|
a |
|
b/Pneumonia_Detection.ipynb |
|
|
1 |
{ |
|
|
2 |
"nbformat": 4, |
|
|
3 |
"nbformat_minor": 0, |
|
|
4 |
"metadata": { |
|
|
5 |
"kernelspec": { |
|
|
6 |
"display_name": "Python 3", |
|
|
7 |
"language": "python", |
|
|
8 |
"name": "python3" |
|
|
9 |
}, |
|
|
10 |
"language_info": { |
|
|
11 |
"codemirror_mode": { |
|
|
12 |
"name": "ipython", |
|
|
13 |
"version": 3 |
|
|
14 |
}, |
|
|
15 |
"file_extension": ".py", |
|
|
16 |
"mimetype": "text/x-python", |
|
|
17 |
"name": "python", |
|
|
18 |
"nbconvert_exporter": "python", |
|
|
19 |
"pygments_lexer": "ipython3", |
|
|
20 |
"version": "3.7.6" |
|
|
21 |
}, |
|
|
22 |
"colab": { |
|
|
23 |
"name": "Pneumonia Detection.ipynb", |
|
|
24 |
"provenance": [], |
|
|
25 |
"include_colab_link": true |
|
|
26 |
} |
|
|
27 |
}, |
|
|
28 |
"cells": [ |
|
|
29 |
{ |
|
|
30 |
"cell_type": "markdown", |
|
|
31 |
"metadata": { |
|
|
32 |
"id": "view-in-github", |
|
|
33 |
"colab_type": "text" |
|
|
34 |
}, |
|
|
35 |
"source": [ |
|
|
36 |
"<a href=\"https://colab.research.google.com/github/AnkitRajSri/Pneumonia-Detection/blob/master/Pneumonia_Detection.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
|
|
37 |
] |
|
|
38 |
}, |
|
|
39 |
{ |
|
|
40 |
"cell_type": "markdown", |
|
|
41 |
"metadata": { |
|
|
42 |
"id": "jETrabyQwLW2", |
|
|
43 |
"colab_type": "text" |
|
|
44 |
}, |
|
|
45 |
"source": [ |
|
|
46 |
"### Importing the libraries" |
|
|
47 |
] |
|
|
48 |
}, |
|
|
49 |
{ |
|
|
50 |
"cell_type": "code", |
|
|
51 |
"metadata": { |
|
|
52 |
"id": "U9qWWT1ewLW6", |
|
|
53 |
"colab_type": "code", |
|
|
54 |
"colab": {} |
|
|
55 |
}, |
|
|
56 |
"source": [ |
|
|
57 |
"import os\n", |
|
|
58 |
"import numpy as np\n", |
|
|
59 |
"import tensorflow as tf\n", |
|
|
60 |
"from keras.preprocessing import image\n", |
|
|
61 |
"from keras.preprocessing.image import ImageDataGenerator" |
|
|
62 |
], |
|
|
63 |
"execution_count": 0, |
|
|
64 |
"outputs": [] |
|
|
65 |
}, |
|
|
66 |
{ |
|
|
67 |
"cell_type": "code", |
|
|
68 |
"metadata": { |
|
|
69 |
"id": "9pmdklbswLXK", |
|
|
70 |
"colab_type": "code", |
|
|
71 |
"colab": {}, |
|
|
72 |
"outputId": "f9325e42-749a-48fe-ced1-7268622bee57" |
|
|
73 |
}, |
|
|
74 |
"source": [ |
|
|
75 |
"tf.__version__" |
|
|
76 |
], |
|
|
77 |
"execution_count": 0, |
|
|
78 |
"outputs": [ |
|
|
79 |
{ |
|
|
80 |
"output_type": "execute_result", |
|
|
81 |
"data": { |
|
|
82 |
"text/plain": [ |
|
|
83 |
"'2.1.0'" |
|
|
84 |
] |
|
|
85 |
}, |
|
|
86 |
"metadata": { |
|
|
87 |
"tags": [] |
|
|
88 |
}, |
|
|
89 |
"execution_count": 8 |
|
|
90 |
} |
|
|
91 |
] |
|
|
92 |
}, |
|
|
93 |
{ |
|
|
94 |
"cell_type": "markdown", |
|
|
95 |
"metadata": { |
|
|
96 |
"id": "LuEvwqwAwLXb", |
|
|
97 |
"colab_type": "text" |
|
|
98 |
}, |
|
|
99 |
"source": [ |
|
|
100 |
"### Data Preprocessing" |
|
|
101 |
] |
|
|
102 |
}, |
|
|
103 |
{ |
|
|
104 |
"cell_type": "markdown", |
|
|
105 |
"metadata": { |
|
|
106 |
"id": "KxN_t-26wLXd", |
|
|
107 |
"colab_type": "text" |
|
|
108 |
}, |
|
|
109 |
"source": [ |
|
|
110 |
"##### Preprocessing the training set" |
|
|
111 |
] |
|
|
112 |
}, |
|
|
113 |
{ |
|
|
114 |
"cell_type": "code", |
|
|
115 |
"metadata": { |
|
|
116 |
"id": "k8yFRQyCwLXf", |
|
|
117 |
"colab_type": "code", |
|
|
118 |
"colab": {}, |
|
|
119 |
"outputId": "ad0da542-220e-4857-9927-fdf2394b37e8" |
|
|
120 |
}, |
|
|
121 |
"source": [ |
|
|
122 |
"train_datagen = ImageDataGenerator(\n", |
|
|
123 |
" rescale=1./255,\n", |
|
|
124 |
" shear_range=0.2,\n", |
|
|
125 |
" zoom_range=0.2,\n", |
|
|
126 |
" horizontal_flip=True)\n", |
|
|
127 |
"\n", |
|
|
128 |
"training_set = train_datagen.flow_from_directory(\n", |
|
|
129 |
" 'train', target_size=(64, 64),\n", |
|
|
130 |
" batch_size=32,\n", |
|
|
131 |
" class_mode='binary')" |
|
|
132 |
], |
|
|
133 |
"execution_count": 0, |
|
|
134 |
"outputs": [ |
|
|
135 |
{ |
|
|
136 |
"output_type": "stream", |
|
|
137 |
"text": [ |
|
|
138 |
"Found 5216 images belonging to 2 classes.\n" |
|
|
139 |
], |
|
|
140 |
"name": "stdout" |
|
|
141 |
} |
|
|
142 |
] |
|
|
143 |
}, |
|
|
144 |
{ |
|
|
145 |
"cell_type": "code", |
|
|
146 |
"metadata": { |
|
|
147 |
"id": "F7A1jcC-wLXr", |
|
|
148 |
"colab_type": "code", |
|
|
149 |
"colab": {}, |
|
|
150 |
"outputId": "eaebfab0-3fff-46f9-8977-beff4c57259a" |
|
|
151 |
}, |
|
|
152 |
"source": [ |
|
|
153 |
"validation_datagen = ImageDataGenerator(rescale=1./255)\n", |
|
|
154 |
"\n", |
|
|
155 |
"validation_set = validation_datagen.flow_from_directory(\n", |
|
|
156 |
" 'val', target_size=(64, 64),\n", |
|
|
157 |
" batch_size=32,\n", |
|
|
158 |
" class_mode='binary')" |
|
|
159 |
], |
|
|
160 |
"execution_count": 0, |
|
|
161 |
"outputs": [ |
|
|
162 |
{ |
|
|
163 |
"output_type": "stream", |
|
|
164 |
"text": [ |
|
|
165 |
"Found 16 images belonging to 2 classes.\n" |
|
|
166 |
], |
|
|
167 |
"name": "stdout" |
|
|
168 |
} |
|
|
169 |
] |
|
|
170 |
}, |
|
|
171 |
{ |
|
|
172 |
"cell_type": "code", |
|
|
173 |
"metadata": { |
|
|
174 |
"id": "G-tm781fwLX2", |
|
|
175 |
"colab_type": "code", |
|
|
176 |
"colab": {}, |
|
|
177 |
"outputId": "2516ae5b-ab78-4ddb-db08-3db7cec47f38" |
|
|
178 |
}, |
|
|
179 |
"source": [ |
|
|
180 |
"test_datagen = ImageDataGenerator(rescale=1./255)\n", |
|
|
181 |
"\n", |
|
|
182 |
"test_set = test_datagen.flow_from_directory(\n", |
|
|
183 |
" 'test', target_size=(64, 64),\n", |
|
|
184 |
" batch_size=32,\n", |
|
|
185 |
" class_mode='binary')" |
|
|
186 |
], |
|
|
187 |
"execution_count": 0, |
|
|
188 |
"outputs": [ |
|
|
189 |
{ |
|
|
190 |
"output_type": "stream", |
|
|
191 |
"text": [ |
|
|
192 |
"Found 624 images belonging to 2 classes.\n" |
|
|
193 |
], |
|
|
194 |
"name": "stdout" |
|
|
195 |
} |
|
|
196 |
] |
|
|
197 |
}, |
|
|
198 |
{ |
|
|
199 |
"cell_type": "markdown", |
|
|
200 |
"metadata": { |
|
|
201 |
"id": "P-AsgjL5wLYA", |
|
|
202 |
"colab_type": "text" |
|
|
203 |
}, |
|
|
204 |
"source": [ |
|
|
205 |
"### Building the CNN" |
|
|
206 |
] |
|
|
207 |
}, |
|
|
208 |
{ |
|
|
209 |
"cell_type": "markdown", |
|
|
210 |
"metadata": { |
|
|
211 |
"id": "Gs6izkQawLYC", |
|
|
212 |
"colab_type": "text" |
|
|
213 |
}, |
|
|
214 |
"source": [ |
|
|
215 |
"##### Initializing the CNN and adding the layers" |
|
|
216 |
] |
|
|
217 |
}, |
|
|
218 |
{ |
|
|
219 |
"cell_type": "code", |
|
|
220 |
"metadata": { |
|
|
221 |
"id": "qhRn_PPMwLYD", |
|
|
222 |
"colab_type": "code", |
|
|
223 |
"colab": {} |
|
|
224 |
}, |
|
|
225 |
"source": [ |
|
|
226 |
"cnn = tf.keras.Sequential()\n", |
|
|
227 |
"\n", |
|
|
228 |
"cnn.add(tf.keras.layers.Conv2D(filters=32, \n", |
|
|
229 |
