[1eeedb]: / UNET.py

Download this file

386 lines (318 with data), 14.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""
data:
CT : used
mask : used
labels(txt): not used
labelsJson : not used
"""
# U-Net Structure:
# 1->64->64...............................................................->(*/)128->64->64=>2 # 1: input image, 2: output segmentation map
# (-+)64->128->128...........................................->(*/)256->128->128
# (-+)128->256->256.......................->(*/)512->256->256
# (-+)256->512->512..->(*/)1024->512->512 # 1024: 512+512
# (-+)512->1024->1024
# -> : conv 3x3, RELU
# ..->: copy & crop
# (-+): max pool 2x2
# (*/): up-conv 2x2
# => : conv 1x1
'''
Issues:
1. 要不直接把preprocessing_tmp1 经过"data_generation"分割90% 出来用作训练集, 并存为dataset放在外面目录下
----> 看下之后test部分的图片怎么预处理, 如果处理方式一样那就dataset拿出来放到外面去
'''
from keras._tf_keras import keras # CPU - keras > 3.*
from keras._tf_keras.keras.layers import * # CPU - keras > 3.*
from keras._tf_keras.keras.preprocessing.image import (
ImageDataGenerator,
) # CPU - keras > 3.*
# from keras.layers import * # GPU - keras > 2.*
# from keras.callbacks import ModelCheckpoint # GPU - keras > 2.*
# from keras.preprocessing.image import ImageDataGenerator # GPU - keras > 2.*
from keras import Model
from keras import backend as K
import os
import numpy as np
# from data_preparation import draw_image
import matplotlib.pyplot as plt
import cv2
# img & mask
# 3. data augmentation: (import tensorflow.keras.preprocessing.Image)
# [1] define an image_generator -> ImageDataGenerator()
# [2] image data augmentation -> flow_from_directory()
# [3] image normalization
# 问题:
# [1] 先进行.nii -> png/json/txt, 后进一步keras数据增强
# 有个问题: images/mask增强后随之的json/txt是否也要发生改变 ---> ???
# [2] tensorflow和torch一起用 ---> 可以
# model -> Yolo 使用的是pytorch
# data augmentation 使用的是 tensorflow->keras
# [3] gene后一定要跟fit()均值化,否则会提示:
# F:\AI_Outils\Anaconda\1\envs\opencv_CPU\Lib\site-packages\keras\src\legacy\preprocessing\image.py:1263: UserWarning: This ImageDataGenerator specifies `featurewise_center`, but it hasn't been fit on any training data. Fit it first by calling `.fit(numpy_data)`.
# data augmentation for train
def train_generator(dataset_path, type):
data_path = os.path.join(dataset_path, type)
data_pre_path = os.path.join(dataset_path, f"{type}_generator")
img_png_path = os.path.join(data_pre_path, "images")
mask_png_path = os.path.join(data_pre_path, "masks")
PATH = {
data_pre_path,
img_png_path,
mask_png_path,
}
for path in PATH:
os.makedirs(path, exist_ok=True)
# 3.1 define an image_generator: to perform various transformations on object
generator_args = dict(
rotation_range=0.1,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=False,
vertical_flip=False,
)
generator_image = ImageDataGenerator(generator_args)
generator_mask = ImageDataGenerator(generator_args)
# 3.2 implement further data augmentation for image & mask
generation_image = generator_image.flow_from_directory(
directory=data_path,
classes=["images"],
class_mode=None,
color_mode="grayscale",
target_size=(512, 512),
batch_size=2,
save_to_dir=os.path.join(data_pre_path, "images"),
# save_prefix='ct_',
seed=123,
)
generation_mask = generator_mask.flow_from_directory(
directory=data_path,
classes=["masks"],
class_mode=None,
color_mode="grayscale",
target_size=(512, 512),
batch_size=2,
save_to_dir=os.path.join(data_pre_path, "masks"),
# save_prefix='mask_',
seed=123,
)
generation = zip(generation_image, generation_mask)
print("2--------------------------")
i = 0
# 3.3 image normalization (image -> not normalized yet, mask -> binary)
for image, mask in generation:
'''
i = i + 1
# output image data to TXT
arr = np.array(image[0][:, :, 0])
np.savetxt("array_0.txt", arr)
print(f"image: min: {np.nanmin(arr)}, max: {np.nanmax(arr)}.")
# output image data to TXT
arr = np.array(normalization(image)[0][:, :, 0])
np.savetxt("array_1.txt", arr)
print(
f"normalization_image: min: {np.nanmin(arr)}, max: {np.nanmax(arr)}."
