nHMdxHMdxHMdx8ACB4ziO4ziO4ziO4zh4gMBxHMdxHMdxHMdxHDxA4DiO4ziO4ziO4zgOJQYIJB0m\n6WlJz0jy3sOO4ziO4ziO4ziOs5HRboBAUifgZ8DhwACgTtKAvB1zHMdxHMdxHMdxHGfDUUoGwb7A\nM2b2rJm9D1wLHJ2vW47jOI7jOI7jOI7jbEhkZuvfQfoKcJiZfSM+/irwGTMb0WK/04DT4sOPA09n\n6OeHgVcztFfL+LHMDj+W2eHHMjv8WGZHHsdyBzPrlbFNpxUk/Qt4ocTd8xjrrG1Wg4/VYrMafKwW\nm9XgY7XYrAYfq8VmNfjY0TbbvB7pnJUnZnYZcFlW9oqR9IiZ7Z2H7VrDj2V2+LHMDj+W2eHHMjv8\nWFY35QRi8hjrrG1Wg4/VYrMafKwWm9XgY7XYrAYfq8VmNfhYyTZLKTF4Cdi+6HGfuM1xHMdxHMdx\nHMdxnI2EUgIEDwO7SNpRUlfgRODmfN1yHMdxHMdxHMdxHGdD0m6JgZmtljQCmAd0Amab2ZLcPWtO\nLqULNYofy+zwY5kdfiyzw49ldvixrB3yGOusbVaDj9Visxp8rBab1eBjtdisBh+rxWY1+FixNtsV\nKXQcx3Ecx3Ecx3EcZ+OnlBIDx3Ecx3Ecx3Ecx3E2cjxA4DiO4ziO4ziO4zhOZQUIJB0m6WlJz0ga\n18rz3SRdF59/UFK/De9ldVDCsRwtaamkJyXNl7RDR/hZDbR3LIv2O1aSSfK2aG1QyrGUdHw8N5dI\numZD+1gtlPAd7yupQdKi+D0/oiP8rAYkzZb0iqTFbTwvST+Nx/pJSXttaB8dx3Ecx3E2BBWjQSCp\nE/AX4BBgGaF7Qp2ZLS3a50xgdzM7XdKJwP+Y2Qkd4nAFU+KxHAw8aGbvSDoDOMiP5bqUcizjfpsD\nc4GuwAgze2RD+1rplHhe7gJcD3zezN6Q9F9m9kqHOFzBlHgsLwMWmdmlkgYAt5lZv47wt9KR9Dng\nbeCXZjawleePAEYCRwCfAaaZ2Wc2rJeOkz2StgK2N7MnO9qXtpC0mZm9k4GdbczstSx8amF3U6Cv\nmT2dte08qNQxz2t8nNpBUjcze6+9bSXaugVoc5JsZl9K4GIuSOoFjAUGAN0L283s80ltVlIGwb7A\nM2b2rJm9D1wLHN1in6OBq+L93wAHS9IG9LFaaPdYmllD0T/cB4A+G9jHaqGU8xLgQmAysHJDOldl\nlHIsvwn8zMzeAPDgQJuUciwN2CLe3xJYvgH9qyrM7F7g9fXscjQheGBm9gDwIUkf2TDeOXkhaT9J\nD0t6W9L7ktZI+k9Km9tKmiXp9vh4gKThKez9RNIn0/jUis0FkraQtDXwGHC5pKkZ2N1d0pckfblw\nS2lvf0lLgT/Hx3tImpHC5AOSbpB0RFbXjpKOAh4H7oiPPyUpVSvwahhzSb+VdKSkLOcReYzPqPi5\nFb+Xj0k6NKXNnSR1i/cPkvQdSR9KYW9K9LGLQkbvvySdnNLHAyT1iPdPljRVKTOFs/5tizY2k/S/\nki6Pj3eR9MUUJu8vcVsp/Bj4yXpuiZF0XFxYRNIP4vcpTWbi1UAjsCNwPvA8YeEoMZUUIPgo8Pei\nx8vitlb3MbPVwJvANhvEu+qilGNZzHDg9lw9ql7aPZbxS729mc3dkI5VIaWcl7sCu0q6T9IDkg7b\nYN5VF6Ucy/OAkyUtA24jrIA7ySj3N9WpDi4B6oC/ApsC3wB+ltLmlYS20L3j478AZ6Ww1whcplBW\nebqkLVP6B7Clmf0H+DIh8PUZ4AtpDEqaDcwGjgWOirc0F/oAFwNDgNcAzOwJ4HMp7O1KaP/1VeCv\nkn4oadeUPp4i5WyqAAAgAElEQVRHCNj+O/r4OOEiPQ3VMOYzgKGE4zhJ0scz8DGP8Tk1fu5Dga2i\n7Ukpbd4IrJG0M8Hf7YE05ZCHRh+/SJjY7Qyck9LHS4F3JO0BnA38DfhlSptXku1vG8AVwHvAZ+Pj\nl4CLyjUiaTtJnwY2lbSnpL3i7SBgsySOmdk967slsVnE/5rZW5IGEb6HswhjlpRtzGwWsCr6dyqQ\nOHsAKitA4HQAMUq5N/CjjvalGonR86mEH2AnPZ2BXYCDCBful6eJzNc4dcCVZtaHkBr/q4xXexyn\n6jGzZ4BOZrbGzK4A0gYlP2xm1wMfRPurgTUp/PuFmR0AfA3oBzwp6RqFMsGkdI4ZMMcDt6awU8x+\nZra3mX3dzE6Jt1PTGjWzv7fYlOZYmpndZWZ1hGy1rwMPSbpH0mfbeXlbrDKzN1u+VVIfo58VP+Zm\n9gczOwnYizCp/YOkP0k6RVKXhDbzGJ9CJsIRwK/MbEnRtqR8EL/X/wNMN7NzgDQZZZ3j3yOBG1o5\nn5Kw2kIN+dHAJWb2M2DzlDYz/W2L7GRmU4BV0eY7JBufIYQV/z6Ea/LCKv93ge8ncUzSUwqaQy1v\nT0lKW55TOG5HApfFBcauKeytin//ETN79gS2TuNg5/Z32WC8RIjCFegTt7W2zzJJnQlps16vtC6l\nHEskfQGoBw5MUp9TI7R3LDcHBgILYkbcdsDNkr7kOgTrUMp5uYygjbEKeE7SXwgBg1SpUhshpRzL\n4cTJjpndL6k78GHAyzbKp6TfVKfqeEdSV+BxSVOAf5B+4WSFpG2Ik0RJ+xGyHROjoDnyiXh7FXgC\nGC3pW2Z2YgKTFxBWAhea2cOSPkbIokjD/ZIGtNTnScnfJe0PWJx0jiKsricijsvJhFXklwlZVTcD\nnwJuINnK/xJJQ4FOCho63wH+lNTHIl8rfsxbHM9FhDTnQYSJ/UEp7WU1Po9KujO+dnxM6/4ggZ1i\nVkmqI3zOo+K2REGRyK2S/gy8C5yhUE+etlz1LUnjCcfzc3FxII2PkMNvG/C+goZHweZOhIyCsjCz\nq4CrJB1rZjem9KlA2gyo9fGSpJ8TdKQmx5KVNP97LoqZRmcD0wnlpd9N5aGZVcSNEKx4lvAl7kr4\nMfxki32+DcyM908Eru9ovyvxVuKx3JOQcrRLR/tbybdSjmWL/RcAe3e035V4K/G8PAy4Kt7/MCGt\ne5uO9r3SbiUey9uBYfF+f4IGgTra90q9EVbqFrfx3JHxeArYD3ioo/31WyZjvgNB0GkL4FzCytPO\nKW3uBdxHuHC+j5CGu3sKexcDzwA/B/Zt8dzTHX0Mi3w5MH7mp4EngaeAJ1Pa/DBh0vkyIbD56zT/\nD+JY/C/Qp5Xnxia0uRkwgRDEfiTe757yc1f8mAO/A5YC44GPtHjukQoan03id/JD8fE2ab6P0cYA\n4KcEYWDi/+FE/hXZ3JqQyVQ4p7ZLaW87YDTw3/FxX+BrKW1m+tsWbR4C3AP8K37XnyeIpqf53LOA\n24vGangaH6OdHYAvxPubApuntLcZodxnl/j4I4RSk1R+ZnmrmC4G0KQU/X9AJ2C2mU2QdAHhx+bm\nuAL2K8Lk9nXgRDN7tuM8rlxKOJZ/AHYjrJgAvGgVpMhZSbR3LFvsuwD4nnn2QKuUcF6KkBZ2GCEF\na4KZXdtxHlcuJRzLAcDlQE9CdH6Mmd3ZcR5XLpLmEFa8PkyYjJxLXG0xs5nxvLyEcF6+A5zi3/GN\nA+WgQB8zHD9OCCg9bSEjKqmtUwiLIStaeW5LKyMdWdIYM5siaTqtpMGb2XdS+PkMYULyFEUrtGb2\nQlKbWSPpeAsp0sXbjjOzGzrKp9aohjGXdISZ3dZiWyK1+KLXZzY+kj5hZn9WG8JvZvZYUj+zQtLn\nzexutSHmaWa/3dA+tUeWv21FNrchBN4FPGBmr6awdTtB16DezPaI/i4ys91S2PwmcBqwtZntFDOF\nZprZwUltRrt7AP8dH/7RgsZKUls7EjJu+lFUHZBmXldRAQLHcRzHcZwNgYIC/Y+Brma2o6RPARek\nuqgKqeFHsu6FWiLF+DYmOG8CL1ioAS7H1lFmdoukr7f2vIU03URIut/MktaJt2Xzp61sfpMQBP19\nAnuPmdle7W0r0VZuLdCqYcyzPJZ52JR0mZmdJqmhlafNErR/k3S9mR0v6Smaj72izd3LtHe+mZ0r\n6Yo2fCxbw0PSQjMbJOmtNnzcoo2XlmK7tUDGm8BTlrDjVJbnerT3sJntI2mRme0Ztz1uZp9K4l/h\n9QQh0geLbD6VMugwiqCzUQgC/Q9Bi2B6QntPEDInWgZoE4spVpIGgeM4juM4zobiPMKF3wIICvRx\nJSYNtxDqh5tdqKVgBiG190nCRf5AYAmwpaQzyskKMrNb4t+mSWGsTe5pQUU9DYskXUP4/E2ryClX\nQbsTavALK8jHAs8Be0gabGYlKahLOpwgUvfRFkGHLYCyJyGRH8e/XyakNf86Pq4jZCGloWLHXNJ2\nhA4umyoIoRUE5bYgoVp8HuNjZqfFv2mEHVsyKv7NpDbdzM6Nf0/Jwl60NSj+TStI2BrDCd0GCkGX\ng4BHgR0lXWBmv0pgM7NzPZKHTsJ7Zva+YufNmJWQdnV9OPCZQpaQpMmEdoyJAgTASjNrLaCaGA8Q\nOI7jOI5Ti6wyszfVvOV62gu/PuWuJLbDckIN7RIIvccJgnNjCKtPZZcNxYn86YQyroeBLSRNM7M0\n3Yw2JQQGinvMG2tXyJKwO3CAma0BkHQp8EeCEN5TZdhZTtAH+BJhQlPgLRIKeRVW5iT9xMz2Lnrq\nFklpy48qecyHAMNYqxZf4C0SqsWTw/gUkHQccIeFlnI/IExGLzSzReXaMrNCSe6rwLtm9oFCG8ZP\nkKJVeFxNvoLweS+PPo5LUxIYxf6Wmdl7Cq3+die0t/x3UpuEOWN/M3s5vse2hNaJnwHuJZSAl0vW\n5/pogrDlTpLuA3oBX0ngVzH3SPo+ISh2CHAmIRCaBtG8A8Qa0nXXmCbpXMLxKg7QJi6l8QCB4ziO\n4zi1SB4K9LdLOjRDvY9dCxfPAGa2NNZXP9sisFEOA8zsP5JOIkxsxhEmZokDBFmughaxFUFDpbAC\n2INQB7xGUsm17rG29wlJVydJW26HHpI+ZlEPK2ag9Ehps2LH3HJQi895fP7XzG7Q2n7zPwJmEia1\nSbkX+G9JWxEmZA8DJwAnJbR3qplNkzSEIKL4VcJkO81vyI3A3pJ2Bi4Dfg9cQ8jUSMr2heBA5JW4\n7XVJSbUIMj3XzewxSQeSrU7COMKK/1PAt4DbgF+ktHkF8KCk38XHxxBKBJKyG+G8+TxrM9csPk6E\nBwgcx3Ecx6lFRhJa/b5HuHieB1yU0uYDwO9iGvcq0tf+Lo0r5wWx1hPitm6s7X1dLl0U2gYeQ+iR\nvkpSqsyJWEfdmghe2XXURUwhtKBcQDiOnwN+KKkH8IcyfLvezI4nlEG05mOajI/vEtocPxt93IEw\niUhDxY65pJPN7NdAP0mjWz6fRGsj5/FZp9+8pLTfcZnZO5KGAzMsiEA+nsZe/HsEYZV/iVJEgiIf\nmNlqSf8DTDez6ZLKzppowQJJt9K85GdB/D4mzUxYkuW5XpQxsqSQMSLpojQr6YTsqNlmdnl8j05x\n2ztJDZrZVEn3AAfETackyWop4jjgY2b2fgobzfAAgeM4juM4NUW8yJsba5TrMzQ9lVCn+5RZJirQ\nXyektBbq7e8Dvke4eE5aX/1zQjuxJ4B7Je0ApNUguLXofneC6NbyNAbNbJak2wg6EQDfN7OCzXPK\nMJVp7XgxZnZHzD75RNz0Z0uh5B+p5DEvZEf0TOhHa+Q2PmTfbx5Akj5LyBgYHrd1SmHvUUl3Etol\njpe0Oen1S1ZJqiOcS0fFbV1S2vw2IShQmNT+Ergx/s4lPS+Hke25XpwxcjBBK+RS0mWMzCdkn7wd\nH29KyO7YP4VNgMcJneQ6A0jqa2YvJrS1GPgQIasjE7yLgbNRoqBcO8nM5hVtOwv4uJmd0cZrFpBz\ni0KFdmqfBK4ws4uLth8D/MXMlm4oX/JEUlfC6k/hH/6fgTPN7EWFdqX3At0IP4y/KYj1lGF/S4KY\ny/7E1jjACDN7Iz5/B6FtzkIzy+Oiw3GcKkfSfODLVkbbuBJs3kvo451aoDAGMf6QsdBaW+/VOcv0\n7phBsdDMUl1ES/ooYVW+uCPEvSltbtHC3usp7Q0k9FvvXmTzlwltVe2YZ0WW4yNpM0J72qfM7K+S\nPgLslrK+/3OESex9ZjZZ0seAsyx5y8hNgE8Bz5rZv6PI3kfN7MkUPg4gaE7cb2ZzYunL8WY2OanN\nakCxe4GkiYQxv0ZFHQ0S2lynC0Jr28q0OZLQTvll1uoPWNJsmThn2J1Q7lKsQZC4m4pnEDgbK3OA\nEwkpowVOJAifdAgK6r/7mNnOrTx9DGEFZmnG7ylCIDALNe1y+CGwOSEgs0ahr/PvJX2a8OP1eTN7\nO6Y8LpR0u5k9UIb9WcBiM/sahHZBwJXA0fH5HxEUldOmejqOs/HyNvCUpLuApp7zSS/0I88S0m5v\np/mFWtmp1/G38wNJW2YcxNiScHH6ubjpHoIwWGbvAewC/FcaAwrK3icQVM2L62oTBQgkfQs4n9Bl\norA6ZsDHUvh4LkHNfQChNvlwYCFhdbVs8hpzAElHEhYouhdtviChrez7rucwPmb2DvBbSf8lqW/c\n/Oek9qLNeyk6B6P+ROLfjCh2+Bywa1xASU1cbPpO0ePngFTBAYWOANOB/kBXQtbEihTlU8Tsm4ms\nG2BLOuZ5ZIyskLRXoUwhXse+m9LmKML18Wsp7RQoa5GtFDxA4Gys/Aa4SFJXC+1J+gG9gT/Geqd9\nCGlCra5eS3rbzHrG+18BvmhmwyT1IgjcFP7RnGVm97V4bXdCStPehBY9o82sgZCS9NFYqzbSzP4Y\n99+foN57YKyZOjaaOk7SDELa0HAz+2NcXZhEuCDpBvzMzH7e4v37EQIjDwKfBo6QNK61zyzpeeAq\nQgpaF+A4M/tz/JzXxGN2P+HH9tNm9qqkkwn/eLrG9zjTosp0tLkZcAqwY2G7mV0h6VTgCzFyX0jV\n6hJvJacyKYjufJpw4VjgAuBvkj5uZk+b2XwF5V7HcZy2+C3rquynTat8Lt66xlta8ghizCakpB4f\nH3+VIJrVWp/zktDavuuKf/8JjE3hI4TA+cczSNkv8D1goJm9mpE9CArpewCLzOwUBWX3X7fzmvbI\nfMwlzSQEzQcTBNa+AjyUwsebCIH6W8imnSfkMD6SvgT8hHAt8wrh2u3PhEBJUpu9CItNzYItZpZI\nEE7SNwgTxj6EtPP9CNddiQXmcph4A1xCWGi7gXB9+zVg1xT2IPzunAtcTDg3TyHdhP54QsbIj2M2\nxkcorxypNc4CbpC0nPD7th3Nrz+T8HcyDMia2T3xt2efuOkhM0tVbuABAmejxIKq6kOEaP7vCT9q\n15uZSaqPz3cC5kvavYxUrmnAxWa2MEaj5xGiqcV8O7hgu0n6BHCnQiucLwG3tkxLMrM/Sbo5Pvcb\ngLDwT2cz21fSEYQf0C8Q6t3eNLN9YmT0Pkl3xuhwMbsAXy+syrfzmV81s70knUn4B/2N+H53m9lE\nSYfF90VSf8IP4wEWRI5mEOrwildLdgZetHV7LD9C+Gd1Z/Tj0bjvz8zswfUe9eYMAB4vDkrEVZdF\nhLF4ugxbjuPUKFbUGx5A0vaE/xVpbJ6fyql1aS2IkZadzOzYosfnK53IWl59158lBJCzChD8jRTC\nYm1QaHe3OqbGvwJsn9JmHmO+v5ntLulJMztf0k9I0ZqPHPquk8/4XEiYcP8hpp4PBk5OafNq4DpC\nCeXphDr/f6WwN4owsXvAzAbH68YfpvQx64k3AGb2jKRO8frrinjdNT6FyU3jgo7M7AXgPEmPAv8v\noX95ZIw8HMfk43FTFp0RCplmc0mZaQYg6XhC5uwCQhBjuqRzCnOKJHiAwNmYKZQZFAIEBTGZ4yWd\nRjj/P0KYcJYaIPgCMEBrBWa3kNTTzN4u2mcQIQ2LuBr/AiHKWq4gUOEC4VFCGh+EHtO7x6wGgC0J\nwYCWAYIXWqTsr+8zF79PYQVpEEFkqiDC9EbcfjBh9f7heAw2JYEoSvzn8ilJHyIofg80s8Xl2nEc\nx0lDXA08DqgjrDL+bv2vaNdeA62r+SdaDTSzqyRtCvQ1s6yCn+9KGmRmCwEkHUD6lFkk7c66Kedp\nJrrvELoYzKf5RXTSlfTxwJ8kPZiRPYBH4v+xywn/Q98mrP4mJq8xj3/fkdQbeI1wLZCUzPuuk8/4\nrDKz1yRtImkTM2uQ9H8p7AFsY0FAc5SZ3QPcI+nhFPZWmtlKSUjqFq8bP97+y9ZLphPvyDsK+lKP\nS5pCENhLG3R4T0GD4a+SRgAvkUIAM4+MEYAYEMjyGvXFeMsq06yeUML8CjT9X/sDIZs6ER4gcDZm\nfg9cLGkvYDMze1Shbu57hC/SG5KupHk9XoHiC7zi5zcB9jOzlXk5XUThH+Qa1n5XRShPmNf6S5po\nSkss4TO39j5tIeAqM1tfxPhvQF9Jm5vZW0XbP03ozdtETAFrIKSENf34xpW8W+LDmWY2s+hlSwnB\nhU0saivEfzB7AGkuThzHqQEUVMK/DAwlBG9/SyiJ6pOB+e8V3e9OKBlLLAQn6SiCEndXYEdJnwIu\nSFPrTVj1/KWCFgHAG4RV0MRImk0QyWqpF5AmQHBzvGXFz4G7Cf3MM0mLN7Mz492ZCuK4W5SRkdgq\nOY35rTGQ8SPC/0kjXS/3zPuuk8P4AP+W1JOgGXC1pFcouj5KSGH1+B8Kug7Lga1T2FsWx+Ym4K64\nIPNCSh8znXhHvkq4Bh5BaO+5PSnKkiKjCKUv3yFkewwmlC4kJY+MkcxpL9NM0nQzG1mGyU1alBS8\nRsrgjQcInI0WCyJ4DYR6yzlx8xaEfw5vxnqdwwkpOS15OabTP01YSS9MdO8kCPP8CEDSp8ysZWrm\nHwlp93fH0oK+0c76ovVvEUT92mMecIaku2OK/67AS2a2vn94pX7mYu4j1HJNlnQosFXcPp8gNnix\nmb0iaWtg8xihBsDMVki6Cpgq6fSY/v81gvDQfTGyuSoGBzYliskUv7mZ/Z2g6rsOMcVtEfAD1gos\n/QCYb8lbxDiOUzu8Qqi//gFBad8U+oWnxswebbHpPoVyt6ScR2jztyDaf1xBNT0N/zGzPWJKPGb2\nnxhITsN+ZjYgpY1mtCwByYAuZjY6Y5vrdFqQ9DlL12nhPDIeczO7MN69UaGXfXdLJ4KYed918hmf\nownXHt8lXJdtSUJhxiIuisG1swnZoltE+4kws8Jvz3nxmnVL4I6UPraceH+elEFA4Bgzm0Y4nucD\nSBpFKL1NSj8ze5iQeXNKtHkcQd8qCXlkjHQEB7S/SzPukDSPtXOdEwiiqYnxAIGzsTOHkDJ6IoCZ\nPREnl38miITc18brxhG6CvyLUDtfiLx+B/iZpCcJ3597CasxxcwALpX0FGHlaJiZvVdUltAa1wKX\nS/oOQTyoLX5BSOF8TMHgvwhCTm1Sxmcu5nxgjqSvEtIl/wm8ZUGk8AcEHYFNCJH0b7NutHs8IYjy\ndAwC/Av4bLwQ/whwlYIOwSYEbYhbKY9TCTVWfyP8c36Ytb1+kfRHQl/qnpKWEUQe28u6cBynNhhP\n+J8wg/A7d11WhmPQtMAmhMypLdvYvRRWmdmbLf5/pF1dvRHYq4VOzG8IviblfkkDLLbqzQJlL7R2\neyy1u4XmKexp2ugVOi0sJWThQYpOC5E8xrwgiNyPtYGMxO0YyaHvOjmMT4vFk0wCTkXXK28SVrxT\nE6+HtmVtueh2hBT0RMRJNxRNvDPg66wbDBjWyrZyGE8QPWxvW6lknjESr7VPIgTELlDQNtjOzNIE\nfjPFzM6RdCxrAwuXmVm6cjmztIK9juNsbCgIIK4xs9WSPgtcagl7viq0d7w92rgsSz+j/Y8Dc4Hv\nmFmqiKnjOLVDXJU9kaA/sAtB1Ot3ZvaXFDafY62a/2rCBf8FhXr/BPZmETK3xhHKFb5DWGltGZgu\nxdYnCLW4U2iu7L0FcI6ZpVF2P5BQDvBPwuQuVV/vaHMha4XWjiIKrZlZojrqODYtsRQBByQ9Dexu\n2XVayHTMi2z+CtiJoJLfFMhIWt+vHPqu5zQ+XyZkKP4X4ZwsnJdpWvP1Ar7Junobpya0N5Jwnr9M\nUblGyu/OroTveFNmSzRadgmIpDpCOdYgQoZsgS0I14kHJ7B5OHAEIVO1OEC7BTDAzPYt12a024Og\nt7EJazNGfp0yCHgpYVw+b2b9JW0F3Glm+7Tz0sRIeszM9srLfkk+eIDAcZyWxJWb6wk/su8TWhmm\nEeFxHMepWCQNJAQKTjCznTvanwIKbWPrCQK1IpSZXZhEB0fS0YSMsy/RvLb/LeBaM/tTCj+fAUbT\non68uPwsgc1HzezTkp4ys92KtyWwtQmhjW9m2SLR7u3R7tvt7ly6zczGvMhmI2HilclFfwwIrUMU\n7UtiL6/xeQY4yswaM7T5J8JE+VHWBlswsxvbfNH67T0DfMbMXsvGQ5D0BKEld0sfW5ZAlWJrB2BH\nQjbPuKKn3gKeNLOyNVYk7UEoI72A5sKJbwENZvZGqy9s3+5kMxvb3rYybT5modPXIjPbM257wsz2\nSGqzhPdseq8S988+EOYBAsdxHMdxapF48buLmf0hTsw627otWkuxs16xLkun5p8ZMZV5rJmlbaPW\n0u79ZvbZjG3+ibBq+RuCeN1LwCQzS6TwLukRM9s7I9+mEzJFPkoQyM2q00IuSLqBkGX3jwxsdQKW\nmNkn0nvWzG5m41Nk8z4zK7eeuz2bjyfNqGzDXgNwSJKJ9npsJgqktWOzB2vbeu5KKOO83VK0/JPU\npfD6uDK/vaUQ+Wxt5V2htWeabIwHgf2Bh2OgoBchg6DkCXwrNnczs6fW8/wwM7uyDHvZB8I8QOA4\njuM4Tq0h6ZvAacDWZrZTzJyamTBl9or1PG0p0o93JXRG6EfKVOEimw8lTeFdj80ZhJr0lvXjiQMj\nkvYBGqPdCwnpwpPNLJGAmaRJwKuElOamuuQk6ceS1iv4ZikEFrMcc0m3EAIZmxNWbB8ig5IASb8n\ndFTKTBg44/EpBOwOJNTz30R25+VFwJ/SljRKKggyfhIolEoW+zg1gc2CBsp3CPoQvyM7vY1Hgf8m\niFbfRygved/MTkphcwEho6kzIdvhFcKxLUv0UdIZwJnAxwidtApsDtxnZok7GUg6iaAzshdBx+Ir\nwA/MLKlOQkEnqxtwJXC1pRMMzScQ5gECx3Ecx3FqDUmPE9TiHyxKHW1KZ68EskwVLrJ5MdCFdSdi\nidvEthEgSRwYaeM9OgEnmtnVCV+feY17ke0uwEBCV6FUwn0Zp4e3WgpQZDNpScC9wJ6EgEPxOVQR\nGgR5BOwkvcVafZEehPLLwup52encks5d3/PWTiu8NmwWa6C0YjKVnkMh1X4ksKmZTUmbTVFIpZf0\nDUL2wLlJVvwVukpsRStlEGmCIkX2PwEcTDiu87NYqY8B6VMJHUEeAq4ws7sS2ppG1oEwDxA4juM4\njlNrSHrQzD5TdJHaGXgsZTrqlgTBsc/FTfcQRAoTrRDllCrc0MpmS5OVkCUK7Re/TUjfvxm4Kz4+\nm1DzfHQHugeApJnAdDNbEsf8fsJkfmvge2Y2Z70G1m878zGPdrcjBMSMkC79zxS2MtUgcJrOezOz\nt9rduQNQ6IZ1JkE0dHg891MFVBW6fR1KWJmvN7OH05YERLv/RfPOJ4kzXdS8M02Bt9KUVhTZ7kTQ\nhfkp8B9CAOL75U7s8wjQeoDAcRzHcZyaQ9IU4N/A14CRhIvfpWZWn8LmjYQWcIUU868Ce5jZejUK\n1mPvPDJOFc4SSWPiSmKhJr8ZSWrxY/r6G4RJ98GsFd4aZWaPp/C1C3AGa4M3C4CfJ7nQl7TEYtcH\nSWcBB5nZMXESfnvK+uTzyD49/BsEMbi7CcfyQELganYKm9sCBSX3hzLInMhsfIpsfozQhm8/wvl5\nP3CWmbWWrVCO3S8T9DEM+KOZ3ZTC1t7AFYR0eAjtE09NmSXUnfB71uQjoXwqjdDlgYQg3X1mNjke\n27PS6G1IOg74X2ChmZ0Zbf7IzI5NaO8oYCrQm/Ad2gFotHQdWp4Htif8JolQ8vRPQteJbybM7Nmd\n0JXlSEIAdJaZPSapN3C/me2Q1N+s8ACB4ziO4zg1h4Jy+nCaq8X/wlJcGLWWcpsmDTePtHhJrbYJ\nNLMLEtg6ysxuaasmP0ktvpp3LegE/APom2ZyE239glBaURy8WWNm30hgq1jRfC5wQ0FUTGUqkLdi\nO692jPtbVMqXtA2h1jup4OPxwI8Ik3gRatPPMbPfpPAxs/EpsvkA8DOgkNFxIkE74TMpbM4Adi6y\neQLwNzP7dkJ7TwLfNrM/xseDgBkpM5muJ3QE+HXcNBT4kJkdl9RmNRDLcz4P/CFmhQ0GTjaz4Sls\nXg78xszmxceHEtqPXgFMS3IuSboHmEX43Xi3xXNfNbNflWgn8wBtgc7t7+I4juM4jrPRsSkw28wu\nh6bJ6KbAOylsvitpkJktjDYPIPTlToSZ7ZjCl7ZYUXS/O/BFghhg2ZjZLfHudS0n8JI+nMy9prpu\nzGyNpGVpgwORfax5a7K744QiCf+W9EVgOXAAIdBELFPZNI2TOY35a4QJY4G34rak1BOO5ysACsru\nfyB0nEhKluNTYLMWk61fSzonpc3PA/0LgURJVwFLUthbUwgOAJjZQklpOxoMNLMBRY8bJC1NYkjS\nzet7PonuRFtByrUm7cJybUZWmdlrkjaRtImZNUj6v4S2CuxnZt8scu5OST82s29J6pbEoJm1qQ1S\nanAgUvjdfiSJH+vDAwSO4ziO49Qi84EvAIUe9psCdxJaWiXldOCXsS4dQlrqehXvW6OwMhTvH2dF\nitmSfni74CgAACAASURBVGhm30/qoJn9pMV7/ZiQPZGGhySdZmYPRJvHEgTDdk1gaw9JhVaTAjaN\nj9P29l4jaScz+1v08WMUiQCWybcIdcPbEdKsC/X8BxPU6MsmzzEHngEejOUbBhwNPKmopG/lK+Zv\n0qKk4DVgkxT+QbbjU+B2SeOAawmf+wTgtkJdecKyjWeAvsAL8fH2cVtS7pH0c0JGQsHHBZL2ij4m\nEQ99TNJ+Rd/Hz5B8EvlZ4O/RvwdpXQCxXFa0sm0z4BvANoSuJUn4t6SehJKKqyW90sZ7lcM/JI0l\nnEMQxuflGFD+IInBqL3QcsX/TcIYXVTI9GmPQoA2SaZWe3iJgeM4juM4NUeW5QBxde4aYI6Z/S0K\njmFm/1n/K9u019TPWy16e7d8nBaF/uMPm9nOKWzsBswmpJz3Jlzkf8PMlmXiZOvvuZWZvVHG/gcT\n0oKfJUxydgBOMbPWRBtLsdeJoItQdju6NuzlNubKWDFf0o+A3WmeZv+kmY1N5mH24xNtrk9rIFHZ\nRkwP34egPE+8/whhglf2irpaFw0t9jFJe8tGQuvEgjhfX+BpYHW0WXL5QjzPDwHqCGM+l/A7lyZr\notj+5sAoQhbO9cBPkupZSOpByNjaBDiJ0Br16lIn3G3Y/DBBeLag53AfcAFhvPuaWdnBIQX9mzWE\n/xkQSl82I2gbDDKzo8q0dxdwnJn9Oz7eCrjWzIaU61sBzyBwHMdxHKcWWSFpr8IKnaRPk7wcoI5w\nkXenpNcIE6frCMrUSVAb91t7XJ7h5qtXnYBehAvexJjZU5ImAL8ipK9/Ls/gQGQ+oTf5eilajX8W\n2IUwcQJ42szea/uV6yeWP5xIEEXLgtzGvNwAQFtI6mZm75nZOVor1AdwmZn9LqHNXMYHcivXWF96\nfNmY2eAs7UUOy8qQma0B7gDuiCn1dYQMh/PN7JKkdmMWx2jCRP4qYK9yAn5t0AUolFbcZAm7xxSI\nwZFpZnZSG7skzRz5QouA31Na20by5AT2ehWCAwBm9oZCJ4fEeIDAcRzHcZxa5CzgBknLCROw7Qgr\noWVjZk8ATwDjJe0X7Twg6W/ANQWdg3JMtnG/tcclIWl7M/s7QXOgwGqCGneqCYWkWcBOhBXGXYFb\nJU03s5+lsdve25a433jgBuDGeFH+ZIY+3CfpEkIwqCmVOWFaeOZjXkBBKb+esCrfdO2fQAjvfmAv\nSb8ys68CifusF5Hb+MQJ3pFAP5p/7sRBHYutHGOWULHNRF0mJH2I0EmlpY+JBebM7IW4irx9C5tJ\nzktiYOBIQnCgH6G8JlFAKNr7EfBl4DJgNzN7u52XlOLfzwktA58jZqBI+h1wupm9n8RuDALuIKlr\nUhtt0EnSvmb2EICkfQjBWgi/yeWyRlJfi+0cJe1A2t8MLzFwHMdxHKcWUWitVrximbq3dZHtgwg9\nwweYWVliVpLWECacorlwooDuZtYlgT9/Bg4zs+dbbD8F+IGZ7VSuzSIbZxFW2grCbVsCUy2FengJ\n71lS2n1MvzVCKvgfWz6fRGStyHZr6eFJ08IzH/Mi208D5wBPUVQ3bWYvtPmi1u0sBn5IqBFfR+zP\nyuzfHm3mOT63AStZ93MnzqiQdBoh42ZltFnQxkjUZULSn4AHWvExcV25pAuBYcDfWDtRTHpe/hIY\nCNxGSFtfnNSvIpsfEFp4rqb5RDaRzoikCwgBytPN7K24bXNCB4sXzOx/U/j6S6A/cDPNg4CJg0wx\nIDAb6En4zP8hlFgsBY40s+vLtDcEuBy4h7VdRU6z2HkhkY8eIHAcx3EcpxaRNJCQktq9sM3MfpnC\n3j6EVbZjCStZ1xJaWaVRjF/f+5Vchy/pCOD/CBegf43bxhNaoB2+AUoCMqWMAEFXQinCrwgiaM0o\nrAhvzEhaaGaD2t+zXTuDCCnhxxMmTMWYmZ2awGZu4yPpyQRZEu3Z/CvwWTN7NSN7mWqKRJtPE1bm\nU696x8l8YWKcejKfBzFwta+ZvdNie0/gATMbmMJ2q/odWZTtxEAqaUohFNr1fgW4G9gvbn4g7fnp\nAQLHcRzHcWqOeOF3ECFAcBtwOLDQzL6SwNYPCWUFrxOCAtdtiAl3uZOLKARXSMX9BrAvIWCQqvZX\n0i6ErgUtgy2JVlVLfM9FZrZnGfv3MrN/ZezDtoQV9d5mdrikAYTJ46wUNgvp++vdVqbNgwmBq/mE\nlVsg2Yp/tDc8zWdsw2Ye4zMZmG9md2Zo8w7gyy0noynsfZfQSeVWmo9NopKFaPNG4IykYn/VxvoC\nQZKeMrPdNrRP6yMGBs4FPhc33QNckDRQIOkRM9s7K//ANQgcx3Ecx6lNvgLsASwys1PiZO/XCW2t\nJKTv/zUz70qjLPE6M5sfSwoWAH8CPm9mKzPw4wrCBe/FwGDgFFK0vYu140vM7BPr2e3gEm39n5md\nBcyWtM6qWJoUduBKwmevj4//QtAjSDN5/mTxA0mdgU+nsAdhPD5BEHErpLEbZWoISPq8md0NvBFF\nCpuRsMQgz/F5APhdXGVdRTar3uOBP0l6kOYT+qSaAe8DPyKcQ03lAECa4NpEYFFcWS/2Mc2xrGQs\nai609nuYqBVhAUm9gDGE72Vx8LPsco0iZgOLCZk4AF8l/I6s850qkT9I+h7raqEkDjJ5gMBxHMdx\nnFrkXTP7QNLqKDj2CkHUKwlLgN0U2v2tQ9KV2hIoOQ1U0ltxfwHdCBPsVyRlMWnaNAYfFOvaz5P0\nKAkV36M42NPFwlut7FPqxe+v4t8fJ/GlHT5sZtfHUg3MbHXUEiibaOP7wKaSCt0vRJhAXpbSz33M\n7OPt79YuBxJSmVtrw1Z2wCGS5/hMBT4LPFXQx8iAnxOOQTPNgBScDeycVclC5CpgMtn5WOlsCTxK\n6wGCtON+NWHi/UXgdODrQNpMl53M7Niix+dLejyFvYK47reLtqUKMnmAwHEcx3GcWuSRqCB+OeHi\n8m2CSnsSvrie55JOnDLFzDYvZb9ydA2KeC+u0v5V0gjgJYIAVxq2ApZIeojmq2JlrYKa2aPxbx5a\nAyskbUOchCh0sEiUJmxmE4GJkiaa2fgMfYSw4j3AzJamMWJm58a/p2TjVu7j83dgcYbBAYAuZjY6\nQ3vPsFaQMiveMbOfZmyzYjGzfjma38bMZkkaFc/ReyQ9nNLmu5IGmdlCAEkHkLzFbi7tPF2DwHEc\nx3GcmkHSAWZ2n2JP97itH7CFmWXZAi93yq3DL9Fm2aJpUZyxEfgQQeF+S2CKmT2Qwo8DW9uedCIZ\nL8LPY22rv1Tq89HmXsB0gsr7YqAXcJyFtpeJkfRR1m1JeG8Ke40ElffnCCnnhc+eSMBPoa3csazb\nmu+CFD7mMT5XElZRb6d5qn0aBfofAs8Dt5CBZoBCK75PAg1kU7KApKnR1s0tbCZqc1gtxGyok4Ad\nzexCSX2B7Sy2E0xo8wEz20/SPEJ7x+XAb/4/e2cer9tY9//356iMnVBUhCSRCuFkjNJTKvQYkgpF\nUlKGPA0P5WeqlAZjUpIpUkioTJmnDEfG6DGk9BSeVCgyfn5/XNd99jr3uffe97rWWuxz9vf9ep3X\n3mute33Wte+19j739b2+38/Xzbq+rEzK8ngR6Tn/G7Btk78brRvuRoAgCIIgCILJgqTptlftyD28\nNdO6YerwJS3cpM50FM3Wgw6lKPXzXtb2ryTNB8zl3MasQOt24NOkbJEZZQBu0GEiT5SfJrXKFPA7\nYEov8FSo+VXg/aSWZ71xukn9eH4fZ8E12xxW9M4hZUr0v5ffLBognd2f1h3oJf1+sGRxm8MPD9rv\nZm0OW2u/OTsh6Tukkor1bb82+xKcZ3taA82NSO03lyAFA6cC+9ru7+JRoj0VwPbD4712HJ3WDHdn\naEaAIAiCIAiCyYKkXwM3kZz8T+4/3nDl7myyaZ3tlbLB3G9KXbQlnQHsPFodfhfUCZxIGvNDcsNJ\n7Q7Ax4CFbS+TOyUcaXsoc8IBelfbXr10PKNozvJeNQ08KbWoW7FJkKGi1TMVRNLStn9fObZZqTeG\npFvcoHXcKJqt359RrvM82091fZ0hxjF1tInhWN4bwej0fveqQU5JN9pe6bkeG4CkMUtTSjNbJN3M\niOHuSj3DXdtvL9GD8CAIgiAIgmBysRHwH8AGpNXKNmnNtC7TSh1+h6xJqvP+EXA1NbsqjMMnSW0Y\nrwawfYekRRvoXSTp6yQ/iEZp15JeBixOMhR8IyM/91RgvgZjBLib1G2gcYCAZPzXC1acVvke4IuU\ne2NcKekNtm9uMrg+2rw/l9teJ3/f3yLyGmZ+H4bV/JztA/P3W9g+pXLsK7b3rCl5cW8cki7oC3z9\nrHCMvY4Q5Jr5QyrHjrW9bV3N2Ywnc+ZVzxNkEQpNGiUd1tMZRGEgeSgfmALaNNwFIkAQBEEQBMEk\nwvZfJZ1CKgMoTuMdhdZM6zJ7tTKqetSZ5L8MeDvwAeCDwC+AH9m+tYVxPG77iVRWPKPdX5O0197q\ndLVfuIGStOsNgG2BVwDfZOQ9e4TUiaAJjwI3SLqA5jXpGuX7Qdt1WAfYNqfbN/Y0yLR5f+avfN+f\n6VD6c78fODB/vwdwSuXYO6l/36vjWHiMY3VYt/L9h4FDKttN7s3swqHA6cCikr5MamX7xUKt61ob\nVaZJacs4tGm4C0SAIAiCIAiCSYZTG733k9qgtcl/kYzBlpF0Bdm0rlTM9iWD6vBL9YbxNSC1Pxx2\nfE8D5wDn5Hr8DwAXS9rX9uGl48xcIqnX9u/twE4kY7gibL+14XiqWscBx0na3PZpbelmzsz/2sCj\nfD9ouw7vanDuQNq8P3Tzc7cdbHm2xzjHY/tEpfaqbyP9/JvYvq1Qa6jgsaTDbO9cR1vSK0h+Bmvn\nXZcBu9r+U71RJmzvlL89MvuDNDbcjQBBEARBEASTkSskHU7qcV1N3y92+rY9PbvvV03rij+oV+vw\nSS70iwNHUmMS3ze+pyX9bqwa57qmhzkwsCEpOPBKRlbxmvLfwPakXu4fJ5lvfb+uyIC6XwN/JZl4\nDTKcq8MrckrvI6TVu1WA/7Z9Xqlgy1ktr8o+Eap8T96u3RpNUm+lu2cUaeAfbmBo1tH9WVDSpsCU\n/P1mvcuRnONLaHtCv2j+2VX5nry9SIEewJRszDel8n3v709xYHF2IWds3Wr723l7qqTVbV/d4WXX\nHv8ls3AMcBIjweOt874iz4D8rF9o+yHb90haUNImtn9WogdhUhgEQRAEwSSkC6dvSReT2lXdk7en\nAd8vNcmSdAO5Dr9iunVzqelhPv9S4I2kWuxGvgaSjielcP8SONn2LaXj6opRnOwXJpUJ7GN7FqPK\nGto3ZlOwDYAdSenMJ5SYFEr6ie33ZcOxWT6cl6Tva5RWkRXNWi0jc0mBmTnotQBwI/DR3nNfU7P1\n+yPpmLGO296uQPNp0u+LgHlJpSDk7XlsP7+m3sAOC5Ux1k5Hl3QPqeZ+UFCyuNPC7IKk3wCr9AJW\nkqYA1zUxDR3imiVtYW+wvfJ4+xrqNepGExkEQRAEQRBMOlpOae5xACnd/lDSav+7gdqTkQpt1+FD\nu74GW5MmTbsCu/TGyUhN+tS6gqNNkHvUnSiPNtHKq+G/YkAnixr0fuB3A8fbvlWVN6Emu+avGzUY\nz0zUDQAMoTcw6yCv0B9JqsWvq9n6/SkJAAyh2eoKfBf16LZf2bbmbIaq2SzZuG8iznUflLQ1ydwV\nUvZVcTtPUsZIP41+7on4pgVBEARBEHSKpP83aL/t/Uo1bZ8raUfgfFKa9Btt31eqR8t1+HmMrfka\n2B70wXQWJC1k++9DyvYmyJ/MX0/IX7emeXBkBrb/1mAy32O6pPNI6fp7SHohha7ptv+Sv/4htynr\n9W6/xvYDTQYpaW1gH2Ap0mf/XgCnlRVl2z+VVGoGN5pm4/uTy182J5W+zJjzlPyOV8orBlJQmnPo\nOHq1TSkljbmS3aR8ajbhbkm7AN/J2zuRuoJ0Sckz+hGSB8FBpL9pV5JMT0u5TtK3gG/n7U/SsENP\nBAiCIAiCIJiM/Kvy/TykiWmRoVUPSXsB7yO5ia9IMuz7L9u/KJRspQ6/b4yt+hoMyQUM2bbN9h8A\nJL29L0X285KuJ70njZH0VmDYoMVobA+sDNxt+9HcwaLR6rWk9wFfJ7XBE3CYpM/aPrWB7NHAp0mT\nhiZtNwciaQEGr2I20Wzj/pxB6iIyneZtI6cza3lFDwN1gy1tt1iF1FFjNEo7QsxO7EjyQPki6ee9\ngPS3rhiN387zkDGOjcYr+ku6chDv3gItgJ1JmWE/Jv3c5zMSYC0iPAiCIAiCIJj05NXGc22/pYHG\nwcAeth/L20uRPAiKzKe6oAtfgyGuWbseNo/zk7avyNtrAUfUrdMdpWRhYeDPwIds315Hr0973UH7\nbV/aQPNG4O29rAGlXu6/KvWxyBpX2159/FeOq9NvKAiwEPAe4HDbRxVodnl/brHd3+ZwQiJpPtuP\njv/KYBBKHVqOt71Vy7qXAXMDxwIn2m7StranOYtvQYmXQZdEBkEQBEEQBAHMR+prX4zt3SS9VFJv\nNf6akuBA23X4fXThazAeJfofAY6R1HOd/0feV5f+mn4DD9quZpDULYPo8dnK9/OQAi/TabZSO6Wv\npOBBmq/OXyTp68BPqaykF6Scv7Bv28B9wNbjrLKOxVD3p5Arh1gBrkUue9gKWNr2/pKWBF5m+5pC\nvTVJGR4LAEtKWgn4eKV1XYnmfMDuwJK2PyZpWWA52z8v1Zzo5A4tS0l6ge0nWtR9c37/PkIqKboG\nOMb2+XW18r1eC1ikL9g2lQnWZSICBEEQBEEQTDr6JuFzkVqLFfsPZM0tgG/QPD28yzr81n0N2iav\nBq6XOwS8CKB05a5XsjAEQ5dBVLQ3rm5LWgI4uI7GAM6RdC4jBmZbkkpLmtDLHlitsq92ynlHxnoz\n7k++7y8FXpzLNfAo7TiHZB1g29x94XFGvBeaBNiOIPlMrA/sT2r5eBojnhF1OZjUseFM0uBuHC0z\npQbHkAJVa+Xt/wVOAebYAEHmblL72jOZuUPLt5qI2r4je2xcRypheGMOFO1p+6c1pF5ACgQ9j5mD\nbQ8D720yxraJEoMgCIIgCCYdOf2/x1PA/bafaqjZanr4oNT8pqmoufXX9sA7SBOmc0llEJ19ICws\nMbjG9pu6GtOA6zVqC5Y1ROrDvkJDnc0Z6a9+me3Tm+i1jaTXAJ9hVvO/Ji1Cdwb2Bu5nxOix0WS+\n73d8BjWCRoM0r7e9SvV5UW53Wah3te3V29LL519ne7U2NWcHNErryCaBLUkrknxFNiTV9h9t+3pJ\niwFX2R74jI2juVTFa2UKsIDth0vH2AWRQRAEQRAEwaQhp98+WfmAthypTd09QNOJWNvp4ZK0dl8d\nfqN0c9vPAEflf43Jq7632l5+jJeVGCBeIelwkvFWdTWwKyf22gESSYdVzptCMixsPD7bp5FWpVtB\n7XfsOIVkbPl92jM93JWUBt+k3Vs/XQS9nszPvGFGELCoc0Xm3vx7bUnPJ70PjcxSgSckzVsZ4zI0\nN2mc8HSR4ULqNnA0KVvgscq1/tygc8cBSt1ungauBaZKOsT21+uI9P39mYWSThg9IkAQBEEQBMFk\n4hzSCvodkl4NXAWcCGwkaXXbTVzy204Pb6sOvzNfg1z7+ztJS46WDl63BVymZ0ZYncRONCf26yrf\nPwX8qBfMqYukRxj9/jwO3AV8wfYFBfJtd+x4yvZ3xn9ZLe4ldRxok18w0nlgHlI7yt8Br2ugeSgp\nkLiopC+TUsObtHjckeSEvzipFOA8GjrQk1pangMsIelEUjbKtg01JzySLmLA71CTzBbb641x7ITR\njo3DCrYflrQVcDapM8t0UveSOlw3/kvKiBKDIAiCIAgmDVXHfkn7Awvb/qSkFwDTS9z8s/fAWbb/\nLWkzUu0zNEgPz6uUu9g+qGkdftbrpcIO9DVoEhiRdCnwRuAaZl7tf8+oJ00w2igx6Ir8LLyeFMha\nx/Y/Guo16tghaR/gAdJEuWp6WBII6mkeDSxHmtRXNRvVj/ddYxVgJ9sfbaizPCkrRsAFtouDLZIW\nsf1/TcYziu6LgTVIY/y17b+2fY2JhqRVK5vzAJuTglmfa6A5KLD6EGly/qWSjBdJt5ICoCeRun9c\nMtFKQCJAEARBEATBpEHSTb3VcklXAF+3/bO8XfQhTdLppFW6XvbAubYbp153UYffka/BwFU225c0\n0HwRqSa9Z9h2CbBfSZBkmDIISQsPO8EdIxujDRO8sa67I/CxJvcq6ywEXGv71YXn/37Abtt+VYMx\ntV4/Psp1GrX0lHQocLLtK1saz/+Qypt+DJzWNPiTNc8iTT7PdDvdIGZbmv4NlXQgqRTgpLzr/aSO\nN/eRgnUbj3buGJq7AJ8HbiR5GywJ/ND2m2vqnMXYWWHFAdoIEARBEARBMGmQ9EPSh7v/JaV2Lm37\nUUkLApc0MBubCmxK+gC5MnAGKeW8yST5IOD5tFiHL+kG4JN9vgZH2F557DPH1V0KWNb2r7LPw1y2\nH2mgdxpwC3Bc3rUNsJLtzQr1zgB2buiK39Ma05isiQneENcuMXwc1LFjf9uHtT2+pkhaAMD2P1vQ\nqraSmwKsSsoY2qCB5odJpUPLkTIoTrbdKNVb0ptIfzc2AX6bNX/YQG+9PMYNSTXuJwM/t/3vJuOc\n6EhauLLZu9+H2l6ugeYswdOKUWWjYFOf5vNc0yR3tMBsj0b/90SAIAiCIAiCyUI279oVeDnwA9s3\n5v1rAcs0qCutXuPFpNrknUgTkiUKdS4asNsN3eJXIbVBm8nXoGHQYQfgY6SfdRmlvuFH2i4xJ+xp\n3tAftBi0r4Zea2UQ2bvipf1+A5LWBu6zfVfJGIe8du1sDw3o2AHMXbq6nM30PsFIdsfFwHdtP1mi\nlzVfTyp76U3y/gp8yPatDTSrWQlPkVbqT7Xd2LAvT0Y3J03sl7S9bAuaLwG+BWxle64W9OYieXbs\nALzT9tSmmhOZnNnS85x4Cvg9Kevo8gaaNwI72L4mb08jdX1ZqW6wTtLWtn/YF7iaQZNymvz/2pK2\nf1eqUSVMCoMgCIIgmDRkJ+qvDth/JTAjbVjSabY3r6uf07c3I63gLQyc2mCsby09dxB5wrBe/nDb\n2NegwieBNwFXZ807JC3aUPMxSev0Ptznyfdj45wzFns1HE+Vg4E9Bux/OB+rnXbcFZIWJ2UM3GT7\niXxf9iOZ1i1WKPsdUmbLEXl7m7yvSW3/94DdbV+Ux/0WUqeNtUoF+8sTlNozHk6aMDfl1cDywFI0\nMHzsyzxahpSV0LisKE8YNyb9HVqFkUycORbbS3cg+1HgBzmzRaTf8e0lzQ8cUFNr/vz1hS2OD0kb\nA98AXgAsLWllUmCkuMQgAgRBEARBEASzMnQ9df7wuCnwAdIq9ZnA/sDFbpCq2WYdPszoOPAB4KCW\nAgM9Hs+TTyCly9K8xdyOwPEa6eDwd+DDpWLZCGyWMohCuZfavnnANW6W9MrSMQ6Jhn6htBvwBeBO\nYG5JRwBfA44npV+XMq2vFOfCvNLahPl7wQEA2xfnSVhtlHrXf4MUAPkZ8G1SYGB14JtNBplr0jcl\ndZU4mVSq0cQ34MY8xv1sX9VkbD0k/YQUZDiH9HNf4tTedI6mi8wW29cCbxgloPqTmlrfzV/bbse4\nD+l+X5z1b5DUKFgSAYIgCIIgCIJZqTPBvYf0YfwIkkFh8QfSPn5AqsN/X97ehlQeUFSHn7lC0uG0\n6GsAXCJpT2BeSW8nlVac1UAP4OGc6TA1j+/hJh96q2UQpJXaxYEjSW70dVlwjGPzFujNRM5CWYLK\n5/TK/akz3o8By9n+m6Qlgf8B1rY9veEQn5a0TK+UQtKrSEZuTbhb0l7M3F3j7kKto0gZDVcB7wJu\nIK2gb9VCHf5dwJpuryvAq2w7B6za4mjgA20Ypc5mtJ7Z0h+kldTELPXQsY7b3qVokPCk7Yd6Adqe\nXKEWEB4EQRAEQRAEs1Cn1lvSvLl0YbzX1SpbaLsOP5/fha/BFGB74B2kFe5zSXW6TbInBpmDTbdd\ntPKdzRnfBFzdqxsuNRmT9CPgQttH9e3/KPB221uWjDFr7E9K/7+LkQ/5Rfen/z1US63UJL2NFKi6\nm3S/lwK2q2YAFGguBOxLpUUosI/tvxdozfQ7IuluN+iw0Kc9BfggaWK/Xw68vKxXo16gtyZpQr+A\n7SUlrQR83PZODcY4H7A7qSb9Y9kTZDnbPy/VnB0Y9Hw3febbNEvNBpc99iUFHmZgu6gMRKlF6AUk\n093NgV2A59vesUQPIoMgCIIgCIJgEEOncg8THMjUnaS0XYffuq9B1nyGtGp71HivHQ+lHvOvA14k\nqfohfCqpt3kpbZZB7AacLmkroLcavxqpBnjTBmOElC2yjO0nGuoAvKJv1fLl1e3SFUvbF/QmnXnX\n75oa/+VAQOkKaj/zSHojI7/Dj1e3G2bLfBt4hmT+tx/wCHAaMK1Q72BgA1JZErZvlLTu2KeMyzGk\n57Ln3/C/wCnAHB0goJvMlmX6grr75mBjbaoBAEm7lQYEBrAzqZTocVI7xnOBLzURjABBEARBEAST\nknGcnz/fwSXrTkhbrcOHdn0NNHP7vFmwvWLBEJcDNiKl8VfN/h6hmblca2UQtu8H1pL0VuD1efcv\nbF9YfZ2khQpWwG8h/ewPlIytj8/2bTcqLRhj4rq6JGxfWqB5DKM/Q7a9fV1NUhvTb42ybdLkvpTV\nnVrc/SYP8O+SXtBAD9v39qWHtzGp3TL7jeDUxnXogOdszGeBiyT1SlNeCWzXULP1IG2mtRR+24+S\nAgRfaEszAgRBEARBEEw6xnN+tn3eczm+TKt1+Jk2fQ02yl8/mb9W68eLPgDbPgM4Q9KabZm2Zf6b\nVAZxM/Bx4JfA95sI5pT6sdLqLyA5yNfhAOA3km4hrQj2rlXbkbzFFcoe/QEHSPd5RZJnQonp46BV\npfxz8wAAIABJREFU7SWATxfqYfstJecNyZNK3UAMIGkRUkZBKfcqtVh1NtnblQZdETJP5OBnb4zL\nUHmW5jSUWg/eW8ls+TiwCXAeyQSyCZ8AjsuBVQF/I5UATRgknQ9s0TPLzOU6J9veoFgzPAiCIAiC\nIJhsSJpOWkm8uGlNeo1r1u2b3Wodfj6/C1+DWX6uOh4Oo2geSEqTfYxkALki8GnbPyzVfLape7/z\nObcC3yUFMmZMPG1f0mAcZzFrwOYh4DqSy3uRcV9eTf0isBDwZduNjClzSviepOyWg4CjS0ot+kpT\nZsH2T8tGCLmspNo68L3AF22fUqj3EuAQ4D9IE9DzgF1s/63BGN9Oui8rZL21gW1tX1yqOZGRdD3w\nH9mMc11Sd4mdgZWB19p+bwvXmBGkbaDxCCO/h/MBj/YOJWlPLdQd9Pe39t+eKpFBEARBEATBZKR1\n52dop2yhwzp86CZlVpLWtn1F3lgLmNJQ8x22PydpU1KXiM2AS4FaAYKOyiCGpeR5etT2mG7nBdwN\nLAL8KG9vSSrZeA3JN2KbOmLZpHAv0s/3FdvnNxlcft6/SGoR+nVgR9tPNZDceIxjBooDBLZPzMHF\nt5EmdpuQgi2len8Ftqruk/QN4DMNNM/Pk+Y18hh3JXXumFOZqxJQ2RL4nu3TgNNK/QIk7T7KfgBs\nf2vQ8bGw/cKSsQzBM5KWtP1HAKV2ro3+L4sAQRAEQRAEk5FbJX0QmCunpe4CXNlEsMWyha7q8KED\nXwPgI8AxFc1/5H1NeH7+uiFwyoBgzrC0XgbRMZdJOoBkWlctMWhirLeW7aqJ3lmSrrU9LWcsDIWk\nDUl1zg+RVs0vbzCmnuYpwKrAN0llBU8DUysTsdor6bab1p2Pp387cHtvW9IfgSVbvMT7aBAgALD9\nIPCL3nYOGLQ5xonEXJKel4NKbyO19+xROtftajLfBV8ALldqwSjgzcz8HtQmSgyCIAiCIJh0KLUC\n+wIzt+bbvzTdOmu2WrbQQR0+kpa2/ft+XwPbvy/Um4uUEn1QL0BQYng4QPcAUkeAx0jtCRcEfm57\n9UK91ssgSq45xDldtKG8DdigssK4JHCu7dfWGaOkZ4A/keq6Z5lAlPgkSLqnomVm7h5iN2hPKOml\nwFeAxWy/S9IKwJq2jy7VHOU699peYqLqdaU5UZD0BeDdwF9JQZBVbFvSq4HjbK/9nA7wWSCXqqyR\nN3+dM1OKiQyCIAiCIAgmHT3nZ0lfS5t+pAXZtssWNs0rvG3W4Z9G+gBdraU9lbSKWxvbT2e39IPa\nCAzAjF7zZ5HSzR/K13gU+M9msq2XQfQMwZag8pm6str/trp67qANJfBfpBXGu0gT8KWBnSTNz0h/\n92HookXmK9vWrHAsyYCz5+7+P8CPgVYDBBT8jktaeLRD1GixWoM5dkXY9pclXQC8HDjPI6vfU0he\nBMVIegVwGMnHAeAyYFfbf2qi2zY5INBaG8sIEARBEARBMOnIztc/IKeSSnoI+IjtJq3g2i5baKUO\nHzr3NbhC0uGkyde/ejtL0+JtPyPp29WVbdv/qmoX0HoZhKT9SY7mdzHzKvj6UJYeL+krwIF9juT/\nZfuLpeO0/cv8PC6fd/2ukilzcA2dYqPEYZC0OLAUMwdbardOrPAS2z+RtEfWekpSUQtBSYcxeJIt\nUnZLXaYza8ZEj9rGjDCqGSX5Gi8u0ZxdsP3rAfv+pwXpY4CTgC3y9tZ539tb0J6wRIAgCIIgCILJ\nyNHATrYvA5C0DumDXxPTup1Jq5WPkwzhzgX2b6DXVh0+dOtr0OuAsF9lX9N+8xdI2hz4aWVFsIhc\nBrGeU8vI1sogSLXiy5Q47Y/Bu2zv2duw/XdJ7yaZ+DVhVVJf+OcBK0nC9vF1BMYwfOy5sBf/7uRM\nni2B35J8CMjXahIg+JekFzPS7m8Nyg0Frys8NhDbTduVDuIbhceC0VnE9jGV7WMl7facjeZZIjwI\ngiAIgiCYdHRZk57r+xuXLbRdh581W/c16ILcEmx+4Cng3zRvBXaN7Te1OEQknQZ8wvYDLWreBEyz\n/Xjenhe4zvbrGmieQHKxv4HK5Nv2LjV1lhrruO0/lI0QJP0OWLH3c7eBpFWBQ4HXA7eQOjm81/ZN\nDTTfYPvmlobYe4aOBs6x/cx4rx9Sc2PgF23pTWZy6cIxjHQA+QCwne3a5UNdIWkZ4E+2H5f0FlKQ\n+/heFlKRZgQIgiAIgiCYbEg6GJiX9MHPpNXLf5PT90vS4/vLFkirlUVlC7kOfw2SW3qvDn9+4IW2\n76urV9E9EPgSLfoa5FX5vUn96wEuIXVvaMWToA0kHUTKyGilDCJrrgacQZp8VjsO1Dbrq2h+npTh\n0Vu13A440/aBDTRvA1ZomonRp7kUsKztX+UgxvOaBMQknQ1sYfufbY0x6z6PlD0jUmnFkw31LgPm\nJvkbnNj0GZf0H6R7vAZwCnCMB7dIraP5Q2BNkt/ID3LXhaCA/JwfRno/TSoZ29n2vc/pwCootXJc\njZQh9EvS36TX2X53sWYECIIgCIIgmGyM4hbfo8g1Pq/+frKvbOGI0tTrEhf8ITRvsL1y9jXYCNgd\nuNT2Sg00TyNNknuGd9sAK9nebPSzRtVa3vbtkgZmcpRO6DvqDnAr8F3gZmDGam3TWn1J72LE4PB8\n2+c21DuF1GniL010Kno7kNqoLWx7mexvcGTJqmqltn9xYCXgAmYOttTKcujTvgk4Gfix7btKdQbo\nLkvyr9gCuAY41sO3MB1N80Wk1ekvAPcCRwE/LA1o5CymD5CCDyavgrdkxjppqBqbjrXvuaSX+Sbp\ns8C/bR/W9P+OCBAEQRAEQRC0QNtlC5K+AVxFC3X4Fc1bbb9O0veBU22fI+nGhgGCG2yvPN6+IbW+\nZ/tjXUzo20bStbanPdfjGI/8Xq5Mmsw2znTIK5ZvAq52w3aekj48xmHX9Uno016KlBm0JSmA82Pg\nJ87tHpuQfS02IZUwPEzKUNjT9k8LtF5MMr/bBvgzcCKwDvAG229pMMYXZ83dgNuAVwOH2j6sVHOy\nMejvd1ulaG0h6WqS2egXgI2d2tjeYvv1pZphUhgEQRAEwaRE0oYkZ/8ZLv629xv9jHG5RNJ3mbls\n4eLeanjB6vfHSSv8T0lqXIefOVPS7aQSg09IWoRUWtGExyStY/tySCtsWb+E8/PX7W3f3XBcM+io\nDOKy7BNxJjNPvEvKUx5hbAPAJvd8nwbnDuJx20/0DDNzGn9RAMv2cVljV9uHVI9J2rXJILMnwoHA\ngXnVfy/ga8BcpZqSViStym9IelY3tn29pMXIwbyaeqeTSiBOyFq9LI8fS6ptfpg135PH+GrgeOBN\nth+QNB/JBDICBOMgaU1gLWARSbtXDk2lwfPTEdsBOwJfzsGBpUnPUzGRQRAEQRAEwaRD0pHAfKTe\n7t8H3gtcY3v7Bpqtly20SYe+BiuRJiK9FoJ/Bz5cYgZXSZdtdZWuzTKIiuaEz3LoIemlQC/b4Zom\nxorZx+IfwIdInTt2An5r+wsNNAet1DYusenLIniaVG7wzQZ6l5D+Xpxq+7G+Y9vYrjUxk/RW22P9\n3SgZ43HA0R7QIlLS22xf0Ob15kQkrQe8hTTxPrJy6BHgLNt3PBfjeraIAEEQBEEQBJMOSTfZXrHy\ndQHgbNtvngBj66QOP2t34WuwdF65mgpg++HevgKt80mr0dOAy/qPN0mLb6sMokskLTxg9yNNzPUk\nvQ/4OnAxKSPhzcBnbZ9aqDcF2B54R9Y7F/h+SRmMpA8AHySl1Ffv9wuBZ0p8DSraV5OMKU8hBQZa\ny0hpE0mvB1Zg5kym4tKKoD0kLZUzUXrP/QK2H36OhzUTkn7PgAwe268q1YwSgyAIgiAIJiO91b9H\nc3rwg8DLm4q2VLawO8kEbtBKp4EmK9QXSNqcFn0NSG7pq/R9cD4VWLVAa0NgFVKKbPFK7wDaLIMg\na3wFONC5nZikhYD/sv3FBrLXA0uQsjBEam15n6T7gR1c0BGDVJs8rZc1kMtKfkW6RyVsQmqjdlTh\n+VWuBP4CvISZ7/cjQHE7wsyH3LAjQD+5VOEAZp3QF03GJO1NWqlegeRA/y7gclJGTukY1yCVEbwW\neAEpJf5fDctUJisHSNqRlH1yLTBV0iG2v/4cj6vKapXv5yGZZw4KNA5NBAiCIAiCIJiM/FzSgqSV\n1etJE+/vNxEcrWyhQKqTOvxMa74GkpYnBUNeJKmaqj+VyuSpDrafAH4taS3b/zfGtQ+zvXMN6R2B\n47MXAeQyiJIxVniX7T17G7b/LundQJMAwfmk9PVzASS9A9ic5EJ/BLB6geaUvpKCB4EpDca4MXCQ\npEtJxn/n2H6qRCivzv6B1Eaubf4h6WhgMdvvkrQCsKbtoxtoHkPysjiI9Hu+Hc3ey/eSujf8xvZ2\nuRSkuOVo5nDg/aTMidVIpSCvaag5WVkhZ0RtBZwN/DcwnfT/xoTA9oN9uw6WNB34f6WaTR7oIAiC\nIAiC2RLb+9v+h+3TgKWA5W3v1VB2LdsfAv5ue1/SpKfkg/ke+WvpCu+o2H6h7Sm2X2B7at4uXVlc\njtQqcUHSpLH3bxVgh4bjHDU4kFm7puTDTp0aVgRWzGUWTVu+zSVp7t6GpHmBucd4/TCs4UpbQ6f2\neWva/nUD7XMknStpW0nbAr8gTXaKsN0zwDuF1ErvrtwVoxhJj0h6uO/fvZJOl1SaKn0sqfxhsbz9\nPyRH/ybMm2v4ZfsPtvchZb2U8pjtZ0gBu6nAA6QMkkbYvhOYy/bTto8B3tlUc5LyfEnPJ2XNnJlL\nfSZUfb6kVSr/VssZD42SACKDIAiCIAiCSYmktYBXkj8PSWpa+9tW2cKDks4DlpZ0Zv/Bkjr8LnwN\nbJ8BnCFpTdtX1T3/WabNMogeJ5JKNo7J29sxYoJYyl8kfR44OW9vCdyv1FbvmRJB25/NGR7r5F3f\ns316k0HaflLS2aTJ0rykCdRHG0geDPwJOImU1fJ+YBlSds8PSGn4dXmJ7Z9I2iOP+SlJTzcYI8Dj\nuRb9DkmfAv4XWKCB3nU5k+ko0sr0P0ndEJrwqKQXADdkQ8m/EIvCpXwXuAe4Ebg0m15OKA8CZi7N\neYo03vc1EQyTwiAIgiAIJh2STiBNQG4g1ZdCSrXfpYHmXqTa37cB3yaXLdTNTMgf7nt1+LNMumxf\nUjC279n+WBfO+3kS8iVSgOQc0ir9p203TZUe65pDdTmolEEcCHy2cmgqyajvdQ3H8S7S/QY4v7r6\nX6j3ElIK+zqk5+cKYD/