" kernel_size=3,\n", |
|
|
230 |
" activation='relu',\n", |
|
|
231 |
" input_shape=[64, 64, 3]))\n", |
|
|
232 |
"cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))\n", |
|
|
233 |
"cnn.add(tf.keras.layers.Conv2D(filters=32, \n", |
|
|
234 |
" kernel_size=3,\n", |
|
|
235 |
" activation='relu'))\n", |
|
|
236 |
"cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))\n", |
|
|
237 |
"cnn.add(tf.keras.layers.Flatten())\n", |
|
|
238 |
"cnn.add(tf.keras.layers.Dense(units=256, activation='relu'))\n", |
|
|
239 |
"cnn.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))" |
|
|
240 |
], |
|
|
241 |
"execution_count": 0, |
|
|
242 |
"outputs": [] |
|
|
243 |
}, |
|
|
244 |
{ |
|
|
245 |
"cell_type": "markdown", |
|
|
246 |
"metadata": { |
|
|
247 |
"id": "dtzJ9tbqwLYS", |
|
|
248 |
"colab_type": "text" |
|
|
249 |
}, |
|
|
250 |
"source": [ |
|
|
251 |
"#### Compiling the CNN" |
|
|
252 |
] |
|
|
253 |
}, |
|
|
254 |
{ |
|
|
255 |
"cell_type": "code", |
|
|
256 |
"metadata": { |
|
|
257 |
"id": "EL6XoP-pwLYU", |
|
|
258 |
"colab_type": "code", |
|
|
259 |
"colab": {} |
|
|
260 |
}, |
|
|
261 |
"source": [ |
|
|
262 |
"cnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])" |
|
|
263 |
], |
|
|
264 |
"execution_count": 0, |
|
|
265 |
"outputs": [] |
|
|
266 |
}, |
|
|
267 |
{ |
|
|
268 |
"cell_type": "markdown", |
|
|
269 |
"metadata": { |
|
|
270 |
"id": "EkeukAK2wLYh", |
|
|
271 |
"colab_type": "text" |
|
|
272 |
}, |
|
|
273 |
"source": [ |
|
|
274 |
"##### Training the CNN on the training set and evaluating it on the validation set" |
|
|
275 |
] |
|
|
276 |
}, |
|
|
277 |
{ |
|
|
278 |
"cell_type": "code", |
|
|
279 |
"metadata": { |
|
|
280 |
"id": "BAKUV9CywLYj", |
|
|
281 |
"colab_type": "code", |
|
|
282 |
"colab": {}, |
|
|
283 |
"outputId": "9432f8a2-8939-40c5-b2ca-d5c057b4e777" |
|
|
284 |
}, |
|
|
285 |
"source": [ |
|
|
286 |
"cnn.fit(x=training_set, validation_data=test_set, epochs=25)" |
|
|
287 |
], |
|
|
288 |
"execution_count": 0, |
|
|
289 |
"outputs": [ |
|
|
290 |
{ |
|
|
291 |
"output_type": "stream", |
|
|
292 |
"text": [ |
|
|
293 |
"WARNING:tensorflow:sample_weight modes were coerced from\n", |
|
|
294 |
" ...\n", |
|
|
295 |
" to \n", |
|
|
296 |
" ['...']\n", |
|
|
297 |
"WARNING:tensorflow:sample_weight modes were coerced from\n", |
|
|
298 |
" ...\n", |
|
|
299 |
" to \n", |
|
|
300 |
" ['...']\n", |
|
|
301 |
"Train for 163 steps, validate for 20 steps\n", |
|
|
302 |
"Epoch 1/25\n", |
|
|
303 |
"163/163 [==============================] - 119s 731ms/step - loss: 0.0716 - accuracy: 0.9730 - val_loss: 0.2369 - val_accuracy: 0.9311\n", |
|
|
304 |
"Epoch 2/25\n", |
|
|
305 |
"163/163 [==============================] - 124s 761ms/step - loss: 0.0677 - accuracy: 0.9755 - val_loss: 0.4190 - val_accuracy: 0.8974\n", |
|
|
306 |
"Epoch 3/25\n", |
|
|
307 |
"163/163 [==============================] - 119s 732ms/step - loss: 0.0667 - accuracy: 0.9747 - val_loss: 0.3130 - val_accuracy: 0.9054\n", |
|
|
308 |
"Epoch 4/25\n", |
|
|
309 |
"163/163 [==============================] - 120s 738ms/step - loss: 0.0571 - accuracy: 0.9793 - val_loss: 0.3345 - val_accuracy: 0.8958\n", |
|
|
310 |
"Epoch 5/25\n", |
|
|
311 |
"163/163 [==============================] - 118s 725ms/step - loss: 0.0593 - accuracy: 0.9760 - val_loss: 0.2856 - val_accuracy: 0.9151\n", |
|
|
312 |
"Epoch 6/25\n", |
|
|
313 |
"163/163 [==============================] - 108s 665ms/step - loss: 0.0584 - accuracy: 0.9799 - val_loss: 0.2743 - val_accuracy: 0.9263\n", |
|
|
314 |
"Epoch 7/25\n", |
|
|
315 |
"163/163 [==============================] - 108s 662ms/step - loss: 0.0560 - accuracy: 0.9791 - val_loss: 0.2714 - val_accuracy: 0.9087\n", |
|
|
316 |
"Epoch 8/25\n", |
|
|
317 |
"163/163 [==============================] - 113s 693ms/step - loss: 0.0550 - accuracy: 0.9793 - val_loss: 0.4636 - val_accuracy: 0.8734\n", |
|
|
318 |
"Epoch 9/25\n", |
|
|
319 |
"163/163 [==============================] - 128s 788ms/step - loss: 0.0581 - accuracy: 0.9789 - val_loss: 0.2477 - val_accuracy: 0.9151\n", |
|
|
320 |
"Epoch 10/25\n", |
|
|
321 |
"163/163 [==============================] - 117s 719ms/step - loss: 0.0547 - accuracy: 0.9812 - val_loss: 0.2690 - val_accuracy: 0.9151\n", |
|
|
322 |
"Epoch 11/25\n", |
|
|
323 |
"163/163 [==============================] - 110s 678ms/step - loss: 0.0546 - accuracy: 0.9810 - val_loss: 0.2803 - val_accuracy: 0.9167\n", |
|
|
324 |
"Epoch 12/25\n", |
|
|
325 |
"163/163 [==============================] - 113s 693ms/step - loss: 0.0574 - accuracy: 0.9776 - val_loss: 0.4011 - val_accuracy: 0.8830\n", |
|
|
326 |
"Epoch 13/25\n", |
|
|
327 |
"163/163 [==============================] - 110s 677ms/step - loss: 0.0516 - accuracy: 0.9816 - val_loss: 0.2724 - val_accuracy: 0.9263\n", |
|
|
328 |
"Epoch 14/25\n", |
|
|
329 |
"163/163 [==============================] - 121s 744ms/step - loss: 0.0463 - accuracy: 0.9833 - val_loss: 0.3101 - val_accuracy: 0.9183\n", |
|
|
330 |
"Epoch 15/25\n", |
|
|
331 |
"163/163 [==============================] - 115s 703ms/step - loss: 0.0514 - accuracy: 0.9806 - val_loss: 0.3937 - val_accuracy: 0.9022\n", |
|
|
332 |
"Epoch 16/25\n", |
|
|
333 |
"163/163 [==============================] - 113s 692ms/step - loss: 0.0527 - accuracy: 0.9812 - val_loss: 0.2983 - val_accuracy: 0.9279\n", |
|
|
334 |
"Epoch 17/25\n", |
|
|
335 |
"163/163 [==============================] - 124s 758ms/step - loss: 0.0451 - accuracy: 0.9843 - val_loss: 0.2324 - val_accuracy: 0.9279\n", |
|
|
336 |
"Epoch 18/25\n", |
|
|
337 |
"163/163 [==============================] - 177s 1s/step - loss: 0.0487 - accuracy: 0.9837 - val_loss: 0.3608 - val_accuracy: 0.9087\n", |
|
|
338 |
"Epoch 19/25\n", |
|
|
339 |
"163/163 [==============================] - 199s 1s/step - loss: 0.0475 - accuracy: 0.9841 - val_loss: 0.2932 - val_accuracy: 0.9038\n", |
|
|
340 |
"Epoch 20/25\n", |
|
|
341 |
"163/163 [==============================] - 199s 1s/step - loss: 0.0559 - accuracy: 0.9793 - val_loss: 0.2245 - val_accuracy: 0.9183\n", |
|
|
342 |
"Epoch 21/25\n", |
|
|
343 |
"163/163 [==============================] - 195s 1s/step - loss: 0.0458 - accuracy: 0.9843 - val_loss: 0.3297 - val_accuracy: 0.9215\n", |
|
|
344 |
"Epoch 22/25\n", |
|
|
345 |
"163/163 [==============================] - 192s 1s/step - loss: 0.0539 - accuracy: 0.9806 - val_loss: 0.3120 - val_accuracy: 0.9071\n", |
|
|
346 |
"Epoch 23/25\n", |
|
|
347 |
"163/163 [==============================] - 200s 1s/step - loss: 0.0417 - accuracy: 0.9833 - val_loss: 0.6652 - val_accuracy: 0.8574\n", |
|
|
348 |
