[14ef49]: / Colab Notebooks / Deeptek-Task Binary Classification-DenseNet121.ipynb

Download this file

1 lines (1 with data), 206.2 kB

{"cells":[{"cell_type":"code","execution_count":1,"metadata":{"id":"poHYeV3mMjlX","executionInfo":{"status":"ok","timestamp":1664608295925,"user_tz":-330,"elapsed":4068,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}}},"outputs":[],"source":["import os,sys\n","import pandas as pd\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","from sklearn.model_selection import train_test_split\n","# import pydicom\n","# from pydicom import dcmread\n","from PIL import Image\n","import cv2\n","from sklearn.metrics import classification_report,confusion_matrix\n","from tqdm.notebook import tqdm\n","import tensorflow.keras.backend as K\n","# from fast_ml.model_development import train_valid_test_split"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZMBvYPXhRRGZ"},"outputs":[],"source":["Merged = pd.read_csv('/content/drive/MyDrive/Data/Merged.csv')"]},{"cell_type":"code","source":["Merged['class'].value_counts().plot(kind='bar', figsize=(7, 6), rot=0)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":391},"id":"LK3T9HxO-TUc","executionInfo":{"status":"ok","timestamp":1663260812565,"user_tz":-330,"elapsed":45,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"1e9de640-2efd-4858-eff8-f65d4216f735"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["<matplotlib.axes._subplots.AxesSubplot at 0x7ff443bde850>"]},"metadata":{},"execution_count":3},{"output_type":"display_data","data":{"text/plain":["<Figure size 504x432 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAbsAAAFlCAYAAAByXUZBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaBklEQVR4nO3debRlZX3m8e9jlYg4AVKhtcAuVqhlGmetILYmbcSFOERINyrGloLQTSchTmlbwazV2A6JY1DbgI2AoE1ERBGcLRmixjAUg4wqFUQpGqG0EKeFWvjrP/Z75dT13BruucW9vHw/a9119373u/d+9zn7nGcP7903VYUkST2733w3QJKkbc2wkyR1z7CTJHXPsJMkdc+wkyR1z7CTJHVv8Xw3YLZ22WWXWrZs2Xw3Q5K0QFx66aU/qKol46bda8Nu2bJlrF69er6bIUlaIJJ8d6ZpXsaUJHXPsJMkdc+wkyR1z7CTJHXPsJMkdW+zYZfk5CS3Jbl6pOydSb6Z5MokZyXZcWTa0UnWJPlWkueMlO/fytYkOWqkfI8kF7XyjyXZbi43UJKkLTmzOwXYf1rZKuCxVfV44NvA0QBJ9gIOBh7T5jkuyaIki4B/AJ4L7AW8tNUFeDtwbFXtCdwOHD7RFkmSNM1mw66qvgKsn1b2para0EYvBHZrwwcAp1fVL6rqO8AaYO/2s6aqbqiqXwKnAwckCfAs4Mw2/6nAgRNukyRJG5mLe3Z/Bny+DS8FbhqZtraVzVT+cOBHI8E5VT5WkiOSrE6yet26dXPQdEnSfcFEYZfkb4ANwGlz05xNq6oTqmpFVa1YsmTsE2EkSfots35cWJJDgRcA+1ZVteKbgd1Hqu3Wypih/IfAjkkWt7O70fqSJM2JWZ3ZJdkfeB3wwqr6+cikc4CDkzwgyR7AcuBi4BJgeet5uR1DJ5ZzWkieDxzU5l8JnD27TZEkabwt+dODjwL/Ajw6ydokhwPvBx4CrEpyRZIPAFTVNcAZwLXAF4Ajq+qudtb2V8AXgeuAM1pdgNcDf51kDcM9vJPmdAslSfd5ufsK5L3LihUraj7/68Gyoz47b+teKG582/PnuwmS9BtJLq2qFeOm+QQVSVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvcMO0lS9ww7SVL3DDtJUvc2G3ZJTk5yW5KrR8p2TrIqyfXt906tPEnel2RNkiuTPHlknpWt/vVJVo6UPyXJVW2e9yXJXG+kJOm+bUvO7E4B9p9WdhRwblUtB85t4wDPBZa3nyOA42EIR+AY4KnA3sAxUwHZ6vzXkfmmr0uSpIlsNuyq6ivA+mnFBwCntuFTgQNHyj9cgwuBHZM8AngOsKqq1lfV7cAqYP827aFVdWFVFfDhkWVJkjQnZnvPbtequqUNfx/YtQ0vBW4aqbe2lW2qfO2Y8rGSHJFkdZLV69atm2XTJUn3NRN3UGlnZDUHbdmSdZ1QVSuqasWSJUvuiVVKkjow27C7tV2CpP2+rZXfDOw+Um+3Vrap8t3GlEuSNGdmG3bnAFM9KlcCZ4+UH9J6Ze4D3NEud34R2C/JTq1jyn7AF9u0HyfZp/XCPGRkWZIkzYnFm6uQ5KPAM4Fdkqxl6FX5NuCMJIcD3wVe3Kp/DngesAb4OXAYQFWtT/Jm4JJW701VNdXp5S8Zenw+EPh8+5Ekac5sNuyq6qUzTNp3TN0CjpxhOScDJ48pXw08dnPtkCRptnyCiiSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXub/dMDSTNbdtRn57sJC8KNb3v+fDdB2iTP7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEnd8z+VS9Ic8L/WL+z/WO+ZnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXsThV2S1yS5JsnVST6aZPskeyS5KMmaJB9Lsl2r+4A2vqZNXzaynKNb+beSPGeyTZIkaWOzDrskS4FXAiuq6rHAIuBg4O3AsVW1J3A7cHib5XDg9lZ+bKtHkr3afI8B9geOS7Jotu2SJGm6SS9jLgYemGQxsANwC/As4Mw2/VTgwDZ8QBunTd83SVr56VX1i6r6DrAG2HvCdkmS9BuzDruquhl4F/A9hpC7A7gU+FFVbWjV1gJL2/BS4KY274ZW/+Gj5WPmkSRpYpNcxtyJ4axsD+CRwIMYLkNuM0mOSLI6yep169Zty1VJkjoyyWXMZwPfqap1VfUr4JPA04Ed22VNgN2Am9vwzcDuAG36w4AfjpaPmWcjVXVCVa2oqhVLliyZoOmSpPuSScLue8A+SXZo9972Ba4FzgcOanVWAme34XPaOG36eVVVrfzg1ltzD2A5cPEE7ZIkaSOLN19lvKq6KMmZwGXABuBy4ATgs8DpSd7Syk5qs5wEfCTJGmA9Qw9MquqaJGcwBOUG4Miqumu27ZIkabpZhx1AVR0DHDOt+AbG9KasqjuBF82wnLcCb52kLZIkzcQnqEiSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6N1HYJdkxyZlJvpnkuiRPS7JzklVJrm+/d2p1k+R9SdYkuTLJk0eWs7LVvz7Jykk3SpKkUZOe2b0X+EJV/R7wBOA64Cjg3KpaDpzbxgGeCyxvP0cAxwMk2Rk4BngqsDdwzFRASpI0F2YddkkeBvwhcBJAVf2yqn4EHACc2qqdChzYhg8APlyDC4EdkzwCeA6wqqrWV9XtwCpg/9m2S5Kk6SY5s9sDWAd8KMnlSU5M8iBg16q6pdX5PrBrG14K3DQy/9pWNlP5b0lyRJLVSVavW7dugqZLku5LJgm7xcCTgeOr6knAz7j7kiUAVVVATbCOjVTVCVW1oqpWLFmyZK4WK0nq3CRhtxZYW1UXtfEzGcLv1nZ5kvb7tjb9ZmD3kfl3a2UzlUuSNCdmHXZV9X3gpiSPbkX7AtcC5wBTPSpXAme34XOAQ1qvzH2AO9rlzi8C+yXZqXVM2a+VSZI0JxZPOP8rgNOSbAfcABzGEKBnJDkc+C7w4lb3c8DzgDXAz1tdqmp9kjcDl7R6b6qq9RO2S5Kk35go7KrqCmDFmEn7jqlbwJEzLOdk4ORJ2iJJ0kx8gookqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXuGnSSpe4adJKl7hp0kqXsTh12SRUkuT/KZNr5HkouSrEnysSTbtfIHtPE1bfqykWUc3cq/leQ5k7ZJkqRRc3Fm9yrgupHxtwPHVtWewO3A4a38cOD2Vn5sq0eSvYCDgccA+wPHJVk0B+2SJAmYMOyS7AY8HzixjQd4FnBmq3IqcGAbPqCN06bv2+ofAJxeVb+oqu8Aa4C9J2mXJEmjJj2zew/wOuDXbfzhwI+qakMbXwssbcNLgZsA2vQ7Wv3flI+ZR5Kkic067JK8ALitqi6dw/Zsbp1HJFmdZPW6devuqdVKku7lJjmzezrwwiQ3AqczXL58L7BjksWtzm7AzW34ZmB3gDb9YcAPR8vHzLORqjqhqlZU1YolS5ZM0HRJ0n3JrMOuqo6uqt2qahlDB5PzquplwPnAQa3aSuDsNnxOG6dNP6+qqpUf3Hpr7gEsBy6ebbskSZpu8earbLXXA6cneQtwOXBSKz8J+EiSNcB6hoCkqq5JcgZwLbABOLKq7toG7ZIk3UfNSdhV1QXABW34Bsb0pqyqO4EXzTD/W4G3zkVbJEmazieoSJK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkrpn2EmSumfYSZK6Z9hJkro367BLsnuS85Ncm+SaJK9q5TsnWZXk+vZ7p1aeJO9LsibJlUmePLKsla3+9UlWTr5ZkiTdbZIzuw3Af6+qvYB9gCOT7AUcBZxbVcuBc9s4wHOB5e3nCOB4GMIROAZ4KrA3cMxUQEqSNBdmHXZVdUtVXdaGfwJcBywFDgBObdVOBQ5swwcAH67BhcCOSR4BPAdYVVXrq+p2YBWw/2zbJUnSdHNyzy7JMuBJwEXArlV1S5v0fWDXNrwUuGlktrWtbKbyces5IsnqJKvXrVs3F02XJN0HTBx2SR4MfAJ4dVX9eHRaVRVQk65jZHknVNWKqlqxZMmSuVqsJKlzE4VdkvszBN1pVfXJVnxruzxJ+31bK78Z2H1k9t1a2UzlkiTNiUl6YwY4Cbiuqv5+ZNI5wFSPypXA2SPlh7RemfsAd7TLnV8E9kuyU+uYsl8rkyRpTiyeYN6nAy8HrkpyRSt7A/A24IwkhwPfBV7cpn0OeB6wBvg5cBhAVa1P8mbgklbvTVW1foJ2SZK0kVmHXVV9DcgMk/cdU7+AI2dY1snAybNtiyRJm+ITVCRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3TPsJEndM+wkSd0z7CRJ3VswYZdk/yTfSrImyVHz3R5JUj8WRNglWQT8A/BcYC/gpUn2mt9WSZJ6sSDCDtgbWFNVN1TVL4HTgQPmuU2SpE4slLBbCtw0Mr62lUmSNLHF892ArZHkCOCINvrTJN+az/YsALsAP5ivleft87VmTTOv+wG4LywQ7gfwb2easFDC7mZg95Hx3VrZRqrqBOCEe6pRC12S1VW1Yr7bofnlfiBwP9ichXIZ8xJgeZI9kmwHHAycM89tkiR1YkGc2VXVhiR/BXwRWAScXFXXzHOzJEmdWBBhB1BVnwM+N9/tuJfxkq7A/UAD94NNSFXNdxskSdqmFso9O0mStpkFGXZJKsm7R8Zfm+SNWzH/oUnev00aN3592yV5T3vU2fVJzk6y2xyv45FJzmzDT0zyvFks4/5JLhtTfmOST4yMH5TklM0s65lJ/v0M0w5N8uskjx8puzrJsq1t82wlWZbk6ntoXT+9J9Yzsr4Dk1yZ5LokVyU5cBus48SppxglecNcL18bm/Q7b47acEGSbntzLsiwA34B/Mcku8x3Q7bQ3wIPAR5dVcuBTwGfTJK5WkFV/b+qOqiNPhHY6rADngH88wzTnrKVj2h7JjA27Jq1wN9sxfI20h4hp2mSPAF4F3BAVf074IXAu0YPLOZCVf2Xqrq2jRp2295E33lJFkz/i4VqoYbdBoabra+ZPqEdsZ/XjmzPTfKoLVng9CP90SOndkTz9iQXJ/l2kj9o5TskOSPJtUnOSnLR9COfJDsAhwGvqaq7AKrqQww777Paer+Z5LR2JH5mm4ck/zPJJe2s54SpcEyyZ5IvJ/lGksuS/O5U+9ufZrwJeEmSK5K8pJ1NLmnz3q+dYS4Z8zLsD3x+hpfo3YwJpyQ7J/lUe70vTPL4dob258BrWhv+YMzyPgM8Jsmjxyzzpe2M5Ork7j9DTfLTJO9O8g3gaW38nUmuaa/H3u29uiHJC9s8y5J8tb1Ol810tnlPGz1KTrJLkhvb8KFJPpnkC+19e8fIPIe3/e/iJB/M+KsTrwX+tqq+A9B+/x3wP0bW+972vlydZO9WvneSf0lyeZKvT70vSRYleVere2WSV4y2P8nbgAe25Z2W5E1JXj3S5rcmedXcv4L3OVv9nZfklCQfSHIR8I42fnz7nN6Q4erLye1755SR5R2fZHX7XP2ve2oD511VLbgf4KfAQ4EbgYcxfMDf2KZ9GljZhv8M+NSY+Q8F3j+tbBlw9cj46DIvAN7dhp8HfHmkzv9pw49l2CFXTFvu44HLx7ThWOCVbb0FPL2Vnwy8tg3vPFL/I8Aft+GLgD9pw9sDO4y2f/r2AccAr27D+wGfmOF1vRjYYUz5jcCuwHXAnsBBwClt2v8GjmnDzwKuaMNvnNqOmV5/4BDg1FZ2dduGRwLfA5Yw9AY+Dziw1SngxSPLKeC5bfgs4EvA/YEnjLRjB2D7NrwcWD3u/d7W++uYsgum9hWGJ1vcOPLa3MCwX28PfJfhgQqPbO/Dzm0bv8q0fbjNfxnwhGllTwAuG1nvB9vwH47sMw8FFrfhZ0/tI8BfAGeOTNt5TPt/OrKuZSPruh/wr8DD74nXuecfZvGdB5zCcFC5aGT8dCAMzxb+MfC49j5dCjxx2nu8qL3Pj5/+nvf4s1DP7KiqHwMfZgiMUU8D/rENf4Th0txc+GT7fSnDB5q27NNbe64Grpzlsm+qqqnLh/+Xu9v8R+1s8SqGIHlMkocAS6vqrLbeO6vq55tZ/skMwQLDh+FD0yskWQqs38Sy7gLeCRw9rfwZDK8zVXUe8PAkD91Me6b8I7BPkj1Gyn4fuKCq1lXVBuA0hi/lqTZ8YqTuL4EvtOGrgH+qql+14WWt/P7AB9tr+HGG/5qx0J1bVXdU1Z3AtQyPONqbYfvWt238+ATL/yhAVX0FeGiSHRm+QD+e4erGscBjWt1nMxzQbWjzrN/UgqvqRuCHSZ7EcGB1eVX9cIK2qpnld97Hq11Raj5dQ3JdBdxaVVdV1a+Ba7j7M/PiDPfuL2fYD+4Nn5mJLdiwa94DHA48aA6WtYGNt3f7adN/0X7fxdb9/eG/Ao9qITXqKQw7GAxnKKMqyfbAccBBVfU44INj2rRFquom4NYkz2L40hx3qXJ/hj/a35SPMATP7pupt6Xt2sBwefT1WzjLndM+uL9qH1yAX9Peo/bhnXqPXgPcynB2swLYbtJ2z5HR/W2mfQ22fn+7lmHfGjW6r8GY/Q14M3B+VT0W+OMxbdoaJzKcoR7GcKClubO133k/mzY+tW/9mo33s18Di9uB52uBfavq8cBnmWxfuNdY0GHXjjLPYHjzp3yd4XFiAC9juNyzJW4FfifJw5M8AHjBFszzz8CLATJ03njcmDb+DDgV+Pu0ThVJDmG4vHZeq/aoJE9rw38KfI27d7AfJHkww6VDquonwNq0HnZJHpB2j2/ETxg6xIw6keGscfqR3pRN3a+b2pZfMRz1j943+CrD60ySZwI/aEeg49owzikMZw9T9xAvBv5Du4+1CHgp8E9bsJyZPAy4pQXgyxkuzSwEN3J3KB20iXpTLmF4XXbK0NngP81Q713A0e2+Ke33GxgOKqa8pE17BnBHVd3B8DpNPW/20JG6q4D/1tZJkp3HrPNXSe4/Mn4Ww/70+2z+AEpbYY6/88Z5KENA3pFkV4b/IXqfsKDDrnk3wz2PKa8ADktyJcOX20w3xw9Nsnbqh+Ge1JsYvmxXAd/cgnUfByxJci3wFoaj5zvG1DsauBP4dpLrgRcx3HObOsL+FnBkkuuAnYDjq+pHDGdzVzN8YVwysryXA69s2/h14N9MW9/5wF6t08BLWtk5wIMZfwlzEbBnVW3JNp/Exmcab2ToqXkl8DZgZSv/NPAnmbmDCgA1/H/C9wG/08ZvAY5q2/AN4NKqOnsL2jWT44CVrVPL7/HbR7r3hB1G97Ukf80QSn+R5HI23n/HqqqbGXr1XsxwkHUjY/a1qrqC4Uz500m+yfA+vK6VT7mzrfcD3P2l+Q7g71r56Pt7IsM91Cvba/inY5p3Qpt+WmvDLxnevzNmOLDSZGb7nbdZVfUNhsuX32S4NDpT7+zu+ASVTWghcf+qujPJ7wJfZvjzgl9uxTKWAZ9pl4+2mdbz79iq+q3gaUf4/7mq/nxbtkGTSfLgqvppO8s6i+EZsWdt5TIuYOg4tHpbtLGt434MHWVeVFXXb6v1SHPJv83YtB2A89slnAB/uTVBd09JchRDr7qXjZteVV9juHSqhe2NSZ7NcIn7Swx/r7mgtMv5nwHOMuh0b+KZnSSpe/eGe3aSJE3EsJMkdc+wkyR1z7CTJHXPsJMkdc+wkyR17/8DetTrxfIMILgAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":493},"executionInfo":{"elapsed":30,"status":"ok","timestamp":1663260812568,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"},"user_tz":-330},"id":"Ca7T3RBtgRSb","outputId":"860c59f0-7053-4ba8-d307-5a9343623e2e"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["   index                             patientId                         class  \\\n","0      0  0004cfab-14fd-4e49-80ba-63a80b6bddd6  No Lung Opacity / Not Normal   \n","1      1  00313ee0-9eaa-42f4-b0ab-c148ed3241cd  No Lung Opacity / Not Normal   \n","2      2  00322d4d-1c29-4943-afc9-b6754be640eb  No Lung Opacity / Not Normal   \n","3      3  003d8fa0-6bf1-40ed-b54c-ac657f8495c5                        Normal   \n","4      4  00436515-870c-4b36-a041-de91049b9ab4                  Lung Opacity   \n","\n","       x      y  width  height  Target  \\\n","0    0.0    0.0    0.0     0.0       0   \n","1    0.0    0.0    0.0     0.0       0   \n","2    0.0    0.0    0.0     0.0       0   \n","3    0.0    0.0    0.0     0.0       0   \n","4  264.0  152.0  213.0   379.0       1   \n","\n","                                                path                     MASK  \n","0  /content/drive/MyDrive/Colab Notebooks/convert...          0.0 0.0 0.0 0.0  \n","1  /content/drive/MyDrive/Colab Notebooks/convert...          0.0 0.0 0.0 0.0  \n","2  /content/drive/MyDrive/Colab Notebooks/convert...          0.0 0.0 0.0 0.0  \n","3  /content/drive/MyDrive/Colab Notebooks/convert...          0.0 0.0 0.0 0.0  \n","4  /content/drive/MyDrive/Colab Notebooks/convert...  264.0 152.0 213.0 379.0  "],"text/html":["\n","  <div id=\"df-5d4f3a15-b066-4ead-bd7e-6f4f9f07bee6\">\n","    <div class=\"colab-df-container\">\n","      <div>\n","<style scoped>\n","    .dataframe tbody tr th:only-of-type {\n","        vertical-align: middle;\n","    }\n","\n","    .dataframe tbody tr th {\n","        vertical-align: top;\n","    }\n","\n","    .dataframe thead th {\n","        text-align: right;\n","    }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n","  <thead>\n","    <tr style=\"text-align: right;\">\n","      <th></th>\n","      <th>index</th>\n","      <th>patientId</th>\n","      <th>class</th>\n","      <th>x</th>\n","      <th>y</th>\n","      <th>width</th>\n","      <th>height</th>\n","      <th>Target</th>\n","      <th>path</th>\n","      <th>MASK</th>\n","    </tr>\n","  </thead>\n","  <tbody>\n","    <tr>\n","      <th>0</th>\n","      <td>0</td>\n","      <td>0004cfab-14fd-4e49-80ba-63a80b6bddd6</td>\n","      <td>No Lung Opacity / Not Normal</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0</td>\n","      <td>/content/drive/MyDrive/Colab Notebooks/convert...</td>\n","      <td>0.0 0.0 0.0 0.0</td>\n","    </tr>\n","    <tr>\n","      <th>1</th>\n","      <td>1</td>\n","      <td>00313ee0-9eaa-42f4-b0ab-c148ed3241cd</td>\n","      <td>No Lung Opacity / Not Normal</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0</td>\n","      <td>/content/drive/MyDrive/Colab Notebooks/convert...</td>\n","      <td>0.0 0.0 0.0 0.0</td>\n","    </tr>\n","    <tr>\n","      <th>2</th>\n","      <td>2</td>\n","      <td>00322d4d-1c29-4943-afc9-b6754be640eb</td>\n","      <td>No Lung Opacity / Not Normal</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0</td>\n","      <td>/content/drive/MyDrive/Colab Notebooks/convert...</td>\n","      <td>0.0 0.0 0.0 0.0</td>\n","    </tr>\n","    <tr>\n","      <th>3</th>\n","      <td>3</td>\n","      <td>003d8fa0-6bf1-40ed-b54c-ac657f8495c5</td>\n","      <td>Normal</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0.0</td>\n","      <td>0</td>\n","      <td>/content/drive/MyDrive/Colab Notebooks/convert...</td>\n","      <td>0.0 0.0 0.0 0.0</td>\n","    </tr>\n","    <tr>\n","      <th>4</th>\n","      <td>4</td>\n","      <td>00436515-870c-4b36-a041-de91049b9ab4</td>\n","      <td>Lung Opacity</td>\n","      <td>264.0</td>\n","      <td>152.0</td>\n","      <td>213.0</td>\n","      <td>379.0</td>\n","      <td>1</td>\n","      <td>/content/drive/MyDrive/Colab Notebooks/convert...</td>\n","      <td>264.0 152.0 213.0 379.0</td>\n","    </tr>\n","  </tbody>\n","</table>\n","</div>\n","      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5d4f3a15-b066-4ead-bd7e-6f4f9f07bee6')\"\n","              title=\"Convert this dataframe to an interactive table.\"\n","              style=\"display:none;\">\n","        \n","  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n","       width=\"24px\">\n","    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n","    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n","  </svg>\n","      </button>\n","      \n","  <style>\n","    .colab-df-container {\n","      display:flex;\n","      flex-wrap:wrap;\n","      gap: 12px;\n","    }\n","\n","    .colab-df-convert {\n","      background-color: #E8F0FE;\n","      border: none;\n","      border-radius: 50%;\n","      cursor: pointer;\n","      display: none;\n","      fill: #1967D2;\n","      height: 32px;\n","      padding: 0 0 0 0;\n","      width: 32px;\n","    }\n","\n","    .colab-df-convert:hover {\n","      background-color: #E2EBFA;\n","      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n","      fill: #174EA6;\n","    }\n","\n","    [theme=dark] .colab-df-convert {\n","      background-color: #3B4455;\n","      fill: #D2E3FC;\n","    }\n","\n","    [theme=dark] .colab-df-convert:hover {\n","      background-color: #434B5C;\n","      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n","      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n","      fill: #FFFFFF;\n","    }\n","  </style>\n","\n","      <script>\n","        const buttonEl =\n","          document.querySelector('#df-5d4f3a15-b066-4ead-bd7e-6f4f9f07bee6 button.colab-df-convert');\n","        buttonEl.style.display =\n","          google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n","        async function convertToInteractive(key) {\n","          const element = document.querySelector('#df-5d4f3a15-b066-4ead-bd7e-6f4f9f07bee6');\n","          const dataTable =\n","            await google.colab.kernel.invokeFunction('convertToInteractive',\n","                                                     [key], {});\n","          if (!dataTable) return;\n","\n","          const docLinkHtml = 'Like what you see? Visit the ' +\n","            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n","            + ' to learn more about interactive tables.';\n","          element.innerHTML = '';\n","          dataTable['output_type'] = 'display_data';\n","          await google.colab.output.renderOutput(dataTable, element);\n","          const docLink = document.createElement('div');\n","          docLink.innerHTML = docLinkHtml;\n","          element.appendChild(docLink);\n","        }\n","      </script>\n","    </div>\n","  </div>\n","  "]},"metadata":{},"execution_count":4}],"source":["Merged.head()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"LH9RS3sDN8P2"},"outputs":[],"source":["def extract_coordinates(mergedindex):\n","  lst=[]\n","  lst=mergedindex.split(' ',4)\n","  lst = [int(float(j)) for j in lst]\n","  return lst"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ro0Gb14rhXeM"},"outputs":[],"source":["def create_mask(list1):\n","  dim = np.zeros((1024,1024,))\n","  # dim.fill(0)\n","  # dim[list1[0]:list1[2],list1[1]:list1[3]]=1\n","  x,y,w,h = list1\n","  cv2.rectangle(dim,(x,y),(x+w,y+h),(255,0,0),-1)\n","  return dim"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qNYoVc3rwsW1"},"outputs":[],"source":["from tensorflow.keras.utils import Sequence\n","\n","class DataGenerator(Sequence):\n","    'Generates data for Keras'\n","    def __init__(self, list_IDs, labels, batch_size=32, IMG_SIZE=None, n_channels=3,\n","                 n_classes=2,problem_type = 'segmentation', shuffle=True):\n","        'Initialization'\n","        self.IMG_SIZE = IMG_SIZE\n","        self.batch_size = batch_size\n","        self.labels = labels\n","        self.list_IDs = list_IDs\n","        self.n_channels = n_channels\n","        self.n_classes = n_classes\n","        self.shuffle = shuffle\n","        self.dim = (IMG_SIZE,IMG_SIZE)\n","        self.on_epoch_end()\n","        self.mapping = {k:v for k,v in zip(self.list_IDs,self.labels) }\n","        self.problem_type=problem_type\n","\n","    def __len__(self):\n","        'Denotes the number of batches per epoch'\n","        return int(np.floor(len(self.list_IDs) / self.batch_size))\n","\n","    def __getitem__(self, index):\n","        'Generate one batch of data'\n","        \n","        # Generate indexes of the batch\n","        indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]\n","        # print(indexes)\n","        # Find list of IDs\n","        list_IDs_temp = [self.list_IDs[k] for k in indexes]\n","        # Generate data\n","        X, y = self.