|
a |
|
b/train.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torch.optim as optim |
|
|
4 |
|
|
|
5 |
import albumentations as A |
|
|
6 |
from albumentations.pytorch import ToTensorV2 |
|
|
7 |
|
|
|
8 |
from tqdm import tqdm |
|
|
9 |
from UNET import UNET |
|
|
10 |
from utils import ( |
|
|
11 |
load_checkpoint, |
|
|
12 |
save_checkpoint, |
|
|
13 |
get_loaders, |
|
|
14 |
check_accuracy, |
|
|
15 |
save_predictions_as_images |
|
|
16 |
) |
|
|
17 |
|
|
|
18 |
learning_rate = 1e-04 |
|
|
19 |
batch_size = 16 |
|
|
20 |
num_epochs = 3 |
|
|
21 |
num_workers = 2 |
|
|
22 |
image_height = 160 |
|
|
23 |
image_width = 240 |
|
|
24 |
pin_memory = True |
|
|
25 |
load_model = False |
|
|
26 |
train_img_dir = 'dataset/image/' |
|
|
27 |
train_mask_dir = 'dataset/mask/' |
|
|
28 |
test_img_dir = 'dataset/test_image/' |
|
|
29 |
test_mask_dir = 'dataset/test_mask/' |
|
|
30 |
|
|
|
31 |
def train_fn(loader, model, optimizer, loss_fn, scaler): |
|
|
32 |
loop = tqdm(loader) |
|
|
33 |
|
|
|
34 |
for batch_idx, (data, targets) in enumerate(loop): |
|
|
35 |
targets = targets.float().unsqueeze(1) |
|
|
36 |
|
|
|
37 |
# Forward |
|
|
38 |
with torch.cuda.amp.autocast(): |
|
|
39 |
predictions = model(data) |
|
|
40 |
loss = loss_fn(predictions, targets) |
|
|
41 |
|
|
|
42 |
# Backward |
|
|
43 |
optimizer.zero_grad() |
|
|
44 |
scaler.scale(loss).backward() |
|
|
45 |
scaler.step(optimizer) |
|
|
46 |
scaler.update() |
|
|
47 |
|
|
|
48 |
#update tqdm_loop |
|
|
49 |
loop.set_postfix(loss=loss.item()) |
|
|
50 |
|
|
|
51 |
def main(): |
|
|
52 |
train_transform = A.Compose( |
|
|
53 |
[ |
|
|
54 |
A.Resize(height=image_height, width=image_width), |
|
|
55 |
A.Rotate(limit=35, p=1.0), |
|
|
56 |
A.HorizontalFlip(p=0.5), |
|
|
57 |
A.VerticalFlip(p=0.1), |
|
|
58 |
A.Normalize( |
|
|
59 |
mean=[0.0,0.0,0.0], |
|
|
60 |
std=[1.0,1.0,1.0], |
|
|
61 |
max_pixel_value=255.0 |
|
|
62 |
), |
|
|
63 |
ToTensorV2() |
|
|
64 |
] |
|
|
65 |
) |
|
|
66 |
|
|
|
67 |
test_transforms = A.Compose( |
|
|
68 |
[ |
|
|
69 |
A.Resize(height=image_height, width=image_width), |
|
|
70 |
A.Normalize( |
|
|
71 |
mean=[0.0,0.0,0.0], |
|
|
72 |
std=[1.0,1.0,1.0], |
|
|
73 |
max_pixel_value=255.0 |
|
|
74 |
), |
|
|
75 |
ToTensorV2() |
|
|
76 |
] |
|
|
77 |
) |
|
|
78 |
|
|
|
79 |
model = UNET(in_channels=3, out_channels=1) |
|
|
80 |
loss_fn = nn.BCEWithLogitsLoss() #Since we are not doing Sigmoid on the output of the model. |
|
|
81 |
optimizer = optim.Adam(model.parameters(), lr=learning_rate) |
|
|
82 |
|
|
|
83 |
train_loader, test_loader = get_loaders( |
|
|
84 |
train_img_dir, |
|
|
85 |
train_mask_dir, |
|
|
86 |
test_img_dir, |
|
|
87 |
test_mask_dir, |
|
|
88 |
batch_size, |
|
|
89 |
train_transform, |
|
|
90 |
test_transforms, |
|
|
91 |
num_workers, |
|
|
92 |
pin_memory |
|
|
93 |
) |
|
|
94 |
|
|
|
95 |
if load_model: |
|
|
96 |
load_checkpoint(torch.load('my_checkpoint.pth.tar'), model) |
|
|
97 |
|
|
|
98 |
check_accuracy(test_loader, model) |
|
|
99 |
scaler = torch.cuda.amp.GradScaler() |
|
|
100 |
for epoch in range(num_epochs): |
|
|
101 |
train_fn(train_loader, model, optimizer, loss_fn, scaler) |
|
|
102 |
checkpoint = { |
|
|
103 |
'state_dict': model.state_dict(), |
|
|
104 |
'optimizer': optimizer.state_dict() |
|
|
105 |
} |
|
|
106 |
save_checkpoint(checkpoint) |
|
|
107 |
check_accuracy(test_loader, model) |
|
|
108 |
save_predictions_as_images(test_loader, model, folder='saved_images/') |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
if __name__ == "__main__": |
|
|
112 |
main() |