"Epoch 24/25\n", |
|
|
349 |
"163/163 [==============================] - 199s 1s/step - loss: 0.0503 - accuracy: 0.9822 - val_loss: 0.4144 - val_accuracy: 0.8926\n", |
|
|
350 |
"Epoch 25/25\n", |
|
|
351 |
"163/163 [==============================] - 201s 1s/step - loss: 0.0442 - accuracy: 0.9850 - val_loss: 0.4151 - val_accuracy: 0.8958\n" |
|
|
352 |
], |
|
|
353 |
"name": "stdout" |
|
|
354 |
}, |
|
|
355 |
{ |
|
|
356 |
"output_type": "execute_result", |
|
|
357 |
"data": { |
|
|
358 |
"text/plain": [ |
|
|
359 |
"<tensorflow.python.keras.callbacks.History at 0x226801ea688>" |
|
|
360 |
] |
|
|
361 |
}, |
|
|
362 |
"metadata": { |
|
|
363 |
"tags": [] |
|
|
364 |
}, |
|
|
365 |
"execution_count": 37 |
|
|
366 |
} |
|
|
367 |
] |
|
|
368 |
}, |
|
|
369 |
{ |
|
|
370 |
"cell_type": "markdown", |
|
|
371 |
"metadata": { |
|
|
372 |
"id": "AiCsHRNnwLYw", |
|
|
373 |
"colab_type": "text" |
|
|
374 |
}, |
|
|
375 |
"source": [ |
|
|
376 |
"### Making a prediction" |
|
|
377 |
] |
|
|
378 |
}, |
|
|
379 |
{ |
|
|
380 |
"cell_type": "code", |
|
|
381 |
"metadata": { |
|
|
382 |
"id": "N5SdP_4dwLYy", |
|
|
383 |
"colab_type": "code", |
|
|
384 |
"colab": {}, |
|
|
385 |
"outputId": "08cd96f7-2355-46b3-9f9c-375cc240637c" |
|
|
386 |
}, |
|
|
387 |
"source": [ |
|
|
388 |
"test_image = image.load_img('test/PNEUMONIA/person1_virus_7.jpeg', target_size=(64, 64))\n", |
|
|
389 |
"test_image" |
|
|
390 |
], |
|
|
391 |
"execution_count": 0, |
|
|
392 |
"outputs": [ |
|
|
393 |
{ |
|
|
394 |
"output_type": "execute_result", |
|
|
395 |
"data": { |
|
|
396 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAIAAAAlC+aJAAAURklEQVR4nF2auY9lVxHGzz13X9/SPb2NR20sjWRrBBK2wCHLP4FESoBEgOAPIDABiAAhkZFZInAGEiROLDthEIsEgx0MjGy3PeMZ9/L2u68Ev7nlBzdodb9+99w6VV999VWda/zsZz976623LMs6Ozubz+dhGEZR5Hme7/umaWqtp9Op1tpxnK7rLMsyTdMwDMuytNa2bVuW1fd927aGYTiOkyTJ9fW11to0zaIobNtu23YYBqWUbdt8aBhG0zRKqb7vkyQxTfP6+rqua611XdeO48RxvFgssixTShVFkWXZbreL4/jJkyebzUZr/d3vfvdrX/vaarXyPE///ve/b5omDMMgCKbT6a1btxzHsSzLcRzXdV3XVUphaxiGhmGYpsk2bNsehgHjHMexbVtr3XWd67paa8MwhmHQWruuiyOCIOi6Tms9DINhGFprpdQwDKZpBkFgWRZbbdu2qqq6rtnwMAxxHC+Xy6qqbt++fXBw8MMf/rAsyyiK8J2llPI8LwgC27aVUm3bnpyc2LZdVZVlWZZlYaLrul3X+b7f9z1BUEoZhkE0DMPous7zvK7rDMPA8cTHMAziUxSF53mu62ZZ1jQNznZd1/O8NE1N01RKWZZVVdV6vU6SZL1eV1UVx3Ge5wcHBx988MEvfvGLvu+Xy+Xrr7/+j3/84/bt2wBBY5/v+7Zt/+QnP8HfjuPgbK211rppGj5xHAej5U+tdd/3fBOva635k1gRB/bGxvjE8zylFO4IgsDzvL7vgd/l5eV2u02ShJjcunXLtu0333zzd7/73XvvvbfdbqfTaZqmZVnqw8NDQI+/f/vb31qWlWUZIMEa27b7vg+CADzguSiKkiQJggDPNU3TNE3XdUqpuq5JmL7vy7J0XXe322VZtlgsFovF5eUli4dhOAxDnucsq8bLsizXde/cufPhhx82TeN5XlEUX/3qV6+vrw3D+Pjjj//2t7+tVisgoH/0ox9xj2mavu8PwxCG4WQySZIEHAODJEmUUr7vx3EchmEcx7ZtZ1m22Wzatm2aZh/0ruvatg3MPM9br9fsra7rtm2zLFutVlEUzedz4k+oySUQq5RaLBaWZV1eXjqOUxTFN77xDcdxHj9+7HneO++8M51Obdv2fV+zXR58fHw8m81ACIsCaNM0ebBhGH3fY9zNzU3btoSo6zq2Ude13A7GmvFyXRecEEk4Cpf1fU9KgDq2ZJrmrVu3tNZFUczn8z/96U/f//738zwviuL111+/vr5+DiEQ4vu+53nYihtM03Rd1xgvpVQURYS+67qyLIdhIDEAADey5368PM8ry9KyLAzVWrdt27ZtURTX19effPJJVVXCSFwwDy6DGx4+fHjnzp2yLN9///3FYtG27V//+tcsy4IgaJpGn5+fW5bVdV1VVb7vC2n0fS++hEmFoyBEyWCCDkX6vt+2rRQNqKzv+zzPy7JM03S32+V5zp9Yw7OE2dq2pURorfM8b9u267p33333tddee/Dgwde//nXgd3Nzo7VOksT68MMPgyAQOseFsCcrYj1V5vj4OE3TYRg+//zzvu+hCKVU0zSYzod1XUuBA1q73a7v+6ZpkiSB09q2DcOQ75M/UmGgNR59fn5eVVVZln/+858hqMPDw6qqHjx48Oqrr3Zdp+/fv19VFbvhGawIgVCShBnTNN1sNk+fPsVhpmlWVUVWcCMFlbqGO4dhgJqKojBNM89zcgY4VVUFWwB9TGQnfFJVFWT18OHDyWSS5/m9e/cWi8WTJ09ubm7qutbf+ta3KEDHx8fUL+Bb17UgUiyDSdgVgQY8OFKcZ5omP7FjMpk4jhOGoeu6ZDYbCIJgPp9HURRFERCQmANgPvE8j2X//ve/U9e+/OUvx3F87969ruusX/7yl2xgvV7P53PcsNlsEBFCagLNoijKsjQMw3Xd5XIJt3ZdR63o+95xHJE6CCTDME5PT5VSZVmyYc/zqM2bzYZcd123qioSnSII9tI0rarq+vqazVxcXJyensJmf/nLX1599VUN1SCzSIOmaYSeyWBcizUUKeSK53lN05imGYYhVY8K3XUdcYO4cKHjOFVVpWkq/wWxl5eXaZqyMbwOPuE60zQXi0VZltx1dXXleV5VVXfv3n3//feDINC/+tWvbNs+Pj42DKOu677vd7sd4oJNs5zWOgxDz/Mmk4lt267rYqthGFAhaRNFUZ7nlAWMgEaGYYD40UJZlkHEq9WKr4mmkjoAp5VliaAgpMMw3L9/P4qi1WoVBMHFxYV+4403fvrTn37ve9/7wQ9+UJblN7/5TZADvrlTIpCmKdxf1/V2u+XZWZYVRQHGttstoILQKOSwglQMfnZdB0tWVVUUxTAM1B9RX9zC/vu+xxf49OrqynGc7XZ7dHRkNU3z85///JVXXknTFM6S1MQlsKTrumEYPn36tCgKsKu1xn9Av+u6ruuKokiSBJeDY6I3jBcqA9Ml78lp1CtIlhTC6ySV67o49NGjR9/+9rc//fTT5XKpfd+fz+fL5dIwjH/+85/AUcoTS7Di48ePyeCqqoSC8C7WCDuxgmwDHEpSgUbSJkkSy7IQduIyqgHfbNt2t9s1TUNVIRp937/zzjtf+tKXqqqyfvzjH//hD3/4zne+Y1nWcrl86623kENYT8XFgu12CzO0bYvIobciq2zbrusa7NHWPBcqWruuS0UDIbvdjmjYtl0UBWLMdd2zs7OLiwvaA3ZSVdVisSBtZG94xLKsjz766LXXXrP6vr97926e5zD0Pvr5Bf0DkOq6zrKM4M5ms6qqpNsi6QXfQBEQEyVRCjQbCGnoOAgCdkgBYX2CVtc1Nb6ua1ZmBaXURx99ZLGhq6urr3zlK7/+9a93u93p6SmFXRouHizlXfob9hYEAfxNHHzfR0RgOpWVSkySiLggmwnXdrsNwxA4tW3r+36apvLof/3rX2xA+ICHKqV+85vfaHY/DENVVU3TlGUJPVNKiZfrutPpFAcfHx9HUTSZTDCiqirUJYApy7Kua2EbQa0Qv5RFdJSkyjAM19fX/CKgRbenaQrLFUVBxSQI1C799ttvD8PwxhtvbDabPM9vbm7wrvAulahpmslkAi7hENM0d7sdScJPqUEYKubKUkop6p3jOHzObmezWd/3YRjSjksGu657eno6n89XqxVulUZPRKSmowPfbdsuFgskFFgUzODaoijQwPgb+T0Mw3Q6JXS4EyQQUmCAWXTGcI7jONSKvu83m42kzcHBgcwKoij6+OOPZ7PZ0dER/CvTEDDSNI2VpumDBw9AAgq0aRrWxXQa9rIsEfS0V2EYitzgd0lN5KfIWGAAfJumgawgov3hynq9hjGPj49BCA2gYRir1SrLsrquT05OqKFhGDZNU1VVFEXacZzlconnpJqyP1BLwdpsNnCOuPOzzz5TY5cs/SdpDWa4VzSFlCQxmgJCoMjsqqo2m430luj87XaLwPnss8/4MtjzPK+uay3zI/Rz13Wr1UqaLCwmxE3TFEVBBGhY0bpIIOlLCKAgBDsoERIKuUQCScZvt1vppXzfPz09pQCDnGfPnlVVtd1u4zjGI/r+/fs4XmrQBx98ILwh7Wld18ivruvm8/nBwQECeLlcLpfLNE0lyUR4ESviIMwjZQiDpK8g+yVEoCvLspubG/IehxZF8ejRo6IokNmbzcYSoU9ZJaWQVvyLvRG42WzGXCDP8/V6jXLk3v1L8oc2TY/jRBo37mKr7Bkei6IIrS4cSt7TsnMXVPHw4cMXXngBdahZHYzCtcjjYZyxHR4eNk3DXBIRutvthG2lZGI61M6fJIAaG8Vh7JWDIAAz7NP3fQZNTMdYUACZJAnEz7IyxXn8+PG///3voiiej1TxPUxKQK+vr09PT8HSyckJCh6tD9KY5xnjmFHGoMJa7CEIgqIoiAYBgS6lR5XqwTy8KApUA5/P53PHcfq+R1wRDbCttf7kk0805DMMA9SeZZkAkZk70MrzHNixrlKKWcZkMgHfUrPt8SIZeBKuFXCrsf1lcQo5a/q+P5lMhnEiiNTDZXKLHq9hGDQ9JEKF4ccwDH/84x9BP2HdbDZpmsISdV0zNBbyIbJskrjTi+BRSuT++ERSeV+Q4wWQWVXVyckJiU4ZAeRC68AV+Fl0Q+14DeOgjyGh4zgXFxeye611HMfz+Zzpb5ZlDC4dx2HULNGTtNsfXWmtoXbCC2JhKtLacRyG7+hN6qBoZJYVdYhi0CIPWY46IFOai4uLsizJxa7rDg4OyEgKMw7G/TKAIUmo5Tx4H0tMVkAac1LOVjzPI8tZ0PO8+XxOfSQHxPHifn5alEwwKn0n1AsQcb/M7xkTiDQQEmPDBEpwRXEUYUz30zRNlmXEQXiMyopryArqsZCSIE3c/xwUlNi+76uqYjo0jJM5fqmqCtObpvn888+LooB9YWU4ztgbxMNFZVmifkXzsdWiKHAniUFrDzfQnKB58zynhqKFUa+kgeiD570rPQBqBCnKWlJNj46OaJSWyyXSABcWRcHZVhzHapz+YjHOE6zTrP1fdWdeTajxDprHMAwqGgqNnZ+dne3HWe3N8DTQJxdhw7ZtsRKlSW1+9uwZBZjtzefzJElgjK7rlsulwJckAd/EZLvdyoBICIdtPDdixHdZlrvdjmafB8GknC9KLqm9keHzkcZut9tut+Q+S6PyDcPYbDaMusiNOI5Jx77v8zzf7XabzYZSxaJM0aho+62MJCK/cM6A3cBYkvXZs2f0TzyRdCd0+H4Ym2zDMCy8+OzZM2hO1As0Qp+Bajg+Ppa9cRjM0sxGh71xvDTgmNiP415+IT5SksgZEiZJktVqVZbl5eXlycnJ2dnZcrnkoZCs4FACoququry8FI2u/nfGvVqtEMaHh4eWZU2nUw7qwAC4BFfdeAiJI4ZxhiXtr1hMNeTEG9Az7iXxfN9nNBZFEcMBiEhCKnbiL+vq6krUgYRbijbuj+MYZri6uiI3UIuiWA8ODoibbduobtM00zRlJ8ghMpWcESnKNzk0ABK0bEmSfPrpp1EUMbBhYMz+pdHlF0umMcLWlCFUyjAMs9ksy7L1eg0tiAjp+97zvCzLJpPJZDIJw5CauP8dwSvcIPMVRuKIU9KUQYFMojjysW0bdRRFUVmWAjxhM6WUJnHFejoBxpRd16HYVqsVo1zKEMYdHh76vj+bzSSnh/HYDxBCHRCa5CtPpfJI94MapWfabrer1Uo6bPpvXqDYH3N8UcgAmeSfUoozH6xEq1BQ6UV83yeh9Xi0yLicoS+W8TmxFXCKucbe6Y54TdiJAeaTJ0/6vp9Op9SZOI6Pjo726f+LDSAiJC6maUZRhPXIrP/85z9kAn5iOQTPZrOR8zypkSIb93dijMd4wqTkhmwS1DGbkJqwXq8Rc5ZlkdlAfdibkVn4VXYGM1qWdX5+TuWnQk0mE54Eh+R5ztew29ibP0N25ngsIpATqlBKBUFAm092sgFhofV67TjObrdjxsFDkTPCY2ps4i0Z5rAHTswdx8nzPAxDDqeiKDLGjpZs45A5iqLZbEZXAGrJHJ7BNph1cmAsyQeipIFkaIDUK8syDENOCYaxF2dup/amfcPY8X5xRM4ldEQfjL/jONZabzab9Xqd5zknRUmSHB4e3rp1C6/TvlDmcKfYOoznLkyBqqoibdq25dAbIQQg+76nKVutVvAeh1pUdyGfL+qAmC5B0OMLODc3N13X3blzByfxJOZwWusXXngBXNE0SSmUNy/Akhw0ITHU3uHsME6fhmFgdiTaHs2y3W5ffPHFLMviOGY1taeCnueAWC+mq/GskhILWDnaB5E4fjabQdhMyGi12AlHDbS5MrARnlH/e7rDvZABYq5tW47j4ziWQyoK9n4EWNlSe+cAkmpBEFBlX3zxxbZtHz161Pc90vfOnTvz+XwymUgyMcxR43wKwpVlyYp9KSGjaRHPPJHTGjn2cxyH8y7TNA8ODsIwnM/n7fgGnhqL8RcSSEJBFaOsMKRgktN13dnZGe8L0ZEwGhEOED+RwfxLyvwwNigSAengyBDP82az2enpKTfe3NwgeIfxvPnll18e9sZ+zxcRklZjt6bHY0OGwI8fP0arHB4eHhwcwEhAgqmlOb6ksT/h6sczRoBEYpAtUAKn3yQ9DIawjaLo/Pyclx4AEj0amS2lgJ3vdrv/kRLiJ9p8dA4WtG17+/btMAwBt4h7GaeJm6Vj4mHiFzkYR9XIm0+8RoHm4UW6IAjOzs7u3r376NEj9J9409jruZVSSZJYQknm+I4RfSNl8unTpxh67949kIPCEwgyvWFp3/fJeGIiq9GtD8PAf5VSnGp24wE9QZB5gjE28ufn50+fPp1MJrxMgbOod3Jpgf5+jSDPmLV0Xffyyy/HccwEXGheoELbDhftsxnupGZxwMN7TsJOkh5qbANpoEUO8mYevQ7nbjKmFyBZak9LsQGZkqOQOQbFMaK0pdXYHzUP45mFSAmZIIDJYTy8kUdIG0Cphn+xnrOvk5MTHMeLoS+99BLvLgqQrGGvPeNTjptM05zNZm3bMsimMrC6GscWUlzkREdKr9ghop9vyrwazQLEJQOrqpIXf5FJTMHSNE2SxPO8o6MjNiDS87mMw1uCbCyDB1A7ELMaB9wUYGyiA27Hly+BBx0JoWDsg7AhMXAQWBIpigGUYdDFETdhFMEibSORf6691J40J6Wg88lkEgSBIJXcInHVXm/KxNzYm9dqrZmwk81IVwqcHAj9X202xld7uvGMkE+E8Xj3zBi7PDVOOr7IY1lX0DKdTunCGG+o8RVZEYIIyf+TuFhDCvGnbNUc33VkP1IK9h1EVDFa3iWkjAiRCFtYUtWlfulx3Imn9fhGtNqbzUutbcc3Ffc1Od/p+56qx/fpcfV4VjAMA80dQFdjY2nstZ2g1Pd9tmqPL8jv64b/Ai7wsMKGV9oeAAAAAElFTkSuQmCC\n", |
|
|
397 |
"text/plain": [ |
|
|
398 |
"<PIL.Image.Image image mode=RGB size=64x64 at 0x22680735AC8>" |
|
|
399 |
] |
|
|
400 |
}, |
|
|
401 |
"metadata": { |
|
|
402 |
"tags": [] |
|
|
403 |
}, |
|
|
404 |
"execution_count": 38 |
|
|
405 |
} |
|
|
406 |
] |
|
|
407 |
}, |
|
|
408 |
{ |
|
|
409 |
"cell_type": "code", |
|
|
410 |
"metadata": { |
|
|
411 |
"id": "ojQqZNx1wLY8", |
|
|
412 |
"colab_type": "code", |
|
|
413 |
"colab": {}, |
|
|
414 |
"outputId": "8dd2143c-ac51-49a8-80ae-72a16ecec5e8" |
|
|
415 |
}, |
|
|
416 |
"source": [ |
|
|
417 |
"test_image = image.img_to_array(test_image)\n", |
|
|
418 |
"test_image" |
|
|
419 |
], |
|
|
420 |
"execution_count": 0, |
|
|
421 |
"outputs": [ |
|
|
422 |
{ |
|
|
423 |
"output_type": "execute_result", |
|
|
424 |
"data": { |
|
|
425 |
"text/plain": [ |
|
|
426 |
"array([[[134., 134., 134.],\n", |
|
|
427 |
" [ 45., 45., 45.],\n", |
|
|
428 |
" [ 49., 49., 49.],\n", |
|
|
429 |
" ...,\n", |
|
|
430 |
" [222., 222., 222.],\n", |
|
|
431 |
" [205., 205., 205.],\n", |
|
|
432 |
" [213., 213., 213.]],\n", |
|
|
433 |
"\n", |
|
|
434 |
" [[ 53., 53., 53.],\n", |
|
|
435 |
" [ 40., 40., 40.],\n", |
|
|
436 |
" [ 60., 60., 60.],\n", |
|
|
437 |
" ...,\n", |
|
|
438 |
" [234., 234., 234.],\n", |
|
|
439 |
" [209., 209., 209.],\n", |
|
|
440 |
" [211., 211., 211.]],\n", |
|
|
441 |
"\n", |
|
|
442 |
" [[ 53., 53., 53.],\n", |
|
|
443 |
" [ 48., 48., 48.],\n", |
|
|
444 |
" [ 70., 70., 70.],\n", |
|
|
445 |
" ...,\n", |
|
|
446 |
" [185., 185., 185.],\n", |
|
|
447 |
" [212., 212., 212.],\n", |
|
|
448 |
" [216., 216., 216.]],\n", |
|
|
449 |
"\n", |
|
|
450 |
" ...,\n", |
|
|
451 |
"\n", |
|
|
452 |
" [[ 24., 24., 24.],\n", |
|
|
453 |
" [ 26., 26., 26.],\n", |
|
|
454 |
" [ 26., 26., 26.],\n", |
|
|
455 |
" ...,\n", |
|
|
456 |
" [ 17., 17., 17.],\n", |
|
|
457 |
" [ 19., 19., 19.],\n", |
|
|
458 |
" [ 18., 18., 18.]],\n", |
|
|
459 |
"\n", |
|
|
460 |
" [[ 26., 26., 26.],\n", |
|
|
461 |
" [ 26., 26., 26.],\n", |
|
|
462 |
" [ 26., 26., 26.],\n", |
|
|
463 |
" ...,\n", |
|
|
464 |
" [ 16., 16., 16.],\n", |
|
|
465 |
" [ 19., 19., 19.],\n", |
|
|
466 |
" [ 20., 20., 20.]],\n", |
|
|
467 |
"\n", |
|
|
468 |
" [[ 26., 26., 26.],\n", |
|
|
469 |
" [ 26., 26., 26.],\n", |
|
|
470 |
" [ 24., 24., 24.],\n", |
|
|
471 |
" ...,\n", |
|
|
472 |
" [ 16., 16., 16.],\n", |
|
|
473 |
" [ 19., 19., 19.],\n", |
|
|
474 |
" [ 19., 19., 19.]]], dtype=float32)" |
|
|
475 |
] |
|
|
476 |
}, |
|
|
477 |
"metadata": { |
|
|
478 |
"tags": [] |
|
|
479 |
}, |
|
|
480 |
"execution_count": 39 |
|
|
481 |
} |
|
|
482 |
] |
|
|
483 |
}, |
|
|
484 |
{ |
|
|
485 |
"cell_type": "code", |
|
|
486 |
"metadata": { |
|
|
487 |
"id": "7LjOjssdwLZJ", |
|
|
488 |
"colab_type": "code", |
|
|
489 |
"colab": {}, |
|
|
490 |
"outputId": "869f1d47-d72f-4b60-f4c9-f9693da95a47" |
|
|
491 |
}, |
|
|
492 |
"source": [ |
|
|
493 |
"test_image = np.expand_dims(test_image, axis=0)\n", |
|
|
494 |
"test_image" |
|
|
495 |
], |
|
|
496 |
"execution_count": 0, |
|
|
497 |
"outputs": [ |
|
|
498 |
{ |
|
|
499 |
"output_type": "execute_result", |
|
|
500 |
"data": { |
|
|
501 |
"text/plain": [ |
|
|
502 |
"array([[[[134., 134., 134.],\n", |
|
|
503 |
" [ 45., 45., 45.],\n", |
|
|
504 |
" [ 49., 49., 49.],\n", |
|
|
505 |
" ...,\n", |
|
|
506 |
" [222., 222., 222.],\n", |
|
|
507 |
" [205., 205., 205.],\n", |
|
|
508 |
" [213., 213., 213.]],\n", |
|
|
509 |
"\n", |
|
|
510 |
" [[ 53., 53., 53.],\n", |
|
|
511 |
" [ 40., 40., 40.],\n", |
|
|
512 |
" [ 60., 60., 60.],\n", |
|
|
513 |
" ...,\n", |
|
|
514 |
" [234., 234., 234.],\n", |
|
|
515 |
" [209., 209., 209.],\n", |
|
|
516 |
" [211., 211., 211.]],\n", |
|
|
517 |
"\n", |
|
|
518 |
" [[ 53., 53., 53.],\n", |
|
|
519 |
" [ 48., 48., 48.],\n", |
|
|
520 |
" [ 70., 70., 70.],\n", |
|
|
521 |
" ...,\n", |
|
|
522 |
" [185., 185., 185.],\n", |
|
|
523 |
" [212., 212., 212.],\n", |
|
|
524 |
" [216., 216., 216.]],\n", |
|
|
525 |
"\n", |
|
|
526 |
" ...,\n", |
|
|
527 |
"\n", |
|
|
528 |
" [[ 24., 24., 24.],\n", |
|
|
529 |
" [ 26., 26., 26.],\n", |
|
|
530 |
" [ 26., 26., 26.],\n", |
|
|
531 |
" ...,\n", |
|
|
532 |
" [ 17., 17., 17.],\n", |
|
|
533 |
" [ 19., 19., 19.],\n", |
|
|
534 |
" [ 18., 18., 18.]],\n", |
|
|
535 |
"\n", |
|
|
536 |
" [[ 26., 26., 26.],\n", |
|
|
537 |
" [ 26., 26., 26.],\n", |
|
|
538 |
" [ 26., 26., 26.],\n", |
|
|
539 |
" ...,\n", |
|
|
540 |
" [ 16., 16., 16.],\n", |
|
|
541 |
" [ 19., 19., 19.],\n", |
|
|
542 |
" [ 20., 20., 20.]],\n", |
|
|
543 |
"\n", |
|
|
544 |
" [[ 26., 26., 26.],\n", |
|
|
545 |
" [ 26., 26., 26.],\n", |
