[1eeedb]: / data_preparation.py

Download this file

517 lines (425 with data), 20.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
"""
# ===============Part_1: Original Data Format Conversion===============
To do: <Strategy>
1. init data [.nii(Nifit file) -> .png]:
CT data: 3D -> 2D
save: [1] .png (dir: data_preprocessing/images)
2. mask data [.nii -> .json / .txt]:
CT mask data: 3D -> 2D
Filter the masks(contains 'pneumonia') -> JSON & YOLO_TXT
save: [1] .png (dir: data_preprocessing/masks)
[2] .json (dir: data_preprocessing/labelJSON)
(recognizable by Labelme.exe)
[3] .txt(dir: data_preprocessing/labels)
(for YOLO input:
YOLO format annotation data file -> describe label's classID & relative position)
3. data augmentation:
[1] CT (images) - optimize:
[1.1] reduce the CT range and to increase the contrast (pkg: windowing -> transform window width & center)
[1.2] Filter all CT & masks which contains 'pneumonia'
[2] Masks - optimize: (for YOLOv8)
[2.1] binarize masks (0 & 1)
[2.2] padded & filled mask_tmp's connected area
[2.3] close all contours in mask
[2.4] contours -> polygons
[2.5] discard the polygons(contours) if it contains few points
[3] CT & Masks - optimize: -> create a train_data_generator to perform various transformations (for UNET)
[3.1] define an image_generator -> keras.preprocessing.Image.ImageDataGenerator()
[3.2] image data augmentation -> flow_from_directory()
[3.3] image normalization (??? false -> binarize CT in real)
recommended:
in U-Net : CT -> normalization is better than binarization
"""
import os
import SimpleITK as sitk
import matplotlib.pyplot as plt
import math
import numpy as np
import io
import base64
from skimage import measure
from scipy.ndimage import (
binary_dilation,
binary_fill_holes,
) # dilation & filling for mask
from PIL import Image # Pillow Imaging Library
import json
import tensorflow as tf
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# ========================1. Read Data========================
# Read .nii file
# def read_nifit(nii_path):
# path_parts = nii_path.split("\\")
# nii_name = path_parts[-1]
# nii_type = path_parts[-2]
# # read nii
# img_slices = sitk.ReadImage(nii_path)
# wincenter = img_slices
# data_img_slices = sitk.GetArrayFromImage(img_slices) # convert sitk image to numpy array
# # write in txt
# with open(f"{nii_type}_{nii_name.split('.')[0]}.txt", "w", encoding="utf-8") as f:
# f.write(f"{nii_path}: \n {img_slices}\n")
# f.write("===================================\n")
# f.write(f"Shape of the data: {data_img_slices.shape}\n")
# f.write(f"data_img_slices: \n")
# for i in data_img_slices:
# for j in i:
# f.write(f"{j}\n")
# f.write("===================================\n")
# return data_img_slices, nii_type, nii_name
# Make plt_savefig Name
def make_fig_name(nii_type, nii_name):
return nii_type + "_" + nii_name.split(".")[0]
# Draw Nifit CT
def draw_image(data_img_slices, idx1, idx2, savefig=None):
row = math.floor(math.sqrt(idx2 + 1 - idx1))
col = math.ceil(math.sqrt(idx2 + 1 - idx1))
if row * col < (idx2 + 1 - idx1):
row += 1
j = 1
for i in range(idx1 - 1, idx2):
plt.subplot(row, col, j)
plt.imshow(data_img_slices[i], cmap="gray")
plt.axis(False)
j += 1
plt.show()
if savefig and isinstance(savefig, str):
plt.savefig(f"CT_{savefig}.png")
# Draw CT histogram
def draw_histogram(data_img_slices, idx, savefig=None):
ct_values = data_img_slices[idx - 1].flatten() # flatten 3D -> 1D
plt.figure(figsize=(10, 6))
plt.hist(ct_values, bins=100, color="blue", alpha=0.7)
plt.title("Histogram of CT Values")
plt.xlabel("CT Value")
plt.ylabel("Frequency")
plt.grid(True)
plt.show()
if savefig and isinstance(savefig, str):
plt.savefig(f"CT_histogram_{savefig}.png")
# Output nii's metadata
def create_metadata_dir(data_path):