gIWDJvDLcGEl/tL1k4bnvIgUu3kIyPvwJcF5pmUHWvDFneFT33WB75UHH\nhtS8mFSecX7ujLEG8DXb6zUY5zTgNlLWzP6k5+jrOcOjrpaAV9i+N2+/Epjqgu4ffbpLAfeT/Ac+\nTeouckRbz85kR9LzmjzrswMRIAiCIAiCYNIh6TZSfWknH4Ry6vk8th9qoLFIW3X4krawfYqkV7Xt\na1CZyG1KKjnYHbi0ZFJX45pDdWOQ9J+k1e33ANVsjEeAk21f2dEQO6HAe2E0nXttF6WyS/oRyXvg\nbNuPNx1L1ryKVNffK6t5L7C77TVKu03kbJnDgNeTWlwuAry3dAKeszi+ZvszJeePonmz7Te0qDcX\nyUByq7Y0JyOStrb9Q0m7Dzpu+1vP9phGI/uq7A2sm3ddAuzX5P+eKDEIgiAIgmAycgvwMlL6bWu0\nWbbQch3+HqSa8VNJ2Qlt8vz8dUPgFNsPpcXRTjlkmBd1UQYh6REG1yEXGz7WoK73wmgUB8ZsfyCv\nUr8Z+FX2Xnie7SaeDluR7ukReWy/BrbO2p8qHOf1Sv3slyPdm9+RAkVFAQLbT0taZ/xX1uJ6SdNs\nX9uGWB7jUpJekA0/gzLmz19f+JyOYjh+QPr/rFdWsA3JTHOzUc8Yh8ggCIIgCIJg0iDpLNIE5IXA\nyqQuAzNWQUvq+yvarZctjHO9odLs82vPJ/3c05i53zzQ+Oc+ANiUVGLwJlL69c9t13bcr9yfgZSO\n87kog+iCmvd84OonabL8BdtFrdAk7UBqw7mw7WWUWv8daftt45z6nNOktCKf/x1gcVKw7V+9/bZ/\nWqh3O8nw8Q9ZrxdkWrHBGI8ntTg8s2+ME2bVO2iPQRk2pVk3PSKDIAiCIAiCycQ3OtRejQ7LFhqy\nISO+Bt8c57VDkw3bziK1/Xoor2A+CvxnoWRX9+cdtj+XyyDuIa2uXUqDlnKSBk2wH8lO5xOBsVY/\nh8rAGIVPkgJBVwPYvkPSog30kLQIqfPFK6nMT2x/pInuoEs1PH8ekvlo1bPDQFGAANig4XgGcVf+\nN4XZYwV8wiHp0LGOdxX0LeQxSevYvhxA0tqMGOYWEQGCIAiCIAgmDT2DP0nzk1uMSXoNsDwNWr9l\nOilbGIOhJzs53fjXktZqy9cg6z4j6dtVPwDb/6KyclmHEgPGIemiDOJ6Uku6v5PuxYLAfZLuB3aw\nPb3pBQZQ557vO5SgtIftA2qM4XHbT/TeP0nPo3nrtzNImS2/YiT7pgsajTO3eGwN238AkLQ4MFfe\n/eeGmkPd92BMqr+7+5Jq/CcqnwCOy14EAv4GbNtEMAIEQRAEQRBMRi4F3ixpIeA84FqSM3ttc6++\nsoXfSmqtbGEcaq8Ct+xr0OMCSZsDP20reyKnrR8ArEBatQXA9qsKJc/M6dyPAZ/IK9b/bjjM84FT\ne50LJL2D5Jp/DKmWvnaJxRA0WfkfjS1I7/WwXCJpT2BeSW8HdiJlkTRhPtufb6gBJOM/RveIeGmh\n5uuAZWyfmbcPInUHADi8bpvQ3Hrx+bb3y7uuAv5B6jxwHPXuR09zHeBVPc8TSacCvSyXL9m+sK7m\nZMX2jHalknarbk80bN8ArCRpat5u3IYxPAiCIAiCIJh09Gq5Je0MzGv7wAbt1MZsm1Z3VbyrOvwh\nrz10jXvlnEdIpl5PkSbdjc36JF1OWrU7CNgY2A6YYvv/FWhNAdYAbmekDGJ+4IW272swxlkc6CXd\nZHvFujXAz/E9H6ojROX1U4DtgXeQ7vW5to9qOIYvAVfa/mUTnay11FjHe6v2NTXPAg7odb2Q9Ftg\nL2A+YHPbm9TUux54c862mXEPcheCS2zXNkOUdAGws+3f5u2bSSvJ8wN72n5nXc2g7G/is4mkBYEP\nMWt5TnEZRGQQBEEQBEEwGZGkNUkZA9vnfVNKhDooW+jSJ6F1bHdR5zyv7QskKU/o9pE0HagdIGi7\nDKLCXyR9Hjg5b28J3J8nec/U1Hou73mt1ULbzwBH5X8ASLrCdpMOC7sCe0p6AniCBkGmStr+zsAJ\ntv/RYFw9Xu6ZW2I+bPu0fJ2Plwj2ggOZQ/K+p3PnhhKm9oIDmTt6ZS7ZSDSYM/klqevHzdT/uzOQ\nCBAEQRAEQTAZ2ZXU+u9027dKehVwUUPNVsoWOqzDH4aha9wlLW/79txvfhbqpl338Xheqb5D0qeA\n/wUWaKDXehkE8EFSlsPPSJPsK/K+uRhpOTYUs8s9H4PizgDQWZDppcB1ebX+B6RMh9J7P9P4bK9R\n2SwxaFxA0vN7hpa2jwWQNDdQmnmzYN8Yq23uikorJit9rUznk9RL2382WpnWZR7bo3UsKSJKDIIg\nCIIgCPqoa9aXz2mtbCHrtV2HP8w1t+1NVoZ47fdsf0zSoMCKba8/YP+w45gG3Eaa9OxPqvc+0Pav\nC/VaL4MY4polz9Bzcc/3tP2VhhpN2weKFEhb2vb+kpYgrdpf03BcIpVCbEfqMvIT4Gjbd9XUuQj4\nb9tX9+1fA/iq7bfU1PsKydD0U7YfzfvmBw4H7rO9Rx29fP5ZpHaTv+jbvxHwCdsb1tUMJj6SPg38\nE/g5M3vf/K1UMzIIgiAIgiAIZqUkXbq1soXMMYzU4b+VXIdfIjRsjfuwwYHM+fnr9rbvLhnXGOO5\nNn/7T9LP3VTvuWj3VvIMtXbPe0haGtiZWWuUe/d8qOCApM1GOwSUpsX3OIKUHr0+KSD0T+DbwLQm\norYt6T7gPlJwaCHgVEnn2/5cDanPAz+WdCypewXAqsCHSVlCddkL+DLwR0l/IL2HSwBH52MlfBr4\nhaT39o1xLWCjQs1g4vMEqc3sFxj5G2+gOKgYGQRBEARBEAR9FJr1rQt8BrjC9tdy2cJupWZRkqbb\nXrVqhtfbV6DVqpFi1uxlTLRu4pU9HD4LLMXMk9paWQkdl0GMd+2SZ6i1e17RvJE08ZypRrnAPPOY\nsY67QQvAyrM0wzCxSfZNPn9XknnbX4HvAz+z/WSvdMX2MjX1FgU+Bbwu77oV+Lbt+xuMcV7g1Xnz\nTtuN+tfnEoWt+sZ4ku2mHTuCCYqku4E32f5rW5qRQRAEQRAEQdACti8l+RD0tu8GZgQHClLOW6vD\n76jG/UFJ5wFLSzpzwDWbOO+fAhxJMsJ7uoHO7sDHgG8OOGbSivVEom3vBYB/2z606cB6AQBJc9lu\nck8G8WQ2d3S+xiI0N1xbGNisv2tBNq2svaJu+wFJl5C6GTSayFc4H7gEuAy4p6mY7cdJfgvB5OFO\n4NE2BSODIAiCIAiCoI+6rd+G1Ky1otx2HX7WbK3GXdILgFWAE4CP9h9vEpRoumpe0dnC9imSXtV2\nGcQQ1679DHV0zz8ILEsyzqzWKBdlT+QVy9OAY/pc84uRtBUpVX8V4DjgvcAXbZ/SgvaizPys/7GB\n1nHAmsDfSJP6S4HLbf+9UG9p4M353xqk+3OZ7U83GONmwNdI5oliYhrrBS0h6XRSxshFzPz7Xdzm\nMAIEQRAEQRAEfdQx66uh+Zz305Z0OSM17huTa9xt124fWNFcxPb/jXG8xKxvH+AB4HQaGG91WQYx\nxLVbf4YKx3EAsA1wFyOr8sUmkpJeCLyfEX+EHwAn2354zBPH110eeBtpQnsB8JDtPzfQ2xj4FrAY\n6VlaCrjN9uvGPHE47cVIQYzPAIvZLs7KlvRyYD1SkOCtwB9tv7OB3p3AxrZvK9UIZh8kfXjQftvH\nFWtGgCAIgiAIgsnCsGZ9HV27bgZBK3X4fZqt17gPcc2SWvzfD9jtupkOks4n3e9ppBXffsHa97vL\nZ6ije34nsILtJ0o1xtBeDziJlPFwKrC/7Ttb0m7aGeFGUgnJr2y/UdJbga1tbz/OqWNpbk2ayL+B\n5G1wOWnF/6pCvbuyzkmk5/MG241KKyRdYbvEIDMIgPAgCIIgCIJgcvGN5/DadfvNt1WHX6WLGvfW\nsb10S1IbMlIGMciHoIQun6Eu7vktpAn8A22IZa+ADUkZBK8kva8nkibOvwRe08Z1qP/70s+Tth+U\nNEXSFNsXSTq4oebBpEyMI4GLbN/TUO9QYB3gA8AbgUskXVq3DSPM1GXiOkk/Bn7GzNk3P2041mAC\n0mbZ2AzNyCAIgiAIgiDonrop512s7HdR4z7ENYfOIJC0vu0LR2upVzrJ6aIMogs6uucXAysC1zLz\nhLEo0yF7EFwEHG37yr5jhzapfe7TappB8CtgE9Lk6SWkAMk022s1HNfrgHVJE/tlgd/Z3qah5gKk\ngMtngFfYnqtAY6wuE7b9kdLxBROXTsrGIkAQBEEQBMFko2Wzvk5Sztuqw3+uqWPWJ2lf23uPMtnp\nbJJTWAbR/spdB/d8tBaXpSaSkhaw/c/S8fRpHcbg3x0BH25irCdpfuAxkk/CVqRg2Im2H2ygORVY\nmxHPgJcAv7Y9sA58CL1vkgINCwBXkcoMLnu2DTWD2ZdOWqNGgCAIgiAIgslGm6suo03AejSYiLVS\nh9+n2XqN+xDXnBBmfWNRGCDowvCx9XveNpLmAbYnOadXAyO1gzejGaxVNIuM1nIZxK9sv7Xk/DF0\nbyL5DlwOXGr7Tw313ksKCNzfxviy5qCWlg8B19k+o63rBBMDSVeSgkynAheSysa+anu5Ys0IEARB\nEARBMNl4Lsz6JgLZuO1IYDqVGnfb0wu0ujTr233A7oeA6bZvKNUd43olAYIJ/QxJeoR0f8TM96lR\n2ztJpwC3Ax8E9iOtzt9me9dmI24XSRcAm9l+qAPtBQDayKSQ9B5SyQLAJbbPaqj3PWB5kp8FwObA\n74EXA3fb3q2JfjCx6KJsLEwKgyAIgiCYjLRu1tdWynlXdfiZp2x/p8H5Vbo061st/+tNljYCbgJ2\nlHSK7QNbvl6JIV5rz1AX99z2C0vGMgSvtr2FpP+0fZykngN/MTmz5TMk08O2Mlv+CdycO1n8q6JZ\n3h9eej3J8HLhtKn/I5VC3FKodwDwJpLJI8Aukta0vWfpGEl+E2vbfjpf4zuk+7MOcHMD3WACYvva\n/O0/SVlMjYkAQRAEQRAEk5FdgfmAXUirLusDRXXEFY5hJOX8rYz0ia/LeqRU0Y0HHDPQJEBwlqSd\naKHGvbR0YkheAazSW6GVtDfwC9JK63Sg7QDBIQXntPkMdXLPc6r9rbaXLxzXIJ7MX/+RJ8z3AYs2\n1Ox1b/g+7XVv+CnNflcG8T1gd9sXAUh6S95Xany4IbByr7WhpOOA3wBNAgQLkQJVvcyJ+YGFbT8t\n6fHRTwtmRyRdxIBMrkatUaPEIAiCIAiCoDkTPeUcOvM16MKs73bgDbafzNtzAzfaXr6m6WFnZRCz\nC5LOAHa2/ceW9D4KnAa8ATiWNBndy/Z3G2hOqN+T0ZB0o+2VxttXQ+8m4C29AJ2khYGLba/YYIzb\nA18ELiZlxqwLfAX4EbCP7c+WagcTD0nV35t5SCUlT9n+XKlmZBAEQRAEQTDp6Misr9WyhS7q8G0v\nXTqeMWgrc6LKicDVeXILaWX9pOxM/9saOp2VQXTxDHXkvbAQcKuka5g51b52cCQ/3w/b/jtwKdCW\neWJrmS2S/pPUKvDbeftqYJF8+HO2T20wzrsl7UUqMwDYGmjSceAA4Dd5Fbg3mf/vBnrYPlrSL0ml\nCwB72v5z/j6CA3MYA/xjrsi/68VEBkEQBEEQBJOONs36KpqtmkXl2u5BdfivBGrV4Xfpa9D/Qmg0\nAAAgAElEQVRV5oSk1Ugt5QCusH1dE7226egZau2eVzTbbnN4ne3VSs4dQ7O1zBZJVwDvt31v3r4B\neBsp1f4Y229rMM6FgH1J9fwm1fbvY/sfDTRfDkzLm9cAS9m+ukBnedu3Sxpotmn7+tIxBhOXnHXS\nYwqwKnBodDEIgiAIgiCoweyQ0izpUuDdlTr8BUh1+O8krSivUENrX9t7SzpmwGGXtKiraLfWZkvS\nVNsP933orQ609opy1u2iDKL1Z6jNe94Vkr4K/BX4MTNnJBTdm7aRdK3taZXtw21/Kn//a9trtHy9\nH9veskW9P9pesuC8o2zvkLMR+nHD7KhggpKDa71uJU+ROlbsZ/vyYs0IEARBEARBMNmQtA/wAC2k\nNFc0W005b6sOv2vazJyQ9HPbG1U+9M44RAOvBEmXM1IGsTG5DML2/yvRy5r70P4z1No9r7Q5nOUQ\nzdocduFj8aFB+20fX6B1p+1Xj3LsLtvL1NUc53pFE/ox9O61vURbekFQl/AgCIIgCIJgMtJzm6/W\n5JpmNdU9J/ajaMeJva06/Bl05GvQWputHBwQsF5bpnqZeW1fIEm2/wDsI2k6UBwgoJtnqLV77o7a\nHHbkYzGt8v08pJKA64HaAQLS+7eD7aOqOyV9nJTCP9EpWr0drXxohmiz9qjBBKWL+x4ZBEEQBEEQ\nBC3QUcp5q3X4HdW4d2HWN8PPoA3aLIPomg7u+aByjUd6WQo1dKYCL7V9R97eApg3Hz7X9v1Nxtl3\nrQWBk22/s+DcRYGfkbI6enX3qwJzA5uUjHO0un5SNsbPbb+8pt5o3TUErG97/ppDpK98aGNGfseh\nYRlRMHGR9AtSm80L8663AlcC/0fhfY8AQRAEQRAEk4aOzfr2oYWU867q8LN26zXuHZn1HQccXslO\naETLZRCtP0Md3/N7gCWAv5MmoAsC9wH3AzsMe58kfQ+40vaxeftO4GxSkOAp2zuWjnHAtZ4P3NLI\naE1aH3hd3rzV9oVjvX4crUF1/TOw/daaegONIyt6RQaSFf0JU4IUdIuk84AP2/5L3n45cKztDUo1\no8QgCIIgCILJxHqklZaNBxwz0CQNt62U85NIK/vTGVCHX6BXZVEqwQvgSdKq8GOSHh/lnPF4yvZ3\nGoxpEKsDW+fJ7b8YqZsv6g/fZhkE3TxDXd7z84FTbZ8LIOkdpF7pxwBHkN7rYZgGfLyy/YjtnbNm\nsSFaPr+6oj6FZCZ5ShNN0krqpaSgxr/Ge/FY1A0ADKHXKAAwzCU61g8mDkv0ggOZ+4FGnhiRQRAE\nQRAEQTDByHX4S7Rch0/u4b4pUK1xPxP4JvA921sVaO5D+2Z9SwELAW/Ouy4F/pH9A0r0Wi+DaJsO\n7/ks5RqSbrK9oqQbbK9coiPp9bZvyd/fYvv1DcZYXVF/CviD7T+V6mXN7UjPz5rAI6SWhJfaPmPM\nE8fXXYtUklN9jkq8EpC0NrAPI89lIzPOiu71tkcriwjmICQdDiwL/Cjvej9wRy94V6QZAYIgCIIg\nCCYbbZr1dVW20HYdfkW37Rr3LlztdwU+SlqNF7AJcJTtwwr1uiiDaN3wsYt7nlOQLwBOzru2BN5O\nKiu5dtiJZH4PN7B9X9/+xYGzS7M7JM0FLGT7r3n7BcC2wKdtv7ZEs0//ZcD7gM/k6xSbN0o6AVgG\nuIGR58i2dynUux34NLM+lw8WaFWzMNYlBdVmYPs9JWMMJj6SNiXdc0hBsNMb6UWAIAiCIAiCyUab\nZn2S9rW9d59JWI9ic7A26/C7rHHvAkk3AWv2UsOzi/9VDSahXRhIdmH42Kr3QtZ8CanF4zqkCeQV\nwH6kYMaStu8cUmdrYFfgv4Df5N2rAN8ADrV9QsHY3g98l1RGcgfwZeAHwLXA/ravH+P08bS/TypV\nuJ+UPXA5cL3tpxpo3gas4JYmUJKutj1sicd4Wp36GgQTk/y38d+2n5a0HLAcKWBXy4R0Js0IEARB\nEARBMNnowqyvbfLq4rLAPTSsw5f0c6cWgr9nQI17yWp/x4aPNwPTbP87b89DWu0uWl3vqAyiC8PH\n1u55jWseNmw6sqR3AnuSzP8M3ErqBnF24bVvIXUWuDN3CrgKeK/ts8Y5dRjt04HFSO0hLyGtrN7d\nUPMUYJe+mu8mel8F5iJlylSfy+LASDC5UGrX+mZSSdblwHXAEyXlYj3CpDAIgiAIgslI62Z9HaSc\nb8CAOvySseXggID1Wqxx79Lw8RhSP/tequwmwNEN9NoykKzSheFja/e8BmuP/5KE7XOAc8Z6jaQ9\nbB8wpOQTvQwG29dLuqON4EDW2zSP57Wk9/UiSXPZfkUD2ZcAv5V0DTNP6EvT93vZA6tV9hlo0iK0\nE1+DYMIi249K2h74ju0DJRWVOPWIAEEQBEEQBJORE0kT0KpZ30k5XfO3hZqrMTjlfEdJJSnnmzBz\nHf4JwFFAUR2+beee2a3UuNveO39t2hVgkPa3JF1MSosH2M72b8Y4ZTy9pVsZ2Mx08Qy1es+fI7YA\nhg0QLNoXWFuwum37W6WDkLQRKdCyLqm144WkUoMm7NPw/JlouztC5mgG+BoEcyyStCawFbB93jdX\nI8EoMQiCIAiCYDLSgVlfqynnbdfhZ40uatxbN+triy7LILJ+289Q6/d8iGu26ngv6Te23zjka/ce\n67jtfRuM43BSQOAy238u1ekSSf9v0H7b+zXQbM3XIJj4SFqXZMB5he2vSXoVsFupcSZEBkEQBEEQ\nBJOIPrO+u/O/3rGFG5r1tZ1yLmZeAXw672vC6sDWku6hvRr3tjMn2qT1MoiOn6Eu7vkw12yToVcf\nhw0A1Cxb6Gl/StJLgWnZ3+Aa2w/U0RgwjkcY+fleADwf+JftqYWS/6p8Pw/pd+e28hECqZTi64Sv\nwaTA9qVUOlZkn40ZwYE6HiM9IkAQBEEQBMFk4iTSh/DpDDDro1lNetsp523X4UM3Ne6vAFapZE7s\nTcqcWJf0Pj9nAYKOyiC6fIa6uOfjcUjLel0ENOqULaRBSFuQOixcnMd0mKTP2j61dBDVFonZ0+M/\ngTUa6H2zui3pG8C5pXqZ1n0NgtmaoT1GekSJQRAEQRAEk4r8wX6JFs36qtptp5yvwkgd/mVN6vCz\n3q7MXOO+CXCU7eIa9+y8/4ZeWy1JcwM32l6+Trp5l7RdBtHxM9TKPZd0FmOs5jcw1hvvunva/krL\nmrWfI0k3Am/vZQ1IWgT4le2VnuuxjaG1EKlbx6vb0AuCkhKiyCAIgiAIgmBS0bZZX5cp5zktuM3U\n4O2BNSo17l8jtZZrYoLXhVlf27RaBtH2M9Sn3dY9/0YLGrMgaWlgZ+CVVOYSvYBD28GBnnzBOVP6\nSgoeBKY0GUSfl8UU0jP17wZ6NzPys80FLALsXzxAuvE1CCYXESAIgiAIgmAycr2kaS2Z9XWZct42\nrde4295f0tmMZE7sWMmcKO7F3TJdlEG0+Qy1ju1LOpL+Gans4SzgmY6u0U/JM3qOpHOBH+XtLYGz\nG46j6mXxFHAP0CQTY6M+vfuBuRvoQTe+BsHsS+3fnSgxCIIgCIJg0pHT4pclfcBvbNbXZcp5m+RU\n+w8D1Rr3Y20fXKBVzZyYhYZmfa3SRRlE289QV0hallS/vwJpwgiA7aLA1XPhkl9atpBX/KvlGqeP\n9foC/YWAnWx/ueDcxYGXAzfZfkLSosBuwLa2F2txjHMD59p+S1uawcRB0hts3zzG8W1tH1tLMwIE\nQRAEQRBMNiQtxQCzPtt/aKB5s+3WU87bpsUa95/b3kjS7xmQOVE6Ae0CSXsBmwLVMogzgW8C37Nd\nO9Ohi2eoCyRdDuwNHET6ubcjpd8PTEUfQu+DpMDIebTkkj9e2UJbSPqj7SULzlsC2AtYjBRcOxnY\nD9gG+JHtXWvq7QZ8AbiTlDFwBPA14HjgQNt/qTvGMa4VvgZzMJIuIz1DxwIn2n6osWYECIIgCIIg\nmGx0ZNZ3HHD4RE0574LZJXMCOjGQbP0Z6gJJ022vWg1g9fYV6h1AmhjfxUiJgW0Xu+RnQ8GjgZsr\nmq2XSUi61/YSBeddBFxC8ut4Z/53A/Bp2/cV6P0WWMf23yQtCfwPsLbt6XW1BmgP9DWYaM9l0B45\nS+gjpG4f1wDH2D6/WC8CBEEQBEEQTDYk3QSsWTHrmx+4qkl6+OySct42EzlzossyiC6eoS6QdCUp\nY+RU4ELgf4Gv2l6uUO9OYAXbT7Q4xmelbKFBBsGN1e4Hkv4ELGm7yIOh31m+X78JObOlxwxfg95z\nGsyZSJqLFKQ8FHiY9P/PnrZ/WlcrTAqDIAiCIJiMtG7WB2zAgJTzhpqzAxPZrK9LA8kunqEu2BWY\nD9iF5JC/PsmHopRbgAWBB8Z7YQ0OycaRjcsWRmlpCeneLFA2vBmp+r37+yDwopxBUxJoeoWkQyvb\nL69u296lcIyLkzIGqr4G+wHbksojgjkMSSuSyoY2BM4HNrZ9vaTFSBkvESAIgiAIgiAYgmNIrfmq\nZn1HN9TchJlTzk8AjqJZC8HZgdWBrSXdwwTLnMgeCQLW66AMootnqHUqgZt/kiYSTVkQuF3Stcw8\nmW/iF/AGUtnC+lTKFvJ2XV44xrFDCvQAXkQKMlUDQL3gRUmg6bN9222UFszkayCp6mtQVE4SzBYc\nRvq7s6ftx3o7bf9Z0hdLBKPEIAiCIAiCSUlbZn0Vvdki5bxtZgezvq7KINp+hrpA0mtIE9KlmNkA\nsMgzQNJ6g/Y38QvoomxhiGvuYfuAZ+t6XdOlr0EwuYgMgiAIgiAIJiU5fbnYeX0As0vKedvMDpkT\nnZRBdPAMdcEpwJGke/L0OK8dl7aNAzNdlC2Mxxak9o9DI+kC228bb18NvbOYufQF4CHgOuC7tv9d\nQ+7fvVIH23+U9LsIDsz59JlS9ug9Q1+y/WBdzQgQBEEQBEEQtMNskXLeAdsDa1QyJ75Gqn2dSAGC\nCVsG8SzwlO3vNBWR9AhpItLzb5hxiPReTm0g30XZwngMHbyTNA8wP/CSPi+CqcDiDcZwN8kz4Ed5\ne0vgEeA1pIDONjW0OvE1CCY8Z5MCfyfl7feTPEfuI7U+3LiuYAQIgiAIgiAIWsD2tyRdzEjK+XYT\nMeW8A2aHzInJaiAJcJaknYDTmXnyXctYz/ZYtf1N2btD7dGoU2f9cWA3ktFf1YvgYeDwBmNYy/a0\nyvZZkq61PU3SrTW1Wvc1CGYL/qPaEQO4udclQ9LWJYIRIAiCIAiCIGiJ2STlvG1mh8yJ2aEMoit6\nHQuqE8iiDg65ldqttpdvY2AzBtNN2cJ4DB3Esn2IpMNJRnD7tziGBSQt2TPQzN4BvU4LtfwYbB/X\n4riC2Ye5JL3J9jUAkqYBc+VjT5UIhklhEARBEARB0IiJbtY3WQ0ku0DSGcDObXSF6LhsYbxr72n7\nKzXP+Y3tN7Y4hneT/CHuIv3MSwM7ARcDO9g+uECzTV+DYIKTAwI/IAWWRMpq2R74LbCh7Z/U1owA\nQRAEQRAEQTAnk428pvUmR7mm/NouOhtMFCStb/tCSZsNOm67dn/0rHsp8EbgGpKfQ0+vS7+A2kha\nGtgZeCUzd28oHqekb5B7y7ulSZSkuYFeRsbvmk7gJR3CrL4GD5OCBlNt1/E1CGYTJL0IwPZDTbWi\nxCAIgiAIgiCY05kdyiDaZj3gQgablJlUblHCXsUjGkBXZQvAz0j3+CzgmZY0Pw7sDjwt6THayXRY\nlZEgxkqSsH18A702fQ2CCU4ODOwNrJu3LwH2axIoiAyCIAiCIAiCYI5nopdBTGbaLFuoaF5te/W2\n9LpA0gnAMsANjBh9uknHAUm3ARv0+Rqca/u1bZdIBM89kk4jtQnteVBsA6xke2Dm0FCaESAIgiAI\ngiAIgjkTSbsP2P0QMN32DTV0en4Bsxyi4Sp6F2ULkj4ILAucx8zdGxqZiEp6D3m1FrjY9s8baN0G\nrNBWuULWbN3XIJi4SLrB9srj7atDlBgEQRAEQRAEwZzLavnfWXl7I+AmYEdJp9g+cBiRjtsctlq2\nkHkDaTV1fUZKDJy3i5D0VWAacGLetauktW3vUSh5C/Ay4C+lY+rH9i8lLctgX4MIDsx5PCZpHduX\nA0haG3isiWBkEARBEARBEATBHEpenX+37X/m7QWAXwDvJGURrFBTb+EBux+x/WTjwbaIpDtJq/O1\n2gWOo3kTsLLtZ/L2XMBvSrthSLoIWJmUOVHNcmhk+ChpLWY1Z2ziaxBMUCStTCoveBEpY+RvwLa2\nbyzVjAyCIAiCIAiCIJhzWZTK5BN4Enip7cckPT7KOWNxPbAE8HfShGRB4D5J95NS2KcPK9Rl2QJp\ndX5B4IEGGoNYkDQJgzQpa8I+Dc+fhdF8DYAIEMyB5DKhlSRNzdsPN9WMAEEQBEEQBEEQzLmcSOrg\ncEbe3hg4SdL8pF7pdTkfONX2uQCS3gFsTuoUcQQwtDFgx2ULCwK3S/+/vfuPtbyu7zz+fA10awtF\nJaDdrDCWZFxDd6bKj7gsUFY2VtNAM9pVs0pTcXVLNgWMXbS7GwvUZNlFV2PHtFZiRpc6bQIBLUtc\ntBLBUsTxDjATKG5ZRHaNYFoKKG0pju/94/u9nTPDufee+/3BvXPu85HccL/fM+f9/UCYP877fF7v\nT3Yz3LfzVwF3t9/8h2YWwW92LVZVtyV5KU1sAeDrVdW3oXEaA8810PqzxGwRkgBQVR/pXNv/dyRJ\nkqT5leQ04Mz28o6q+kaPWvuqaush9/ZW1bauw9HGiC0kOWfa/aq6rWvNtu4/5uAP9I/2qPUW4EM0\nAwQDnA1cVlXX96h5HXBJVQ0210DrT5LLl3u9qq7sXNsGgSRJkjRfkhxTVU8t8eGbqnp82v0Z6n4R\n+DLwR+2ttwKvo5lpsLuqTulQ82GmxBaAVccWxpbknwCbOTjff3vHWvcCr1vcNZDkeOBPqurneqxv\nlLkG2jiMGEiSJEnzZxfNiQULHJzzT3t9Use6bwMuBz7X1rmjvXcE8JaONQeLLUzMNVj89/yHl+h/\nHON/o2mI3MfBJyN0ahAAmw6JFPwVsKnr+lpX9Hy/DiNJXgbs4MAOoa8Cl1bV/+tc0x0EkiRJ0vxJ\nE0g+oaoeeR6fuaOqLl7lewaPLYwhyTeBbVXVZbjjtHofArYBf9jeeiuwr6re17Pu0HMNtE4l+RJN\nM/Da9tYFwNur6nVda/btUEmSJElah9pBdTc/z489c+U/8hzfTfL+JJvbn/cBj7XHCP5opTcfKskR\nSR7osI6VPAT82FDFquoy4PdpmgTbgE8O0Bx4C0284M00OzruSvKv+65V69bxVbWzqn7Y/nwaOL5P\nQSMGkiRJ0vzak+T0qtq91gtZxqCxharan+SbSU4cYvdEkh3tuv4GuCfJlzk4339J19pVdQNww8Sz\nHqmqE3ss9z8Dpx861wDoPPhQ69pfJbmAA7tQ/g1NVKUzGwSSJEnS/HoNcEE7CPBpDmTxt63pqiZU\n1V8CS8USHuwSWwBeDNyX5Os0/96Lz+oyrG/x1IcF4I87vH810vP9Y8w10Pr1TpoZBB+laWL9GfCO\nPgVtEEiSJEnz6/U0H5bPbq9vB54Y8Xl9P+BO0yW28IGhHl5Vn5m8TvJjwD8DvjNCvr/vgLj/leQW\nDp5r8IWeNbV+vezQpleSM4H/27WgDQJJkiRpfm0H3kWzjT00w8yuofnWcQwfG6nuqlTVbUPVSvIJ\nYEdV3ZfkhcCdwH7g2CT/oar+cPkKz6n33qVeAo7us9aquizJm4Cz2lufrKob+9TUurYDOPRo0Wn3\nZuYpBpIkSdKcSrIXOKOqnm6vjwLuXG3EIMlNLPPtdset+7M+e09VzfSBZ+KYw+e8RMdjDpPcV1U/\n2/7+HuBfVtX2JD8NfKGqXr3Kepcv93pVXbnaNa7wvL5zDbTOJDkD+BfAe2jiBYuOAd5YVT/XtbY7\nCCRJkqT5FZpvuxftp1sM4MPDLKeTmddbVT81wvP/fuL31wHXtc96tDlJcnVmbQAk+Y9VddWqHzCl\n1AA1tL78I5rdJkcCk//PPwX0OrXCBoEkSZI0v3bSHHW3uM18O/Cp1RYZcst+B6uOLSQ5dsrt71fV\nsx2e/0SS84Dv0MxD+LftM44EfqJDvVm9GRiiQeCW8TnT/n28Lcmnq+rbAEk2AUdX1VN9atsgkCRJ\nkuZUVX0kyVc4kEm/sKru7lovyRaaD60nAy+YeM5JHWrNFFtoz3ZfrT3ACcBf03yD/iLg0SSPAe+u\nqoVV1Po14HeAnwbeU1WPtvf/FXBzh7XNauZv/seca6B17aokF9HsDNoNHJPkY1X1oa4FbRBIkiRJ\nc6yq9tB8YB7CTuBymtzza4EL6X6M3pixhS8B11fVLQBJfgH4ZZr1/y7N8Y8zqar/Dbxhyv1bgFsW\nrweMBPzDI1bxZ5eLVqyLwZEaxclV9VSSt9OcVvGbNMdxdm4QOKRQkiRJ0kySLFTVqUn2VdXWyXtr\nvbZJk+ubuLe3qrYluaeqXjXCM2cepjhjvbtXOwBxhppDNzG0hpLcB7wK2AV8vKpuS3JvnyGFXbt9\nkiRJkjaeZ9qs818k+fUkb6TnFvYkW5Jcn+T+JA8t/vRc53eTvD/J5vbnfcBjSY4AftSz9lKGHgZ4\n3cD1oJlroPnx+8DDwFHA7Uk20wwq7MwdBJIkSZJmkuR04M9pMv0fBF4IXF1VX+tR8085EFs4nza2\nUFW/1aPmcW3Ns2i26t8B/DbwJHBiVT3YtfYyz1zVDoIkPwNcDLyciej3yEdGDr4rQetLkiOr6oed\n32+DQJIkSdJaWYvYQpIdVXXxwDVX9eE7yb00J0rsY2JXw5gnRgwdg9DaSHJBVf3BUsMpq+ojXWs7\npFCSJEnSTJK8ArgM2MzB33qf26PsQbEFmuMEx568f+YINVcbCfi7qvqdEdaxnKFjEFobR7X/XG44\nZSfuIJAkSZI0k/Zb70/QTErfv3h/lccGHlpz8NjCDM9c9TfpQ0cCkrwN2AJ8EXhmot5QJ05Me+Z/\nqqr/MlZ9Hf5sEEiSJEmayXo8saCLjg2CQSMBSa4CfgX4PxP1qs9ujLWYa6DnX5Jld55U1SVdaxsx\nkCRJkjSrm5L8e+BGDv7W+/GuBUeKLaz42A7vGToS8GbgpKr6+wFrfo6miXET453WoLU3uWPnSpqB\nnINwB4EkSZKkmST51pTbVVUn9ag5eGxhhme+o6o+vcr3DBoJSPI54N9V1fe6vH+JmndV1WuGqqf1\nb+iTKWwQSJIkSVozQ8YWktxEc6zhVH222g8dCUjyFWAbsJuDGw591vi8zzXQ2hr6ZAojBpIkSZKW\nleTcqro1yZumvV5VN/QoP2Rs4cM91rGSoSMBg20Ln7CVpolxLhNNjPZaWpE7CCRJkiQtK8mVVXV5\nkp1TXq6qemeP2oPHFsYwRiRgaEkeBE4eeK6B1pkk3+fATpmfBP5m8SWavzvHdK5tg0CSJEnSPEmy\nBbgKOBl4weL9nrMSvsIAkYCJD3fh4DhE/w93h0ETQ+ubEQNJkiRJM0ny3im3nwQWquqeVdYaM7aw\nk2YL/0eB1wIXApt61IOBIgFV9VND1FnCi4AHkgw210AbizsIJEmSJM0kyS7gNJpj9ADOA/YCLweu\nq6qrV1FrzNjCQlWdmmRfVW2dvNe15pCSHAHcV1WvHLjuOdPuV9VtQz5H88sGgSRJkqSZJLkd+MWq\n+kF7fTRwM/AGml0EJ6/l+hYl+TPgLOB64FbgO8B/rap/2qHWKJGAJJ8HLq6qR7q8XxqDEQNJkiRJ\ns3oJE1vXgWeBl1bV3yZ5Zon3LGvI2MKES2mGt10CfJBmiv+vdik0YiTgxcB9Sb4OPD3xvFXHAcac\na6CNxQaBJEmSpFl9Frir/fYb4HxgV5KjgPs71jyN6bGFi5KsKrawqKp2t7/+gGb+QC8jRQI+MFSh\nkecaaAMxYiBJkiRpZklOA85sL++oqm/0rDd4bCHJK4DLgM1MfClaVef2WOe6jgSMNddAG4s7CCRJ\nkiQtK8kxVfVUkmOBh9qfxdeOrarHe5QfPLYAXAd8ArgG2N9jbZMGiQQccob9QS/RIw5QVfuTfDPJ\nieu1iaH1zwaBJEmSpJXsotn6v8CUjDtwUo/aY8QWflhVv9djTdMMEgkYOQ4w2FwDbUxGDCRJkiSt\nKEmAE8b4dnqE2MIVwPeAG5nYndBzp8Og2t0Yh/p+VT3bo6bHHKoXGwSSJEmSZpJkX1VtHajWZGzh\nOfp8mE/yrekla9U7HcaKBCR5GDgB+Ou21ouAR4HHgHdX1UKXulIfRgwkSZIkzWpPktMnTgnoY7TY\nQlX9TL+lHVRrrEjAl4Drq+oWgCS/APwysBP4XeA1sxYaq4mhjccdBJIkSZJmkuQBYAvwME3GffED\n6LaO9QaNLSQ5t6puTfKmaa9X1Q09ag8aCZi2GyPJ3qraluSeqnpVp4VKPbiDQJIkSdKsXk8zCO/s\n9vp24ImuxaqqktwMDBJbAM4BbqUZdPicxwGdGwTAHqZEApJ0jQR8N8n7gT9qr98KPNYeV/ijLgsc\nY66BNhZ3EEiSJEmaSZJLgXfRfNAOsB24pqp29Kj5GeDjA8UWRpPkGpaOBHysqmaOBLTvPw64HDiL\npnlxB/DbwJPAiVX1YIc1PoxzDdSDDQJJkiRJM0myFzijqp5ur48C7uwaMWhrDBpbaGu+d8rtJ4GF\nqrqnY83nNRKQZEdVXbzK9wzaxNDGY8RAkiRJ0qwC7J+43t/e62PQ2ELrtPbnpvb6PGAvcFGS66rq\n6g41B48ErODMlf/Ic/zzqnr34kVVfTHJh6vq15L8+IBr05zatNYLkCRJknTY2AncleSKJFcAXwM+\n1bPmduBa4Djg+Pb3X+pZ82XAKVX1G1X1G8CpwEuAnwfe0bHm29q6nwNupNnK/zbgCOAtPdc7lO8m\neX+Sze3P+xi3iaE5Y8RAkiRJ0sySnEKTmwf4alXd3bPeWLGFrYvD+dpvz++tqlcmuSszIFoAAAZ4\nSURBVLuqXt1nzUs8c9WRgBXq7amqU1b5nsHnGmhjMWIgSZIkaWZVtYdmov9QxogtfJZmp8Pn2+vz\ngV1t8+H+nrWX0iUSsJxV/zeoqr8ElmpSPDh0E0PzxwaBJEmSpLW0GFu4sb3eTs/YQlV9MMkXOPCh\n/aKq+kb7+9v71H4efWyEmkM3MTRnjBhIkiRJWlNDxRaSHFNVTyU5dtrrVfV41zXO8OyZIgFJbqLZ\n/j9VVfWdv7Dcs1cdW9DG4g4CSZIkSWtqwNjCLpoTCxY4+EN42uuTBnjGUmaNBHx4xDVIvdggkCRJ\nkjQXquq8JAHOqapHnufHzxQJqKrbxl7IMvrOdtCcM2IgSZIkaa4k2VdVWweqNUokIMkW4CrgZOAF\nE/VG2+WQ5B1V9emx6uvw5w4CSZIkSfNmT5LTq2r3ALXGigTspDmS8KPAa4ELgU1dCs3axLA5oJW4\ng0CSJEnSXEnyALAFeBh4mnYGQVVtW8t1TUqyUFWnTu52WLzXodY5y72+xrEGHUbcQSBJkiRp3rwe\neDFwdnt9O/BEn4IjRAKeSbIJ+Iskvw58Bzi6SyEbABpKpy0skiRJkrSObQeuBY4Djm9/73t84E7g\n94Af0kQC/gfwBz3qXQr8JHAJcCrwK8Cv9llgki1Jrk9yf5KHFn/61NTGYsRAkiRJ0lxJshc4o6qe\nbq+PAu7sEzEYMhIwliR/yoG5BufTzjWoqt9a04XpsGHEQJIkSdK8CbB/4no//Y/4GywSAJDkFcBl\nwGYmPpdV1bk91vgTVfXlJKmqbwNXJFkAbBBoJjYIJEmSJM2bncBdSW5sr7cDn+pZczIS8EHgXPpF\nAq4DPgFcw8HNjD4GbWJo4zFiIEmSJGnuJDkFOKu9/GpV3b2W6znUGPGEJKcDfw68iKaJ8ULg6qr6\n2pDP0fyyQSBJkiRJKxg6EpDkCuB7wI3AMxP1Hu+1UKkHGwSSJEmStIIk99JEAhaYiARU1ULHet+a\ncrt6HJs41lwDbSA2CCRJkiRpBevtxIJphm5iaOOxQSBJkiRJKxgqEpDk3Kq6Ncmbpr1eVTf0WOO6\nb2JofbNBIEmSJEkrGCoSkOTKqro8yc4l6r2z2wqda6D+bBBIkiRJ0hwYY66BNhYbBJIkSZK0hLEi\nAUneO+X2k8BCVd3TpabU15Er/xFJkiRJ2rDOAW4Fzp/yWgFdZwac1v7c1F6fB+wFLkpyXVVdPWuh\nMecaaGNxB4EkSZIkPc+S3A78YlX9oL0+GrgZeAPNLoKTV1FrtLkG2lhsEEiSJEnSCoaOBCR5ANha\nVc+21z8O3FtVr0xyd1W9ut+KpdUzYiBJkiRJKxssEtD6LHBXks+31+cDu5IcBdzfZYHONVBf7iCQ\nJEmSpBUMGQmYqHkacGZ7eUdVfaPnGncxvYnxcqBLE0MbjDsIJEmSJGllLwGembh+FnhpVf1tkmeW\neM9zJDmmqp5KcizwUPuz+NqxVfV4jzW+DDhloolxOU0T4+eBBcAGgZZlg0CSJEmSVjZUJGAXzTf7\nCzSnICxKe31SjzUO0sTQxmXEQJIkSZJmMFQkIEmAE6rqkcEW19T9APBGYLKJ8cfAfwc+WVVvH/J5\nmj82CCRJkiRpCYdEAp6jayQgyb6q2tpvdVPrDjrXQBuLDQJJkiRJWkKS/1lV5yX5FlMiAVXVKRKQ\n5DPAx6tq9wBrHKWJoY3HBoEkSZIkLWOMSECSB4AtwMPA0xxoOGzrUGuUJoY2HhsEkiRJkrSCoSMB\nSTYDLwbObm/dDjxRVd/uWG+UuQbaWDat9QIkSZIk6TCwJ8npA9bbDlwLHAcc3/7+S12LVfPN783D\nLE0blTsIJEmSJGkFQ0YC2np7gTOq6un2+ijgzq712hqDzTXQxnTkWi9AkiRJkg4Dr2dKJKBHvQD7\nJ673t/f6eA1wQZKHGaCJoY3HBoEkSZIkrWw78C7gBpoP3tcC1wA7OtbbCdyV5MaJ+p/qucahmxja\nYIwYSJIkSdIKRooEnAKc1V5+taru7rnGSzm4ibEduKaqujYxtMHYIJAkSZKkFSTZB5xeVX/XXr8A\n2D3kyQZ9jdHE0MZixECSJEmSVjZGJGBoY8w10AZig0CSJEmSVlBVH0nyFQ5EAi7sGwkYweHQxNA6\nZsRAkiRJkubE0HMNtLHYIJAkSZIkSWxa6wVIkiRJkqS1Z4NAkiRJkiTZIJAkSZIkSTYIJEmSJEkS\n8P8BCw3y7powTZ8AAAAASUVORK5CYII=\n",
2751
            "text/plain": [
2752
              "<Figure size 1296x432 with 2 Axes>"
2753
            ]
2754
          },
2755
          "metadata": {
2756
            "tags": []
2757
          }
2758
        }
2759
      ]
2760
    },
2761
    {
2762
      "cell_type": "code",
2763
      "metadata": {
2764
        "id": "Cs7SKsA8UjBJ",
2765
        "colab_type": "code",
2766
        "outputId": "8c77038f-e9af-4f12-aeb4-93d4160361c8",
2767
        "colab": {
2768
          "base_uri": "https://localhost:8080/",
2769
          "height": 71
2770
        }
2771
      },
2772
      "source": [
2773
        "\"\"\" Intersection of low quantile range features extracted from both population \"\"\"\n",
2774
        "# print(low_range_features_low_surv)\n",
2775
        "# print(low_range_features_high_surv)\n",
2776
        "intersection_features = list(set(low_range_features_low_surv) & set(low_range_features_high_surv))\n",
2777
        "union_features = list(low_range_features_low_surv) + list(set(low_range_features_high_surv) - set(low_range_features_low_surv))\n",
2778
        "print('Features with low range in both population', intersection_features)\n",
2779
        "print('Features with low range in one of the population', union_features)"
2780
      ],
2781
      "execution_count": 0,
2782
      "outputs": [
2783
        {
2784
          "output_type": "stream",
2785
          "text": [
2786
            "Features with low range in both population ['original_glcm_ClusterShade', 'original_glrlm_LongRunLowGrayLevelEmphasis', 'SourceDataset', 'Mstage', 'original_firstorder_Energy', 'Histology_large cell', 'original_glrlm_LowGrayLevelRunEmphasis', 'original_glrlm_ShortRunLowGrayLevelEmphasis', 'Histology_nos']\n",
2787
            "Features with low range in one of the population ['original_firstorder_Energy', 'original_firstorder_Median', 'original_glcm_ClusterShade', 'original_glcm_Contrast', 'original_glrlm_LowGrayLevelRunEmphasis', 'original_glrlm_ShortRunLowGrayLevelEmphasis', 'original_glrlm_LongRunLowGrayLevelEmphasis', 'Mstage', 'SourceDataset', 'Histology_adenocarcinoma', 'Histology_large cell', 'Histology_nos', 'original_glrlm_RunLengthNonUniformity', 'original_firstorder_Maximum', 'original_glrlm_LongRunHighGrayLevelEmphasis', 'original_glrlm_LongRunEmphasis', 'original_firstorder_Range', 'original_shape_VoxelVolume', 'Nstage', 'original_glcm_JointEnergy', 'original_shape_SurfaceArea', 'original_glrlm_GrayLevelNonUniformity', 'original_firstorder_Uniformity', 'original_firstorder_Kurtosis', 'Histology_squamous cell carcinoma']\n"
2788
          ],
2789
          "name": "stdout"
2790
        }
2791
      ]
2792
    },
2793
    {
2794
      "cell_type": "code",
2795
      "metadata": {
2796
        "id": "nJqZBc8KgH1m",
2797
        "colab_type": "code",
2798
        "outputId": "1b32e3ff-db9e-4edb-8852-01e8a46a37ac",
2799
        "colab": {
2800
          "base_uri": "https://localhost:8080/",
2801
          "height": 824
2802
        }
2803
      },
2804
      "source": [
2805
        "\"\"\" Comparing the mean value of the features in both populations \"\"\"\n",
2806
        "feat_ = union_features\n",
2807
        "s1 = low_surv_df[feat_].describe().loc['mean']\n",
2808
        "s2 = low_surv_df[feat_].describe().loc['std']\n",
2809
        "s3 = low_surv_df[feat_].describe().loc['75%'] - low_surv_df[feat_].describe().loc['25%']\n",
2810
        "s4 = high_surv_df[feat_].describe().loc['mean']\n",
2811
        "s5 = high_surv_df[feat_].describe().loc['std']\n",
2812
        "s6 = high_surv_df[feat_].describe().loc['75%'] - high_surv_df[feat_].describe().loc['25%']\n",
2813
        "\n",
2814
        "df = pd.concat([s1, s2, s3, s4, s5, s6], axis=1)\n",
2815
        "df.columns = ['low_surv_df_mean', 'low_surv_std', 'low_surve_Q3Q1_range', 'high_surv_df_mean', 'high_surv_std', 'high_surv_Q3Q1_range']\n",
2816
        "df"
2817
      ],
2818
      "execution_count": 0,
2819
      "outputs": [
2820
        {
2821
          "output_type": "execute_result",
2822
          "data": {
2823
            "text/html": [
2824
              "<div>\n",
2825
              "<style scoped>\n",
2826
              "    .dataframe tbody tr th:only-of-type {\n",
2827
              "        vertical-align: middle;\n",
2828
              "    }\n",
2829
              "\n",
2830
              "    .dataframe tbody tr th {\n",
2831
              "        vertical-align: top;\n",
2832
              "    }\n",
2833
              "\n",
2834
              "    .dataframe thead th {\n",
2835
              "        text-align: right;\n",
2836
              "    }\n",
2837
              "</style>\n",
2838
              "<table border=\"1\" class=\"dataframe\">\n",
2839
              "  <thead>\n",
2840
              "    <tr style=\"text-align: right;\">\n",
2841
              "      <th></th>\n",
2842
              "      <th>low_surv_df_mean</th>\n",
2843
              "      <th>low_surv_std</th>\n",
2844
              "      <th>low_surve_Q3Q1_range</th>\n",
2845
              "      <th>high_surv_df_mean</th>\n",
2846
              "      <th>high_surv_std</th>\n",
2847
              "      <th>high_surv_Q3Q1_range</th>\n",
2848
              "    </tr>\n",
2849
              "  </thead>\n",
2850
              "  <tbody>\n",
2851
              "    <tr>\n",
2852
              "      <th>original_firstorder_Energy</th>\n",
2853
              "      <td>0.061725</td>\n",
2854
              "      <td>0.085546</td>\n",
2855
              "      <td>0.054420</td>\n",
2856
              "      <td>0.051737</td>\n",
2857
              "      <td>0.146943</td>\n",
2858
              "      <td>0.021991</td>\n",
2859
              "    </tr>\n",
2860
              "    <tr>\n",
2861
              "      <th>original_firstorder_Median</th>\n",
2862
              "      <td>0.858435</td>\n",
2863
              "      <td>0.161358</td>\n",
2864
              "      <td>0.077998</td>\n",
2865
              "      <td>0.624409</td>\n",
2866
              "      <td>0.265962</td>\n",
2867
              "      <td>0.463329</td>\n",
2868
              "    </tr>\n",
2869
              "    <tr>\n",
2870
              "      <th>original_glcm_ClusterShade</th>\n",
2871
              "      <td>0.387256</td>\n",
2872
              "      <td>0.100801</td>\n",
2873
              "      <td>0.095666</td>\n",
2874
              "      <td>0.414754</td>\n",
2875
              "      <td>0.074341</td>\n",
2876
              "      <td>0.099742</td>\n",
2877
              "    </tr>\n",
2878
              "    <tr>\n",
2879
              "      <th>original_glcm_Contrast</th>\n",
2880
              "      <td>0.084823</td>\n",
2881
              "      <td>0.111087</td>\n",
2882
              "      <td>0.083460</td>\n",
2883
              "      <td>0.251002</td>\n",
2884
              "      <td>0.161003</td>\n",
2885
              "      <td>0.264574</td>\n",
2886
              "    </tr>\n",
2887
              "    <tr>\n",
2888
              "      <th>original_glrlm_LowGrayLevelRunEmphasis</th>\n",
2889
              "      <td>0.039752</td>\n",
2890
              "      <td>0.106124</td>\n",
2891
              "      <td>0.031192</td>\n",
2892
              "      <td>0.076636</td>\n",
2893
              "      <td>0.103946</td>\n",
2894
              "      <td>0.059311</td>\n",
2895
              "    </tr>\n",
2896
              "    <tr>\n",
2897
              "      <th>original_glrlm_ShortRunLowGrayLevelEmphasis</th>\n",
2898
              "      <td>0.047246</td>\n",
2899
              "      <td>0.107909</td>\n",
2900
              "      <td>0.036021</td>\n",
2901
              "      <td>0.098085</td>\n",
2902
              "      <td>0.116339</td>\n",
2903
              "      <td>0.077694</td>\n",
2904
              "    </tr>\n",
2905
              "    <tr>\n",
2906
              "      <th>original_glrlm_LongRunLowGrayLevelEmphasis</th>\n",
2907
              "      <td>0.035881</td>\n",
2908
              "      <td>0.113548</td>\n",
2909
              "      <td>0.012293</td>\n",
2910
              "      <td>0.038744</td>\n",
2911
              "      <td>0.086753</td>\n",
2912
              "      <td>0.022150</td>\n",
2913
              "    </tr>\n",
2914
              "    <tr>\n",
2915
              "      <th>Mstage</th>\n",
2916
              "      <td>0.029703</td>\n",
2917
              "      <td>0.170613</td>\n",
2918
              "      <td>0.000000</td>\n",
2919
              "      <td>0.000000</td>\n",
2920
              "      <td>0.000000</td>\n",
2921
              "      <td>0.000000</td>\n",
2922
              "    </tr>\n",
2923
              "    <tr>\n",
2924
              "      <th>SourceDataset</th>\n",
2925
              "      <td>0.158416</td>\n",
2926
              "      <td>0.366952</td>\n",
2927
              "      <td>0.000000</td>\n",
2928
              "      <td>0.836735</td>\n",
2929
              "      <td>0.373438</td>\n",
2930
              "      <td>0.000000</td>\n",
2931
              "    </tr>\n",
2932
              "    <tr>\n",
2933
              "      <th>Histology_adenocarcinoma</th>\n",
2934
              "      <td>0.227723</td>\n",
2935
              "      <td>0.421454</td>\n",
2936
              "      <td>0.000000</td>\n",
2937
              "      <td>0.673469</td>\n",
2938
              "      <td>0.473804</td>\n",
2939
              "      <td>1.000000</td>\n",
2940
              "    </tr>\n",
2941
              "    <tr>\n",
2942
              "      <th>Histology_large cell</th>\n",
2943
              "      <td>0.217822</td>\n",
2944
              "      <td>0.414824</td>\n",
2945
              "      <td>0.000000</td>\n",
2946
              "      <td>0.020408</td>\n",
2947
              "      <td>0.142857</td>\n",
2948
              "      <td>0.000000</td>\n",
2949
              "    </tr>\n",
2950
              "    <tr>\n",
2951
              "      <th>Histology_nos</th>\n",
2952
              "      <td>0.178218</td>\n",
2953
              "      <td>0.384605</td>\n",
2954
              "      <td>0.000000</td>\n",
2955
              "      <td>0.020408</td>\n",
2956
              "      <td>0.142857</td>\n",
2957
              "      <td>0.000000</td>\n",
2958
              "    </tr>\n",
2959
              "    <tr>\n",