|
|
546 |
" [ 24., 24., 24.],\n", |
|
|
547 |
" ...,\n", |
|
|
548 |
" [ 16., 16., 16.],\n", |
|
|
549 |
" [ 19., 19., 19.],\n", |
|
|
550 |
" [ 19., 19., 19.]]]], dtype=float32)" |
|
|
551 |
] |
|
|
552 |
}, |
|
|
553 |
"metadata": { |
|
|
554 |
"tags": [] |
|
|
555 |
}, |
|
|
556 |
"execution_count": 40 |
|
|
557 |
} |
|
|
558 |
] |
|
|
559 |
}, |
|
|
560 |
{ |
|
|
561 |
"cell_type": "code", |
|
|
562 |
"metadata": { |
|
|
563 |
"id": "3chAjHsEwLZV", |
|
|
564 |
"colab_type": "code", |
|
|
565 |
"colab": {}, |
|
|
566 |
"outputId": "f375eb94-3dca-47d3-de20-82ced809c582" |
|
|
567 |
}, |
|
|
568 |
"source": [ |
|
|
569 |
"result = cnn.predict(test_image)\n", |
|
|
570 |
"result" |
|
|
571 |
], |
|
|
572 |
"execution_count": 0, |
|
|
573 |
"outputs": [ |
|
|
574 |
{ |
|
|
575 |
"output_type": "execute_result", |
|
|
576 |
"data": { |
|
|
577 |
"text/plain": [ |
|
|
578 |
"array([[1.]], dtype=float32)" |
|
|
579 |
] |
|
|
580 |
}, |
|
|
581 |
"metadata": { |
|
|
582 |
"tags": [] |
|
|
583 |
}, |
|
|
584 |
"execution_count": 41 |
|
|
585 |
} |
|
|
586 |
] |
|
|
587 |
}, |
|
|
588 |
{ |
|
|
589 |
"cell_type": "code", |
|
|
590 |
"metadata": { |
|
|
591 |
"id": "ew5t1Q2KwLZf", |
|
|
592 |
"colab_type": "code", |
|
|
593 |
"colab": {}, |
|
|
594 |
"outputId": "9a393185-1313-4a92-cdb4-d97a25d307de" |
|
|
595 |
}, |
|
|
596 |
"source": [ |
|
|
597 |
"training_set.class_indices" |
|
|
598 |
], |
|
|
599 |
"execution_count": 0, |
|
|
600 |
"outputs": [ |
|
|
601 |
{ |
|
|
602 |
"output_type": "execute_result", |
|
|
603 |
"data": { |
|
|
604 |
"text/plain": [ |
|
|
605 |
"{'NORMAL': 0, 'PNEUMONIA': 1}" |
|
|
606 |
] |
|
|
607 |
}, |
|
|
608 |
"metadata": { |
|
|
609 |
"tags": [] |
|
|
610 |
}, |
|
|
611 |
"execution_count": 42 |
|
|
612 |
} |
|
|
613 |
] |
|
|
614 |
}, |
|
|
615 |
{ |
|
|
616 |
"cell_type": "code", |
|
|
617 |
"metadata": { |
|
|
618 |
"id": "0PRTcxumwLZt", |
|
|
619 |
"colab_type": "code", |
|
|
620 |
"colab": {}, |
|
|
621 |
"outputId": "9c48017f-be59-4f78-bc99-feffaa49fcc3" |
|
|
622 |
}, |
|
|
623 |
"source": [ |
|
|
624 |
"if result[0][0] == 1:\n", |
|
|
625 |
" prediction = 'Yes'\n", |
|
|
626 |
"else:\n", |
|
|
627 |
" prediction = 'No'\n", |
|
|
628 |
" \n", |
|
|
629 |
"print(prediction)" |
|
|
630 |
], |
|
|
631 |
"execution_count": 0, |
|
|
632 |
"outputs": [ |
|
|
633 |
{ |
|
|
634 |
"output_type": "stream", |
|
|
635 |
"text": [ |
|
|
636 |
"Yes\n" |
|
|
637 |
], |
|
|
638 |
"name": "stdout" |
|
|
639 |
} |
|
|
640 |
] |
|
|
641 |
}, |
|
|
642 |
{ |
|
|
643 |
"cell_type": "code", |
|
|
644 |
"metadata": { |
|
|
645 |
"id": "iTJzvNZswLaC", |
|
|
646 |
"colab_type": "code", |
|
|
647 |
"colab": {}, |
|
|
648 |
"outputId": "b973828e-51a1-48f4-deb5-f7fd3acf70e4" |
|
|
649 |
}, |
|
|
650 |
"source": [ |
|
|
651 |
"predictions = cnn.predict(test_set)\n", |
|
|
652 |
"predictions" |
|
|
653 |
], |
|
|
654 |
"execution_count": 0, |
|
|
655 |
"outputs": [ |
|
|
656 |
{ |
|
|
657 |
"output_type": "execute_result", |
|
|
658 |
"data": { |
|
|
659 |
"text/plain": [ |
|
|
660 |
"array([[9.99127209e-01],\n", |
|
|
661 |
" [1.00000000e+00],\n", |
|
|
662 |
" [9.99928474e-01],\n", |
|
|
663 |
" [1.09114801e-03],\n", |
|
|
664 |
" [9.99967813e-01],\n", |
|
|
665 |
" [9.99459326e-01],\n", |
|
|
666 |
" [9.99999881e-01],\n", |
|
|
667 |
" [1.00000000e+00],\n", |
|
|
668 |
" [9.99017596e-01],\n", |
|
|
669 |
" [1.00000000e+00],\n", |
|
|
670 |
" [1.29443448e-04],\n", |
|
|
671 |
" [9.79463816e-01],\n", |
|
|
672 |
" [1.37045123e-02],\n", |
|
|
673 |
" [2.46368870e-02],\n", |
|
|
674 |
" [1.00000000e+00],\n", |
|
|
675 |
" [9.99968648e-01],\n", |
|
|
676 |
" [9.99991536e-01],\n", |
|
|
677 |
" [1.00000000e+00],\n", |
|
|
678 |
" [9.99998450e-01],\n", |
|
|
679 |
" [1.00000000e+00],\n", |
|
|
680 |
" [6.15069061e-04],\n", |
|
|
681 |
" [9.99976993e-01],\n", |
|
|
682 |
" [1.65362563e-03],\n", |
|
|
683 |
" [7.92328298e-01],\n", |
|
|
684 |
" [9.99999285e-01],\n", |
|
|
685 |
" [9.88547921e-01],\n", |
|
|
686 |
" [2.57708132e-01],\n", |
|
|
687 |
" [9.99999762e-01],\n", |
|
|
688 |
" [9.99968648e-01],\n", |
|
|
689 |
" [1.99339353e-02],\n", |
|
|
690 |
" [9.99307632e-01],\n", |
|
|
691 |
" [9.99978900e-01],\n", |
|
|
692 |
" [9.99983072e-01],\n", |
|
|
693 |
" [1.00000000e+00],\n", |
|
|
694 |
" [9.99995470e-01],\n", |
|
|
695 |
" [1.58128709e-01],\n", |
|
|
696 |
" [1.71573013e-01],\n", |
|
|
697 |
" [9.40156542e-03],\n", |
|
|
698 |
" [9.99028087e-01],\n", |
|
|
699 |
" [9.99979615e-01],\n", |
|
|
700 |
" [8.84311199e-01],\n", |
|
|
701 |
" [1.00000000e+00],\n", |
|
|
702 |
" [6.62890553e-01],\n", |
|
|
703 |
" [1.00000000e+00],\n", |
|
|
704 |
" [1.00000000e+00],\n", |
|
|
705 |
" [3.58641557e-02],\n", |
|
|
706 |
" [9.99999166e-01],\n", |
|
|
707 |
" [9.99990344e-01],\n", |
|
|
708 |
" [9.99898076e-01],\n", |
|
|
709 |
" [9.99990582e-01],\n", |
|
|
710 |
" [9.56263602e-01],\n", |
|
|
711 |
" [9.16411996e-01],\n", |
|
|
712 |
" [9.99979258e-01],\n", |
|
|
713 |
" [9.99999762e-01],\n", |
|
|
714 |
" [9.99998331e-01],\n", |
|
|
715 |
" [8.70225206e-03],\n", |
|
|
716 |
" [9.99999404e-01],\n", |
|
|
717 |
" [9.99994040e-01],\n", |
|
|
718 |
" [1.00000000e+00],\n", |
|
|
719 |
" [8.77190828e-02],\n", |
|
|
720 |
" [9.99988437e-01],\n", |
|
|
721 |
" [9.99971509e-01],\n", |
|
|
722 |
" [9.99999762e-01],\n", |
|
|
723 |
" [9.99995351e-01],\n", |
|
|
724 |
" [9.99444425e-01],\n", |
|
|
725 |
" [9.82008338e-01],\n", |
|
|
726 |
" [1.19775973e-01],\n", |
|
|
727 |
" [9.99998569e-01],\n", |
|
|
728 |
" [9.81775761e-01],\n", |
|
|
729 |
" [1.19775973e-01],\n", |
|
|
730 |
" [3.06816743e-04],\n", |
|
|
731 |
" [9.96874928e-01],\n", |
|
|
732 |
" [9.99710619e-01],\n", |
|
|
733 |
" [1.00000000e+00],\n", |
|
|
734 |
" [9.99864697e-01],\n", |
|
|
735 |
" [9.99714673e-01],\n", |
|
|
736 |
" [9.99999523e-01],\n", |
|
|
737 |
" [9.71442819e-01],\n", |
|
|
738 |
" [1.00000000e+00],\n", |
|
|
739 |
" [1.00000000e+00],\n", |
|
|
740 |
" [9.99991417e-01],\n", |
|
|
741 |
" [1.20762475e-02],\n", |
|
|
742 |
" [1.35311624e-02],\n", |
|
|
743 |
" [1.67056266e-02],\n", |
|
|
744 |
" [9.99990344e-01],\n", |
|
|
745 |
" [3.77524309e-02],\n", |
|
|
746 |
" [9.90310490e-01],\n", |
|
|
747 |
" [9.99998212e-01],\n", |
|
|
748 |
" [9.99999881e-01],\n", |
|
|
749 |
" [9.61613238e-01],\n", |
|
|
750 |
" [9.96931911e-01],\n", |
|
|
751 |
" [9.99110520e-01],\n", |
|
|
752 |
" [9.81467903e-01],\n", |
|
|
753 |
" [1.00000000e+00],\n", |
|
|
754 |
" [9.99971986e-01],\n", |
|
|
755 |
" [9.99996781e-01],\n", |
|
|
756 |
" [1.17318169e-03],\n", |
|
|
757 |
" [6.64392905e-03],\n", |
|
|
758 |
