Diff of /Pneumonia_Detection.ipynb [000000] .. [6df55e]

Switch to unified view

a b/Pneumonia_Detection.ipynb
1
{
2
  "nbformat": 4,
3
  "nbformat_minor": 0,
4
  "metadata": {
5
    "kernelspec": {
6
      "display_name": "Python 3",
7
      "language": "python",
8
      "name": "python3"
9
    },
10
    "language_info": {
11
      "codemirror_mode": {
12
        "name": "ipython",
13
        "version": 3
14
      },
15
      "file_extension": ".py",
16
      "mimetype": "text/x-python",
17
      "name": "python",
18
      "nbconvert_exporter": "python",
19
      "pygments_lexer": "ipython3",
20
      "version": "3.7.6"
21
    },
22
    "colab": {
23
      "name": "Pneumonia Detection.ipynb",
24
      "provenance": [],
25
      "include_colab_link": true
26
    }
27
  },
28
  "cells": [
29
    {
30
      "cell_type": "markdown",
31
      "metadata": {
32
        "id": "view-in-github",
33
        "colab_type": "text"
34
      },
35
      "source": [
36
        "<a href=\"https://colab.research.google.com/github/AnkitRajSri/Pneumonia-Detection/blob/master/Pneumonia_Detection.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
37
      ]
38
    },
39
    {
40
      "cell_type": "markdown",
41
      "metadata": {
42
        "id": "jETrabyQwLW2",
43
        "colab_type": "text"
44
      },
45
      "source": [
46
        "### Importing the libraries"
47
      ]
48
    },
49
    {
50
      "cell_type": "code",
51
      "metadata": {
52
        "id": "U9qWWT1ewLW6",
53
        "colab_type": "code",
54
        "colab": {}
55
      },
56
      "source": [
57
        "import os\n",
58
        "import numpy as np\n",
59
        "import tensorflow as tf\n",
60
        "from keras.preprocessing import image\n",
61
        "from keras.preprocessing.image import ImageDataGenerator"
62
      ],
63
      "execution_count": 0,
64
      "outputs": []
65
    },
66
    {
67
      "cell_type": "code",
68
      "metadata": {
69
        "id": "9pmdklbswLXK",
70
        "colab_type": "code",
71
        "colab": {},
72
        "outputId": "f9325e42-749a-48fe-ced1-7268622bee57"
73
      },
74
      "source": [
75
        "tf.__version__"
76
      ],
77
      "execution_count": 0,
78
      "outputs": [
79
        {
80
          "output_type": "execute_result",
81
          "data": {
82
            "text/plain": [
83
              "'2.1.0'"
84
            ]
85
          },
86
          "metadata": {
87
            "tags": []
88
          },
89
          "execution_count": 8
90
        }
91
      ]
92
    },
93
    {
94
      "cell_type": "markdown",
95
      "metadata": {
96
        "id": "LuEvwqwAwLXb",
97
        "colab_type": "text"
98
      },
99
      "source": [
100
        "### Data Preprocessing"
101
      ]
102
    },
103
    {
104
      "cell_type": "markdown",
105
      "metadata": {
106
        "id": "KxN_t-26wLXd",
107
        "colab_type": "text"
108
      },
109
      "source": [
110
        "##### Preprocessing the training set"
111
      ]
112
    },
113
    {
114
      "cell_type": "code",
115
      "metadata": {
116
        "id": "k8yFRQyCwLXf",
117
        "colab_type": "code",
118
        "colab": {},
119
        "outputId": "ad0da542-220e-4857-9927-fdf2394b37e8"
120
      },
121
      "source": [
122
        "train_datagen = ImageDataGenerator(\n",
123
        "                rescale=1./255,\n",
124
        "                shear_range=0.2,\n",
125
        "                zoom_range=0.2,\n",
126
        "                horizontal_flip=True)\n",
127
        "\n",
128
        "training_set = train_datagen.flow_from_directory(\n",
129
        "               'train', target_size=(64, 64),\n",
130
        "                batch_size=32,\n",
131
        "                class_mode='binary')"
132
      ],
133
      "execution_count": 0,
134
      "outputs": [
135
        {
136
          "output_type": "stream",
137
          "text": [
138
            "Found 5216 images belonging to 2 classes.\n"
139
          ],
140
          "name": "stdout"
141
        }
142
      ]
143
    },
144
    {
145
      "cell_type": "code",
146
      "metadata": {
147
        "id": "F7A1jcC-wLXr",
148
        "colab_type": "code",
149
        "colab": {},
150
        "outputId": "eaebfab0-3fff-46f9-8977-beff4c57259a"
151
      },
152
      "source": [
153
        "validation_datagen = ImageDataGenerator(rescale=1./255)\n",
154
        "\n",
155
        "validation_set = validation_datagen.flow_from_directory(\n",
156
        "                 'val', target_size=(64, 64),\n",
157
        "                 batch_size=32,\n",
158
        "                 class_mode='binary')"
159
      ],
160
      "execution_count": 0,
161
      "outputs": [
162
        {
163
          "output_type": "stream",
164
          "text": [
165
            "Found 16 images belonging to 2 classes.\n"
166
          ],
167
          "name": "stdout"
168
        }
169
      ]
170
    },
171
    {
172
      "cell_type": "code",
173
      "metadata": {
174
        "id": "G-tm781fwLX2",
175
        "colab_type": "code",
176
        "colab": {},
177
        "outputId": "2516ae5b-ab78-4ddb-db08-3db7cec47f38"
178
      },
179
      "source": [
180
        "test_datagen = ImageDataGenerator(rescale=1./255)\n",
181
        "\n",
182
        "test_set = test_datagen.flow_from_directory(\n",
183
        "                 'test', target_size=(64, 64),\n",
184
        "                 batch_size=32,\n",
185
        "                 class_mode='binary')"
186
      ],
187
      "execution_count": 0,
188
      "outputs": [
189
        {
190
          "output_type": "stream",
191
          "text": [
192
            "Found 624 images belonging to 2 classes.\n"
193
          ],
194
          "name": "stdout"
195
        }
196
      ]
197
    },
198
    {
199
      "cell_type": "markdown",
200
      "metadata": {
201
        "id": "P-AsgjL5wLYA",
202
        "colab_type": "text"
203
      },
204
      "source": [
205
        "### Building the CNN"
206
      ]
207
    },
208
    {
209
      "cell_type": "markdown",
210
      "metadata": {
211
        "id": "Gs6izkQawLYC",
212
        "colab_type": "text"
213
      },
214
      "source": [
215
        "##### Initializing the CNN and adding the layers"
216
      ]
217
    },
218
    {
219
      "cell_type": "code",
220
      "metadata": {
221
        "id": "qhRn_PPMwLYD",
222
        "colab_type": "code",
223
        "colab": {}
224
      },
225
      "source": [
226
        "cnn = tf.keras.Sequential()\n",
227
        "\n",
228
        "cnn.add(tf.keras.layers.Conv2D(filters=32, \n",
229
        "                               kernel_size=3,\n",
230
        "                               activation='relu',\n",
231
        "                               input_shape=[64, 64, 3]))\n",
232
        "cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))\n",