2960
              "      <th>original_glrlm_RunLengthNonUniformity</th>\n",
2961
              "      <td>0.110472</td>\n",
2962
              "      <td>0.114490</td>\n",
2963
              "      <td>0.137792</td>\n",
2964
              "      <td>0.059445</td>\n",
2965
              "      <td>0.175886</td>\n",
2966
              "      <td>0.023126</td>\n",
2967
              "    </tr>\n",
2968
              "    <tr>\n",
2969
              "      <th>original_firstorder_Maximum</th>\n",
2970
              "      <td>0.184491</td>\n",
2971
              "      <td>0.165187</td>\n",
2972
              "      <td>0.165658</td>\n",
2973
              "      <td>0.116175</td>\n",
2974
              "      <td>0.096689</td>\n",
2975
              "      <td>0.063077</td>\n",
2976
              "    </tr>\n",
2977
              "    <tr>\n",
2978
              "      <th>original_glrlm_LongRunHighGrayLevelEmphasis</th>\n",
2979
              "      <td>0.205714</td>\n",
2980
              "      <td>0.162696</td>\n",
2981
              "      <td>0.195596</td>\n",
2982
              "      <td>0.066823</td>\n",
2983
              "      <td>0.096787</td>\n",
2984
              "      <td>0.038876</td>\n",
2985
              "    </tr>\n",
2986
              "    <tr>\n",
2987
              "      <th>original_glrlm_LongRunEmphasis</th>\n",
2988
              "      <td>0.146258</td>\n",
2989
              "      <td>0.141577</td>\n",
2990
              "      <td>0.154030</td>\n",
2991
              "      <td>0.036450</td>\n",
2992
              "      <td>0.080802</td>\n",
2993
              "      <td>0.026298</td>\n",
2994
              "    </tr>\n",
2995
              "    <tr>\n",
2996
              "      <th>original_firstorder_Range</th>\n",
2997
              "      <td>0.249277</td>\n",
2998
              "      <td>0.156409</td>\n",
2999
              "      <td>0.170097</td>\n",
3000
              "      <td>0.191130</td>\n",
3001
              "      <td>0.101149</td>\n",
3002
              "      <td>0.095769</td>\n",
3003
              "    </tr>\n",
3004
              "    <tr>\n",
3005
              "      <th>original_shape_VoxelVolume</th>\n",
3006
              "      <td>0.131952</td>\n",
3007
              "      <td>0.155133</td>\n",
3008
              "      <td>0.154927</td>\n",
3009
              "      <td>0.041246</td>\n",
3010
              "      <td>0.113124</td>\n",
3011
              "      <td>0.014398</td>\n",
3012
              "    </tr>\n",
3013
              "    <tr>\n",
3014
              "      <th>Nstage</th>\n",
3015
              "      <td>0.321782</td>\n",
3016
              "      <td>0.300701</td>\n",
3017
              "      <td>0.500000</td>\n",
3018
              "      <td>0.086735</td>\n",
3019
              "      <td>0.201240</td>\n",
3020
              "      <td>0.000000</td>\n",
3021
              "    </tr>\n",
3022
              "    <tr>\n",
3023
              "      <th>original_glcm_JointEnergy</th>\n",
3024
              "      <td>0.166168</td>\n",
3025
              "      <td>0.151797</td>\n",
3026
              "      <td>0.198795</td>\n",
3027
              "      <td>0.047922</td>\n",
3028
              "      <td>0.098254</td>\n",
3029
              "      <td>0.044295</td>\n",
3030
              "    </tr>\n",
3031
              "    <tr>\n",
3032
              "      <th>original_shape_SurfaceArea</th>\n",
3033
              "      <td>0.210168</td>\n",
3034
              "      <td>0.183855</td>\n",
3035
              "      <td>0.262893</td>\n",
3036
              "      <td>0.083413</td>\n",
3037
              "      <td>0.170937</td>\n",
3038
              "      <td>0.049602</td>\n",
3039
              "    </tr>\n",
3040
              "    <tr>\n",
3041
              "      <th>original_glrlm_GrayLevelNonUniformity</th>\n",
3042
              "      <td>0.105473</td>\n",
3043
              "      <td>0.156377</td>\n",
3044
              "      <td>0.113818</td>\n",
3045
              "      <td>0.027657</td>\n",
3046
              "      <td>0.089419</td>\n",
3047
              "      <td>0.005354</td>\n",
3048
              "    </tr>\n",
3049
              "    <tr>\n",
3050
              "      <th>original_firstorder_Uniformity</th>\n",
3051
              "      <td>0.294907</td>\n",
3052
              "      <td>0.212134</td>\n",
3053
              "      <td>0.331429</td>\n",
3054
              "      <td>0.101235</td>\n",
3055
              "      <td>0.152075</td>\n",
3056
              "      <td>0.091915</td>\n",
3057
              "    </tr>\n",
3058
              "    <tr>\n",
3059
              "      <th>original_firstorder_Kurtosis</th>\n",
3060
              "      <td>0.118243</td>\n",
3061
              "      <td>0.181936</td>\n",
3062
              "      <td>0.126265</td>\n",
3063
              "      <td>0.023363</td>\n",
3064
              "      <td>0.043704</td>\n",
3065
              "      <td>0.012281</td>\n",
3066
              "    </tr>\n",
3067
              "    <tr>\n",
3068
              "      <th>Histology_squamous cell carcinoma</th>\n",
3069
              "      <td>0.316832</td>\n",
3070
              "      <td>0.467562</td>\n",
3071
              "      <td>1.000000</td>\n",
3072
              "      <td>0.244898</td>\n",
3073
              "      <td>0.434483</td>\n",
3074
              "      <td>0.000000</td>\n",
3075
              "    </tr>\n",
3076
              "  </tbody>\n",
3077
              "</table>\n",
3078
              "</div>"
3079
            ],
3080
            "text/plain": [
3081
              "                                             low_surv_df_mean  ...  high_surv_Q3Q1_range\n",
3082
              "original_firstorder_Energy                           0.061725  ...              0.021991\n",
3083
              "original_firstorder_Median                           0.858435  ...              0.463329\n",
3084
              "original_glcm_ClusterShade                           0.387256  ...              0.099742\n",
3085
              "original_glcm_Contrast                               0.084823  ...              0.264574\n",
3086
              "original_glrlm_LowGrayLevelRunEmphasis               0.039752  ...              0.059311\n",
3087
              "original_glrlm_ShortRunLowGrayLevelEmphasis          0.047246  ...              0.077694\n",
3088
              "original_glrlm_LongRunLowGrayLevelEmphasis           0.035881  ...              0.022150\n",
3089
              "Mstage                                               0.029703  ...              0.000000\n",
3090
              "SourceDataset                                        0.158416  ...              0.000000\n",
3091
              "Histology_adenocarcinoma                             0.227723  ...              1.000000\n",
3092
              "Histology_large cell                                 0.217822  ...              0.000000\n",
3093
              "Histology_nos                                        0.178218  ...              0.000000\n",
3094
              "original_glrlm_RunLengthNonUniformity                0.110472  ...              0.023126\n",
3095
              "original_firstorder_Maximum                          0.184491  ...              0.063077\n",
3096
              "original_glrlm_LongRunHighGrayLevelEmphasis          0.205714  ...              0.038876\n",
3097
              "original_glrlm_LongRunEmphasis                       0.146258  ...              0.026298\n",
3098
              "original_firstorder_Range                            0.249277  ...              0.095769\n",
3099
              "original_shape_VoxelVolume                           0.131952  ...              0.014398\n",
3100
              "Nstage                                               0.321782  ...              0.000000\n",
3101
              "original_glcm_JointEnergy                            0.166168  ...              0.044295\n",
3102
              "original_shape_SurfaceArea                           0.210168  ...              0.049602\n",
3103
              "original_glrlm_GrayLevelNonUniformity                0.105473  ...              0.005354\n",
3104
              "original_firstorder_Uniformity                       0.294907  ...              0.091915\n",
3105
              "original_firstorder_Kurtosis                         0.118243  ...              0.012281\n",
3106
              "Histology_squamous cell carcinoma                    0.316832  ...              0.000000\n",
3107
              "\n",
3108
              "[25 rows x 6 columns]"
3109
            ]
3110
          },
3111
          "metadata": {
3112
            "tags": []
3113
          },
3114
          "execution_count": 25
3115
        }
3116
      ]
3117
    },
3118
    {
3119
      "cell_type": "markdown",
3120
      "metadata": {
3121
        "id": "dVDU5HByfiT0",
3122
        "colab_type": "text"
3123
      },
3124
      "source": [
3125
        "**Conclusion**: The discriminating feature are `SourceDataset`, `Histology_adenocarcinoma`. "
3126
      ]
3127
    },
3128
    {
3129
      "cell_type": "markdown",
3130
      "metadata": {
3131
        "id": "FKMH1AKGP8VB",
3132
        "colab_type": "text"
3133
      },
3134
      "source": [
3135
        "### Classification of patients to determine low / high survival probability"
3136
      ]
3137
    },
3138
    {
3139
      "cell_type": "code",
3140
      "metadata": {
3141
        "id": "EaKY-1MG16V7",
3142
        "colab_type": "code",
3143
        "outputId": "fed18228-80df-4bee-be20-7c8d2d7d027f",
3144
        "colab": {
3145
          "base_uri": "https://localhost:8080/",
3146
          "height": 340
3147
        }
3148
      },
3149
      "source": [
3150
        "!pip install scikit-survival\n",
3151
        "from sksurv.ensemble import RandomSurvivalForest\n",
3152
        "from sklearn.model_selection import cross_validate, RandomizedSearchCV"
3153
      ],
3154
      "execution_count": 0,
3155
      "outputs": [
3156
        {
3157
          "output_type": "stream",
3158
          "text": [
3159
            "Requirement already satisfied: scikit-survival in /usr/local/lib/python3.6/dist-packages (0.11)\n",
3160
            "Requirement already satisfied: scikit-learn<0.22,>=0.21.0 in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (0.21.3)\n",
3161
            "Requirement already satisfied: numexpr in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (2.7.1)\n",
3162
            "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (1.18.1)\n",
3163
            "Requirement already satisfied: osqp!=0.6.0,!=0.6.1 in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (0.5.0)\n",
3164
            "Requirement already satisfied: cython>=0.29 in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (0.29.15)\n",
3165
            "Requirement already satisfied: cvxpy>=1.0 in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (1.0.28)\n",
3166
            "Requirement already satisfied: scipy!=1.3.0,>=1.0 in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (1.4.1)\n",
3167
            "Requirement already satisfied: pandas<0.26,>=0.21 in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (0.25.3)\n",
3168
            "Requirement already satisfied: cvxopt in /usr/local/lib/python3.6/dist-packages (from scikit-survival) (1.2.4)\n",
3169
            "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn<0.22,>=0.21.0->scikit-survival) (0.14.1)\n",
3170
            "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from osqp!=0.6.0,!=0.6.1->scikit-survival) (0.16.0)\n",
3171
            "Requirement already satisfied: multiprocess in /usr/local/lib/python3.6/dist-packages (from cvxpy>=1.0->scikit-survival) (0.70.9)\n",
3172
            "Requirement already satisfied: scs>=1.1.3 in /usr/local/lib/python3.6/dist-packages (from cvxpy>=1.0->scikit-survival) (2.1.1.post2)\n",
3173
            "Requirement already satisfied: ecos>=2 in /usr/local/lib/python3.6/dist-packages (from cvxpy>=1.0->scikit-survival) (2.0.7.post1)\n",
3174
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas<0.26,>=0.21->scikit-survival) (2018.9)\n",
3175
            "Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas<0.26,>=0.21->scikit-survival) (2.8.1)\n",
3176
            "Requirement already satisfied: dill>=0.3.1 in /usr/local/lib/python3.6/dist-packages (from multiprocess->cvxpy>=1.0->scikit-survival) (0.3.1.1)\n",
3177
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.6.1->pandas<0.26,>=0.21->scikit-survival) (1.12.0)\n"
3178
          ],
3179
          "name": "stdout"
3180
        }
3181
      ]
3182
    },
3183
    {
3184
      "cell_type": "code",
3185
      "metadata": {
3186
        "id": "lQFcod5yQQts",
3187
        "colab_type": "code",
3188
        "colab": {}
3189
      },
3190
      "source": [
3191
        "\"\"\" Concatenate the values of both population and set labels for classification \"\"\"\n",
3192
        "x_surv = low_surv_df.append(high_surv_df)\n",
3193
        "y_low_surv = pd.Series([0] * len(low_surv_df), index=low_surv_df.index, name='high_surv')\n",
3194
        "y_high_surv = pd.Series([1] * len(high_surv_df), index=high_survival_index, name='high_surv')\n",
3195
        "y_surv = y_low_surv.append(y_high_surv)"
3196
      ],
3197
      "execution_count": 0,
3198
      "outputs": []
3199
    },
3200
    {
3201
      "cell_type": "code",
3202
      "metadata": {
3203
        "id": "OAeMgc6yaHpK",
3204
        "colab_type": "code",
3205
        "outputId": "6a689f09-d6c5-4d69-b393-464c57e48d74",
3206
        "colab": {
3207
          "base_uri": "https://localhost:8080/",
3208
          "height": 564
3209
        }
3210
      },
3211
      "source": [
3212
        "from sklearn.ensemble import RandomForestClassifier\n",
3213
        "\n",
3214
        "tuned_params = {\"n_estimators\": np.arange(10, 1000, 10),\n",
3215
        "                \"min_samples_split\": np.arange(2, 40, 2),\n",
3216
        "                \"min_samples_leaf\": np.arange(1, 20, 1)\n",
3217
        "                }\n",
3218
        "\n",
3219
        "search = RandomizedSearchCV(RandomForestClassifier(), tuned_params, cv=5, verbose=2, n_jobs=-1, n_iter=100)\n",
3220
        "search.fit(x_surv, y_surv)"
3221
      ],
3222
      "execution_count": 0,
3223
      "outputs": [
3224
        {
3225
          "output_type": "stream",
3226
          "text": [
3227
            "Fitting 5 folds for each of 100 candidates, totalling 500 fits\n"
3228
          ],
3229
          "name": "stdout"
3230
        },
3231
        {
3232
          "output_type": "stream",
3233
          "text": [
3234
            "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.\n",
3235
            "[Parallel(n_jobs=-1)]: Done  37 tasks      | elapsed:   23.4s\n",
3236
            "[Parallel(n_jobs=-1)]: Done 158 tasks      | elapsed:  1.6min\n",
3237
            "[Parallel(n_jobs=-1)]: Done 361 tasks      | elapsed:  3.4min\n",
3238
            "[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed:  4.7min finished\n",
3239
            "/usr/local/lib/python3.6/dist-packages/sklearn/model_selection/_search.py:814: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.\n",
3240
            "  DeprecationWarning)\n"
3241
          ],
3242
          "name": "stderr"
3243
        },
3244
        {
3245
          "output_type": "execute_result",
3246
          "data": {
3247
            "text/plain": [
3248
              "RandomizedSearchCV(cv=5, error_score='raise-deprecating',\n",
3249
              "                   estimator=RandomForestClassifier(bootstrap=True,\n",
3250
              "                                                    class_weight=None,\n",
3251
              "                                                    criterion='gini',\n",
3252
              "                                                    max_depth=None,\n",
3253
              "                                                    max_features='auto',\n",
3254
              "                                                    max_leaf_nodes=None,\n",
3255
              "                                                    min_impurity_decrease=0.0,\n",
3256
              "                                                    min_impurity_split=None,\n",
3257
              "                                                    min_samples_leaf=1,\n",
3258
              "                                                    min_samples_split=2,\n",
3259
              "                                                    min_weight_fraction_leaf=0.0,\n",
3260
              "                                                    n_estimators='warn',\n",
3261
              "                                                    n_jobs=None,\n",
3262
              "                                                    oob_sc...\n",
3263
              "       270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390,\n",
3264
              "       400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520,\n",
3265
              "       530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650,\n",
3266
              "       660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780,\n",
3267
              "       790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910,\n",
3268
              "       920, 930, 940, 950, 960, 970, 980, 990])},\n",
3269
              "                   pre_dispatch='2*n_jobs', random_state=None, refit=True,\n",
3270
              "                   return_train_score=False, scoring=None, verbose=2)"
3271
            ]
3272
          },
3273
          "metadata": {
3274
            "tags": []
3275
          },
3276
          "execution_count": 29
3277
        }
3278
      ]
3279
    },
3280
    {
3281
      "cell_type": "code",
3282
      "metadata": {
3283
        "id": "nqFyb4-R1r5h",
3284
        "colab_type": "code",
3285
        "outputId": "9f2114b5-e124-4338-e895-11edefa90879",
3286
        "colab": {
3287
          "base_uri": "https://localhost:8080/",
3288
          "height": 68
3289
        }
3290
      },
3291
      "source": [
3292
        "params = search.best_params_\n",
3293
        "forest = RandomForestClassifier(**params, n_jobs=-1)\n",
3294
        "cross_validate(forest, x_surv, y_surv, cv=5)"
3295
      ],
3296
      "execution_count": 0,
3297
      "outputs": [
3298
        {
3299
          "output_type": "execute_result",
3300
          "data": {
3301
            "text/plain": [
3302
              "{'fit_time': array([1.40461445, 1.35777259, 1.36289883, 1.35091567, 1.38806367]),\n",
3303
              " 'score_time': array([0.20353508, 0.20422983, 0.20304966, 0.20344043, 0.20493698]),\n",
3304
              " 'test_score': array([0.77419355, 0.86666667, 0.83333333, 0.66666667, 0.86206897])}"
3305
            ]
3306
          },
3307
          "metadata": {
3308
            "tags": []
3309
          },
3310
          "execution_count": 30
3311
        }
3312
      ]
3313
    },
3314
    {
3315
      "cell_type": "code",
3316
      "metadata": {
3317
        "id": "qa1TUMUpeNuu",
3318
        "colab_type": "code",
3319
        "outputId": "a7839865-818c-4dfb-9b85-cf833fdfe75c",
3320
        "colab": {
3321
          "base_uri": "https://localhost:8080/",
3322
          "height": 1000
3323
        }
3324
      },
3325
      "source": [
3326
        "forest = RandomForestClassifier(**params, n_jobs=-1)\n",
3327
        "forest.fit(x_surv, y_surv)\n",
3328
        "\n",
3329
        "\"\"\" Feature importance \"\"\"\n",
3330
        "importances = forest.feature_importances_\n",
3331
        "std = np.std([forest.feature_importances_ for forest in forest.estimators_],\n",
3332
        "             axis=0)\n",
3333
        "indices = np.argsort(importances)[::-1]\n",
3334
        "\n",
3335
        "# Print the feature ranking\n",
3336
        "print(\"Feature ranking:\")\n",
3337
        "\n",
3338
        "for f in range(x_surv.shape[1]):\n",
3339
        "    print('{:<60}({:<10})+/-({:})'.format(x_surv.columns[indices[f]], importances[indices[f]], std[indices[f]]))"
3340
      ],
3341
      "execution_count": 0,
3342
      "outputs": [
3343
        {
3344
          "output_type": "stream",
3345
          "text": [
3346
            "Feature ranking:\n",
3347
            "SourceDataset                                               (0.07928941507342958)+/-(0.1738562857046239)\n",
3348
            "original_glcm_Idmn                                          (0.05000366757650152)+/-(0.1326527696599052)\n",
3349
            "original_glrlm_LongRunEmphasis                              (0.04766199759860742)+/-(0.13588000111211174)\n",
3350
            "original_glrlm_RunPercentage                                (0.0413548499906998)+/-(0.1285057672776681)\n",
3351
            "original_glcm_DifferenceEntropy                             (0.03767301771706796)+/-(0.11102341757585656)\n",
3352
            "original_glcm_Idm                                           (0.035154865505996155)+/-(0.11498423941592535)\n",
3353
            "original_glcm_Imc1                                          (0.03382182182491566)+/-(0.08791147430504223)\n",
3354
            "original_glcm_Id                                            (0.03378343876684833)+/-(0.11102977580858837)\n",
3355
            "original_glrlm_LongRunHighGrayLevelEmphasis                 (0.03338372843681382)+/-(0.10692969988476542)\n",
3356
            "original_glrlm_ShortRunEmphasis                             (0.033287283756406195)+/-(0.10893932707538749)\n",
3357
            "original_glcm_Idn                                           (0.03155443996849472)+/-(0.10782824975641177)\n",
3358
            "original_glcm_JointEnergy                                   (0.02607598817710038)+/-(0.09166921247445962)\n",
3359
            "original_glcm_DifferenceAverage                             (0.025521933365931483)+/-(0.08554694697078281)\n",
3360
            "original_glcm_Contrast                                      (0.025390737199290768)+/-(0.0874579950881286)\n",
3361
            "original_glcm_Correlation                                   (0.022857083876227226)+/-(0.07176656177988945)\n",
3362
            "original_shape_SurfaceVolumeRatio                           (0.01868494201214343)+/-(0.06938865355604999)\n",
3363
            "original_glcm_MaximumProbability                            (0.017946106206776922)+/-(0.06162369864321631)\n",
3364
            "original_glrlm_GrayLevelNonUniformity                       (0.017058387767660776)+/-(0.05565886630735466)\n",
3365
            "original_firstorder_Uniformity                              (0.016636411236540874)+/-(0.06137360288886845)\n",
3366
            "original_glcm_Imc2                                          (0.016212048233630337)+/-(0.03670560507271377)\n",
3367
            "original_firstorder_Mean                                    (0.01615072519325507)+/-(0.05641177530946689)\n",
3368
            "age                                                         (0.015236974917444291)+/-(0.03268252184607131)\n",
3369
            "original_firstorder_Kurtosis                                (0.01500150735000768)+/-(0.058834397988317876)\n",
3370
            "original_glcm_JointEntropy                                  (0.014674722164697722)+/-(0.06170821320180433)\n",
3371
            "original_glcm_InverseVariance                               (0.014468042139639644)+/-(0.06043251106208118)\n",
3372
            "original_firstorder_RootMeanSquared                         (0.011876901868422399)+/-(0.0443656375752213)\n",
3373
            "original_glcm_ClusterShade                                  (0.011768631517728955)+/-(0.03210270989461498)\n",
3374
            "original_shape_Maximum3DDiameter                            (0.011280393039739437)+/-(0.03909710632328299)\n",
3375
            "original_shape_VoxelVolume                                  (0.0110971298226257)+/-(0.04950917261301518)\n",
3376
            "original_firstorder_Entropy                                 (0.010758596040198598)+/-(0.039801034216223566)\n",
3377
            "original_shape_Compactness1                                 (0.010517396224149189)+/-(0.02748864605282961)\n",
3378
            "original_firstorder_Range                                   (0.010391871361414718)+/-(0.029027476868529547)\n",
3379
            "original_shape_SphericalDisproportion                       (0.010193560902043791)+/-(0.027280161944424692)\n",
3380
            "original_glrlm_LongRunLowGrayLevelEmphasis                  (0.010064286225441239)+/-(0.026483147295626633)\n",
3381
            "original_glcm_SumEntropy                                    (0.009930883280899297)+/-(0.03429463032595291)\n",
3382
            "original_shape_Compactness2                                 (0.009916953407792568)+/-(0.02669903728388564)\n",
3383
            "original_firstorder_Median                                  (0.009826169550080272)+/-(0.038513944014570055)\n",
3384
            "original_firstorder_Skewness                                (0.009646341454065415)+/-(0.03176341593485137)\n",
3385
            "original_glrlm_RunLengthNonUniformity                       (0.00938966406285514)+/-(0.03427036696151096)\n",
3386
            "original_glcm_ClusterTendency                               (0.009291111457825262)+/-(0.028062783591381243)\n",
3387
            "original_glrlm_LowGrayLevelRunEmphasis                      (0.00916446281570515)+/-(0.028451843567701297)\n",
3388
            "original_glrlm_ShortRunLowGrayLevelEmphasis                 (0.008893859357832242)+/-(0.03688150039797808)\n",
3389
            "original_glrlm_ShortRunHighGrayLevelEmphasis                (0.00874946722879777)+/-(0.025557815888771776)\n",
3390
            "original_firstorder_Energy                                  (0.00835200836358638)+/-(0.02575526613322083)\n",
3391
            "original_shape_Sphericity                                   (0.007976238798976592)+/-(0.02370123126677445)\n",
3392
            "original_firstorder_MeanAbsoluteDeviation                   (0.0077194592288307)+/-(0.025002643351615228)\n",
3393
            "original_shape_SurfaceArea                                  (0.00761925849062389)+/-(0.0277261559796855)\n",
3394
            "original_glcm_ClusterProminence                             (0.0075163172658246095)+/-(0.023806276171445158)\n",
3395
            "original_firstorder_StandardDeviation                       (0.007380895850395991)+/-(0.024291787304540225)\n",
3396
            "original_firstorder_Variance                                (0.0073034446738674715)+/-(0.023403898588759985)\n",
3397
            "Nstage                                                      (0.007121281067232745)+/-(0.029991614598979203)\n",
3398
            "original_firstorder_Maximum                                 (0.006955378590824373)+/-(0.021323361549575336)\n",
3399
            "original_glrlm_HighGrayLevelRunEmphasis                     (0.006452130326901698)+/-(0.02136312515839412)\n",
3400
            "original_glcm_SumAverage                                    (0.005629607880727473)+/-(0.020019128035455618)\n",
3401
            "original_firstorder_Minimum                                 (0.005584798315219134)+/-(0.01829629427309807)\n",
3402
            "original_glcm_Autocorrelation                               (0.0052110079737306)+/-(0.018649539177845665)\n",
3403
            "Histology_adenocarcinoma                                    (0.004009105824542984)+/-(0.022113055882791853)\n",
3404
            "Tstage                                                      (0.002082367686795266)+/-(0.010675166792902913)\n",
3405
            "Histology_squamous cell carcinoma                           (0.0010342795272859074)+/-(0.007327884470672186)\n",
3406
            "Histology_large cell                                        (0.00023143569230502548)+/-(0.0034266607668973856)\n",
3407
            "Histology_nos                                               (0.00017916876858443723)+/-(0.003414966515017873)\n",
3408
            "Mstage                                                      (0.0       )+/-(0.0)\n"
3409
          ],
3410
          "name": "stdout"
3411
        }
3412
      ]
3413
    },
3414
    {
3415
      "cell_type": "code",
3416
      "metadata": {
3417
        "id": "Nd_hSCaZmNdV",
3418
        "colab_type": "code",
3419
        "colab": {}
3420
      },
3421
      "source": [
3422
        "high_importance_features_save = ['SourceDataset',\n",
3423
        " 'original_glcm_Idn',\n",
3424
        " 'original_glcm_Idmn',\n",
3425
        " 'original_glcm_Imc1',\n",
3426
        " 'original_glcm_Idm',\n",
3427
        " 'original_glrlm_RunPercentage',\n",
3428
        " 'original_glrlm_LongRunEmphasis',\n",
3429
        " 'original_glcm_Id',\n",
3430
        " 'original_glcm_DifferenceAverage',\n",
3431
        " 'original_glrlm_LongRunHighGrayLevelEmphasis']\n",
3432
        "\n",
3433
        "# high_importance_features = [x_surv.columns[indices[f]] for f in range(10)]\n",
3434
        "# high_importance_features"
3435
      ],
3436
      "execution_count": 0,
3437
      "outputs": []
3438
    },
3439
    {
3440
      "cell_type": "markdown",
3441
      "metadata": {
3442
        "id": "M6EAi_tWV_HK",
3443
        "colab_type": "text"
3444
      },
3445
      "source": [
3446
        "## Covariance matrix\n",
3447
        "\n",
3448
        "**Question**: how to exploit correlation matrix to eliminate non informative features?"