" [2.59142416e-03],\n", |
|
|
759 |
" [9.99995232e-01],\n", |
|
|
760 |
" [3.86283384e-04],\n", |
|
|
761 |
" [7.68530011e-01],\n", |
|
|
762 |
" [9.97692347e-01],\n", |
|
|
763 |
" [1.00785948e-03],\n", |
|
|
764 |
" [1.05657466e-02],\n", |
|
|
765 |
" [1.00000000e+00],\n", |
|
|
766 |
" [4.39906269e-02],\n", |
|
|
767 |
" [2.46083364e-03],\n", |
|
|
768 |
" [1.00000000e+00],\n", |
|
|
769 |
" [9.99829292e-01],\n", |
|
|
770 |
" [9.99999881e-01],\n", |
|
|
771 |
" [1.23780328e-05],\n", |
|
|
772 |
" [9.99999881e-01],\n", |
|
|
773 |
" [9.99999881e-01],\n", |
|
|
774 |
" [3.11724172e-04],\n", |
|
|
775 |
" [9.99986887e-01],\n", |
|
|
776 |
" [7.64466599e-02],\n", |
|
|
777 |
" [1.80779747e-03],\n", |
|
|
778 |
" [5.24111152e-01],\n", |
|
|
779 |
" [1.95052564e-01],\n", |
|
|
780 |
" [1.00038815e-04],\n", |
|
|
781 |
" [9.98622775e-01],\n", |
|
|
782 |
" [1.00000000e+00],\n", |
|
|
783 |
" [9.99999881e-01],\n", |
|
|
784 |
" [9.97306228e-01],\n", |
|
|
785 |
" [9.89810944e-01],\n", |
|
|
786 |
" [9.46811199e-01],\n", |
|
|
787 |
" [9.99305487e-01],\n", |
|
|
788 |
" [9.72333644e-03],\n", |
|
|
789 |
" [1.02983102e-01],\n", |
|
|
790 |
" [9.99990702e-01],\n", |
|
|
791 |
" [9.99996781e-01],\n", |
|
|
792 |
" [9.19544101e-01],\n", |
|
|
793 |
" [9.34216261e-01],\n", |
|
|
794 |
" [1.67280678e-02],\n", |
|
|
795 |
" [2.88470894e-01],\n", |
|
|
796 |
" [1.00000000e+00],\n", |
|
|
797 |
" [3.59422415e-02],\n", |
|
|
798 |
" [9.99920726e-01],\n", |
|
|
799 |
" [5.99860251e-02],\n", |
|
|
800 |
" [1.14257149e-02],\n", |
|
|
801 |
" [1.00000000e+00],\n", |
|
|
802 |
" [2.70382106e-01],\n", |
|
|
803 |
" [9.99763191e-01],\n", |
|
|
804 |
" [3.98957916e-03],\n", |
|
|
805 |
" [9.99999881e-01],\n", |
|
|
806 |
" [6.22153142e-03],\n", |
|
|
807 |
" [1.00000000e+00],\n", |
|
|
808 |
" [5.82696237e-02],\n", |
|
|
809 |
" [9.99900699e-01],\n", |
|
|
810 |
" [3.24655920e-01],\n", |
|
|
811 |
" [9.99966383e-01],\n", |
|
|
812 |
" [9.99953747e-01],\n", |
|
|
813 |
" [9.99999762e-01],\n", |
|
|
814 |
" [1.00000000e+00],\n", |
|
|
815 |
" [2.08581029e-03],\n", |
|
|
816 |
" [9.99998689e-01],\n", |
|
|
817 |
" [9.96918917e-01],\n", |
|
|
818 |
" [1.63357193e-03],\n", |
|
|
819 |
" [1.49172521e-03],\n", |
|
|
820 |
" [1.80346500e-02],\n", |
|
|
821 |
" [9.93363738e-01],\n", |
|
|
822 |
" [9.99370515e-01],\n", |
|
|
823 |
" [1.00000000e+00],\n", |
|
|
824 |
" [1.24495309e-02],\n", |
|
|
825 |
" [1.00000000e+00],\n", |
|
|
826 |
" [9.99506474e-01],\n", |
|
|
827 |
" [1.47051467e-02],\n", |
|
|
828 |
" [9.95344818e-01],\n", |
|
|
829 |
" [9.99957085e-01],\n", |
|
|
830 |
" [9.52291131e-01],\n", |
|
|
831 |
" [2.53052741e-01],\n", |
|
|
832 |
" [7.83037220e-04],\n", |
|
|
833 |
" [9.52204466e-01],\n", |
|
|
834 |
" [8.95937860e-01],\n", |
|
|
835 |
" [4.58698953e-03],\n", |
|
|
836 |
" [9.16729927e-01],\n", |
|
|
837 |
" [1.31861880e-01],\n", |
|
|
838 |
" [1.18350063e-03],\n", |
|
|
839 |
" [3.63770267e-03],\n", |
|
|
840 |
" [2.40937210e-04],\n", |
|
|
841 |
" [9.99992847e-01],\n", |
|
|
842 |
" [1.00000000e+00],\n", |
|
|
843 |
" [9.38061476e-01],\n", |
|
|
844 |
" [4.48292345e-01],\n", |
|
|
845 |
" [9.96949494e-01],\n", |
|
|
846 |
" [9.99861240e-01],\n", |
|
|
847 |
" [6.77751228e-02],\n", |
|
|
848 |
" [9.98625517e-01],\n", |
|
|
849 |
" [1.00000000e+00],\n", |
|
|
850 |
" [9.99991298e-01],\n", |
|
|
851 |
" [1.00000000e+00],\n", |
|
|
852 |
" [1.00000000e+00],\n", |
|
|
853 |
" [2.93031248e-04],\n", |
|
|
854 |
" [9.99970794e-01],\n", |
|
|
855 |
" [9.99992609e-01],\n", |
|
|
856 |
" [1.00000000e+00],\n", |
|
|
857 |
" [9.99981999e-01],\n", |
|
|
858 |
" [9.99998927e-01],\n", |
|
|
859 |
" [1.00000000e+00],\n", |
|
|
860 |
" [9.99942899e-01],\n", |
|
|
861 |
" [9.99995947e-01],\n", |
|
|
862 |
" [9.99999762e-01],\n", |
|
|
863 |
" [3.03096306e-02],\n", |
|
|
864 |
" [9.98734295e-01],\n", |
|
|
865 |
" [2.82496400e-02],\n", |
|
|
866 |
" [1.00000000e+00],\n", |
|
|
867 |
" [1.22997581e-05],\n", |
|
|
868 |
" [9.72380817e-01],\n", |
|
|
869 |
" [9.99998927e-01],\n", |
|
|
870 |
" [3.34495358e-04],\n", |
|
|
871 |
" [9.99960542e-01],\n", |
|
|
872 |
" [1.00000000e+00],\n", |
|
|
873 |
" [1.00000000e+00],\n", |
|
|
874 |
" [1.00000000e+00],\n", |
|
|
875 |
" [1.00000000e+00],\n", |
|
|
876 |
" [9.25026774e-01],\n", |
|
|
877 |
" [9.99997735e-01],\n", |
|
|
878 |
" [9.99999285e-01],\n", |
|
|
879 |
" [9.70885634e-01],\n", |
|
|
880 |
" [1.08759105e-03],\n", |
|
|
881 |
" [5.97980559e-01],\n", |
|
|
882 |
" [9.87478733e-01],\n", |
|
|
883 |
" [9.99969959e-01],\n", |
|
|
884 |
" [9.97018337e-01],\n", |
|
|
885 |
" [9.99558389e-01],\n", |
|
|
886 |
" [6.56807065e-01],\n", |
|
|
887 |
" [1.00000000e+00],\n", |
|
|
888 |
" [9.99999762e-01],\n", |
|
|
889 |
" [1.00000000e+00],\n", |
|
|
890 |
" [1.07551754e-01],\n", |
|
|
891 |
" [9.99951363e-01],\n", |
|
|
892 |
" [3.92399281e-01],\n", |
|
|
893 |
" [9.76216078e-01],\n", |
|
|
894 |
" [9.99999523e-01],\n", |
|
|
895 |
" [9.99990225e-01],\n", |
|
|
896 |
" [5.70857584e-01],\n", |
|
|
897 |
" [9.99984384e-01],\n", |
|
|
898 |
" [8.17382336e-02],\n", |
|
|
899 |
" [6.57119006e-02],\n", |
|
|
900 |
" [1.00000000e+00],\n", |
|
|
901 |
" [1.00000000e+00],\n", |
|
|
902 |
" [5.52541494e-01],\n", |
|
|
903 |
" [9.99083400e-01],\n", |
|
|
904 |
" [6.54394701e-02],\n", |
|
|
905 |
" [9.21892405e-01],\n", |
|
|
906 |
" [2.03139987e-03],\n", |
|
|
907 |
" [9.99944448e-01],\n", |
|
|
908 |
" [1.00000000e+00],\n", |
|
|
909 |
" [1.00000000e+00],\n", |
|
|
910 |
" [9.94179606e-01],\n", |
|
|
911 |
" [9.99999762e-01],\n", |
|
|
912 |
" [9.99999762e-01],\n", |
|
|
913 |
" [9.99864340e-01],\n", |
|
|
914 |
" [9.99997854e-01],\n", |
|
|
915 |
" [2.27030776e-02],\n", |
|
|
916 |
" [2.33860612e-02],\n", |
|
|
917 |
" [1.85382262e-01],\n", |
|
|
918 |
" [1.00000000e+00],\n", |
|
|
919 |
" [9.99992728e-01],\n", |
|
|
920 |
" [9.99999881e-01],\n", |
|
|
921 |
" [2.00066273e-03],\n", |
|
|
922 |
" [1.08643241e-01],\n", |
|
|
923 |
" [1.00000000e+00],\n", |
|
|
924 |
" [9.95054483e-01],\n", |
|
|
925 |
" [9.99249637e-01],\n", |
|
|
926 |
" [9.99999881e-01],\n", |
|
|
927 |
" [7.33255208e-01],\n", |
|
|
928 |
" [9.99997854e-01],\n", |
|
|
929 |
" [2.41787080e-02],\n", |
|
|
930 |
" [9.70392346e-01],\n", |
|
|
931 |
" [9.99998450e-01],\n", |
|
|
932 |
" [9.99999881e-01],\n", |
|
|
933 |
" [2.16439053e-01],\n", |
|
|
934 |
" [9.99988317e-01],\n", |
|
|
935 |
" [1.00000000e+00],\n", |
|
|
936 |
" [9.99974251e-01],\n", |
|
|
937 |
" [9.99995828e-01],\n", |
|
|
938 |
" [9.99999642e-01],\n", |
|
|
939 |
" [1.60792930e-04],\n", |
|
|
940 |
" [1.00000000e+00],\n", |
|
|
941 |