233
        "cnn.add(tf.keras.layers.Conv2D(filters=32, \n",
234
        "                               kernel_size=3,\n",
235
        "                               activation='relu'))\n",
236
        "cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))\n",
237
        "cnn.add(tf.keras.layers.Flatten())\n",
238
        "cnn.add(tf.keras.layers.Dense(units=256, activation='relu'))\n",
239
        "cnn.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))"
240
      ],
241
      "execution_count": 0,
242
      "outputs": []
243
    },
244
    {
245
      "cell_type": "markdown",
246
      "metadata": {
247
        "id": "dtzJ9tbqwLYS",
248
        "colab_type": "text"
249
      },
250
      "source": [
251
        "#### Compiling the CNN"
252
      ]
253
    },
254
    {
255
      "cell_type": "code",
256
      "metadata": {
257
        "id": "EL6XoP-pwLYU",
258
        "colab_type": "code",
259
        "colab": {}
260
      },
261
      "source": [
262
        "cnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])"
263
      ],
264
      "execution_count": 0,
265
      "outputs": []
266
    },
267
    {
268
      "cell_type": "markdown",
269
      "metadata": {
270
        "id": "EkeukAK2wLYh",
271
        "colab_type": "text"
272
      },
273
      "source": [
274
        "##### Training the CNN on the training set and evaluating it on the validation set"
275
      ]
276
    },
277
    {
278
      "cell_type": "code",
279
      "metadata": {
280
        "id": "BAKUV9CywLYj",
281
        "colab_type": "code",
282
        "colab": {},
283
        "outputId": "9432f8a2-8939-40c5-b2ca-d5c057b4e777"
284
      },
285
      "source": [
286
        "cnn.fit(x=training_set, validation_data=test_set, epochs=25)"
287
      ],
288
      "execution_count": 0,
289
      "outputs": [
290
        {
291
          "output_type": "stream",
292
          "text": [
293
            "WARNING:tensorflow:sample_weight modes were coerced from\n",
294
            "  ...\n",
295
            "    to  \n",
296
            "  ['...']\n",
297
            "WARNING:tensorflow:sample_weight modes were coerced from\n",
298
            "  ...\n",
299
            "    to  \n",
300
            "  ['...']\n",
301
            "Train for 163 steps, validate for 20 steps\n",
302
            "Epoch 1/25\n",
303
            "163/163 [==============================] - 119s 731ms/step - loss: 0.0716 - accuracy: 0.9730 - val_loss: 0.2369 - val_accuracy: 0.9311\n",
304
            "Epoch 2/25\n",
305
            "163/163 [==============================] - 124s 761ms/step - loss: 0.0677 - accuracy: 0.9755 - val_loss: 0.4190 - val_accuracy: 0.8974\n",
306
            "Epoch 3/25\n",
307
            "163/163 [==============================] - 119s 732ms/step - loss: 0.0667 - accuracy: 0.9747 - val_loss: 0.3130 - val_accuracy: 0.9054\n",
308
            "Epoch 4/25\n",
309
            "163/163 [==============================] - 120s 738ms/step - loss: 0.0571 - accuracy: 0.9793 - val_loss: 0.3345 - val_accuracy: 0.8958\n",
310
            "Epoch 5/25\n",
311
            "163/163 [==============================] - 118s 725ms/step - loss: 0.0593 - accuracy: 0.9760 - val_loss: 0.2856 - val_accuracy: 0.9151\n",
312
            "Epoch 6/25\n",
313
            "163/163 [==============================] - 108s 665ms/step - loss: 0.0584 - accuracy: 0.9799 - val_loss: 0.2743 - val_accuracy: 0.9263\n",
314
            "Epoch 7/25\n",
315
            "163/163 [==============================] - 108s 662ms/step - loss: 0.0560 - accuracy: 0.9791 - val_loss: 0.2714 - val_accuracy: 0.9087\n",
316
            "Epoch 8/25\n",
317
            "163/163 [==============================] - 113s 693ms/step - loss: 0.0550 - accuracy: 0.9793 - val_loss: 0.4636 - val_accuracy: 0.8734\n",
318
            "Epoch 9/25\n",
319
            "163/163 [==============================] - 128s 788ms/step - loss: 0.0581 - accuracy: 0.9789 - val_loss: 0.2477 - val_accuracy: 0.9151\n",
320
            "Epoch 10/25\n",
321
            "163/163 [==============================] - 117s 719ms/step - loss: 0.0547 - accuracy: 0.9812 - val_loss: 0.2690 - val_accuracy: 0.9151\n",
322
            "Epoch 11/25\n",
323
            "163/163 [==============================] - 110s 678ms/step - loss: 0.0546 - accuracy: 0.9810 - val_loss: 0.2803 - val_accuracy: 0.9167\n",
324
            "Epoch 12/25\n",
325
            "163/163 [==============================] - 113s 693ms/step - loss: 0.0574 - accuracy: 0.9776 - val_loss: 0.4011 - val_accuracy: 0.8830\n",
326
            "Epoch 13/25\n",
327
            "163/163 [==============================] - 110s 677ms/step - loss: 0.0516 - accuracy: 0.9816 - val_loss: 0.2724 - val_accuracy: 0.9263\n",
328
            "Epoch 14/25\n",
329
            "163/163 [==============================] - 121s 744ms/step - loss: 0.0463 - accuracy: 0.9833 - val_loss: 0.3101 - val_accuracy: 0.9183\n",
330
            "Epoch 15/25\n",
331
            "163/163 [==============================] - 115s 703ms/step - loss: 0.0514 - accuracy: 0.9806 - val_loss: 0.3937 - val_accuracy: 0.9022\n",
332
            "Epoch 16/25\n",
333
            "163/163 [==============================] - 113s 692ms/step - loss: 0.0527 - accuracy: 0.9812 - val_loss: 0.2983 - val_accuracy: 0.9279\n",
334
            "Epoch 17/25\n",
335
            "163/163 [==============================] - 124s 758ms/step - loss: 0.0451 - accuracy: 0.9843 - val_loss: 0.2324 - val_accuracy: 0.9279\n",
336
            "Epoch 18/25\n",
337
            "163/163 [==============================] - 177s 1s/step - loss: 0.0487 - accuracy: 0.9837 - val_loss: 0.3608 - val_accuracy: 0.9087\n",
338
            "Epoch 19/25\n",
339
            "163/163 [==============================] - 199s 1s/step - loss: 0.0475 - accuracy: 0.9841 - val_loss: 0.2932 - val_accuracy: 0.9038\n",
340
            "Epoch 20/25\n",
341
            "163/163 [==============================] - 199s 1s/step - loss: 0.0559 - accuracy: 0.9793 - val_loss: 0.2245 - val_accuracy: 0.9183\n",
342
            "Epoch 21/25\n",
343
            "163/163 [==============================] - 195s 1s/step - loss: 0.0458 - accuracy: 0.9843 - val_loss: 0.3297 - val_accuracy: 0.9215\n",
344
            "Epoch 22/25\n",
345
            "163/163 [==============================] - 192s 1s/step - loss: 0.0539 - accuracy: 0.9806 - val_loss: 0.3120 - val_accuracy: 0.9071\n",
346
            "Epoch 23/25\n",
347
            "163/163 [==============================] - 200s 1s/step - loss: 0.0417 - accuracy: 0.9833 - val_loss: 0.6652 - val_accuracy: 0.8574\n",
348
            "Epoch 24/25\n",
349
            "163/163 [==============================] - 199s 1s/step - loss: 0.0503 - accuracy: 0.9822 - val_loss: 0.4144 - val_accuracy: 0.8926\n",
350
            "Epoch 25/25\n",
351