3449
      ]
3450
    },
3451
    {
3452
      "cell_type": "markdown",
3453
      "metadata": {
3454
        "id": "M7qvAUp5TMJb",
3455
        "colab_type": "text"
3456
      },
3457
      "source": [
3458
        "https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4"
3459
      ]
3460
    },
3461
    {
3462
      "cell_type": "code",
3463
      "metadata": {
3464
        "id": "pi_3RrmMF6kG",
3465
        "colab_type": "code",
3466
        "colab": {}
3467
      },
3468
      "source": [
3469
        "import seaborn as sn"
3470
      ],
3471
      "execution_count": 0,
3472
      "outputs": []
3473
    },
3474
    {
3475
      "cell_type": "code",
3476
      "metadata": {
3477
        "id": "ytSjjlQHWBC7",
3478
        "colab_type": "code",
3479
        "colab": {}
3480
      },
3481
      "source": [
3482
        "input_train, output_train, input_test = load_owkin_data()"
3483
      ],
3484
      "execution_count": 0,
3485
      "outputs": []
3486
    },
3487
    {
3488
      "cell_type": "code",
3489
      "metadata": {
3490
        "id": "M7IB1ZTtFePP",
3491
        "colab_type": "code",
3492
        "colab": {}
3493
      },
3494
      "source": [
3495
        "\"\"\" Correlation matrix \"\"\"\n",
3496
        "plt.figure(figsize=(15,15))\n",
3497
        "corrMatrix = input_train.corr(method='pearson')\n",
3498
        "sn.heatmap(corrMatrix)"
3499
      ],
3500
      "execution_count": 0,
3501
      "outputs": []
3502
    },
3503
    {
3504
      "cell_type": "code",
3505
      "metadata": {
3506
        "id": "6XqqnTd3L7Bt",
3507
        "colab_type": "code",
3508
        "colab": {}
3509
      },
3510
      "source": [
3511
        "\"\"\" Correlation matrix \"\"\"\n",
3512
        "plt.figure(figsize=(15,15))\n",
3513
        "corrMatrix = input_train.corr(method='spearman')\n",
3514
        "sn.heatmap(corrMatrix)"
3515
      ],
3516
      "execution_count": 0,
3517
      "outputs": []
3518
    },
3519
    {
3520
      "cell_type": "code",
3521
      "metadata": {
3522
        "id": "MF1XG7YJHAPm",
3523
        "colab_type": "code",
3524
        "colab": {}
3525
      },
3526
      "source": [
3527
        "start_features = ['SourceDataset', 'Histology_adenocarcinoma']"
3528
      ],
3529
      "execution_count": 0,
3530
      "outputs": []
3531
    },
3532
    {
3533
      "cell_type": "markdown",
3534
      "metadata": {
3535
        "id": "o-rCb6m1dv7G",
3536
        "colab_type": "text"
3537
      },
3538
      "source": [
3539
        "# Wavelet features"
3540
      ]
3541
    },
3542
    {
3543
      "cell_type": "code",
3544
      "metadata": {
3545
        "id": "2F9nSJCKeWdT",
3546
        "colab_type": "code",
3547
        "outputId": "fde61cc0-c61c-42fc-a4d0-a1d074566d9c",
3548
        "colab": {
3549
          "base_uri": "https://localhost:8080/",
3550
          "height": 411
3551
        }
3552
      },
3553
      "source": [
3554
        "!pip install SimpleITK\n",
3555
        "!pip install pyradiomics"
3556
      ],
3557
      "execution_count": 0,
3558
      "outputs": [
3559
        {
3560
          "output_type": "stream",
3561
          "text": [
3562
            "Requirement already satisfied: SimpleITK in /usr/local/lib/python3.6/dist-packages (1.2.4)\n",
3563
            "Collecting pyradiomics\n",
3564
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/73/f1/39b0f758735f920bca7afb4e1edde83a98e2c56432d3e6560abf1a09c091/pyradiomics-3.0-cp36-cp36m-manylinux1_x86_64.whl (157kB)\n",
3565
            "\u001b[K     |████████████████████████████████| 163kB 4.8MB/s \n",
3566
            "\u001b[?25hCollecting PyWavelets<=1.0.0,>=0.4.0\n",
3567
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/90/d0/09b2bf3368d5bba6ee1a8868ce94eebbb105fc8bf89fa43c90348b21a7cb/PyWavelets-1.0.0-cp36-cp36m-manylinux1_x86_64.whl (4.4MB)\n",
3568
            "\u001b[K     |████████████████████████████████| 4.4MB 14.7MB/s \n",
3569
            "\u001b[?25hRequirement already satisfied: SimpleITK>=0.9.1 in /usr/local/lib/python3.6/dist-packages (from pyradiomics) (1.2.4)\n",
3570
            "Requirement already satisfied: numpy>=1.9.2 in /usr/local/lib/python3.6/dist-packages (from pyradiomics) (1.18.1)\n",
3571
            "Collecting pykwalify>=1.6.0\n",
3572
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/36/9f/612de8ca540bd24d604f544248c4c46e9db76f6ea5eb75fb4244da6ebbf0/pykwalify-1.7.0-py2.py3-none-any.whl (40kB)\n",
3573
            "\u001b[K     |████████████████████████████████| 40kB 3.4MB/s \n",
3574
            "\u001b[?25hRequirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from pyradiomics) (1.12.0)\n",
3575
            "Requirement already satisfied: docopt>=0.6.2 in /usr/local/lib/python3.6/dist-packages (from pykwalify>=1.6.0->pyradiomics) (0.6.2)\n",
3576
            "Requirement already satisfied: PyYAML>=3.11 in /usr/local/lib/python3.6/dist-packages (from pykwalify>=1.6.0->pyradiomics) (3.13)\n",
3577
            "Requirement already satisfied: python-dateutil>=2.4.2 in /usr/local/lib/python3.6/dist-packages (from pykwalify>=1.6.0->pyradiomics) (2.8.1)\n",
3578
            "\u001b[31mERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.9 which is incompatible.\u001b[0m\n",
3579
            "Installing collected packages: PyWavelets, pykwalify, pyradiomics\n",
3580
            "  Found existing installation: PyWavelets 1.1.1\n",
3581
            "    Uninstalling PyWavelets-1.1.1:\n",
3582
            "      Successfully uninstalled PyWavelets-1.1.1\n",
3583
            "Successfully installed PyWavelets-1.0.0 pykwalify-1.7.0 pyradiomics-3.0\n"
3584
          ],
3585
          "name": "stdout"
3586
        }
3587
      ]
3588
    },
3589
    {
3590
      "cell_type": "code",
3591
      "metadata": {
3592
        "id": "EJZV5Ynfd3kc",
3593
        "colab_type": "code",
3594
        "colab": {}
3595
      },
3596
      "source": [
3597
        "# Open one image\n",
3598
        "import numpy as np\n",
3599
        "archive = np.load(\"data/train/images/patient_002.npz\")\n",
3600
        "scan = archive['scan']\n",
3601
        "mask = archive['mask']"
3602
      ],
3603
      "execution_count": 0,
3604
      "outputs": []
3605
    },
3606
    {
3607
      "cell_type": "code",
3608
      "metadata": {
3609
        "id": "7qXYK_TWeTO5",
3610
        "colab_type": "code",
3611
        "colab": {}
3612
      },
3613
      "source": [
3614
        "# Convert to SimpleITK format data\n",
3615
        "import SimpleITK as sitk\n",
3616
        "scanimg = sitk.GetImageFromArray(scan)\n",
3617
        "sitk.WriteImage(scanimg, \"data/train/images/patient_002_sikt_scan.nrrd\") \n",
3618
        "scanmask = sitk.GetImageFromArray(np.array(mask,dtype=int))\n",
3619
        "sitk.WriteImage(scanmask, \"data/train/images/patient_002_sikt_mask.nrrd\") "
3620
      ],
3621
      "execution_count": 0,
3622
      "outputs": []
3623
    },
3624
    {
3625
      "cell_type": "code",
3626
      "metadata": {
3627
        "id": "eW6JukZ8gM2K",
3628
        "colab_type": "code",
3629
        "outputId": "9f2784b4-0693-4814-9bae-ac92ded91937",
3630
        "colab": {
3631
          "base_uri": "https://localhost:8080/",
3632
          "height": 34
3633
        }
3634
      },
3635
      "source": [
3636
        "# Radiomics Feature Extractor\n",
3637
        "from radiomics import featureextractor\n",
3638
        "extractor = featureextractor.RadiomicsFeatureExtractor()\n",
3639
        "print(extractor.featureClassNames)"
3640
      ],
3641
      "execution_count": 0,
3642
      "outputs": [
3643
        {
3644
          "output_type": "stream",
3645
          "text": [
3646
            "['firstorder', 'glcm', 'gldm', 'glrlm', 'glszm', 'ngtdm', 'shape', 'shape2D']\n"
3647
          ],
3648
          "name": "stdout"
3649
        }
3650
      ]
3651
    },
3652
    {
3653
      "cell_type": "code",
3654
      "metadata": {
3655
        "id": "gMUJAhoTe4AS",
3656
        "colab_type": "code",
3657
        "outputId": "b11ceb9d-b4d7-49bb-90b7-f05083ac3daa",
3658
        "colab": {
3659
          "base_uri": "https://localhost:8080/",
3660
          "height": 1000
3661
        }
3662
      },
3663
      "source": [
3664
        "# Wavelet generation and feature extraction on these images\n",
3665
        "import radiomics\n",
3666
        "\n",
3667
        "all_wavelet = radiomics.imageoperations.getWaveletImage(scanimg, scanmask)\n",
3668
        "for wavelet in all_wavelet:\n",
3669
        "    image = wavelet[0]\n",
3670
        "    name = wavelet[1]\n",
3671
        "    array = sitk.GetArrayFromImage(image)\n",
3672
        "    # print(array)\n",
3673
        "    plt.imshow(array[:,:,0])\n",
3674
        "    print(name, array.shape)\n",
3675
        "    result = extractor.execute(image, scanmask)\n",
3676
        "    for key, value in result.items():\n",
3677
        "        print(key, value)"
3678
      ],
3679
      "execution_count": 0,
3680
      "outputs": [
3681
        {
3682
          "output_type": "stream",
3683
          "text": [
3684
            "wavelet-LLH (92, 92, 92)\n"
3685
          ],
3686
          "name": "stdout"
3687
        },
3688
        {
3689
          "output_type": "stream",
3690
          "text": [
3691
            "GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated\n"
3692
          ],
3693
          "name": "stderr"
3694
        },
3695
        {
3696
          "output_type": "stream",
3697
          "text": [
3698
            "diagnostics_Versions_PyRadiomics v3.0\n",
3699
            "diagnostics_Versions_Numpy 1.18.1\n",
3700
            "diagnostics_Versions_SimpleITK 1.2.4\n",
3701
            "diagnostics_Versions_PyWavelet 1.0.0\n",
3702
            "diagnostics_Versions_Python 3.6.9\n",
3703
            "diagnostics_Configuration_Settings {'minimumROIDimensions': 2, 'minimumROISize': None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True}\n",
3704
            "diagnostics_Configuration_EnabledImageTypes {'Original': {}}\n",
3705
            "diagnostics_Image-original_Hash 88e08a6e78007a9629d0b22b6457a1cafcf03a82\n",
3706
            "diagnostics_Image-original_Dimensionality 3D\n",
3707
            "diagnostics_Image-original_Spacing (1.0, 1.0, 1.0)\n",
3708
            "diagnostics_Image-original_Size (92, 92, 92)\n",
3709
            "diagnostics_Image-original_Mean -3.115245475169457e-14\n",
3710
            "diagnostics_Image-original_Minimum -1129.136648580352\n",
3711
            "diagnostics_Image-original_Maximum 1244.412421105968\n",
3712
            "diagnostics_Mask-original_Hash acd42c92421d3a9df6f4cb58f1548237e3807fb3\n",
3713
            "diagnostics_Mask-original_Spacing (1.0, 1.0, 1.0)\n",
3714
            "diagnostics_Mask-original_Size (92, 92, 92)\n",
3715
            "diagnostics_Mask-original_BoundingBox (3, 1, 7, 85, 89, 78)\n",
3716
            "diagnostics_Mask-original_VoxelNum 184422\n",
3717
            "diagnostics_Mask-original_VolumeNum 1\n",
3718
            "diagnostics_Mask-original_CenterOfMassIndex (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
3719
            "diagnostics_Mask-original_CenterOfMass (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
3720
            "original_shape_Elongation 0.8459346778065613\n",
3721
            "original_shape_Flatness 0.6621105014018883\n",
3722
            "original_shape_LeastAxisLength 53.515666406965074\n",
3723
            "original_shape_MajorAxisLength 80.82588373640986\n",
3724
            "original_shape_Maximum2DDiameterColumn 83.81527307120105\n",
3725
            "original_shape_Maximum2DDiameterRow 94.82615672903758\n",
3726
            "original_shape_Maximum2DDiameterSlice 91.67878707749138\n",
3727
            "original_shape_Maximum3DDiameter 100.12991560967181\n",
3728
            "original_shape_MeshVolume 184317.125\n",
3729
            "original_shape_MinorAxisLength 68.37341791699046\n",
3730
            "original_shape_Sphericity 0.5997393163148063\n",
3731
            "original_shape_SurfaceArea 26115.523102962834\n",
3732
            "original_shape_SurfaceVolumeRatio 0.1416879907548625\n",
3733
            "original_shape_VoxelVolume 184422.0\n",
3734
            "original_firstorder_10Percentile -23.85034733601277\n",
3735
            "original_firstorder_90Percentile 20.80220990778991\n",
3736
            "original_firstorder_Energy 136242721.5994512\n",
3737
            "original_firstorder_Entropy 1.8831535342753585\n",
3738
            "original_firstorder_InterquartileRange 21.59062659083733\n",
3739
            "original_firstorder_Kurtosis 19.57297321176867\n",
3740
            "original_firstorder_Maximum 251.51714189521303\n",
3741
            "original_firstorder_MeanAbsoluteDeviation 16.460530532765095\n",
3742
            "original_firstorder_Mean -2.323390673514758\n",
3743
            "original_firstorder_Median -0.5334456598838166\n",
3744
            "original_firstorder_Minimum -333.5432556695371\n",
3745
            "original_firstorder_Range 585.0603975647501\n",
3746
            "original_firstorder_RobustMeanAbsoluteDeviation 9.102204546193335\n",
3747
            "original_firstorder_RootMeanSquared 27.18005251637844\n",
3748
            "original_firstorder_Skewness -1.9761689462996372\n",
3749
            "original_firstorder_TotalEnergy 136242721.5994512\n",
3750
            "original_firstorder_Uniformity 0.3575746942918066\n",
3751
            "original_firstorder_Variance 733.3571105713147\n",
3752
            "original_glcm_Autocorrelation 208.51034852519444\n",
3753
            "original_glcm_ClusterProminence 214.87828384133655\n",
3754
            "original_glcm_ClusterShade -12.169463130457128\n",
3755
            "original_glcm_ClusterTendency 3.224550447933553\n",
3756
            "original_glcm_Contrast 1.1797493435642588\n",
3757
            "original_glcm_Correlation 0.45470892381496925\n",
3758
            "original_glcm_DifferenceAverage 0.6884543978629802\n",
3759
            "original_glcm_DifferenceEntropy 1.460556148098775\n",
3760
            "original_glcm_DifferenceVariance 0.6734441813735241\n",
3761
            "original_glcm_Id 0.7112934023067529\n",
3762
            "original_glcm_Idm 0.697596093081272\n",
3763
            "original_glcm_Idmn 0.9981477525725831\n",
3764
            "original_glcm_Idn 0.9741712994740125\n",
3765
            "original_glcm_Imc1 -0.12026008050553418\n",
3766
            "original_glcm_Imc2 0.5250613942770092\n",
3767
            "original_glcm_InverseVariance 0.4570980423233669\n",
3768
            "original_glcm_JointAverage 14.422174168423592\n",
3769
            "original_glcm_JointEnergy 0.1592549615092642\n",
3770
            "original_glcm_JointEntropy 3.421652231609412\n",
3771
            "original_glcm_MCC 0.6196453167840171\n",
3772
            "original_glcm_MaximumProbability 0.2217180168922737\n",
3773
            "original_glcm_SumAverage 28.84434833684719\n",
3774
            "original_glcm_SumEntropy 2.4642291047573885\n",
3775
            "original_glcm_SumSquares 1.1010749478744528\n",
3776
            "original_gldm_DependenceEntropy 5.8159985122038105\n",
3777
            "original_gldm_DependenceNonUniformity 10504.890718027133\n",
3778
            "original_gldm_DependenceNonUniformityNormalized 0.05696115820253079\n",
3779
            "original_gldm_DependenceVariance 25.325820204106154\n",
3780
            "original_gldm_GrayLevelNonUniformity 65944.64027068354\n",
3781
            "original_gldm_GrayLevelVariance 1.2614158765080594\n",
3782
            "original_gldm_HighGrayLevelEmphasis 208.83013414885426\n",
3783
            "original_gldm_LargeDependenceEmphasis 180.95192547526867\n",
3784
            "original_gldm_LargeDependenceHighGrayLevelEmphasis 38048.94882931538\n",
3785
            "original_gldm_LargeDependenceLowGrayLevelEmphasis 0.8675574945665191\n",
3786
            "original_gldm_LowGrayLevelEmphasis 0.004973204946324459\n",
3787
            "original_gldm_SmallDependenceEmphasis 0.02526889946070429\n",
3788
            "original_gldm_SmallDependenceHighGrayLevelEmphasis 5.091423043820126\n",
3789
            "original_gldm_SmallDependenceLowGrayLevelEmphasis 0.0001629887725060729\n",
3790
            "original_glrlm_GrayLevelNonUniformity 30987.67880033157\n",
3791
            "original_glrlm_GrayLevelNonUniformityNormalized 0.29818790337136414\n",
3792
            "original_glrlm_GrayLevelVariance 1.8787152281781785\n",
3793
            "original_glrlm_HighGrayLevelRunEmphasis 207.764319870827\n",
3794
            "original_glrlm_LongRunEmphasis 6.2577883245398755\n",
3795
            "original_glrlm_LongRunHighGrayLevelEmphasis 1312.7873048113106\n",
3796
            "original_glrlm_LongRunLowGrayLevelEmphasis 0.030387004387029085\n",
3797
            "original_glrlm_LowGrayLevelRunEmphasis 0.0051040327349459284\n",
3798
            "original_glrlm_RunEntropy 3.8841386379138325\n",
3799
            "original_glrlm_RunLengthNonUniformity 43464.05516163069\n",
3800
            "original_glrlm_RunLengthNonUniformityNormalized 0.4039517208606063\n",
3801
            "original_glrlm_RunPercentage 0.5586531057949868\n",
3802
            "original_glrlm_RunVariance 2.3265784263964187\n",
3803
            "original_glrlm_ShortRunEmphasis 0.6425157579738212\n",
3804
            "original_glrlm_ShortRunHighGrayLevelEmphasis 132.76040055525\n",
3805
            "original_glrlm_ShortRunLowGrayLevelEmphasis 0.0033691001193200103\n",
3806
            "original_glszm_GrayLevelNonUniformity 679.2770189312246\n",
3807
            "original_glszm_GrayLevelNonUniformityNormalized 0.16277906037172887\n",
3808
            "original_glszm_GrayLevelVariance 9.453992375873359\n",
3809
            "original_glszm_HighGrayLevelZoneEmphasis 201.78097292115984\n",
3810
            "original_glszm_LargeAreaEmphasis 2842947.7661155043\n",
3811
            "original_glszm_LargeAreaHighGrayLevelEmphasis 597972687.5885454\n",
3812
            "original_glszm_LargeAreaLowGrayLevelEmphasis 13581.456634399401\n",
3813
            "original_glszm_LowGrayLevelZoneEmphasis 0.006939328403185489\n",
3814
            "original_glszm_SizeZoneNonUniformity 673.1361131080757\n",
3815
            "original_glszm_SizeZoneNonUniformityNormalized 0.16130747977667761\n",
3816
            "original_glszm_SmallAreaEmphasis 0.3866074939431698\n",
3817
            "original_glszm_SmallAreaHighGrayLevelEmphasis 77.33745904736678\n",
3818
            "original_glszm_SmallAreaLowGrayLevelEmphasis 0.003033127668840202\n",
3819
            "original_glszm_ZoneEntropy 6.61138822179211\n",
3820
            "original_glszm_ZonePercentage 0.022627452256238408\n",
3821
            "original_glszm_ZoneVariance 2840994.647202248\n",
3822
            "original_ngtdm_Busyness 45.59785349040249\n",
3823
            "original_ngtdm_Coarseness 3.4493420383565154e-05\n",
3824
            "original_ngtdm_Complexity 169.78636481668826\n",
3825
            "original_ngtdm_Contrast 0.0023391379988210365\n",
3826
            "original_ngtdm_Strength 0.026921914513303807\n",
3827
            "wavelet-LHL (92, 92, 92)\n"
3828
          ],
3829
          "name": "stdout"
3830
        },
3831
        {
3832
          "output_type": "stream",
3833
          "text": [
3834
            "GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated\n"
3835
          ],
3836
          "name": "stderr"
3837
        },
3838
        {
3839
          "output_type": "stream",
3840
          "text": [
3841
            "diagnostics_Versions_PyRadiomics v3.0\n",
3842
            "diagnostics_Versions_Numpy 1.18.1\n",
3843
            "diagnostics_Versions_SimpleITK 1.2.4\n",
3844
            "diagnostics_Versions_PyWavelet 1.0.0\n",
3845
            "diagnostics_Versions_Python 3.6.9\n",
3846
            "diagnostics_Configuration_Settings {'minimumROIDimensions': 2, 'minimumROISize': None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True}\n",
3847
            "diagnostics_Configuration_EnabledImageTypes {'Original': {}}\n",
3848
            "diagnostics_Image-original_Hash dcdee9a43cd91a9a6732295dddd7d9d688e3159c\n",
3849
            "diagnostics_Image-original_Dimensionality 3D\n",
3850
            "diagnostics_Image-original_Spacing (1.0, 1.0, 1.0)\n",
3851
            "diagnostics_Image-original_Size (92, 92, 92)\n",
3852
            "diagnostics_Image-original_Mean -3.1528545424686685e-14\n",
3853
            "diagnostics_Image-original_Minimum -1392.512265258323\n",
3854
            "diagnostics_Image-original_Maximum 1521.369718287886\n",
3855
            "diagnostics_Mask-original_Hash acd42c92421d3a9df6f4cb58f1548237e3807fb3\n",
3856
            "diagnostics_Mask-original_Spacing (1.0, 1.0, 1.0)\n",
3857
            "diagnostics_Mask-original_Size (92, 92, 92)\n",
3858
            "diagnostics_Mask-original_BoundingBox (3, 1, 7, 85, 89, 78)\n",
3859
            "diagnostics_Mask-original_VoxelNum 184422\n",
3860
            "diagnostics_Mask-original_VolumeNum 1\n",
3861
            "diagnostics_Mask-original_CenterOfMassIndex (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
3862
            "diagnostics_Mask-original_CenterOfMass (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
3863
            "original_shape_Elongation 0.8459346778065613\n",
3864
            "original_shape_Flatness 0.6621105014018883\n",
3865
            "original_shape_LeastAxisLength 53.515666406965074\n",
3866
            "original_shape_MajorAxisLength 80.82588373640986\n",
3867
            "original_shape_Maximum2DDiameterColumn 83.81527307120105\n",
3868
            "original_shape_Maximum2DDiameterRow 94.82615672903758\n",
3869
            "original_shape_Maximum2DDiameterSlice 91.67878707749138\n",
3870
            "original_shape_Maximum3DDiameter 100.12991560967181\n",
3871
            "original_shape_MeshVolume 184317.125\n",
3872
            "original_shape_MinorAxisLength 68.37341791699046\n",
3873
            "original_shape_Sphericity 0.5997393163148063\n",
3874
            "original_shape_SurfaceArea 26115.523102962834\n",
3875
            "original_shape_SurfaceVolumeRatio 0.1416879907548625\n",
3876
            "original_shape_VoxelVolume 184422.0\n",
3877
            "original_firstorder_10Percentile -38.23827958345323\n",
3878
            "original_firstorder_90Percentile 37.28204245858349\n",
3879
            "original_firstorder_Energy 200478817.30042648\n",
3880
            "original_firstorder_Entropy 2.4271877286007704\n",
3881
            "original_firstorder_InterquartileRange 37.11288630044717\n",
3882
            "original_firstorder_Kurtosis 5.856189795930498\n",
3883
            "original_firstorder_Maximum 241.90972646001134\n",
3884
            "original_firstorder_MeanAbsoluteDeviation 24.31419052488978\n",
3885
            "original_firstorder_Mean -0.6754290930460958\n",
3886
            "original_firstorder_Median -0.5137693665954447\n",
3887
            "original_firstorder_Minimum -288.86152390578894\n",
3888
            "original_firstorder_Range 530.7712503658003\n",
3889
            "original_firstorder_RobustMeanAbsoluteDeviation 15.584965590347066\n",
3890
            "original_firstorder_RootMeanSquared 32.97067831103282\n",
3891
            "original_firstorder_Skewness -0.1663213214884285\n",
3892
            "original_firstorder_TotalEnergy 200478817.30042648\n",
3893
            "original_firstorder_Uniformity 0.23463213509331882\n",
3894
            "original_firstorder_Variance 1086.6094238298774\n",
3895
            "original_glcm_Autocorrelation 156.1095202991698\n",
3896
            "original_glcm_ClusterProminence 125.30067765804529\n",
3897
            "original_glcm_ClusterShade -1.6719921425133388\n",
3898
            "original_glcm_ClusterTendency 4.396636377624954\n",
3899
            "original_glcm_Contrast 2.5384570806393465\n",
3900
            "original_glcm_Correlation 0.2653667680860789\n",
3901
            "original_glcm_DifferenceAverage 1.1076885620607535\n",
3902
            "original_glcm_DifferenceEntropy 1.889299035137122\n",
3903
            "original_glcm_DifferenceVariance 1.1885462139213026\n",
3904
            "original_glcm_Id 0.6083279208843286\n",
3905
            "original_glcm_Idm 0.5716224160776942\n",
3906
            "original_glcm_Idmn 0.9948973744541529\n",
3907
            "original_glcm_Idn 0.9542473255485431\n",
3908
            "original_glcm_Imc1 -0.09466862823891037\n",
3909
            "original_glcm_Imc2 0.4263028958534801\n",
3910
            "original_glcm_InverseVariance 0.454372839608978\n",
3911
            "original_glcm_JointAverage 12.475775230005583\n",
3912
            "original_glcm_JointEnergy 0.07055457613753592\n",
3913
            "original_glcm_JointEntropy 4.567435832343083\n",
3914
            "original_glcm_MCC 0.42185274157760805\n",
3915
            "original_glcm_MaximumProbability 0.12914565108731713\n",
3916
            "original_glcm_SumAverage 24.951550460011163\n",
3917
            "original_glcm_SumEntropy 3.016796883502309\n",
3918
            "original_glcm_SumSquares 1.7337733645660747\n",
3919
            "original_gldm_DependenceEntropy 6.2455268920622204\n",
3920
            "original_gldm_DependenceNonUniformity 11633.780546789429\n",
3921
            "original_gldm_DependenceNonUniformityNormalized 0.06308239009873784\n",
3922
            "original_gldm_DependenceVariance 20.17642945675274\n",
3923
            "original_gldm_GrayLevelNonUniformity 43271.32761818005\n",
3924
            "original_gldm_GrayLevelVariance 1.822888789938282\n",
3925
            "original_gldm_HighGrayLevelEmphasis 157.38311589723568\n",
3926
            "original_gldm_LargeDependenceEmphasis 103.89264838251401\n",
3927
            "original_gldm_LargeDependenceHighGrayLevelEmphasis 16266.629637461909\n",
3928
            "original_gldm_LargeDependenceLowGrayLevelEmphasis 0.6763450388707649\n",
3929
            "original_gldm_LowGrayLevelEmphasis 0.006717799578643404\n",
3930
            "original_gldm_SmallDependenceEmphasis 0.038956841154031134\n",
3931
            "original_gldm_SmallDependenceHighGrayLevelEmphasis 6.204933872203366\n",
3932
            "original_gldm_SmallDependenceLowGrayLevelEmphasis 0.00031388889828199524\n",
3933
            "original_glrlm_GrayLevelNonUniformity 26249.655579367067\n",
3934
            "original_glrlm_GrayLevelNonUniformityNormalized 0.20700885708189765\n",
3935
            "original_glrlm_GrayLevelVariance 2.2167065218804836\n",
3936
            "original_glrlm_HighGrayLevelRunEmphasis 157.65311414370854\n",
3937
            "original_glrlm_LongRunEmphasis 3.5116469785314264\n",
3938
            "original_glrlm_LongRunHighGrayLevelEmphasis 551.3780410829886\n",
3939
            "original_glrlm_LongRunLowGrayLevelEmphasis 0.02322105540797002\n",
3940
            "original_glrlm_LowGrayLevelRunEmphasis 0.006798293107700222\n",
3941
            "original_glrlm_RunEntropy 3.83782946782725\n",
3942
            "original_glrlm_RunLengthNonUniformity 71970.21951757456\n",
3943
            "original_glrlm_RunLengthNonUniformityNormalized 0.5471601703444068\n",
3944
            "original_glrlm_RunPercentage 0.6865516628668531\n",
3945
            "original_glrlm_RunVariance 1.0828031423463158\n",
3946
            "original_glrlm_ShortRunEmphasis 0.7569971266575225\n",
3947
            "original_glrlm_ShortRunHighGrayLevelEmphasis 119.50250862342037\n",
3948
            "original_glrlm_ShortRunLowGrayLevelEmphasis 0.0051972692956276005\n",
3949
            "original_glszm_GrayLevelNonUniformity 649.3541438481197\n",
3950
            "original_glszm_GrayLevelNonUniformityNormalized 0.11853854396643296\n",
3951
            "original_glszm_GrayLevelVariance 9.016389265115826\n",
3952
            "original_glszm_HighGrayLevelZoneEmphasis 162.4587440671778\n",
3953
            "original_glszm_LargeAreaEmphasis 1289718.1398320554\n",
3954
            "original_glszm_LargeAreaHighGrayLevelEmphasis 200509821.05677253\n",
3955
            "original_glszm_LargeAreaLowGrayLevelEmphasis 8379.329982645046\n",
3956
            "original_glszm_LowGrayLevelZoneEmphasis 0.008884726205121981\n",
3957
            "original_glszm_SizeZoneNonUniformity 835.8853596202994\n",
3958
            "original_glszm_SizeZoneNonUniformityNormalized 0.15258951435200793\n",
3959
            "original_glszm_SmallAreaEmphasis 0.3724737064071854\n",
3960
            "original_glszm_SmallAreaHighGrayLevelEmphasis 59.51740408527065\n",
3961
            "original_glszm_SmallAreaLowGrayLevelEmphasis 0.003971239667081267\n",
3962
            "original_glszm_ZoneEntropy 6.863012827418467\n",
3963
            "original_glszm_ZonePercentage 0.029703614536226698\n",
3964
            "original_glszm_ZoneVariance 1288584.7445534403\n",
3965
            "original_ngtdm_Busyness 56.07256994586304\n",
3966
            "original_ngtdm_Coarseness 3.984008558475323e-05\n",
3967
            "original_ngtdm_Complexity 191.12909256324738\n",
3968
            "original_ngtdm_Contrast 0.006500479266524036\n",
3969
            "original_ngtdm_Strength 0.012459399428519856\n",
3970
            "wavelet-LHH (92, 92, 92)\n"
3971
          ],
3972
          "name": "stdout"
3973
        },
3974
        {
3975
          "output_type": "stream",
3976
          "text": [
3977
            "GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated\n"
3978
          ],
3979
          "name": "stderr"
3980
        },
3981
        {
3982
          "output_type": "stream",
3983
          "text": [
3984
            "diagnostics_Versions_PyRadiomics v3.0\n",
3985
            "diagnostics_Versions_Numpy 1.18.1\n",
3986
            "diagnostics_Versions_SimpleITK 1.2.4\n",
3987
            "diagnostics_Versions_PyWavelet 1.0.0\n",
3988
            "diagnostics_Versions_Python 3.6.9\n",
3989
            "diagnostics_Configuration_Settings {'minimumROIDimensions': 2, 'minimumROISize': None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True}\n",
3990
            "diagnostics_Configuration_EnabledImageTypes {'Original': {}}\n",
3991
            "diagnostics_Image-original_Hash cf40d7e0225408947e2058fa5f95bbba92108676\n",
3992
            "diagnostics_Image-original_Dimensionality 3D\n",
3993
            "diagnostics_Image-original_Spacing (1.0, 1.0, 1.0)\n",
3994
            "diagnostics_Image-original_Size (92, 92, 92)\n",
3995
            "diagnostics_Image-original_Mean -2.6279627771188057e-18\n",
3996
            "diagnostics_Image-original_Minimum -404.20765775966606\n",
3997
            "diagnostics_Image-original_Maximum 454.673050984171\n",
3998
            "diagnostics_Mask-original_Hash acd42c92421d3a9df6f4cb58f1548237e3807fb3\n",
3999
            "diagnostics_Mask-original_Spacing (1.0, 1.0, 1.0)\n",
4000
            "diagnostics_Mask-original_Size (92, 92, 92)\n",
4001
            "diagnostics_Mask-original_BoundingBox (3, 1, 7, 85, 89, 78)\n",
4002
            "diagnostics_Mask-original_VoxelNum 184422\n",
4003
            "diagnostics_Mask-original_VolumeNum 1\n",
4004
            "diagnostics_Mask-original_CenterOfMassIndex (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4005
            "diagnostics_Mask-original_CenterOfMass (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4006
            "original_shape_Elongation 0.8459346778065613\n",
4007
            "original_shape_Flatness 0.6621105014018883\n",
4008
            "original_shape_LeastAxisLength 53.515666406965074\n",
4009
            "original_shape_MajorAxisLength 80.82588373640986\n",
4010
            "original_shape_Maximum2DDiameterColumn 83.81527307120105\n",
4011
            "original_shape_Maximum2DDiameterRow 94.82615672903758\n",
4012
            "original_shape_Maximum2DDiameterSlice 91.67878707749138\n",
4013
            "original_shape_Maximum3DDiameter 100.12991560967181\n",
4014
            "original_shape_MeshVolume 184317.125\n",
4015
            "original_shape_MinorAxisLength 68.37341791699046\n",
4016
            "original_shape_Sphericity 0.5997393163148063\n",
4017
            "original_shape_SurfaceArea 26115.523102962834\n",
4018
            "original_shape_SurfaceVolumeRatio 0.1416879907548625\n",
4019
            "original_shape_VoxelVolume 184422.0\n",
4020
            "original_firstorder_10Percentile -11.133494249880535\n",
4021
            "original_firstorder_90Percentile 11.28347615460951\n",
4022
            "original_firstorder_Energy 16722745.27198185\n",
4023
            "original_firstorder_Entropy 1.1261194405910802\n",
4024
            "original_firstorder_InterquartileRange 11.366759060208935\n",
4025
            "original_firstorder_Kurtosis 6.822881235611824\n",
4026
            "original_firstorder_Maximum 125.51175517534683\n",
4027
            "original_firstorder_MeanAbsoluteDeviation 7.160289874268283\n",
4028
            "original_firstorder_Mean 0.04748822350341286\n",
4029
            "original_firstorder_Median -0.009457003504083489\n",
4030
            "original_firstorder_Minimum -93.92895874039192\n",
4031
            "original_firstorder_Range 219.44071391573874\n",
4032
            "original_firstorder_RobustMeanAbsoluteDeviation 4.7439802038212635\n",
4033
            "original_firstorder_RootMeanSquared 9.522421989450622\n",
4034
            "original_firstorder_Skewness 0.17065533946185216\n",
4035
            "original_firstorder_TotalEnergy 16722745.27198185\n",
4036
            "original_firstorder_Uniformity 0.4839634270289807\n",
4037
            "original_firstorder_Variance 90.67426541380125\n",
4038
            "original_glcm_Autocorrelation 20.259341588801153\n",
4039
            "original_glcm_ClusterProminence 1.221520530343987\n",
4040
            "original_glcm_ClusterShade 0.026349243029748854\n",
4041
            "original_glcm_ClusterTendency 0.6053822359522825\n",
4042
            "original_glcm_Contrast 0.5254243936193431\n",
4043
            "original_glcm_Correlation 0.06986151880602641\n",
4044
            "original_glcm_DifferenceAverage 0.49607149116424193\n",
4045
            "original_glcm_DifferenceEntropy 1.048861316655826\n",
4046
            "original_glcm_DifferenceVariance 0.26734709879611107\n",
4047
            "original_glcm_Id 0.7564079608436097\n",
4048
            "original_glcm_Idm 0.7548351566544458\n",
4049
            "original_glcm_Idmn 0.9948224056540252\n",
4050
            "original_glcm_Idn 0.9551176739598147\n",
4051
            "original_glcm_Imc1 -0.04401623169724621\n",
4052
            "original_glcm_Imc2 0.19670250782057883\n",
4053
            "original_glcm_InverseVariance 0.4741758561010926\n",
4054
            "original_glcm_JointAverage 4.498816722127272\n",
4055
            "original_glcm_JointEnergy 0.24844457432321498\n",
4056
            "original_glcm_JointEntropy 2.1774273882539648\n",
4057
            "original_glcm_MCC 0.3898687089176107\n",
4058
            "original_glcm_MaximumProbability 0.2745812417478539\n",
4059
            "original_glcm_SumAverage 8.997633444254546\n",
4060
            "original_glcm_SumEntropy 1.613000911907538\n",
4061
            "original_glcm_SumSquares 0.2827016573929063\n",
4062
            "original_gldm_DependenceEntropy 4.745282975100425\n",
4063
            "original_gldm_DependenceNonUniformity 17393.248495298827\n",
4064
            "original_gldm_DependenceNonUniformityNormalized 0.09431222140145333\n",
4065
            "original_gldm_DependenceVariance 10.894277198126746\n",
4066
            "original_gldm_GrayLevelNonUniformity 89253.50313953866\n",
4067
            "original_gldm_GrayLevelVariance 0.2878797319933297\n",
4068
            "original_gldm_HighGrayLevelEmphasis 20.54583509559597\n",
4069
            "original_gldm_LargeDependenceEmphasis 201.80724642396243\n",
4070
            "original_gldm_LargeDependenceHighGrayLevelEmphasis 4128.472904534166\n",
4071
            "original_gldm_LargeDependenceLowGrayLevelEmphasis 10.373225946057156\n",
4072
            "original_gldm_LowGrayLevelEmphasis 0.051598817392325684\n",
4073
            "original_gldm_SmallDependenceEmphasis 0.009856622452392952\n",
4074
            "original_gldm_SmallDependenceHighGrayLevelEmphasis 0.2151943094551541\n",
4075
            "original_gldm_SmallDependenceLowGrayLevelEmphasis 0.0005669596216792106\n",
4076