)
print(image.shape, mask.shape) # (2, 256, 256, 1) (2, 256, 256, 1) --> batch_size=2
# visualization
data_img_slices = [
image[0][:, :, 0],
normalization(image)[0][:, :, 0],
mask[0][:, :, 0],
image[1][:, :, 0],
normalization(image)[1][:, :, 0],
mask[1][:, :, 0],
]
draw_image(data_img_slices, 1, 6, None)
if i == 1:
break
'''
yield (normalization(image), mask)
# image[0][:, :, 0] = normalization(image[0][:, :, 0])
# image[1][:, :, 0] = normalization(image[1][:, :, 0])
print("Further data augmentation was completed successfully.")
def binarization(data):
"""
Binarization: Converts data to only two values, e.g. 0 & 1
To do: To highlight certain features in the image
Processing: x'[x/255.0 > 0.5] = 1.0
x'[x/255.0 <= 0.5] = 0.0
"""
data_binary = data / 255.0
data_binary[data_binary > 0.5] = 1.0
data_binary[data_binary <= 0.5] = 0.0
return data_binary
def standardization(data):
"""
Standardization: Converts the data into a new distribution with a mean of 0 and a standard deviation of 1
To do: to have comparability between different features (if data feature value range/unit is quite different --> perform standardization).
--> Standardization does not change the distribution of feature data
Processing: x' = (x - mean) / std
"""
mean = np.mean(data)
std = np.std(data)
data_std = (data - mean) / std
return data_std
def normalization(data):
"""
Normalization: Scale the data to a specific range, e.g. 0-1
To do: To make the influence of each feature on the target variable consistent.
--> Data normalization changes the distribution of feature data
Processing: x' = (x - min)/(max - min)
Note: In the medical field, normalization is generally performed --> to accelerate the convergence of the network and make the model more stable
"""
min = np.nanmin(data)
max = np.nanmax(data)
data_nor = (data - min) / (max - min)
return data_nor
def u_net(input_size = (512, 512, 1), path=None):
# layer 1-1
inputs_L1_1 = Input(input_size)
conv1_L1_1 = Conv2D(64, 3, activation="relu", padding="same", kernel_initializer="he_normal")(inputs_L1_1) # filters: 64, kernel_size:3x3, kernel_initializer: use normal distribution to initializer Weights of kernel
conv2_L1_1 = Conv2D(64, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv1_L1_1)
pool1_L1_1 = MaxPool2D(pool_size=(2,2))(conv2_L1_1)
# layer 2-1
conv3_L2_1 = Conv2D(128, 3, activation="relu", padding="same", kernel_initializer="he_normal")(pool1_L1_1)
conv4_L2_1 = Conv2D(128, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv3_L2_1)
pool2_L2_1 = MaxPool2D(pool_size=(2, 2))(conv4_L2_1)
# layer 3-1
conv5_L3_1 = Conv2D(256, 3, activation="relu", padding="same", kernel_initializer="he_normal")(pool2_L2_1)
conv6_L3_1 = Conv2D(256, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv5_L3_1)
pool3_L3_1 = MaxPool2D(pool_size=(2, 2))(conv6_L3_1)
# layer 4-1
conv7_L4_1 = Conv2D(512, 3, activation="relu", padding="same", kernel_initializer="he_normal")(pool3_L3_1)
conv8_L4_1 = Conv2D(512, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv7_L4_1)
pool4_L4_1 = MaxPool2D(pool_size=(2, 2))(conv8_L4_1)
# layer 5
conv9_L5 = Conv2D(1024, 3, activation="relu", padding="same", kernel_initializer="he_normal")(pool4_L4_1)
conv10_L5 = Conv2D(1024, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv9_L5)
up1_L5 = UpSampling2D(size=(2, 2))(conv10_L5) # deconvolution
# layer 4-2
conv11_L4_2 = Conv2D(512, 3, activation="relu", padding="same", kernel_initializer="he_normal")(concatenate([up1_L5, conv8_L4_1], axis=3)) # concatenation
conv12_L4_2 = Conv2D(512, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv11_L4_2)
up2_L4_2 = UpSampling2D(size=(2, 2))(conv12_L4_2)
# layer 3-2
conv13_L3_2 = Conv2D(256, 3, activation="relu", padding="same", kernel_initializer="he_normal")(concatenate([up2_L4_2, conv6_L3_1], axis=3))
conv14_L3_2 = Conv2D(256, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv13_L3_2)
up3_L3_2 = UpSampling2D(size=(2, 2))(conv14_L3_2)
# layer 2-2
conv15_L2_2 = Conv2D(128, 3, activation="relu", padding="same", kernel_initializer="he_normal")(concatenate([up3_L3_2, conv4_L2_1], axis=3))
conv16_L2_2 = Conv2D(128, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv15_L2_2)
up4_L2_2 = UpSampling2D(size=(2, 2))(conv16_L2_2)