            "163/163 [==============================] - 201s 1s/step - loss: 0.0442 - accuracy: 0.9850 - val_loss: 0.4151 - val_accuracy: 0.8958\n"
352
          ],
353
          "name": "stdout"
354
        },
355
        {
356
          "output_type": "execute_result",
357
          "data": {
358
            "text/plain": [
359
              "<tensorflow.python.keras.callbacks.History at 0x226801ea688>"
360
            ]
361
          },
362
          "metadata": {
363
            "tags": []
364
          },
365
          "execution_count": 37
366
        }
367
      ]
368
    },
369
    {
370
      "cell_type": "markdown",
371
      "metadata": {
372
        "id": "AiCsHRNnwLYw",
373
        "colab_type": "text"
374
      },
375
      "source": [
376
        "### Making a prediction"
377
      ]
378
    },
379
    {
380
      "cell_type": "code",
381
      "metadata": {
382
        "id": "N5SdP_4dwLYy",
383
        "colab_type": "code",
384
        "colab": {},
385
        "outputId": "08cd96f7-2355-46b3-9f9c-375cc240637c"
386
      },
387
      "source": [
388
        "test_image = image.load_img('test/PNEUMONIA/person1_virus_7.jpeg', target_size=(64, 64))\n",
389
        "test_image"
390
      ],
391
      "execution_count": 0,
392
      "outputs": [
393
        {
394
          "output_type": "execute_result",
395
          "data": {
396
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAIAAAAlC+aJAAAURklEQVR4nF2auY9lVxHGzz13X9/SPb2NR20sjWRrBBK2wCHLP4FESoBEgOAPIDABiAAhkZFZInAGEiROLDthEIsEgx0MjGy3PeMZ9/L2u68Ev7nlBzdodb9+99w6VV999VWda/zsZz976623LMs6Ozubz+dhGEZR5Hme7/umaWqtp9Op1tpxnK7rLMsyTdMwDMuytNa2bVuW1fd927aGYTiOkyTJ9fW11to0zaIobNtu23YYBqWUbdt8aBhG0zRKqb7vkyQxTfP6+rqua611XdeO48RxvFgssixTShVFkWXZbreL4/jJkyebzUZr/d3vfvdrX/vaarXyPE///ve/b5omDMMgCKbT6a1btxzHsSzLcRzXdV3XVUphaxiGhmGYpsk2bNsehgHjHMexbVtr3XWd67paa8MwhmHQWruuiyOCIOi6Tms9DINhGFprpdQwDKZpBkFgWRZbbdu2qqq6rtnwMAxxHC+Xy6qqbt++fXBw8MMf/rAsyyiK8J2llPI8LwgC27aVUm3bnpyc2LZdVZVlWZZlYaLrul3X+b7f9z1BUEoZhkE0DMPous7zvK7rDMPA8cTHMAziUxSF53mu62ZZ1jQNznZd1/O8NE1N01RKWZZVVdV6vU6SZL1eV1UVx3Ge5wcHBx988MEvfvGLvu+Xy+Xrr7/+j3/84/bt2wBBY5/v+7Zt/+QnP8HfjuPgbK211rppGj5xHAej5U+tdd/3fBOva635k1gRB/bGxvjE8zylFO4IgsDzvL7vgd/l5eV2u02ShJjcunXLtu0333zzd7/73XvvvbfdbqfTaZqmZVnqw8NDQI+/f/vb31qWlWUZIMEa27b7vg+CADzguSiKkiQJggDPNU3TNE3XdUqpuq5JmL7vy7J0XXe322VZtlgsFovF5eUli4dhOAxDnucsq8bLsizXde/cufPhhx82TeN5XlEUX/3qV6+vrw3D+Pjjj//2t7+tVisgoH/0ox9xj2mavu8PwxCG4WQySZIEHAODJEmUUr7vx3EchmEcx7ZtZ1m22Wzatm2aZh/0ruvatg3MPM9br9fsra7rtm2zLFutVlEUzedz4k+oySUQq5RaLBaWZV1eXjqOUxTFN77xDcdxHj9+7HneO++8M51Obdv2fV+zXR58fHw8m81ACIsCaNM0ebBhGH3fY9zNzU3btoSo6zq2Ude13A7GmvFyXRecEEk4Cpf1fU9KgDq2ZJrmrVu3tNZFUczn8z/96U/f//738zwviuL111+/vr5+DiEQ4vu+53nYihtM03Rd1xgvpVQURYS+67qyLIdhIDEAADey5368PM8ry9KyLAzVWrdt27ZtURTX19effPJJVVXCSFwwDy6DGx4+fHjnzp2yLN9///3FYtG27V//+tcsy4IgaJpGn5+fW5bVdV1VVb7vC2n0fS++hEmFoyBEyWCCDkX6vt+2rRQNqKzv+zzPy7JM03S32+V5zp9Yw7OE2dq2pURorfM8b9u267p33333tddee/Dgwde//nXgd3Nzo7VOksT68MMPgyAQOseFsCcrYj1V5vj4OE3TYRg+//zzvu+hCKVU0zSYzod1XUuBA1q73a7v+6ZpkiSB09q2DcOQ75M/UmGgNR59fn5eVVVZln/+858hqMPDw6qqHjx48Oqrr3Zdp+/fv19VFbvhGawIgVCShBnTNN1sNk+fPsVhpmlWVUVWcCMFlbqGO4dhgJqKojBNM89zcgY4VVUFWwB9TGQnfFJVFWT18OHDyWSS5/m9e/cWi8WTJ09ubm7qutbf+ta3KEDHx8fUL+Bb17UgUiyDSdgVgQY8OFKcZ5omP7FjMpk4jhOGoeu6ZDYbCIJgPp9HURRFERCQmANgPvE8j2X//ve/U9e+/OUvx3F87969ruusX/7yl2xgvV7P53PcsNlsEBFCagLNoijKsjQMw3Xd5XIJt3ZdR63o+95xHJE6CCTDME5PT5VSZVmyYc/zqM2bzYZcd123qioSnSII9tI0rarq+vqazVxcXJyensJmf/nLX1599VUN1SCzSIOmaYSeyWBcizUUKeSK53lN05imGYYhVY8K3XUdcYO4cKHjOFVVpWkq/wWxl5eXaZqyMbwOPuE60zQXi0VZltx1dXXleV5VVXfv3n3//feDINC/+tWvbNs+Pj42DKOu677vd7sd4oJNs5zWOgxDz/Mmk4lt267rYqthGFAhaRNFUZ7nlAWMgEaGYYD40UJZlkHEq9WKr4mmkjoAp5VliaAgpMMw3L9/P4qi1WoVBMHFxYV+4403fvrTn37ve9/7wQ9+UJblN7/5TZADvrlTIpCmKdxf1/V2u+XZWZYVRQHGttstoILQKOSwglQMfnZdB0tWVVUUxTAM1B9RX9zC/vu+xxf49OrqynGc7XZ7dHRkNU3z85///JVXXknTFM6S1MQlsKTrumEYPn36tCgKsKu1xn9Av+u6ruuKokiSBJeDY6I3jBcqA9Ml78lp1CtIlhTC6ySV67o49NGjR9/+9rc//fTT5XKpfd+fz+fL5dIwjH/+85/AUcoTS7Di48ePyeCqqoSC8C7WCDuxgmwDHEpSgUbSJkkSy7IQduIyqgHfbNt2t9s1TUNVIRp937/zzjtf+tKXqqqyfvzjH//hD3/4zne+Y1nWcrl86623kENYT8XFgu12CzO0bYvIobciq2zbrusa7NHWPBcqWruuS0UDIbvdjmjYtl0UBWLMdd2zs7OLiwvaA3ZSVdVisSBtZG94xLKsjz766LXXXrP6vr97926e5zD0Pvr5Bf0DkOq6zrKM4M5ms6qqpNsi6QXfQBEQEyVRCjQbCGnoOAgCdkgBYX2CVtc1Nb6ua1ZmBaXURx99ZLGhq6urr3zlK7/+9a93u93p6SmFXRouHizlXfob9hYEAfxNHHzfR0RgOpWVSkySiLggmwnXdrsNwxA4tW3r+36apvLof/3rX2xA+ICHKqV+85vfaHY/DENVVU3TlGUJPVNKiZfrutPpFAcfHx9HUTSZTDCiqirUJYApy7Kua2EbQa0Qv5RFdJSkyjAM19fX/CKgRbenaQrLFUVBxSQI1C799ttvD8PwxhtvbDabPM9vbm7wrvAulahpmslkAi7hENM0d7sdScJPqUEYKubKUkop6p3jOHzObmezWd/3YRjSjksGu657eno6n89XqxVulUZPRKSmowPfbdsuFgskFFgUzODaoijQwPgb+T0Mw3Q6JXS4EyQQUmCAWXTGcI7jONSKvu83m42kzcHBgcwKoij6+OOPZ7PZ0dER/CvTEDDSNI2VpumDBw9AAgq0aRrWxXQa9rIsEfS0V2EYitzgd0lN5KfIWGAAfJumgawgov3hynq9hjGPj49BCA2gYRir1SrLsrquT05OqKFhGDZNU1VVFEXacZzlconnpJqyP1BLwdpsNnCOuPOzzz5TY5cs/SdpDWa4VzSFlCQxmgJCoMjsqqo2m430luj87XaLwPnss8/4MtjzPK+uay3zI/Rz13Wr1UqaLCwmxE3TFEVBBGhY0bpIIOlLCKAgBDsoERIKuUQCScZvt1vppXzfPz09pQCDnGfPnlVVtd1u4zjGI/r+/fs4XmrQBx98ILwh7Wld18ivruvm8/nBwQECeLlcLpfLNE0lyUR4ESviIMwjZQiDpK8g+yVEoCvLspubG/IehxZF8ejRo6IokNmbzcYSoU9ZJaWQVvyLvRG42WzGXCDP8/V6jXLk3v1L8oc2TY/jRBo37mKr7Bkei6IIrS4cSt7TsnMXVPHw4cMXXngBdahZHYzCtcjjYZyxHR4eNk3DXBIRutvthG2lZGI61M6fJIAaG8Vh7JWDIAAz7NP3fQZNTMdYUACZJAnEz7IyxXn8+PG///3voiiej1TxPUxKQK+vr09PT8HSyckJCh6tD9KY5xnjmFHGoMJa7CEIgqIoiAYBgS6lR5XqwTy8KApUA5/P53PHcfq+R1wRDbCttf7kk0805DMMA9SeZZkAkZk70MrzHNixrlKKWcZkMgHfUrPt8SIZeBKuFXCrsf1lcQo5a/q+P5lMhnEiiNTDZXKLHq9hGDQ9JEKF4ccwDH/84x9BP2HdbDZpmsISdV0zNBbyIbJskrjTi+BRSuT++ERSeV+Q4wWQWVXVyckJiU4ZAeRC68AV+Fl0Q+14DeOgjyGh4zgXFxeye611HMfz+Zzpb5ZlDC4dx2HULNGTtNsfXWmtoXbCC2JhKtLacRyG7+hN6qBoZJYVdYhi0CIPWY46IFOai4uLsizJxa7rDg4OyEgKMw7G/TKAIUmo5Tx4H0tMVkAac1LOVjzPI8tZ0PO8+XxOfSQHxPHifn5alEwwKn0n1AsQcb/M7xkTiDQQEmPDBEpwRXEUYUz30zRNlmXEQXiMyopryArqsZCSIE3c/xwUlNi+76uqYjo0jJM5fqmqCtObpvn888+LooB9YWU4ztgbxMNFZVmifkXzsdWiKHAniUFrDzfQnKB58zynhqKFUa+kgeiD570rPQBqBCnKWlJNj46OaJSWyyXSABcWRcHZVhzHapz+YjHOE6zTrP1fdWdeTajxDprHMAwqGgqNnZ+dne3HWe3N8DTQJxdhw7ZtsRKlSW1+9uwZBZjtzefzJElgjK7rlsulwJckAd/EZLvdyoBICIdtPDdixHdZlrvdjmafB8GknC9KLqm9keHzkcZut9tut+Q+S6PyDcPYbDaMusiNOI5Jx77v8zzf7XabzYZSxaJM0aho+62MJCK/cM6A3cBYkvXZs2f0TzyRdCd0+H4Ym2zDMCy8+OzZM2hO1As0Qp+Bajg+Ppa9cRjM0sxGh71xvDTgmNiP415+IT5SksgZEiZJktVqVZbl5eXlycnJ2dnZcrnkoZCs4FACoququry8FI2u/nfGvVqtEMaHh4eWZU2nUw7qwAC4BFfdeAiJI4ZxhiXtr1hMNeTEG9Az7iXxfN9nNBZFEcMBiEhCKnbiL+vq6krUgYRbijbuj+MYZri6uiI3UIuiWA8ODoibbduobtM00zRlJ8ghMpWcESnKNzk0ABK0bEmSfPrpp1EUMbBhYMz+pdHlF0umMcLWlCFUyjAMs9ksy7L1eg0tiAjp+97zvCzLJpPJZDIJw5CauP8dwSvcIPMVRuKIU9KUQYFMojjysW0bdRRFUVmWAjxhM6WUJnHFejoBxpRd16HYVqsVo1zKEMYdHh76vj+bzSSnh/HYDxBCHRCa5CtPpfJI94MapWfabrer1Uo6bPpvXqDYH3N8UcgAmeSfUoozH6xEq1BQ6UV83yeh9Xi0yLicoS+W8TmxFXCKucbe6Y54TdiJAeaTJ0/6vp9Op9SZOI6Pjo726f+LDSAiJC6maUZRhPXIrP/85z9kAn5iOQTPZrOR8zypkSIb93dijMd4wqTkhmwS1DGbkJqwXq8Rc5ZlkdlAfdibkVn4VXYGM1qWdX