# create metadata folder & sub_dir
meta_path = os.path.join(data_path, "metadata_tmp")
img_meta_path = os.path.join(meta_path, "images")
mask_meta_path = os.path.join(meta_path, "masks")
PATH = {meta_path, img_meta_path, mask_meta_path}
for path in PATH:
os.makedirs(path, exist_ok=True)
return img_meta_path, mask_meta_path
# Output nii's metadata
def write_metadata_in_txt(nii_path, sitk_nii, metadata, save_dir_path):
meta_path = os.path.join(save_dir_path, f"{nii_name.split('.')[0]}_metadata.txt")
with open(meta_path, "w", encoding="utf-8") as f:
f.write(f"{nii_path}: \n {sitk_nii}\n")
f.write("===================================\n")
f.write(f"Shape of the data: {metadata.shape}\n")
f.write(f"data_img_slices: \n")
for i in metadata:
f.write("\n".join(map(str, i)))
f.write("===================================\n")
# ========================2. Data Augmentation========================
# img
def window_transform(sitkImage, winwidth=250, wincenter=80):
"""
To do: transform window width & center
to reduce the CT range and to increase the contrast (pkg: windowing)
:param sitkImage(input) -> SimpleITK object
:param winwidth -> CT values range --> winwidth: smaller, contrast: stronger
:param wincenter -> all displayed CT values' center position --> wincenter: smaller, brightness: brighter
:return sitkImage(output) -> sitkImage after transform
"""
# define borders
min = int(wincenter - winwidth / 2.0)
max = int(wincenter + winwidth / 2.0)
# define SimpleITK object -> transform window width & center
intensityWindow = sitk.IntensityWindowingImageFilter()
intensityWindow.SetWindowMinimum(min)
intensityWindow.SetWindowMaximum(max)
# print(
# f"new window width: {intensityWindow.GetWindowMinimum()} ~ {intensityWindow.GetWindowMaximum()}"
# )
sitkImage = intensityWindow.Execute(sitkImage)
return sitkImage
# img
def get_winwidth_wincenter(img_nii_path, mask_nii_path):
"""
To do: According to CT's Mask flexibly winwidth && wincenter
:param img_nii_path -> nii_path
:param mask_nii_path -> nii_path
:return winwidth, wincenter
Note: for Lung CT: default winwidth: 1000 ~ 1600HU, default wincenter:-600 ~ -800HU
"""
all_min_max_hu = []
for nii_name in os.listdir(mask_nii_path):
if nii_name.endswith(".nii.gz") or nii_name.endswith(".nii"):
# read nii file
imgs_nii = sitk.ReadImage(os.path.join(img_nii_path, nii_name))
masks_nii = sitk.ReadImage(os.path.join(mask_nii_path, nii_name))
# nii -> array[]
imgs_init = sitk.GetArrayFromImage(imgs_nii)
masks = sitk.GetArrayFromImage(masks_nii)
masks_hu_init = np.where(masks == 1, imgs_init, np.nan)
for mask in masks_hu_init:
arr_mask = mask.flatten()
if not np.all(np.isnan(arr_mask)):
all_min_max_hu.extend([np.nanmin(arr_mask), np.nanmax(arr_mask)])
# print(f"all_min_max_hu: {all_min_max_hu}")
lower_bound_min = (
math.floor(np.nanmin(all_min_max_hu) / 100) * 100
) # find nearest bounds
upper_bound_max = math.ceil(np.nanmax(all_min_max_hu) / 100) * 100
winwidth = upper_bound_max - lower_bound_min
wincenter = np.around(1 / 2 * (upper_bound_max + lower_bound_min))
# print(f"min_bound: {min}, max_bound: {max}")
# print(f"min: {lower_bound_min}, max: {upper_bound_max}")
print(f"winwidth: {winwidth}, wincenter: {wincenter}")
return winwidth, wincenter
# img
def img_to_base64str(img_pil):
"""
To do: Image convertion: PIL Image -> Base64 string
:img_pil : PIL Image Object(gray)
:return : (Base64) str(utf-8)
PIL: Python Imaging Library
(Binary) byte str ==> use in Image/Video/...
(Base64) byte str (ASCII character) ==> use in Print/Mail/URL/...
(Base64) str (utf-8: Unicode character (text str)) ==> use in JSON/XML/...
This allows image data to be transmitted over the network as text strings or stored in text files without being affected by the compatibility or transmission issues that binary data can bring.