# layer 1-2
conv17_L1_2 = Conv2D(64, 3, activation="relu", padding="same", kernel_initializer="he_normal")(concatenate([up4_L2_2, conv2_L1_1], axis=3))
conv18_L1_2 = Conv2D(64, 3, activation="relu", padding="same", kernel_initializer="he_normal")(conv17_L1_2)
outputs_L1_2 = Conv2D(1, 1, activation="sigmoid")(conv18_L1_2)
# build model
model = Model(inputs = inputs_L1_1, outputs = outputs_L1_2)
# compile model
'''
Loss : 0-1 binary cross-entropy (binary_crossentropy)
Optimizer: Adaptive Descent (Adam)
Callback : After each epoch is trained, autosave a best pre-trained model(optimal weights). (keras.callbacks.ModelCheckpoint)
'''
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
return model
class ShowMask(keras.callbacks.Callback):
def __init__(self):
super().__init__()
def on_epoch_end(self, epoch, logs=None):
print()
idx = 0
for img, mask in gene:
compare_list = [img[0], mask[0], model.predict(img[0].reshape(1, 512, 512, 1))[0]]
for i in range(0, len(compare_list)):
plt.subplot(1, 3, i+1)
plt.imshow(compare_list[i], cmap="gray")
plt.axis(False)
# plt.show()
plt.savefig(f"compare_{idx}.png")
idx = idx + 1
break
# return super().on_epoch_end(epoch, logs)
# Test
# dataset: data augmentation for train data
UNETDataset_path = "./UNETDataset"
gene = train_generator(UNETDataset_path, "train") # could be used as input to the model and directly as training
# model params
steps_per_epoch = 50
epochs = 100
model_name = f"u_net-512-512-1-pneumonia_{epochs}_{steps_per_epoch}.keras"
models_path = "./models/"
model_path = os.path.join(models_path, model_name)
model_ckpt = keras.callbacks.ModelCheckpoint(model_path, save_best_only=False, verbose=1)
# train
K.clear_session() # keras
model = u_net(path=model_path) # structure
# print(model.summary())
# model.fit(gene, steps_per_epoch=steps_per_epoch, epochs=epochs, callbacks=[model_ckpt, ShowMask()]) # train
model.fit(
gene,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
callbacks=[model_ckpt],
) # train
# 思路:
# 1. Dataset_mini -> CPU OK, GPU KO
# 2. cudnn v8 -> GPU KO
# 3. 缩减 input_size -> 512->256
# 4. 缩减 unet structure
# evalution
data_val_generator_path = os.path.join(UNETDataset_path, "val_generator")
compare_path = os.path.join(data_val_generator_path, "compare")
PATH = {data_val_generator_path, compare_path}
for path in PATH:
os.makedirs(path, exist_ok=True)
# model_test= keras.models.load_model(model_path)
'''
gene = train_generator(UNETDataset_path, "val")
idx = 0
for img, mask in gene:
predict_mask = model_test.predict(img)[0]
# predict_mask_np = (predict_mask * 255).numpy()
_, real_mask = cv2.threshold(mask[0], 127, 255, 0)
real_mask = (real_mask).astype('uint8')
real_contours, _ = cv2.findContours(real_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
real_overlap_img = cv2.drawContours(img[0].copy(), real_contours, -1, (0, 255, 0), 2)
_, pred_mask = cv2.threshold((predict_mask * 255).astype("uint8"), 127, 255, 0)
pred_mask = (pred_mask).astype('uint8')
pred_contours, _ = cv2.findContours(pred_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
pred_overlap_img = cv2.drawContours(img[0].copy(), pred_contours, -1, (255, 0, 0), 2)
compare_list = [img[0], pred_mask, real_overlap_img, pred_overlap_img]
for i in range(0, len(compare_list)):
plt.subplot(1, 4, i+1)
plt.imshow(compare_list[i], cmap="gray")
plt.axis(False)
# plt.show()
save_path = os.path.join(compare_path, f"compare_{idx}.png")
plt.savefig(save_path)
idx = idx + 1
'''
'''
# test save compare_png
images_path = os.path.join(data_val_generator_path, "images")
masks_path = os.path.join(data_val_generator_path, "masks")
idx = 0
for png_name in os.listdir(images_path):
# predict_mask = model_test.predict(img)[0]
img = cv2.imread(os.path.join(images_path, png_name))
mask = cv2.imread(os.path.join(masks_path, png_name), cv2.IMREAD_GRAYSCALE)
_, real_mask = cv2.threshold(mask, 127, 255, 0)
real_mask = (real_mask).astype("uint8")
real_contours, _ = cv2.findContours(
real_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
real_overlap_img = cv2.drawContours(
img.copy(), real_contours, -1, (0, 255, 0), 2
)
compare_list = [img, real_overlap_img]
for i in range(0, len(compare_list)):
plt.subplot(1, 2, i + 1)
plt.imshow(compare_list[i], cmap="gray")
plt.axis(False)
# plt.show()
save_path = os.path.join(compare_path, f"compare_{idx}.png")
plt.savefig(save_path)
idx = idx + 1
'''