5+TuWnQk0mE54Eh+R5ztew29ibP0N25ngsIpATqlBKBUFAm092sgFhofV67TjObrdjxsFDkTPCY2ps4i0Z5rAHTswdx8nzPAxDDqeiKDLGjpZs45A5iqLZbEZXAGrJHJ7BNph1cmAsyQeipIFkaIDUK8syDENOCYaxF2dup/amfcPY8X5xRM4ldEQfjL/jONZabzab9Xqd5zknRUmSHB4e3rp1C6/TvlDmcKfYOoznLkyBqqoibdq25dAbIQQg+76nKVutVvAeh1pUdyGfL+qAmC5B0OMLODc3N13X3blzByfxJOZwWusXXngBXNE0SSmUNy/Akhw0ITHU3uHsME6fhmFgdiTaHs2y3W5ffPHFLMviOGY1taeCnueAWC+mq/GskhILWDnaB5E4fjabQdhMyGi12AlHDbS5MrARnlH/e7rDvZABYq5tW47j4ziWQyoK9n4EWNlSe+cAkmpBEFBlX3zxxbZtHz161Pc90vfOnTvz+XwymUgyMcxR43wKwpVlyYp9KSGjaRHPPJHTGjn2cxyH8y7TNA8ODsIwnM/n7fgGnhqL8RcSSEJBFaOsMKRgktN13dnZGe8L0ZEwGhEOED+RwfxLyvwwNigSAengyBDP82az2enpKTfe3NwgeIfxvPnll18e9sZ+zxcRklZjt6bHY0OGwI8fP0arHB4eHhwcwEhAgqmlOb6ksT/h6sczRoBEYpAtUAKn3yQ9DIawjaLo/Pyclx4AEj0amS2lgJ3vdrv/kRLiJ9p8dA4WtG17+/btMAwBt4h7GaeJm6Vj4mHiFzkYR9XIm0+8RoHm4UW6IAjOzs7u3r376NEj9J9409jruZVSSZJYQknm+I4RfSNl8unTpxh67949kIPCEwgyvWFp3/fJeGIiq9GtD8PAf5VSnGp24wE9QZB5gjE28ufn50+fPp1MJrxMgbOod3Jpgf5+jSDPmLV0Xffyyy/HccwEXGheoELbDhftsxnupGZxwMN7TsJOkh5qbANpoEUO8mYevQ7nbjKmFyBZak9LsQGZkqOQOQbFMaK0pdXYHzUP45mFSAmZIIDJYTy8kUdIG0Cphn+xnrOvk5MTHMeLoS+99BLvLgqQrGGvPeNTjptM05zNZm3bMsimMrC6GscWUlzkREdKr9ghop9vyrwazQLEJQOrqpIXf5FJTMHSNE2SxPO8o6MjNiDS87mMw1uCbCyDB1A7ELMaB9wUYGyiA27Hly+BBx0JoWDsg7AhMXAQWBIpigGUYdDFETdhFMEibSORf6691J40J6Wg88lkEgSBIJXcInHVXm/KxNzYm9dqrZmwk81IVwqcHAj9X202xld7uvGMkE+E8Xj3zBi7PDVOOr7IY1lX0DKdTunCGG+o8RVZEYIIyf+TuFhDCvGnbNUc33VkP1IK9h1EVDFa3iWkjAiRCFtYUtWlfulx3Imn9fhGtNqbzUutbcc3Ffc1Od/p+56qx/fpcfV4VjAMA80dQFdjY2nstZ2g1Pd9tmqPL8jv64b/Ai7wsMKGV9oeAAAAAElFTkSuQmCC\n",
397
            "text/plain": [
398
              "<PIL.Image.Image image mode=RGB size=64x64 at 0x22680735AC8>"
399
            ]
400
          },
401
          "metadata": {
402
            "tags": []
403
          },
404
          "execution_count": 38
405
        }
406
      ]
407
    },
408
    {
409
      "cell_type": "code",
410
      "metadata": {
411
        "id": "ojQqZNx1wLY8",
412
        "colab_type": "code",
413
        "colab": {},
414
        "outputId": "8dd2143c-ac51-49a8-80ae-72a16ecec5e8"
415
      },
416
      "source": [
417
        "test_image = image.img_to_array(test_image)\n",
418
        "test_image"
419
      ],
420
      "execution_count": 0,
421
      "outputs": [
422
        {
423
          "output_type": "execute_result",
424
          "data": {
425
            "text/plain": [
426
              "array([[[134., 134., 134.],\n",
427
              "        [ 45.,  45.,  45.],\n",
428
              "        [ 49.,  49.,  49.],\n",
429
              "        ...,\n",
430
              "        [222., 222., 222.],\n",
431
              "        [205., 205., 205.],\n",
432
              "        [213., 213., 213.]],\n",
433
              "\n",
434
              "       [[ 53.,  53.,  53.],\n",
435
              "        [ 40.,  40.,  40.],\n",
436
              "        [ 60.,  60.,  60.],\n",
437
              "        ...,\n",
438
              "        [234., 234., 234.],\n",
439
              "        [209., 209., 209.],\n",
440
              "        [211., 211., 211.]],\n",
441
              "\n",
442
              "       [[ 53.,  53.,  53.],\n",
443
              "        [ 48.,  48.,  48.],\n",
444
              "        [ 70.,  70.,  70.],\n",
445
              "        ...,\n",
446
              "        [185., 185., 185.],\n",
447
              "        [212., 212., 212.],\n",
448
              "        [216., 216., 216.]],\n",
449
              "\n",
450
              "       ...,\n",
451
              "\n",
452
              "       [[ 24.,  24.,  24.],\n",
453
              "        [ 26.,  26.,  26.],\n",
454
              "        [ 26.,  26.,  26.],\n",
455
              "        ...,\n",
456
              "        [ 17.,  17.,  17.],\n",
457
              "        [ 19.,  19.,  19.],\n",
458
              "        [ 18.,  18.,  18.]],\n",
459
              "\n",
460
              "       [[ 26.,  26.,  26.],\n",
461
              "        [ 26.,  26.,  26.],\n",
462
              "        [ 26.,  26.,  26.],\n",
463
              "        ...,\n",
464
              "        [ 16.,  16.,  16.],\n",
465
              "        [ 19.,  19.,  19.],\n",
466
              "        [ 20.,  20.,  20.]],\n",
467
              "\n",
468
              "       [[ 26.,  26.,  26.],\n",
469
              "        [ 26.,  26.,  26.],\n",
470
              "        [ 24.,  24.,  24.],\n",
471
              "        ...,\n",
472
              "        [ 16.,  16.,  16.],\n",
473
              "        [ 19.,  19.,  19.],\n",
474
              "        [ 19.,  19.,  19.]]], dtype=float32)"
475
            ]
476
          },
477
          "metadata": {
478
            "tags": []
479
          },
480
          "execution_count": 39
481
        }
482
      ]
483
    },
484
    {
485
      "cell_type": "code",
486
      "metadata": {
487
        "id": "7LjOjssdwLZJ",
488
        "colab_type": "code",
489
        "colab": {},
490
        "outputId": "869f1d47-d72f-4b60-f4c9-f9693da95a47"
491
      },
492
      "source": [
493
        "test_image = np.expand_dims(test_image, axis=0)\n",
494
        "test_image"
495
      ],
496
      "execution_count": 0,
497
      "outputs": [
498
        {
499
          "output_type": "execute_result",
500
          "data": {
501
            "text/plain": [
502
              "array([[[[134., 134., 134.],\n",
503
              "         [ 45.,  45.,  45.],\n",
504
              "         [ 49.,  49.,  49.],\n",
505
              "         ...,\n",
506
              "         [222., 222., 222.],\n",
507
              "         [205., 205., 205.],\n",
508
              "         [213., 213., 213.]],\n",
509
              "\n",
510
              "        [[ 53.,  53.,  53.],\n",
511
              "         [ 40.,  40.,  40.],\n",
512
              "         [ 60.,  60.,  60.],\n",
513
              "         ...,\n",
514
              "         [234., 234., 234.],\n",
515
              "         [209., 209., 209.],\n",
516
              "         [211., 211., 211.]],\n",
517
              "\n",
518
              "        [[ 53.,  53.,  53.],\n",
519
              "         [ 48.,  48.,  48.],\n",
520
              "         [ 70.,  70.,  70.],\n",
521
              "         ...,\n",
522
              "         [185., 185., 185.],\n",
523
              "         [212., 212., 212.],\n",
524
              "         [216., 216., 216.]],\n",
525
              "\n",
526
              "        ...,\n",
527
              "\n",
528
              "        [[ 24.,  24.,  24.],\n",
529
              "         [ 26.,  26.,  26.],\n",
530
              "         [ 26.,  26.,  26.],\n",
531
              "         ...,\n",
532
              "         [ 17.,  17.,  17.],\n",
533
              "         [ 19.,  19.,  19.],\n",
534
              "         [ 18.,  18.,  18.]],\n",
