import os
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
class ChestDataset(Dataset):
def __init__(self, image_dir, mask_dir, transform=None):
super(ChestDataset, self).__init__()
self.image_dir = image_dir
self.mask_dir = mask_dir
self.transform = transform
self.images = os.listdir(image_dir)
self.masked_images = os.listdir(mask_dir)
def __len__(self):
return len(self.images)
def __getitem__(self, index):
img_path = os.path.join(self.image_dir, self.images[index])
mask_path = os.path.join(self.mask_dir, self.masked_images[index])
image = np.array(Image.open(img_path).convert('RGB'), dtype=np.float32)
mask = np.array(Image.open(mask_path).convert('L'), dtype=np.float32)
#mask[mask == 255.0] = 1.0
if self.transform is not None:
augmentation = self.transform(image=image, mask=mask)
image = augmentation['image']
mask = augmentation['mask']
return image, mask