"""
ENCODING = "utf-8"
img_byte = io.BytesIO() # Create a binary data stream in memory
img_pil.save(img_byte, format="PNG") # save img_pil in img_byte
binary_byte_str = img_byte.getvalue() # img -> Binary byte data
base64_byte_str = base64.b64encode(
binary_byte_str
) # (Binary) byte str -> (Base64) byte str
base64_str = base64_byte_str.decode(ENCODING) # (Base64) byte str -> (Base64) str
return base64_str
# mask
def close_contour(contour):
"""
To do: close contour [traite image shapes and borders]
sure that a 2D contour is connected end-to-end to form a closed contour
"""
if not np.array_equal(contour[0], contour[-1]): # contours: not closed
contour = np.vstack((contour, contour[0])) # add contours[0] at the end
return contour
# mask
def binary_mask_to_polygon(binary_mask, tolerance=0):
"""
To do: binary_mask -> polygon(COCO dataset format)
From project "pycococreator-master"
:binary_mask : array[](uint8)
:tolerance=0 : control the fineness of the polygon approximation process
:return : polygons (list)
contours: {[c_1][c_2]...[c_N]} -> N contours in mask
contour : [[y1,x1]...[yn,xn]] -> n points in this contour
-> shape: (n,2)
-> y: row coordinate, x: col coordinate
polygons: [[segmentation_1], ..., [segmentation_N]] -> N polygons in mask
"""
# treat mask
padded_binary_mask = np.pad(
binary_mask, pad_width=1, mode="constant", constant_values=0
) # padding: to avoid losing the boundary info when check the contour later
# check all contours in mask
contours = measure.find_contours(
padded_binary_mask, 0.5
) # threshold: 0.5 (for binary img) # default contour's precision = 1 -> decimals=1
# treat contours
polygons = []
for contour in contours:
contour = np.subtract(contour, 1) # restore: original = contour - padding(1)
contour = close_contour(contour) # make sure contour closed
contour = measure.approximate_polygon(contour, tolerance)
if len(contour) < 3: # check points num # filter the 'contour' whose points < 3
continue
contour = np.flip(contour, axis=1) # flip the axis: img(y,x) -> COCOdata(x,y)
segmentation = contour.ravel().tolist() # contour[points] -> 1D list
segmentation = [
0 if i < 0 else i for i in segmentation
] # make sure segmentation >= 0
polygons.append(segmentation)
return polygons
# img & mask
def img_mask_to_json_txt(img, mask, class_names, class_mapping):
"""
To do: img + mask -> json
json: for img annotation tool (eg : Labelme)
:img : PIL Image Object (gray)
:mask : PIL Image Object (gray)
:class_names : ['_background_', 'pneumonia']
"""
# init JSON
JSON_OUTPUT = {
"version": "5.4.1", # Labelme version
"flags": {}, # Additional flag info
"shapes": [], # [{label, points, group_id, shape_type, flags}...{}]
"imagePath": {},
"imageData": {}, # Image data (Base64 encoded)
"imageHeight": {},
"imageWidth": {},
}
# init TXT -> YOLO .txt format: one polygon(object) <-> one row
TXT_OUTPUT = []
"""
TXT_OUTPUT = [
# if bboxes is rectangle:
[classID, x_center_nor, y_center_nor, width_nor, height_nor]
... # here: nor-> normalized
# for polygons in this case:
[classID, [x1_nor, y1_nor], ...]
... # one polygon(object) <-> one row
] # list
"""
# JSON - "imagePath" -> set externally
# JSON - "imageData"
imageData = img_to_base64str(img) # Image -> base64_str ('utf-8')
JSON_OUTPUT["imageData"] = imageData
# JSON - "imageHeight" & "imageWidth"
binary_mask = np.asarray(mask).astype(
np.uint8
) # Image -> array ('uint-8') # binary_mask just contains 0 & 1
JSON_OUTPUT["imageHeight"] = binary_mask.shape[0] # height
JSON_OUTPUT["imageWidth"] = binary_mask.shape[1] # width
# JSON - "shapes": label, points, group_id, shape_type, flags
success = False
for i in np.unique(binary_mask): # loop through each img's mask(frame)
# Filter the masks(contains 'pneumonia')
if i != 0: # 0 : typically background
# original mask_patch
mask_tmp = np.where(
binary_mask == i, 1, 0
) # check the connected area (set: 1, rest: 0 -> binarization)
"""
Description for "np.where(condition, x(True), y(False))":
mask_tmp = binary_mask
for j in mask_tmp:
if j == i:
True
j = 1
else:
False
j = 0
return mask_tmp: a new binary mask (contain only 0 & 1)
"""
# Draw mask -> plot its boundary points
# plt.subplot(1, 2, 1) # position: left
# plt.imshow(mask_tmp, cmap='gray')
# padded & filled mask_tmp's connected area
mask_tmp = binary_dilation(
mask_tmp, structure=np.ones((3, 3)), iterations=1
) # padding
mask_tmp = binary_fill_holes(mask_tmp, structure=np.ones((5, 5))) # filling
# plt.subplot(1, 2, 2) # position: right
# plt.imshow(mask_tmp, cmap='gray')
# plt.show()
# polygon extraction
polygons = binary_mask_to_polygon(mask_tmp, tolerance=2)
for polygon in polygons:
if len(polygon) > 10: # discard the contour if it contains few points
# "shapes" -> labels
label = class_names[i] # class_names[1] : 'pneumonia'
# "shapes" -> points
# YOLO TXT -> one row, one contour(polygon)
points = []
yolotxt_row = str(class_mapping[label]) # YOLO txt_row -> classID
for j in range(0, len(polygon), 2): # step_range: 2
x = polygon[j] # default decimals = 1
y = polygon[j + 1]
points.append([x, y]) # point[x, y]
# YOLO txt_row -> point[x, y] -> normalization
x = round(x / JSON_OUTPUT["imageWidth"], 6) # normalized
y = round(
y / JSON_OUTPUT["imageHeight"], 6
) # normalized, 6: decimals = 6
yolotxt_row += " " + str(x) + " " + str(y)
# JSON - "shapes"
shape = {
"label": label,
"points": points,
"group_id": None,
# 'description': "",
"shape_type": "polygon",
"flags": {},
# 'mask' : None
}
JSON_OUTPUT["shapes"].append(shape)
# TXT - "row <-> contour"
TXT_OUTPUT.append(yolotxt_row)