535
              "\n",
536
              "        [[ 26.,  26.,  26.],\n",
537
              "         [ 26.,  26.,  26.],\n",
538
              "         [ 26.,  26.,  26.],\n",
539
              "         ...,\n",
540
              "         [ 16.,  16.,  16.],\n",
541
              "         [ 19.,  19.,  19.],\n",
542
              "         [ 20.,  20.,  20.]],\n",
543
              "\n",
544
              "        [[ 26.,  26.,  26.],\n",
545
              "         [ 26.,  26.,  26.],\n",
546
              "         [ 24.,  24.,  24.],\n",
547
              "         ...,\n",
548
              "         [ 16.,  16.,  16.],\n",
549
              "         [ 19.,  19.,  19.],\n",
550
              "         [ 19.,  19.,  19.]]]], dtype=float32)"
551
            ]
552
          },
553
          "metadata": {
554
            "tags": []
555
          },
556
          "execution_count": 40
557
        }
558
      ]
559
    },
560
    {
561
      "cell_type": "code",
562
      "metadata": {
563
        "id": "3chAjHsEwLZV",
564
        "colab_type": "code",
565
        "colab": {},
566
        "outputId": "f375eb94-3dca-47d3-de20-82ced809c582"
567
      },
568
      "source": [
569
        "result = cnn.predict(test_image)\n",
570
        "result"
571
      ],
572
      "execution_count": 0,
573
      "outputs": [
574
        {
575
          "output_type": "execute_result",
576
          "data": {
577
            "text/plain": [
578
              "array([[1.]], dtype=float32)"
579
            ]
580
          },
581
          "metadata": {
582
            "tags": []
583
          },
584
          "execution_count": 41
585
        }
586
      ]
587
    },
588
    {
589
      "cell_type": "code",
590
      "metadata": {
591
        "id": "ew5t1Q2KwLZf",
592
        "colab_type": "code",
593
        "colab": {},
594
        "outputId": "9a393185-1313-4a92-cdb4-d97a25d307de"
595
      },
596
      "source": [
597
        "training_set.class_indices"
598
      ],
599
      "execution_count": 0,
600
      "outputs": [
601
        {
602
          "output_type": "execute_result",
603
          "data": {
604
            "text/plain": [
605
              "{'NORMAL': 0, 'PNEUMONIA': 1}"
606
            ]
607
          },
608
          "metadata": {
609
            "tags": []
610
          },
611
          "execution_count": 42
612
        }
613
      ]
614
    },
615
    {
616
      "cell_type": "code",
617
      "metadata": {
618
        "id": "0PRTcxumwLZt",
619
        "colab_type": "code",
620
        "colab": {},
621
        "outputId": "9c48017f-be59-4f78-bc99-feffaa49fcc3"
622
      },
623
      "source": [
624
        "if result[0][0] == 1:\n",
625
        "    prediction = 'Yes'\n",
626
        "else:\n",
627
        "    prediction = 'No'\n",
628
        "    \n",
629
        "print(prediction)"
630
      ],
631
      "execution_count": 0,
632
      "outputs": [
633
        {
634
          "output_type": "stream",
635
          "text": [
636
            "Yes\n"
637
          ],
638
          "name": "stdout"
639
        }
640
      ]
641
    },
642
    {
643
      "cell_type": "code",
644
      "metadata": {
645
        "id": "iTJzvNZswLaC",
646
        "colab_type": "code",
647
        "colab": {},
648
        "outputId": "b973828e-51a1-48f4-deb5-f7fd3acf70e4"
649
      },
650
      "source": [
651
        "predictions = cnn.predict(test_set)\n",
652
        "predictions"
653
      ],
654
      "execution_count": 0,
655
      "outputs": [
656
        {
657
          "output_type": "execute_result",
658
          "data": {
659
            "text/plain": [
660
              "array([[9.99127209e-01],\n",
661
              "       [1.00000000e+00],\n",
662
              "       [9.99928474e-01],\n",
663
              "       [1.09114801e-03],\n",
664
              "       [9.99967813e-01],\n",
665
              "       [9.99459326e-01],\n",
666
              "       [9.99999881e-01],\n",
667
              "       [1.00000000e+00],\n",
668
              "       [9.99017596e-01],\n",
669
              "       [1.00000000e+00],\n",
670
              "       [1.29443448e-04],\n",
671
              "       [9.79463816e-01],\n",
672
              "       [1.37045123e-02],\n",
673
              "       [2.46368870e-02],\n",
674
              "       [1.00000000e+00],\n",
675
              "       [9.99968648e-01],\n",
676
              "       [9.99991536e-01],\n",
677
              "       [1.00000000e+00],\n",
678
              "       [9.99998450e-01],\n",
679
              "       [1.00000000e+00],\n",
680
              "       [6.15069061e-04],\n",
681
              "       [9.99976993e-01],\n",
682
              "       [1.65362563e-03],\n",
683
              "       [7.92328298e-01],\n",
684
              "       [9.99999285e-01],\n",
685
              "       [9.88547921e-01],\n",
686
              "       [2.57708132e-01],\n",
687
              "       [9.99999762e-01],\n",
688
              "       [9.99968648e-01],\n",
689
              "       [1.99339353e-02],\n",
690
              "       [9.99307632e-01],\n",
691
              "       [9.99978900e-01],\n",
692
              "       [9.99983072e-01],\n",
693
              "       [1.00000000e+00],\n",
694
              "       [9.99995470e-01],\n",
695
              "       [1.58128709e-01],\n",
696
              "       [1.71573013e-01],\n",
697
              "       [9.40156542e-03],\n",
698
              "       [9.99028087e-01],\n",
699
              "       [9.99979615e-01],\n",
700
              "       [8.84311199e-01],\n",
701
              "       [1.00000000e+00],\n",
702
              "       [6.62890553e-01],\n",
703
              "       [1.00000000e+00],\n",
704
              "       [1.00000000e+00],\n",
705
              "       [3.58641557e-02],\n",
706
              "       [9.99999166e-01],\n",
707
              "       [9.99990344e-01],\n",
708
              "       [9.99898076e-01],\n",
709
              "       [9.99990582e-01],\n",
710
              "       [9.56263602e-01],\n",
711
              "       [9.16411996e-01],\n",
712
              "       [9.99979258e-01],\n",
713
              "       [9.99999762e-01],\n",
714
              "       [9.99998331e-01],\n",
715
              "       [8.70225206e-03],\n",
716
              "       [9.99999404e-01],\n",
717
              "       [9.99994040e-01],\n",
718
              "       [1.00000000e+00],\n",
719
              "       [8.77190828e-02],\n",
720
              "       [9.99988437e-01],\n",
721
              "       [9.99971509e-01],\n",
722
              "       [9.99999762e-01],\n",
723
              "       [9.99995351e-01],\n",
724
              "       [9.99444425e-01],\n",
725
              "       [9.82008338e-01],\n",
726
              "       [1.19775973e-01],\n",
727