" [1.00000000e+00],\n", |
|
|
942 |
" [1.00000000e+00],\n", |
|
|
943 |
" [1.00000000e+00],\n", |
|
|
944 |
" [9.99999285e-01],\n", |
|
|
945 |
" [9.99990463e-01],\n", |
|
|
946 |
" [9.97165859e-01],\n", |
|
|
947 |
" [4.75391862e-04],\n", |
|
|
948 |
" [9.98784721e-01],\n", |
|
|
949 |
" [9.99998569e-01],\n", |
|
|
950 |
" [6.25773892e-03],\n", |
|
|
951 |
" [9.99958992e-01],\n", |
|
|
952 |
" [3.89790745e-04],\n", |
|
|
953 |
" [9.99980330e-01],\n", |
|
|
954 |
" [1.00000000e+00],\n", |
|
|
955 |
" [1.00000000e+00],\n", |
|
|
956 |
" [1.00758232e-01],\n", |
|
|
957 |
" [1.00000000e+00],\n", |
|
|
958 |
" [8.24822392e-03],\n", |
|
|
959 |
" [3.33807438e-05],\n", |
|
|
960 |
" [9.91006076e-01],\n", |
|
|
961 |
" [1.00000000e+00],\n", |
|
|
962 |
" [9.56498552e-03],\n", |
|
|
963 |
" [9.98254836e-01],\n", |
|
|
964 |
" [9.99994516e-01],\n", |
|
|
965 |
" [9.95416403e-01],\n", |
|
|
966 |
" [7.58467913e-01],\n", |
|
|
967 |
" [9.99649048e-01],\n", |
|
|
968 |
" [3.51385102e-02],\n", |
|
|
969 |
" [9.99973893e-01],\n", |
|
|
970 |
" [1.00000000e+00],\n", |
|
|
971 |
" [6.36694662e-04],\n", |
|
|
972 |
" [3.00208293e-03],\n", |
|
|
973 |
" [9.99999762e-01],\n", |
|
|
974 |
" [1.00000000e+00],\n", |
|
|
975 |
" [1.00000000e+00],\n", |
|
|
976 |
" [9.99999881e-01],\n", |
|
|
977 |
" [1.00000000e+00],\n", |
|
|
978 |
" [9.78716791e-01],\n", |
|
|
979 |
" [8.36241424e-01],\n", |
|
|
980 |
" [6.07311055e-02],\n", |
|
|
981 |
" [9.99993920e-01],\n", |
|
|
982 |
" [9.68563139e-01],\n", |
|
|
983 |
" [9.99985218e-01],\n", |
|
|
984 |
" [3.97806568e-03],\n", |
|
|
985 |
" [9.99997497e-01],\n", |
|
|
986 |
" [9.99766767e-01],\n", |
|
|
987 |
" [2.82231515e-04],\n", |
|
|
988 |
" [9.99983311e-01],\n", |
|
|
989 |
" [1.00000000e+00],\n", |
|
|
990 |
" [9.99998808e-01],\n", |
|
|
991 |
" [1.77066587e-02],\n", |
|
|
992 |
" [1.74319197e-03],\n", |
|
|
993 |
" [7.91238435e-03],\n", |
|
|
994 |
" [2.65843607e-03],\n", |
|
|
995 |
" [2.01939931e-03],\n", |
|
|
996 |
" [9.80653584e-01],\n", |
|
|
997 |
" [6.04670541e-03],\n", |
|
|
998 |
" [6.38098598e-01],\n", |
|
|
999 |
" [9.96210098e-01],\n", |
|
|
1000 |
" [9.99998927e-01],\n", |
|
|
1001 |
" [9.99999642e-01],\n", |
|
|
1002 |
" [3.70114134e-03],\n", |
|
|
1003 |
" [9.99925494e-01],\n", |
|
|
1004 |
" [6.89928651e-01],\n", |
|
|
1005 |
" [8.20631325e-01],\n", |
|
|
1006 |
" [9.99999642e-01],\n", |
|
|
1007 |
" [9.02255654e-01],\n", |
|
|
1008 |
" [1.67412014e-04],\n", |
|
|
1009 |
" [9.99962687e-01],\n", |
|
|
1010 |
" [1.00000000e+00],\n", |
|
|
1011 |
" [9.94069099e-01],\n", |
|
|
1012 |
" [1.00000000e+00],\n", |
|
|
1013 |
" [9.96118546e-01],\n", |
|
|
1014 |
" [9.99984503e-01],\n", |
|
|
1015 |
" [8.73874068e-01],\n", |
|
|
1016 |
" [9.99999166e-01],\n", |
|
|
1017 |
" [9.99999762e-01],\n", |
|
|
1018 |
" [9.97170985e-01],\n", |
|
|
1019 |
" [4.57449377e-01],\n", |
|
|
1020 |
" [6.38098598e-01],\n", |
|
|
1021 |
" [9.99997497e-01],\n", |
|
|
1022 |
" [9.98502612e-01],\n", |
|
|
1023 |
" [1.00000000e+00],\n", |
|
|
1024 |
" [1.00000000e+00],\n", |
|
|
1025 |
" [1.00000000e+00],\n", |
|
|
1026 |
" [1.00000000e+00],\n", |
|
|
1027 |
" [9.99929547e-01],\n", |
|
|
1028 |
" [1.00000000e+00],\n", |
|
|
1029 |
" [9.99997973e-01],\n", |
|
|
1030 |
" [1.00000000e+00],\n", |
|
|
1031 |
" [9.99727309e-01],\n", |
|
|
1032 |
" [9.99940753e-01],\n", |
|
|
1033 |
" [3.58864754e-01],\n", |
|
|
1034 |
" [9.99999404e-01],\n", |
|
|
1035 |
" [9.99872446e-01],\n", |
|
|
1036 |
" [9.99997854e-01],\n", |
|
|
1037 |
" [1.49931002e-03],\n", |
|
|
1038 |
" [9.48962033e-01],\n", |
|
|
1039 |
" [9.98382807e-01],\n", |
|
|
1040 |
" [9.99997497e-01],\n", |
|
|
1041 |
" [1.00000000e+00],\n", |
|
|
1042 |
" [9.94919479e-01],\n", |
|
|
1043 |
" [9.90912318e-01],\n", |
|
|
1044 |
" [9.99995708e-01],\n", |
|
|
1045 |
" [3.12850550e-02],\n", |
|
|
1046 |
" [5.76836839e-02],\n", |
|
|
1047 |
" [1.00000000e+00],\n", |
|
|
1048 |
" [9.99976754e-01],\n", |
|
|
1049 |
" [7.60898054e-01],\n", |
|
|
1050 |
" [1.00000000e+00],\n", |
|
|
1051 |
" [2.41197236e-02],\n", |
|
|
1052 |
" [6.79331481e-01],\n", |
|
|
1053 |
" [9.99999642e-01],\n", |
|
|
1054 |
" [1.00000000e+00],\n", |
|
|
1055 |
" [1.00000000e+00],\n", |
|
|
1056 |
" [1.00000000e+00],\n", |
|
|
1057 |
" [9.98858929e-01],\n", |
|
|
1058 |
" [7.78699994e-01],\n", |
|
|
1059 |
" [1.00000000e+00],\n", |
|
|
1060 |
" [9.36660290e-01],\n", |
|
|
1061 |
" [9.99999046e-01],\n", |
|
|
1062 |
" [6.79894924e-01],\n", |
|
|
1063 |
" [9.30567145e-01],\n", |
|
|
1064 |
" [2.77472019e-01],\n", |
|
|
1065 |
" [8.44867807e-03],\n", |
|
|
1066 |
" [5.95380485e-01],\n", |
|
|
1067 |
" [6.94191530e-02],\n", |
|
|
1068 |
" [9.96434808e-01],\n", |
|
|
1069 |
" [9.99989152e-01],\n", |
|
|
1070 |
" [6.07048273e-01],\n", |
|
|
1071 |
" [6.07317239e-02],\n", |
|
|
1072 |
" [1.00000000e+00],\n", |
|
|
1073 |
" [2.69764066e-01],\n", |
|
|
1074 |
" [2.40390226e-02],\n", |
|
|
1075 |
" [2.57276110e-02],\n", |
|
|
1076 |
" [2.55429670e-02],\n", |
|
|
1077 |
" [1.00000000e+00],\n", |
|
|
1078 |
" [1.00000000e+00],\n", |
|
|
1079 |
" [9.96815503e-01],\n", |
|
|
1080 |
" [1.10566318e-01],\n", |
|
|
1081 |
" [1.00000000e+00],\n", |
|
|
1082 |
" [9.98466015e-01],\n", |
|
|
1083 |
" [9.98371542e-01],\n", |
|
|
1084 |
" [2.57674187e-01],\n", |
|
|
1085 |
" [9.99472320e-01],\n", |
|
|
1086 |
" [1.00000000e+00],\n", |
|
|
1087 |
" [7.76644098e-04],\n", |
|
|
1088 |
" [1.00000000e+00],\n", |
|
|
1089 |
" [9.85175192e-01],\n", |
|
|
1090 |
" [9.99997973e-01],\n", |
|
|
1091 |
" [2.12329552e-01],\n", |
|
|
1092 |
" [9.99874711e-01],\n", |
|
|
1093 |
" [9.99999285e-01],\n", |
|
|
1094 |
" [6.94745123e-01],\n", |
|
|
1095 |
" [7.54924165e-03],\n", |
|
|
1096 |
" [1.00000000e+00],\n", |
|
|
1097 |
" [9.99993682e-01],\n", |
|
|
1098 |
" [5.18645287e-01],\n", |
|
|
1099 |
" [9.34577703e-01],\n", |
|
|
1100 |
" [2.96075121e-02],\n", |
|
|
1101 |
" [2.55093239e-02],\n", |
|
|
1102 |
" [9.99980330e-01],\n", |
|
|
1103 |
" [9.99995947e-01],\n", |
|
|
1104 |
" [2.58505195e-01],\n", |
|
|
1105 |
" [4.49159154e-04],\n", |
|
|
1106 |
" [1.04316156e-02],\n", |
|
|
1107 |
" [9.99700069e-01],\n", |
|
|
1108 |
" [9.99998569e-01],\n", |
|
|
1109 |
" [3.50234844e-03],\n", |
|
|
1110 |
" [9.75885332e-01],\n", |
|
|
1111 |
" [2.67864782e-02],\n", |
|
|
1112 |
" [1.00000000e+00],\n", |
|
|
1113 |
" [1.13111893e-02],\n", |
|
|
1114 |
" [1.00000000e+00],\n", |
|
|
1115 |
" [2.10697621e-01],\n", |
|
|
1116 |
" [9.99930382e-01],\n", |
|
|
1117 |
" [9.94694412e-01],\n", |
|
|
1118 |
" [1.00000000e+00],\n", |
|
|
1119 |
" [1.49561446e-02],\n", |
|
|
1120 |
" [9.99998689e-01],\n", |