            "original_glrlm_GrayLevelNonUniformity 44135.239396268626\n",
4077
            "original_glrlm_GrayLevelNonUniformityNormalized 0.47122531953586166\n",
4078
            "original_glrlm_GrayLevelVariance 0.319143532467766\n",
4079
            "original_glrlm_HighGrayLevelRunEmphasis 20.615938702564538\n",
4080
            "original_glrlm_LongRunEmphasis 9.104206012274703\n",
4081
            "original_glrlm_LongRunHighGrayLevelEmphasis 186.62510355834254\n",
4082
            "original_glrlm_LongRunLowGrayLevelEmphasis 0.4681965310907935\n",
4083
            "original_glrlm_LowGrayLevelRunEmphasis 0.05180161237642226\n",
4084
            "original_glrlm_RunEntropy 3.132788932052445\n",
4085
            "original_glrlm_RunLengthNonUniformity 35152.4533881111\n",
4086
            "original_glrlm_RunLengthNonUniformityNormalized 0.3590301200164072\n",
4087
            "original_glrlm_RunPercentage 0.507033617714556\n",
4088
            "original_glrlm_RunVariance 3.2349578952723186\n",
4089
            "original_glrlm_ShortRunEmphasis 0.5649726262779\n",
4090
            "original_glrlm_ShortRunHighGrayLevelEmphasis 11.69418044127549\n",
4091
            "original_glrlm_ShortRunLowGrayLevelEmphasis 0.029430049943561767\n",
4092
            "original_glszm_GrayLevelNonUniformity 365.9626274065685\n",
4093
            "original_glszm_GrayLevelNonUniformityNormalized 0.414453711672218\n",
4094
            "original_glszm_GrayLevelVariance 2.4667553344987554\n",
4095
            "original_glszm_HighGrayLevelZoneEmphasis 23.80634201585504\n",
4096
            "original_glszm_LargeAreaEmphasis 18622897.139297847\n",
4097
            "original_glszm_LargeAreaHighGrayLevelEmphasis 381457122.4190261\n",
4098
            "original_glszm_LargeAreaLowGrayLevelEmphasis 955205.6273349313\n",
4099
            "original_glszm_LowGrayLevelZoneEmphasis 0.07011843949441694\n",
4100
            "original_glszm_SizeZoneNonUniformity 201.38958097395243\n",
4101
            "original_glszm_SizeZoneNonUniformityNormalized 0.22807427063867772\n",
4102
            "original_glszm_SmallAreaEmphasis 0.4346219433345503\n",
4103
            "original_glszm_SmallAreaHighGrayLevelEmphasis 10.634385840156046\n",
4104
            "original_glszm_SmallAreaLowGrayLevelEmphasis 0.029643327578996084\n",
4105
            "original_glszm_ZoneEntropy 4.1707864720000645\n",
4106
            "original_glszm_ZonePercentage 0.00478793202546334\n",
4107
            "original_glszm_ZoneVariance 18579275.292530738\n",
4108
            "original_ngtdm_Busyness 578.4766256003373\n",
4109
            "original_ngtdm_Coarseness 2.388140262228302e-05\n",
4110
            "original_ngtdm_Complexity 24.457443805570627\n",
4111
            "original_ngtdm_Contrast 0.0030906083928206336\n",
4112
            "original_ngtdm_Strength 0.0021406380723725618\n",
4113
            "wavelet-HLL (92, 92, 92)\n"
4114
          ],
4115
          "name": "stdout"
4116
        },
4117
        {
4118
          "output_type": "stream",
4119
          "text": [
4120
            "GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated\n"
4121
          ],
4122
          "name": "stderr"
4123
        },
4124
        {
4125
          "output_type": "stream",
4126
          "text": [
4127
            "diagnostics_Versions_PyRadiomics v3.0\n",
4128
            "diagnostics_Versions_Numpy 1.18.1\n",
4129
            "diagnostics_Versions_SimpleITK 1.2.4\n",
4130
            "diagnostics_Versions_PyWavelet 1.0.0\n",
4131
            "diagnostics_Versions_Python 3.6.9\n",
4132
            "diagnostics_Configuration_Settings {'minimumROIDimensions': 2, 'minimumROISize': None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True}\n",
4133
            "diagnostics_Configuration_EnabledImageTypes {'Original': {}}\n",
4134
            "diagnostics_Image-original_Hash e505c13842c9d2f23ed3a9fddb7363eb7b8b8e07\n",
4135
            "diagnostics_Image-original_Dimensionality 3D\n",
4136
            "diagnostics_Image-original_Spacing (1.0, 1.0, 1.0)\n",
4137
            "diagnostics_Image-original_Size (92, 92, 92)\n",
4138
            "diagnostics_Image-original_Mean -3.2181338678419596e-14\n",
4139
            "diagnostics_Image-original_Minimum -1558.2805060228166\n",
4140
            "diagnostics_Image-original_Maximum 1466.5664341598476\n",
4141
            "diagnostics_Mask-original_Hash acd42c92421d3a9df6f4cb58f1548237e3807fb3\n",
4142
            "diagnostics_Mask-original_Spacing (1.0, 1.0, 1.0)\n",
4143
            "diagnostics_Mask-original_Size (92, 92, 92)\n",
4144
            "diagnostics_Mask-original_BoundingBox (3, 1, 7, 85, 89, 78)\n",
4145
            "diagnostics_Mask-original_VoxelNum 184422\n",
4146
            "diagnostics_Mask-original_VolumeNum 1\n",
4147
            "diagnostics_Mask-original_CenterOfMassIndex (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4148
            "diagnostics_Mask-original_CenterOfMass (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4149
            "original_shape_Elongation 0.8459346778065613\n",
4150
            "original_shape_Flatness 0.6621105014018883\n",
4151
            "original_shape_LeastAxisLength 53.515666406965074\n",
4152
            "original_shape_MajorAxisLength 80.82588373640986\n",
4153
            "original_shape_Maximum2DDiameterColumn 83.81527307120105\n",
4154
            "original_shape_Maximum2DDiameterRow 94.82615672903758\n",
4155
            "original_shape_Maximum2DDiameterSlice 91.67878707749138\n",
4156
            "original_shape_Maximum3DDiameter 100.12991560967181\n",
4157
            "original_shape_MeshVolume 184317.125\n",
4158
            "original_shape_MinorAxisLength 68.37341791699046\n",
4159
            "original_shape_Sphericity 0.5997393163148063\n",
4160
            "original_shape_SurfaceArea 26115.523102962834\n",
4161
            "original_shape_SurfaceVolumeRatio 0.1416879907548625\n",
4162
            "original_shape_VoxelVolume 184422.0\n",
4163
            "original_firstorder_10Percentile -11.33832854714845\n",
4164
            "original_firstorder_90Percentile 8.737373736679647\n",
4165
            "original_firstorder_Energy 65763015.427597806\n",
4166
            "original_firstorder_Entropy 1.475308705283878\n",
4167
            "original_firstorder_InterquartileRange 5.5430281011729345\n",
4168
            "original_firstorder_Kurtosis 26.922897957165624\n",
4169
            "original_firstorder_Maximum 233.05728415990907\n",
4170
            "original_firstorder_MeanAbsoluteDeviation 8.574999957842847\n",
4171
            "original_firstorder_Mean -1.8549932998100054\n",
4172
            "original_firstorder_Median -0.11593369120846014\n",
4173
            "original_firstorder_Minimum -211.74303505365555\n",
4174
            "original_firstorder_Range 444.80031921356465\n",
4175
            "original_firstorder_RobustMeanAbsoluteDeviation 2.821925408684005\n",
4176
            "original_firstorder_RootMeanSquared 18.8835870915994\n",
4177
            "original_firstorder_Skewness -2.9178611267642616\n",
4178
            "original_firstorder_TotalEnergy 65763015.427597806\n",
4179
            "original_firstorder_Uniformity 0.4361395293648338\n",
4180
            "original_firstorder_Variance 353.1488613036794\n",
4181
            "original_glcm_Autocorrelation 89.36108422120085\n",
4182
            "original_glcm_ClusterProminence 55.39008441970993\n",
4183
            "original_glcm_ClusterShade -4.583129174927439\n",
4184
            "original_glcm_ClusterTendency 1.9337541268723026\n",
4185
            "original_glcm_Contrast 0.7395232574683376\n",
4186
            "original_glcm_Correlation 0.43494686275335037\n",
4187
            "original_glcm_DifferenceAverage 0.4853624351194768\n",
4188
            "original_glcm_DifferenceEntropy 1.2194290075220933\n",
4189
            "original_glcm_DifferenceVariance 0.49099273482148387\n",
4190
            "original_glcm_Id 0.7855113517456823\n",
4191
            "original_glcm_Idm 0.779777378982111\n",
4192
            "original_glcm_Idmn 0.9979944401231998\n",
4193
            "original_glcm_Idn 0.9762896711472288\n",
4194
            "original_glcm_Imc1 -0.14033868454993262\n",
4195
            "original_glcm_Imc2 0.5285589222004885\n",
4196
            "original_glcm_InverseVariance 0.3762271403100869\n",
4197
            "original_glcm_JointAverage 9.437290891789168\n",
4198
            "original_glcm_JointEnergy 0.22535059255426143\n",
4199
            "original_glcm_JointEntropy 2.6564774522049985\n",
4200
            "original_glcm_MCC 0.523080622618541\n",
4201
            "original_glcm_MaximumProbability 0.2915504466128727\n",
4202
            "original_glcm_SumAverage 18.87458178357834\n",
4203
            "original_glcm_SumEntropy 2.140411209041056\n",
4204
            "original_glcm_SumSquares 0.6683193460851599\n",
4205
            "original_gldm_DependenceEntropy 5.652527142215339\n",
4206
            "original_gldm_DependenceNonUniformity 10211.629827244038\n",
4207
            "original_gldm_DependenceNonUniformityNormalized 0.055370996015898524\n",
4208
            "original_gldm_DependenceVariance 29.565961825602123\n",
4209
            "original_gldm_GrayLevelNonUniformity 80433.72428452136\n",
4210
            "original_gldm_GrayLevelVariance 0.7449479537824315\n",
4211
            "original_gldm_HighGrayLevelEmphasis 89.63165999718038\n",
4212
            "original_gldm_LargeDependenceEmphasis 273.78051425534915\n",
4213
            "original_gldm_LargeDependenceHighGrayLevelEmphasis 24795.15578401709\n",
4214
            "original_gldm_LargeDependenceLowGrayLevelEmphasis 3.0660104156114705\n",
4215
            "original_gldm_LowGrayLevelEmphasis 0.011783655620602377\n",
4216
            "original_gldm_SmallDependenceEmphasis 0.015393491849129259\n",
4217
            "original_gldm_SmallDependenceHighGrayLevelEmphasis 1.2734329853466142\n",
4218
            "original_gldm_SmallDependenceLowGrayLevelEmphasis 0.00028063174712759876\n",
4219
            "original_glrlm_GrayLevelNonUniformity 30864.08809548723\n",
4220
            "original_glrlm_GrayLevelNonUniformityNormalized 0.381551210562017\n",
4221
            "original_glrlm_GrayLevelVariance 1.2485005907256774\n",
4222
            "original_glrlm_HighGrayLevelRunEmphasis 88.6154992736869\n",
4223
            "original_glrlm_LongRunEmphasis 10.141271901022147\n",
4224
            "original_glrlm_LongRunHighGrayLevelEmphasis 914.65490585239\n",
4225
            "original_glrlm_LongRunLowGrayLevelEmphasis 0.11540919505581537\n",
4226
            "original_glrlm_LowGrayLevelRunEmphasis 0.012449539561702761\n",
4227
            "original_glrlm_RunEntropy 3.9547936407615225\n",
4228
            "original_glrlm_RunLengthNonUniformity 25090.6345489079\n",
4229
            "original_glrlm_RunLengthNonUniformityNormalized 0.29728894394718447\n",
4230
            "original_glrlm_RunPercentage 0.43740901928103015\n",
4231
            "original_glrlm_RunVariance 4.052754998347607\n",
4232
            "original_glrlm_ShortRunEmphasis 0.5284594031642066\n",
4233
            "original_glrlm_ShortRunHighGrayLevelEmphasis 46.05340996589684\n",
4234
            "original_glrlm_ShortRunLowGrayLevelEmphasis 0.007079687220600762\n",
4235
            "original_glszm_GrayLevelNonUniformity 298.8534258456201\n",
4236
            "original_glszm_GrayLevelNonUniformityNormalized 0.12959818987234176\n",
4237
            "original_glszm_GrayLevelVariance 8.02439749542842\n",
4238
            "original_glszm_HighGrayLevelZoneEmphasis 79.04119687771032\n",
4239
            "original_glszm_LargeAreaEmphasis 6348744.554206418\n",
4240
            "original_glszm_LargeAreaHighGrayLevelEmphasis 572031449.6426713\n",
4241
            "original_glszm_LargeAreaLowGrayLevelEmphasis 71246.47689228796\n",
4242
            "original_glszm_LowGrayLevelZoneEmphasis 0.0222239731542388\n",
4243
            "original_glszm_SizeZoneNonUniformity 494.9002601908066\n",
4244
            "original_glszm_SizeZoneNonUniformityNormalized 0.214614163135649\n",
4245
            "original_glszm_SmallAreaEmphasis 0.46737762692489493\n",
4246
            "original_glszm_SmallAreaHighGrayLevelEmphasis 40.09181899997995\n",
4247
            "original_glszm_SmallAreaLowGrayLevelEmphasis 0.009810032446517663\n",
4248
            "original_glszm_ZoneEntropy 6.279459590502976\n",
4249
            "original_glszm_ZonePercentage 0.01250393120126666\n",
4250
            "original_glszm_ZoneVariance 6342348.577858281\n",
4251
            "original_ngtdm_Busyness 96.08146742647237\n",
4252
            "original_ngtdm_Coarseness 3.319409430273022e-05\n",
4253
            "original_ngtdm_Complexity 76.34992808501931\n",
4254
            "original_ngtdm_Contrast 0.0018847967848832387\n",
4255
            "original_ngtdm_Strength 0.01479815632391325\n",
4256
            "wavelet-HLH (92, 92, 92)\n"
4257
          ],
4258
          "name": "stdout"
4259
        },
4260
        {
4261
          "output_type": "stream",
4262
          "text": [
4263
            "GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated\n"
4264
          ],
4265
          "name": "stderr"
4266
        },
4267
        {
4268
          "output_type": "stream",
4269
          "text": [
4270
            "diagnostics_Versions_PyRadiomics v3.0\n",
4271
            "diagnostics_Versions_Numpy 1.18.1\n",
4272
            "diagnostics_Versions_SimpleITK 1.2.4\n",
4273
            "diagnostics_Versions_PyWavelet 1.0.0\n",
4274
            "diagnostics_Versions_Python 3.6.9\n",
4275
            "diagnostics_Configuration_Settings {'minimumROIDimensions': 2, 'minimumROISize': None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True}\n",
4276
            "diagnostics_Configuration_EnabledImageTypes {'Original': {}}\n",
4277
            "diagnostics_Image-original_Hash 85ee1bde3f6617ee0bae1adcd482b4b8d26be8b4\n",
4278
            "diagnostics_Image-original_Dimensionality 3D\n",
4279
            "diagnostics_Image-original_Spacing (1.0, 1.0, 1.0)\n",
4280
            "diagnostics_Image-original_Size (92, 92, 92)\n",
4281
            "diagnostics_Image-original_Mean -3.0294570902897345e-18\n",
4282
            "diagnostics_Image-original_Minimum -579.4979390804076\n",
4283
            "diagnostics_Image-original_Maximum 561.8934122398533\n",
4284
            "diagnostics_Mask-original_Hash acd42c92421d3a9df6f4cb58f1548237e3807fb3\n",
4285
            "diagnostics_Mask-original_Spacing (1.0, 1.0, 1.0)\n",
4286
            "diagnostics_Mask-original_Size (92, 92, 92)\n",
4287
            "diagnostics_Mask-original_BoundingBox (3, 1, 7, 85, 89, 78)\n",
4288
            "diagnostics_Mask-original_VoxelNum 184422\n",
4289
            "diagnostics_Mask-original_VolumeNum 1\n",
4290
            "diagnostics_Mask-original_CenterOfMassIndex (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4291
            "diagnostics_Mask-original_CenterOfMass (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4292
            "original_shape_Elongation 0.8459346778065613\n",
4293
            "original_shape_Flatness 0.6621105014018883\n",
4294
            "original_shape_LeastAxisLength 53.515666406965074\n",
4295
            "original_shape_MajorAxisLength 80.82588373640986\n",
4296
            "original_shape_Maximum2DDiameterColumn 83.81527307120105\n",
4297
            "original_shape_Maximum2DDiameterRow 94.82615672903758\n",
4298
            "original_shape_Maximum2DDiameterSlice 91.67878707749138\n",
4299
            "original_shape_Maximum3DDiameter 100.12991560967181\n",
4300
            "original_shape_MeshVolume 184317.125\n",
4301
            "original_shape_MinorAxisLength 68.37341791699046\n",
4302
            "original_shape_Sphericity 0.5997393163148063\n",
4303
            "original_shape_SurfaceArea 26115.523102962834\n",
4304
            "original_shape_SurfaceVolumeRatio 0.1416879907548625\n",
4305
            "original_shape_VoxelVolume 184422.0\n",
4306
            "original_firstorder_10Percentile -2.4528001360924243\n",
4307
            "original_firstorder_90Percentile 2.4966100836354794\n",
4308
            "original_firstorder_Energy 1852833.5107308289\n",
4309
            "original_firstorder_Entropy 1.0169324456122997\n",
4310
            "original_firstorder_InterquartileRange 1.6335750186947382\n",
4311
            "original_firstorder_Kurtosis 31.942059705051456\n",
4312
            "original_firstorder_Maximum 51.37142274676806\n",
4313
            "original_firstorder_MeanAbsoluteDeviation 1.702457444479685\n",
4314
            "original_firstorder_Mean 0.05597151941796191\n",
4315
            "original_firstorder_Median -0.0022874557253750724\n",
4316
            "original_firstorder_Minimum -47.341161753648684\n",
4317
            "original_firstorder_Range 98.71258450041674\n",
4318
            "original_firstorder_RobustMeanAbsoluteDeviation 0.7688690873283788\n",
4319
            "original_firstorder_RootMeanSquared 3.169653836053313\n",
4320
            "original_firstorder_Skewness 1.5473950278310074\n",
4321
            "original_firstorder_TotalEnergy 1852833.5107308289\n",
4322
            "original_firstorder_Uniformity 0.4983907403758854\n",
4323
            "original_firstorder_Variance 10.04357262942153\n",
4324
            "original_glcm_Autocorrelation 6.266516173047642\n",
4325
            "original_glcm_ClusterProminence 0.5855526584843711\n",
4326
            "original_glcm_ClusterShade 0.010768976378755167\n",
4327
            "original_glcm_ClusterTendency 0.5576064542655566\n",
4328
            "original_glcm_Contrast 0.4508687076121536\n",
4329
            "original_glcm_Correlation 0.10576243926501311\n",
4330
            "original_glcm_DifferenceAverage 0.45018692168414876\n",
4331
            "original_glcm_DifferenceEntropy 0.9813337980087145\n",
4332
            "original_glcm_DifferenceVariance 0.2430628305657521\n",
4333
            "original_glcm_Id 0.7750201701459265\n",
4334
            "original_glcm_Idm 0.7749747177507262\n",
4335
            "original_glcm_Idmn 0.9826643212132832\n",
4336
            "original_glcm_Idn 0.9249850793842611\n",
4337
            "original_glcm_Imc1 -0.02423988157384203\n",
4338
            "original_glcm_Imc2 0.1450616313548404\n",
4339
            "original_glcm_InverseVariance 0.44959035899714467\n",
4340
            "original_glcm_JointAverage 2.497965389676092\n",
4341
            "original_glcm_JointEnergy 0.2567232859425508\n",
4342
            "original_glcm_JointEntropy 1.9986284042093891\n",
4343
            "original_glcm_MCC 0.16472687243021047\n",
4344
            "original_glcm_MaximumProbability 0.27983615680682844\n",
4345
            "original_glcm_SumAverage 4.995930779352184\n",
4346
            "original_glcm_SumEntropy 1.5450248718755182\n",
4347
            "original_glcm_SumSquares 0.2521187904694276\n",
4348
            "original_gldm_DependenceEntropy 4.818188792817496\n",
4349
            "original_gldm_DependenceNonUniformity 16011.664443504571\n",
4350
            "original_gldm_DependenceNonUniformityNormalized 0.08682079385054153\n",
4351
            "original_gldm_DependenceVariance 11.865489008071185\n",
4352
            "original_gldm_GrayLevelNonUniformity 91914.21712160154\n",
4353
            "original_gldm_GrayLevelVariance 0.2532750708694629\n",
4354
            "original_gldm_HighGrayLevelEmphasis 6.504088449317327\n",
4355
            "original_gldm_LargeDependenceEmphasis 226.2801834922081\n",
4356
            "original_gldm_LargeDependenceHighGrayLevelEmphasis 1460.0270737764474\n",
4357
            "original_gldm_LargeDependenceLowGrayLevelEmphasis 41.159038385996375\n",
4358
            "original_gldm_LowGrayLevelEmphasis 0.1808439008843245\n",
4359
            "original_gldm_SmallDependenceEmphasis 0.006377855447301732\n",
4360
            "original_gldm_SmallDependenceHighGrayLevelEmphasis 0.04362971576383602\n",
4361
            "original_gldm_SmallDependenceLowGrayLevelEmphasis 0.001221225840332901\n",
4362
            "original_glrlm_GrayLevelNonUniformity 43551.6005081189\n",
4363
            "original_glrlm_GrayLevelNonUniformityNormalized 0.4968521846180083\n",
4364
            "original_glrlm_GrayLevelVariance 0.25642786412067775\n",
4365
            "original_glrlm_HighGrayLevelRunEmphasis 6.539113604393748\n",
4366
            "original_glrlm_LongRunEmphasis 7.246330499615427\n",
4367
            "original_glrlm_LongRunHighGrayLevelEmphasis 46.86782556269574\n",
4368
            "original_glrlm_LongRunLowGrayLevelEmphasis 1.3159480777567132\n",
4369
            "original_glrlm_LowGrayLevelRunEmphasis 0.180274763045163\n",
4370
            "original_glrlm_RunEntropy 3.112778445975675\n",
4371
            "original_glrlm_RunLengthNonUniformity 28266.872188865505\n",
4372
            "original_glrlm_RunLengthNonUniformityNormalized 0.31377821727868455\n",
4373
            "original_glrlm_RunPercentage 0.4752728483086032\n",
4374
            "original_glrlm_RunVariance 2.342383969656721\n",
4375
            "original_glrlm_ShortRunEmphasis 0.5348064282381623\n",
4376
            "original_glrlm_ShortRunHighGrayLevelEmphasis 3.5183480251187897\n",
4377
            "original_glrlm_ShortRunLowGrayLevelEmphasis 0.09616258585272226\n",
4378
            "original_glszm_GrayLevelNonUniformity 48.36842105263158\n",
4379
            "original_glszm_GrayLevelNonUniformityNormalized 0.4242843951985226\n",
4380
            "original_glszm_GrayLevelVariance 1.8664973838104033\n",
4381
            "original_glszm_HighGrayLevelZoneEmphasis 10.605263157894736\n",
4382
            "original_glszm_LargeAreaEmphasis 148642345.71929824\n",
4383
            "original_glszm_LargeAreaHighGrayLevelEmphasis 964290044.5877193\n",
4384
            "original_glszm_LargeAreaLowGrayLevelEmphasis 26890571.154576022\n",
4385
            "original_glszm_LowGrayLevelZoneEmphasis 0.3446345029239766\n",
4386
            "original_glszm_SizeZoneNonUniformity 26.80701754385965\n",
4387
            "original_glszm_SizeZoneNonUniformityNormalized 0.23514927670052324\n",
4388
            "original_glszm_SmallAreaEmphasis 0.45820500269433134\n",
4389
            "original_glszm_SmallAreaHighGrayLevelEmphasis 4.3437231879889415\n",
4390
            "original_glszm_SmallAreaLowGrayLevelEmphasis 0.19524376620989997\n",
4391
            "original_glszm_ZoneEntropy 3.891042169072997\n",
4392
            "original_glszm_ZonePercentage 0.0006181475095162183\n",
4393
            "original_glszm_ZoneVariance 146025273.2289935\n",
4394
            "original_ngtdm_Busyness 2570.5411722573817\n",
4395
            "original_ngtdm_Coarseness 2.438833241035695e-05\n",
4396
            "original_ngtdm_Complexity 5.352194375344888\n",
4397
            "original_ngtdm_Contrast 0.011322861020072492\n",
4398
            "original_ngtdm_Strength 0.000303601489323549\n",
4399
            "wavelet-HHL (92, 92, 92)\n"
4400
          ],
4401
          "name": "stdout"
4402
        },
4403
        {
4404
          "output_type": "stream",
4405
          "text": [
4406
            "GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated\n"
4407
          ],
4408
          "name": "stderr"
4409
        },
4410
        {
4411
          "output_type": "stream",
4412
          "text": [
4413
            "diagnostics_Versions_PyRadiomics v3.0\n",
4414
            "diagnostics_Versions_Numpy 1.18.1\n",
4415
            "diagnostics_Versions_SimpleITK 1.2.4\n",
4416
            "diagnostics_Versions_PyWavelet 1.0.0\n",
4417
            "diagnostics_Versions_Python 3.6.9\n",
4418
            "diagnostics_Configuration_Settings {'minimumROIDimensions': 2, 'minimumROISize': None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True}\n",
4419
            "diagnostics_Configuration_EnabledImageTypes {'Original': {}}\n",
4420
            "diagnostics_Image-original_Hash a9f0c0ebc6baf3e01ee7a6ad0118e35421455762\n",
4421
            "diagnostics_Image-original_Dimensionality 3D\n",
4422
            "diagnostics_Image-original_Spacing (1.0, 1.0, 1.0)\n",
4423
            "diagnostics_Image-original_Size (92, 92, 92)\n",
4424
            "diagnostics_Image-original_Mean -1.3732930484596537e-17\n",
4425
            "diagnostics_Image-original_Minimum -235.00433127415184\n",
4426
            "diagnostics_Image-original_Maximum 250.15534378713684\n",
4427
            "diagnostics_Mask-original_Hash acd42c92421d3a9df6f4cb58f1548237e3807fb3\n",
4428
            "diagnostics_Mask-original_Spacing (1.0, 1.0, 1.0)\n",
4429
            "diagnostics_Mask-original_Size (92, 92, 92)\n",
4430
            "diagnostics_Mask-original_BoundingBox (3, 1, 7, 85, 89, 78)\n",
4431
            "diagnostics_Mask-original_VoxelNum 184422\n",
4432
            "diagnostics_Mask-original_VolumeNum 1\n",
4433
            "diagnostics_Mask-original_CenterOfMassIndex (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4434
            "diagnostics_Mask-original_CenterOfMass (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4435
            "original_shape_Elongation 0.8459346778065613\n",
4436
            "original_shape_Flatness 0.6621105014018883\n",
4437
            "original_shape_LeastAxisLength 53.515666406965074\n",
4438
            "original_shape_MajorAxisLength 80.82588373640986\n",
4439
            "original_shape_Maximum2DDiameterColumn 83.81527307120105\n",
4440
            "original_shape_Maximum2DDiameterRow 94.82615672903758\n",
4441
            "original_shape_Maximum2DDiameterSlice 91.67878707749138\n",
4442
            "original_shape_Maximum3DDiameter 100.12991560967181\n",
4443
            "original_shape_MeshVolume 184317.125\n",
4444
            "original_shape_MinorAxisLength 68.37341791699046\n",
4445
            "original_shape_Sphericity 0.5997393163148063\n",
4446
            "original_shape_SurfaceArea 26115.523102962834\n",
4447
            "original_shape_SurfaceVolumeRatio 0.1416879907548625\n",
4448
            "original_shape_VoxelVolume 184422.0\n",
4449
            "original_firstorder_10Percentile -4.3572803124920645\n",
4450
            "original_firstorder_90Percentile 4.3570058118500965\n",
4451
            "original_firstorder_Energy 3518065.4082933646\n",
4452
            "original_firstorder_Entropy 1.0150181474920812\n",
4453
            "original_firstorder_InterquartileRange 2.6278361003124866\n",
4454
            "original_firstorder_Kurtosis 10.551689255141655\n",
4455
            "original_firstorder_Maximum 48.32843442574533\n",
4456
            "original_firstorder_MeanAbsoluteDeviation 2.6745400827739068\n",
4457
            "original_firstorder_Mean 0.010380434543498499\n",
4458
            "original_firstorder_Median -0.0031662658214016114\n",
4459
            "original_firstorder_Minimum -54.16446848518554\n",
4460
            "original_firstorder_Range 102.49290291093087\n",
4461
            "original_firstorder_RobustMeanAbsoluteDeviation 1.2799621434192674\n",
4462
            "original_firstorder_RootMeanSquared 4.367627492843567\n",
4463
            "original_firstorder_Skewness 0.13904829895390447\n",
4464
            "original_firstorder_TotalEnergy 3518065.4082933646\n",
4465
            "original_firstorder_Uniformity 0.498631525705559\n",
4466
            "original_firstorder_Variance 19.076062162821675\n",
4467
            "original_glcm_Autocorrelation 12.26846967576633\n",
4468
            "original_glcm_ClusterProminence 0.5787049669457318\n",
4469
            "original_glcm_ClusterShade 0.0041199568738719255\n",
4470
            "original_glcm_ClusterTendency 0.5566995785091471\n",
4471
            "original_glcm_Contrast 0.4512612097244653\n",
4472
            "original_glcm_Correlation 0.10455474297566678\n",
4473
            "original_glcm_DifferenceAverage 0.45032425474911475\n",
4474
            "original_glcm_DifferenceEntropy 0.9680128846532612\n",
4475
            "original_glcm_DifferenceVariance 0.23859283497284536\n",
4476
            "original_glcm_Id 0.7749934924485937\n",
4477
            "original_glcm_Idm 0.7749315681229778\n",
4478
            "original_glcm_Idmn 0.9826513282096911\n",
4479
            "original_glcm_Idn 0.924968227469365\n",
4480
            "original_glcm_Imc1 -0.03811190488842235\n",
4481
            "original_glcm_Imc2 0.15907565619540184\n",
4482
            "original_glcm_InverseVariance 0.449509512906752\n",
4483
            "original_glcm_JointAverage 3.498872673832608\n",
4484
            "original_glcm_JointEnergy 0.2614569336181821\n",
4485
            "original_glcm_JointEntropy 1.9839749044196284\n",
4486
            "original_glcm_MCC 0.14931512295078145\n",
4487
            "original_glcm_MaximumProbability 0.28275489630928463\n",
4488
            "original_glcm_SumAverage 6.997745347665216\n",
4489
            "original_glcm_SumEntropy 1.5290355231956143\n",
4490
            "original_glcm_SumSquares 0.25199019705840314\n",
4491
            "original_gldm_DependenceEntropy 4.831491146663192\n",
4492
            "original_gldm_DependenceNonUniformity 15948.582923946167\n",
4493
            "original_gldm_DependenceNonUniformityNormalized 0.08647874398903692\n",
4494
            "original_gldm_DependenceVariance 12.243870417951157\n",
4495
            "original_gldm_GrayLevelNonUniformity 91958.6232336706\n",
4496
            "original_gldm_GrayLevelVariance 0.25276522692805736\n",
4497
            "original_gldm_HighGrayLevelEmphasis 12.499880708375356\n",
4498
            "original_gldm_LargeDependenceEmphasis 226.68302046393597\n",
4499
            "original_gldm_LargeDependenceHighGrayLevelEmphasis 2826.6038379369056\n",
4500
            "original_gldm_LargeDependenceLowGrayLevelEmphasis 19.72604690902146\n",
4501
            "original_gldm_LowGrayLevelEmphasis 0.08689965736794478\n",
4502
            "original_gldm_SmallDependenceEmphasis 0.006573816069694546\n",
4503
            "original_gldm_SmallDependenceHighGrayLevelEmphasis 0.08443376687012913\n",
4504
            "original_gldm_SmallDependenceLowGrayLevelEmphasis 0.0005948863051811838\n",
4505
            "original_glrlm_GrayLevelNonUniformity 43582.7965787402\n",
4506
            "original_glrlm_GrayLevelNonUniformityNormalized 0.4971597497837625\n",
4507
            "original_glrlm_GrayLevelVariance 0.25574995941037654\n",
4508
            "original_glrlm_HighGrayLevelRunEmphasis 12.52166435487776\n",
4509
            "original_glrlm_LongRunEmphasis 8.126395758332116\n",
4510
            "original_glrlm_LongRunHighGrayLevelEmphasis 101.40767624045212\n",
4511
            "original_glrlm_LongRunLowGrayLevelEmphasis 0.7068578780736972\n",
4512
            "original_glrlm_LowGrayLevelRunEmphasis 0.08685032895924696\n",
4513
            "original_glrlm_RunEntropy 3.1056247940233295\n",
4514
            "original_glrlm_RunLengthNonUniformity 29006.470342228593\n",
4515
            "original_glrlm_RunLengthNonUniformityNormalized 0.3159353631117385\n",
4516
            "original_glrlm_RunPercentage 0.4752407313327376\n",
4517
            "original_glrlm_RunVariance 2.5947218534803813\n",
4518
            "original_glrlm_ShortRunEmphasis 0.5230642651026437\n",
4519
            "original_glrlm_ShortRunHighGrayLevelEmphasis 6.563861466378782\n",
4520
            "original_glrlm_ShortRunLowGrayLevelEmphasis 0.045413722626630335\n",
4521
            "original_glszm_GrayLevelNonUniformity 59.855172413793106\n",
4522
            "original_glszm_GrayLevelNonUniformityNormalized 0.41279429250891797\n",
4523
            "original_glszm_GrayLevelVariance 2.0204518430439955\n",
4524
            "original_glszm_HighGrayLevelZoneEmphasis 15.889655172413793\n",
4525
            "original_glszm_LargeAreaEmphasis 116928011.42068966\n",
4526
            "original_glszm_LargeAreaHighGrayLevelEmphasis 1460133369.0551724\n",
4527
            "original_glszm_LargeAreaLowGrayLevelEmphasis 10160187.245036399\n",
4528
            "original_glszm_LowGrayLevelZoneEmphasis 0.12849616858237548\n",
4529
            "original_glszm_SizeZoneNonUniformity 50.62758620689655\n",
4530
            "original_glszm_SizeZoneNonUniformityNormalized 0.34915576694411415\n",
4531
            "original_glszm_SmallAreaEmphasis 0.5981585249058416\n",
4532
            "original_glszm_SmallAreaHighGrayLevelEmphasis 9.48004070883262\n",
4533
            "original_glszm_SmallAreaLowGrayLevelEmphasis 0.07927754430090737\n",
4534
            "original_glszm_ZoneEntropy 3.3008845022263307\n",
4535
            "original_glszm_ZonePercentage 0.000786240253332032\n",
4536
            "original_glszm_ZoneVariance 115310343.212176\n",
4537
            "original_ngtdm_Busyness 1871.4748884296816\n",
4538
            "original_ngtdm_Coarseness 2.434513865379978e-05\n",
4539
            "original_ngtdm_Complexity 5.362799156636136\n",
4540
            "original_ngtdm_Contrast 0.011314782129497342\n",
4541
            "original_ngtdm_Strength 0.0003031147221519334\n",
4542
            "wavelet-HHH (92, 92, 92)\n"
4543
          ],
4544
          "name": "stdout"
4545
        },
4546
        {
4547
          "output_type": "stream",
4548
          "text": [
4549
            "GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated\n"
4550
          ],
4551
          "name": "stderr"
4552
        },
4553
        {
4554
          "output_type": "stream",
4555
          "text": [
4556
            "diagnostics_Versions_PyRadiomics v3.0\n",
4557
            "diagnostics_Versions_Numpy 1.18.1\n",
4558
            "diagnostics_Versions_SimpleITK 1.2.4\n",
4559
            "diagnostics_Versions_PyWavelet 1.0.0\n",
4560
            "diagnostics_Versions_Python 3.6.9\n",
4561
            "diagnostics_Configuration_Settings {'minimumROIDimensions': 2, 'minimumROISize': None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True}\n",
4562
            "diagnostics_Configuration_EnabledImageTypes {'Original': {}}\n",
4563
            "diagnostics_Image-original_Hash 91abfae3f172d56f3aba3bd61e3ba8ca3ae6958a\n",
4564
            "diagnostics_Image-original_Dimensionality 3D\n",
4565
            "diagnostics_Image-original_Spacing (1.0, 1.0, 1.0)\n",
4566
            "diagnostics_Image-original_Size (92, 92, 92)\n",
4567
            "diagnostics_Image-original_Mean -4.1061918392481336e-19\n",
4568
            "diagnostics_Image-original_Minimum -132.1837226558246\n",
4569
            "diagnostics_Image-original_Maximum 137.0224927844642\n",
4570
            "diagnostics_Mask-original_Hash acd42c92421d3a9df6f4cb58f1548237e3807fb3\n",
4571
            "diagnostics_Mask-original_Spacing (1.0, 1.0, 1.0)\n",
4572
            "diagnostics_Mask-original_Size (92, 92, 92)\n",
4573
            "diagnostics_Mask-original_BoundingBox (3, 1, 7, 85, 89, 78)\n",
4574
            "diagnostics_Mask-original_VoxelNum 184422\n",
4575
            "diagnostics_Mask-original_VolumeNum 1\n",
4576
            "diagnostics_Mask-original_CenterOfMassIndex (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4577
            "diagnostics_Mask-original_CenterOfMass (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4578
            "original_shape_Elongation 0.8459346778065613\n",
4579
            "original_shape_Flatness 0.6621105014018883\n",
4580
            "original_shape_LeastAxisLength 53.515666406965074\n",
4581
            "original_shape_MajorAxisLength 80.82588373640986\n",
4582
            "original_shape_Maximum2DDiameterColumn 83.81527307120105\n",
4583
            "original_shape_Maximum2DDiameterRow 94.82615672903758\n",
4584
            "original_shape_Maximum2DDiameterSlice 91.67878707749138\n",
4585
            "original_shape_Maximum3DDiameter 100.12991560967181\n",
4586
            "original_shape_MeshVolume 184317.125\n",
4587
            "original_shape_MinorAxisLength 68.37341791699046\n",
4588
            "original_shape_Sphericity 0.5997393163148063\n",
4589
            "original_shape_SurfaceArea 26115.523102962834\n",
4590
            "original_shape_SurfaceVolumeRatio 0.1416879907548625\n",
4591
            "original_shape_VoxelVolume 184422.0\n",
4592
            "original_firstorder_10Percentile -1.3103119793382996\n",
4593
            "original_firstorder_90Percentile 1.3164819690218246\n",
4594
            "original_firstorder_Energy 309094.56533599563\n",
4595
            "original_firstorder_Entropy 0.9999988584493837\n",