              "       [9.99998569e-01],\n",
728
              "       [9.81775761e-01],\n",
729
              "       [1.19775973e-01],\n",
730
              "       [3.06816743e-04],\n",
731
              "       [9.96874928e-01],\n",
732
              "       [9.99710619e-01],\n",
733
              "       [1.00000000e+00],\n",
734
              "       [9.99864697e-01],\n",
735
              "       [9.99714673e-01],\n",
736
              "       [9.99999523e-01],\n",
737
              "       [9.71442819e-01],\n",
738
              "       [1.00000000e+00],\n",
739
              "       [1.00000000e+00],\n",
740
              "       [9.99991417e-01],\n",
741
              "       [1.20762475e-02],\n",
742
              "       [1.35311624e-02],\n",
743
              "       [1.67056266e-02],\n",
744
              "       [9.99990344e-01],\n",
745
              "       [3.77524309e-02],\n",
746
              "       [9.90310490e-01],\n",
747
              "       [9.99998212e-01],\n",
748
              "       [9.99999881e-01],\n",
749
              "       [9.61613238e-01],\n",
750
              "       [9.96931911e-01],\n",
751
              "       [9.99110520e-01],\n",
752
              "       [9.81467903e-01],\n",
753
              "       [1.00000000e+00],\n",
754
              "       [9.99971986e-01],\n",
755
              "       [9.99996781e-01],\n",
756
              "       [1.17318169e-03],\n",
757
              "       [6.64392905e-03],\n",
758
              "       [2.59142416e-03],\n",
759
              "       [9.99995232e-01],\n",
760
              "       [3.86283384e-04],\n",
761
              "       [7.68530011e-01],\n",
762
              "       [9.97692347e-01],\n",
763
              "       [1.00785948e-03],\n",
764
              "       [1.05657466e-02],\n",
765
              "       [1.00000000e+00],\n",
766
              "       [4.39906269e-02],\n",
767
              "       [2.46083364e-03],\n",
768
              "       [1.00000000e+00],\n",
769
              "       [9.99829292e-01],\n",
770
              "       [9.99999881e-01],\n",
771
              "       [1.23780328e-05],\n",
772
              "       [9.99999881e-01],\n",
773
              "       [9.99999881e-01],\n",
774
              "       [3.11724172e-04],\n",
775
              "       [9.99986887e-01],\n",
776
              "       [7.64466599e-02],\n",
777
              "       [1.80779747e-03],\n",
778
              "       [5.24111152e-01],\n",
779
              "       [1.95052564e-01],\n",
780
              "       [1.00038815e-04],\n",
781
              "       [9.98622775e-01],\n",
782
              "       [1.00000000e+00],\n",
783
              "       [9.99999881e-01],\n",
784
              "       [9.97306228e-01],\n",
785
              "       [9.89810944e-01],\n",
786
              "       [9.46811199e-01],\n",
787
              "       [9.99305487e-01],\n",
788
              "       [9.72333644e-03],\n",
789
              "       [1.02983102e-01],\n",
790
              "       [9.99990702e-01],\n",
791
              "       [9.99996781e-01],\n",
792
              "       [9.19544101e-01],\n",
793
              "       [9.34216261e-01],\n",
794
              "       [1.67280678e-02],\n",
795
              "       [2.88470894e-01],\n",
796
              "       [1.00000000e+00],\n",
797
              "       [3.59422415e-02],\n",
798
              "       [9.99920726e-01],\n",
799
              "       [5.99860251e-02],\n",
800
              "       [1.14257149e-02],\n",
801
              "       [1.00000000e+00],\n",
802
              "       [2.70382106e-01],\n",
803
              "       [9.99763191e-01],\n",
804
              "       [3.98957916e-03],\n",
805
              "       [9.99999881e-01],\n",
806
              "       [6.22153142e-03],\n",
807
              "       [1.00000000e+00],\n",
808
              "       [5.82696237e-02],\n",
809
              "       [9.99900699e-01],\n",
810
              "       [3.24655920e-01],\n",
811
              "       [9.99966383e-01],\n",
812
              "       [9.99953747e-01],\n",
813
              "       [9.99999762e-01],\n",
814
              "       [1.00000000e+00],\n",
815
              "       [2.08581029e-03],\n",
816
              "       [9.99998689e-01],\n",
817
              "       [9.96918917e-01],\n",
818
              "       [1.63357193e-03],\n",
819
              "       [1.49172521e-03],\n",
820
              "       [1.80346500e-02],\n",
821
              "       [9.93363738e-01],\n",
822
              "       [9.99370515e-01],\n",
823
              "       [1.00000000e+00],\n",
824
              "       [1.24495309e-02],\n",
825
              "       [1.00000000e+00],\n",
826
              "       [9.99506474e-01],\n",
827
              "       [1.47051467e-02],\n",
828
              "       [9.95344818e-01],\n",
829
              "       [9.99957085e-01],\n",
830
              "       [9.52291131e-01],\n",
831
              "       [2.53052741e-01],\n",
832
              "       [7.83037220e-04],\n",
833
              "       [9.52204466e-01],\n",
834
              "       [8.95937860e-01],\n",
835
              "       [4.58698953e-03],\n",
836
              "       [9.16729927e-01],\n",
837
              "       [1.31861880e-01],\n",
838
              "       [1.18350063e-03],\n",
839
              "       [3.63770267e-03],\n",
840
              "       [2.40937210e-04],\n",
841
              "       [9.99992847e-01],\n",
842
              "       [1.00000000e+00],\n",
843
              "       [9.38061476e-01],\n",
844
              "       [4.48292345e-01],\n",
845
              "       [9.96949494e-01],\n",
846
              "       [9.99861240e-01],\n",
847
              "       [6.77751228e-02],\n",
848
              "       [9.98625517e-01],\n",
849
              "       [1.00000000e+00],\n",
850
              "       [9.99991298e-01],\n",
851
              "       [1.00000000e+00],\n",
852
              "       [1.00000000e+00],\n",
853
              "       [2.93031248e-04],\n",
854
              "       [9.99970794e-01],\n",
855
              "       [9.99992609e-01],\n",
856
              "       [1.00000000e+00],\n",
857
              "       [9.99981999e-01],\n",
858
              "       [9.99998927e-01],\n",
859
              "       [1.00000000e+00],\n",
860
              "       [9.99942899e-01],\n",
861
              "       [9.99995947e-01],\n",
862
              "       [9.99999762e-01],\n",
863
              "       [3.03096306e-02],\n",
864
              "       [9.98734295e-01],\n",
865
              "       [2.82496400e-02],\n",
866
              "       [1.00000000e+00],\n",
867
              "       [1.22997581e-05],\n",
868
              "       [9.72380817e-01],\n",
869
              "       [9.99998927e-01],\n",