|
|
1121 |
" [1.41535362e-03],\n", |
|
|
1122 |
" [9.95686412e-01],\n", |
|
|
1123 |
" [9.99999881e-01],\n", |
|
|
1124 |
" [1.00000000e+00],\n", |
|
|
1125 |
" [4.68831044e-04],\n", |
|
|
1126 |
" [1.93897691e-02],\n", |
|
|
1127 |
" [3.73468036e-03],\n", |
|
|
1128 |
" [9.83241916e-01],\n", |
|
|
1129 |
" [2.79722847e-02],\n", |
|
|
1130 |
" [3.01179320e-01],\n", |
|
|
1131 |
" [9.98645723e-01],\n", |
|
|
1132 |
" [9.99985456e-01],\n", |
|
|
1133 |
" [6.82771653e-02],\n", |
|
|
1134 |
" [9.99209106e-01],\n", |
|
|
1135 |
" [5.61944246e-01],\n", |
|
|
1136 |
" [9.99998093e-01],\n", |
|
|
1137 |
" [1.86151266e-01],\n", |
|
|
1138 |
" [9.99999762e-01],\n", |
|
|
1139 |
" [9.91966009e-01],\n", |
|
|
1140 |
" [9.99893308e-01],\n", |
|
|
1141 |
" [9.99999642e-01],\n", |
|
|
1142 |
" [9.99629498e-01],\n", |
|
|
1143 |
" [9.76446748e-01],\n", |
|
|
1144 |
" [2.68565435e-02],\n", |
|
|
1145 |
" [1.06689865e-02],\n", |
|
|
1146 |
" [1.00000000e+00],\n", |
|
|
1147 |
" [9.99978304e-01],\n", |
|
|
1148 |
" [9.99883533e-01],\n", |
|
|
1149 |
" [9.99992132e-01],\n", |
|
|
1150 |
" [9.99898553e-01],\n", |
|
|
1151 |
" [9.99997616e-01],\n", |
|
|
1152 |
" [5.01158655e-01],\n", |
|
|
1153 |
" [9.99999762e-01],\n", |
|
|
1154 |
" [2.13489216e-03],\n", |
|
|
1155 |
" [1.00000000e+00],\n", |
|
|
1156 |
" [3.31123471e-02],\n", |
|
|
1157 |
" [1.00000000e+00],\n", |
|
|
1158 |
" [2.12847046e-03],\n", |
|
|
1159 |
" [1.00000000e+00],\n", |
|
|
1160 |
" [9.99511719e-01],\n", |
|
|
1161 |
" [9.95730221e-01],\n", |
|
|
1162 |
" [1.97975934e-02],\n", |
|
|
1163 |
" [6.99095987e-03],\n", |
|
|
1164 |
" [9.99991894e-01],\n", |
|
|
1165 |
" [2.27933144e-03],\n", |
|
|
1166 |
" [1.92354538e-03],\n", |
|
|
1167 |
" [1.00000000e+00],\n", |
|
|
1168 |
" [9.99994516e-01],\n", |
|
|
1169 |
" [9.99999523e-01],\n", |
|
|
1170 |
" [9.87651706e-01],\n", |
|
|
1171 |
" [9.99999881e-01],\n", |
|
|
1172 |
" [9.99894619e-01],\n", |
|
|
1173 |
" [1.10436892e-02],\n", |
|
|
1174 |
" [4.87535028e-03],\n", |
|
|
1175 |
" [5.66245290e-05],\n", |
|
|
1176 |
" [9.98538613e-01],\n", |
|
|
1177 |
" [9.99999642e-01],\n", |
|
|
1178 |
" [4.83682483e-01],\n", |
|
|
1179 |
" [4.05326784e-01],\n", |
|
|
1180 |
" [5.89253902e-01],\n", |
|
|
1181 |
" [9.99999523e-01],\n", |
|
|
1182 |
" [9.99339998e-01],\n", |
|
|
1183 |
" [9.99960899e-01],\n", |
|
|
1184 |
" [9.99967337e-01],\n", |
|
|
1185 |
" [5.03293574e-02],\n", |
|
|
1186 |
" [9.99888062e-01],\n", |
|
|
1187 |
" [1.00000000e+00],\n", |
|
|
1188 |
" [9.99958158e-01],\n", |
|
|
1189 |
" [9.99970555e-01],\n", |
|
|
1190 |
" [9.99898553e-01],\n", |
|
|
1191 |
" [5.17294705e-02],\n", |
|
|
1192 |
" [1.00000000e+00],\n", |
|
|
1193 |
" [9.99969125e-01],\n", |
|
|
1194 |
" [9.99550998e-01],\n", |
|
|
1195 |
" [1.00000000e+00],\n", |
|
|
1196 |
" [9.99998569e-01],\n", |
|
|
1197 |
" [4.57099676e-02],\n", |
|
|
1198 |
" [9.99508381e-01],\n", |
|
|
1199 |
" [6.47619545e-01],\n", |
|
|
1200 |
" [4.82181460e-02],\n", |
|
|
1201 |
" [3.26992482e-01],\n", |
|
|
1202 |
" [1.00000000e+00],\n", |
|
|
1203 |
" [1.00000000e+00],\n", |
|
|
1204 |
" [6.77119434e-01],\n", |
|
|
1205 |
" [9.99994159e-01],\n", |
|
|
1206 |
" [9.99999881e-01],\n", |
|
|
1207 |
" [9.99399900e-01],\n", |
|
|
1208 |
" [9.99931693e-01],\n", |
|
|
1209 |
" [1.02043085e-01],\n", |
|
|
1210 |
" [2.64167413e-03],\n", |
|
|
1211 |
" [9.99997735e-01],\n", |
|
|
1212 |
" [9.99999881e-01],\n", |
|
|
1213 |
" [9.99999523e-01],\n", |
|
|
1214 |
" [9.89206791e-01],\n", |
|
|
1215 |
" [1.44354524e-02],\n", |
|
|
1216 |
" [1.00000000e+00],\n", |
|
|
1217 |
" [1.61957890e-02],\n", |
|
|
1218 |
" [9.04303014e-01],\n", |
|
|
1219 |
" [1.00000000e+00],\n", |
|
|
1220 |
" [4.19442914e-03],\n", |
|
|
1221 |
" [9.99979019e-01],\n", |
|
|
1222 |
" [3.17975044e-01],\n", |
|
|
1223 |
" [9.99995708e-01],\n", |
|
|
1224 |
" [9.89016354e-01],\n", |
|
|
1225 |
" [1.00000000e+00],\n", |
|
|
1226 |
" [9.67190325e-01],\n", |
|
|
1227 |
" [9.99614358e-01],\n", |
|
|
1228 |
" [8.84264350e-01],\n", |
|
|
1229 |
" [9.86232340e-01],\n", |
|
|
1230 |
" [2.45566643e-03],\n", |
|
|
1231 |
" [9.99540448e-01],\n", |
|
|
1232 |
" [1.00000000e+00],\n", |
|
|
1233 |
" [1.00000000e+00],\n", |
|
|
1234 |
" [1.00000000e+00],\n", |
|
|
1235 |
" [9.99984622e-01],\n", |
|
|
1236 |
" [9.46505308e-01],\n", |
|
|
1237 |
" [1.00000000e+00],\n", |
|
|
1238 |
" [9.99998212e-01],\n", |
|
|
1239 |
" [9.99999762e-01],\n", |
|
|
1240 |
" [9.99777615e-01],\n", |
|
|
1241 |
" [9.99957561e-01],\n", |
|
|
1242 |
" [1.15558632e-01],\n", |
|
|
1243 |
" [9.99892712e-01],\n", |
|
|
1244 |
" [1.00000000e+00],\n", |
|
|
1245 |
" [9.99936342e-01],\n", |
|
|
1246 |
" [1.11514097e-02],\n", |
|
|
1247 |
" [2.79436726e-03],\n", |
|
|
1248 |
" [9.99112308e-01],\n", |
|
|
1249 |
" [9.27779649e-04],\n", |
|
|
1250 |
" [9.99990940e-01],\n", |
|
|
1251 |
" [9.99971747e-01],\n", |
|
|
1252 |
" [1.00000000e+00],\n", |
|
|
1253 |
" [1.11002484e-02],\n", |
|
|
1254 |
" [9.42763746e-01],\n", |
|
|
1255 |
" [9.72311437e-01],\n", |
|
|
1256 |
" [1.99509319e-03],\n", |
|
|
1257 |
" [1.03185941e-02],\n", |
|
|
1258 |
" [9.99856830e-01],\n", |
|
|
1259 |
" [1.00000000e+00],\n", |
|
|
1260 |
" [8.84238064e-01],\n", |
|
|
1261 |
" [1.00000000e+00],\n", |
|
|
1262 |
" [9.99971271e-01],\n", |
|
|
1263 |
" [9.99982119e-01],\n", |
|
|
1264 |
" [6.42004192e-01],\n", |
|
|
1265 |
" [1.13778906e-02],\n", |
|
|
1266 |
" [1.79906487e-02],\n", |
|
|
1267 |
" [3.06266814e-01],\n", |
|
|
1268 |
" [4.21514385e-04],\n", |
|
|
1269 |
" [1.00000000e+00],\n", |
|
|
1270 |
" [7.84004450e-01],\n", |
|
|
1271 |
" [9.99998927e-01],\n", |
|
|
1272 |
" [9.90493596e-01],\n", |
|
|
1273 |
" [3.13388139e-01],\n", |
|
|
1274 |
" [9.99949455e-01],\n", |
|
|
1275 |
" [2.70243496e-01],\n", |
|
|
1276 |
" [7.89658912e-03],\n", |
|
|
1277 |
" [9.99894261e-01],\n", |
|
|
1278 |
" [9.99990463e-01],\n", |
|
|
1279 |
" [9.99947309e-01],\n", |
|
|
1280 |
" [6.34111580e-04],\n", |
|
|
1281 |
" [9.99992132e-01],\n", |
|
|
1282 |
" [9.46811199e-01],\n", |
|
|
1283 |
" [9.99915361e-01]], dtype=float32)" |
|
|
1284 |
] |
|
|
1285 |
}, |
|
|
1286 |
"metadata": { |
|
|
1287 |
"tags": [] |
|
|
1288 |
}, |
|
|
1289 |
"execution_count": 44 |
|
|
1290 |
} |
|
|
1291 |
] |
|
|
1292 |
}, |
|
|
1293 |
{ |
|
|
1294 |
"cell_type": "code", |
|
|
1295 |
"metadata": { |
|
|
1296 |
"id": "yIkNpzCuwLaO", |
|
|
1297 |
"colab_type": "code", |
|
|
1298 |
"colab": {} |
|
|
1299 |
}, |
|
|
1300 |
"source": [ |
|
|
1301 |
"" |
|
|
1302 |
], |
|
|
1303 |
"execution_count": 0, |
|
|
1304 |
"outputs": [] |
|
|
1305 |
} |
|
|
1306 |
] |
|
|
1307 |
} |