__data_generation(list_IDs_temp)\n","        return X, y\n","\n","    def on_epoch_end(self):\n","        'Updates indexes after each epoch'\n","        self.indexes = np.arange(len(self.list_IDs))\n","        if self.shuffle == True:\n","            np.random.shuffle(self.indexes)\n","\n","    def __data_generation(self, list_IDs_temp):\n","        'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)\n","        # Initialization\n","        X = np.empty((self.batch_size, *self.dim, self.n_channels))\n","        y = np.empty((self.batch_size, self.n_classes,), dtype=int)\n","        # y = np.zeros(len(list_IDs_temp),self.n_classes)\n","        \n","        # Generate data\n","        for i, ID in enumerate(list_IDs_temp):\n","            # Store sample\n","            img = cv2.imread('/content/drive/MyDrive/Colab Notebooks/converted_train_images/' + ID + '.dcm.jpg')\n","            # print(cv2.resize(img,(IMG_SIZE,IMG_SIZE)).shape)\n","            img = img.astype('float')/img.max()\n","            # cv2.normalize(img, img, 0, 255, cv2.NORM_MINMAX)\n","            # img = img/img.max()\n","            X[i,] = cv2.resize(img,(IMG_SIZE,IMG_SIZE))\n","            label = np.zeros(2)\n","            if(self.mapping[ID]==0):\n","              label[0] = 1\n","            elif(self.mapping[ID]==1):\n","              label[1] = 1\n","            y[i,] = label\n","        return X,y\n","    def __repr__(self):\n","      print(\"Number of batches: \", str(len(self.list_IDs)/self.batch_size))"]},{"cell_type":"markdown","metadata":{"id":"3T_7flJdcwJy"},"source":["train_gen[batch no][X:0><Y:1][ith image in batch(range of i is 0 to 3]\n","\n"]},{"cell_type":"code","source":["train = pd.read_csv('/content/drive/MyDrive/classification/train.csv')\n","valid = pd.read_csv('/content/drive/MyDrive/classification/valid.csv')\n","test = pd.read_csv('/content/drive/MyDrive/classification/test.csv')"],"metadata":{"id":"n9YjtICJQaM9"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["batch_size=4\n","IMG_SIZE=512\n","Train_gen = DataGenerator(list_IDs = list(train.patientId),\n","                          labels = list(train.Target),\n","                          batch_size=batch_size,\n","                          IMG_SIZE=IMG_SIZE,\n","                          shuffle=True)\n","print(len(Train_gen))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"bmK_HlgOdnJ6","executionInfo":{"status":"ok","timestamp":1663260816878,"user_tz":-330,"elapsed":54,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"9eaf08a8-1253-49fe-d7b0-75cd7ba0dec2"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["5289\n"]}]},{"cell_type":"code","source":["batch_size=4\n","IMG_SIZE=512\n","Val_gen = DataGenerator(list_IDs = list(valid.patientId),\n","                          labels = list(valid.Target),\n","                          batch_size=batch_size,\n","                          IMG_SIZE=IMG_SIZE,\n","                          shuffle=True)\n","print(len(Val_gen))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"VHAwwwbBdx-m","executionInfo":{"status":"ok","timestamp":1663260816879,"user_tz":-330,"elapsed":51,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"b1daa348-073d-4628-f0cd-7240445d603a"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["1133\n"]}]},{"cell_type":"code","source":["batch_size=1\n","IMG_SIZE=512\n","Test_gen = DataGenerator(list_IDs = list(test.patientId),\n","                          labels = list(test.Target),\n","                          batch_size=batch_size,\n","                          IMG_SIZE=IMG_SIZE,\n","                          shuffle=False)\n","print(len(Test_gen))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"tXcwqvkoNO9S","executionInfo":{"status":"ok","timestamp":1663260816880,"user_tz":-330,"elapsed":36,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"5350061b-b870-4871-de2c-74917db0d104"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["4534\n"]}]},{"cell_type":"code","source":["import tensorflow as tf\n","from tensorflow.keras.models import Sequential\n","from tensorflow.keras.layers import Dense, GlobalAveragePooling2D,Dropout\n","from tensorflow.keras.callbacks import EarlyStopping,ReduceLROnPlateau,ModelCheckpoint\n","from tensorflow.keras.layers.experimental.preprocessing import Rescaling\n","from tensorflow.keras.losses import binary_crossentropy\n","from tensorflow.keras.applications import DenseNet121\n","from tensorflow.keras.utils import plot_model\n","from tensorflow.keras.callbacks import CSVLogger,ModelCheckpoint, LearningRateScheduler, EarlyStopping, ReduceLROnPlateau\n","import math"],"metadata":{"id":"C1Ci2twRcf1l"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["def DenseNet121_Model():\n","  # load the DenseNet121 network, ensuring the head FC layer sets are left off\n","  baseModel = tf.keras.applications.DenseNet121(weights=\"imagenet\", include_top=False, input_tensor=tf.keras.layers.Input(shape=(IMG_SIZE, IMG_SIZE, 3)))\n","  # construct the head of the model that will be placed on top of the the base model\n","  output = baseModel.output\n","  output = tf.keras.layers.AveragePooling2D(pool_size=(4, 4))(output)\n","  output = tf.keras.layers.Flatten(name=\"flatten\")(output)\n","  output = tf.keras.layers.Dense(512, activation=\"relu\")(output)\n","  output = tf.keras.layers.Dropout(0.25)(output)\n","  output = tf.keras.layers.Dense(2, activation=\"softmax\")(output)\n","  # place the head FC model on top of the base model (this will become the actual model we will train)\n","  model = tf.keras.Model(inputs=baseModel.input, outputs=output)\n","  # loop over all layers in the base model and freeze them so they will not be updated during the first training process\n","  for layer in baseModel.layers:\n","    layer.trainable = False\n","  return model\n","\n","model = DenseNet121_Model()\n","# initialize the initial learning rate, number of epochs to train for, and batch size\n","INIT_LR = 0.001\n","EPOCHS = 20\n","BATCHSIZE = 32 \n","optimizer = tf.keras.optimizers.Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)\n","model.compile(loss= 'binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])\n","print(model.summary())"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"44POQXYOz0LQ","executionInfo":{"status":"ok","timestamp":1663260843871,"user_tz":-330,"elapsed":27017,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"2e80b753-ef9c-4f0b-a572-e2aefd27484b"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5\n","29089792/29084464 [==============================] - 0s 0us/step\n","29097984/29084464 [==============================] - 0s 0us/step\n","Model: \"model\"\n","__________________________________________________________________________________________________\n"," Layer (type)                   Output Shape         Param #     Connected to                     \n","==================================================================================================\n"," input_1 (InputLayer)           [(None, 512, 512, 3  0           []                               \n","                                )]                                                                \n","                                                                                                  \n"," zero_padding2d (ZeroPadding2D)  (None, 518, 518, 3)  0          ['input_1[0][0]']                \n","                                                                                                  \n"," conv1/conv (Conv2D)            (None, 256, 256, 64  9408        ['zero_padding2d[0][0]']         \n","                                )                                                                 \n","                                                                                                  \n"," conv1/bn (BatchNormalization)  (None, 256, 256, 64  256         ['conv1/conv[0][0]']             \n","                                )                                                                 \n","                                                                                                  \n"," conv1/relu (Activation)        (None, 256, 256, 64  0           ['conv1/bn[0][0]']               \n","                                )                                                                 \n","                                                                                                  \n"," zero_padding2d_1 (ZeroPadding2  (None, 258, 258, 64  0          ['conv1/relu[0][0]']             \n"," D)                             )                                                                 \n","                                                                                                  \n"," pool1 (MaxPooling2D)           (None, 128, 128, 64  0           ['zero_padding2d_1[0][0]']       \n","                                )                                                                 \n","                                                                                                  \n"," conv2_block1_0_bn (BatchNormal  (None, 128, 128, 64  256        ['pool1[0][0]']                  \n"," ization)                       )                                                                 \n","                                                                                                  \n"," conv2_block1_0_relu (Activatio  (None, 128, 128, 64  0          ['conv2_block1_0_bn[0][0]']      \n"," n)                             )                                                                 \n","                                                                                                  \n"," conv2_block1_1_conv (Conv2D)   (None, 128, 128, 12  8192        ['conv2_block1_0_relu[0][0]']    \n","                                8)                                                                \n","                                                                                                  \n"," conv2_block1_1_bn (BatchNormal  (None, 128, 128, 12  512        ['conv2_block1_1_conv[0][0]']    \n"," ization)                       8)                                                                \n","                                                                                                  \n"," conv2_block1_1_relu (Activatio  (None, 128, 128, 12  0          ['conv2_block1_1_bn[0][0]']      \n"," n)                             8)                                                                \n","                                                                                                  \n"," conv2_block1_2_conv (Conv2D)   (None, 128, 128, 32  36864       ['conv2_block1_1_relu[0][0]']    \n","                                )                                                                 \n","                                                                                                  \n"," conv2_block1_concat (Concatena  (None, 128, 128, 96  0          ['pool1[0][0]',                  \n"," te)                            )                                 'conv2_block1_2_conv[0][0]']    \n","                                                                                                  \n"," conv2_block2_0_bn (BatchNormal  (None, 128, 128, 96  384        ['conv2_block1_concat[0][0]']    \n"," ization)                       )                                                                 \n","                                                                                                  \n"," conv2_block2_0_relu (Activatio  (None, 128, 128, 96  0          ['conv2_block2_0_bn[0][0]']      \n"," n)                             )                                                                 \n","                                                                                                  \n"," conv2_block2_1_conv (Conv2D)   (None, 128, 128, 12  12288       ['conv2_block2_0_relu[0][0]']    \n","                                8)                                                                \n","                                                                                                  \n"," conv2_block2_1_bn (BatchNormal  (None, 128, 128, 12  512        ['conv2_block2_1_conv[0][0]']    \n"," ization)                       8)                                                                \n","                                                                                                  \n"," conv2_block2_1_relu (Activatio  (None, 128, 128, 12  0          ['conv2_block2_1_bn[0][0]']      \n"," n)                             8)                                                                \n","                                                                                                  \n"," conv2_block2_2_conv (Conv2D)   (None, 128, 128, 32  36864       ['conv2_block2_1_relu[0][0]']    \n","                                )                                                                 \n","                                                                                                  \n"," conv2_block2_concat (Concatena  (None, 128, 128, 12  0          ['conv2_block1_concat[0][0]',    \n"," te)                            8)                                'conv2_block2_2_conv[0][0]']    \n","                                                                                                  \n"," conv2_block3_0_bn (BatchNormal  (None, 128, 128, 12  512        ['conv2_block2_concat[0][0]']    \n"," ization)                       8)                                                                \n","                                                                                                  \n"," conv2_block3_0_relu (Activatio  (None, 128, 128, 12  0          ['conv2_block3_0_bn[0][0]']      \n"," n)                             8)                                                                \n","                                                                                                  \n"," conv2_block3_1_conv (Conv2D)   (None, 128, 128, 12  16384       ['conv2_block3_0_relu[0][0]']    \n","                                8)                                                                \n","                                                                                                  \n"," conv2_block3_1_bn (BatchNormal  (None, 128, 128, 12  512        ['conv2_block3_1_conv[0][0]']    \n"," ization)                       8)                                                                \n","                                                                                                  \n"," conv2_block3_1_relu (Activatio  (None, 128, 128, 12  0          ['conv2_block3_1_bn[0][0]']      \n"," n)                             8)                                                                \n","                                                                                                  \n"," conv2_block3_2_conv (Conv2D)   (None, 128, 128, 32  36864       ['conv2_block3_1_relu[0][0]']    \n","                                )                                                                 \n","                                                                                                  \n"," conv2_block3_concat (Concatena  (None, 128, 128, 16  0          ['conv2_block2_concat[0][0]',    \n"," te)                            0)                                'conv2_block3_2_conv[0][0]']    \n","                                                                                                  \n"," conv2_block4_0_bn (BatchNormal  (None, 128, 128, 16  640        ['conv2_block3_concat[0][0]']    \n"," ization)                       0)                                                                \n","                                                                                                  \n"," conv2_block4_0_relu (Activatio  (None, 128, 128, 16  0          ['conv2_block4_0_bn[0][0]']      \n"," n)                             0)                                                                \n","                                                                                                  \n"," conv2_block4_1_conv (Conv2D)   (None, 128, 128, 12  20480       ['conv2_block4_0_relu[0][0]']    \n","                                8)                                                                \n","                                                                                                  \n"," conv2_block4_1_bn (BatchNormal  (None, 128, 128, 12  512        ['conv2_block4_1_conv[0][0]']    \n"," ization)                       8)                                                                \n","                                                                                                  \n"," conv2_block4_1_relu (Activatio  (None, 128, 128, 12  0          ['conv2_block4_1_bn[0][0]']      \n"," n)                             8)                                                                \n","                                                                                                  \n"," conv2_block4_2_conv (Conv2D)   (None, 128, 128, 32  36864       ['conv2_block4_1_relu[0][0]']    \n","                                )                                                                 \n","                                                                                                  \n"," conv2_block4_concat (Concatena  (None, 128, 128, 19  0          ['conv2_block3_concat[0][0]',    \n"," te)                            2)                                'conv2_block4_2_conv[0][0]']    \n","                                                                                                  \n"," conv2_block5_0_bn (BatchNormal  (None, 128, 128, 19  768        ['conv2_block4_concat[0][0]']    \n"," ization)                       2)                                                                \n","                                                                                                  \n"," conv2_block5_0_relu (Activatio  (None, 128, 128, 19  0          ['conv2_block5_0_bn[0][0]']      \n"]},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/adam.py:105: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n","  super(Adam, self).