870
              "       [3.34495358e-04],\n",
871
              "       [9.99960542e-01],\n",
872
              "       [1.00000000e+00],\n",
873
              "       [1.00000000e+00],\n",
874
              "       [1.00000000e+00],\n",
875
              "       [1.00000000e+00],\n",
876
              "       [9.25026774e-01],\n",
877
              "       [9.99997735e-01],\n",
878
              "       [9.99999285e-01],\n",
879
              "       [9.70885634e-01],\n",
880
              "       [1.08759105e-03],\n",
881
              "       [5.97980559e-01],\n",
882
              "       [9.87478733e-01],\n",
883
              "       [9.99969959e-01],\n",
884
              "       [9.97018337e-01],\n",
885
              "       [9.99558389e-01],\n",
886
              "       [6.56807065e-01],\n",
887
              "       [1.00000000e+00],\n",
888
              "       [9.99999762e-01],\n",
889
              "       [1.00000000e+00],\n",
890
              "       [1.07551754e-01],\n",
891
              "       [9.99951363e-01],\n",
892
              "       [3.92399281e-01],\n",
893
              "       [9.76216078e-01],\n",
894
              "       [9.99999523e-01],\n",
895
              "       [9.99990225e-01],\n",
896
              "       [5.70857584e-01],\n",
897
              "       [9.99984384e-01],\n",
898
              "       [8.17382336e-02],\n",
899
              "       [6.57119006e-02],\n",
900
              "       [1.00000000e+00],\n",
901
              "       [1.00000000e+00],\n",
902
              "       [5.52541494e-01],\n",
903
              "       [9.99083400e-01],\n",
904
              "       [6.54394701e-02],\n",
905
              "       [9.21892405e-01],\n",
906
              "       [2.03139987e-03],\n",
907
              "       [9.99944448e-01],\n",
908
              "       [1.00000000e+00],\n",
909
              "       [1.00000000e+00],\n",
910
              "       [9.94179606e-01],\n",
911
              "       [9.99999762e-01],\n",
912
              "       [9.99999762e-01],\n",
913
              "       [9.99864340e-01],\n",
914
              "       [9.99997854e-01],\n",
915
              "       [2.27030776e-02],\n",
916
              "       [2.33860612e-02],\n",
917
              "       [1.85382262e-01],\n",
918
              "       [1.00000000e+00],\n",
919
              "       [9.99992728e-01],\n",
920
              "       [9.99999881e-01],\n",
921
              "       [2.00066273e-03],\n",
922
              "       [1.08643241e-01],\n",
923
              "       [1.00000000e+00],\n",
924
              "       [9.95054483e-01],\n",
925
              "       [9.99249637e-01],\n",
926
              "       [9.99999881e-01],\n",
927
              "       [7.33255208e-01],\n",
928
              "       [9.99997854e-01],\n",
929
              "       [2.41787080e-02],\n",
930
              "       [9.70392346e-01],\n",
931
              "       [9.99998450e-01],\n",
932
              "       [9.99999881e-01],\n",
933
              "       [2.16439053e-01],\n",
934
              "       [9.99988317e-01],\n",
935
              "       [1.00000000e+00],\n",
936
              "       [9.99974251e-01],\n",
937
              "       [9.99995828e-01],\n",
938
              "       [9.99999642e-01],\n",
939
              "       [1.60792930e-04],\n",
940
              "       [1.00000000e+00],\n",
941
              "       [1.00000000e+00],\n",
942
              "       [1.00000000e+00],\n",
943
              "       [1.00000000e+00],\n",
944
              "       [9.99999285e-01],\n",
945
              "       [9.99990463e-01],\n",
946
              "       [9.97165859e-01],\n",
947
              "       [4.75391862e-04],\n",
948
              "       [9.98784721e-01],\n",
949
              "       [9.99998569e-01],\n",
950
              "       [6.25773892e-03],\n",
951
              "       [9.99958992e-01],\n",
952
              "       [3.89790745e-04],\n",
953
              "       [9.99980330e-01],\n",
954
              "       [1.00000000e+00],\n",
955
              "       [1.00000000e+00],\n",
956
              "       [1.00758232e-01],\n",
957
              "       [1.00000000e+00],\n",
958
              "       [8.24822392e-03],\n",
959
              "       [3.33807438e-05],\n",
960
              "       [9.91006076e-01],\n",
961
              "       [1.00000000e+00],\n",
962
              "       [9.56498552e-03],\n",
963
              "       [9.98254836e-01],\n",
964
              "       [9.99994516e-01],\n",
965
              "       [9.95416403e-01],\n",
966
              "       [7.58467913e-01],\n",
967
              "       [9.99649048e-01],\n",
968
              "       [3.51385102e-02],\n",
969
              "       [9.99973893e-01],\n",
970
              "       [1.00000000e+00],\n",
971
              "       [6.36694662e-04],\n",
972
              "       [3.00208293e-03],\n",
973
              "       [9.99999762e-01],\n",
974
              "       [1.00000000e+00],\n",
975
              "       [1.00000000e+00],\n",
976
              "       [9.99999881e-01],\n",
977
              "       [1.00000000e+00],\n",
978
              "       [9.78716791e-01],\n",
979
              "       [8.36241424e-01],\n",
980
              "       [6.07311055e-02],\n",
981
              "       [9.99993920e-01],\n",
982
              "       [9.68563139e-01],\n",
983
              "       [9.99985218e-01],\n",
984
              "       [3.97806568e-03],\n",
985
              "       [9.99997497e-01],\n",
986
              "       [9.99766767e-01],\n",
987
              "       [2.82231515e-04],\n",
988
              "       [9.99983311e-01],\n",
989
              "       [1.00000000e+00],\n",
990
              "       [9.99998808e-01],\n",
991
              "       [1.77066587e-02],\n",
992
              "       [1.74319197e-03],\n",
993
              "       [7.91238435e-03],\n",
994
              "       [2.65843607e-03],\n",
995
              "       [2.01939931e-03],\n",
996
              "       [9.80653584e-01],\n",
997
              "       [6.04670541e-03],\n",
998
              "       [6.38098598e-01],\n",
999
              "       [9.96210098e-01],\n",
1000
              "       [9.99998927e-01],\n",
1001
              "       [9.99999642e-01],\n",
1002
              "       [3.70114134e-03],\n",
1003
              "       [9.99925494e-01],\n",
1004
              "       [6.89928651e-01],\n",
1005
              "       [8.20631325e-01],\n",
1006
              "       [9.99999642e-01],\n",
1007
              "       [9.02255654e-01],\n",
1008
              "       [1.67412014e-04],\n",
1009
              "       [9.99962687e-01],\n",
1010
              "       [1.00000000e+00],\n",
1011
              "       [9.94069099e-01],\n",
1012