# width_normalized, height_normalized ???
success = True
return success, JSON_OUTPUT, TXT_OUTPUT
# Test Code
data_path = "./data/mosmed"
img_nii_path = os.path.join(data_path, "dataNii")
mask_nii_path = os.path.join(data_path, "maskNii")
# create data_preprocessing folder & sub_dir
data_pre_path = os.path.join(data_path, "data_preprocessing")
img_png_path = os.path.join(data_pre_path, "images")
mask_png_path = os.path.join(data_pre_path, "masks")
json_path = os.path.join(data_pre_path, "labelsJSON")
txt_path = os.path.join(data_pre_path, "labels")
PATH = {
data_pre_path, # preprocessing_tmp1 --> data augmentation for mask
img_png_path,
mask_png_path,
json_path,
txt_path
}
for path in PATH:
os.makedirs(path, exist_ok=True)
class_names = ["_background_", "pneumonia"]
class_mapping = {"pneumonia": 0}
print("Starting: Nii -> PNG/JSON/TXT ...")
winwidth, wincenter = get_winwidth_wincenter(img_nii_path, mask_nii_path)
for nii_name in os.listdir(mask_nii_path):
if nii_name.endswith('.nii.gz') or nii_name.endswith('.nii'):
# read nii file
imgs_nii = sitk.ReadImage(os.path.join(img_nii_path, nii_name))
masks_nii = sitk.ReadImage(os.path.join(mask_nii_path, nii_name))
# imgs_init = sitk.GetArrayFromImage(imgs_nii)
# windowing
imgs_nii = window_transform(imgs_nii, winwidth=winwidth, wincenter=wincenter)
# nii -> array[]
imgs = sitk.GetArrayFromImage(imgs_nii)
masks = sitk.GetArrayFromImage(masks_nii).astype(np.uint8) # uint8 ???
"""
# write nii's metadata in txt && Draw
img_meta_path, mask_meta_path = create_metadata_dir(data_path)
write_metadata_in_txt(f"{os.path.join(img_nii_path, nii_name)}", imgs_nii, imgs_init, img_meta_path)
write_metadata_in_txt(f"{os.path.join(mask_nii_path, nii_name)}", masks_nii, masks, mask_meta_path)
draw_image(imgs, 1, len(imgs), make_fig_name("image", nii_name))
draw_histogram(imgs_init, 17, make_fig_name("image_init", nii_name, 17))
"""
for idx in range(masks.shape[0]): # masks.shape: (depth, height, width)
# get img/mask whose mask value > 0 -> which has pneumonia in CT
if np.sum(masks[idx, :, :]) > 0:
img_png = Image.fromarray(imgs[idx, :, :]).convert('L') # array -> PIL Image object # L: RGB -> gray
mask_png = Image.fromarray(masks[idx, :, :]).convert('L') # L: RGB -> gray
# mask -> json
sub_name = str(nii_name.split('.')[0] + '_' + str(idx))
img_mask_json_path = os.path.join(json_path, sub_name + '.json' )
img_mask_txt_path = os.path.join(txt_path, sub_name + '.txt' )
success, JSON_OUTPUT, TXT_OUTPUT = img_mask_to_json_txt(img_png, mask_png, class_names, class_mapping)
if success:
# 1.1 & 2.1 save PNG
img_png.save(os.path.join(img_png_path, sub_name + '.png'))
mask_png.save(os.path.join(mask_png_path, sub_name + '.png')) # Save the original mask, not the mask after padding & filling & close_contours
# 2.2 write in JSON
# JSON - "imagePath"
JSON_OUTPUT['imagePath'] = sub_name + '.png'
with open(img_mask_json_path, 'w') as json_output:
json.dump(JSON_OUTPUT, json_output, indent=4) # Serialize python_data as a JSON file
# 2.3 write in TXT
with open(img_mask_txt_path, 'w') as txt_output:
TXT_OUTPUT = np.array(TXT_OUTPUT)
for idx, row in enumerate(TXT_OUTPUT):
if idx != len(TXT_OUTPUT) - 1:
row = row + '\n'
txt_output.write(row)
print("The conversion was completed successfully.")