__init__(name, **kwargs)\n"]},{"output_type":"stream","name":"stdout","text":[" n)                             2)                                                                \n","                                                                                                  \n"," conv2_block5_1_conv (Conv2D)   (None, 128, 128, 12  24576       ['conv2_block5_0_relu[0][0]']    \n","                                8)                                                                \n","                                                                                                  \n"," conv2_block5_1_bn (BatchNormal  (None, 128, 128, 12  512        ['conv2_block5_1_conv[0][0]']    \n"," ization)                       8)                                                                \n","                                                                                                  \n"," conv2_block5_1_relu (Activatio  (None, 128, 128, 12  0          ['conv2_block5_1_bn[0][0]']      \n"," n)                             8)                                                                \n","                                                                                                  \n"," conv2_block5_2_conv (Conv2D)   (None, 128, 128, 32  36864       ['conv2_block5_1_relu[0][0]']    \n","                                )                                                                 \n","                                                                                                  \n"," conv2_block5_concat (Concatena  (None, 128, 128, 22  0          ['conv2_block4_concat[0][0]',    \n"," te)                            4)                                'conv2_block5_2_conv[0][0]']    \n","                                                                                                  \n"," conv2_block6_0_bn (BatchNormal  (None, 128, 128, 22  896        ['conv2_block5_concat[0][0]']    \n"," ization)                       4)                                                                \n","                                                                                                  \n"," conv2_block6_0_relu (Activatio  (None, 128, 128, 22  0          ['conv2_block6_0_bn[0][0]']      \n"," n)                             4)                                                                \n","                                                                                                  \n"," conv2_block6_1_conv (Conv2D)   (None, 128, 128, 12  28672       ['conv2_block6_0_relu[0][0]']    \n","                                8)                                                                \n","                                                                                                  \n"," conv2_block6_1_bn (BatchNormal  (None, 128, 128, 12  512        ['conv2_block6_1_conv[0][0]']    \n"," ization)                       8)                                                                \n","                                                                                                  \n"," conv2_block6_1_relu (Activatio  (None, 128, 128, 12  0          ['conv2_block6_1_bn[0][0]']      \n"," n)                             8)                                                                \n","                                                                                                  \n"," conv2_block6_2_conv (Conv2D)   (None, 128, 128, 32  36864       ['conv2_block6_1_relu[0][0]']    \n","                                )                                                                 \n","                                                                                                  \n"," conv2_block6_concat (Concatena  (None, 128, 128, 25  0          ['conv2_block5_concat[0][0]',    \n"," te)                            6)                                'conv2_block6_2_conv[0][0]']    \n","                                                                                                  \n"," pool2_bn (BatchNormalization)  (None, 128, 128, 25  1024        ['conv2_block6_concat[0][0]']    \n","                                6)                                                                \n","                                                                                                  \n"," pool2_relu (Activation)        (None, 128, 128, 25  0           ['pool2_bn[0][0]']               \n","                                6)                                                                \n","                                                                                                  \n"," pool2_conv (Conv2D)            (None, 128, 128, 12  32768       ['pool2_relu[0][0]']             \n","                                8)                                                                \n","                                                                                                  \n"," pool2_pool (AveragePooling2D)  (None, 64, 64, 128)  0           ['pool2_conv[0][0]']             \n","                                                                                                  \n"," conv3_block1_0_bn (BatchNormal  (None, 64, 64, 128)  512        ['pool2_pool[0][0]']             \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block1_0_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block1_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block1_1_conv (Conv2D)   (None, 64, 64, 128)  16384       ['conv3_block1_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block1_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block1_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block1_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block1_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block1_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block1_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block1_concat (Concatena  (None, 64, 64, 160)  0          ['pool2_pool[0][0]',             \n"," te)                                                              'conv3_block1_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block2_0_bn (BatchNormal  (None, 64, 64, 160)  640        ['conv3_block1_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block2_0_relu (Activatio  (None, 64, 64, 160)  0          ['conv3_block2_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block2_1_conv (Conv2D)   (None, 64, 64, 128)  20480       ['conv3_block2_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block2_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block2_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block2_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block2_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block2_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block2_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block2_concat (Concatena  (None, 64, 64, 192)  0          ['conv3_block1_concat[0][0]',    \n"," te)                                                              'conv3_block2_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block3_0_bn (BatchNormal  (None, 64, 64, 192)  768        ['conv3_block2_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block3_0_relu (Activatio  (None, 64, 64, 192)  0          ['conv3_block3_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block3_1_conv (Conv2D)   (None, 64, 64, 128)  24576       ['conv3_block3_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block3_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block3_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block3_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block3_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block3_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block3_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block3_concat (Concatena  (None, 64, 64, 224)  0          ['conv3_block2_concat[0][0]',    \n"," te)                                                              'conv3_block3_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block4_0_bn (BatchNormal  (None, 64, 64, 224)  896        ['conv3_block3_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block4_0_relu (Activatio  (None, 64, 64, 224)  0          ['conv3_block4_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block4_1_conv (Conv2D)   (None, 64, 64, 128)  28672       ['conv3_block4_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block4_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block4_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block4_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block4_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block4_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block4_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block4_concat (Concatena  (None, 64, 64, 256)  0          ['conv3_block3_concat[0][0]',    \n"," te)                                                              'conv3_block4_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block5_0_bn (BatchNormal  (None, 64, 64, 256)  1024       ['conv3_block4_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block5_0_relu (Activatio  (None, 64, 64, 256)  0          ['conv3_block5_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block5_1_conv (Conv2D)   (None, 64, 64, 128)  32768       ['conv3_block5_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block5_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block5_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block5_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block5_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block5_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block5_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block5_concat (Concatena  (None, 64, 64, 288)  0          ['conv3_block4_concat[0][0]',    \n"," te)                                                              'conv3_block5_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block6_0_bn (BatchNormal  (None, 64, 64, 288)  1152       ['conv3_block5_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block6_0_relu (Activatio  (None, 64, 64, 288)  0          ['conv3_block6_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block6_1_conv (Conv2D)   (None, 64, 64, 128)  36864       ['conv3_block6_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block6_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block6_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block6_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block6_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block6_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block6_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block6_concat (Concatena  (None, 64, 64, 320)  0          ['conv3_block5_concat[0][0]',    \n"," te)                                                              'conv3_block6_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block7_0_bn (BatchNormal  (None, 64, 64, 320)  1280       ['conv3_block6_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block7_0_relu (Activatio  (None, 64, 64, 320)  0          ['conv3_block7_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block7_1_conv (Conv2D)   (None, 64, 64, 128)  40960       ['conv3_block7_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block7_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block7_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block7_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block7_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block7_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block7_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block7_concat (Concatena  (None, 64, 64, 352)  0          ['conv3_block6_concat[0][0]',    \n"," te)                                                              'conv3_block7_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block8_0_bn (BatchNormal  (None, 64, 64, 352)  1408       ['conv3_block7_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block8_0_relu (Activatio  (None, 64, 64, 352)  0          ['conv3_block8_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block8_1_conv (Conv2D)   (None, 64, 64, 128)  45056       ['conv3_block8_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block8_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block8_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block8_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block8_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block8_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block8_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block8_concat (Concatena  (None, 64, 64, 384)  0          ['conv3_block7_concat[0][0]',    \n"," te)                                                              'conv3_block8_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block9_0_bn (BatchNormal  (None, 64, 64, 384)  1536       ['conv3_block8_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block9_0_relu (Activatio  (None, 64, 64, 384)  0          ['conv3_block9_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block9_1_conv (Conv2D)   (None, 64, 64, 128)  49152       ['conv3_block9_0_relu[0][0]']    \n","                                                                                                  \n"," conv3_block9_1_bn (BatchNormal  (None, 64, 64, 128)  512        ['conv3_block9_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv3_block9_1_relu (Activatio  (None, 64, 64, 128)  0          ['conv3_block9_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv3_block9_2_conv (Conv2D)   (None, 64, 64, 32)   36864       ['conv3_block9_1_relu[0][0]']    \n","                                                                                                  \n"," conv3_block9_concat (Concatena  (None, 64, 64, 416)  0          ['conv3_block8_concat[0][0]',    \n"," te)                                                              'conv3_block9_2_conv[0][0]']    \n","                                                                                                  \n"," conv3_block10_0_bn (BatchNorma  (None, 64, 64, 416)  1664       ['conv3_block9_concat[0][0]']    \n"," lization)                                                                                        \n","                                                                                                  \n"," conv3_block10_0_relu (Activati  (None, 64, 64, 416)  0          ['conv3_block10_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv3_block10_1_conv (Conv2D)  (None, 64, 64, 128)  53248       ['conv3_block10_0_relu[0][0]']   \n","                                                                                                  \n"," conv3_block10_1_bn (BatchNorma  (None, 64, 64, 128)  512        ['conv3_block10_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv3_block10_1_relu (Activati  (None, 64, 64, 128)  0          ['conv3_block10_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv3_block10_2_conv (Conv2D)  (None, 64, 64, 32)   36864       ['conv3_block10_1_relu[0][0]']   \n","                                                                                                  \n"," conv3_block10_concat (Concaten  (None, 64, 64, 448)  0          ['conv3_block9_concat[0][0]',    \n"," ate)                                                             'conv3_block10_2_conv[0][0]']   \n","                                                                                                  \n"," conv3_block11_0_bn (BatchNorma  (None, 64, 64, 448)  1792       ['conv3_block10_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv3_block11_0_relu (Activati  (None, 64, 64, 448)  0          ['conv3_block11_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv3_block11_1_conv (Conv2D)  (None, 64, 64, 128)  57344       ['conv3_block11_0_relu[0][0]']   \n","                                                                                                  \n"," conv3_block11_1_bn (BatchNorma  (None, 64, 64, 128)  512        ['conv3_block11_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv3_block11_1_relu (Activati  (None, 64, 64, 128)  0          ['conv3_block11_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv3_block11_2_conv (Conv2D)  (None, 64, 64, 32)   36864       ['conv3_block11_1_relu[0][0]']   \n","                                                                                                  \n"," conv3_block11_concat (Concaten  (None, 64, 64, 480)  0          ['conv3_block10_concat[0][0]',   \n"," ate)                                                             'conv3_block11_2_conv[0][0]']   \n","                                                                                                  \n"," conv3_block12_0_bn (BatchNorma  (None, 64, 64, 480)  1920       ['conv3_block11_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv3_block12_0_relu (Activati  (None, 64, 64, 480)  0          ['conv3_block12_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv3_block12_1_conv (Conv2D)  (None, 64, 64, 128)  61440       ['conv3_block12_0_relu[0][0]']   \n","                                                                                                  \n"," conv3_block12_1_bn (BatchNorma  (None, 64, 64, 128)  512        ['conv3_block12_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv3_block12_1_relu (Activati  (None, 64, 64, 128)  0          ['conv3_block12_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv3_block12_2_conv (Conv2D)  (None, 64, 64, 32)   36864       ['conv3_block12_1_relu[0][0]']   \n","                                                                                                  \n"," conv3_block12_concat (Concaten  (None, 64, 64, 512)  0          ['conv3_block11_concat[0][0]',   \n"," ate)                                                             'conv3_block12_2_conv[0][0]']   \n","                                                                                                  \n"," pool3_bn (BatchNormalization)  (None, 64, 64, 512)  2048        ['conv3_block12_concat[0][0]']   \n","                                                                                                  \n"," pool3_relu (Activation)        (None, 64, 64, 512)  0           ['pool3_bn[0][0]']               \n","                                                                                                  \n"," pool3_conv (Conv2D)            (None, 64, 64, 256)  131072      ['pool3_relu[0][0]']             \n","                                                                                                  \n"," pool3_pool (AveragePooling2D)  (None, 32, 32, 256)  0           ['pool3_conv[0][0]']             \n","                                                                                                  \n"," conv4_block1_0_bn (BatchNormal  (None, 32, 32, 256)  1024       ['pool3_pool[0][0]']             \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block1_0_relu (Activatio  (None, 32, 32, 256)  0          ['conv4_block1_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block1_1_conv (Conv2D)   (None, 32, 32, 128)  32768       ['conv4_block1_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block1_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block1_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block1_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block1_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block1_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block1_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block1_concat (Concatena  (None, 32, 32, 288)  0          ['pool3_pool[0][0]',             \n"," te)                                                              'conv4_block1_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block2_0_bn (BatchNormal  (None, 32, 32, 288)  1152       ['conv4_block1_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block2_0_relu (Activatio  (None, 32, 32, 288)  0          ['conv4_block2_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block2_1_conv (Conv2D)   (None, 32, 32, 128)  36864       ['conv4_block2_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block2_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block2_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block2_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block2_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block2_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block2_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block2_concat (Concatena  (None, 32, 32, 320)  0          ['conv4_block1_concat[0][0]',    \n"," te)                                                              'conv4_block2_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block3_0_bn (BatchNormal  (None, 32, 32, 320)  1280       ['conv4_block2_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block3_0_relu (Activatio  (None, 32, 32, 320)  0          ['conv4_block3_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block3_1_conv (Conv2D)   (None, 32, 32, 128)  40960       ['conv4_block3_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block3_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block3_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block3_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block3_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block3_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block3_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block3_concat (Concatena  (None, 32, 32, 352)  0          ['conv4_block2_concat[0][0]',    \n"," te)                                                              'conv4_block3_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block4_0_bn (BatchNormal  (None, 32, 32, 352)  1408       ['conv4_block3_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block4_0_relu (Activatio  (None, 32, 32, 352)  0          ['conv4_block4_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block4_1_conv (Conv2D)   (None, 32, 32, 128)  45056       ['conv4_block4_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block4_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block4_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block4_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block4_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block4_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block4_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block4_concat (Concatena  (None, 32, 32, 384)  0          ['conv4_block3_concat[0][0]',    \n"," te)                                                              'conv4_block4_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block5_0_bn (BatchNormal  (None, 32, 32, 384)  1536       ['conv4_block4_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block5_0_relu (Activatio  (None, 32, 32, 384)  0          ['conv4_block5_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block5_1_conv (Conv2D)   (None, 32, 32, 128)  49152       ['conv4_block5_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block5_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block5_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block5_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block5_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block5_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block5_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block5_concat (Concatena  (None, 32, 32, 416)  0          ['conv4_block4_concat[0][0]',    \n"," te)                                                              'conv4_block5_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block6_0_bn (BatchNormal  (None, 32, 32, 416)  1664       ['conv4_block5_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block6_0_relu (Activatio  (None, 32, 32, 416)  0          ['conv4_block6_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block6_1_conv (Conv2D)   (None, 32, 32, 128)  53248       ['conv4_block6_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block6_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block6_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block6_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block6_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block6_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block6_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block6_concat (Concatena  (None, 32, 32, 448)  0          ['conv4_block5_concat[0][0]',    \n"," te)                                                              'conv4_block6_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block7_0_bn (BatchNormal  (None, 32, 32, 448)  1792       ['conv4_block6_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block7_0_relu (Activatio  (None, 32, 32, 448)  0          ['conv4_block7_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block7_1_conv (Conv2D)   (None, 32, 32, 128)  57344       ['conv4_block7_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block7_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block7_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block7_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block7_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block7_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block7_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block7_concat (Concatena  (None, 32, 32, 480)  0          ['conv4_block6_concat[0][0]',    \n"," te)                                                              'conv4_block7_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block8_0_bn (BatchNormal  (None, 32, 32, 480)  1920       ['conv4_block7_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block8_0_relu (Activatio  (None, 32, 32, 480)  0          ['conv4_block8_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block8_1_conv (Conv2D)   (None, 32, 32, 128)  61440       ['conv4_block8_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block8_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block8_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block8_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block8_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block8_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block8_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block8_concat (Concatena  (None, 32, 32, 512)  0          ['conv4_block7_concat[0][0]',    \n"," te)                                                              'conv4_block8_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block9_0_bn (BatchNormal  (None, 32, 32, 512)  2048       ['conv4_block8_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block9_0_relu (Activatio  (None, 32, 32, 512)  0          ['conv4_block9_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block9_1_conv (Conv2D)   (None, 32, 32, 128)  65536       ['conv4_block9_0_relu[0][0]']    \n","                                                                                                  \n"," conv4_block9_1_bn (BatchNormal  (None, 32, 32, 128)  512        ['conv4_block9_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv4_block9_1_relu (Activatio  (None, 32, 32, 128)  0          ['conv4_block9_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv4_block9_2_conv (Conv2D)   (None, 32, 32, 32)   36864       ['conv4_block9_1_relu[0][0]']    \n","                                                                                                  \n"," conv4_block9_concat (Concatena  (None, 32, 32, 544)  0          ['conv4_block8_concat[0][0]',    \n"," te)                                                              'conv4_block9_2_conv[0][0]']    \n","                                                                                                  \n"," conv4_block10_0_bn (BatchNorma  (None, 32, 32, 544)  2176       ['conv4_block9_concat[0][0]']    \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block10_0_relu (Activati  (None, 32, 32, 544)  0          ['conv4_block10_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block10_1_conv (Conv2D)  (None, 32, 32, 128)  69632       ['conv4_block10_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block10_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block10_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block10_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block10_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block10_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block10_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block10_concat (Concaten  (None, 32, 32, 576)  0          ['conv4_block9_concat[0][0]',    \n"," ate)                                                             'conv4_block10_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block11_0_bn (BatchNorma  (None, 32, 32, 576)  2304       ['conv4_block10_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block11_0_relu (Activati  (None, 32, 32, 576)  0          ['conv4_block11_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block11_1_conv (Conv2D)  (None, 32, 32, 128)  73728       ['conv4_block11_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block11_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block11_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block11_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block11_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block11_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block11_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block11_concat (Concaten  (None, 32, 32, 608)  0          ['conv4_block10_concat[0][0]',   \n"," ate)                                                             'conv4_block11_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block12_0_bn (BatchNorma  (None, 32, 32, 608)  2432       ['conv4_block11_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block12_0_relu (Activati  (None, 32, 32, 608)  0          ['conv4_block12_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block12_1_conv (Conv2D)  (None, 32, 32, 128)  77824       ['conv4_block12_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block12_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block12_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block12_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block12_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block12_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block12_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block12_concat (Concaten  (None, 32, 32, 640)  0          ['conv4_block11_concat[0][0]',   \n"," ate)                                                             'conv4_block12_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block13_0_bn (BatchNorma  (None, 32, 32, 640)  2560       ['conv4_block12_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block13_0_relu (Activati  (None, 32, 32, 640)  0          ['conv4_block13_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block13_1_conv (Conv2D)  (None, 32, 32, 128)  81920       ['conv4_block13_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block13_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block13_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block13_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block13_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block13_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block13_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block13_concat (Concaten  (None, 32, 32, 672)  0          ['conv4_block12_concat[0][0]',   \n"," ate)                                                             'conv4_block13_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block14_0_bn (BatchNorma  (None, 32, 32, 672)  2688       ['conv4_block13_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block14_0_relu (Activati  (None, 32, 32, 672)  0          ['conv4_block14_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block14_1_conv (Conv2D)  (None, 32, 32, 128)  86016       ['conv4_block14_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block14_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block14_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block14_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block14_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block14_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block14_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block14_concat (Concaten  (None, 32, 32, 704)  0          ['conv4_block13_concat[0][0]',   \n"," ate)                                                             'conv4_block14_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block15_0_bn (BatchNorma  (None, 32, 32, 704)  2816       ['conv4_block14_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block15_0_relu (Activati  (None, 32, 32, 704)  0          ['conv4_block15_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block15_1_conv (Conv2D)  (None, 32, 32, 128)  90112       ['conv4_block15_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block15_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block15_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block15_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block15_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block15_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block15_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block15_concat (Concaten  (None, 32, 32, 736)  0          ['conv4_block14_concat[0][0]',   \n"," ate)                                                             'conv4_block15_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block16_0_bn (BatchNorma  (None, 32, 32, 736)  2944       ['conv4_block15_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block16_0_relu (Activati  (None, 32, 32, 736)  0          ['conv4_block16_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block16_1_conv (Conv2D)  (None, 32, 32, 128)  94208       ['conv4_block16_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block16_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block16_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block16_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block16_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block16_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block16_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block16_concat (Concaten  (None, 32, 32, 768)  0          ['conv4_block15_concat[0][0]',   \n"," ate)                                                             'conv4_block16_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block17_0_bn (BatchNorma  (None, 32, 32, 768)  3072       ['conv4_block16_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block17_0_relu (Activati  (None, 32, 32, 768)  0          ['conv4_block17_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block17_1_conv (Conv2D)  (None, 32, 32, 128)  98304       ['conv4_block17_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block17_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block17_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block17_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block17_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block17_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block17_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block17_concat (Concaten  (None, 32, 32, 800)  0          ['conv4_block16_concat[0][0]',   \n"," ate)                                                             'conv4_block17_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block18_0_bn (BatchNorma  (None, 32, 32, 800)  3200       ['conv4_block17_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block18_0_relu (Activati  (None, 32, 32, 800)  0          ['conv4_block18_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block18_1_conv (Conv2D)  (None, 32, 32, 128)  102400      ['conv4_block18_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block18_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block18_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block18_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block18_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block18_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block18_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block18_concat (Concaten  (None, 32, 32, 832)  0          ['conv4_block17_concat[0][0]',   \n"," ate)                                                             'conv4_block18_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block19_0_bn (BatchNorma  (None, 32, 32, 832)  3328       ['conv4_block18_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block19_0_relu (Activati  (None, 32, 32, 832)  0          ['conv4_block19_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block19_1_conv (Conv2D)  (None, 32, 32, 128)  106496      ['conv4_block19_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block19_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block19_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block19_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block19_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block19_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block19_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block19_concat (Concaten  (None, 32, 32, 864)  0          ['conv4_block18_concat[0][0]',   \n"," ate)                                                             'conv4_block19_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block20_0_bn (BatchNorma  (None, 32, 32, 864)  3456       ['conv4_block19_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block20_0_relu (Activati  (None, 32, 32, 864)  0          ['conv4_block20_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block20_1_conv (Conv2D)  (None, 32, 32, 128)  110592      ['conv4_block20_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block20_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block20_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block20_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block20_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block20_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block20_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block20_concat (Concaten  (None, 32, 32, 896)  0          ['conv4_block19_concat[0][0]',   \n"," ate)                                                             'conv4_block20_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block21_0_bn (BatchNorma  (None, 32, 32, 896)  3584       ['conv4_block20_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block21_0_relu (Activati  (None, 32, 32, 896)  0          ['conv4_block21_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block21_1_conv (Conv2D)  (None, 32, 32, 128)  114688      ['conv4_block21_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block21_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block21_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block21_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block21_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block21_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block21_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block21_concat (Concaten  (None, 32, 32, 928)  0          ['conv4_block20_concat[0][0]',   \n"," ate)                                                             'conv4_block21_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block22_0_bn (BatchNorma  (None, 32, 32, 928)  3712       ['conv4_block21_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block22_0_relu (Activati  (None, 32, 32, 928)  0          ['conv4_block22_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block22_1_conv (Conv2D)  (None, 32, 32, 128)  118784      ['conv4_block22_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block22_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block22_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block22_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block22_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block22_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block22_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block22_concat (Concaten  (None, 32, 32, 960)  0          ['conv4_block21_concat[0][0]',   \n"," ate)                                                             'conv4_block22_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block23_0_bn (BatchNorma  (None, 32, 32, 960)  3840       ['conv4_block22_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block23_0_relu (Activati  (None, 32, 32, 960)  0          ['conv4_block23_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block23_1_conv (Conv2D)  (None, 32, 32, 128)  122880      ['conv4_block23_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block23_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block23_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block23_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block23_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block23_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block23_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block23_concat (Concaten  (None, 32, 32, 992)  0          ['conv4_block22_concat[0][0]',   \n"," ate)                                                             'conv4_block23_2_conv[0][0]']   \n","                                                                                                  \n"," conv4_block24_0_bn (BatchNorma  (None, 32, 32, 992)  3968       ['conv4_block23_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block24_0_relu (Activati  (None, 32, 32, 992)  0          ['conv4_block24_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block24_1_conv (Conv2D)  (None, 32, 32, 128)  126976      ['conv4_block24_0_relu[0][0]']   \n","                                                                                                  \n"," conv4_block24_1_bn (BatchNorma  (None, 32, 32, 128)  512        ['conv4_block24_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv4_block24_1_relu (Activati  (None, 32, 32, 128)  0          ['conv4_block24_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv4_block24_2_conv (Conv2D)  (None, 32, 32, 32)   36864       ['conv4_block24_1_relu[0][0]']   \n","                                                                                                  \n"," conv4_block24_concat (Concaten  (None, 32, 32, 1024  0          ['conv4_block23_concat[0][0]',   \n"," ate)                           )                                 'conv4_block24_2_conv[0][0]']   \n","                                                                                                  \n"," pool4_bn (BatchNormalization)  (None, 32, 32, 1024  4096        ['conv4_block24_concat[0][0]']   \n","                                )                                                                 \n","                                                                                                  \n"," pool4_relu (Activation)        (None, 32, 32, 1024  0           ['pool4_bn[0][0]']               \n","                                )                                                                 \n","                                                                                                  \n"," pool4_conv (Conv2D)            (None, 32, 32, 512)  524288      ['pool4_relu[0][0]']             \n","                                                                                                  \n"," pool4_pool (AveragePooling2D)  (None, 16, 16, 512)  0           ['pool4_conv[0][0]']             \n","                                                                                                  \n"," conv5_block1_0_bn (BatchNormal  (None, 16, 16, 512)  2048       ['pool4_pool[0][0]']             \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block1_0_relu (Activatio  (None, 16, 16, 512)  0          ['conv5_block1_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block1_1_conv (Conv2D)   (None, 16, 16, 128)  65536       ['conv5_block1_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block1_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block1_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block1_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block1_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block1_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block1_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block1_concat (Concatena  (None, 16, 16, 544)  0          ['pool4_pool[0][0]',             \n"," te)                                                              'conv5_block1_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block2_0_bn (BatchNormal  (None, 16, 16, 544)  2176       ['conv5_block1_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block2_0_relu (Activatio  (None, 16, 16, 544)  0          ['conv5_block2_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block2_1_conv (Conv2D)   (None, 16, 16, 128)  69632       ['conv5_block2_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block2_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block2_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block2_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block2_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block2_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block2_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block2_concat (Concatena  (None, 16, 16, 576)  0          ['conv5_block1_concat[0][0]',    \n"," te)                                                              'conv5_block2_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block3_0_bn (BatchNormal  (None, 16, 16, 576)  2304       ['conv5_block2_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block3_0_relu (Activatio  (None, 16, 16, 576)  0          ['conv5_block3_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block3_1_conv (Conv2D)   (None, 16, 16, 128)  73728       ['conv5_block3_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block3_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block3_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block3_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block3_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block3_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block3_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block3_concat (Concatena  (None, 16, 16, 608)  0          ['conv5_block2_concat[0][0]',    \n"," te)                                                              'conv5_block3_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block4_0_bn (BatchNormal  (None, 16, 16, 608)  2432       ['conv5_block3_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block4_0_relu (Activatio  (None, 16, 16, 608)  0          ['conv5_block4_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block4_1_conv (Conv2D)   (None, 16, 16, 128)  77824       ['conv5_block4_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block4_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block4_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block4_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block4_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block4_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block4_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block4_concat (Concatena  (None, 16, 16, 640)  0          ['conv5_block3_concat[0][0]',    \n"," te)                                                              'conv5_block4_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block5_0_bn (BatchNormal  (None, 16, 16, 640)  2560       ['conv5_block4_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block5_0_relu (Activatio  (None, 16, 16, 640)  0          ['conv5_block5_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block5_1_conv (Conv2D)   (None, 16, 16, 128)  81920       ['conv5_block5_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block5_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block5_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block5_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block5_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block5_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block5_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block5_concat (Concatena  (None, 16, 16, 672)  0          ['conv5_block4_concat[0][0]',    \n"," te)                                                              'conv5_block5_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block6_0_bn (BatchNormal  (None, 16, 16, 672)  2688       ['conv5_block5_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block6_0_relu (Activatio  (None, 16, 16, 672)  0          ['conv5_block6_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block6_1_conv (Conv2D)   (None, 16, 16, 128)  86016       ['conv5_block6_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block6_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block6_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block6_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block6_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block6_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block6_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block6_concat (Concatena  (None, 16, 16, 704)  0          ['conv5_block5_concat[0][0]',    \n"," te)                                                              'conv5_block6_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block7_0_bn (BatchNormal  (None, 16, 16, 704)  2816       ['conv5_block6_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block7_0_relu (Activatio  (None, 16, 16, 704)  0          ['conv5_block7_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block7_1_conv (Conv2D)   (None, 16, 16, 128)  90112       ['conv5_block7_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block7_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block7_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block7_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block7_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block7_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block7_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block7_concat (Concatena  (None, 16, 16, 736)  0          ['conv5_block6_concat[0][0]',    \n"," te)                                                              'conv5_block7_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block8_0_bn (BatchNormal  (None, 16, 16, 736)  2944       ['conv5_block7_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block8_0_relu (Activatio  (None, 16, 16, 736)  0          ['conv5_block8_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block8_1_conv (Conv2D)   (None, 16, 16, 128)  94208       ['conv5_block8_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block8_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block8_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block8_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block8_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block8_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block8_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block8_concat (Concatena  (None, 16, 16, 768)  0          ['conv5_block7_concat[0][0]',    \n"," te)                                                              'conv5_block8_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block9_0_bn (BatchNormal  (None, 16, 16, 768)  3072       ['conv5_block8_concat[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block9_0_relu (Activatio  (None, 16, 16, 768)  0          ['conv5_block9_0_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block9_1_conv (Conv2D)   (None, 16, 16, 128)  98304       ['conv5_block9_0_relu[0][0]']    \n","                                                                                                  \n"," conv5_block9_1_bn (BatchNormal  (None, 16, 16, 128)  512        ['conv5_block9_1_conv[0][0]']    \n"," ization)                                                                                         \n","                                                                                                  \n"," conv5_block9_1_relu (Activatio  (None, 16, 16, 128)  0          ['conv5_block9_1_bn[0][0]']      \n"," n)                                                                                               \n","                                                                                                  \n"," conv5_block9_2_conv (Conv2D)   (None, 16, 16, 32)   36864       ['conv5_block9_1_relu[0][0]']    \n","                                                                                                  \n"," conv5_block9_concat (Concatena  (None, 16, 16, 800)  0          ['conv5_block8_concat[0][0]',    \n"," te)                                                              'conv5_block9_2_conv[0][0]']    \n","                                                                                                  \n"," conv5_block10_0_bn (BatchNorma  (None, 16, 16, 800)  3200       ['conv5_block9_concat[0][0]']    \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block10_0_relu (Activati  (None, 16, 16, 800)  0          ['conv5_block10_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block10_1_conv (Conv2D)  (None, 16, 16, 128)  102400      ['conv5_block10_0_relu[0][0]']   \n","                                                                                                  \n"," conv5_block10_1_bn (BatchNorma  (None, 16, 16, 128)  512        ['conv5_block10_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block10_1_relu (Activati  (None, 16, 16, 128)  0          ['conv5_block10_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block10_2_conv (Conv2D)  (None, 16, 16, 32)   36864       ['conv5_block10_1_relu[0][0]']   \n","                                                                                                  \n"," conv5_block10_concat (Concaten  (None, 16, 16, 832)  0          ['conv5_block9_concat[0][0]',    \n"," ate)                                                             'conv5_block10_2_conv[0][0]']   \n","                                                                                                  \n"," conv5_block11_0_bn (BatchNorma  (None, 16, 16, 832)  3328       ['conv5_block10_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block11_0_relu (Activati  (None, 16, 16, 832)  0          ['conv5_block11_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block11_1_conv (Conv2D)  (None, 16, 16, 128)  106496      ['conv5_block11_0_relu[0][0]']   \n","                                                                                                  \n"," conv5_block11_1_bn (BatchNorma  (None, 16, 16, 128)  512        ['conv5_block11_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block11_1_relu (Activati  (None, 16, 16, 128)  0          ['conv5_block11_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block11_2_conv (Conv2D)  (None, 16, 16, 32)   36864       ['conv5_block11_1_relu[0][0]']   \n","                                                                                                  \n"," conv5_block11_concat (Concaten  (None, 16, 16, 864)  0          ['conv5_block10_concat[0][0]',   \n"," ate)                                                             'conv5_block11_2_conv[0][0]']   \n","                                                                                                  \n"," conv5_block12_0_bn (BatchNorma  (None, 16, 16, 864)  3456       ['conv5_block11_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block12_0_relu (Activati  (None, 16, 16, 864)  0          ['conv5_block12_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block12_1_conv (Conv2D)  (None, 16, 16, 128)  110592      ['conv5_block12_0_relu[0][0]']   \n","                                                                                                  \n"," conv5_block12_1_bn (BatchNorma  (None, 16, 16, 128)  512        ['conv5_block12_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block12_1_relu (Activati  (None, 16, 16, 128)  0          ['conv5_block12_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block12_2_conv (Conv2D)  (None, 16, 16, 32)   36864       ['conv5_block12_1_relu[0][0]']   \n","                                                                                                  \n"," conv5_block12_concat (Concaten  (None, 16, 16, 896)  0          ['conv5_block11_concat[0][0]',   \n"," ate)                                                             'conv5_block12_2_conv[0][0]']   \n","                                                                                                  \n"," conv5_block13_0_bn (BatchNorma  (None, 16, 16, 896)  3584       ['conv5_block12_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block13_0_relu (Activati  (None, 16, 16, 896)  0          ['conv5_block13_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block13_1_conv (Conv2D)  (None, 16, 16, 128)  114688      ['conv5_block13_0_relu[0][0]']   \n","                                                                                                  \n"," conv5_block13_1_bn (BatchNorma  (None, 16, 16, 128)  512        ['conv5_block13_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block13_1_relu (Activati  (None, 16, 16, 128)  0          ['conv5_block13_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block13_2_conv (Conv2D)  (None, 16, 16, 32)   36864       ['conv5_block13_1_relu[0][0]']   \n","                                                                                                  \n"," conv5_block13_concat (Concaten  (None, 16, 16, 928)  0          ['conv5_block12_concat[0][0]',   \n"," ate)                                                             'conv5_block13_2_conv[0][0]']   \n","                                                                                                  \n"," conv5_block14_0_bn (BatchNorma  (None, 16, 16, 928)  3712       ['conv5_block13_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block14_0_relu (Activati  (None, 16, 16, 928)  0          ['conv5_block14_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block14_1_conv (Conv2D)  (None, 16, 16, 128)  118784      ['conv5_block14_0_relu[0][0]']   \n","                                                                                                  \n"," conv5_block14_1_bn (BatchNorma  (None, 16, 16, 128)  512        ['conv5_block14_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block14_1_relu (Activati  (None, 16, 16, 128)  0          ['conv5_block14_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block14_2_conv (Conv2D)  (None, 16, 16, 32)   36864       ['conv5_block14_1_relu[0][0]']   \n","                                                                                                  \n"," conv5_block14_concat (Concaten  (None, 16, 16, 960)  0          ['conv5_block13_concat[0][0]',   \n"," ate)                                                             'conv5_block14_2_conv[0][0]']   \n","                                                                                                  \n"," conv5_block15_0_bn (BatchNorma  (None, 16, 16, 960)  3840       ['conv5_block14_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block15_0_relu (Activati  (None, 16, 16, 960)  0          ['conv5_block15_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block15_1_conv (Conv2D)  (None, 16, 16, 128)  122880      ['conv5_block15_0_relu[0][0]']   \n","                                                                                                  \n"," conv5_block15_1_bn (BatchNorma  (None, 16, 16, 128)  512        ['conv5_block15_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block15_1_relu (Activati  (None, 16, 16, 128)  0          ['conv5_block15_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block15_2_conv (Conv2D)  (None, 16, 16, 32)   36864       ['conv5_block15_1_relu[0][0]']   \n","                                                                                                  \n"," conv5_block15_concat (Concaten  (None, 16, 16, 992)  0          ['conv5_block14_concat[0][0]',   \n"," ate)                                                             'conv5_block15_2_conv[0][0]']   \n","                                                                                                  \n"," conv5_block16_0_bn (BatchNorma  (None, 16, 16, 992)  3968       ['conv5_block15_concat[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block16_0_relu (Activati  (None, 16, 16, 992)  0          ['conv5_block16_0_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block16_1_conv (Conv2D)  (None, 16, 16, 128)  126976      ['conv5_block16_0_relu[0][0]']   \n","                                                                                                  \n"," conv5_block16_1_bn (BatchNorma  (None, 16, 16, 128)  512        ['conv5_block16_1_conv[0][0]']   \n"," lization)                                                                                        \n","                                                                                                  \n"," conv5_block16_1_relu (Activati  (None, 16, 16, 128)  0          ['conv5_block16_1_bn[0][0]']     \n"," on)                                                                                              \n","                                                                                                  \n"," conv5_block16_2_conv (Conv2D)  (None, 16, 16, 32)   36864       ['conv5_block16_1_relu[0][0]']   \n","                                                                                                  \n"," conv5_block16_concat (Concaten  (None, 16, 16, 1024  0          ['conv5_block15_concat[0][0]',   \n"," ate)                           )                                 'conv5_block16_2_conv[0][0]']   \n","                                                                                                  \n"," bn (BatchNormalization)        (None, 16, 16, 1024  4096        ['conv5_block16_concat[0][0]']   \n","                                )                                                                 \n","                                                                                                  \n"," relu (Activation)              (None, 16, 16, 1024  0           ['bn[0][0]']                     \n","                                )                                                                 \n","                                                                                                  \n"," average_pooling2d (AveragePool  (None, 4, 4, 1024)  0           ['relu[0][0]']                   \n"," ing2D)                                                                                           \n","                                                                                                  \n"," flatten (Flatten)              (None, 16384)        0           ['average_pooling2d[0][0]']      \n","                                                                                                  \n"," dense (Dense)                  (None, 512)          8389120     ['flatten[0][0]']                \n","                                                                                                  \n"," dropout (Dropout)              (None, 512)          0           ['dense[0][0]']                  \n","                                                                                                  \n"," dense_1 (Dense)                (None, 2)            1026        ['dropout[0][0]']                \n","                                                                                                  \n","==================================================================================================\n","Total params: 15,427,650\n","Trainable params: 8,390,146\n","Non-trainable params: 7,037,504\n","__________________________________________________________________________________________________\n","None\n"]}]},{"cell_type":"code","source":["modelPath = '/content/drive/MyDrive/classification/saved Models/Pretrained DenseNet121'\n","if not os.path.exists(modelPath):\n","  os.makedirs(modelPath)\n","  print('Model Directory Created')\n","else:\n","  print('Model Directory Already Exists')\n","\n","model_checkpoint = tf.keras.callbacks.ModelCheckpoint('./content/drive/MyDrive/classification/saved Models/Pretrained DenseNet121/DenseNet121-best-model.h5', monitor='val_loss',\n","                                                      verbose=1, save_best_only=True, mode='auto')\n","\n","early_stop = EarlyStopping(monitor = 'val_loss', patience = 5, restore_best_weights=True, verbose=1)\n","\n","csv_path = '/content/drive/MyDrive/logs/Binary_Classification_DenseNet121_1.csv' \n","csv_logger = CSVLogger(csv_path, append=True)\n","reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1, min_lr=1e-7)\n","\n","callbacks = [model_checkpoint, reduce_lr, early_stop,csv_logger]\n","\n","STEP_TRAIN = len(Train_gen) // BATCHSIZE\n","STEP_TEST = len(Test_gen) // BATCHSIZE\n","modelHistory = model.fit(Train_gen, epochs=EPOCHS, verbose=1, callbacks=callbacks,\n","                         validation_data= Val_gen, shuffle = True, steps_per_epoch=STEP_TRAIN, validation_steps=STEP_TEST)\n","\n","tf.keras.models.save_model(model, '/content/drive/MyDrive/classification/saved Models/Pretrained DenseNet121/DenseNet121-model.h5', overwrite=True, include_optimizer=True, save_format=None,\n","                           signatures=None, options=None)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"448DW43VMqUG","executionInfo":{"status":"ok","timestamp":1662206605236,"user_tz":-330,"elapsed":1598169,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"4efedf13-7f45-43bf-a574-e97c49f83cb2"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Model Directory Already Exists\n","Epoch 1/20\n","165/165 [==============================] - ETA: 0s - loss: 1.7891 - accuracy: 0.6606\n","Epoch 1: val_loss improved from inf to 0.31468, saving model to ./content/drive/MyDrive/classification/saved Models/Pretrained DenseNet121/DenseNet121-best-model.h5\n","165/165 [==============================] - 269s 2s/step - loss: 1.7891 - accuracy: 0.6606 - val_loss: 0.3147 - val_accuracy: 0.8286 - lr: 0.0010\n","Epoch 2/20\n","165/165 [==============================] - ETA: 0s - loss: 0.5254 - accuracy: 0.7652\n","Epoch 2: val_loss did not improve from 0.31468\n","165/165 [==============================] - 245s 1s/step - loss: 0.5254 - accuracy: 0.7652 - val_loss: 0.4677 - val_accuracy: 0.7714 - lr: 0.0010\n","Epoch 3/20\n","165/165 [==============================] - ETA: 0s - loss: 0.5150 - accuracy: 0.7606\n","Epoch 3: val_loss did not improve from 0.31468\n","165/165 [==============================] - 235s 1s/step - loss: 0.5150 - accuracy: 0.7606 - val_loss: 0.4579 - val_accuracy: 0.7429 - lr: 0.0010\n","Epoch 4/20\n","165/165 [==============================] - ETA: 0s - loss: 0.5435 - accuracy: 0.7136\n","Epoch 4: val_loss did not improve from 0.31468\n","\n","Epoch 4: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513.\n","165/165 [==============================] - 225s 1s/step - loss: 0.5435 - accuracy: 0.7136 - val_loss: 0.5299 - val_accuracy: 0.7929 - lr: 0.0010\n","Epoch 5/20\n","165/165 [==============================] - ETA: 0s - loss: 0.5125 - accuracy: 0.7667\n","Epoch 5: val_loss did not improve from 0.31468\n","165/165 [==============================] - 213s 1s/step - loss: 0.5125 - accuracy: 0.7667 - val_loss: 0.4540 - val_accuracy: 0.8071 - lr: 1.0000e-04\n","Epoch 6/20\n","165/165 [==============================] - ETA: 0s - loss: 0.4955 - accuracy: 0.7818\n","Epoch 6: val_loss did not improve from 0.31468\n","Restoring model weights from the end of the best epoch: 1.\n","165/165 [==============================] - 203s 1s/step - loss: 0.4955 - accuracy: 0.7818 - val_loss: 0.3691 - val_accuracy: 0.8429 - lr: 1.0000e-04\n","Epoch 6: early stopping\n"]}]},{"cell_type":"code","source":["from tensorflow.keras.models import load_model"],"metadata":{"id":"eGqeAqptQvZC"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["model = load_model('/content/drive/MyDrive/classification/saved Models/Pretrained DenseNet121/DenseNet121-model.h5')"],"metadata":{"id":"duPJ3CGfQ1wi"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from tqdm.notebook import tqdm\n","pred_prob = []\n","for bno in tqdm(range(len(Test_gen))):\n","  pred = model.predict(Test_gen[bno][0])\n","  pred_prob.append(pred[0][1])\n","\n","results['pred_prob']=pred_prob"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":49,"referenced_widgets":["eeeaa5aa84134dae8bde90878bbccd44","da2fa8e65db44325b7579faf3ed619ff","5dc376db538149e7bc6d222a9c6fa340","5abd299add6d477282d2dfe0a8985f9d","2ad2445746ea4cf498fa84ab8f313146","d688f82a632d4cf39f0765d691f38f08","0e216ef5a36742c4affc2a2077990965","12e7b4ac5e864d0baa6067db7ee88e8e","ecd9cfa59404455b9368ae60c2ce4901","4816bd397b814058a5e7f9e9528df0d2","496e1f1efe8b4654b5b74ee41f72657d"]},"id":"T0QmETN4Om40","executionInfo":{"status":"ok","timestamp":1662377519876,"user_tz":-330,"elapsed":1431091,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"8a902667-966a-43ae-c062-ce265fc321f6"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["  0%|          | 0/4534 [00:00<?, ?it/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"eeeaa5aa84134dae8bde90878bbccd44"}},"metadata":{}}]},{"cell_type":"code","source":["results = pd.read_csv('/content/drive/MyDrive/classification/saved Models/Pretrained DenseNet121/predictions.csv')"],"metadata":{"id":"O4LhABXzeEat","executionInfo":{"status":"ok","timestamp":1664608311335,"user_tz":-330,"elapsed":1214,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}}},"execution_count":2,"outputs":[]},{"cell_type":"code","source":["results"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":424},"id":"vIHJ1fhaOMoL","executionInfo":{"status":"ok","timestamp":1664608328244,"user_tz":-330,"elapsed":516,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"1860f695-465c-4860-e7e4-05f4dd2a42cb"},"execution_count":5,"outputs":[{"output_type":"execute_result","data":{"text/plain":["      Unnamed: 0  label  pred_prob\n","0              0      1   0.610620\n","1              1      0   0.000071\n","2              2      1   0.026114\n","3              3      0   0.552967\n","4              4      0   0.180897\n","...          ...    ...        ...\n","4529        4529      1   0.307799\n","4530        4530      0   0.000043\n","4531        4531      0   0.000061\n","4532        4532      1   0.355793\n","4533        4533      1   0.355793\n","\n","[4534 rows x 3 columns]"],"text/html":["\n","  <div id=\"df-670859eb-0eab-4c6c-8f73-2b01a7ce903b\">\n","    <div class=\"colab-df-container\">\n","      <div>\n","<style scoped>\n","    .dataframe tbody tr th:only-of-type {\n","        vertical-align: middle;\n","    }\n","\n","    .dataframe tbody tr th {\n","        vertical-align: top;\n","    }\n","\n","    .dataframe thead th {\n","        text-align: right;\n","    }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n","  <thead>\n","    <tr style=\"text-align: right;\">\n","      <th></th>\n","      <th>Unnamed: 0</th>\n","      <th>label</th>\n","      <th>pred_prob</th>\n","    </tr>\n","  </thead>\n","  <tbody>\n","    <tr>\n","      <th>0</th>\n","      <td>0</td>\n","      <td>1</td>\n","      <td>0.610620</td>\n","    </tr>\n","    <tr>\n","      <th>1</th>\n","      <td>1</td>\n","      <td>0</td>\n","      <td>0.000071</td>\n","    </tr>\n","    <tr>\n","      <th>2</th>\n","      <td>2</td>\n","      <td>1</td>\n","      <td>0.026114</td>\n","    </tr>\n","    <tr>\n","      <th>3</th>\n","      <td>3</td>\n","      <td>0</td>\n","      <td>0.552967</td>\n","    </tr>\n","    <tr>\n","      <th>4</th>\n","      <td>4</td>\n","      <td>0</td>\n","      <td>0.180897</td>\n","    </tr>\n","    <tr>\n","      <th>...</th>\n","      <td>...</td>\n","      <td>...</td>\n","      <td>...</td>\n","    </tr>\n","    <tr>\n","      <th>4529</th>\n","      <td>4529</td>\n","      <td>1</td>\n","      <td>0.307799</td>\n","    </tr>\n","    <tr>\n","      <th>4530</th>\n","      <td>4530</td>\n","      <td>0</td>\n","      <td>0.000043</td>\n","    </tr>\n","    <tr>\n","      <th>4531</th>\n","      <td>4531</td>\n","      <td>0</td>\n","      <td>0.000061</td>\n","    </tr>\n","    <tr>\n","      <th>4532</th>\n","      <td>4532</td>\n","      <td>1</td>\n","      <td>0.355793</td>\n","    </tr>\n","    <tr>\n","      <th>4533</th>\n","      <td>4533</td>\n","      <td>1</td>\n","      <td>0.355793</td>\n","    </tr>\n","  </tbody>\n","</table>\n","<p>4534 rows × 3 columns</p>\n","</div>\n","      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-670859eb-0eab-4c6c-8f73-2b01a7ce903b')\"\n","              title=\"Convert this dataframe to an interactive table.\"\n","              style=\"display:none;\">\n","        \n","  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n","       width=\"24px\">\n","    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n","    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n","  </svg>\n","      </button>\n","      \n","  <style>\n","    .colab-df-container {\n","      display:flex;\n","      flex-wrap:wrap;\n","      gap: 12px;\n","    }\n","\n","    .colab-df-convert {\n","      background-color: #E8F0FE;\n","      border: none;\n","      border-radius: 50%;\n","      cursor: pointer;\n","      display: none;\n","      fill: #1967D2;\n","      height: 32px;\n","      padding: 0 0 0 0;\n","      width: 32px;\n","    }\n","\n","    .colab-df-convert:hover {\n","      background-color: #E2EBFA;\n","      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n","      fill: #174EA6;\n","    }\n","\n","    [theme=dark] .colab-df-convert {\n","      background-color: #3B4455;\n","      fill: #D2E3FC;\n","    }\n","\n","    [theme=dark] .colab-df-convert:hover {\n","      background-color: #434B5C;\n","      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n","      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n","      fill: #FFFFFF;\n","    }\n","  </style>\n","\n","      <script>\n","        const buttonEl =\n","          document.querySelector('#df-670859eb-0eab-4c6c-8f73-2b01a7ce903b button.colab-df-convert');\n","        buttonEl.style.display =\n","          google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n","        async function convertToInteractive(key) {\n","          const element = document.querySelector('#df-670859eb-0eab-4c6c-8f73-2b01a7ce903b');\n","          const dataTable =\n","            await google.colab.kernel.invokeFunction('convertToInteractive',\n","                                                     [key], {});\n","          if (!dataTable) return;\n","\n","          const docLinkHtml = 'Like what you see? Visit the ' +\n","            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n","            + ' to learn more about interactive tables.';\n","          element.innerHTML = '';\n","          dataTable['output_type'] = 'display_data';\n","          await google.colab.output.renderOutput(dataTable, element);\n","          const docLink = document.createElement('div');\n","          docLink.innerHTML = docLinkHtml;\n","          element.appendChild(docLink);\n","        }\n","      </script>\n","    </div>\n","  </div>\n","  "]},"metadata":{},"execution_count":5}]},{"cell_type":"code","source":["import sklearn.metrics as metrics\n","fpr, tpr, thresholds = metrics.roc_curve(results.label, results.pred_prob)\n","roc_auc = metrics.auc(fpr, tpr)\n","# method I: plt\n","import matplotlib.pyplot as plt\n","plt.title('Receiver Operating Characteristic')\n","plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)\n","plt.legend(loc = 'lower right')\n","plt.ylabel('True Positive Rate')\n","plt.xlabel('False Positive Rate')\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":295},"id":"5emo8RDLbDSO","executionInfo":{"status":"ok","timestamp":1664608333915,"user_tz":-330,"elapsed":537,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"0d244dbd-3172-4059-ff26-533f84b4e2cf"},"execution_count":6,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 432x288 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZgU1bnH8e/LjgiogEZBBAVUcGEZRdQgRhORiMSgiN4kYjTG3URjNNGbGNQkxiRevdFEJV5cUYIbiQtJBDSu7CCLRGSRQQmLyCKiA7z3j1PtNMNMTw8z1TXd/fs8Tz+1na56q3um3q46VeeYuyMiIsWrQdIBiIhIspQIRESKnBKBiEiRUyIQESlySgQiIkVOiUBEpMgpEUiNmNk8MxuQdBz1hZn91MxGJbTt0WZ2SxLbrmtm9l9m9vddfK/+JmtJiSCPmdlSM/vUzDaZ2crowLB7nNt09x7uPjnObaSYWVMz+5WZvR/t57tmdq2ZWS62X0k8A8ysNH2eu//S3S+MaXtmZlea2Vwz+8TMSs3sL2Z2eBzb21VmdpOZPVKbdbj7o+7+tSy2tVPyy+XfZKFSIsh/g919d6An0Av4ScLx1JiZNapi0V+Ak4BBQEvg28BFwJ0xxGBmVt/+H+4ErgKuBPYCugHPAF+v6w1l+A5il+S2JeLueuXpC1gKnJw2/RvgubTpY4DXgY+B2cCAtGV7Af8HfACsA55JW3YaMCt63+vAERW3CewHfArslbasF7AGaBxNfxdYEK1/AnBAWlkHLgPeBZZUsm8nAVuA/SvM7wtsA7pE05OBXwFTgA3AsxViyvQZTAZuBV6L9qULcH4U80ZgMfD9qGyLqMx2YFP02g+4CXgkKtMp2q/zgPejz+KGtO01Bx6MPo8FwI+B0iq+267Rfh6d4fsfDdwNPBfF+xZwUNryO4Hl0ecyHfhy2rKbgHHAI9HyC4GjgTeiz+pD4A9Ak7T39AD+AXwE/Af4KTAQ+Bwoiz6T2VHZ1sCfo/WsAG4BGkbLRkSf+R3A2mjZCODVaLlFy1ZFsb0NHEb4EVAWbW8T8NeK/wdAwyiu96LPZDoV/ob0quRvKekA9KrFl7fjP0CH6B/mzmi6ffRPNohw5vfVaLpdtPw54AlgT6AxcEI0v1f0D9g3+qc6L9pO00q2ORH4Xlo8twN/isaHAIuAQ4FGwI3A62llPTqo7AU0r2Tffg28XMV+L6P8AD05OtAcRjhYP0n5gbm6z2Ay4YDdI4qxMeHX9kHRwegEYDPQOyo/gAoHbipPBPcTDvpHAp8Bh6bvU/SZdwDmVFxf2novBpZV8/2Pjvbn6Cj+R4HH05Z/C2gTLbsGWAk0S4u7DPhG9Nk0B/oQEmejaF8WAD+IyrckHNSvAZpF030rfgZp234auDf6TvYmJOrUdzYC2ApcEW2rOTsmglMIB/A9ou/hUGDftH2+JcP/wbWE/4ODo/ceCbRJ+n+1vr8SD0CvWnx54R9gE+GXjwMvAXtEy64DHq5QfgLhwL4v4ZftnpWs84/AzRXmLaQ8UaT/010ITIzGjfDrs380/QJwQdo6GhAOqgdE0w58JcO+jUo/qFVY9ibRL23CwfzXacu6E34xNsz0GaS9d2Q1n/EzwFXR+ACySwQd0pZPAYZH44uBU9KWXVhxfWnLbgDerCa20cCotOlBwDsZyq8DjkyL+5Vq1v8D4Olo/BxgZhXlvvgMoul9CAmwedq8c4BJ0fgI4P0K6xhBeSL4CvBvQlJqUMk+Z0oEC4Ehcfy/FfKrvl0TlZr7hru3JBykDgHaRvMPAM4ys49TL+B4QhLYH/jI3ddVsr4DgGsqvG9/wmWQip4E+pnZvkB/QnL5V9p67kxbx0eEZNE+7f3LM+zXmijWyuwbLa9sPcsIv+zbkvkzqDQGMzvVzN40s4+i8oMo/0yztTJtfDOQqsDfr8L2Mu3/Wqre/2y2hZn9yMwWmNn6aF9as+O+VNz3bmb2t+jGgw3AL9PK70+43JKNAwjfwYdpn/u9hDODSredzt0nEi5L3Q2sMrP7zKxVltuuSZwSUSIoEO7+MuHX0m+jWcsJv4b3SHu1cPdfR8v2MrM9KlnVcuDWCu/bzd3HVLLNdcDfgbOBcwm/4D1tPd+vsJ7m7v56+ioy7NI/gb5mtn/6TDPrS/hnn5g2O71MR8IljzXVfAY7xWBmTQnJ7bfAPu6+B/A8IYFVF282PiRcEqos7opeAjqYWcmubMjMvkyogxhGOPPbA1hP+b7AzvvzR+AdoKu7tyJca0+VXw4cWMXmKq5nOeGMoG3a597K3XtkeM+OK3S/y937EM7wuhEu+VT7vmjbB1VTRipQIigs/wN81cyOJFQCDjazU8ysoZk1i25/7ODuHxIu3dxjZnuaWWMz6x+t437gYjPrG91J08LMvm5mLavY5mPAd4Azo/GUPwE/MbMeAGbW2szOynZH3P2fhIPhk2bWI9qHY6L9+qO7v5tW/Ftm1t3MdgNGAuPcfVumz6CKzTYBmgKrga1mdiqQfkvjf4A2ZtY62/2oYCzhM9nTzNoDl1dVMNq/e4AxUcxNoviHm9n1WWyrJeE6/GqgkZn9DKjuV3VLQuXsJjM7BLgkbdnfgH3N7AfRbb0to6QM4XPplLrrKvr7+jvwOzNrZWYNzOwgMzshi7gxs6Oiv7/GwCeEmwa2p22rqoQE4ZLizWbWNfr7PcLM2mSz3WKmRFBA3H018BDwM3dfTqiw/SnhYLCc8Ksq9Z1/m/DL+R1C5fAPonVMA75HODVfR6jwHZFhs+MJd7isdPfZabE8DdwGPB5dZpgLnFrDXRoKTAJeJNSFPEK4E+WKCuUeJpwNrSRUZF4ZxVDdZ7ADd98YvXcsYd/PjfYvtfwdYAywOLrkUdnlskxGAqXAEsIZzzjCL+eqXEn5JZKPCZc8zgD+msW2JhA+t38TLpdtIfOlKIAfEfZ5I+EHwROpBdFn81VgMOFzfhc4MVr8l2i41sxmROPfISTW+YTPchzZXeqCkLDuj963jHCZ7PZo2Z+B7tHn/0wl7/094fv7OyGp/ZlQGS0ZWPmZvEj+MbPJhIrKRJ7urQ0zu4RQkZzVL2WRuOiMQCRHzGxfMzsuulRyMOFWzKeTjktET/SJ5E4Twt0znQmXeh4n1AOIJEqXhkREipwuDYmIFLm8uzTUtm1b79SpU9JhiIjklenTp69x93aVLcu7RNCpUyemTZuWdBgiInnFzJZVtUyXhkREipwSgYhIkVMiEBEpckoEIiJFTolARKTIxZYIzOwBM1tlZnOrWG5mdpeZLTKzOWbWO65YRESkanGeEYwm9GdalVMJrVZ2JfRF+scYYxERkSrE9hyBu79iZp0yFBkCPBR1ZPKmme1hZvtGbZmLiNQrmzfD9u2ZyyxZAp9/nrnMsmWwZUv59Lx50LBhdjEMHgxHHZVd2ZpI8oGy9uzYPnppNG+nRGBmFxHOGujYsWNOghOR/LZ2LWzYAKWl8Mkn5fMffBD23LPq9330ESxYAG3TOvX817+grCy+WAHMqi+z336Flwiy5u73AfcBlJSUqJU8kTy3cSNs2waLFkFV7V5u2QILF0KzZuXz3nsvzK/4C3r7dnj5ZXj9dbLWrtLGFmDrVli/Hrp0gb2jXpaPPhrWrIELLsh8wF6/Hnr3hkYZjqzusNde5esGOOAAaNo0+9jrWpKJYAU79tnaIZonIvXUmjXhYAfhgLZw4Y4HRneYNg1mzYJ99tnxvVOnwowZ1ImKiWDbtjBs3DjE8KMfhWTTrRu0bBkOvKl43KFPH2jSpG5iKQRJJoLxwOVm9jjQF1iv+gGRZJSVhYP39u2waRMsXhymZ86EuXNh//3LL7PURHoy2Lo1DI8/Plzi6Ns3XLLpneF+QbNwMK+4zpZV9aAtuyS2RGBmY4ABQFszKwV+DjQGcPc/Ac8Dgwh94m4Gzo8rFpFCtW1bOGinKyuDf/87VEqWlYWD6Zw54bLJl74Upt96C1q0CL+gAVatqn5bfftCjx7Qv39IDBAu03TvXr4egAYN4JBDYPfd62YfJX5x3jV0TjXLHbgsru2LFJLVq+Hdd8MBfdGicGnkhRfg7bdrvp7eveG448L48ceXL9u2Dc44I4w3ahR+iXfsmF0lpuS3vKgsFik2q1eHO1VeeAGefTZMV+XYY+HSS3ecV1YGhx0WLqPssUeY16JF+LUuUpESgUg98N57MHlyuC6/YgU8XaFL+8MPh7POCpWcBx8cLs2oslPqihKBSALcw+tPf4Lp0+GBB3YuM3x4uPula1do1Sr3MUrxUCIQyYHULYsbNoTLM+++u3OZyy6D664Ld9Rk+6SpSF1QIhCpA6lbI7duhYkTw90027fDo4+G++dXpD0hc8450KtXSA577w3XXBMu9WR6CEkkTvrTE6mF1at3fEK0KvvuG+7AefbZnR+0EkmaEoHILpgzB448csd5N98chp9/Hm7DbNgwNBvQrZtuwZT6TYlAJEsPPQTnnRcaI1uzpnz+TTfBz36mg73kLyUCkSq4h6dxX3wRXnsNJk0K89esCb/4Bw2CCy9MNkaRuqBEIEXtP/8Jl3kaNAht6jz+eGga4fXXQ/vzFY0dG+7nFykkSgRSdJYvhx//OBz0q9K3L6xbFyqCf/1rOOaYkCx0+UcKkRKBFIXbbgsdkixYsOP8YcPg0EPhpJPCdKdO5Q2qiRQLJQIpWJ9/Hipxb7ttx/knnwxDh8I3v5ndrZ8ihU6JQArKp5+G6/5r1uzcpd+KFeGpXRHZkRKBFIyFC0M7+OlOOQWeegp22y2ZmETygRKB5JVly8JdPqm2eGbPhv/7P1i6tLxz8b33DpeDWrQIl3/Ubo9IZkoEUi8tWAD33w8rV4Z2+Vu1gvnzM7/nG98Ilb6XXaa7e0RqQolA6p3KDuL9+8OQIaExt1NPhX79wnx36NIldE6ug7/IrlEikHrDPVzKSRk3LvzK16UdkXgpEUji3ENF7y9/Cc88E+bNmBGaahaR+CkRSGLKysKBf9iwHefPng1HHJFMTCLFSIlAcm7r1tA+f3oLnj16hN65BgzQk70iudYg6QCkeDzyCHToAI0blyeB738fXnghNPj27W8rCYgkQWcEEjv38Ev/lVfK5118Mdx5JzRpklhYIhJRIpBYbN0KTz4JH38cDvopEyfCiScmF5eI7EyJQOrcU0+FRt0q2rgxtPUvIvWL6gikTi1bVp4EOnSAmTPhww9h+3YlAZH6SmcEUme2bw/t+QOccw489lii4YhIlnRGILWybVto26d9+x2fAFYSEMkfOiOQGlu/Hr72NXj33dCdY8oxx4TLQXfckVxsIlJzSgSSte3bwyWfsWPL5/XuHRp9e/hh3Qoqkq9ivTRkZgPNbKGZLTKz6ytZ3tHMJpnZTDObY2aD4oxHai7VENyRR4ZLP6kk8MMfhstC06fDE08oCYjks9jOCMysIXA38FWgFJhqZuPdPb1V+RuBse7+RzPrDjwPdIorJqmZzz6DY48NDcBBaAbaHR59VHcAiRSSOC8NHQ0scvfFAGb2ODAESE8EDrSKxlsDH8QYj2Rp8+bwLMCVV5bXASxfHq7/i0jhiTMRtAeWp02XAn0rlLkJ+LuZXQG0AE6ubEVmdhFwEUDHjh3rPFAJv/TfeCO0/7969Y7L1qyBNm2SiUtE4pf07aPnAKPdvQMwCHjYzHaKyd3vc/cSdy9p165dzoMsBr/5DRx3XHkSuPXW0A+wu5KASKGL84xgBZDelmSHaF66C4CBAO7+hpk1A9oCq2KMS9JMnQpXXRXOBgBefjnUCzTS/WQiRSPOM4KpQFcz62xmTYDhwPgKZd4HTgIws0OBZkCFCxMSl7Fj4eijy5PAnXeGvoGVBESKS2yJwN23ApcDE4AFhLuD5pnZSDM7PSp2DfA9M5sNjAFGuLvHFZMEGzaEg/7ZZ4fp664LvYVdeWWycYlIMizfjrslJSU+bdq0pMPIWytXhgSQ6hvg5JPhH/9INiYRiZ+ZTXf3ksqW6SJAkXCHBhXO/z78EL70pWTiEZH6I+m7hiQHtm3bMQn8/OfhzEBJQERAZwQF79NPYbfdyqdXr4a2bZOLR0TqHyWCAnfooeXjn32mNoFEZGdKBAVq27aQBJYtK5+uWEcgIgJKBAXJHfbYAzZtCtMLFyoJiEjVlAgK0Lhx5Ung00+hWbNk4xGR+k2/EwvMzTfDsGFhfNUqJQERqZ7OCApEWRm0axe6kQQ46qgwLSJSHZ0RFICpU6FVq/IkMHMmTJmSbEwikj+yTgRmtlv1pSRX3OHee8EsNBy3ZUuYv3kz9OyZbGwikl+qTQRmdqyZzQfeiaaPNLN7Yo9MqrR4cbgL6OKLw3TbtjB+fHhOoHnzZGMTkfyTzRnBHcApwFoAd58N9I8zKKmaOxx+eBg/4ACYNSs8LTx4sB4WE5Fdk1VlsbsvN7P0WdviCUeqM3RouPwDsGRJuDQkIlIb2SSC5WZ2LOBm1hi4itC/gOTYwoXw9NNhvLRUSUBE6kY2l4YuBi4jdEa/AugJXBpnUFK5e6KambFjoX37ZGMRkcKRzRnBwe7+X+kzzOw44LV4QpLKpO4SAjjjjGRjEZHCks0Zwf9mOU9isno1HHhguCuod2/1KSwidavKQ4qZ9QOOBdqZ2dVpi1oBDeMOTIJly0IS2L49TI8bl2w8IlJ4Mp0RNAF2JySLlmmvDcCZ8YcmDz0EnTqFJNCvX2hKunPnpKMSkUJT5RmBu78MvGxmo919WQ5jEuDBB2HEiDB+/vnwwAOJhiMiBSybq82bzex2oAfwRVuW7v6V2KIqcosXlyeBn/4Ubr010XBEpMBlU1n8KKF5ic7AL4ClwNQYYypqW7ZAr15h/M47lQREJH7ZJII27v5noMzdX3b37wI6G4jB5s2hraANG8L0pXpaQ0RyIJtLQ2XR8EMz+zrwAbBXfCEVrxYtysfLynSbqIjkRjaHmlvMrDVwDeH5gVbAD2KNqgj17l0+vn27mo8QkdypNhG4+9+i0fXAifDFk8VSB7ZtC62Gpp4T2LhRSUBEcivTA2UNgWGENoZedPe5ZnYa8FOgOdArNyEWtvTLP6+/DrvvnlwsIlKcMp0R/BnYH5gC3GVmHwAlwPXu/kwugit0q1aVj6tOQESSkunQUwIc4e7bzawZsBI4yN3X5ia0wvePf4Thgw8qCYhIcjLdPvq5u28HcPctwOKaJgEzG2hmC81skZldX0WZYWY238zmmdljNVl/PnOHK64I4yedlGwsIlLcMv0OPcTM5kTjBhwUTRvg7n5EphVHdQx3A18FSoGpZjbe3eenlekK/AQ4zt3XmdnetdiXvHLGGbBuHbRsqb4FRCRZmRLBobVc99HAIndfDGBmjwNDgPlpZb4H3O3u6wDcfdVOaylAo0fDs8+G8QXq601EEpap0bnaNjTXHlieNl0K9K1QphuAmb1GaNr6Jnd/seKKzOwi4CKAjh071jKs5P1v1JvDSy/pbEBEkpdNExNxagR0BQYA5wD3m9keFQu5+33uXuLuJe3atctxiHVr+3aYMQPatYOvqKEOEakH4kwEKwi3n6Z0iOalKwXGu3uZuy8B/k1IDAVr48YwPOusZOMQEUnJKhGYWXMzO7iG654KdDWzzmbWBBgOjK9Q5hnC2QBm1pZwqWhxDbeTV+64IwwPPzzZOEREUqpNBGY2GJgFvBhN9zSzigf0nbj7VuByYAKwABjr7vPMbKSZnR4VmwCsNbP5wCTg2kJ/TuEPfwjDE09MNg4RkRRz98wFzKYTmp2e7O69onlvu3siv2lLSkp82rRpSWy61srKQrtCAwbApElJRyMixcTMprt7SWXLsrk0VObu6yvMy5w9pFKp7iaPPz7ZOERE0mXTsME8MzsXaBg9AHYl8Hq8YRWed96Biy8O48OHJxuLiEi6bM4IriD0V/wZ8BihOWr1R1ADU6bAodHjeeeeCz16JBuPiEi6bM4IDnH3G4Ab4g6mEC1fDn2jx+jOOy88VSwiUp9kc0bwOzNbYGY3m9lhsUdUQNwh9SD0V76iJCAi9VO1icDdTyT0TLYauNfM3jazG2OPrACk7gzab7/QnISISH2U1QNl7r7S3e8CLiY8U/CzWKMqAGVlcOmlYXx8tU9diIgkp9o6AjM7FDgbGAqsBZ4gdGQvGRx0UKgfAOjTJ9lYREQyyaay+AHCwf8Ud/8g5ngKQllZeRJYVts2XEVEYlZtInD3frkIpJCk6gaGDy+vLBYRqa+qTARmNtbdh5nZ2+z4JHFWPZQVs9OjlpR+8pNk4xARyUamM4KrouFpuQikUHz0EXz2WRg/QqlSRPJAlXcNufuH0eil7r4s/QVcmpvw8svChdCmTRi/995kYxERyVY2t49+tZJ5p9Z1IIXg/PPD8Jhj4HvfSzYWEZFsZaojuITwy/9AM5uTtqgl8FrcgeWjhQvD8I03ko1DRKQmMtURPAa8APwKuD5t/kZ3/yjWqPLQ/PmhfuCkk5KORESkZjIlAnf3pWZ2WcUFZraXksGOzj03DFOXh0RE8kV1ZwSnAdMJt49a2jIHDowxrryyfTvMnh3Gzz472VhERGqqykTg7qdFw865Cyc/pZ4i/slPoFE2z2qLiNQj2XRef5yZtYjGv2VmvzczPS+bJtWyaK9eycYhIrIrsrl99I/AZjM7ktDY3HvAw7FGlWdSieCEE5KNQ0RkV2STCLa6uwNDgD+4+92EW0iF8BTxY4+F8b33TjYWEZFdkc0V7Y1m9hPg28CXzawB0DjesPLH+++H4cCBycYhIrKrsjkjOJvQcf133X0l0AG4Pdao8kiqXaELL0w2DhGRXZVNV5UrgUeB1mZ2GrDF3R+KPbI8cXuUEps2TTYOEZFdlc1dQ8OAKcBZwDDgLTM7M+7A8sGmTfBQlBIPOyzZWEREdlU2dQQ3AEe5+yoAM2sH/BMYF2dg+eCf/wzD66+HTp0SDUVEZJdlU0fQIJUEImuzfF/BW7IkDAcPTjYOEZHayOaM4EUzmwCMiabPBp6PL6T8cfXVYagOaEQkn2XTZ/G1ZvZN4Pho1n3u/nS8YdV/t94ahl27wu67JxuLiEhtZOqPoCvwW+Ag4G3gR+6+IleB1Xf33BOGqXoCEZF8lela/wPA34ChhBZI/7emKzezgWa20MwWmdn1GcoNNTM3s5KabiMJn38OH3wARx4JHdXqkojkuUyXhlq6+/3R+EIzm1GTFZtZQ+BuQleXpcBUMxvv7vMrlGsJXAW8VZP1J+nEE8NQndCISCHIlAiamVkvyvshaJ4+7e7VJYajgUXuvhjAzB4ntFc0v0K5m4HbgGtrGHtiXn89DG+7Ldk4RETqQqZE8CHw+7TplWnTDnylmnW3B5anTZcCfdMLmFlvYH93f87MqkwEZnYRcBFAx4SvxaQ6oPnmN9X3gIgUhkwd05wY54ajxut+D4yorqy73wfcB1BSUuJxxpXJu+9Cz55h/Mc/TioKEZG6FeeDYSuA/dOmO0TzUloChwGTzWwpcAwwvj5XGN90Uxj26wd9+2YsKiKSN+JMBFOBrmbW2cyaAMOB8amF7r7e3du6eyd37wS8CZzu7tNijGmXbd5c3u9Aqo5ARKQQxJYI3H0rcDkwAVgAjHX3eWY20sxOj2u7cTn22DA8+eRk4xARqWvVVneamQH/BRzo7iOj/oq/5O5Tqnuvuz9PheYo3P1nVZQdkFXECXjqqfJK4hdfTDYWEZG6ls0ZwT1AP+CcaHoj4fmAouAO3/lOGJ83Dxo2TDYeEZG6ls0NkH3dvbeZzQRw93XRNf+icNdd8MknYbx792RjERGJQzZnBGXRU8IOX/RHsD3WqOqR1KWgVJPTIiKFJptEcBfwNLC3md0KvAr8Mtao6olt20IiaNNGHc+ISOHKphnqR81sOnASoXmJb7j7gtgjqwcmTQrD/v2TjUNEJE7Z3DXUEdgM/DV9nru/H2dg9cHUqWGY6oBGRKQQZVNZ/ByhfsCAZkBnYCHQI8a46oW//z0M1QOZiBSybC4NHZ4+HTUUd2lsEdUTH3wAkydDr17QqlXS0YiIxKfGTxZHzU8XfEs7N94YhqedlmwcIiJxy6aOIP0KeQOgN/BBbBHVE++8E4bXXJNsHCIiccumjqBl2vhWQp3Bk/GEU3+YhZ7IWrdOOhIRkXhlTATRg2Qt3f1HOYqnXnAPLYwOHpx0JCIi8auyjsDMGrn7NuC4HMZTL6TqBdasSTYOEZFcyHRGMIVQHzDLzMYDfwE+SS1096diji0xqYblJk5MNg4RkVzIpo6gGbCW0Edx6nkCBwo2EUyZEvofaNYs6UhEROKXKRHsHd0xNJfyBJCSWL/BufCf/6iSWESKR6ZE0BDYnR0TQErBJoJXXglDPT8gIsUiUyL40N1H5iySeuL73w/D4cOTjUNEJFcyPVlc2ZlAQdu8ufxBsqOOSjYWEZFcyZQITspZFPVE6rLQ736XbBwiIrlUZSJw949yGUh98MYbYaj6AREpJjVudK6QTZ8ehl27JhuHiEguKRFEbr0VnnsuNDltRVc7IiLFTIkAKCsrb3Z6ZNHdJyUixU6JAJg/PwwvuACuuirZWEREck2JAHj55TBUJbGIFCMlAuDOO8Pw1FOTjUNEJAlFnwhmzoTFi8N406bJxiIikoSiTwQfRJ1ujhuXbBwiIkkp+kTw2Wdh2KVLsnGIiCQl1kRgZgPNbKGZLTKz6ytZfrWZzTezOWb2kpkdEGc8lUndMaTLQiJSrGJLBFF/x3cDpwLdgXPMrHuFYjOBEnc/AhgH/CaueKoyZ04Ydu6c6y2LiNQPcZ4RHA0scvfF7v458DgwJL2Au09y983R5JtAhxjjqdTUqdCokc4IRKR4xZkI2gPL06ZLo3lVuQB4obIFZnaRmU0zs2mrV6+uswDdYelS6NWrzlYpIpJ36kVlsZl9CygBbq9subvf5+4l7l7Srl27OtvuR1H7qkoEIlLMsum8fletAPZPm+4QzduBmZ0M3ACc4O6fxRjPTsaMCcOSklxuVUSkfonzjGAq0NXMOptZE2A4MD69gJn1Au4FTnf3VTHGUqlUb2RDhmQuJyJSyGJLBO6+FbgcmAAsAMa6+zwzG2lmp0fFbgd2B/5iZrPMbFXKhFEAAA9LSURBVHwVq4vF5MnQujXsvXcutyoiUr/EeWkId38eeL7CvJ+ljZ8c5/YzKSuDefOS2rqISP1RLyqLk/Dxx2H43e8mG4eISNKKNhG8914YHndcsnGIiCStaBPBL34Rhvvtl2wcIiJJK9pE8OKLYXjKKcnGISKStKJNBAAnn6yO6kVEijIRLF0ahkcfnWgYIiL1QlEmgkceCcOjjko2DhGR+qAoE8GECWGoJ4pFRIo0Ebz6ahiqfkBEpAgTQaprygEDEg1DRKTeKNpEMHhwsnGIiNQXRZcIPv88DJs0STYOEZH6ougSweLFYahEICISFF0ieP/9MOyQ896RRUTqp6JLBKmmpw85JNk4RETqi6JLBO5h2L59snGIiNQXRZcIysqgUSNo2jTpSERE6oeiSwSffw6NGycdhYhI/VF0iWDLFmhQdHstIlK1ojskPvFEuDQkIiJB0SWC1auhXbukoxARqT+K6rdx6o6hk09ONg6RYlFWVkZpaSlbtmxJOpSi0axZMzp06EDjGlSGFlUiWL8+DPffP9k4RIpFaWkpLVu2pFOnTpia+42du7N27VpKS0vp3Llz1u8rqktDTz0Vhq1aJRuHSLHYsmULbdq0URLIETOjTZs2NT4DK6pEMH9+GJ51VrJxiBQTJYHc2pXPu6gSwauvwp57wj77JB2JiEj9UVSJYLfddOuoSDF65plnMDPeeeedL+ZNnjyZ0047bYdyI0aMYNy4cUCo6L7++uvp2rUrvXv3pl+/frzwwgu1juVXv/oVXbp04eCDD2ZCqt/cCl566SV69+5Nz549Of7441m0aBEAo0ePpl27dvTs2ZOePXsyatSoWscDRZYIJk2C3r2TjkJEcm3MmDEcf/zxjBkzJuv3/Pd//zcffvghc+fOZcaMGTzzzDNs3LixVnHMnz+fxx9/nHnz5vHiiy9y6aWXsm3btp3KXXLJJTz66KPMmjWLc889l1tuueWLZWeffTazZs1i1qxZXHjhhbWKJ6Vofh+neiZTG0MiyfjBD2DWrLpdZ8+e8D//k7nMpk2bePXVV5k0aRKDBw/mF7/4RbXr3bx5M/fffz9LliyhaXTQ2GeffRg2bFit4n322WcZPnw4TZs2pXPnznTp0oUpU6bQr1+/HcqZGRs2bABg/fr17LfffrXabnWKJhHMmBGGxx6bbBwiklvPPvssAwcOpFu3brRp04bp06fTp0+fjO9ZtGgRHTt2pFUWtxj+8Ic/ZNKkSTvNHz58ONdff/0O81asWMExxxzzxXSHDh1YsWLFTu8dNWoUgwYNonnz5rRq1Yo333zzi2VPPvkkr7zyCt26deOOO+5g/zq4H75oEsGSJWHYs2eycYgUq+p+ucdlzJgxXHXVVUA4OI8ZM4Y+ffpUeXdNTe+6ueOOO2odY2XrfP755+nbty+33347V199NaNGjWLw4MGcc845NG3alHvvvZfzzjuPiRMn1np7sSYCMxsI3Ak0BEa5+68rLG8KPAT0AdYCZ7v70jhi+fTTMNx77zjWLiL10UcffcTEiRN5++23MTO2bduGmXH77bfTpk0b1q1bt1P5tm3b0qVLF95//302bNhQ7VlBTc4I2rdvz/Lly7+YLi0tpX2FzlFWr17N7Nmz6du3LxDqBAYOHAhAmzZtvih34YUX8uMf/ziLTyEL7h7Li3Dwfw84EGgCzAa6VyhzKfCnaHw48ER16+3Tp4/vinvucQf3lSt36e0isgvmz5+f6Pbvvfdev+iii3aY179/f3/55Zd9y5Yt3qlTpy9iXLp0qXfs2NE//vhjd3e/9tprfcSIEf7ZZ5+5u/uqVat87NixtYpn7ty5fsQRR/iWLVt88eLF3rlzZ9+6desOZcrKyrxNmza+cOFCd3cfNWqUf/Ob33R39w8++OCLck899ZT37du30u1U9rkD07yK42qcZwRHA4vcfTGAmT0ODAHmp5UZAtwUjY8D/mBmFgVdp1JnBM2b1/WaRaS+GjNmDNddd90O84YOHcqYMWPo378/jzzyCOeffz5btmyhcePGjBo1itatWwNwyy23cOONN9K9e3eaNWtGixYtGDlyZK3i6dGjB8OGDaN79+40atSIu+++m4YNGwIwaNAgRo0axX777cf999/P0KFDadCgAXvuuScPPPAAAHfddRfjx4+nUaNG7LXXXowePbpW8aRYDMfcsGKzM4GB7n5hNP1toK+7X55WZm5UpjSafi8qs6bCui4CLgLo2LFjn2XLltU4nmefhYcfhjFj1DGNSK4sWLCAQw89NOkwik5ln7uZTXf3ksrK58VzBO5+n7uXuHtJu11sQ3rIEBg3TklARKSiOBPBCiD9vqYO0bxKy5hZI6A1odJYRERyJM5EMBXoamadzawJoTJ4fIUy44HzovEzgYlx1A+ISHL0L51bu/J5x5YI3H0rcDkwAVgAjHX3eWY20sxOj4r9GWhjZouAq4HrK1+biOSjZs2asXbtWiWDHPGoP4JmzZrV6H2xVRbHpaSkxKdNm5Z0GCKSBfVQlntV9VCWqbK4aJ4sFpHca9y4cY16ypJk5MVdQyIiEh8lAhGRIqdEICJS5PKustjMVgM1f7Q4aAusqbZUYdE+Fwftc3GozT4f4O6VPpGbd4mgNsxsWlW15oVK+1wctM/FIa591qUhEZEip0QgIlLkii0R3Jd0AAnQPhcH7XNxiGWfi6qOQEREdlZsZwQiIlKBEoGISJEryERgZgPNbKGZLTKznVo0NbOmZvZEtPwtM+uU+yjrVhb7fLWZzTezOWb2kpkdkEScdam6fU4rN9TM3Mzy/lbDbPbZzIZF3/U8M3ss1zHWtSz+tjua2SQzmxn9fQ9KIs66YmYPmNmqqAfHypabmd0VfR5zzKx3rTdaVWfG+foCGgLvAQcCTYDZQPcKZS4F/hSNDweeSDruHOzzicBu0fglxbDPUbmWwCvAm0BJ0nHn4HvuCswE9oym90467hzs833AJdF4d2Bp0nHXcp/7A72BuVUsHwS8ABhwDPBWbbdZiGcERwOL3H2xu38OPA4MqVBmCPBgND4OOMnMLIcx1rVq99ndJ7n75mjyTUKPcfksm+8Z4GbgNqAQ2kHOZp+/B9zt7usA3H1VjmOsa9nsswOtovHWwAc5jK/OufsrwEcZigwBHvLgTWAPM9u3NtssxETQHlieNl0azau0jIcOdNYDbXISXTyy2ed0FxB+UeSzavc5OmXe392fy2VgMcrme+4GdDOz18zsTTMbmLPo4pHNPt8EfMvMSoHngStyE1piavr/Xi31R1BkzOxbQAlwQtKxxMnMGgC/B0YkHEquNSJcHhpAOOt7xcwOd/ePE40qXucAo939d2bWD3jYzA5z9+1JB5YvCvGMYAWwf9p0h2hepWXMrBHhdHJtTqKLRzb7jJmdDNwAnO7un+UotrhUt88tgcOAyWa2lHAtdXyeVxhn8z2XAuPdvczdlwD/JiSGfJXNPl8AjAVw9zeAZoTG2QpVVv/vNVGIiWAq0NXMOptZE0Jl8PgKZcYD50XjZwITPaqFyVPV7rOZ9QLuJSSBfL9uDNXss7uvd/e27t7J3TsR6kVOd/d87uc0m7/tZwhnA5hZW8KlosW5DLKOZbPP7wMnAZjZoYREsDqnUebWeOA70d1DxwDr3f3D2qyw4C4NuftWM7scmEC44+ABd59nZiOBae4+Hvgz4fRxEaFSZnhyEddelvt8O7A78JeoXvx9dz89saBrKct9LihZ7vME4GtmNh/YBlzr7nl7tpvlPl8D3G9mPyRUHI/I5x92ZjaGkMzbRvUePwcaA7j7nwj1IIOARcBm4PxabzOPPy8REakDhXhpSEREakCJQESkyCkRiIgUOSUCEZEip0QgIlLklAikXjKzbWY2K+3VKUPZTXWwvdFmtiTa1ozoCdWarmOUmXWPxn9aYdnrtY0xWk/qc5lrZn81sz2qKd8z31vjlPjp9lGpl8xsk7vvXtdlM6xjNPA3dx9nZl8DfuvuR9RifbWOqbr1mtmDwL/d/dYM5UcQWl29vK5jkcKhMwLJC2a2e9SPwgwze9vMdmpp1Mz2NbNX0n4xfzma/zUzeyN671/MrLoD9CtAl+i9V0frmmtmP4jmtTCz58xsdjT/7Gj+ZDMrMbNfA82jOB6Nlm2Kho+b2dfTYh5tZmeaWUMzu93MpkZtzH8/i4/lDaLGxszs6GgfZ5rZ62Z2cPQk7kjg7CiWs6PYHzCzKVHZylpslWKTdNvbeulV2YvwVOys6PU04Sn4VtGytoSnKlNntJui4TXADdF4Q0J7Q20JB/YW0fzrgJ9Vsr3RwJnR+FnAW0Af4G2gBeGp7HlAL2AocH/ae1tHw8lEfR6kYkork4rxDODBaLwJoRXJ5sBFwI3R/KbANKBzJXFuStu/vwADo+lWQKNo/GTgyWh8BPCHtPf/EvhWNL4HoS2iFkl/33ol+yq4JiakYHzq7j1TE2bWGPilmfUHthN+Ce8DrEx7z1TggajsM+4+y8xOIHRW8lrUtEYTwi/pytxuZjcS2qm5gNB+zdPu/kkUw1PAl4EXgd+Z2W2Ey0n/qsF+vQDcaWZNgYHAK+7+aXQ56ggzOzMq15rQWNySCu9vbmazov1fAPwjrfyDZtaV0MxC4yq2/zXgdDP7UTTdDOgYrUuKlBKB5Iv/AtoBfdy9zEKLos3SC7j7K1Gi+Dow2sx+D6wD/uHu52SxjWvdfVxqwsxOqqyQu//bQl8Hg4BbzOwldx+ZzU64+xYzmwycApxN6GgFQm9TV7j7hGpW8am79zSz3Qjt71wG3EXogGeSu58RVaxPruL9Bgx194XZxCvFQXUEki9aA6uiJHAisFOfyxb6Yf6Pu98PjCJ09/cmcJyZpa75tzCzbllu81/AN8xsNzNrQbis8y8z2w/Y7O6PEBrzq6zP2LLozKQyTxAaCkudXUA4qF+Seo+ZdYu2WSkPvc1dCVxj5U2pp5oiHpFWdCPhElnKBOAKi06PLLRKK0VOiUDyxaNAiZm9DXwHeKeSMgOA2WY2k/Br+053X004MI4xszmEy0KHZLNBd59BqDuYQqgzGOXuM4HDgSnRJZqfA7dU8vb7gDmpyuIK/k7oGOifHrpfhJC45gMzLHRafi/VnLFHscwhdMzyG+BX0b6nv28S0D1VWUw4c2gcxTYvmpYip9tHRUSKnM4IRESKnBKBiEiRUyIQESlySgQiIkVOiUBEpMgpEYiIFDklAhGRIvf/s6zlZ7erAkgAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["inference = pd.DataFrame(columns = ['Threshold', 'Sensitivity','Specificity','Precision','Recall','F1-score'])\n","for i in tqdm(range(len(thresholds))):\n","  th = thresholds[i]\n","  results['pred_label']= results.pred_prob.apply(lambda x: 1 if x>th else 0)\n","  TN, FP, FN, TP = confusion_matrix(results.label,results.pred_label).ravel()\n","  Sensitivity = TP / (FN+TP)\n","  Specificity = TN/(FP+TN)\n","  Recall = TP / (FN+TP)\n","  Precision = TP/(TP+FP)\n","  f1_score = 2 * (Precision * Recall)/ (Precision + Recall)\n","  if(Sensitivity>=0.8):\n","    inference = inference.append({'Threshold':th,\n","                                  'Sensitivity':Sensitivity,\n","                                  'Specificity': Specificity,\n","                                  'Precision': Precision, \n","                                  'Recall': Recall, \n","                                  'F1-score':f1_score}, ignore_index=True)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":138,"referenced_widgets":["51db9dfde4774c37afe6aaa5fb762f58","e6fd8f236f664ae5aa97f3330128be35","cced12273bbe4325b0da9c3082cd5964","e5420776c53b4a04993fccd245450939","88a227e09ee4497bbdb5067bb8a8a898","dc394ff2a651448cbb2b823e4a545b8c","8f0b7ccb56b9404d9256e872befc0be8","94cf7f36192b45088bbe2cd55bcb9a19","c4ab8db73a54489d898e026145f883bc","88dad033e5b84c41991a5800c0c68062","18e565c1bd98458199d41bcb2807ab26"]},"id":"aeqqCZbMY3g1","executionInfo":{"status":"ok","timestamp":1664608346428,"user_tz":-330,"elapsed":6172,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"7a6928e8-2d5d-4d18-8cef-95cdedb52436"},"execution_count":7,"outputs":[{"output_type":"display_data","data":{"text/plain":["  0%|          | 0/1164 [00:00<?, ?it/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"51db9dfde4774c37afe6aaa5fb762f58"}},"metadata":{}},{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:9: RuntimeWarning: invalid value encountered in long_scalars\n","  if __name__ == '__main__':\n","/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:9: RuntimeWarning: invalid value encountered in long_scalars\n","  if __name__ == '__main__':\n"]}]},{"cell_type":"code","source":["inference.to_csv('/content/drive/MyDrive/classification/saved Models/Pretrained DenseNet121/inference.csv')"],"metadata":{"id":"OTL5qVBSY47N","executionInfo":{"status":"ok","timestamp":1664608403381,"user_tz":-330,"elapsed":10,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}}},"execution_count":10,"outputs":[]},{"cell_type":"code","source":["model_tracker = pd.read_csv('/content/drive/MyDrive/Model_Tracker_Deeptek.csv')"],"metadata":{"id":"9ebk9JxiDUfZ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["model_tracker = model_tracker.append({'model_id': \"DN_1\",\n","                      'architecture': \"DenseNet121\",\n","                      'batch_size': batch_size,\n","                      'img_size': IMG_SIZE,\n","                      'learning_rate': INIT_LR,\n","                      'optimizer': \"Adam\",\n","                      'lossfunction': \"Binary Crossentropy\",\n","                      'weight_path': \"/content/drive/MyDrive/classification/saved Models/Pretrained DenseNet121/DenseNet121-model.h5\" ,\n","                      'logs_path': \"/content/drive/MyDrive/logs/Binary_Classification_DenseNet121_1.csv\",\n","                      'Colab_URL': \"https://colab.research.google.com/drive/1U3dCtpGbpCuS09N4D_WhQ_S2Y3ybsR75#scrollTo=33PPUeC6S44e\",\n","                      'comments': \"The image size was 512 x 512 and had a good AU|ROC score of 0.85\"},ignore_index = True)"],"metadata":{"id":"33PPUeC6S44e"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["model_tracker"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":266},"id":"LmP3VEElMHcT","executionInfo":{"status":"ok","timestamp":1663263210602,"user_tz":-330,"elapsed":18,"user":{"displayName":"Satvik Maheshwari","userId":"09768921556990219284"}},"outputId":"7aed3afe-d7e8-4d18-da27-080e1c9dcb94"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["   Unnamed: 0 model_id architecture batch_size img_size  learning_rate  \\\n","0         NaN     DN_1  DenseNet121          1      512          0.001   \n","\n","  optimizer  loss function                                        weight_path  \\\n","0      Adam            NaN  /content/drive/MyDrive/classification/saved Mo...   \n","\n","                                           logs_path  \\\n","0  /content/drive/MyDrive/logs/Binary_Classificat...   \n","\n","                                           Colab_URL  \\\n","0  https://colab.research.google.com/drive/1U3dCt...   \n","\n","                                            comments         lossfunction  \n","0  The image size was 512 x 512 and had a good AU...  Binary Crossentropy  "],"text/html":["\n","  <div id=\"df-6b0cfd3f-95b9-41f8-b540-099d0792c978\">\n","    <div class=\"colab-df-container\">\n","      <div>\n","<style scoped>\n","    .dataframe tbody tr th:only-of-type {\n","        vertical-align: middle;\n","    }\n","\n","    .dataframe tbody tr th {\n","        vertical-align: top;\n","    }\n","\n","    .dataframe thead th {\n","        text-align: right;\n","    }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n","  <thead>\n","    <tr style=\"text-align: right;\">\n","      <th></th>\n","      <th>Unnamed: 0</th>\n","      <th>model_id</th>\n","      <th>architecture</th>\n","      <th>batch_size</th>\n","      <th>img_size</th>\n","      <th>learning_rate</th>\n","      <th>optimizer</th>\n","      <th>loss function</th>\n","      <th>weight_path</th>\n","      <th>logs_path</th>\n","      <th>Colab_URL</th>\n","      <th>comments</th>\n","      <th>lossfunction</th>\n","    </tr>\n","  </thead>\n","  <tbody>\n","    <tr>\n","      <th>0</th>\n","      <td>NaN</td>\n","      <td>DN_1</td>\n","      <td>DenseNet121</td>\n","      <td>1</td>\n","      <td>512</td>\n","      <td>0.001</td>\n","      <td>Adam</td>\n","      <td>NaN</td>\n","      <td>/content/drive/MyDrive/classification/saved Mo...</td>\n","      <td>/content/drive/MyDrive/logs/Binary_Classificat...</td>\n","      <td>https://colab.research.google.com/drive/1U3dCt...</td>\n","      <td>The image size was 512 x 512 and had a good AU...</td>\n","      <td>Binary Crossentropy</td>\n","    </tr>\n","  </tbody>\n","</table>\n","</div>\n","      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6b0cfd3f-95b9-41f8-b540-099d0792c978')\"\n","              title=\"Convert this dataframe to an interactive table.\"\n","              style=\"display:none;\">\n","        \n","  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n","       width=\"24px\">\n","    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n","    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n","  </svg>\n","      </button>\n","      \n","  <style>\n","    .colab-df-container {\n","      display:flex;\n","      flex-wrap:wrap;\n","      gap: 12px;\n","    }\n","\n","    .colab-df-convert {\n","      background-color: #E8F0FE;\n","      border: none;\n","      border-radius: 50%;\n","      cursor: pointer;\n","      display: none;\n","      fill: #1967D2;\n","      height: 32px;\n","      padding: 0 0 0 0;\n","      width: 32px;\n","    }\n","\n","    .colab-df-convert:hover {\n","      background-color: #E2EBFA;\n","      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n","      fill: #174EA6;\n","    }\n","\n","    [theme=dark] .colab-df-convert {\n","      background-color: #3B4455;\n","      fill: #D2E3FC;\n","    }\n","\n","    [theme=dark] .colab-df-convert:hover {\n","      background-color: #434B5C;\n","      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n","      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n","      fill: #FFFFFF;\n","    }\n","  </style>\n","\n","      <script>\n","        const buttonEl =\n","          document.querySelector('#df-6b0cfd3f-95b9-41f8-b540-099d0792c978 button.colab-df-convert');\n","        buttonEl.style.display =\n","          google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n","        async function convertToInteractive(key) {\n","          const element = document.querySelector('#df-6b0cfd3f-95b9-41f8-b540-099d0792c978');\n","          const dataTable =\n","            await google.colab.kernel.invokeFunction('convertToInteractive',\n","                                                     [key], {});\n","          if (!dataTable) return;\n","\n","          const docLinkHtml = 'Like what you see? Visit the ' +\n","            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n","            + ' to learn more about interactive tables.';\n","          element.innerHTML = '';\n","          dataTable['output_type'] = 'display_data';\n","          await google.colab.output.renderOutput(dataTable, element);\n","          const docLink = document.createElement('div');\n","          docLink.innerHTML = docLinkHtml;\n","          element.appendChild(docLink);\n","        }\n","      </script>\n","    </div>\n","  </div>\n","  "]},"metadata":{},"execution_count":20}]},{"cell_type":"code","source":["model_tracker.to_csv('/content/drive/MyDrive/Model_Tracker_Deeptek.csv')"],"metadata":{"id":"c5wVNi6zVNEh"},"execution_count":null,"outputs":[]}],"metadata":{"colab":{"collapsed_sections":[],"provenance":[{"file_id":"1m_V1-uCuR3uo--0Lj8e_cZyQAJ5e5YCB","timestamp":1661840992997},{"file_id":"1EanXRj0V1ttzigcm6cKz6LLUiD2MFOZN","timestamp":1661422765929}],"mount_file_id":"1U3dCtpGbpCuS09N4D_WhQ_S2Y3ybsR75","authorship_tag":"ABX9TyOdsxOh18LxyMmRaj4Hy5Om"},"gpuClass":"standard","kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"},"accelerator":"GPU","widgets":{"application/vnd.jupyter.widget-state+json":{"eeeaa5aa84134dae8bde90878bbccd44":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_da2fa8e65db44325b7579faf3ed619ff","IPY_MODEL_5dc376db538149e7bc6d222a9c6fa340","IPY_MODEL_5abd299add6d477282d2dfe0a8985f9d"],"layout":"IPY_MODEL_2ad2445746ea4cf498fa84ab8f313146"}},"da2fa8e65db44325b7579faf3ed619ff":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_d688f82a632d4cf39f0765d691f38f08","placeholder":"​","style":"IPY_MODEL_0e216ef5a36742c4affc2a2077990965","value":"100%"}},"5dc376db538149e7bc6d222a9c6fa340":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_12e7b4ac5e864d0baa6067db7ee88e8e","max":4534,"min":0,"orientation":"horizontal","style":"IPY_MODEL_ecd9cfa59404455b9368ae60c2ce4901","value":4534}},"5abd299add6d477282d2dfe0a8985f9d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_4816bd397b814058a5e7f9e9528df0d2","placeholder":"​","style":"IPY_MODEL_496e1f1efe8b4654b5b74ee41f72657d","value":" 4534/4534 [23:50&lt;00:00,  3.57it/s]"}},"2ad2445746ea4cf498fa84ab8f313146":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"d688f82a632d4cf39f0765d691f38f08":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0e216ef5a36742c4affc2a2077990965":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"12e7b4ac5e864d0baa6067db7ee88e8e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ecd9cfa59404455b9368ae60c2ce4901":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"4816bd397b814058a5e7f9e9528df0d2":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"496e1f1efe8b4654b5b74ee41f72657d":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"51db9dfde4774c37afe6aaa5fb762f58":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_e6fd8f236f664ae5aa97f3330128be35","IPY_MODEL_cced12273bbe4325b0da9c3082cd5964","IPY_MODEL_e5420776c53b4a04993fccd245450939"],"layout":"IPY_MODEL_88a227e09ee4497bbdb5067bb8a8a898"}},"e6fd8f236f664ae5aa97f3330128be35":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_dc394ff2a651448cbb2b823e4a545b8c","placeholder":"​","style":"IPY_MODEL_8f0b7ccb56b9404d9256e872befc0be8","value":"100%"}},"cced12273bbe4325b0da9c3082cd5964":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_94cf7f36192b45088bbe2cd55bcb9a19","max":1164,"min":0,"orientation":"horizontal","style":"IPY_MODEL_c4ab8db73a54489d898e026145f883bc","value":1164}},"e5420776c53b4a04993fccd245450939":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_88dad033e5b84c41991a5800c0c68062","placeholder":"​","style":"IPY_MODEL_18e565c1bd98458199d41bcb2807ab26","value":" 1164/1164 [00:05&lt;00:00, 179.53it/s]"}},"88a227e09ee4497bbdb5067bb8a8a898":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"dc394ff2a651448cbb2b823e4a545b8c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"8f0b7ccb56b9404d9256e872befc0be8":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"94cf7f36192b45088bbe2cd55bcb9a19":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c4ab8db73a54489d898e026145f883bc":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"88dad033e5b84c41991a5800c0c68062":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"18e565c1bd98458199d41bcb2807ab26":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}}}}},"nbformat":4,"nbformat_minor":0}