4596
            "original_firstorder_InterquartileRange 0.9717439755957356\n",
4597
            "original_firstorder_Kurtosis 9.834507684330427\n",
4598
            "original_firstorder_Maximum 18.369088916293766\n",
4599
            "original_firstorder_MeanAbsoluteDeviation 0.8372962009331049\n",
4600
            "original_firstorder_Mean -0.0004083089304949379\n",
4601
            "original_firstorder_Median -0.0010351288328073417\n",
4602
            "original_firstorder_Minimum -17.418459503012702\n",
4603
            "original_firstorder_Range 35.78754841930647\n",
4604
            "original_firstorder_RobustMeanAbsoluteDeviation 0.43895995834598184\n",
4605
            "original_firstorder_RootMeanSquared 1.29461108353403\n",
4606
            "original_firstorder_Skewness 0.004904734953746606\n",
4607
            "original_firstorder_TotalEnergy 309094.56533599563\n",
4608
            "original_firstorder_Uniformity 0.5000007912623821\n",
4609
            "original_firstorder_Variance 1.6760176908929727\n",
4610
            "original_glcm_Autocorrelation 2.2531411965100876\n",
4611
            "original_glcm_ClusterProminence 0.5073939922146304\n",
4612
            "original_glcm_ClusterShade 0.0001933887593552982\n",
4613
            "original_glcm_ClusterTendency 0.5073939880545832\n",
4614
            "original_glcm_Contrast 0.4926057651424896\n",
4615
            "original_glcm_Correlation 0.014788224298774253\n",
4616
            "original_glcm_DifferenceAverage 0.4926057651424896\n",
4617
            "original_glcm_DifferenceEntropy 0.9946541749357505\n",
4618
            "original_glcm_DifferenceVariance 0.24815723272548873\n",
4619
            "original_glcm_Id 0.7536971174287552\n",
4620
            "original_glcm_Idm 0.7536971174287552\n",
4621
            "original_glcm_Idmn 0.901478846971502\n",
4622
            "original_glcm_Idn 0.8357980782858369\n",
4623
            "original_glcm_Imc1 -0.005345826131883635\n",
4624
            "original_glcm_Imc2 0.0698651237240808\n",
4625
            "original_glcm_InverseVariance 0.4926057651424896\n",
4626
            "original_glcm_JointAverage 1.4998146930271108\n",
4627
            "original_glcm_JointEnergy 0.2518428906759749\n",
4628
            "original_glcm_JointEntropy 1.9946538186823366\n",
4629
            "original_glcm_MCC 0.05850461237925709\n",
4630
            "original_glcm_MaximumProbability 0.2647178730885922\n",
4631
            "original_glcm_SumAverage 2.9996293860542216\n",
4632
            "original_glcm_SumEntropy 1.5020480535398473\n",
4633
            "original_glcm_SumSquares 0.24999993829926823\n",
4634
            "original_gldm_DependenceEntropy 4.340029888496145\n",
4635
            "original_gldm_DependenceNonUniformity 22368.978917916516\n",
4636
            "original_gldm_DependenceNonUniformityNormalized 0.12129235621518321\n",
4637
            "original_gldm_DependenceVariance 6.3751957435447695\n",
4638
            "original_gldm_GrayLevelNonUniformity 92211.14592619102\n",
4639
            "original_gldm_GrayLevelVariance 0.249999604368809\n",
4640
            "original_gldm_HighGrayLevelEmphasis 2.498113023392003\n",
4641
            "original_gldm_LargeDependenceEmphasis 190.60390842741106\n",
4642
            "original_gldm_LargeDependenceHighGrayLevelEmphasis 476.3535749530967\n",
4643
            "original_gldm_LargeDependenceLowGrayLevelEmphasis 119.16649179598963\n",
4644
            "original_gldm_LowGrayLevelEmphasis 0.6254717441519992\n",
4645
            "original_gldm_SmallDependenceEmphasis 0.006408163678797142\n",
4646
            "original_gldm_SmallDependenceHighGrayLevelEmphasis 0.01600401497944125\n",
4647
            "original_gldm_SmallDependenceLowGrayLevelEmphasis 0.004009200853636112\n",
4648
            "original_glrlm_GrayLevelNonUniformity 47619.74050667098\n",
4649
            "original_glrlm_GrayLevelNonUniformityNormalized 0.5000017281234157\n",
4650
            "original_glrlm_GrayLevelVariance 0.2499991359382922\n",
4651
            "original_glrlm_HighGrayLevelRunEmphasis 2.497361108813341\n",
4652
            "original_glrlm_LongRunEmphasis 5.625370982385132\n",
4653
            "original_glrlm_LongRunHighGrayLevelEmphasis 14.057121555804356\n",
4654
            "original_glrlm_LongRunLowGrayLevelEmphasis 3.5174333390303265\n",
4655
            "original_glrlm_LowGrayLevelRunEmphasis 0.6256597227966647\n",
4656
            "original_glrlm_RunEntropy 2.9091351159807153\n",
4657
            "original_glrlm_RunLengthNonUniformity 33726.49579730632\n",
4658
            "original_glrlm_RunLengthNonUniformityNormalized 0.3516490060182147\n",
4659
            "original_glrlm_RunPercentage 0.516419699635368\n",
4660
            "original_glrlm_RunVariance 1.792914598152639\n",
4661
            "original_glrlm_ShortRunEmphasis 0.5889545835765392\n",
4662
            "original_glrlm_ShortRunHighGrayLevelEmphasis 1.4699875722925972\n",
4663
            "original_glrlm_ShortRunLowGrayLevelEmphasis 0.36869633639752464\n",
4664
            "original_glszm_GrayLevelNonUniformity 3.3333333333333335\n",
4665
            "original_glszm_GrayLevelNonUniformityNormalized 0.5555555555555556\n",
4666
            "original_glszm_GrayLevelVariance 0.2222222222222222\n",
4667
            "original_glszm_HighGrayLevelZoneEmphasis 3.0\n",
4668
            "original_glszm_LargeAreaEmphasis 2834171124.0\n",
4669
            "original_glszm_LargeAreaHighGrayLevelEmphasis 7074639357.5\n",
4670
            "original_glszm_LargeAreaLowGrayLevelEmphasis 1774054065.625\n",
4671
            "original_glszm_LowGrayLevelZoneEmphasis 0.5\n",
4672
            "original_glszm_SizeZoneNonUniformity 3.0\n",
4673
            "original_glszm_SizeZoneNonUniformityNormalized 0.5\n",
4674
            "original_glszm_SmallAreaEmphasis 0.666666666705871\n",
4675
            "original_glszm_SmallAreaHighGrayLevelEmphasis 2.1666666667648267\n",
4676
            "original_glszm_SmallAreaLowGrayLevelEmphasis 0.2916666666911321\n",
4677
            "original_glszm_ZoneEntropy 1.7924812503605767\n",
4678
            "original_glszm_ZonePercentage 3.253407944822201e-05\n",
4679
            "original_glszm_ZoneVariance 1889407955.0\n",
4680
            "original_ngtdm_Busyness 45551.89265651088\n",
4681
            "original_ngtdm_Coarseness 2.2036148035890424e-05\n",
4682
            "original_ngtdm_Complexity 0.49213197931619046\n",
4683
            "original_ngtdm_Contrast 0.12303268488909444\n",
4684
            "original_ngtdm_Strength 2.2036168675802706e-05\n",
4685
            "wavelet-LLL (92, 92, 92)\n"
4686
          ],
4687
          "name": "stdout"
4688
        },
4689
        {
4690
          "output_type": "stream",
4691
          "text": [
4692
            "GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated\n"
4693
          ],
4694
          "name": "stderr"
4695
        },
4696
        {
4697
          "output_type": "stream",
4698
          "text": [
4699
            "diagnostics_Versions_PyRadiomics v3.0\n",
4700
            "diagnostics_Versions_Numpy 1.18.1\n",
4701
            "diagnostics_Versions_SimpleITK 1.2.4\n",
4702
            "diagnostics_Versions_PyWavelet 1.0.0\n",
4703
            "diagnostics_Versions_Python 3.6.9\n",
4704
            "diagnostics_Configuration_Settings {'minimumROIDimensions': 2, 'minimumROISize': None, 'normalize': False, 'normalizeScale': 1, 'removeOutliers': None, 'resampledPixelSpacing': None, 'interpolator': 'sitkBSpline', 'preCrop': False, 'padDistance': 5, 'distances': [1], 'force2D': False, 'force2Ddimension': 0, 'resegmentRange': None, 'label': 1, 'additionalInfo': True}\n",
4705
            "diagnostics_Configuration_EnabledImageTypes {'Original': {}}\n",
4706
            "diagnostics_Image-original_Hash 7528be17d60d3bf1b5b0110fb5a17464c0853618\n",
4707
            "diagnostics_Image-original_Dimensionality 3D\n",
4708
            "diagnostics_Image-original_Spacing (1.0, 1.0, 1.0)\n",
4709
            "diagnostics_Image-original_Size (92, 92, 92)\n",
4710
            "diagnostics_Image-original_Mean -388.6534371965271\n",
4711
            "diagnostics_Image-original_Minimum -3102.571326141787\n",
4712
            "diagnostics_Image-original_Maximum 3667.737244068142\n",
4713
            "diagnostics_Mask-original_Hash acd42c92421d3a9df6f4cb58f1548237e3807fb3\n",
4714
            "diagnostics_Mask-original_Spacing (1.0, 1.0, 1.0)\n",
4715
            "diagnostics_Mask-original_Size (92, 92, 92)\n",
4716
            "diagnostics_Mask-original_BoundingBox (3, 1, 7, 85, 89, 78)\n",
4717
            "diagnostics_Mask-original_VoxelNum 184422\n",
4718
            "diagnostics_Mask-original_VolumeNum 1\n",
4719
            "diagnostics_Mask-original_CenterOfMassIndex (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4720
            "diagnostics_Mask-original_CenterOfMass (42.265206970968755, 46.79903156890176, 48.9044636757003)\n",
4721
            "original_shape_Elongation 0.8459346778065613\n",
4722
            "original_shape_Flatness 0.6621105014018883\n",
4723
            "original_shape_LeastAxisLength 53.515666406965074\n",
4724
            "original_shape_MajorAxisLength 80.82588373640986\n",
4725
            "original_shape_Maximum2DDiameterColumn 83.81527307120105\n",
4726
            "original_shape_Maximum2DDiameterRow 94.82615672903758\n",
4727
            "original_shape_Maximum2DDiameterSlice 91.67878707749138\n",
4728
            "original_shape_Maximum3DDiameter 100.12991560967181\n",
4729
            "original_shape_MeshVolume 184317.125\n",
4730
            "original_shape_MinorAxisLength 68.37341791699046\n",
4731
            "original_shape_Sphericity 0.5997393163148063\n",
4732
            "original_shape_SurfaceArea 26115.523102962834\n",
4733
            "original_shape_SurfaceVolumeRatio 0.1416879907548625\n",
4734
            "original_shape_VoxelVolume 184422.0\n",
4735
            "original_firstorder_10Percentile -58.81511613748053\n",
4736
            "original_firstorder_90Percentile 154.20990107930592\n",
4737
            "original_firstorder_Energy 11062091490.057745\n",
4738
            "original_firstorder_Entropy 4.08274465087958\n",
4739
            "original_firstorder_InterquartileRange 84.37221745371393\n",
4740
            "original_firstorder_Kurtosis 21.041301992624565\n",
4741
            "original_firstorder_Maximum 1824.4211904882648\n",
4742
            "original_firstorder_MeanAbsoluteDeviation 117.91584250096908\n",
4743
            "original_firstorder_Mean 35.46034521842265\n",
4744
            "original_firstorder_Median 77.97360334121697\n",
4745
            "original_firstorder_Minimum -2394.677782151338\n",
4746
            "original_firstorder_Range 4219.098972639603\n",
4747
            "original_firstorder_RobustMeanAbsoluteDeviation 37.37431032464987\n",
4748
            "original_firstorder_RootMeanSquared 244.91323749477735\n",
4749
            "original_firstorder_Skewness -3.3517084559592085\n",
4750
            "original_firstorder_TotalEnergy 11062091490.057745\n",
4751
            "original_firstorder_Uniformity 0.10098040700963577\n",
4752
            "original_firstorder_Variance 58725.057817163484\n",
4753
            "original_glcm_Autocorrelation 9732.359217574121\n",
4754
            "original_glcm_ClusterProminence 1618157.185488573\n",
4755
            "original_glcm_ClusterShade -14138.262353392947\n",
4756
            "original_glcm_ClusterTendency 262.86682028583607\n",
4757
            "original_glcm_Contrast 21.112098130693514\n",
4758
            "original_glcm_Correlation 0.8473805143807939\n",
4759
            "original_glcm_DifferenceAverage 2.3412889580147724\n",
4760
            "original_glcm_DifferenceEntropy 2.7165015555105163\n",
4761
            "original_glcm_DifferenceVariance 15.44797052162564\n",
4762
            "original_glcm_Id 0.50495679517387\n",
4763
            "original_glcm_Idm 0.4512401024341497\n",
4764
            "original_glcm_Idmn 0.9992733452580136\n",
4765
            "original_glcm_Idn 0.9868129927007071\n",
4766
            "original_glcm_Imc1 -0.21351710081274833\n",
4767
            "original_glcm_Imc2 0.8872181376079317\n",
4768
            "original_glcm_InverseVariance 0.4096777840155984\n",
4769
            "original_glcm_JointAverage 98.345865195845\n",
4770
            "original_glcm_JointEnergy 0.020272742066087677\n",
4771
            "original_glcm_JointEntropy 7.0519693891074455\n",
4772
            "original_glcm_MCC 0.8894177847641864\n",
4773
            "original_glcm_MaximumProbability 0.05169033077308503\n",
4774
            "original_glcm_SumAverage 196.69173039169002\n",
4775
            "original_glcm_SumEntropy 4.86015089598718\n",
4776
            "original_glcm_SumSquares 70.99472960413244\n",
4777
            "original_gldm_DependenceEntropy 7.51971859058017\n",
4778
            "original_gldm_DependenceNonUniformity 14245.367092863107\n",
4779
            "original_gldm_DependenceNonUniformityNormalized 0.07724331746138263\n",
4780
            "original_gldm_DependenceVariance 14.241151757190625\n",
4781
            "original_gldm_GrayLevelNonUniformity 18623.008621531055\n",
4782
            "original_gldm_GrayLevelVariance 94.0459482347969\n",
4783
            "original_gldm_HighGrayLevelEmphasis 9681.986623071\n",
4784
            "original_gldm_LargeDependenceEmphasis 58.0311242693388\n",
4785
            "original_gldm_LargeDependenceHighGrayLevelEmphasis 578142.802632007\n",
4786
            "original_gldm_LargeDependenceLowGrayLevelEmphasis 0.005858639428980389\n",
4787
            "original_gldm_LowGrayLevelEmphasis 0.00011848993582928606\n",
4788
            "original_gldm_SmallDependenceEmphasis 0.12324791426510477\n",
4789
            "original_gldm_SmallDependenceHighGrayLevelEmphasis 1017.9910378184863\n",
4790
            "original_gldm_SmallDependenceLowGrayLevelEmphasis 2.7540998359306532e-05\n",
4791
            "original_glrlm_GrayLevelNonUniformity 12989.120893748053\n",
4792
            "original_glrlm_GrayLevelNonUniformityNormalized 0.08957456337127909\n",
4793
            "original_glrlm_GrayLevelVariance 116.49398827830572\n",
4794
            "original_glrlm_HighGrayLevelRunEmphasis 9606.364893717375\n",
4795
            "original_glrlm_LongRunEmphasis 2.142162761448511\n",
4796
            "original_glrlm_LongRunHighGrayLevelEmphasis 20976.7135894634\n",
4797
            "original_glrlm_LongRunLowGrayLevelEmphasis 0.00023879028611763654\n",
4798
            "original_glrlm_LowGrayLevelRunEmphasis 0.00012339924572602124\n",
4799
            "original_glrlm_RunEntropy 5.206117252984992\n",
4800
            "original_glrlm_RunLengthNonUniformity 96977.21100201242\n",
4801
            "original_glrlm_RunLengthNonUniformityNormalized 0.6660684577062382\n",
4802
            "original_glrlm_RunPercentage 0.7839461836273496\n",
4803
            "original_glrlm_RunVariance 0.47838639574054265\n",
4804
            "original_glrlm_ShortRunEmphasis 0.8419918549732167\n",
4805
            "original_glrlm_ShortRunHighGrayLevelEmphasis 8035.815300731246\n",
4806
            "original_glrlm_ShortRunLowGrayLevelEmphasis 0.00010736170827331377\n",
4807
            "original_glszm_GrayLevelNonUniformity 344.91035365073566\n",
4808
            "original_glszm_GrayLevelNonUniformityNormalized 0.01575940572287013\n",
4809
            "original_glszm_GrayLevelVariance 468.57481789301244\n",
4810
            "original_glszm_HighGrayLevelZoneEmphasis 8059.262816412318\n",
4811
            "original_glszm_LargeAreaEmphasis 128437.01261080142\n",
4812
            "original_glszm_LargeAreaHighGrayLevelEmphasis 1282229886.909851\n",
4813
            "original_glszm_LargeAreaLowGrayLevelEmphasis 12.872030624211071\n",
4814
            "original_glszm_LowGrayLevelZoneEmphasis 0.0002342157285844906\n",
4815
            "original_glszm_SizeZoneNonUniformity 9817.00274147857\n",
4816
            "original_glszm_SizeZoneNonUniformityNormalized 0.448551710750186\n",
4817
            "original_glszm_SmallAreaEmphasis 0.6965723957065041\n",
4818
            "original_glszm_SmallAreaHighGrayLevelEmphasis 5267.925724760801\n",
4819
            "original_glszm_SmallAreaLowGrayLevelEmphasis 0.00019377675733738605\n",
4820
            "original_glszm_ZoneEntropy 8.139739695812759\n",
4821
            "original_glszm_ZonePercentage 0.11867347713396449\n",
4822
            "original_glszm_ZoneVariance 128366.00700039463\n",
4823
            "original_ngtdm_Busyness 0.48177090713638093\n",
4824
            "original_ngtdm_Coarseness 7.36720510011836e-05\n",
4825
            "original_ngtdm_Complexity 15232.460121903936\n",
4826
            "original_ngtdm_Contrast 0.009860810750303298\n",
4827
            "original_ngtdm_Strength 3.068674170180409\n"
4828
          ],
4829
          "name": "stdout"
4830
        },
4831
        {
4832
          "output_type": "display_data",
4833
          "data": {
4834
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD7CAYAAACscuKmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOy9Tah13ZYe9Iw5197nnPf9/u6tYFlU\nBRIwnfSEkAjpFIogGkxHgkZCNQK3Y0BRMT8tGwqmE5NW4EKECEKpKMRGII1ANexIDApBCyUExSpK\n06hU3e/nPWfvNeewMcaYc8yx5lp7v9936z0fue+EffY+e6811/wbYzzjZ45JzIyP5WP5WP7pL+m1\nG/CxfCwfy4cpH4n9Y/lYfkbKR2L/WD6Wn5Hykdg/lo/lZ6R8JPaP5WP5GSkfif1j+Vh+Rsp3InYi\n+leI6P8gon9IRH/hp9Woj+Vj+Vh++oW+rZ+diDKA/xPAvwzgNwD8PQD/FjP/7z+95n0sH8vH8tMq\ny3e4948C+IfM/I8AgIh+FcCfBLBL7KfzW358/AGIGWAABIAIe+yG7MOMIfHswslvRxVTvNHXESqZ\n1Xlw++Yef61/rj2H5TPpO2yMwGNbbNwOC/XnkL0T2D779tj4U/+OadK5vWdqGykOl9VB8bt5U+f1\njpcdTiv193idjKn7PDzDtf1gjmdjQnFefq/KQd2c0eaUCbh8/du4Pn89HdXvQuy/COD/cf//BoA/\ndnTD4+MP8Ef+2J9DulTQWoFEqCfRJDjRMKPGEIgZKKzfwRGB/MZx8QKgqhfUPpG20DgnWRBJCGBX\nkanyrFYXh8kF5NnGsCgspMrD9UwEJEdwaXxGulagVtBLAV1X+XxdgVKBdd0ynxmjYta6k7yfFvCS\ngSWDH05gIvApyRgkAicCZ30RZC4S9HvXbgCcMCx8YoCqjktlUAlNyWjjXHVBctJ5GAgIkYZ0rLV+\n/b/3e34vJ6BmmY+qz7b2pQLkC+tn7u1maTcV91vhXnci1EXrXEbGBQbSqmtU5xHAhukNbbUm2zXV\nXZzma6hd7+kCfe2tbzLKWcc2E/7B3/mr2wZo+S7Eflchoh8B+BEAPJ4/x+l3nkHXAroWICVw9lKI\nnKRjnQR9Vfd5/iB3X9V7ah/QpL/nrIs9ATlQuj3HPrvnUZ082xEca/2d0dRej+8fkTIcGn5vbfbP\ntrpyHp9tdcXin5Wo9zMlZTZKRGvtz3B11VOSfmRq/fH980QAALQKQ6NVx1yfzQSpg5ShJDTm4ttK\njM38NGbIPBAFsf6m7WAlbFv0nhlZSRdZQ+nKyM+rEmgY5wpQKe7dtYcIfMrtvS6pM/DKoGuV/2uV\ntRrmwMYcSQWajvOICJR4k1uLJgi0UFwX7QfC8nRCXRJ4SagLIV33YcB3IfbfBPD73f+/pN8NhZl/\nDODHAPD54y9w+vJZJNZ1BYhARnBh8YMZWFVclAJ2g7wpiYbveV0BruDrGggggZYFyPaeex21gj1z\n4DoQHLMb/YPC7XoeCd6eTyTPtYVvkhMASCQuKYF6BjGMEbBlVPYcu84kfO6EDqLWJlprJ3ottKTO\ngNNYPyvxyoXylq5yP60VWLWv+hxOqS30umhd1ucqzIEYk/touA5wiI6otYMXaWdDhK2hQCoVqEB6\nWZEuBXRZQe9epI4y9hnMsl4qK4IypiVzkc5nGYvzCWnp64VKlTVcq6zPUvu9AJAzks31ksd5nAmt\nONexBOHTbnt3Rj4tMh6n3JnOpHwXYv97AP4QEf1BCJH/mwD+9PEtkwYbIdi7LynJ9zlvVbsDycaJ\ngFJAlMDrKgQGyCJaFmEwyyKT0O7LoLUApehX44KTL+8g+AEJ1LGORLKIcuqEHftBgdBmYxU/+3tj\nW0qVZxg8Tf1aQVUOnZyyogBVd7CFjf45nAlU9N3GyyRapv6MAL3J6i8VlE1NsDplXIb+lQpCJ3Qk\nAi9C6HXpiIFUpeBKIKgKttZO4BEdqZCgZeltCNAaOQvDVHWojVVK0i1moOaObCLDVXTV1Ea9ZoMU\naRyHYT6ZAdB4jx+fWoFCIKobVdOXb03szLwS0Z8D8HcAZAD/BTP/b3fcOHakcpc68bdM470Gg23g\noqFLB5GW3HXdhhyUuM7nPnmnZVAPyAiNnb49IyBfat1IQQCOaXD7bO0gg/EmwY/qPyoBhk9/rxWo\nBFRhLAzVyzN1ZKN11CWNdgVgg6SG31iIj4r7zjGCaNPoC1qJcklA5Y09Q5gHA0XhO2RO2OwMS0J5\nyKKnn5ShKKGnFUhX7XthtXuUjhIdEbISr6letORRjTO7R9L3kxsvZiF+YyKR2K2ktEFxYBYE6KW1\nn8OI5IwRxnvseaVKHwodrp/vpLMz898G8Lff5x6awfDKc8IOBNd03QZTaayDGUwMqlWIvKgkBboU\nTY7IkiqxTt8c3uPnWJg7scbrchZdDgDThBkYTNe2tUVGxxP2rUoV3RRpUq8xUBXygwERGHRHAF13\nbguUe/uPxirUYYXvvEcudpCetSHa5mhlFylft1J0Msfd3qL9jnaeveYQdVyU03wMbL25vlKtg4H2\n3nFrJa6RpuIe3/Z7bqAbCkMhR9CbPIyf6Kjdcm4Q2OChu9aMJMxgM9ItS58MJS4+n8Q6nbPoOMxi\nLKwVWGm7cOOEO8vrRv2YqSG1buvw10WvQJ1M4mwxVO713pLwEDjOlUBJ3r0Xohm+zDhni3IwDLm6\nQl/sfrmnt4+UEShN9mdqfWQ2kUTSBRAYavBjNI+G2RbIEEhNyInE+m7MlqGWdbElmBGYLldZb8VJ\ndo+sZuOcIB6gykAS6z2rOiQohPv4+HudsbkxMVNn/BwXRY9rBVbo59GdwY5JTIl4gPiT90n5sMTu\ndfY7OBp7+GNQLxkMVUjVdNAMoAikTEnc0R5itzpUoi/yYiXyje7si+ekiUaC99fY70CfoNQtuBwZ\nXGRs7yvRZ4joVrFxr+hjlwxyj0Y4VvJrTWaF3DMm5KAmmQS2/xPG+4zQfT8UJTRZaaqUSuXmEkvq\nLqtq7DQ3WnHEZ9K8dMFiYz8dLc+04xwMDI8FqdVAaKEubxBthko31wxVrTILmphY8jf131gfDb0c\nLKEPTOyYW9MnZTBoeIJN4V0lCxGDkWUxsOgvDDRpIGgggR9E9+Is7gqqBFqr6rK08RdLY8LC9MUT\n7NBmdII3SO/7YyqFn1jr155F1asurq4B+cT2WrtiUUs5k0dOQIt1YE88XQoTuBnvGoRWyQxGZw6N\nuEgI3t3XiBi6SIm6KuUt9kboXrKbxrUyEipqJVChHqgFTBd8WwdmMMupQ+8oeKL7FWhGMED6C6C3\nuT9EPD0QtrUZ58VUt6z9SkhmhL6so94f1xXQ11OY307ox7T14Yl9VtTa2P7dLGgnBZ2EHuBnZSF4\nZsC4PtAkVpvk84J6ymqgImBlsaxyuV93mg3qDKpHgm/oII19inXPuLhnDl5KNF/6hNhnEtghiWH8\nVCKJHqqEY4RlhF5727yuLTDduEQYIwe/O+HESEElDaKB0FqcRWFFFdZ08+snUGHQcocAMWa4WUeY\nI7WGgBgwg6JF+di4OGLvDNPGxQsZNSxqHIONXSoVnFPz/ZMRfqmjILDi7SjGTDdGu+8NjHdlRlg6\nwGbEY8OCpXaCLaJHdeuysonA3ZicDz+RwP7c/bMtcCRBJzxAUheFF/34h/2ZSer3McQonN0j0LaA\nbDGoD5dTEubF3PpCYTw2z3Hw3RbSELnopOVuZFgj/sk1XlVgF2XnmVH1kD5UYDEBtrAdk2n9SaPq\nQVXeG+GZ2uXQYQwY2li4Z2Xv90Z0kMAeXauyNs0lpnNQoQiH0KI4M6FSQqpZ1/XWuzMLwvk25fsh\n2QFHTLUtblICaZPDDKLq3GnKraOxW63sbPp5lggoToTyuEjooxqOEjFSTvJY4/zR8BJ9op5wjQnN\npHRrD+bSwxcv+TZ6v5PG9iwj8lkgjAXzrLWrBCb0lbA9fGev9xuhF3VjOsi937fe9iaxlYhFvxXp\n2K7xOmrphHxzIYfxtT6wi41iFrTDlUePy4zZOpvAhuAnc7nxJNU6XE9s+wwIWCEqYmFwlXaYN4gS\nS9QbAZQywNIPqqKytDH0Y9TmRI0UrbP3QXjg+0TsfjLCZ0NPDOV6zTIKEFTfjnVZ8bp9Ti1Cq0kl\nUsntgk02hL1XJtK3u3Em994wsuzCttl1gy1iJFpSv7Qww7B4m83DoPuk/uqktNtfYOXQXRYWXpPG\nXiWwl5fqtUPiqetrg0wmz/Y8y1SSozG/U9e9qzhYzcbYKmQgC4NQQUXXKqNHZhK6CkPowUZerbVr\nZmpS7M9BeX1ij40uRuieYI2AFKcRgdWHjZS6wWQGVSHqQPMjJ7QNEwCaPkXOrScuM8c994ozjA3x\n7hDGNCX4vf5HNWDSjw2RG3xXyW4GME4KxZMYr4Z2GbNzDK8THGCW7BZo0hD2HsF0vbHpj0bEDn5v\nvveIYU86mWqVEgDu8wPsqqaDi2s2hlCC9AgyEkmD/uO4D7Yk5s5UrQ9+7ox52TolQl6rRh2ekE65\nG+3s/qEfQS3icaymRrkbcQGvS+x7RpEZAwC6REKXCJy5L4ooaQfruHt3kJbNRaILnxMdxhfPFv3g\nE43lljTfu2f2aNefvsnCwdnUCaFFnsU6dNffnnFQFhHm/v7YTAa4uVPRgncGSO4YiQW5bKLNuDOX\n4VlGYEf2Dhb3FceuEka0FvrSdOzYR5uvGwJksK2E9g3Mo8Xaq31pJaSUhNctqVH0AN13yq5Kdef6\n+vDE/j4LfzJJUbf3FtGNTqfEQQDolMW3XtnjIrmORAoyqYT3AStROvvJbi6c3EMnXXsZbjeUD9bx\nTCjA//YdM6yRbfH4BcXc3TvAKOmaigOJ3msMIoyR2RKKC2IpE53RxgEAkoSkAoKKCOhQv1bVKTGX\n5BY44onbjdfwbl2p6FKYGZQZDCCtFRUJaWVw1sAX1XvN977nqpqWKChmc251zVS2WIIkBtBsUMiC\nCNKawLrFu41H08tdPTaOtXY7gbcX3FleT7K/j+5q3/l7Cs+vc/WbQYQB0FXjoAei6AQwBELk5AZ8\ngjasXnN7LVngmOlpgBgSPeyO0mKvjxHOM2+3AXtGVCFBK3otHIyVxdi3mg6PcgRHZYxU291eac+0\nQay9HY2oo8HNJDlrlNge7LUyQXu2yYaVSAgArgmJGby63W/c3XXEYz6BOTM5IFpvP7KvKk83qniE\nQBER+WhRs9QDwJpBOYFLHsfQIkx9G6zU2rdCRx8/8D2D8Xv0vUe0LsCiXRcncG/BBD20v+5s64zA\nPWc23d62kDZ1YSSW3fr0u01MQfzs+xSLX2QsiIXh1BqLXLPq7N1Xxc7ibsQye97ABFh8z966N5Pk\nwLjjLOqYfv5m/YtSXv3SKLUHuRTXZtAQvTfevAPH/eMiQ5yoMgP894x5T3gl2gZJ2ThU13YTLta3\nSVvJj6Vr015/YnldnX1PwsVrWjDBzoKIC6aU4Xvy/nkA5pxnVV8PUcawABx0JxKJrqG3nEl8/7XK\nc5LABk7j9k973xC5l9oTXXpQLQyJWKkVhCSbgIAu2aGx8HBjyO7d3GvqoqNS9u0VJpX9YpttAgrw\nVWC1W8iRQUdd+8hWQDq+OQNXCagxGIwsu/bkeZ2IhvGPbY0oyhdFVE1NrL3tJCGbo8ty1n8r5ip2\nc0ilgj3Et/FdSx8va5fPXeANc9EnPxMyrry+Nf6e0iZjshCOpOCe3jR7xOTaaRs8NPeMiEiIfOrL\nGuvgSNARvs/6NDM2abtNd+8x+PojA02c83iPvPT7Jt0x77tbXMMOMoO1M+YEbC3GtyD8jNBjeypE\nvBokVs8BA6DkYgPepxwY/3aL9WvvXo8EG3M8QKFGvMzjpp3YRn/te5bXjaDz+qcVz/0rANtCadfu\nhTZi/N5vOvFPaGmMpost1G1QHY5ADcbD1cFO3y0jLG71WB2+77G4sFX539pF2wXcvAiuDbZGTKoR\nXJRceBaLdImSfepyZA1PbcahvnjFHUp9Uce5iAkXrP9ezfK/+efOUnvpfNAq2Yvoorp7Fgt3m4vC\nY117UZB+DQ4IUa5nQyfWl6PYh0D8nCfIZ/Mc19fKQ1amdtdmTCfjYn08KK8v2fc6vrdP3L7b47pV\n4dFgUY9wcPzst1PCT67B7UGS00isFSrRea6zatkl9NlERSluUHxmQGoP4A0BUQJQAJo9j3ubBwYV\nLcFAh+IlSJ6cxzHxjCDq5nvFL+TJs+WjW/z27KpZWdbqBIPOZelzOfR5jxginLe+aHSgJNvQa43g\ndyT6VD2bpRADuuGyOuHgxtBsA2335s74DM87KB+W2AlBXwsLf5fgXTCFxX9HuDxbUJ7gfRtaW/RW\nwuB6Yx9eORjfxrY2V0pxz/c+ZI8uvCXXS4AZFKwYJYg3/s1KtOe0gI755UNh7v5vs/a636af93T1\nmRSfwc1BzwxSCiMqG5tqO9+U8eQErEW+y0acaAkk/c65oRgT1w1ELdmjH3Ozv3iinRjwBmOdl+5e\nOFjCT7vU1oa2X4K6qHuYTK9v8576e9TnN7aefaL/8JI9ui72dG6b1Lgf3X4HxsUFuKgl/9124Vgw\njcBb7nDYhda2th7ZBKIUi8hgRshej/P9sYgt//0d3NrCUYe93D4r72ycojQ2CbMD1Ye+xjnz8NhL\n/UC8A7pwBH6YSHRSWNW6loWm5S5IwR/Noy/aEU4j9GZoVbXMDG4VIKq6G5L7RiyPKNtcY7Ti23q1\nJCuWOwFO7bO2F3aQAU1NoVgXTeof7qF9WnLldWC8W8zNx2lc7aDRgz/UiNP07L0FuAvd5NV2vhH6\nApi1N0LzWVBIJHR735uEo9/Mnx0h+ETqxXjzAQ5GCdv6QmO/hjocsjF0dEMfnHdvh+BjHyrjMJnn\nLK2XCQLXZkq8rTswzo0nJU+yHhGDkbpk13Xa1l1APM0dN9PNXbRm94hM5pEI8Lsd94RcfEYk9INp\n+sDErhzVBt6FmQp3toW1ZwWBQiIXO0ZOEpnxhh28AgbDl2RORctMCgDlQQIcwEBa0qDzdcPbvv9z\nYATx/QgZbOA7A5pskY8m2Ii6jVwg+OCPHdxfvu1RUvk+GjE5CMmBEXaIXI9dZu3rHSI/0unlQn3g\nZF0MTCogu5R074CD0kt/l3BVZQA+ZsHy4K8yPk11iHaJIb4+EPxs3o+MkabblzomAgVGFBZLpKeD\n8io6+9RYRWYIOWjwDBF4LhkGZJpqSu+TeHK0jTEJAuOYE4gYvNaRSUbJHqH4UdHrNhFYe9dChooZ\nY/3RDhB1ai+VOeirES57FcVfM4S77qhR2vdmuCI6lsyxNPQTCH0Pyt9IvSWJJWaE4KC7ZonhJbUM\ntf5AjCHvnhrmLEmpgKAdgjti6r6NnoED+/YU8zj5/48YSKSng/LBYTzHxjej1YQBhEVIwOjOMGKb\nZIklu0bf2z5u3TBSF0JdBF6lBwKuAJ2zRl/pjjUzvDmr6ab9YRE0hOJL5LzxfmDr/mkDFhaTddHr\n1nyDwJmx2XxSsf8soFva2775fHy9JwQjnEAcTbKzZygTIo2Mw1QOJb4+5x1i+7mQvf1A05kzoZ6y\nSPGTSHZ/7JVfb8SSbCIBcv21ZzHaBOg0xgn1Drj97JpthpBabH9jztFb4MZsYOimRsVwaWAuMKGN\n3ikfXmePEiJKyBkHLR0ubbcdots4jCu2rK6OMSQorHMSfSEZz0Ut8SuDqvht25BxJCaMsepNUuvE\n+Da5fk0DaazsEbq3yg+w3LnBfKBLXEDAaDyLmyeifuiixDrhpG7LGHRkuz88b6aCzTZtNOYTIDrX\nLQPI8ns7TWf2HGvvDKonakdb1VPPUBTjD0wjTIAk3WBS74/2P6pCnnE2N9lkP3sdx4miEXSveGa9\nw9h2vU2T8joGugg/Y/HBMxYeqde2lFVucKfFL4a2EOx/ezZ0Qwj0gAFuxyJR4W7VdZx2INoYNEF9\ncmw/+wa27xH8XjE/voeZ+ozW/0FvnUlKHhbqrnXciknNmIEnqAoU495v9sW1/X1g/y0kZAzV0Ft7\nD9WwT41FG1emCQ3bGLTblhigY4StRC6ZcD1a4N6+9yle9TIGMqPmO+t9fWKf7d6ZXc8M6XFRmH5g\nxLPipCqrgckfUEiMdopnujLSpSK/aL7xlyssosnge3TZtDTB9iwjImZgxahHbuCWlj0d3qELDpJh\nMy4G02+FUHJ3dbFHL7GNDr4jwnc3JkOgjUcEkzayETjL/RumlLpxbYh+9MTt3WURMTWvCrmjp9QA\nR2i59URqQ8YzDoDx9LYvX7+mrj5IvgNtj99HYASvehaVrS59F0l64VJcElTudcQko9MDIyfl1SLo\nGtzxUuNWMc7mF1fUTzcPssUwbwNViEQvZoGtw/lgu8hh9gxpSP/unuIDf3Z0YAK6L3327HvG7n1K\n1AvjzzHm3YpXx26UaJknizPYbRJhw0z2GKj9zBJ5aLHzANTjeixpqYxRbZtx3xvzJuGpq3x7+e9s\nTR4lSrE6Y/sqSzYiQxPqguYb4/HBiZ0GXZNgaaZa2YOUAJrBIjmC91Cn7a5SrLYsnftZ+mhD4FcG\nLnJu9+mrFXSpyF++gF4usgMpnNBBlop6un+yl3Yk0CyOf48ob0040Zh6i7nlPG/AjkhOF7Hn+Ge5\nMaU9t+Ze2wxCGoHrqaVtvPfmq82LC1+294krkFPajINXNZidUcuvF48C9CAJMvR33SFoi8/w/2vb\nh3RQCsl3bR2Wdz60Q2w32tZEY3bke5hhtGOZ/amoWpmT2AGIRJ+dZBOeldeD8X5TQZxAH61lJf6e\nwrXOADXEUivEayeLQuF7dfD9pYBe5KigzXFBcfHGtseSoKeIunbPJOD7lhZK6Z8lGLUFfHhd0p7r\niWowCrqKar29CHUhkS04O6rY6/+3UJr61Xm2KPcOyNzbKdbG1QhC5oSY5Wu/BmKIQXh2P6rJtcEY\nQq1bph3bV3nbd23jxi34bVGYH59SJXLQbAR31vnhk1cMxiT7En1SPWz2+tpsMQ51VXBLe6Szezop\ngehh9WZQYwiRXxn5pSA9r3KG9+UKXK4jw/C6KKl7hURqy0JSXc7rTV6SWTtju62LewY1XzysbpbJ\nkRFyAohTcwNNI/x0LHbhb2QMQYJ6VOYldgth9XXsEW4NYtUF77SDN2NQif3vT8NN/ZmWwabnmZ9L\n/qFvfg7atamLdW3mkDfPPB++bXYtMBK9PdszNjv8Ae56Di/vZ4+pwX1/LIdBuYNRa3kdyV57g/t3\n+h6leXILFHB5xpyvthTp9LoiFs6atmjRl84nFUZ+LiLV312E0F8uwjCcpZizHdWzAizGqqadOwKi\no0kMZRpS2x7IW2io4yCnjPI2waW6xOw8NUE0vFFFWl1+XH0bm1RzxqWw+cdQz+Yo6prkUEaDqm5+\nSJnRJpDEZ2A1lWtZ5HMgGjYGrHNMFt23IJ5FM7Z3r/9xzFVFbCqYdc0lr9iLn2jF1B1gUDdJCZKB\n7rK0NhzZmlq9aVSZkmNunO4zcuP7mHDSQ3qnpw6ZVS3RIRse9wsj+G1NsvsFjA7jh80f79mHZmSs\naimJC+iozkjo3vYwYwLRtdM6csDVTZJPdpYNktsfN8zcJO0tA1irc2aB99B+YFqii4ta5Xzm5xOQ\nM+h8Fg+Ar2stoFLkEM4mWQ1hCPeeRtHN+muMbkYfbQ7c/26uDwnznnU9qB/Y1n3vGpyhh/b//m2v\nv599ZuAJi2WzSwkAk6TxaTArhXq4dkLPGlRh6LCKPz29rEiXArqustWw1kGqb2KxPRzT/3vyhsnq\niYvNfx9tAP77EiSyES13nZw8l6cx2EISZtoC0nsHCNyvAyC55XNvLy8ZOMnSaAdPrL397Nt8TyHn\nujJdtmRFF7ov4c0T+LSgPp1RLZKRGSiM9PWz2FNeLuD1Im2o5oIFbBnvsaVN4hFv+zC04ufEGzSP\n1LE9C/vwcKcuzBJJDqoob+9z6gmAjr60P43Jtefsz8vrE/s9xUmYtu3QSw7q575tStsEAxfogBZI\n06T6QJgHPnwvpfz/t0qU+vYeCV0ndpNpZy/fWJNm9+ltvVKPlAyVqIrkbBAby/BRmRnTgiFwmKec\nBY4vC/jxDD5l1McF9SGP+fGaXzmNBOEJdja+vbNDvw/90l7a+rreB/ndKl7Ce0QX2nA3Co5t3ikf\n/nz2mOc958llXu+BGxTq1m7N095OhmHWfNxuYpcsLrdFDVeEdo53ulYxyl3LGJBCaVi0u+e2Mzso\nyIPKMbzP+jXTy5XQB6hqpR3Y6AjeL4SkPvij3YK+VAafaBshV6uckRZ2gQ3FNockKITu32367VWB\nREA66SWKRHJGfTyBl4T1sweUc0J5TKgnCVzJL1ViICojEUlSCrN+s0B4rtXl+p8TyQDxHeNqblIr\nvLNF2f1+WAa1i9t4Te87qj8ijChgfD84ZAT+3sH4PXgbf1OC2uhjCZqmiUA5o21vpdEKZJFGtquJ\nk1jhTapTmUA4200XF+9RJlVg7hrbI/gozYHRbhBCSZkdMc22qhZjdJOZjgZPXyz6ymL9i2aj3dPV\nN/e7sZrU3e6xiMPT0v7nlMAPQuz1lHD5bEE9EdYHQjkT0gqcMpBWxvJVBl2zzLWVyqK6GTqb6MJu\nALd92SvvU8devZ5Z7wVNxWtvEfpRW4f/vy8wnnFM6MO1fsBqjyILKX4A0ckoJ5X2qe3Y4oezwMJz\ndvo6JPb9KoEz5FP3tmbRMZEftfkoEmyPGL8LRDQOb4EcQ1t4tOJ6hmZw1kcxJpZoZGZgnSw++5xz\nt5UA87GJNoWcWsII1tN56jljfRLkVc6yE1EOfAAszNUYD7cMM1km0TPEOyQuldpcl5aUIq6jQ/0c\nGAn3qMTY+VjHrMyYZdzPAIwhtLP7DsrrWON9A3OApRax5EuzElPT+zZ6pep+AIDTAs4J9c0Z65sT\n6jn1/e9rQb5W0LWKYU5zzDe/eoOd5oYaYf1hnrXmF8XNPdh3F28/ONKdzdDk22XQn0OgEaASVsdR\n0ybRpbuZhpNM2PnY2715hyAmhkq9ns+LEPbjAj4lge1PCTUT1kcxoNYMQW4Jaljjtu8cOYOWLHsF\norvJUBKFuQJa7AExgVNta1x8cTMAACAASURBVI78ff7l7930706Cj/fYs/y7jY2pOcDWS0ByiKnc\n5ubD99Wrb987GL9X9gJBPJx3oYfewMJJ9XgiMfbooiqPdsIp+kBYsMRMP/bFJmHQQ+X+UWdO80W+\n1xcfdTUj4CMD4a2yR+hxkc7UEYsYK1UQj//9HtXryIXpvidVLdtGJBK4zgzYIY1pZaThtBe0gBsC\nnFFx/zl9HDAy38rHzHgWAntLgm4k86S+4RkHEYNHazKqBUT7dYVyk9iJ6PcD+C8B/Dxkjn7MzH+N\niH4I4L8G8AcA/F8A/hQz/5ObT/SNtM/Wichd/fWA7LbSe7k4I1pl8JLBD2LRvX7xiHpOuHyWcX3j\nouYUmlKRbaxQyc4WjEMSgjhsupgF9PhUWFHvdiGN033q9jl3JgagMQwCWkSam4PteO3ZDozIgdHY\npwat4d5mB4Bu/yzAde17AyJDszZ5NFb73ICVGbtCWSPPVrTsP5SKaA+VWzx7flZjH/VxJr9BiUgC\nnB7PoLXMT/KZCYsoTffeY9lj3nsQOo6pr9+Cbdw6bs8whOQzKNPYbvIM2wyTPmrxToK/R4SsAP4D\nZv7DAP4FAP8OEf1hAH8BwN9l5j8E4O/q//eXSNQREgPbBe02Y1Cp7ZADu5ZPYn0vjxnrU8L6QFgf\ngXKG5J3LUOsoWj18a9LVcmy+2sFne9Q34Fg/i/DNF2f4mhq/9to7G0+OsQMG/RwzsbmoLtNNKbrh\nxQUdzfozjV2v/eVcm4am2hFNKyOtYnHPLxX5WV8vFemlSkhz4Y7IEsSouOSeSedofBy62TJm3l47\nWwu+/3vFtcOvlWnbPCSfCTar732L3zC2U25Kdmb+LQC/pZ+/JKJfB/CLAP4kgF/Wy/4mgF8D8Odv\nNioapOIC8pA4cipmkTi+U6qf89MZ1y8eUR4zvvlnFqyPwPqWsD4BaQWWb4B0gSSZ1AXKtoOrBTtU\nSHSJtcVxa8e5rcVt77qPT/Zw3Qxn/lSbWHzosNOt23Nn4+LHw3N0P7atDSaFbUxpPq5Wl8J40xOH\nFre942m8z76bSEOuqhKQ2lpyknwBLXou3GAG2IQe9GM0mDPwCNBaRQ0odTwbLb7PENdm/MJ4D6rj\ngWoW10QQAhboMqghntBNlbC2HQgbGNNPEPdlFBTD2ttv8nvp7ET0BwD88wD+JwA/r4wAAP5fCMz/\ndiV2dM8CHvVRd109Z6xvBba/fEFY3wDrE1AeGfkFABMyubREQD8Askk+tyAcdG//mz4VM+IC8/hk\nT3hHeqJeN0/a8C30d1MJSE91BRDjByJqGnLNOyJo+258cw15VHTCGA5PTH1MK4PXtfWnEXxEbTZ+\n5qZbMnA+ib3llKVPmcBJPksGYY2xWK0OgccciHQaK2Eq1NQesYM4ZyHEkdBNxTEBMFMt2kfuAVN1\nEttgY+s3Btn4xCxJzC0gaq/cTexE9AmA/w7Av8fMPwl7jZlovtGbiH4E4EcA8Jg/nTcmSqR7SuqL\ngs8n1IdFoPtjUiIHygOjPkgSwboAaUHfFJOSSJdSuvSziK6ct5LY69f2/9Cerv9Of7fvovTQ1yaY\nJtMWmsWwV1+8zsjcr426f+qn0MrJs/K97AMP/bHQ3B09tRO9LfTs9MtA8AkaFJN6//04GeOtutmI\n9fCLauHAaMRgLliQWKrJM4sorYOasbfldBp95sc7zkWQ7HerWjoe7d0HTPGkHsdAmvqS1H4Bp4KV\nCsbO2tByF7ET0QlC6P8VM//3+vX/R0S/wMy/RUS/AOAfz+5l5h8D+DEAfP7wz3LLjb19yHEjbIHY\ngtFB4PMJ9c0J108WPH+eUJ4Il88Z5Q2jniuwMDgl5OeMwkA5aZz8KSPp7irWuHbZeZV6eGZ8/g2o\n1YwxwNaFMuuPs0E04wsAUELbJ+7hWlQXgHERzhYKO4I1iaBbfltWXiZN6hj0zKiP7zyHl9xVGtXN\nGXUk+AJwO53UoQzrd1Ed335LWeB/TkB9EJfboj76xPJuxivAnWCr9TGLT3427kE3nxJ6ZMqTcZjm\nF5xJcmcviBl2WVNckT+5NeQA5PNJ1/oiL0J3l656OOe1gJ63c+PLTYxIwtb/BoBfZ+a/4n76HwD8\nin7+FQB/61Zd713SRC8JGwHkRI+kOp7306r+EvtOijhNcmbZiGGZaLAITBx2yXl46167i+SoRMNM\nM2CNRqAN9GyEn7ZS5t5i97WNMPo+I+LqoPzMcOXb5D9rGzcwfXjVXn9LK+3eS+nvlkikVonBKIKw\nePbs2bj557dNRDy8hmtm5duM9T3lHherG1dOtl1b8ynmtG8LmpR7JPsfB/BnAPwDIvpf9bu/BOA/\nA/DfENGfBfB/A/hTt6vactU9rqn/yFuEyEQSjZU13dRZAjSaxR0KLVcAlZAuBFoBKqKD1pP44NOn\nb7q+yNwIfVgcllzxaDHEdpsx5QBOTrl9LG2HljAfMiMYc09BtVd8H9JIiOa1qEsCJcmRzivGIJNq\niUACkwW2yRSVcZAdtlh5q27cCkYJer7A0mtzR2ItwGkB1aXlgpfnZtjmGvJz6aDyoEJceWB403Fr\nbaJ9wx5NDv3w906Ew2h8taCtnX0FXuVqqCZJ/nsLOGKAV2o59eQ5+0N8jzX+f8RWPlr5l27df6Py\nrcXTS+64QGwfst/OmeylA0CQDleAIFsqqZDGw+vaVRjUoKAZ3OzMr2ZFrf2giD1ij7B66MvOsM2C\nNmb1euhNJOmpebIwvA58VK+HhopuGKoqDkEgzn5g3w/MI+TPt0sS9VTNs/7OCN4Tub+WdbKMSCFS\nm1PSoBoXwedRBfmNOoH4Bsu3M4gdzSHCNb6+I4m6h/yCANjdg+GrIstkLEKEFY3RLEPu9yo23qc2\nmki1FgbooaofADt1VQle8slJzvf8LPrn6UtCfrHTPhjphbB8DaQrkEy6nxPK2zPAEH+9b8ZaQWW9\nDY+OJMNRFFQjnIqNq42cSuF0bLF16KSbFTcao7xqAKe/QhFLUii49DRdCRr8Y2b3yt0lCQizS7a4\ntFQb+wmT8cEjsQxS0BH4kSEroe9sNEIuk2f7NVOrsxtIm5pXQvMeNEOsobBY9uY+6PztjLeje9rP\n1K/V/zcpuOI9hi7ZBdYAzRqfLmvb60GzzESuvMIW15BxJO7w0nDI6Fob4JLn5Cx6XLowlmcd/IVQ\nT1AmR0hXYHnHSCvUXST+9vK0CLFXjTXWPdQJAF8nqZvv0cdnxBeNPI7ZAZB7HKwbIJxKY1ZdnRyT\nEMlRRI+N9Vu9cczUxsE5yTghgVId0UZlMaYZQRWAKIHJnX/nUMLwXA9Z7zm0Mf4+CxeteuhGS0nl\njlkyRgi0EFpasuzgYyVy3w4zDSyLpqBSM/8eCvNSv42HGkq/ZS6BYf9FcvOufW3/2zOvq6oNFWmt\n8JuXaNXYCIs3OBjv719aKu+P9lFrg3QfdS5iIBVGvrAYlzNQlz4XtKIxgnRl0d9nDgEGLLpu9yyu\nb9OnGaHvFHOP7VZFPqoutO9WO5qRJ7Vzzg75lze2mRHTG8YsYMj3zfo3s1f8NAxdmgJsyOvmnn2Y\nwMGrEXGX4NF9VmL7o5HwjrIbEemLCp62vrV+UUlrZ7RAP9+g3GasHxzGs7lYgB0dWODnEJ+es9M1\nt7oTXQvyO8KZRG88fa3pldVgQQUSF6+6OLk1SkbYFUCV8M3GLb211qkOw7P39O+ppO39bvA9EkXj\n+m4RRajJXZdvZ4jPILwNqaGDnOQctMU2B5Eejefy0ts9Bi91DzqdTttEIyGUdEhX1dyI1g8nwUxF\niEjI9PekRoTQpuZTd8+keGJNrDMJMhnsBgBAFcwEfwb73cXPj/1/ZDPZ08tjPXavobdZcJCpHh5V\nqeoihL/f7O/XrrcbheOid4NsejsTg1jPcFeIjqox1sBmMBp8Z4xnlwXdc3N6KyBEm2gMibzZiTv0\n2dk9dpT1LMrqnmLGPoK6KWkffXqXp+WIy7knggzjMyXy4dkBqkaj3PuWoDcf/n5LYvt6jsbSGGqw\nEwzHTznBsEFeAO7aHQl0ZhbGlEnVlMgsbtlKtLwOsdtkb2BR6hZKH2nlO+GzqxC1UzqZIPoMADyX\nRry02sC558yssBXinrF3L32A9z+uKl434dTSFmVWnus7BsaowAqQ1zuU8w/JFvz9LeqLJLAl55ZE\nsp4zykn2kHOipnqS0/spJfDDg7y/fRLofz4BS1Ljpfi/6d1Lh+w1GIe8sTHMM8dr3Ti0nXmx7Lnu\n1Ig3LHbV7RuKHNZPQBo2nva+kcL+mQ55AYPxlJO4MVs9zIK8/DNKHdER0ciMmEeb1mac1Ng6MDN3\nb604Eu2vJ9mPAgr2rNzqdoAFFihn67HuIqHTRYwVYqEMXNKMOUldL46G2lHIkZD8IrhF5FMDUzDG\nuWs3rpdoj7DwzqAWkA8P9YU682DPCFpUFjWpzkk0gk0dLRFkBh7OzU1ZTxnpWoCL2RbcPPnoOEBj\nFpwa5tUMg9YRqcXxMwK3yLpZMUbu4W+TdG7c9/YFWJuAUcDMrnVz1OxITbJDU6XJ78ac22k9t6C+\nX2vWdntv4dwTyL9X36R8eGKPuqFxSZMqfkAqA5BdU/7UUUaWhInJUkQTzKrezgurKq10X7YRBxfS\nyZjoaTNo6Bbp1Mdt18yIOVqnjSA0EAQ5N514zyZg7xvmE3XTMNnsF3nT2f0WTPRcfJXlMEurl0iT\ndS6oj0sj9HoSfT8lCaBJV9ngQriAWZeSLkyyACVve7m1i8z6MfPFJzdneyHCw3bWwOQHG0gaGa2/\n3+9Ai4TuJbrTm3lJPetxsvnJjonw2K/ZhhWvJhgiSwwgtzY3dWrPxpAS9nWzD03sFIjZfR6+91so\ni0wYFeqGOwCgBZwkb1k9p75wV0Z6QXPf0XWVetQHSfZcbwxzz24JKiLh10A8sxKNdQbLZnBSCZ2f\nHtBi1W3C1ZBo7hSyRBKDTcFJoyOJYW1OCZxzDzwCWvIIusohDO3AjGWR5JDnkySEPCesjxn1TEiX\nhGUhTevVc7cPI2KoIBqQjNarYyrRgDfbVOAJvfnGHeFYv42pGvz14bi2dTkS+h7B+xKZsTHPthNP\nDZ+uHWBux4pz+x8NoW5KZACJYNFOjcidm3FgjlFN3SmvCOO1sS1v26S1fuEWBqUKLrJ1k9R14t1l\nh2UjrRM2xr5vW2ZIwBOkfwYlsWyfJFd6fXMGUhKpqYzG8qXTs1iLm8slkUjgvedP+tCQk4fMBHRv\nBDoK8gjFqia91yg6KUPMGqp64gF1WTua9LO2D4szqCCDAHDGuwjd9/YEzFQZ/91wOtABnJ8VV08L\noIn3qTpE7H4jc20G4XBLHbTtu8yNMQ0Mbs8tm3DzNOAPT+xRgkei9yUmIQBkIOqC9Gw54WnYSi11\nUdvowjn1yKJBd659ENXK3LPRAHAHJjQIZps3jiKmrH47D83pXaRbFPmzt6hvzihPJ1y+OEmAz1ny\n5KWrBP/kl4rTlxIdlb9MwMsFdOXWh83BkzaGXmdN7nsbjybVoR4MldB2Kk6poCw2CzkmOXSPVHUi\ngN6cwA8ZtJ76QnMCmlhQA1+uMgeGcmxziy1k5g4NEsGk8CB9LQBl47PnLWOlpMypogUTmHrhiS/G\nbsyKxRJYwA5SD8U99bYNOfEqgCWBiGXPQZb54BziAAbVpQ0wmpq5ePtH6gZBuwfojLRWVSvm3QBe\nU7LPsqscFJFuChuTHaZAIvHNwEmYn/IRJrKpAxvDm1tIHCbljja24gnOSiLJfrtIltX6sGB9I8k2\n6gKUB8trT8hX2ZabLklQ25KA645UC8+V98mCGqA++nUVPS20l7quWLxCu52gRlIR9bYpQy7WN7Of\nMIOuii6s/hgL35jSRK2LOvqmLztqS4tKrF1C+ntv7Ryc2WUmeraP+2CywzpItvQSaRMclJrVHddX\nTN7i1c1wbc+LeHuNvg6x72Wi2buu1uDCKKDnq+qajHrWDf062Pb9dIJ8Pfau1zX3GrB/NO+svoOB\nFn1LYHv97A344YTn3/coyTDfEl5+IBK9nKHELgS/PAsDyBfGE4CcCekr6PnxpSOGZTKFuth9sgoL\novH9l8MtXQSWutR4XfWUVEJ6kdNrM5EcCe2k/fqoiChLBiAALZgpP4sqsnydsKy1MVhDJAL953Nz\nSOgeWUWvBzldvAntEAgUt0jbeNl3sRjTNgkfhYR//MxIS7p5x9QpM9ZZ3cBIrJGp+ShSu8epW1uk\nsE9T34+gmj1iCfAUQLNo0+XaJi6ttRtKECSVrytmetmxvt69T92jAtOJo2BUNYHPJ5RPHlAeF7z8\nIOPlc8L1LeHyA0bNQH0QRpMuEstfviFQIeRnwvL1Igaxl+KYXo+Uo9k42bPdy0uhFnDEaIa/JnlL\nAdZV9vlfCxIROJlrTSV76odllockzEpVIGLgtFSkK0mg05JA60xN4w0tbgjdFxvn2W42X+7Z7+/1\n97AH43CPe/wudqs61ScBlhiEizL+ptp1AueE7p7za8gbBP3zsbNGb5QPTOyTCWw/TaCNL6bbGSGb\nZfpq57Wbq8Jgp7sm1EtWf0MOKi28ey2WmREu/j+bgKx6+vmE9c2C8pRx+YRw+YxQnoD1rehyfGIg\nsWTSuYrx8Poi6bTKU0J5WZDerePkR+hH1PKqg3gIM97A+KPFYuO3apwCFaS2f9zSehGqnuJyfSKU\nR7Ttw4IYSPIpnsXTYPYKy1IkbXTW5fZop2LF8Z0JhRlTiP2dlRAROZ6C68bXEm8qgfKSuw6t2X7a\nkjE3Jsfz1wJKVJvQRt2aCTyz5FcA4K23KI7RQfl+SHZgC6n8d83oZTppHSchlyZBh2Lw1A+2ST+/\nQJi7gWkP2vnBbJM0GXBvBEwq1R/P4KcTLl8suL5JeP45kejlqQKfXUGZseQKSoyyZtRCuD4sAp/f\nEc5fJlDJyM8LskmHaBMg2hAOzGWTUydE9i93skiAyryuQpCXK0iTV4pdKgHnBZwgRP4gCGV9i8H4\nBwD1mbA8SwopLrIbjWqVE13MaDaJimsEP404nKiA3mjlJfaRbu8RjzFEPZ6qqWvMzdDYUj9b8g/S\n1OXOXkGMHsQ1HG4hL/Zbg+2GeIzzdJ31a6jiBmHv//Y61vg9o4q/5t7i9Rc7z0vr2IU6RzYDb1EF\nRpgW/ehxgvYmwSRiIlQ9jo4zgxdGyoyUGClXGZpcAGSUpYpffFGYvxzkrE9Beu+9+26SwW5d5Myg\nZRnzxLUF33O9iTogurmdtMMLJB0YoO6nTvgSpUc9jZS5loK/ezdbTywxdXYYZ7mGt0xkRkz+t9Y+\noIVkA3LQpZ9fI/asodo6RhLp2FHlcFpRfY/1PO2zCY/Zd/fX/cGDavYMEDcJvHHttOX4Hoab7uPv\nc/rRbpqhmfXd64f+mr1IMObpojWiqosQBp+AemZgYeSlICXGslQQMYgSamJRnZ8koV55FAlazxLj\n3hN8QA1pAod5ycFd6PbExzZlQk2moz6A1hNSTqCXM9oOKhcSagTLC6E8ykGM1zdiRFwfxebQUoEZ\ncqj6igjCIgiHVFeaBlqZC0cvkrdLNMIc0cgoFTF3kXroPouEU2guhNyvZ/0suRIsRyFEM70y0qUi\nEQGX0teKjuHuyrY2B6ObraXh3foU++G2wt4i/FfaCOOk+4H0ARCuM24WoLjCrU2QzAy6+TKLY7f6\nZnrjxO9/s7hnMvWXSBCV6omV0OUzIIK1ZtXns6XdgpNCSaw+/jlmILNmziAy9d9Ym1FPmnRzVZ/t\nWiTy0DNhXdhdopv+jt42OAs7o7vsZq7AmTstjOsQQh0t1bFviUbo3NbE5F7fDi/Vvc6eXOoucqnP\nliQHjRBavkPx7oV4j6ZqbaZge83eejoSLjN0c8No9/3R2dEX53SPeGQOs3Q+FmAQiR7YWk1j2UMX\nfsD18zSO3+BchKUq1WityBdGPRHSBaAXkSxlzeBcldCBWgm1ksThFAIqjYk2LGNNVv+2N8K1/m4n\n3Q5TRKJuQVd3GX2xAMw4fXNCujLyS0H+Zh10z3rWk3EXUUUMtssZegDeEVIB8rO4D89fMZZ3jOWb\ngnQpErgzW9ie+NXF2s7bi9f4SLKI3vbyChjBh7o2+xBiXbabV1FN1YSm9USS3JSMwQFZGXJeZLuz\n7b5sTCpKcGBr8T8y8vp+3aGi7ZXXIfbJhM+k0KYkGt0SwNYNA3QpP9NjIzya1WnX22L3+lf4vBvr\n79utu+jSqpBvJaQrgVchbECgOyAJFZhJ9LyqCRxZX0klTpYDLsiiplKaLt4WN9AWFNp+gvWBcH0j\njLEu0uLLc0K+MpZ3GecvM2hl5OdV7ltS23Rk9gd5hhA3FXk/fc36XrG8q8jPqxD6WkbvSISerIyr\nFGw2qMT9235eZwLBJKEJhMp9x9hMovv7qwTCsKIBcyfWRWIJ6knGriMt/0rILwk1EZIZkNcqk+eN\nxTMDayy+f6oebhDOTJU5KB8+4WScnMjpNvfcgMwzordCppPu1Pk+/nQneTbXGiTdSJUe0UarHFjI\nOSE/A/lZ4gLKoxjhGEBKhFoTuBL4mpA1QSYVRrJsK/6Zsb23xkqlkQXBlEeT8trMBagX+ZxfkqgY\n19R2DErcPtppuPkZPZssdWIXhlGR35W23biNxQ5zbCmoZ+e+e8YwI1LpfP8Y7TKBEW4Eiz2vMIhL\nU2/YuxtXY1KQk4UYqKDG1U3Sy9ZXbNtp68N0+Sh0IgH7oC4K7mKzM/j77lAtXy8Hnenc7YyvwLH8\ntfYd87FLbGdR+MixzbnjcfHt6XbA3J9r735BGdduRpQCuqw4fb2CSsbD78iEpQvhJS/ghcXolUWy\noAL0krB8Q0gvhPzC/URTm/BwQICP/huMkqGt9UQoJzGuXT4D6ll9/YnleRcxBlIF8kWIPV2kTlrl\n3DxjGGntQShUgXRh6eO1Ir+7ShCQHQM9OwUojrlHIcA0Qi6imDaftkvMFx9jYOhxtsaKqWXK1HIF\nXxMokxwiqVGB5ZRANYFJt1WfuLveDAGcJGNvPeVuH7QDLozQXfbe8eQfb3wEYL74tn+A+lqLKcJY\nkOFReX2d3S/KmWHs96p4nelI72lx1jsS366JjMJFQrVNJdeKnCQENj8LNMwvAudLAngRgw5Vgfm0\nih4sFm1tLmm+uMk47ebDA7q7LJm7TDLw1oVRTyzrakE7SKPRjaKxFm1HYnkWBppkc8cq6CNfKtJz\nkc01Ruj+WG0bM69COeIbAkaY0TLQvId7aTM31o1brl0/ZkVtB0jCALJs6U1EYlRdWZpIpJtb0DMU\na19bYNdsLccU4nvtN+FWAqEHtffeaLrX2/XmI+KAEc5EIvL37kisaaiqFa8qtHPVJhMRUUJr6w7s\nc5A6QkNaS5dUpYCeGfknGemU8SYRTu8yLm8TlncJ9QSsb7LozlblFVjeyXu+uIgs2zdtJ6HG0ODo\nf1W/cH1YdF+6RLzZCbecu6EprUC6APmZcfqGkZ8rlq8uAsVXzcWeEhbLErTo7rdSdf99Bb1cRv10\nGEfnPbG22b53yyBkc2P7+NvBh13vHlDMMOhb5ttOO4073LwKOcv6o9DZzrGjl4KsGXvyN3JCS3no\n824BNflZThAyZkdr7dLc1b8x5M5cwim0fdafWsWgeUcexNfzs0fdfXawHQ6Ie1O3QZ9wjSd0ryd5\nRmPPM3/9vc+zR8wsuwNMVHj4cgGVjOXrDMt6a/53KqMbiwqQXkQ/NukOCHwmVjiL2iOqJn5mPlFL\nsmD+YTEyiRQXCc+QTCoA1aQ6OZAvVST1RVSQBsXV907AkM6YLG/5dR3dopaxZjaWNtdap6TJ9ka8\nSbjzHhKL82+Esavju/qiYc9Xa9lna5Wdh+uCXMX2QmXpKb6IkIrkdacih1tS6bB9kL5uj8bWGOnU\nDGMI/rvGAPS7Y+Q+lA8fG+9DOn34q1kc7X/T5/eIOA7SYN10HJRHLt6S6cdyC87vXR91QPvN3m03\nmfVtLchJNpjklxPS9QTOwPXrjHJSq++CHpBSO9eWePQFKfV01wzTWx3DNH3OpPqjbKddHxOub4H1\nDaE+QOA7gPQim26Wr4HTl4yHnzBOv3tFfimgr96BXq7NyEaDXql9dqf8sGUEMhuMnTs+mTvOaQho\nAZnL0c8lRoOWMta2hyEitD3injENU0/877MoySRnBYKMcDW99rU2dCPEL8wRzKBnPafOpLrVHVGh\nL2GMhojJmV1I36ex8pPywSU7u/h1IpKD9lICr2uLnAKr/tMss8bNMCcuYCQwe/c2AJPk3o1hxe9+\n8247/5zZYPprJpPg1QVe1xYlRtcV+auEdD4h/+4ZWBLOb8/ghTT9U2ruHqBbv+tCoIes56ovks2m\nVCf23bOJ+t75x4zLJ1kg/CeE9Q2wPkq4LhWxD6QL4fwTxsPvMB5++4rTb38Der6Af/Jlnxsbt8ZM\nTLrYczsTZV5g57W37yIC0gMLQRJnDiJgJQBFttP6ebSTXO3ZXmiYXh/0/1sSfePrjuivzSPaGBMR\ncLkCREiXfsQ3L2nMeajJQIa6fJklzojv3vJO1LMNVWgm5NDWG+V1M9W4yZCTOLlNnBxvFNw1Ffv6\nczSIbCLsJtJ8UBns/7BA4uTHZ8+Yjn85Y0wLxnFEDyKgJCQ9lmmBGm7VZRgj4upCSJRQi0j4bkmm\n3kbzvZ+ypI4+S3hrPUMg/El0dUllJCoDFYBWVRtWlgVt+9uddJLEiiap3II9ygO/x6BvXW/FUnPZ\n+AKj4e7I+DaTpO9rAN60R9Q9KrXn7PBCxa/DPSER23U0Rkbos6Zt0ML+GH9gye50NKBn9jDObZZv\n5ViWX7zFVUd3gxWL5V7XwcrZ7uNJzLol8LP4b19mkxUtnjM93RumHHzv7XT9Wotsz31+AXJGfr6I\nD/7hjKwZXdc3J9ghlLa1dD1n0efPIkmWc0a6nECXFfTOST0ilE8ecP30hMunCZfPJYb9+imLYW7R\nNEka4JMvwOkdSzDMd/NgxQAAIABJREFUVxfQ1+/A1yv43TuR7BbP3ubxgHApARTOaB9+ny9wO022\nWcH9fJTSD0kwIeGj44IUJ0s2AUUUE6If9q7faqMvtcLcFVSroNWZ0IlrKKK/PX3d2uzH2QOBmY1m\nr62uvG7CSXuxQPnhID5XmGnk6uOP7T0eqbTZTNEeTSM8Ukg4TLyHdvHZs0GNuuOsGDOz/hUMC5iq\npiRW9JKukmOvNSHbImA5kDEzqkr2BIx54EgNci3yC90AmLkvHsZoH1gFLbAyUC4VXCVuv1nGW58r\nejLHSSCLGysO/+9KWiIAPJwae5ebag+ys520Stt77pXwsyg1WxsJPbf/rC8z9Bef7Yn6SPV4D2Pc\nrLzeRhgtErCwA71aFFFqJ8BsBsMHKfiTR31GUTiit/jq0yKnnCTJkip1lW49va69LQeEPkgNZxfw\n95FHDgkApxGB2OSbVfuqzGcVCULnBGbRQ9cHgWotLvuTLND7wsjPZ/ccwvWTjOuT7jd/FGIXfxLJ\nKTOglhknXQTCC9HXkSm1aXFZZA1Gzw5wiIQ9VjJKuApYXnXzLAy75GAqntTbbAbNsJc3zyGvK2s9\nLa2zraNW/4TB94nZIrgEDME7lWFJU4Y+5zx+P6iYk+vd2h5SUJma5p8ZkYOv56C8rmRP1E8GsWIn\nYdjneA9NUgf5rKWASqCKIeeRH1TdDsqnpZ0uAwC4KuFd3aR4fX8vgs7+bde7e0x18ddb/HeULPas\nVX5PaxUJzgLdTGeXSC0ABJQVoCpJKvMjwbaXAsD1DWF90rDYRd1tBCUqleRNVzfpfgdCOSpmLQ8q\n216RbMHUiT5KrzZvbgy9rcWiCSMCa+phbZlhN8KCw1l9Nv5HxjP7PJs7dy3HmAKgq3gJ262pntAj\n3PepuBs6dPN0py3k9U6EUaLwi6vvFFNpYQkOzqd2QgnOJ7mkJUosQKFxUc2gk01g9oskTL5fDEQ9\nUCcmKYwZYeyZvsxCHK14Y47/ztelC480Nh6LwWFoPDuJlNa49nWFRN11VRXlAQ3CA8IE0hXgQo3Q\n84skt7SQXJOotGQwL6DT0iXqXm63WZ53R5SDvxsYJL9ZmI3oN0dl61iSjanbuw+ifhiFHZHlmcW9\nedoi8XrvjLP7bAi+9Z97oE+81qNYoAd2hdj2Ie/AbH1YnZ4x2ftsvU/K6+168x0yA52XjBmSOTWR\nnDf2cJIMIWfZhdAyyF5XTBNaWJml5bWEDJqCqEVB6eLbnE5j7Y0x9zFkMRKvMQZtQ3uO9xv7mHHP\n1XXzDKjHnos/V6T6+qQ6vEXAMbWwWpPcfmcWE4AqG3AAIXrJTw+cvtLY+2uHjTifRP0ocpDj3Zlk\n/Li1Y6LnRxZtTuUFhjXRVDxjMj5/+mkBe4ZtQSxG7dEwOuHPh8UIfhZoNSvNNoCw1ka1gZOEF2/V\nhQkjZe6Gxna/rqHIyO4g+Nd1vVmJC0m3crZDFR5OjdjrKQE2d1SBJYPWIieO+t1CVjyXDvCIahXL\nbzNW8ShZTKebSeajEq7lgAQsAEMg3bYukRKec1vb0FVM6lKes35fVXqYykpy3Vi3XJuKQneNzrPk\nsaIHJ/BpEaZ3PgElzfPxbxpOaMcVGRI7Ld2HHuHprbrs3cHwDUrwZa/ebxNbP4P099Z3g/AG1WEQ\nLO5zTMShZUrkd5bXz0GnkrylMQYEtp3P4E/fSlbWLx5R3ixtEwcVID9nyUuuddIliTvLQiwNIRCP\nBG8hn9dVo3cJXJxBzMd0A9uthEGiA24CnH7OXl3wiTC1DazjMOxxtt/bdZrBpojv2whTKFpe9cSo\napdj403WnEE3pxYKS0UMcsuzSJl8sbPtgXpKoMcTgDcS9vnmsRst99rq4/FV8vLjgyCxBzkUcnAd\nXTV8tLrTaA3gGKwlgHIWpteC91OTlA0VaHvI7yprc6H1zlSkYQK3kHu3HF1j7QBavj7Zp2/tp94e\nD+9ne0AaerR5nLTb+jPcs9+8D+5nby6V2YIZiEzSL/NDRnnMuulABiat6h+GS1O8mp8+YUjXZM8I\nUXKSnFJhsrYNcTHb97PPB30E0GGZHtAgfZTfBT3QOFF+LKwqdllNGWql7sQMoO9QI4hLDVDdF/38\nMaDv6Vd0kJxE9wzEtmmCF1EfSM6bo9VO4eGuMjWEpM+1rZeJwA+5nf5aHjqlk6GyVTrSGKUhmXaU\ns6Ee2jCTobR+8VxHj1I4ILybO8bMDhCDufau1TLo8O9TBkPcnc/zyTkOygdOXqFRcTYxcfEAItWX\nBfzmEesXj6gPGS8/WLA+JZc8gUCr4FY+ZfC1CJxfFj1jrevEQ4YPb1Vf0YxRwyGER0k0bHHznAGw\nX4wn3SSRlNgr0AJFfLbRyPQmxQ57TFdGvogPOj8DpLH0ILd7jQAkzQSb5FnCDFjsICyZWEQAEWoW\nrpAKwDkjrTrO66LZdfSk16KHTVY3RmGs7OQZEGF9ozECun/e2xLys26yWfWgTlVTUOGyuqaW441S\nGBtbR5bQw89PZNQBRVr+9VjfzTJRxw7Tp+kZBE3C+99DO0XX53moNtG44Qnh/V4jJN6D2IkoA/if\nAfwmM/8JIvqDAH4VwM8B+PsA/gwzX25WZA00wmoNF0KgpMaXxxPWT04oj4TLJwnrE2laJyAnxrIQ\nmO1oowxaqoMyo3TfHDxgcdZViJws7HMmxWcT6SUyM4aECjFTqcJ+SpBD/o6gWHh2C5E0qV4gBE/Q\nhBKEdIYiB+XuxJ3oWRYRVaBC2lBr995QBSgRSmXUIrnlqKpBsMH/np0mrYqK6uzAR2l3XXqOu7oA\nNevGHu5+fI/pKae2f7yVpOhEXaLcNpKgC4uAwu6S0LFEZgDsG3tnBsZsAsLV31CIfCdG3zrcO2US\ntrsOaZtCa9aP2O47GNb72Cj/XQC/7v7/ywD+c2b+5wD8EwB/9mYNjB4E44NPbINDysD5BFbr+/qU\nsD6mFtNtRwtJpJckUbCzxZuuFvKVkVnX94w6wFw6xFcxFOJeM+InsfJzzOVuxr+GbJwOHIIsGkLw\nXL6iJa3MF8byLDp3ftEkjxdhhnTVNFxBtzfJz5qsoi5yvlw5A/Us2WnKg373IKfKrvpe2ntCfZDk\ni8W/HpJ896inxJx6fvweBtdfTR1Rnb2dE1+rMjVnKG1E5Ai99nEckIafi2HdTebKf/bP8qfk7jEI\nP6/3rKn4jFtlwvwHO1EbgwnBH1R/l2Qnol8C8K8B+E8B/Pskvql/EcCf1kv+JoD/GMBfP66J+75n\nP2lQib4k8JtH1E8ecf3sjMunCeUBWJ9kE0daLXsnsLwrSC8F6WUFvaw94g0iLZgdkQOdCXiu7a2t\nPshB2ypvHjIFjp+jr7dv1YQmZWw6NrMkd2CWoJkW+dcsUx0qnhaF/3lI2JCvAufSRQi6LgBqQnmS\nCDmwSlVAzhfL3AgdWbOrJLuXkS+S0JIzmnqEau217+SznNtmKgWaTcCaDqDbDogGQm8n0JiNYBXG\nRSuPiS80OUYUQYPxrZTuqx4uou3/90g/b9S75WK09eS39gKjdd3qJINPEwKPRM/OT8/GodEh2K0+\n3PMb7ofxfxXAfwTgU/3/5wD8DjMbhf0GgF+c3UhEPwLwIwB4XD51HNR12A46SAQ+LygPWVMda9SX\nGaGaNBD9MV0tE0jZdHTI6yVf9GftuVS88eZWmd3fH76tt2KU7HsTY0zDrMmAGuqESJIqdvkiOmG+\nClGnLGGvzGhBNP5kliZhSftIUD2RuvTXIbPl1hJpVLRr2rW+Tlc1o0vuttEJ6KpA6aqBzaXsETdJ\nXVujh41S+hrSVsWxPnLteSPfrMR79oxenhj3Sph/IeSDeyYensO6N6rHfffeJHYi+hMA/jEz/30i\n+uX7WtQLM/8YwI8B4POHn+chLRSR+HFTQv30CXzKuPzgsRnkLp9r9haj05VxesdYvqlYfvIsxza/\nXPq+4bgl1iQvMA5IDYQ6g3bbgRgDH4zDewOfj4IyXa5IlF8LALJ0Sz6Yhki8D4nUP53b8yQYhrue\n/MJIiZAuWfdQQ9SdZ+BylfGitWeNrSeIDpwNoRhSgLjjTNKaW87gP9Cku4fglmGnoRWrS3+zvfci\nfdHgOqomzGQgXQrSVVWwl2vfE6Brwgc5+TmhUrd7xD2qCiGqQ/BSLF7HVmEhUZm2hmT/gt852fTq\nnTRWAMI666iQPHJ0iHPYIGSvmf0hqqHJfe/fD8o9kv2PA/jXiehfBfAI4DMAfw3AF0S0qHT/JQC/\neUddndBtEDUPGT+cUM8Z69uM65skOdIeumSxlx21Qy+rHNt8uUp2lER9w8mw8STAeOZx91Z1kzAj\n+ig5/KRSeA39BJBceiLL9DKLtEsuJloZCmdqRyM3iKhQl0jUg1oY+axGLEpYFmjKKd3llqm74xpK\nQCfaRoxoPvwRjup17cWDWkKOmOV+yUAr+djY6eJOKtcO3Vs+eY94SG0Owd4hY+qI1xMhufGL83dP\nYRfnMUN3DlVMc9/5MvEAtO/tq1mA1pFNSets6sIMzbQ69pt2k9iZ+S8C+ItSF/0ygP+Qmf9tIvpv\nAfwbEIv8rwD4W7fqAjAGFiwZ/PQAPi94+eEDylPCux9mPP9QdPTrpwwQkN8pRG3czNeXgCQEsIHs\nm5NSMC6gDeFjOzmRuO2ZCFw5jQuTFLrDCL1MCN3X2yR5T1RA7O6v6AkMdfLTmpAzgUrW3PKypZVW\ngBdJP7XqJpjyoOOmBJqfCflFvBvLN2rpXyHSFx1NeYndcthfeVCpkhI0rRrGbKG+1m62Og1VqGRc\nS5foUQo75NS+txwBNgf3ELQ3lM0Ma2oEJUBsJKUA4dDJdn+Q0JvQVcd8eso1G0AvFNznvfzvOwbg\n2Xbse1WA7+Jn//MAfpWI/hMA/wuAv3H7FlvU8h+fFtQ3Z5THBS9fLLi+JTz/PsLLD1lSHD9axxOo\n0shVZ/uTDyRv9JEO+l+rE9tABo8MyFnK7ZmxLcGP2zwFM2us1WWMKqvbxazwxjh0jznVDmOpJj3U\nEUhrRbpkpIu4+9K1Ez2twjhFIUcj9uWdEHm6Aucvq4TPXnRMqBNmM7KppBYXnLanmJRWSL5WOeLZ\n4LY3opGGP0eJbWrdum6JfZYb3Ut5AC3H3axMDGHDvFnRTUtUStvuvPHgVNbBc/PSOKLbiTlhEPLZ\nEXbrX+rbq+3riF5iUSbnz0KY6vGT8l7Ezsy/BuDX9PM/AvBH3+f+VhxX40R6WJ5A0KJpk+TE0w5B\ne65z9eWeMrAuLeR1yiX18yZxgvXHjE++ZLcQwz2754M53ypFK/GeQckIujGQCQy1qswVFUN5TdIk\nBlGVnZ5V1FhJXCmEUCqNxjYG0otsgskXOZPN8r6L5FJit8cQttKb0dWKtRM3XdcmgVlVjsbMZjqu\nlaPNTL7Mxt8gtksgsTHk+XHdQ3vkTlzdg9T3GHE9sQaG15JdDILL30tzYp+pmr7cQfAfPpW0C0Dh\n84L6tKA8ZoGcbwjrW0Z5W4Glgs4VqIT6mFAYejwwAZxR3j4g5YykaY5v6mtxsAyK7YUZNuOTMZwJ\nkvCTwqw+r/A8VxfntOH+fmNHj5e3+ri56jb6qj6DrvJbvhD4OQk4eJZ9BOl6wvqixytfFBnpraev\ne2748+9exGD2cu1qAtA9AkS9LZouurm/mLsLtRTw9Qqf+IJzBpZF7rVdanEcE5SjOPfo3nbayBSM\nCQI9DNteaxncaX2bLqPtnmOX2y7O6cYOo3D8HoJXG00LMU4E0vReA+NzTB+AMEh9fmNYRAD4OGV5\n+7zfrtfLVOMW1HCUMQFDeFYL7oY7T0uJdEmyN5sncA+YWzVnbYmf3cTvGmQCPNxGcM3dLV7P2z2l\npBmEegCOZz4xwIKKovQihyqkJCe2yNlyMr7pOhK75YZP19pOWaVrGRhnl8rUUAWZ3ux93RaIYoFH\nmoBEIhfTvhtrr0RCb35t7r9HFOCJ3DGgu7bmenXM7Da3iDlWEQOz7LOVyi2qbq/4VFzjDzb3cHar\n92sf8ArEHlP8ir9cEihwYixfEepZTkfhVQw8+VnOPLMAD0lJnVArI/ECpJ2JN+OQXwC+BPjfAjqc\nUclbi21v8SZRoYdrzp9Ltfc1cuWWHceebRKuQrK3MgvhGYF5aV4hkNX65RdJUSmcZHKpMNIlSey7\nxSsAWN4x8rsqueGfJShpcGNGtUP7yLWKfr0Zx4Qhs1AiOas9kYTEGtOYFa+C+WdGBqihtVK/864w\nS8e8S8zaWjrcYkqgPLZx7EOfg7m+HNo1UxEiozHmp7kGm1emKJKz9FXUYxI29bt3bycAMBEY+8zk\ndba4uolvm1uuLFlOrxohVoCiKZmSS5tkhTX1sun18qVJdK07aeLESiL1EqEdsBf1eiKNektyX5Ou\n1L0HOpCb44LapHodUcVoTptnTY2I9nNTCdwBA1Z/DJm0dw8/NbYdSY8sAkBFffiE9t5Oe7kW1bPF\nDdZgeCzGgCwFGFTyA5oTzrXJEgRwdX1Nm74OxRN4WMibs+J8/+N4+HDXTbBV7b5ydJS0Ma4ljPvJ\nb5Uowae2AjmOm+way7vHmpaLeD42s7rse6LgHThu5oc/ESZw63QVJ+/5q4xUTLJqzrSTXJv1zLPT\nV6zx4KzH7NSu3/rirepGpHsGjESjbpogmzDg7o/cPk7AzHeude+WCaG3Z8T9A1Z/RTPmTE9F1QXA\nmYECpKTxdlU3DiXSXXK2a9C1RVEIkcL9Abm4dgAdxURruTLMfp9K/BmBxjE0BDRxl252fcUSdHj2\nbW11p+79cM/f+K39PbHNvu3A+AwLbZ1dr8xvUItcXTR7jF8b/kfLx2Df27qmydHkobzeWW+AHlR/\nRVorzomwfJOQLxnLN7JVsmhSBkmhJIR++qrI7indItnTEaG7ixJGop0lMoRrixJ6yzyauN8bmYQz\nCG2+f6+xoI4ofDGVoQRCbwsMgPltgUCUijxWWVAMIK1FMsYA4JyQzqlJsmYaSQlt/7iqBENKbw9H\nvX+XdTdh6sQUDywcT94RNWjTXyLA9hTMkn2o7URSVNHY57C3fiB0SmhcO/rNzZVmc2Hvfk2gX7I9\n/SYyfGxKY5z9CwwBX7aWEgEk6YbiCTotwMivhSHLTUR823ZY+cD72d1nNdoIZxX3TQKQnxNOSdIy\npVU6ka4C9ZfnqnA/ELpCs7Y/3WD8HgHOYPRGT7xBvDMjzF7dd5ZN8v+ZpDDimO2q8qUwKElGHDLm\nAYBrJwARvKSHRSa0PQot7Dg5KM69X+wk1cxLYb9Z2duHMPt8a8yiimHtVYIYkIkPu53ZAfbK0PbJ\nc5tu7vX/0EffnsYU91UZYt499WW3+LVgyPSgfHid3U/sWhRSFuQixJ/fZZyX1HQpgScqJTR4AxXq\n6+UelOGJa5lAx6Zfpn69RayZYU5j0eNe7WkfvI4Ys8/OdHHvW51N9mzraxyzGWFXI+K6IQQqRRN6\nyIGMtLAYBrXfOBEqEchi8a9ZA3cgRs/KneBzt+6RzyKbep+Hc+BsHPZ2bU3UHos32GT2Mck2U5WA\n0WUHY0IYiWumUrW28XbOPKLz7xo/MNyfuqCZpaHuabW7KjEYbHV33DSzbhy7XVWm/dktr5c33opJ\n5VJEbywsJ6KQ06WBbiF3oaMDxPURSrcgdXL1Z2oZSi0WXfAvd7+5l/73wvU9SbJ3f4TstyZ+VqeH\n3VA1psXkV/nZqiRReyixLj4nAfckRIS47fuJVLO5iPsQfHv3ntGes6N+7bZr0g7PfH2JbTDpGO+P\ndhqvJvgz7+JpOb60KMnATHybjmxAR2W4ziGwSfnAxB46MeHyRBW46udpFU6iAtugl5zQDhxwg8lx\ncO1wiJRQz1kIPVPfVll0Q4dt2risgEaKES5O3worJBpPHNQjpCGab2BmBWowqttceNGnHPU+wBnx\nGN4FJkc3kba7j0U31iXQkjRbr2t7qKcZuKz437n2BW9jkNLgFiJngR4IRq9nSxNtGX6a+3Oc516h\ne9as7EH3PbXHlakXwKR6ZKzWBg/Tgbnxsm1ymgQMTdSE3T5PkB1ynntRXHlVGD8E88dJ9TqRH5hZ\nh6GERLKIKDEY1AnOFzPGLXLKqZx5bnAeqr9C6qlAKgSYDcU23JTSifKevrp3qgCfggdgT6rvhY/u\n7cffGNEUmqwraC2DTig56EmaZtB5MPRsn02RWRYMBN9cSzBI3tsoerTbDDQEThnMdcgiA1zCM20s\nPSw/0Mc3Pmh2KaS8HeKo2NxEvzmAwcp+y7VoaPKWLSeiuhnCa2umjtd873T2G6VzVeDunU1WTPfb\ng0dA19P1AANeCDXrltLc4+gtewvVBDCQT0n2YV8Scq3gtfRQ1mlHAiyzem2ynaoioaTUdOIjvXba\nZ7sukUhYr2/79rCz9prfXV/krwsW7jauZmi6p0QIrYuRE28XsMJ+NsmelOEmVc8is3eMZColY4nE\n47+7tz9WbIz1c7NTGGM7UiWN2d80CoVyS30c7BL7/Xm1vPHTBIFe8iSMbgdgPmkUOOZmB5orFmab\n7OzyJAkR1R1Vz5I7TTaR0DBuy7uK5Tkjv3NbONnFVfvzuICJiyZ1Ak89GSWI+oYRX8zwZgTmF6aH\ni2qNllRcVdCCEby2o511r0a8tuU0dXSxsQQPJ9VgXEOzxRehuentFAxuQGc4bg75lDsTXhKYxQvT\nPAZJT4eJBzrOjk0qQeIhIMZB794S/IguR8ZEjlE3qO5O/bG1OA2f1f8ljfmEifkxicWQYIw38Ewm\n5yNaf72gmk20z6TjLeHCAL0O7psYYgaXho+9IEUAM52PRLL7E1UsIQStSqhGhJEQ7yl3uEl698J1\n0xNKUt+HbZkmvVR3REhdDe4oNhIzMFrSK8skVGfIs2uguiJBwmJt4aukblZx5nbOZlPFWz3oao1H\nAtvB6O9NmqWBUVFsuy+e0Gfows/jBD4P59Pbu4PlnoA3a9fqJEOuIa/8+yBYKyFz0q197R8+qMbH\nN7fvJxzOTfgU9sSJcnpQOyTQ8pr5ATFJQyq5q2VZ0UsWkXi26cZOS21YlxPqQwYRIZ0WCdVfXQVW\nzNfrCIONEPZ0tj2DnOmEe2Pl9diqATJWbNGXCiINj10S0lXQS8sVZ8/IGcjVSRLVUQu03gwL7aRl\nGRd8SuCHk4zzeXHjHAioohF+Y8ZL6gyYuxvKx4s3hJDkeKruLnXzzgy6MlrIq6HImILa7yLMjgvF\nHXWR6C3VGVFLidXmNYW+VgZT38UW7VDkGd4esc6YgV8D4fy7IyHyerHxs++BOQz3nH7G9X2dbuKl\nDr4pSWVPuNJr6RlhGaZjA5xYdXvddaY6Pq0OYlrZa58njFiO9PQjQo+fTfcfoGMdFq748TPsDDlg\nRDq7erlJeHTp3RaaLn7Ln2e6t488o5ahpRMQ30reGPtoY2gqkTtv/TDq0Y+vi58nom7w9LvzbiEL\nM7g5JANA0Ax0/cXMsv6zD3vVOuOOxs2Gq522mDGUvaSflNchdjuoz/4Hdg0a7ZpIKJ6YgdHlZcW4\neOGN4aTlRwM0bBfI6npL1wwqErK7XkTCZz3lNL+4XOXWJk79OF5rr02277fvl8YLSFuq2/jCTlKH\nYJ294vtcw2euABN41bPtLiuSEmNSyd6esah0KFVO5WEGLuoHbdZ5lf5LBn/yBvW8oD4uqA9ZE5HQ\nkNKKVkYqFSgsG28q96w7bmy4VolutU02ll7aw+4Zs6wA0JFAT+PlpLqvw9xn5rIFSwYdI/g4lvZ/\nOI+gEbqu53YisEcJykxYGUo7vXUmiNq6xO00U151OC09443tpNwpr3fWm+k2URJHA0q8X32w7Z4Z\n9/QbNmyReK6tPl9LhpguZZiEdFlA6yIE8ZTaYZJpdcca2yNNIpiUcZNmbQYwGmTYJahgS40dElS4\nPjcj1Gwheki6MSyZVV4XOSCJJ4iQTrnlm5OkIpCxXTNwWkDXRdI0mWrgtooajC6fPqA8Lrh+suD6\nNgEEVLNZXYX55WeWQywSAzrOLdtum3/ZkivHOWmTLKe+h9JBXRvWTXWbomZuTH0N7jOrk9343gri\n8W0wgrMzD5w60lCTrfdK2zx7No/J1T0rnkF4lSkpmrKoyNwZ7ay8iuttsPyawK1uP++sBB/sANum\nD+kSnGfQjNGynXYJ8v8z9z6htm1dftBvjLnW2vuce+977/uqTKUq1UgaISJCQEQEQcSyIXbSkSCC\nxBipXiK2tBcbNmwIkpZSKJKGUMYgpCGIELRbYFQQlHQSjVVUpSr1fd977957zt5rzTlsjDHmHHOu\ntfc5r75w751w795n7bXmmmuuOf7/xpjFYuqExASZxFB1gG97xGurvdaNbVSdgdsvr6AyqYrtP7IP\nxxYJ/iWHDlNDAJp0r/PhTKZILT/lQBtKxlzCNslwOKmH88zzm88TtoeE9Q3j+paUYbCeXi7QbaAF\noMyao2/PrlLbaulVNT+8oyqNB+AUSVN/s1OUTY0zB6DO5y6ZqEr8A6K7NZ9VS7thehFVX4EKM/uJ\nAAJVMBfRaO7JHisw2O33VHjXKl5S3WP7PHH2aEPXgZZG8COsMmgBnU3EaPnqo102/kO9jUkRJQDa\nipa2smKOlAvkmkDPM5AI04epK13VqZdjznOY9Crld89pC1PMVowOo1uOS18MVRJFCd7sz+46ETRx\n6c/e7lOLWBJ0m2aIhbwmgyybiN7sMwNgC/EtM+RhwfWbCde3jOcfMa7foEYvqADTByBdCWWSquXM\nYs++WhnwYV66dzcg7Pyde/ouDeG1w11iomZQ1fc89A0c4gcqc9u/v26cRwzaMRWAEnchCLRAqJDm\ngowhw5ulsON8uG2euDrmvAYDgBe1ks8LqnF7Bhg29hsmuqou7ZR6nUmeCk55JZcDsFN7a7EIL3Yh\nrPp7CS9cbiQsjGq2H4ufdfCuer5Smr+2xZBTlMgjdt21HkGQRFQlE/nWVcUk0jgee28lGSBpAsrs\n0hdaCXhSuvIsub5/AAAgAElEQVQyYhpeQ++ZPmpHzL7Ys7m0JmqIy4OY+q5F9NtrGod1Vw7WVFxn\ngSh1XQAyQl/HFvs7IvR4bdRMMFx3YNLcw+t8+i2bxaCsPtjkXDBZZRmTntEW9/DKQcFCAYPsXGG1\n5+vWyCPxG8Po7JoD7kyl1VMjANh6RrNrTlgjwY/EHjzTQLvvYd3xe9tLHQ2hbpABeJBXqKCWRGLb\nRONI7XMrhM3mXBmUkkomohCaouqcw8SNkAFQdumrkt3DmQ7LLZN56EtSh9g9qDE3AqqfPmdtyO23\nYLd3jrTRn+E+jA4KPGDYeXhntxJcIuMhyzsgvV+nJbgzclxnTuSj4y/a9SMDc/WdA4ZBIrDrvuD4\nTNj4ARsOoBaMcLuHmg3vavQumQVQDLVApXEpqEUYagzTGcYPkJB1nGgvL8REe4z5DV9DJPSje0dC\nHxnESOgv2ed1DvvrCIDUtNTbDKRK92RU7zj5otdoLJxhYPVaJLR1gOaQLEbsBVXKKFOglrY8JMl0\nz2Dr43Bn1pGw7VhXKCPnNocBhXhop3uLzlsfSxzPKMWPxmW+BPJyZLXv0mlwXeKW32e03eO6OFof\nI+0Yoe/KmA/t0xevyKWFCMhqm5vqB8CkqNfmagCEvRpvP9UdL00nrZJRT6rcMzgz4oYRNYQWHCg7\njjsQt94PvY10y8YbsdsSJNTIuTsmFdqtv+OivgHWGUNc3Tgc+RbU+TbXBjwYNSPRRUVrwfSkGhgJ\ntG6gSN0HjjZ10PEmdQvmsiRj4qh7r++aCCok1OG9qxUgPADEHFaPfa1W5ObNvcy5OK5bmlv1C8i+\nilEk3CDVqTQhVu3x0Q/QmWRo7ziGmQuac9mLo95onz7F1ePLybi9bWTgQyQmw51DCT+2KFHcCeJg\njTCRO8dWYBYd0AMucdgmLCz0GMsciY2Hz7rzJEK5Y2cgwfSwemeHxSmi2hiP32qjyk90c5OMXV8u\nZXIBOKixBHj+gCTSJKAofdzXlwsoZ8wfNlBOmJ4Ip++oRit0SghtX3gdQz5p4pEkAi+D+mzTqIQB\nrTG4tnBkjVFXWnIJP2hut/wk3dy9wAwC83eDoYu+3FDre4lcjqUycDuUCqArXuK/V8BOWMsuB0NZ\nb91K6/Zjfb4UVwZqamV8L0wVUkuj9DxocTfR4xNGQo1SWplLtXOpvAxoeG3rGIwxE6/AyrR/rntO\noB/axmsPCN23gZIIEBLouIocz3utGitWorogEUFqRWCpu7gqE4WW/J7RlJmozsexVSLVY10mnmtd\npT2Tl3saUWhd85yB+DujZxB35tgRbV1Sy+6kO+8oqvlH7xeEWO3W77m7phNYxnwis3MGUQruUfsn\nV+OdawmU+5dJH8BfPhMpyAV8XEH1sF9bnLsiD1Q9udHed5+Ahl0MfUTF0ln3ErcrAnjwcju7Pbwg\nlZAJMpvq4sCPEUd/5Isg2j/PLSld5yC+6KgOhn4SKxHlDKwMNoKp5bhMOnUhUObmgAKqypi+fwZ/\nTA0kY2E1AMAyQ5hRHmfkNzOECXlhyzdwbSoubldH0bzKt4jLM/2OiPslBjnau8TYVegJhHYXrkq9\nmajruhxXeY3rw30MY6bk6MSrUQHe3cffN13XFrbdlc7u22cOvaEutLYbTPjtpRbUpMbpcF/Sh6YM\nQKp9j/Gl/xytMhfXYIpDJ28/2t1dQY+a/z5CPeOivVkAo7cNidAI7pZXdyAIsk08aNVNJjpizwWY\nEnjSSkCYuOYbKCOEOpWAjtA7p1Q8Fsdw1F4i9LiJBRE6e90ZyGvarbV1pK39UfuKzRnK+GxxjiKh\nfzFqPAEyKwxVbFPHnScUsJdhn7G8VHROxFYXCY4944ChnKDOIvbijybpEyvRF+7Vo9o5sGMC3eRH\nIjPV0tT3WFyQpCBmpHWeeDrwQB+pgdVZQ70kv0XUkQH4eBI3dTCLgorsu9p+RXdjdccRuGZUyaRw\nWgAGzskqXWyjCVkNLLNtWuQyF0ylQOYEkgUltTkm33pKUO1zBfuUjlHtNDyivrCltxjaPGRWvDu3\nqzIT2zifnaZjUjza0M7YkSAsfULO6FcY+92Ns/XZSXQO/Xm1pHWD+A49L+AIPjk2viUNHEvQCE8d\nF3jNzEIgamlpkB2hj5PoDjiJNqqYlNEb1hcfMer+zsfQzK0WJYU7u+5lL8XxjWr6gWlQP31x3cm2\n229oeKCuim0p5JLabD+KFXjYiDwlM7kMxeh4/i1DLhclAEPGUc4QUvWfEoO2CWWZwKk9J28FfNlU\nwl+uze4cifuISCLT272P12l2O/X9KJnKW0zGqUwwjK/2UwBYYg9c23qFORZ/c0IPiTadQ8+dq8Uk\n+rb12sqN9kmJXZhQzgvKw6RFHq3oYywSUe33CSjC/Xs7EKZw1VhkbzuPDhygOpcUZx369UWcRF/S\nGC45kq67waC9KCOwXYmsEr7H9krToWMcdZFyJ4liOKrbMrkSrfspbI7CbrGVgJ3g6oJLkNPUFqMz\nkihF3VSp0sy2bb6utmFFQYFpUaQOPVp1/3q6rvtdV2sVlvS6+Ynv3LU9spTdI2jZkVSPRGXPZJPa\nPoM9L7eiJ67l1e93xhv/jhJ9ZMydp1/fUd1Mc6wheNA+rWRnQv5qQT6lurXT2Eoy0V4EzNTmK9hv\nHhem6Fk1lf9ecowu6AJhVx64mguSSOuqMwBkDfUQHTj9DrSLIGErWGhi2x+d2ot3LSQX7MA0wH0N\noJ57IOW70w7URk9JtQIHXhKrbSCxNYJz21uku07OM8qpLRfKpgmNWgiUwYjZkHS51PRfup7AhWv9\nP1qzmgvrBvnwEbiuNv6iCD4zHQi4iSPojnUqvf23I157n7G/Wzbx8FyV0H0tenTFMwuHVnd0+SEt\nqu5pkNQ1vCaaeiwCbKrGE8/KHO8wxU8r2YmQTwn5pHuGj95YAApFB0BMKCjmlQUEBDIAh7htLqhE\nXqU0o6/3PqrCQKtoIg7d9fFFSUgNJPNDHH5jDXqgNwluSPSjSqhH977JDGKYycYe1dQKszwimDFd\ndhzfCObYYdfDNaMvIbaRuTkhx+eMtfeOeznu80hKRnPQf4slniOhj3MSBcnde1OvAR5dc2sN3VpX\n9xiPO+TEsxeDT+lLqkEnM+HpFyZsD7qPG2eAVxiWWhrMsvh3debQhlpsgld1sLWqo2obCUpNH4xm\nLAF7VRqwjC/lyBI9swINC7Gpm7ZrTb22EMiRZdFjDKDmhFtBS5lUnXSgCLkDamBAEbGnKaLS7LJR\neo4LJHqBXWWVUN8spVaMMLFi2q2GXmU+fq9c+uKXZGq/5UzXPeI8Du/q5NGYKmg+SCdnPJNnbpmm\nASi4x/eV9jFEO3S0c+unay/cPOr+KYKbOQ1x7of1UTPoXsJ52LzJwbgO4b73vh9J5AC0UZ9KrpqX\nqu8NUIOUIOflS5LswHYmbGdCWXSsiaw++0aN0L00lBM/6ScDkKyErtlYJv1oKP4YXtLh/lku1UXR\nd86gfYzOIGoWXVRRXRsYCK9KTGqhRJVcUq87ItZusUWJHv+2MbdBjFKINFwWbPedU84RfZ0UO7BH\n4z2ImkP1YP4A9JKMCSga4qq2+1Ejqii9UWvQvO8WLbjZojru4wjDHFXou/XdInPQL+1373PU8sK7\njFt73STy8e+j30ahFASKVvgJzNWSemptAqLmh7nRPimxlwRcvyFsD0A+C2gj8KovxSU8b7bZowC8\nARBCuuokplVzpCkDPLPBMwto0xAPA6heZb6x0IA2IVkAFr2PXQugd/I5ZPJIOwAQt1GOdc+VWPwc\nL1LRrt2HbQKzCskSVCVofB5pxODjqnvYcU8IiZsKH4t4uFMuSPeqGXhmW0pduSMq6lCjSzYtJYA4\nKuEAXpSSbI+4cQNIz7CTpBoQAaB51tTQkhUCmhJ22yzH+R9NiPB+fG7lXgQlMkCPLnhtACL12cT+\nK9Ej3NsFS9Mq75p891R9HtZX8BdRR+SWkTky5mmCPCx3EaCfVrIn4PoO2N6IEnsWpKuqobwaEW9Q\nyV6M2AtQLgLOhHIFSmJwBlIqoKxSlEkUU2JEpdv7HkvSqA4SoDu+jiqbaQdSLC105LpHqp2H2jya\nwK0vRw3S+IJMcnZ/A7fVx0CUNcc7Xjs6iWrV08FW97GUsh9TJHRPZXVi39QMoejEq8QeqQGB6A8c\na+RQWtIClQBonlRr2pr6Tilce2D3Htr18fx4zFtEpbnkdhOq6PDJ+tY1wu2+Ik2L8hY1ChmOx/vF\nY928+e+RWbRnrSaFAWeqnW6pulUTmhLK+UuqLktAWQRlEcipAJmQbWHLpJ+cAXKV3pKdykzgDeAF\nKBeAMjBNrJ8JWvF1I9umWFTdP6pgczSkasPbgcEOdydSl+2266SXshUpduu2w/mHDiLgdpojsCd0\n/y7SGEis/Oo8RTRioUzICL4Di6gkrSG6zl8By+zKraSX37c671SNb4wrXH9g+pRJIbsy6Q6yugGl\n4EU1Huh8C/Ue8TMev0MEXSEUFniehP3aM5rXOB/Lje/94O9+7jaqOOqPGOCipuisRT/vzduriJ2I\nvgHwXwL4p6FL+N8B8HcB/LcA/iSA/wfAnxeRn97rRxKwvRWUNxnpcVMGtTEgZBh+0lLOtr+aE32V\n+lfSfxlITwTeBNPHhHQVTBdNnuBNIJy17lndj41qgcM6gUBT0YIUrTn0gbiFQqjqyO5yWxg2O6R9\nEjvOHMMClF51D9fvCm/e01AolDKOY/Jzx2w4e2YCWh242K9rAfMEWeZuh1vyLLR1A13W3X18iYnH\npMZF7qYMt+s867EQwMtci2VQtasO2s5s2Dvwuu2x/bf6zv3YwAAYWghFDN8uWmBDvM+jGoPh2XaR\nijjWWy2ugSO4btSebuHe5wVggjwsWN9M/XMP7T7kprW/BuB/FJF/EsCfBfB/A/gPAfxtEfnTAP62\n/f1ikyRAEjAXUBLwVEBTAU0CTAWYCmQqkFkgpgXkRZAXIJ8E5QT7DuQTIZ9U8ueZUGZGmc1uToEQ\nyAsu3OZ6NKjZY2KLhM/a1w2JvNcO0DOEnyez7khFvfcvOgB9TO4HGJlId92NZ7rFfNzuvTUfsY/4\nkyEMO2fd0b84xqM5GQ9FbWhk0K6ij76Xsb30nl5jnx+18d342uKAtqxrKDBHV+F9bEyKTpwm3c5s\nvr/GX5TsRPQ1gH8RwL9tN7wCuBLRnwPwL9lpfx3A/wLgP7jfmUBmAc8ZnNSpIUSQECsTmB0t+imF\nIJmAQsiZsK0q+dNFnSjTB0K6ANMTkJcE3gTLe7Ia7xm4ElAETOZ8yWhlfIC7oZVYQutoo4n6PoOt\nT179lFq0oMJxrTig1qnvF2BnKoytOt+CJlDV89FzvWcE4jY+0Oc/j4UWgL2DJwsAc3quuhtslTIH\nEmnngTcpS17QkxpwyCvYMDFkafZmfT+7vrC/7+CL0PPMsQXeS7rIACzTURGVgcHFNdExyiBlASD6\nc26to5HBD2bXGPrrctnrvgd9rXsAoNl23nnzACwztq9OuL7Tsue32mvU+D8F4A8A/NdE9GcB/B0A\n/x6AXxKR37Vzfg/ALx0/K/06gF8HgPTjbxSOygCzVEFTw1MkEKH6gqTo5guSlSFIthhtVqJhs+l1\nslStl5WQV7d71GNPG+ClfTsieyGGupMYVbqj94Wx9H0VU1frSwUcjktD/vJde3JQM3vJG0JWd66X\nFAg9LKCW/zzcK9rffg3QNIFQzbbbTeWoef27IseaBFC3jXasATm6boQr+xyM7yw+e/U9eOduUw2X\nuJofNTkiQA5MtcPnGszAlzLmdo7UAzjs0T1svne17tlCbNMELDPKaVaw2jKUCxvaa4h9AvDPAPjL\nIvJbRPTXMKjsIiJEx3UtReQ3APwGAJz+5K+Kh8REaOeUbPXS7GJSiVcs24dIIAaJFRJkIQgx8gJM\ni1VAWQFhRroK5g86qXwtSDZhusXTC08cub/ZmQ7cadLSmYe1SNyBAFv9cF33YthwinZ0VPGjWudj\nuKlq31ks3gr6yMRRJZTQKBdd8Gw5Cx7CdDDNa1vYt11bCiq0MkvfukkSIJ4CmxmUk0qoUGeu29c9\nmEiHxSt8/g78Gd5P9eF4rBpQZjMiAOM8jXN2j+j9HdUCkbT/PfYR3s9OorsmxQlIuseePJyAecL2\n9QPKOeH6jrG+OTC/QnsNsf82gN8Wkd+yv/8mlNj/IRH9soj8LhH9MoDff7EnXzwk9mxBfRefn4GT\nA2CUdm6ywhdzAQQoaULZCOXM6rVfdZL5QvAgeGKAVyOyrdTEmdhuOd+8xruQQD1JTVrs6uANUtEd\nQxXsxyaaElVn0PisAjLnHtfr+zm8Q9yj8yoeHyX6kF4LSHPkGTJO1elwbFAld+MaEnIGTq4StYzz\nDuheeuaZ3xIwO4Piek/f172V9LqhlbjUBCrO4HDMPgdMrU5fLITpJsWRqTO+E18r8XktQ7BGNogU\niRjXmZdoi88Vstlk2/o5Z1sX8wR5c4YsE9avF2yPjOs7xvYGdx10LxK7iPweEf1/RPRnROTvAvg1\nAP+X/fsLAP4T+/xbL/Xl83D7XgAMA+/EPTIFPQOoBSYnJWgpomoMC7YzITHMvgdADL6ybndUEhjZ\niM1E/EvqPFDhtRp7R6cuRendHHnhgY8kM0sl7G77H5EW4z+6/jUtqqfx2Oj0uWdCvBD+ats2c29z\nkiHnDmqKvarkF2P//NTG7doO+TMd2b9R83HYc9QGds/p3w0c48zP7+HnDc/epRC3H/WevsNryP+v\nmkwOjCG+l2qrezzdiVyvo2XWCkDLjPIwo8wJ+UzYTgo/Lwk/txoPAH8ZwH9DRAuAvwfgL0Kn6G8Q\n0V8C8P8C+POv6ol6NV7/oHA8ELcTfDjHn4VJAC7ASSBzgcyMPDNyJpQpgTcgL4R8IqRngfAEXgWz\n2bG8FeBikntwlnUE4cOeANmgTrZiizqiwpKntVJX9mrcE55Ahk03Qh8cKjGTrqrx/lmGRRLbkdSN\ntuvRv7Gfqs2IqdECjNYZm9QyPHZnThjxKThm05h7fbCg1hJadaL4e4U/k2r9oeYdgK4Gu1BwEgJN\nirufYnDc0VZUo8whDBv67V/CAcWMNicCkcfj06RrYJnrrra+s20dCzKw6fuqKMT6uRlCLmge86wg\np8cz5M0Z+WHG9ccL8onx/DVjeyRsb4D8GBjXQXsVsYvI/wHgnz346ddec/2rWtz68zXNzmMSXVOp\naOIJKXBHPwnbWft250VauFWtSaVJ+JHrj8QgUq+LQ+iy28JjeCqsOx+dKGo1XAD9Pup+/YEW481T\neH+opL/V7jnXXmqjg3Cwl5UZHpx/q90wVyLyj1DCOhk+vR6BIeLiPBKCmXaLkMe/j0whoDdThrFG\n1R3JodMNgYj47mO/4d8uvFZNAlXfy5JQTgnbWTNHywKUGSgT6i7ct9pnq0HXzW+/D1E4Z/9iBEYA\nVc33fGeA56wSFkDO6vjJZ8L2rDF4XjU2ny6M6UkwPSXNpLtoiR9aS8tMG73BW1ZHXc14UAmtXlwb\njksUh81Wuw8tacd3GCkAELdMlv2iA5oN383AQXNNYjwWJV9zjLRjB63ZvP25kkyz8lXjGIZwHrHZ\nnmkoGDpkz9UhSvhnWzu7U7RuUOHqb/RjcO/z8OKejdib3JCtNJNgnB+fk3vE3E1OZN4NqVjrBZwW\n3QHnPLe6ATVb0KS3A5pyrhtcunPOE1ooELm8e4QsE7avT7i+m5HPhOcfMfJsEn3RXJMyC0ZeEttn\n2J8dvQ53lPR/ZHiE81yt75x5JFpzngXF9mcrgG09xKBClmxDSLPa9gB0EwMRYFPCkw0aHjQQV4wJ\nd15X9oo3UFV8WEheN91rsWtNeusLSvQKXTXV+egt1YX9Sol+sJhrzrinwro0jjHro9ZFFJr9LCmg\n5SJ23Rxh4s44L/5R+/NyZEEj6CZMLNPRILOhok0lGHeUioBQEJHxbdtkHxcs5Keh3q7OQZ2rYT6P\n0nVvtc4Zx9U2L+cJkhjlNKmm6W1rdEjmgOuiIuO9zaGHlNQ+P01Y30y4vmPkE2F9QygTkM9AXqRK\n9y+H2I8GckDYuyjeALqpiy3a9EDVEMg9/osu9sLAmtmy2wjp7Ag8BeHMHw2E85zA1wJeM5iobuow\nepgVmEKQydRVcHUatrG4Ha/nkEmqlt+uDjqKjqAjb3pVEWH3KeaMplqKqz1+YIhVIuN2qPGeWr3r\nxxg0UXvGCMd1zUKcOQ6eeWaNQjgzyGJzBNOi4k3VNq+ptSL7ii/j2Dt4bBs7OaN15nbL5xHNAgnh\nuNiGdF7yPHIjdFkmleismqQwwFlAm8GmTXP03YJrDTlv5gOhZJDl8wmYGOvXZ+Qz4/pVwvpWTdLt\nQecuLwKZAZlMG/piiB2hYMQome+07ryBOex6IGkYBs66oeAs2CbNky8LgzYgPRPWJ4BXwvxeE23m\nDwXTsyA9MSa27Zw/Qok7glCsoEW1ASfRjSlJgEnZUd0okak62njTRc256LbDLtUFTbV3gqFQ7cZB\nMUAL2Vn4Mi76W7Vd7pWvflVjqGoT1V6gd4iNJoGHlYCqirtaa4PVMeVAyNE5yjCnmjEYd2TGvwek\nW52vOifOUMNpY1JRVOFHBgU0Ao97xXmkYllsHhLKaYacEraH1ByEQJXgcWtwWjddQ1Gau7NzmY3Q\nZ2zvTihLwvMvTMgnwvUdYX2nEn17VCeqWCJYmYzgv5hNIoC66l5F6AcSPobl7l5KKmXJnXdGdGVR\n5BeJgnLKBFBW9B0VVtCOaZC8WUbYxronu3PhAbpa7XSC7Zft1ViaZNQwvS8sVuwAAKpOO2sxFOf3\nuv2Q9yfBvesxujB+937Gf7EdmbFDMYwObgpoaqgxrpEpKb/fE+I9Lzhlm8sRrRjOIyHLmLtjnnif\nR5mEN89/AWPA/v7bu46RDdrCji0joMnH6aG606wawsOMfE4oJ1XbNbym67U64xh1vb4k1YHPQOxu\nyno7lPD2984hap6wSPBueXXc268Hmsf7lCGFUJIAmVAqzh7Y3hJoI0wfgXQhpGfC8l4desv7CbQJ\n0qU0R14uHTKtlqKyIpNlImyP6kARNlVVYPBewfQs4JW18IYT+tr6Q1E12O1kICg07E67fnK6kFwO\nRC5Sc6Epl+YY8nPdEVRfzp1+qwTsCXxnL/t1nvE3FphwldYYY7VkCAoaSdzG7e+RbqQaO7MpBHg5\n8CIHYb2hxefxFurfdfBU/95hD1LL/XdfBNQHpOAtVd35soGeN90157L2BE+kobrEkNMCTAnbV2fk\nhwn5gXH5OiHPhOvXZE44ID+oRC9WHFUSVMtLX5waj720xg2CP7qUbhP80X0I0BXEUjmCoMDLVUtS\nIgdgufNUa7dtGeAJ4Mx1/zIQQBuDV08msQVjVWAUBUZ1P/IyAyVRJXZPkyYP7QtpBV2YBhK3JZNQ\n/uolCe4glLB4686eMenlns1q7XD3kZeaazVsnJwUi4BEtmdfHy9XJkRaYqyaQzh02tVPiec6caMy\nc4LOwWGFovis8fuR533HABqhi/sOjiC6/qfoWnPVnVwjHKrN1GsdZTdr5posjHxmbGfW8m2zettr\niC3ZfCd7aCdwxhco2YFqt0ePesPFSxVj7u76IWvP+3bGQLbTS7WFnegJBsMk5KSbBspEoJWQH7RW\nHmdgfavhuXTRvHnK0M8CLX5ZGjctM2E7M8oErG8U0FMmfUkkAK8ACmH+KEgXIF10V1PaBFPiqu4d\n7QHW2fVjcy1js8ozVkmmSyYJu6xIWOQNCfeCKj8Swfi3hRrrFlaWzyAupccYc9HoSd1q6oj3RE+1\nDrb+I4OexrF6YQ7aLIRFrZ+uiMlgxnTOOCduDxsamo0oluyaNLdhnpoms2YFal1R/47739WNSQBg\nmfW+8wQ5TZCUtMT6zLh+PWF9ZOQTcP1KncDbGShzc8SpRNd1pxIdGkGay12C/6TEru9FmnTvNgbX\n1hH9D+6/Zw51vXKBFNbFZtl2RKqSiQgwKZovJ1Yn3qp58pSV6ClrHTxe1ZGXLkp0aYXtPa63KYmQ\nz8p913eqesmsHlMldgKKMoXpGUhPABXL3ssCTobtR2/3tUXa1OpdOqwvaHcABamu15qKerStkZsK\no1SPzitg543uuon2GVFwjdk3RkOqWThMxrUZK9/koI3EcVr4D8LW+8AUAUiGhkar2TA8r81HlzYq\npT/HpbmZPMKtlh7V+nysxG+MliNj2vJem/LxexUgs83LnHB9N6MsVBNa8gmKdU9ax8EJXCbXotAk\nutWIoFQONWdvX4Qaf9QqWIakvue67oJW8BpnHWBqHplY9wM1+GXHQ+isCAxXr2q3zJo/Txngh1gk\n02xO0RdTFv3cHtQZWJI5BUUdKzoEVc+mmQBSYpc0gTcBXwTpmsyxowullW9uErDZ8PZlI1vsIfYd\nxaXZ5VWljh71lJTQvdy0e9iB6hvwCMDd8ODhxDeCh4fZYguqfdNeApGMxB4vjc7B9marhPfnp7CD\nSrznoacdUJ+GZ8N5UQ4nbEsrVRWc4fuvxToB/s4AVMmv9rk64cppBiZGPiVsbzQef32niVzro4bV\nigkJV9mFzftuqruwSfSpaORi0mIw99pncdB1GmCntg/nAnAo1C3H6S3nXv87tfsw6ksWO673cUCI\n5c3bYs8FmhwhsFgtWdVbaNksI3Tv3r2k5VQ0Np7EknWghCPA9obBV8J6VXAEb8D6PlmsH5guGqZL\nz+bkuRZN4hFUXHdXORUAr1ZddyvA1cJzHhsHWizcCaQmidAhprwSkKckjzX93Pt+y/kV/2RqfIKa\nb6F65MXi7u5cdKKJVXW9z+hMdA+4oxJDHcHo7PTYdmfOuPT2l+zfncgDgIqIgHlRib7M6kzzeQPa\ntlki7T6e6Uas1wRUXX6YdKOUM+P6xsy+tyoAvPKyTKiIODEp7gQurJIcDNBcwJNWfuJU7vLdz7tl\nM3CT0A8j1jYAACAASURBVAE0x92uWsQP6P4Qjac37PwFts4FxjGNiDVO7gsOgIjl1wOk27rDnW3q\nFYVVTpVOxQJQ+xWRqlnmDMhmNfYmRYgJE3gjCBVwNsdflrpRBrAn9morTwW8Ler693LPrvoCTRrF\n0tKx0upgr3dVVp3punPsln1vHP0oM7Cq9Ufce2e2DH+P32MbY/V2LObyx3x8ifcKhN61qLonNs95\naoQMZTZEGtrVGnsE1RINFuyOtzlVVN32kKykmpVVmxTkJRPMLrc1VIkcuv6t66q+sxZYjX6qe+3z\nEfsLGPj4W3TaAUAFU9+85vheVQug/nhz1OiC7Io2IFxjTELssLjEr+NCG5e9IDJvadRAZCqQk5bZ\nyo/qJ1gt/JeuAF9U2it2X30ElJWxsJVQqkkmTq+bIF1nUBbMH04K4tgs20sf3u5N9fpK7NTmQUNl\n6oDU3XiMULLmXO9CaaRw5NqXo+SOPEWunRTpoa5EICM4OiDMnRPGfRMOD/S8d9cYqm+g9LvSiuiO\np26r+2csYAGYJJ8AYtBpUTPn4aQSemLIaW7jsGemlZsPgC1ePjHyeUJ+nFAmwvo2qRR/NOftos43\nYZPmSQm9TEGCh6ms4TUGaMkgFqQ5Y5oKyIj9nq/rs0v219jcu9DcayX9jb7rUQfewNJt3cxzTHY4\n2SG4h/foMPrDvZwjex+AlVgX9QEltS/dOSgXAs+wijvqGygT1Rg9mVSVAOIAqSDPM8CZ7G+FAFPu\nc2gd6KPSox9s24JLmQtEwCTNXjdtmXJnfcHDbTod/bz5MTUroFoBoRFKM63tZOkI92bz9FuLr+ux\n0AfQCnaUXn0fa68fQmPJ4v3TpJLc4LAyaVFTvU+vOdQxMHSX4jkhnxO2B7PHH0xVf/RCqSbRk2Lb\nXSN0TzvC/IqvI5foSQVJSoKUjkI0+/bJiV1M5X2tY61dN0jnmycO6u3AKI5w90LmOSZpOed1ol+4\n36gt3Bhjp2J51IAJPBUtswWdmzwxyqJSPi96arpYEY5CVnMPnWQXgqIATfqn52QbbjjRhntbTNyL\nPda4sJjD0a5LK2zHHWl9bcW0i35x1Y0x0JsXXeZZMRxMZBBhOuruN9E0OIpni7T91XI+3rnUtYMQ\nbvR/NVc8qO/Va++7xs6zZq9NCcXw6flhRjkpFDYvPTSYczCvCADrOWVWCb4+KHONySvFwmievFIm\nY6YeSnMb3efKoNhkXveUiu6RwKU6ql+iqU8v2f8IhH6rn5s/3SP40YHnY6qOPAAVuB3WkXPWI9of\n1ad43ijp/dO0CiSoF3WyUl1ZVXzJhPKgiTPbylWaVveBrzcj3grWqdl9ygDqdSUMgHxR6rNXE+Gq\nBM8rIdkuPOmi0j6tYlt1CYoDkXwsJtllkEY69zadTBAp8D3N27Vkm3uoSVQ35WACjTWWOvu7OdD6\nFzWcO9Zz8xi6S3bAMAasRD5NkPNSk1C2t4up42pnO2Cqe1YJmo4x0rwQSrJy50bc+UE1ubKgxcuj\nPV7fp0tx+zRJT1MBTwVMgjQVdcqx3FyWY/u02z+5nftCG8+IdPMS2i5mwh3e6Z4JEGatI/I4qBsz\n24OChm73mu3hPJBLabaQote784UhYfy+2FzFE0OtVS88NFToxNYRpl3nXzMUN8Cm3k86mGL+Ad9c\nNTE0VdglTngxt2qfuVkgpUm90WbfbZ8UbfQjFTva8yU3DSDa9H7eaBIQW3Ugm1BOLax2WhTo8rAg\nP86QxFjfTirNz4ZNT1SlsTvQunmwuVUkJSoCTr+7Xe4SXdqz1+vDMSdys9U5qVmlzjjTJMRSuYVQ\nCt0l+k+vxg9/H2h1d6/dEXxYxWPK6w3h2mkFIv0EuY3d1t1++nogB7qHqkTv9rmpYBT66sY5ED1V\n1c1gvYJaR7+OvZME0j0rhDSc7M5DZxD1BpFRiNq8lgLKz6zAoVV33KGi4B/djcdARabSVwYyclU7\nTsZ4VO3XPkTUiUVCqLj5qHWM8+yebWC/Fda22Vz6PI8q1J5RkIfpKLUss0mdbzIx8tuTVoF5SFjf\nWI7DgxVBOVGFq5YZpnI3gt/xbn/XqZ1XFouPe0j2qDmxJ9HYOYtKb5fi1K+jYj6cUqgJgxvts6jx\n1Wa9ccpIFN3l8bp79vQgwUeN4LWZc7uBvkZfGu73Q4wWX6MU/QdeXNMHEMMskfD992LIwBotGEwM\nv54MfGKbcMhsIUEh0KIEmotJflER5g6+EV/gQ3GnlZoPdo1h1sU0A0GAynrzEs8vOeZ0cu1DAmZC\nOhu/mxKfrLjjzOQbV2pxCEkt/r09cIU9V2I3bLowNDzGzd4eVfquhcw0t8fVATec6JMYQ2r1357Q\n41TUsuyF7/o1PwuCLkq5o9/rV/8ySN9I8D4BytVcfWOzwe3aO8yju7Wrt9LGtzMFAdBAPF0ILqx8\nPT7EP+35JVJI58m6McY4nujhP/AVeIouEPr2hUK9tiFA24SDAJlJi37MygCKwYbzqk5D3XgT1Q/Q\n3b7AwDGqHbDtygtCzVmn7P/0Qs5FM8RWSxiJAJU66fa9lsE2RxuADubqBS4NBk3ThFoPbpktu0xD\nYl7LrcyM9Y2FxN6wbS1GZl+rMy3mi7sa3hGt291CFXilIcagQbLsbPC+GRN3AjcvO5FJdl9PCCp7\nJXA/frx0vH2+RJh64M4Ijwjghs1dkXJ+XWQQR9eMqm247shz7tdQoOtj2x2OEH29SH/B49+kPXrC\nxcE9SJmRhLkgUiw6KNp8qAuogCEQXUCW0FKIrRac5gaUSfexL1kJuVPj/RGKhvyqNkE2Z8kSSbIe\npxJeiSHmqJSWOBI2h9hNbiz4MMJcteB+P3G16ssMSQnlcTZgy6R2+Eymspu3fGk13SQBxXHpsyiR\nm1ccbPsUOp4CA+PcdOeiakoFIj8M47pgT/6+SiX2th77Eutwou/Snb8kNR6oi+0WJ4rEVqWsHDgf\nbMU0f455tAmDl/2HjS32ff9c//B01L0mAAx0H3wLvkBeNayR0Gk4HvtHz1A79Y9kN8YKWvJU4GQq\ncjJhWUQJPrv0hkku/6RG7KsNhwllA1LSSSGrzEPFCoVUdV+0SMhWWvLInR1rGlZ9yMEPu7/4TjDF\n0WunhO1x1qzEx2SINS0IoV5yqii2MqNtK86ALCFX3D49xj3a0iIwdCUhsxixU2PUFe12vE78XRCX\nHQ3op0t0QikahpGsxF7P/1LUeF908XNUQW75Wcakl0YwcVG3hSy2+HZM4rVhv8HeFj92C6hDLk3D\nOc7Vnem8EEmo4x7HUVX+oIpzP77u/Ki0+CertOToOLRBOnNszkFAuOijTKgLtsJkPV/AbHlyxF1u\nyUIlmRd/Up8DW70A3qDhtqLqO183lei+aeS6VZRbVdVr2qwRdNyEYZ6ssitpdVkrfyVMKKek8e5F\nd0wpE2F9hMW/HdCiUhys3vIyQaMflmACc5LpP51fNmJMSQmduSCRoAihGDPfNlbnmR3Tx9gz3PF9\njzTS1oUSuvfZ9j9kIFND291pnx1BB+zNsx3Xc0JBMI1hklGOr3EH13jdKAVfhcSL5x+1UUT/UG0i\nXnqk8Qx2+RjKu1Wg85Y0v6VVVacdWec2f/VkdxSyS34XZ6S7nDC09CYDXoqfJoAmnaBin+qhppBI\noy9QmNRxZ7XgKGaMOYF7aqkll8gyocxG7LNi/Musk6QedA2ZrY8mvQ3FlmfPULS0UXe4eUYZhXnz\nf2HOj+bdiVlIalESEYDdXxEKa7jwOnoX4o7No/UWGEorpAnUrcm+FMle4+zSpHp90Ci1MUofNAk3\nON5ICL4xakrtus7GDf13c3FElD+UAdS+7AWW/QtyzH112vWXHb+fuMCCfU4GonBJfdSa9D5Ojohq\n4a37Nikf+qqovfAOxOzUbLvrXtng6lrYU2YlMs3TV2BOWrX6T0mMROojUFANt5BYHK8h2+Q8a+bY\nnDT+PZEWelisMtCiXZTJsP9Wr61MaL8tysyqs82TlQiNyN2ZxnjVWqA619KqZcFosHANjx29h/qb\nE3BlGPvzS2aUwuqq2BRwBf9k3AxhevsiJHtnx45EHdouf93tU2BHSJVjDqr3TeKy/urn0Us+UOMP\n/Qu4QUg32k4xoL4vP4koLqxh6Dt1sPdltPPujCuYGiM8mVKLotS0V+u2UEIh3f1VDJtfJgGLOvZo\nU+BHmfTBSjK8vyHRtK672dsAdgidkCJaHibkmbG9SaaW2z5npprrvVHrs9XqqwsakYcwWEfkPgeB\n0b62+Tx59C+xbUbKTomjBjswtOBp9/5keBdt52OT6Ia/ILFQ6wuD/iygmm5InURHs2slpJba8Vtx\ndw95KLR677HcnW+NDo7dapUgyXD0R+fcU49f0T+sf/FrYngOqiZSkNpA0I7i/JBXh9mHbKTs53F0\n5gmaZI9efO+PuX/IwoLCjJIY2d6FCCFbFpdMUCnPVBN18ilhOqsdTVmQrgUeowcAr3wjTMgnzarb\nHrgmk6xvA8580d1QDvO/BzW8OmwrcceJiOut/63a0lyQzGOeku40M6WMxDZHVRPSkBgVgqcnOH69\naVZtjdZ17LcvDK5+IJvn0hxyMOcfmSpPIGVgX4oaD8DYK7UHhU2C/+zn4GXm6qp6vUb2kt/7r32/\nss8j6R4J/uaz3WovhtcGX0K4pi4gI7YjTy3Qnq9W+WlCpUlhm/84rrjuPSnIGY6rp+59djx2P3bz\nBmerk+bhICYUVpWaPOFj01CesMaxgQTOgrxxewAjck/W2c5WK/1M2B7VY769UVs7nwVlKaqKzwIE\nhhjnsqIQQ2WhF022TjI0RudzkOxYYkEysyo5Y04ZRQhEDCJBKRxqawSG69+jSQvUd9C919ITekUf\n+m5DLyzwz1OWqnJAD0vs1WPgQNUBAgH7QfubBCi899rvOo3S75VDjmrt0Gf3NzXuczMOfjCu7pRO\nOrT7NxBYwU6tK1xjvPExvT5+vJ97cevtPBkjjsU9/nbvSBClWN52fBZpXuIqRT2Li0WLahZFopEX\n+VwIaVXMuafUdvzOxiWkwB5NKmlVXDQOLpBT0WywSSu21PcAJ3BpzM/nwQldhnfkA2DUWDhPRuSW\nacZG2EyCyeLg/jdBtS82z3yy70yMwgLKKu03M7BL4cpsG/H7nKLaBG2tY2DUqH6FL66UtGYtDnHx\n8L1TY4K03xE40E9KlcQ9g7iHKHKHGV57/pHkrX11Q+oORLQaxvPC305k6ng26bALlzXVPWcX2aYa\nFqBsva3r4aK4kCRzuyGJwWRLVdWbybB/9gbNHFZUYD7kMWfKwDy8j0IoAuQ3SUt6bQS+GHN0aTtO\nLInWSE9QYMtcaiVVz+dmJ8JUujE64KQxI0DEc3yDJDQG5QTuCDbPLiMSTFNW4uVSVfbEpSNw8jkE\nMJOAIdiEUYSQC2NlRi4MbEA2IigldeZqRGNKnBMzwSpCzw/XKkhyA5nX2ueByw42IuBEeyDhB/Xm\nUBzL7Z/uthtq92H470bbF9UYhjUQen/ufsREvWSvanR3Ur84WrIMBc6hA6ho0mrbo4VpMIzhBafe\n6Bs4nG/XgDypzNFiQkBS0FMBNP6+aSltH1NH8FGld3jqVIC5ESNxI/Q4Z825uZ95VbzCb86MCVad\nFTVP3BkIkVRC5yqwbq82NkInEkwouhMQ1ITilJELoeQUYul31L8jQUeCzu1vf9NUviBiJ8E0lc5J\n0SbNF1Ag+LBARzXn/n0ODnWL+mWC9nDZPTDMmHlHZBlduxOdGzUJuBtukOq+eKcq2UuVtFqLkbHZ\nGEsJ0EyHZ/pU1Tg22rzVDDoldAlr3u8dW86aXFFy0pBPhGeOtj+hosQoqS1LkWDMoVXpOTis/HvO\nZOElfa5unizNs2ohPudB8wBQUWaqSVA/Tlb0XvfOLNKQplwJfE652uOj1O7em0+rkBXn0HNctfdr\nihC2pGp8IsFaMq5bgsis9rwzRGfccX4jiTg8d7E5nUpleO5PuNU+rRoPXVClHCz4wdaOrSP0e04w\nADtHRdUcqN7nbovEEhjCS3n0jabk8Lj350PaaaxRig//fMHpghogwFWqoyHcDp6/Hvc5lL3Kd4Ta\natJcTQARKFMBBmKH7f2o/ToDc+JhEiyTE1DpCMdBIkUI65awFUbOjG1NzZwzTYjg9zh+FyMD6TQa\ntPH5mKMUn6wgxMSljTXY4D+0uYSfWJ11TEmJ3lT7ZAQqIv2auCfYSCrTIxLMy4bJ5peHeR3bJ1fj\nExeUkm4CDaoNimCzRLvl4Fk6CX3Hw3oTU74zHYbxDGr0XqLjwEPt0iaoYdzTmC9av756e8ltQu2j\nJwwgGzFIIbXTV1I12JNQ/AYcGAOhJ26TEjGk1CDMqGP3rCrZGLKZlBzsxuqYhJXjhtqSHv8V6RlU\nIsGcsjq5LB2uQIn9kiZcc8KWGRcyL3bWcdRXYkTsuRCt/mWI8sQ1ZM8b/SeOaVcizyAAy5SRuOg/\nOpr7Y/MlC3W/FyNyAE07I8FCWz3P+11ZMf4babJQI/hwI3t3lErNhjudV8wp4+uHZ7yZr/Uefz/d\n2p/7kzvolKtfZaovb0cUfrKrNDuVfhRHfU35m2Gz0U8QCNhV9TiO2kSaM+/wmUaJPJ4hVcroorS0\nGbcTK7GX+rdz6VGTqI4nV1ELK4IqaziLVuqGqZJWgSvuqZXoxCFpand4DqClUFYnVzUTaL/aEY4x\nmrrP6KUsdEHOKWPhbJ9b19NHXnDJSvAihCwFwIQMTZWLElaEwKUtCWdUHp2IPgx/59EWT0mJejYi\nn92rHkwox7sfaZSjtGcSbBYfL1yAwpiCOu8MoKQVExdshTGlov0M2to4vXDTaMqY54yvHp5xnjb8\n8uN3+PHyAUUYBYSZvxBi9+aLiMZ1073I4+NH7SVn2pFD0NVBD8tE2/xV6Lehz+Yg2hOoHyfHgaMd\nixI9OoJiy8YYt8xYc2oqbibQlUFXqhVm9Kb2UXcQgeG+0Qg+jruze3sbun9m7/xgfkatyc7Ud63h\nuislJKYakwaa5HRCYCO0XFjnoTCyodCKJduERxzCauGdQN8pMTUbn1xVV4YzJZXiTpBH5kU5moeD\npqnCqCr/ZoS+FdZMODSvPZOARZ9TNQkt9SW+LVYt+2XrxByHKRXMc8Zp3vB2vuJhWvHj5QP+2PI9\nVkl4LnPVSI7aZyH2klnVwqr+3WlVpRyOBxX6Zos2aJRmGBa5LZhCDr9tUMWje9Y/6+LuJePeJm/E\nDbR+a8FAW+Aq1fd285a52rPrdULeGPJx0jrz7xnpQuArkC5Gc15Z2cooiSPNkpnbJFapVPOxW4qm\njjyqzl1JLDcFbsWnzQaufhMhw4brqZXBC2GdMtaUodXfm1oPAInUQfYwU1WRsxRsW+ojAmYeOMGP\nS6Hm7puqziw4zxumlHFKqlm41zza5WJ2tX+vRB+mQdAI289hNJXer2UIrmXCRMpcAFTmci1JNYgJ\nuCRzXIMrNoLsRSbLvDudVjwuK94sV/zKm2/xJl3xZx5/D398+hYfyoLvy0M1FY7aZygl3WzYe+rx\n2G5BUfXHpoa/qq9b1x/085I/YGQINHxWgMeBg7AyCKAj9NEhlI1oto2V0DdWlX3VTSXSRfPIp2cg\nbv5ImUCzefAnXXglEksY3yH8dnwwiss9/E0H5zQbyT4EJTOIVdWlLJ3aS6V/bpeAAlQJX8zGLu4z\nuGla+RiUiUWVfZk2zKzMxFXeI7vcv4+qenxUJ/jRZvdxF6HqiyihsiRDtSDXYvQZDSdQqO0gZGvD\nve1zylhSxiltWHjDQ7riTCve8AUZhGdZQDsboLVXETsR/fsA/l17vv8TwF8E8MsAfhPALwD4OwD+\nLRG5vqa/IqRgjkGKHcYIfQEZc1B713+T3TkA4JBcVezohi3tz2aXwMJmnsbZOQKiPUXdcZeGL7Wj\nMbjaPoZ4/D5bVhDG5TIjZ0Z+mkBPCelCmL9j8Aos3wLTR8F0EcwfStuOiqC11E66USB9bZlhk8e5\n+7H0YKQ+MUlAqkpWpM2NuXHJHudVYKEkarkLhbCmhOtUsGZGYsFikj3OgRPhMmWIuANRnbu+sUtE\nRFafh5tERuBTKniYVyQueDNfMVHBxLkyF/3HuIo6y5xAd+8Qx4yBqGW7HTELtclbP26/P05KLqtt\n5JELY82MLac6D0QaxUgkeDNf8Wa+4HFa8c38hHfpGe/SEx6d2MtczaGj9iKxE9GfAPBXAPxTIvJE\nRH8DwL8B4F8D8J+JyG8S0X8B4C8B+M9f6q82N/1eIS2lTlZIQomq42vt7DuteufFve/7/kbV/oeA\nb47uFx17bjOODqgiipYrKwMrg58Y6QpMTwBfgPm9YPlQMD0VzO83o2QdGG0TeGOQKCwVglo2OmIZ\n4vP4Z3VwkZo1jk3on2E8EObRrxfUkKD226Sgz2dV380LHuPTbAxRSDAlRaLBQ3xoyVK9s7OZRlMq\nWFLGw6TE/jgpscf497UkAEVhrcP8e4tEPhJ8lO63WgFVk4WpFbtYeFOmA8KaEyZm5Cl38NvTtCGR\njv3tfMFDWvHIV5x4xUIZCzISBAvlY4Fp7bVq/ATggYhWAI8AfhfAvwzg37Tf/zqA/wivJHby/0iA\nKgkG9a8731TMaA0He7nrOK6/IN19pXZAGaBbLLe6Qfw7vNQXY/Y+TLcr6ZhBNMBMs/+2zLhuCduW\nkJ8mYGWk7xOW7wjpApz+UKX5+acZ04eM9HFFen/pbkDbA/J1ApWk+8wXwnZVjHrNnhq0E7eF2zMG\nk70ScXy4dt4OLUgWinPzyFV6I/4MxromdU4Bh3DUOI8eq8+lOVKjBuLXeNx5Mbt8ooKHaQVT84w7\nUXvMu9inDO+3K+s+aBwwE2QrXBm1O8h8vNET74Q+m2YxUcGb6ar+mIVRzE9w5OWP1514U+ZQJjyX\nGd/RGc8y4yrptqmLVxC7iPwOEf2nAP4BgCcA/xNUbf+ZiLg34LcB/ImX+vIJq8ALV+MpEMARAVUp\nJHsqBKr0OcLF1zo1nXelJ/gYvqtaQiedQr/hZbZ77dlDlByx386phz3DUBy1enPX64ScGfScwE+E\n5TvC6adAehK8+f2MdClY/vAJ/N0T6PkKef/Bbw4QYVq/RnpzBuUz1gfWGu62l1zetOAEqNizH3HZ\nPSOsczKcV19fjCQItdCftH8CVs9zEWwm3XPmVuLJkHYRhJPsk0i0YM2wh12MjzuBe2hv4oIlhKSY\nCoqkSuibpIpfH1X4SOAxclBArQQNoARPLR7QEbkRq2spp7RhooyZlHCZBDNlJNLSn8kcc6uZFc9l\n1vGBgybBWJHwoZxw5hXPZcYqE+ToPVp7jRr/IwB/DsCfAvAzAP8dgH/1pevC9b8O4NcBYP4nvgo/\nCBAJ/YCIACMhlwyvuiE6uquwVwkHgOoclEDwr2qvMDtuDo1uePnr0JTQi4Fm8sYoGyuBXlWipyfB\n/CSYPmbwJYOfVtB1hVyvkM22aU4JYAKtG7Bm3bvdyjqTAF4CuoGW2jPdkwyveb5drgN5Ygx6rmEq\nvhddkEJWaEWlG7OYBAeYGrBpdgk6qZyJJoAT2Gz2uBM60EvLTaYaHitVsu+l6fg3Vy1QampBGUyR\n6KQb3zNTH3L0sc6U8chXI/4VC23IwpW4P5YTVkn4WBY8F91BtjICmfHBfn+W+ecjdgD/CoC/LyJ/\noA9K/z2AfwHAN0Q0mXT/VQC/c3SxiPwGgN8AgDd/+pdF0VrSVej0CdQvAyG5amWM4TAxwM+tql07\nD84npKmkVDlwUzEJvY2m196eOHc53CLcTjqg3dfH2dS8/vwtJ6xbwvU6oXyYQSth+ZYxfQROP1GJ\nPn3MWP7hB9DlCnz3HuXjE7CuKFcNtJPtXcbzAgKQ5oTpaYGQ7fiy2V7ipeHHueznvpvb8NxHv43x\neg+xKcDE51nauxFT5y0EK0k1D+GCwtStC49SnMwTTSQ4pw1Mao/fc0oBai+7FL+WqXOcxXde0AjV\nJWgMzY0MYCsMBtVEFwBg68+ZT+JSpTuAqs4DwIk3vE3PONOGX5l/ijd8wY/Te7yjFQWEDMIqjN/L\nX+H7/IA/2L7CP9reYi0J7/MJT5gx0ztcyoyMZorcaq8h9n8A4J8nokeoGv9rAP5XAP8zgH8d6pH/\nCwD+1iv6qq0PQUm30Ebp0BGiEycNBB/NeTJbPGLF3V42J9Et8AtwvKB9PK+BBdw7xQndv4/3L0K1\nIomj4jyGPl0E6VLAlwy6XFV1v1wg1yuQM1By7YsStEqr70+epVaBjSp1x9AOtJbjhzjQtIb355ln\nEhiqvsse8lxDsCIGwqHKFFwLikzSQTDnaVVV3WzfClUFhVBYW/wuxfXTfCN33tQRod/yxEMa/LWE\n61tftzHryez4M1sYjTa8c20EwLMQvi9XZGaceG0oPEPMOZjGn/3nkuwi8ltE9DcB/G8ANgD/O1RS\n/w8AfpOI/mM79l+91Fd9eINueuWVmFoJYCcdKrw0SHlBIDyX9jDbnUx154NFWR8Mnf1+eNawqI8I\n/dWht/j81Ce6AEC2TK11TVgvE8rHCfP3jPRMOP1UsLwXnH+SsfzkWVX37z9A1hVyXVE3OqwOgeBW\nckLPAjZPPI3YdjTCioCV7nf3MfjTjsw63H5Mx/SQpjrmeg0N9n7HzEKiZoefpw2nacOb6Yqvliec\nOOOr6UkRaFBCupQJT3nBKowP2wmbsGLszR5fc1IJX6LLrb2P7jMQ+VQlcwmhOobHyRVMI/UFR2BQ\nvZ4aga4AuExYhZFQ8D2dLWy21Lj/mQgJhJkYqxTk9B6PfMEqE96nM4CzOehUwl9KI+N8a4dNvNIb\nLyJ/FcBfHQ7/PQD/3GuuP2peJfUoh7onKtkRfefZtT66XE2y60Jo5vi5wgIFbhM8cF+ld6+/Ldhb\nfY1pmZ4bDQAZJm0yo6wJtDLSR7XT5w/A8r5g/n4Df/8Mulwhz8+QdYPkDMnmfDIidzVetyfOvWQ3\n6vm8ewAAF75JREFUid4JGmegcU7vtHsq/eH5ro1Vgr/RAs+qUjwVnKYNp7Th7XzBV9MFD+mKH00f\njaBUCr7PZ7VjS4tvb5JwzUmdWebQi8RepXWUwmhhO03UyQcqfEEs71NteLQ1XDHxwywVYWyixTgv\nNONjKUhU8CwzztC4ewLhRBMeeUGWgg/yEUmu+AlfcDJnXLZnvJYJm25Lq47Hn9Nm/8fe7jmo1O7e\nH9fretVef6RK8F0MPqjt/c1fMb5473rwYMzSmElkHH79LdVthMVqqM08whsDF42nT08aT58/Fkzv\nM9LTqnb6uqk0d2djSvub1JJGAmQF29CGto/7KH3Jn+PYJ1L9HTfmqc3F8QRL/e+41aiMeePnKeNx\n0cyuH50+4s10xbvpGV9Nz5gp42yJAG6rZlPZV2GT6ppMs5ZUnXFxCIfMeFTbIV3Wmret9PN9FI9v\nnvh9uG8tSY+XCZzVBPlJeotVEt7QFTN9jzNd8bVVrXPTwNFya0p4SCuuAzPZJN1lwJ+2bnz47k6d\nUTV+CRwTCd77iZBMwCSbdvai+Bnt8B0jeqUtX6+3T1fVx7it/oYaQ3ap52mr5XlC+sCYPxBOPxNM\nT4LzT1ZM313A3z1BPjwBxaR5KRrasuy2w6bVLsBrAWU2CU/NZn9ti+bT7vlvVAS2616XWATDsBec\n5g3nZcWPHz7inFb8ysO3eJsueJee8TY9AwASCjIYlzJjNUK/lAnXMuE5z7jmhEuesGYlgNFxNSaM\n+Pty1dvBLlPwoAPNiechuuprqYAZ2WkEzZ5v/gMgYSsJl5JwMo/8t+kBAHCVZET9sW3VDsGZVnyT\nPgIAvp6e8DEvWEX7KSBc8nR3rr+MuvE/Z6shLfu7xcKH/OAf1GlvR/bZVYOEG+Y3SoGX0H2xXlq2\nNFLe1CnHVyBdAb4W0EV3N5WSVTUHUHdOUdhY67SU9rcUc8wJOEuV7HWIbm6G57053jsOvEjwu+fz\na280MkJnUojrlApOKeOcVpzTihNvNTTlRL4a3lfjywmrJJPwvZSNnvWYR+6/vzZsCuBQRY7HaOj7\nyIM/Xutqvdvd3+cH/IRWrEg404aZClxeZxAYRUN0tAFJn3+mjEuZsNKBhhfaZ0uEuf07bi+Mo4kL\ndvAIAZWoOUiMtYdPdxb5i49+g0roff/eZazh7jnpcQG9ROh1X7BsAJqVkd4z5m8Jy3fA+WeGjvv2\nGfz+I+TpWR1y9dlJd1DhG04ZrXQB5Ay+bEgTIV1m8FVV+ls5AAzoho5hzqoGNDg04zMePasTeqsc\n0/9OtvtKSgXTlPH2fMHXp2e8nS/4lYdv8chX/OKsDqr2WIzvzUZ3B9VTXvCUZ2zCO/XbATNx3qMk\nP7atLfbO6FTwrXArIhm8/Xv1vWkFYwze4/NFCM9lwrUkZFH03ft8wu+mr/E2XfA78/dYaMM36SPO\npO99oYx3/IRfXf4Qq0x4FmV2326P+OkLzOWLluy7TLG4mDrpuVftR0ncnfcD29j/CJkdw0PdmF/R\narhtY5XqK5CugvRckC4FdF3VTjfVvWvMnQovwS4REZDYrqhZAJPsnBFU+eYPaX34w/WS+kWTBwcK\n1D3mHubKM9NmLjinDY/TFY98xWNSDPhMuYJMMggXmbCWVAl9k0aEQMia89JAIe8gVqE5Ig7PUnPn\nXwTdRBCO/9sDcEpP/FRQhDumMfb7nOfKKDZJVdK7b+KRL1go40wrEhWcecUiGUmKOiCTMr6fO+vt\nH1dzO91VuyPpcNTu1Y9rnvxwfvTaA1Ua+fcOZScu4MOYBjW8jd6/6jEvpBhLSb3meYBequfCKNcE\nXBnpiTB/EP33fgN/XKv3vRI8Wz0pJ3SmGn6rpY2sXpMAoG0DXzfIzEhXAa8wYI2GJwUDIZOFOcO8\nHvkl6rk+lTJsonnUyJinl2tOAk4ZD6crzvOGH58/4pcevtNkj6Squ6vorq4/lxnfbg/YSsIHk+gR\nEcekCaVTyrrttDQY7FHobXwvgNrNTOY575xgewx9bNVuh9aeS641mKc8C6mDz6T7JgmQRvgfeQFD\nsKQNP1nfYKKCHy8f8MhXfD19xDfpI2bKeMMXzHzBj/EeiQrebKr5zPSFVaqJbS8JB9AF0C+mQ4If\nj5lkazi56rU/lO7uxzM1dSR4v0e8f1c3jqR3uMWuO8mo1xfRDVCLaK56zgxcGXRlBc98BKYnAX9c\nwc9XyPNF1fecVVqXoup7bIHgww2V4HMB1g18Tbo3+kZ99tvBwm0ON//bv4T3ZeZLnOd7TK76P3Rv\nBCucmDFNBW+WFY/zFT86fcQvzB9w4g0nXpEgWCXhIoznMqttKqnG0j9sC6556jDtS4hxO+DGi1H4\nucDeaeeMwFX+bGMewTQey65EH1R3rvfOmKsn3iQ7xBB3vXawFa5RA0+ESlzwLWu5rA/bglPa8IvL\nCeuS8I6f8U36oA47fsKjFaz4UE4VV3/UPjmxj5VYgAMV8sDRc6/dZgJDqK7amy79xo5agkzQZQ/7\n/aOo6yNiLjrnINBdUTaAsyhR5gxs+ab6/qqmCeX2KV3ojQqh7u4ifa2AEbH4Q1pnPh04S30evMzS\nMmU8zi1908Ela5mwArjIpKqqqbdb0SQWjzXXAhGjA85CXwBjsgBWsUqvcaCebQZ2Fb5nWkeqen3W\nnQq/P0/NhlK95k7gmySsWZ9lzak+jwiBCmOlVPvzRJ4ihI+TJr888gUzKVPR+9yLsn/yuvGomUve\nxqqs6mBuqKru8uBA89akNN0gwCbliUQ9T6T6Qj1L0Kvzdp4CZJokj+NQ9V0nd3ymNra9bT/+njNr\nBZfVkl2uQLqIeuCfLcll26pU7+eDQkEJ71PapDiDyAW0ZWBTcA1vCGg6Ul5Anh+we4zerNnNb1D1\nB/Opk/QklbgcyLIs6pA7Txt+8fwBX83P+Gb6iEe+VufbKgkf8qlKvqgKFxioJEJgSTARgy30NVfu\npk3LOh+nkl49Jm9gnNjuYc53CDy7b6/GK/w0i+bPP+cZa0542hQgc90m5GKZd8O93l8WJBb87PKA\nP1je4u18waVMeJsuWB7Ujs/CONPaJduM7fOq8T9AKr6m3csoq7d0e9olvNsJB5fFjLhbuPj2gvXv\nUZP2e/bX+LmtbHY1H9S800QVEYuTy47Qf3CLkl3uS+vXIulutkjwwX9RLQFLgIpllh7SWmPb2UAy\nlzJpmM3i0ZFIb1WTudXcOeZSVo+134togcgipCg8Plb1KzwW+xCrH7uVmFNDbSVVr34Ww1gEQi+1\n2Ieu5xUJuQgST/U+P9sekcH4Lp/xjmM+++05+bTELiGBYPipi2cHyfvi66wL87ba3d8o4Oz9dHPa\nuVCsKmdV6alK+bHIRRw70JvOo6bRLy4lJi/VXFX4TePhnAWUC7BtSuhFNG11dMxRi6frvUgLRogc\nq/rS/pH4M+81qXuEHom3i1IM8zzOk9v4y7JhmTa8O13xxx6/xzmt+Gb+iMd0RRbG+3zCx7Lg2/UB\na0l4zlOHWutSRdGXfXZ7ueLY/e7Szgehs7HdO7/aPTZhXPJUv3vftciFMRoqgcDJUmoDYs77dcDL\nk4F9PmwLntYZW2Fc1paF5yadZ2460fuaW7eED2nBt+mMD6va8R+2E/746dv6bNex3lhonz3O3iCy\nL0vl+x3ToQS+V6Qy2vGHIaZq44/jvz9OJqDg5WfylyrFUkydCNuG3nfv0z8PazGFI9UiIgrx8ylU\nhwzY5h7Yaz8xjOe+Dt9x5TyteDddOs+7S/RrUeLYCuPZvO36KAIId8i2I0nrrYJsqJ3rhO6+gck8\n2HVDTXOmFRDYzQdyYhdsxWxpDgwmEDkbZt/7yMZ0PDFnzSrZ16xZeHUdCHXfHX1Y+XMhLTo6KQNa\npozfX97qM1gFm4zbvpxPSuxFCBcrtSQAUBiFCpq93dSXCmT5I7S7Nefdgyz+vbfjD/u7+cteeh/B\nY8dW4ostDBQNg/FGJtEFtGlqqpSyd85FqX5kPxiybneNx987D5p/pzofr63nd8TM9pGO1pdXojkv\nK75aLvjm9IRfPL03J5PmpV/KhO+2BzzlGe/Xk24FJa1Ci+PXHexyBEttYJa9/eqwVgAVyOJt8mqz\nUqrTa2WX7E3tjo62IlQz45TgMryEFFPBaozrkvVzzQlrKCzZEfdBI2qx+WIMYFsJT0K4rAW/w1/j\nu+sZi1XlueTbKLpPi40XwrpOWje+qOqcMzenz0gc/nd08ty9AfXnyD4eGkNndWHbtiJuO98au9vv\n99o9YjFNfMfBJZPZ6arKe0qq5qJLT0FHqjlRg72xAWjG3wOx9w9293EO5z4yv3sw2XZ7k5iW5PI4\nr/j69IRfXD7gl+bvlCgsln4pE77fTnjeZnxYlxqKcqKqGWnifbY01FOy6jVo6jNg4U0bTyLpCN4b\nk9R0WdAe9bZKc96NzkIPsc283+EGUPPgWhpW/7oZZj/Y5/1cqfYobmLae/DKQhmWMEXATwrju+mM\nOenmEdfyBanxeeNanEFs/YmbnkZQO8K/R2C+0H6gFrCDtLodf9DP0ZgoLIjBIa6eelAVtlECRgFc\nq+oAzTE38jy57V0NHd3+bWQOnU1ybJJ0MfaBkGk8bzeUPUNpRSj0+om0JpxKQkWIqS3cEGqbqHob\ns9Wag80ezSW6SdWuIozFtisuPozcCb16yofmhK/naGHMGbn1YVOazYbXAhqqYZyM2LfiZaX2iLs6\nj7SP0ITZrRiGui47U1M9S9l2ui3u4LuTQvxpJXshrM9T2zMM0IcggGwrXi1XBZBQX7zwTqMhfFcJ\nq2AndfoQmn66rSa1+CIO1X/vmzqitxrlNlZf7GNp4Zv2u9vppX2SO+diGO2oSTFpbl7BkTE4oRND\n2Bx3R/e35yPSUmGOMO3Th9vz3kr3jd1FjUCZpUl2LlaI4qKZbPwEwGqqScJq6akKNOnDUATAldQO\ng24AllPaQmy9xc9j9RpvkdCPbH11sJVOS8jCOMlWYbveTrzhbFVkHNTyfT5XyOu1qK2ei5oBvl60\nolDp5s19Qkq0tl02/D1L26HHtMJtTdjWBE8R/mKIHQIl9GL/SHo7ko4IN1wux8f1b9n9ptvhNsdd\nPO+I6KOCemvr5aYR9wUoxrJEo3Tfx6b9B/yw5hltbhP8vK0T1QdjvOOD2BWXlACXPVDtvQ8lCq+o\nalIWvWf8qEVJXh1haNsqV0ebSeYcVHEG76R7rfhaQ3E+lrKr9JrsmkIEFjMF7Pwzr1VDmUnj+F6p\nxu8/hvBqTsVgatY9Pqj5sWpSlqhqpPOLSvTKlOnmnHv79MS+cQVzNEIX/Y1NteeC6L09EkhRDd9X\nujFJ7dLmBYfTPXW0MQn9ZCtXTCRti1/SmHEJ99uobQHkLb58EVW7tokhC+m+bAuQFyAvjDRbNhsH\nh0sRhZqWouG4LFprLsKhnbsM6jsV2aMG3T5NXsJZP3de4WGeIoIwzpdvzzzOmye6TFwwp1JV7kQF\ns0E9H/kCloI36YK38wVMmuDh20MBqOWhJ2o16BxxNw1lmb0l62dsUWqPEFOGYDZ1fMSaF2FkYxq1\nfhytNWEF0NJQz2VGppZM4/OXSECG2Y+vI66JIkAhQeY+HFeKoy1JcQBCFRyJYqXB77RPbLOr11mN\ns2ZnE2sBBgWPuKRohOxccEyIib8RGjGNsFSgEV1nDrstaX+PGOh6HtCdo6ms2NUpr/BLiy5kqyU+\npkG6vTaljJQmlCSQSVAm6AYOiSCqMji+eD+VbVNyH9gLcw/UPeCq6u7/pHrKfU7VBGqWRGSoo3ZU\ni0sGH8RI7My6xdWINQeUaJzoFRO/oSTCc84dIXpRCf9M1JxiXoMdQFeDvU1435TR7JNGMqhpGfWz\njSGH+n6eX3/mtaagakXYCTNvSDLtfAxC/eYXtV8zWXzdGLJH78y9VitiPmXAkI9W2HOsQDS0T0vs\nGUjvueKzxTw2QoBMKrXkyiiTSpw8lW5BHqW4VhUnSpvx5UYJNU7GcN0uUebwfL2nZ70l23ivXiI9\nOKJeOpgkeUvYLprttjwT0jOBNi004RRGzEBKEN5ATb3oJXckdKaGDrXwHCW12QH1B/AqmJ6B9JFA\nG2GbZuRpUr8JSzAgm5TuEmGO+Mo9X4eZZ5dpQrJNC7+7nvGPrm/wfT4joVS03O89f4WfPj/ikid8\nuC6dQzNx21Z5Ns/8YskiC2csqVWXcZMgxrpjizZ79NrH34HjMJ5n1vk5zmz0N634+vuXd/i4Lfj+\nesJ3zyeUojv8jL6bxlCDFA+SHEC106U4sUCFZVybFr79YtR4KsD8HVk+tY3bAWCTSvcyCUQNJAgn\ns+Vvs6uqoTlTwI31dkTAfj63E+u1w+L1632uQaLbIZOod9Z33qx6WXgZrhqM48qKh+eVMH2wTSCu\nCMSqhI6UQJO9qkB5O2y8Sx3X/BPrsZTqNelaUK6E6aNg+Z6QZwAyKbNNwIHG2w/7HrEfMGNVuVQt\nLWnC+v+3dzahdRVRHP/9k5hIKtpEpcSm2IpFCYJWumjRhfiBtYhuXCguunBZsIogDa5cCqJ2IYIo\nLkRUrEVLForGrqMtitSmsZWKTWlMCtWC0tj4jouZuW9ePpqkifeDOz94vDcz994599w59505M3Nv\nG0xOd3C+s5uuzhkmuq9tafwXLnZx8R/3IsuZGfeC+cxLaIsChd4LiV/imA3N+feut3mvLXSnYi9v\nthfnXGjNY4ytzwuMyfr4fo2E0fyH/nu6k0s+eNaYbm/Gq+KRo9Amor63C9IGgw66VdaGm48CDzd+\nyw6Zec0LkK+xB6PzJ+KG28hGgBT68m3hZQJ+e2nOcG+WbrjG19IVnV1xqDPaP+SbvAKFc4VmXVNF\n+2bpsG3DXBfEhUyj4yqrU5FHYbOCj82LTLT9ZfwwaDX0lvwlroIjajBhqA/v+ZjNf1+N+jFN84nL\nW2+Ize38zgbZOgT/XMBGo7n6Kza8eDWgzfr3CnMzkGUToRo0F0/9KyET7W3OFbao+xfHU4AsKu7K\nyPrLRnTNaLrecx891uoJhGNl89z9XBILwejImCNlzm3QLe1BLe0vNvRst3Bt4j+WBdCKF1gsA0lT\nwF/AudwqXV1uoLqyQ7XlT7IvjZvN7Mb5CnI1dgBJh81sa66VrhJVlh2qLX+SfeUs3fdLJBKVJhl7\nIlETijD2twuoc7WosuxQbfmT7Csk9z57IpEohuTGJxI1IVdjl7RD0pikk5L25ln3cpG0QdIhScck\n/SRpj8/vlfSVpBP+u6doWRdCUruk7yUN+fQmSSNe/x9L6ixaxvmQtFbSfknHJY1K2l4VvUt63reX\no5I+lHR1WfSem7FLagfeBB4BBoCnJA3kVf8VMAO8YGYDwDZgt5d3LzBsZpuBYZ8uK3uA0Sj9CvC6\nmd0KnAeeKUSqxdkHfGFmtwN34s6h9HqXtB54FthqZnfg5jI+SVn07lYq/f8fYDvwZZQeBAbzqn8V\n5P8ceAgYA/p8Xh8wVrRsC8jbjzOK+4Eh3Dyrc0DHfNejLB/gOuAUPp4U5Zde78B64DTQi5udOgQ8\nXBa95+nGB0UExn1e6ZG0EdgCjADrzOysL5oA1hUk1mK8AbxIcyLv9cAfZhaem1RW/W8CpoD3fBfk\nHUlrqIDezewM8CrwG3AW+BM4Qkn0ngJ0iyDpGuBT4DkzuxCXmbtVl244Q9KjwKSZHSlaliugA7gb\neMvMtuCmV7e47CXWew/wOO6GdROwBthRqFAReRr7GWBDlO73eaVF0lU4Q//AzA747N8l9fnyPmCy\nKPkuwz3AY5J+BT7CufL7gLWSwuKnsup/HBg3sxGf3o8z/iro/UHglJlNmdkl4ADuWpRC73ka+3fA\nZh+Z7MQFLg7mWP+ykFtW9i4wamavRUUHgV3+9y5cX75UmNmgmfWb2Uacnr8xs6eBQ8ATfrOyyj4B\nnJZ0m896ADhGBfSOc9+3Ser27SfIXg695xzA2An8DPwCvFR0QGURWe/FuYo/Aj/4z05c33cYOAF8\nDfQWLesi53EfMOR/3wJ8C5wEPgG6ipZvAZnvAg573X8G9FRF78DLwHHgKPA+0FUWvacZdIlETUgB\nukSiJiRjTyRqQjL2RKImJGNPJGpCMvZEoiYkY08kakIy9kSiJiRjTyRqwn9THWN0tKolDgAAAABJ\nRU5ErkJggg==\n",
4835
            "text/plain": [
4836
              "<Figure size 432x288 with 1 Axes>"
4837
            ]
4838
          },
4839
          "metadata": {
4840
            "tags": []
4841
          }
4842
        }
4843
      ]
4844
    },
4845
    {
4846
      "cell_type": "markdown",
4847
      "metadata": {
4848
        "id": "nBKbxeVyMIpR",
4849
        "colab_type": "text"
4850
      },
4851
      "source": [
4852
        "# Variable selection"
4853
      ]
4854
    },
4855
    {
4856
      "cell_type": "markdown",
4857
      "metadata": {
4858
        "id": "EcRDqPYTePa9",
4859
        "colab_type": "text"
4860
      },
4861
      "source": [
4862
        " ## LASSO\n",
4863
        "\n",
4864
        " See https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html#cox.\n",
4865
        " Features are extracted in using the notebook ``lasso/FeatureSelectionLasso.ipynb``."
4866
      ]
4867
    },
4868
    {
4869
      "cell_type": "code",
4870
      "metadata": {
4871
        "id": "zoqET-Ij_uOI",
4872
        "colab_type": "code",
4873
        "colab": {}
4874
      },
4875
      "source": [
4876
        "input_train, output_train, input_test = load_owkin_data()\n",
4877
        "std_input_train, std_input_test = normalizing_input(input_train, input_test)\n",
4878
        "std_input_train.to_csv('MergedStdTrainingInput.csv')"
4879
      ],
4880
      "execution_count": 0,
4881
      "outputs": []
4882
    },
4883
    {
4884
      "cell_type": "code",
4885
      "metadata": {
4886
        "id": "32h74yGzX1zG",
4887
        "colab_type": "code",
4888
        "colab": {}
4889
      },
4890
      "source": [
4891
        "# Variables \n",
4892
        "\n",
4893
        "lasso_features_lamb_lse = ['original_shape_Maximum3DDiameter',\n",
4894
        "            'original_shape_VoxelVolume',\n",
4895
        "            'original_firstorder_Maximum',\n",
4896
        "            'original_firstorder_Mean',\n",
4897
        "            'original_glcm_ClusterProminence',\n",
4898
        "            'original_glrlm_GrayLevelNonUniformity',\n",
4899
        "            'original_glrlm_RunPercentage',\n",
4900
        "            'Mstage',\n",
4901
        "            'Nstage',\n",
4902
        "            'SourceDataset',\n",
4903
        "            'age',\n",
4904
        "            'Histology_nos']\n",
4905
        "\n",
4906
        "lasso_features_lamb_min = ['original_shape_Maximum3DDiameter',\n",
4907
        "        'original_shape_VoxelVolume',\n",
4908
        "        'original_firstorder_Maximum',\n",
4909
        "        'original_firstorder_Mean',\n",
4910
        "        'original_glcm_ClusterProminence',\n",
4911
        "        'original_glrlm_GrayLevelNonUniformity',\n",
4912
        "        'original_glrlm_RunPercentage',\n",
4913
        "        'Mstage',\n",
4914
        "        'Nstage',\n",
4915
        "        'SourceDataset',\n",
4916
        "        'age',\n",
4917
        "        'Histology_nos']\n",
4918
        "\n",
4919
        "lasso_features_fabrice = ['Mstage',\n",
4920
        "            'Nstage',\n",
4921
        "            'SourceDataset',\n",
4922
        "            'age',\n",
4923
        "            'original_shape_VoxelVolume',\n",
4924
        "            'original_firstorder_Maximum',\n",
4925
        "            'original_firstorder_Mean',\n",
4926
        "            'original_glcm_ClusterProminence',\n",
4927
        "            'original_glcm_Idm',\n",
4928
        "            'original_glcm_Idn',\n",
4929
        "            'original_glrlm_RunPercentage']       "
4930
      ],
4931
      "execution_count": 0,
4932
      "outputs": []
4933
    },
4934
    {
4935
      "cell_type": "code",
4936
      "metadata": {
4937
        "id": "4oJZiqYomTx1",
4938
        "colab_type": "code",
4939
        "colab": {}
4940
      },
4941
      "source": [
4942
        "input = \"original_shape_Maximum3DDiameter''original_shape_VoxelVolume''original_firstorder_Maximum''original_firstorder_Mean''original_glcm_ClusterProminence''original_glrlm_GrayLevelNonUniformity''original_glrlm_RunPercentage''Mstage''Nstage''SourceDataset''age''Histology_nos\"\n",
4943
        "features = input.split('\\'\\'')\n",
4944
        "features"
4945
      ],
4946
      "execution_count": 0,
4947
      "outputs": []
4948
    },
4949
    {
4950
      "cell_type": "markdown",
4951
      "metadata": {
4952
        "id": "7HwOUIJzeSHw",
4953
        "colab_type": "text"
4954
      },
4955
      "source": [
4956
        "## Cross correlation"
4957
      ]
4958
    },
4959
    {
4960
      "cell_type": "markdown",
4961
      "metadata": {
4962
        "id": "PmE1qhmeeJp3",
4963
        "colab_type": "text"
4964
      },
4965
      "source": [
4966
        "# Random surivival forest"
4967
      ]
4968
    },
4969
    {
4970
      "cell_type": "code",
4971
      "metadata": {
4972
        "id": "2kYjuIzieuZZ",
4973
        "colab_type": "code",
4974
        "colab": {}
4975
      },
4976
      "source": [
4977
        "!pip install scikit-survival\n",
4978
        "from sksurv.ensemble import RandomSurvivalForest\n",
4979
        "from sklearn.model_selection import cross_validate"
4980
      ],
4981
      "execution_count": 0,
4982
      "outputs": []
4983
    },
4984
    {
4985
      "cell_type": "code",
4986
      "metadata": {
4987
        "id": "C7QU5wqnee6n",
4988
        "colab_type": "code",
4989
        "colab": {}
4990
      },
4991
      "source": [
4992
        "def load_data(features=None):\n",
4993
        "    \"\"\" Load data for RSF usage \"\"\"\n",
4994
        "    X_df, y_df, _ = load_owkin_data()\n",
4995
        "    if features != None:\n",
4996
        "        X_df = X_df[features]\n",
4997
        "    X = X_df.to_numpy()\n",
4998
        "    y = y_dataframe_to_rsf_input(y_df)\n",
4999
        "    return X_df, y_df, X, y\n",
5000
        "\n",
5001
        "X_df, y_df, X, y = load_data(lasso_features_bis)\n",
5002
        "feature_name = list(X_df.columns.values)\n",
5003
        "\n",
5004
        "\"\"\"\n",
5005
        "Train model\n",
5006
        "\"\"\"\n",
5007
        "params = {'min_samples_leaf': 1, 'min_samples_split': 10, 'n_estimators': 10}\n",
5008
        "rsf = RandomSurvivalForest(n_estimators = params['n_estimators'],\n",
5009
        "                           min_samples_split = params['min_samples_split'],\n",
5010
        "                           min_samples_leaf = params['min_samples_leaf'],\n",
5011
        "                           max_features=\"sqrt\",\n",
5012
        "                           n_jobs=-1\n",
5013
        "                           )\n",
5014
        "cross_validate(rsf, X, y, cv=5)"
5015
      ],
5016
      "execution_count": 0,
5017
      "outputs": []
5018
    },
5019
    {
5020
      "cell_type": "markdown",
5021
      "metadata": {
5022
        "id": "snNqNg37eWZd",
5023
        "colab_type": "text"
5024
      },
5025
      "source": [
5026
        "# CoxPH"
5027
      ]
5028
    },
5029
    {
5030
      "cell_type": "code",
5031
      "metadata": {
5032
        "id": "T0E1Oj9tjv0R",
5033
        "colab_type": "code",
5034
        "colab": {}
5035
      },
5036
      "source": [
5037
        "# Prediction\n",
5038
        "def predict(model, X, threshold=0.9):\n",
5039
        "    prediction = model.predict_survival_function(X)\n",
5040
        "    y_pred = []\n",
5041
        "    for pred in prediction:\n",
5042
        "        time = pred.x\n",
5043
        "        survival_prob = pred.y\n",
5044
        "        i_pred = 0\n",
5045
        "        while i_pred < len(survival_prob) - 1 and survival_prob[i_pred] > threshold:\n",
5046
        "            i_pred += 1\n",
5047
        "        y_pred.append(time[i_pred])\n",
5048
        "    return pd.DataFrame(np.array([[y, np.nan] for y in y_pred]), index=X.index, columns=['SurvivalTime', 'Event'])"
5049
      ],
5050
      "execution_count": 0,
5051
      "outputs": []
5052
    },
5053
    {
5054
      "cell_type": "markdown",
5055
      "metadata": {
5056
        "id": "k4f4-xuEeYU7",
5057
        "colab_type": "text"
5058
      },
5059
      "source": [
5060
        "## Baseline"
5061
      ]
5062
    },
5063
    {
5064
      "cell_type": "code",
5065
      "metadata": {
5066
        "id": "S2dMf-ywfWCi",
5067
        "colab_type": "code",
5068
        "colab": {}
5069
      },
5070
      "source": [
5071
        "features_baseline = ['original_shape_Sphericity', 'original_shape_SurfaceVolumeRatio',\n",
5072
        "                      'original_shape_Maximum3DDiameter', 'original_glcm_JointEntropy', 'original_glcm_Id',\n",
5073
        "                      'original_glcm_Idm', 'SourceDataset', 'Nstage']"
5074
      ],
5075
      "execution_count": 0,
5076
      "outputs": []
5077
    },
5078
    {
5079
      "cell_type": "code",
5080
      "metadata": {
5081
        "id": "gKUGXNN8CuXo",
5082
        "colab_type": "code",
5083
        "colab": {}
5084
      },
5085
      "source": [
5086
        "!pip install scikit-survival\n",
5087
        "from sksurv.linear_model import CoxPHSurvivalAnalysis\n",
5088
        "from sklearn.model_selection import cross_validate, RandomizedSearchCV\n",
5089
        "from sksurv.util import Surv"
5090
      ],
5091
      "execution_count": 0,
5092
      "outputs": []
5093
    },
5094
    {
5095
      "cell_type": "code",
5096
      "metadata": {
5097
        "id": "yv6zkCI2fqQZ",
5098
        "colab_type": "code",
5099
        "colab": {}
5100
      },
5101
      "source": [
5102
        "\"\"\" Select features \"\"\"\n",
5103
        "features = lasso_features_lamb_lse\n",
5104
        "\n",
5105
        "# Read data\n",
5106
        "input_train, output_train, input_test = load_owkin_data()\n",
5107
        "input_train = input_train[features]\n",
5108
        "input_test = input_test[features]\n",
5109
        "input_train, input_test = normalizing_input(input_train, input_test)\n",
5110
        "structured_y = Surv.from_dataframe('Event', 'SurvivalTime', output_train)\n",
5111
        "\n",
5112
        "# Grid search\n",
5113
        "tuned_params = {\"alpha\": np.linspace(0.5, 4, 1000)\n",
5114
        "                }\n",
5115
        "grid_search = RandomizedSearchCV(CoxPHSurvivalAnalysis(), tuned_params, cv=5, n_jobs=-1, n_iter=500)\n",
5116
        "grid_search.fit(input_train, structured_y)\n",
5117
        "print(grid_search.best_score_)\n",
5118
        "best_params = grid_search.best_params_\n",
5119
        "print(best_params)"
5120
      ],
5121
      "execution_count": 0,
5122
      "outputs": []
5123
    },
5124
    {
5125
      "cell_type": "markdown",
5126
      "metadata": {
5127
        "id": "2TKzalaoeaPy",
5128
        "colab_type": "text"
5129
      },
5130
      "source": [
5131
        "## Coxnet"
5132
      ]
5133
    },
5134
    {
5135
      "cell_type": "code",
5136
      "metadata": {
5137
        "id": "TwRqdT5MkGLL",
5138
        "colab_type": "code",
5139
        "colab": {}
5140
      },
5141
      "source": [
5142
        "from sksurv.linear_model import CoxnetSurvivalAnalysis\n",
5143
        "from sklearn.model_selection import cross_validate, RandomizedSearchCV\n",
5144
        "from sksurv.util import Surv"
5145
      ],
5146
      "execution_count": 0,
5147
      "outputs": []
5148
    },
5149
    {
5150
      "cell_type": "code",
5151
      "metadata": {
5152
        "id": "SoNggMuAjptq",
5153
        "colab_type": "code",
5154
        "colab": {}
5155
      },
5156
      "source": [
5157
        "\"\"\" Select features \"\"\"\n",
5158
        "features = high_importance_features_save\n",
5159
        "\n",
5160
        "# Read data\n",
5161
        "input_train, output_train, input_test = load_owkin_data()\n",
5162
        "input_train = input_train[features]\n",
5163
        "input_test = input_test[features]\n",
5164
        "input_train, input_test = normalizing_input(input_train, input_test)\n",
5165
        "structured_y = Surv.from_dataframe('Event', 'SurvivalTime', output_train)\n",
5166
        "\n",
5167
        "# Grid search\n",
5168
        "tuned_params = {\"l1_ratio\": np.linspace(0.0027, 0.0028, 1000),\n",
5169
        "                \"n_alphas\": range(65, 75, 1),\n",
5170
        "                }\n",
5171
        "grid_search = RandomizedSearchCV(CoxnetSurvivalAnalysis(), tuned_params, cv=5, n_jobs=-1, n_iter=500)\n",
5172
        "grid_search.fit(input_train, structured_y)\n",
5173
        "print(grid_search.best_score_)\n",
5174
        "best_params = grid_search.best_params_\n",
5175
        "print(best_params)"
5176
      ],
5177
      "execution_count": 0,
5178
      "outputs": []
5179
    },
5180
    {
5181
      "cell_type": "code",
5182
      "metadata": {
5183
        "id": "qHLKtGZPj_00",
5184
        "colab_type": "code",
5185
        "colab": {}
5186
      },
5187
      "source": [
5188
        "# Prediction\n",
5189
        "def predict(model, X, threshold=0.9):\n",
5190
        "    prediction = model.predict_survival_function(X)\n",
5191
        "    y_pred = []\n",
5192
        "    for pred in prediction:\n",
5193
        "        time = pred.x\n",
5194
        "        survival_prob = pred.y\n",
5195
        "        i_pred = 0\n",
5196
        "        while i_pred < len(survival_prob) - 1 and survival_prob[i_pred] > threshold:\n",
5197
        "            i_pred += 1\n",
5198
        "        y_pred.append(time[i_pred])\n",
5199
        "    return pd.DataFrame(np.array([[y, np.nan] for y in y_pred]), index=X.index, columns=['SurvivalTime', 'Event'])\n",
5200
        "\n",
5201
        "coxph = CoxnetSurvivalAnalysis(**best_params, fit_baseline_model=True)\n",
5202
        "coxph.fit(input_train, structured_y)\n",
5203
        "y_pred = predict(coxph, input_test)\n",
5204
        "y_pred.to_csv('submission.csv')"
5205
      ],
5206
      "execution_count": 0,
5207
      "outputs": []
5208
    },
5209
    {
5210
      "cell_type": "markdown",
5211
      "metadata": {
5212
        "id": "UpruQnDZXc4u",
5213
        "colab_type": "text"
5214
      },
5215
      "source": [
5216
        "# AutoML"
5217
      ]
5218
    },
5219
    {
5220
      "cell_type": "code",
5221
      "metadata": {
5222
        "id": "R48O-V4HYmi3",
5223
        "colab_type": "code",
5224
        "colab": {}
5225
      },
5226
      "source": [
5227
        "!sudo apt-get install build-essential swig\n",
5228
        "!pip install auto-sklearn"
5229
      ],
5230
      "execution_count": 0,
5231
      "outputs": []
5232
    },
5233
    {
5234
      "cell_type": "code",
5235
      "metadata": {
5236
        "id": "O-N3j3J7Z-qh",
5237
        "colab_type": "code",
5238
        "colab": {}
5239
      },
5240
      "source": [
5241
        "import autosklearn.regression"
5242
      ],
5243
      "execution_count": 0,
5244
      "outputs": []
5245
    },
5246
    {
5247
      "cell_type": "code",
5248
      "metadata": {
5249
        "id": "EL1SS7JrYJba",
5250
        "colab_type": "code",
5251
        "colab": {}
5252
      },
5253
      "source": [
5254
        "from sklearn.model_selection import ShuffleSplit\n",
5255
        "from sklearn.model_selection._split import BaseShuffleSplit, _validate_shuffle_split\n",
5256
        "from sklearn.utils import check_random_state\n",
5257
        "from sklearn.utils.validation import _num_samples   "
5258
      ],
5259
      "execution_count": 0,
5260
      "outputs": []
5261
    },
5262
    {
5263
      "cell_type": "code",
5264
      "metadata": {
5265
        "id": "RZR5-L6IYhHD",
5266
        "colab_type": "code",
5267
        "colab": {}
5268
      },
5269
      "source": [
5270
        "random_state = 42\n",
5271
        "val_size = 0.2\n",
5272
        "n_splits = 1\n",
5273
        "time_left_for_this_task = 600 #60 #600 # default : 3600 # in seconds\n",
5274
        "per_run_time_limit = 30 #30 # default : 360 # in seconds"
5275
      ],
5276
      "execution_count": 0,
5277
      "outputs": []
5278
    },
5279
    {
5280
      "cell_type": "code",
5281
      "metadata": {
5282
        "id": "xKKuxBjga-oV",
5283
        "colab_type": "code",
5284
        "colab": {}
5285
      },
5286
      "source": [
5287
        "\"\"\" Choose features for Autosklearn \"\"\"\n",
5288
        "feat_ = all_features\n",
5289
        "\n",
5290
        "input_train, output_train, input_test = load_owkin_data()\n",
5291
        "input_train, input_test = normalizing_input(input_train, input_test)\n",
5292
        "input_train = input_train[feat_]\n",
5293
        "input_test = input_test[feat_]"
5294
      ],
5295
      "execution_count": 0,
5296
      "outputs": []
5297
    },
5298
    {
5299
      "cell_type": "code",
5300
      "metadata": {
5301
        "id": "_O22QceTa2-h",
5302
        "colab_type": "code",
5303
        "colab": {}
5304
      },
5305
      "source": [
5306
        "class ShuffleSplit(BaseShuffleSplit):\n",
5307
        "    \n",
5308
        "    def __init__(self, n_splits=10, test_size=None, train_size=None,\n",
5309
        "                 random_state=None):\n",
5310
        "        n_splits = 1 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!! PROBLEM : n_splits stays at 10 even when changing default value\n",
5311
        "\n",
5312
        "        super().__init__(\n",
5313
        "            n_splits=n_splits,\n",
5314
        "            test_size=test_size,\n",
5315
        "            train_size=train_size,\n",
5316
        "            random_state=random_state)\n",
5317
        "        self._default_test_size = 0.1\n",
5318
        "\n",
5319
        "    def _iter_indices(self, X, y=None, groups=None):\n",
5320
        "        n_samples = _num_samples(X)\n",
5321
        "        n_train, n_test = _validate_shuffle_split(\n",
5322
        "            n_samples, self.test_size, self.train_size,\n",
5323
        "            default_test_size=self._default_test_size)\n",
5324
        "\n",
5325
        "        rng = check_random_state(self.random_state)\n",
5326
        "        for i in range(self.n_splits):\n",
5327
        "            # random partition\n",
5328
        "            permutation = rng.permutation(n_samples)\n",
5329
        "            ind_test = permutation[:n_test]\n",
5330
        "            ind_train = permutation[n_test:(n_test + n_train)]\n",
5331
        "            yield ind_train, ind_test"
5332
      ],
5333
      "execution_count": 0,
5334
      "outputs": []
5335
    },
5336
    {
5337
      "cell_type": "code",
5338
      "metadata": {
5339
        "id": "_U9BIzsta4OH",
5340
        "colab_type": "code",
5341
        "colab": {}
5342
      },
5343
      "source": [
5344
        "suffle_split = ShuffleSplit(n_splits=n_splits, test_size=val_size, random_state=random_state)\n",
5345
        "ind_train, ind_val = [_tuple for _tuple in suffle_split._iter_indices(input_train, \n",
5346
        "                                                                      y=output_train[\"SurvivalTime\"], \n",
5347
        "                                                                      groups=None)][0]\n",
5348
        "n_train = len(ind_train)\n",
5349
        "n_val = len(ind_val)\n",
5350
        "print(\"n_train\", n_train)\n",
5351
        "print(\"n_val\", n_val)"
5352
      ],
5353
      "execution_count": 0,
5354
      "outputs": []
5355
    },
5356
    {
5357
      "cell_type": "code",
5358
      "metadata": {
5359
        "id": "iqLRrqxVYlQ0",
5360
        "colab_type": "code",
5361
        "colab": {}
5362
      },
5363
      "source": [
5364
        "automl = autosklearn.regression.AutoSklearnRegressor(time_left_for_this_task=time_left_for_this_task, # in seconds\n",
5365
        "                                                     per_run_time_limit=per_run_time_limit,\n",
5366
        "                                                     resampling_strategy=ShuffleSplit,\n",
5367
        "                                                     resampling_strategy_arguments={'n_splits': n_splits,\n",
5368
        "                                                                                    'test_size': val_size,\n",
5369
        "                                                                                    'random_state': random_state})"
5370
      ],
5371
      "execution_count": 0,
5372
      "outputs": []
5373
    },
5374
    {
5375
      "cell_type": "code",
5376
      "metadata": {
5377
        "id": "_SrMT4fSaA7l",
5378
        "colab_type": "code",
5379
        "colab": {}
5380
      },
5381
      "source": [
5382
        "available_models = [model_name for model_name in autosklearn.pipeline.components.regression._regressors]\n",
5383
        "print(\"Available models in AutoSklearnRegressor : \")\n",
5384
        "available_models"
5385
      ],
5386
      "execution_count": 0,
5387
      "outputs": []
5388
    },
5389
    {
5390
      "cell_type": "code",
5391
      "metadata": {
5392
        "id": "UU8x0IyVaJxF",
5393
        "colab_type": "code",
5394
        "colab": {}
5395
      },
5396
      "source": [
5397
        "def my_cindex(y_true, y_pred, patient_ids, events, ind_train, ind_val, n_train, n_val, print_cindex=True):\n",
5398
        "    y_true = y_true.ravel()\n",
5399
        "    y_pred = y_pred.ravel()\n",
5400
        "    \n",
5401
        "    if len(y_true)==n_train:\n",
5402
        "        ind = ind_train\n",
5403
        "    elif len(y_true)==n_val:\n",
5404
        "        ind = ind_val\n",
5405
        "    else:\n",
5406
        "        raise Exception(\"y_true.shape={} but should be either {} or {}\".format(y_true.shape, n_train, n_val))\n",
5407
        "\n",
5408
        "    df_y_true = pd.DataFrame({\"PatientID\": patient_ids[ind],\n",
5409
        "                              \"SurvivalTime\": y_true,\n",
5410
        "                              \"Event\": events[ind]\n",
5411
        "                             })\n",
5412
        "    df_y_true = df_y_true.set_index(\"PatientID\")\n",
5413
        "\n",
5414
        "    df_y_pred = pd.DataFrame({\"PatientID\": patient_ids[ind],\n",
5415
        "                              \"SurvivalTime\": y_pred,\n",
5416
        "                              \"Event\": events[ind]*np.nan # because \"`Event`column, whose value does not matter\" in metrics_t9gbvr2.py\n",
5417
        "                             })\n",
5418
        "    df_y_pred = df_y_pred.set_index(\"PatientID\")\n",
5419
        "    \n",
5420
        "    cindex_value = cindex(df_y_true, df_y_pred)\n",
5421
        "    \n",
5422
        "    if print_cindex:\n",
5423
        "        if len(y_true)==n_train:\n",
5424
        "            print(\"train_cindex\", cindex_value)\n",
5425
        "        else:\n",
5426
        "            print(\"val_cindex\", cindex_value)\n",
5427
        "        \n",
5428
        "    return cindex_value\n",
5429
        "\n",
5430
        "\n",
5431
        "cindex_scorer = autosklearn.metrics.make_scorer(name=\"cindex\",\n",
5432
        "                                                score_func=my_cindex,\n",
5433
        "                                                optimum=1,\n",
5434
        "                                                greater_is_better=True,\n",
5435
        "                                                needs_proba=False,\n",
5436
        "                                                needs_threshold=False,\n",
5437
        "                                                patient_ids = output_train.index.values,\n",
5438
        "                                                events = output_train[\"Event\"].values,\n",
5439
        "                                                ind_train = ind_train,\n",
5440
        "                                                ind_val = ind_val,\n",
5441
        "                                                n_train = n_train,\n",
5442
        "                                                n_val = n_val,\n",
5443
        "                                                print_cindex=False)"
5444
      ],
5445
      "execution_count": 0,
5446
      "outputs": []
5447
    },
5448
    {
5449
      "cell_type": "code",
5450
      "metadata": {
5451
        "id": "UWLNMLjHaExs",
5452
        "colab_type": "code",
5453
        "colab": {}
5454
      },
5455
      "source": [
5456
        "import time\n",
5457
        "start_time = time.time()\n",
5458
        "automl.fit(input_train.copy(), \n",
5459
        "           output_train[\"SurvivalTime\"].copy(),\n",
5460
        "           metric=cindex_scorer)\n",
5461
        "execution_time = time.time()-start_time"
5462
      ],
5463
      "execution_count": 0,
5464
      "outputs": []
5465
    },
5466
    {
5467
      "cell_type": "code",
5468
      "metadata": {
5469
        "id": "0Jl_Nck-deav",
5470
        "colab_type": "code",
5471
        "colab": {}
5472
      },
5473
      "source": [
5474
        "execution_time"
5475
      ],
5476
      "execution_count": 0,
5477
      "outputs": []
5478
    },
5479
    {
5480
      "cell_type": "code",
5481
      "metadata": {
5482
        "id": "QHgiub_Sdh8T",
5483
        "colab_type": "code",
5484
        "colab": {}
5485
      },
5486
      "source": [
5487
        "print(automl.sprint_statistics())"
5488
      ],
5489
      "execution_count": 0,
5490
      "outputs": []
5491
    },
5492
    {
5493
      "cell_type": "code",
5494
      "metadata": {
5495
        "id": "zdHztXV_cU-L",
5496
        "colab_type": "code",
5497
        "colab": {}
5498
      },
5499
      "source": [
5500
        "start_time = time.time()\n",
5501
        "automl.refit(input_train.iloc[ind_train].copy(), output_train.iloc[ind_train][\"SurvivalTime\"].copy())\n",
5502
        "execution_time = time.time()-start_time\n",
5503
        "print(\"execution_time\", execution_time)"
5504
      ],
5505
      "execution_count": 0,
5506
      "outputs": []
5507
    },
5508
    {
5509
      "cell_type": "code",
5510
      "metadata": {
5511
        "id": "VngBx3HuceFf",
5512
        "colab_type": "code",
5513
        "colab": {}
5514
      },
5515
      "source": [
5516
        "print(\"resampling_strategy :\", automl.resampling_strategy.__name__)\n",
5517
        "print(automl.sprint_statistics())"
5518
      ],
5519
      "execution_count": 0,
5520
      "outputs": []
5521
    },
5522
    {
5523
      "cell_type": "code",
5524
      "metadata": {
5525
        "id": "KjQUqWkNXd4d",
5526
        "colab_type": "code",
5527
        "colab": {}
5528
      },
5529
      "source": [
5530
        "y_test_pred = automl.predict(input_test)\n",
5531
        "y_pred_df = pd.DataFrame(np.array([[y, np.nan] for y in y_test_pred]), index=input_test.index, columns=['SurvivalTime', 'Event'])\n",
5532
        "y_pred_df.to_csv('submission.csv')"
5533
      ],
5534
      "execution_count": 0,
5535
      "outputs": []
5536
    },
5537
    {
5538
      "cell_type": "code",
5539
      "metadata": {
5540
        "id": "xazNCneScNOV",
5541
        "colab_type": "code",
5542
        "colab": {}
5543
      },
5544
      "source": [
5545
        ""
5546
      ],
5547
      "execution_count": 0,
5548
      "outputs": []
5549
    },
5550
    {
5551
      "cell_type": "markdown",
5552
      "metadata": {
5553
        "id": "oSR7n7hzeMsb",
5554
        "colab_type": "text"
5555
      },
5556
      "source": [
5557
        "End"
5558
      ]
5559
    }
5560
  ]
5561
}