a b/dataset.py
1
import os
2
from PIL import Image
3
from torch.utils.data import Dataset
4
import numpy as np
5
6
class ChestDataset(Dataset):
7
    def __init__(self, image_dir, mask_dir, transform=None):
8
        super(ChestDataset, self).__init__()
9
        self.image_dir = image_dir
10
        self.mask_dir = mask_dir
11
        self.transform = transform
12
        self.images = os.listdir(image_dir)
13
        self.masked_images = os.listdir(mask_dir)
14
15
    def __len__(self):
16
        return len(self.images)
17
18
    def __getitem__(self, index):
19
        img_path = os.path.join(self.image_dir, self.images[index])
20
        mask_path = os.path.join(self.mask_dir, self.masked_images[index])
21
        image = np.array(Image.open(img_path).convert('RGB'), dtype=np.float32)
22
        mask = np.array(Image.open(mask_path).convert('L'), dtype=np.float32)
23
        #mask[mask == 255.0] = 1.0
24
25
        if self.transform is not None:
26
            augmentation = self.transform(image=image, mask=mask)
27
            image = augmentation['image']
28
            mask = augmentation['mask']
29
30
        return image, mask