              "       [1.00000000e+00],\n",
1013
              "       [9.96118546e-01],\n",
1014
              "       [9.99984503e-01],\n",
1015
              "       [8.73874068e-01],\n",
1016
              "       [9.99999166e-01],\n",
1017
              "       [9.99999762e-01],\n",
1018
              "       [9.97170985e-01],\n",
1019
              "       [4.57449377e-01],\n",
1020
              "       [6.38098598e-01],\n",
1021
              "       [9.99997497e-01],\n",
1022
              "       [9.98502612e-01],\n",
1023
              "       [1.00000000e+00],\n",
1024
              "       [1.00000000e+00],\n",
1025
              "       [1.00000000e+00],\n",
1026
              "       [1.00000000e+00],\n",
1027
              "       [9.99929547e-01],\n",
1028
              "       [1.00000000e+00],\n",
1029
              "       [9.99997973e-01],\n",
1030
              "       [1.00000000e+00],\n",
1031
              "       [9.99727309e-01],\n",
1032
              "       [9.99940753e-01],\n",
1033
              "       [3.58864754e-01],\n",
1034
              "       [9.99999404e-01],\n",
1035
              "       [9.99872446e-01],\n",
1036
              "       [9.99997854e-01],\n",
1037
              "       [1.49931002e-03],\n",
1038
              "       [9.48962033e-01],\n",
1039
              "       [9.98382807e-01],\n",
1040
              "       [9.99997497e-01],\n",
1041
              "       [1.00000000e+00],\n",
1042
              "       [9.94919479e-01],\n",
1043
              "       [9.90912318e-01],\n",
1044
              "       [9.99995708e-01],\n",
1045
              "       [3.12850550e-02],\n",
1046
              "       [5.76836839e-02],\n",
1047
              "       [1.00000000e+00],\n",
1048
              "       [9.99976754e-01],\n",
1049
              "       [7.60898054e-01],\n",
1050
              "       [1.00000000e+00],\n",
1051
              "       [2.41197236e-02],\n",
1052
              "       [6.79331481e-01],\n",
1053
              "       [9.99999642e-01],\n",
1054
              "       [1.00000000e+00],\n",
1055
              "       [1.00000000e+00],\n",
1056
              "       [1.00000000e+00],\n",
1057
              "       [9.98858929e-01],\n",
1058
              "       [7.78699994e-01],\n",
1059
              "       [1.00000000e+00],\n",
1060
              "       [9.36660290e-01],\n",
1061
              "       [9.99999046e-01],\n",
1062
              "       [6.79894924e-01],\n",
1063
              "       [9.30567145e-01],\n",
1064
              "       [2.77472019e-01],\n",
1065
              "       [8.44867807e-03],\n",
1066
              "       [5.95380485e-01],\n",
1067
              "       [6.94191530e-02],\n",
1068
              "       [9.96434808e-01],\n",
1069
              "       [9.99989152e-01],\n",
1070
              "       [6.07048273e-01],\n",
1071
              "       [6.07317239e-02],\n",
1072
              "       [1.00000000e+00],\n",
1073
              "       [2.69764066e-01],\n",
1074
              "       [2.40390226e-02],\n",
1075
              "       [2.57276110e-02],\n",
1076
              "       [2.55429670e-02],\n",
1077
              "       [1.00000000e+00],\n",
1078
              "       [1.00000000e+00],\n",
1079
              "       [9.96815503e-01],\n",
1080
              "       [1.10566318e-01],\n",
1081
              "       [1.00000000e+00],\n",
1082
              "       [9.98466015e-01],\n",
1083
              "       [9.98371542e-01],\n",
1084
              "       [2.57674187e-01],\n",
1085
              "       [9.99472320e-01],\n",
1086
              "       [1.00000000e+00],\n",
1087
              "       [7.76644098e-04],\n",
1088
              "       [1.00000000e+00],\n",
1089
              "       [9.85175192e-01],\n",
1090
              "       [9.99997973e-01],\n",
1091
              "       [2.12329552e-01],\n",
1092
              "       [9.99874711e-01],\n",
1093
              "       [9.99999285e-01],\n",
1094
              "       [6.94745123e-01],\n",
1095
              "       [7.54924165e-03],\n",
1096
              "       [1.00000000e+00],\n",
1097
              "       [9.99993682e-01],\n",
1098
              "       [5.18645287e-01],\n",
1099
              "       [9.34577703e-01],\n",
1100
              "       [2.96075121e-02],\n",
1101
              "       [2.55093239e-02],\n",
1102
              "       [9.99980330e-01],\n",
1103
              "       [9.99995947e-01],\n",
1104
              "       [2.58505195e-01],\n",
1105
              "       [4.49159154e-04],\n",
1106
              "       [1.04316156e-02],\n",
1107
              "       [9.99700069e-01],\n",
1108
              "       [9.99998569e-01],\n",
1109
              "       [3.50234844e-03],\n",
1110
              "       [9.75885332e-01],\n",
1111
              "       [2.67864782e-02],\n",
1112
              "       [1.00000000e+00],\n",
1113
              "       [1.13111893e-02],\n",
1114
              "       [1.00000000e+00],\n",
1115
              "       [2.10697621e-01],\n",
1116
              "       [9.99930382e-01],\n",
1117
              "       [9.94694412e-01],\n",
1118
              "       [1.00000000e+00],\n",
1119
              "       [1.49561446e-02],\n",
1120
              "       [9.99998689e-01],\n",
1121
              "       [1.41535362e-03],\n",
1122
              "       [9.95686412e-01],\n",
1123
              "       [9.99999881e-01],\n",
1124
              "       [1.00000000e+00],\n",
1125
              "       [4.68831044e-04],\n",
1126
              "       [1.93897691e-02],\n",
1127
              "       [3.73468036e-03],\n",
1128
              "       [9.83241916e-01],\n",
1129
              "       [2.79722847e-02],\n",
1130
              "       [3.01179320e-01],\n",
1131
              "       [9.98645723e-01],\n",
1132
              "       [9.99985456e-01],\n",
1133
              "       [6.82771653e-02],\n",
1134
              "       [9.99209106e-01],\n",
1135
              "       [5.61944246e-01],\n",
1136
              "       [9.99998093e-01],\n",
1137
              "       [1.86151266e-01],\n",
1138
              "       [9.99999762e-01],\n",
1139
              "       [9.91966009e-01],\n",
1140
              "       [9.99893308e-01],\n",
1141
              "       [9.99999642e-01],\n",
1142
              "       [9.99629498e-01],\n",
1143
              "       [9.76446748e-01],\n",
1144
              "       [2.68565435e-02],\n",
1145
              "       [1.06689865e-02],\n",
1146
              "       [1.00000000e+00],\n",
1147
              "       [9.99978304e-01],\n",
1148
              "       [9.99883533e-01],\n",
1149
              "       [9.99992132e-01],\n",
1150
              "       [9.99898553e-01],\n",
1151
              "       [9.99997616e-01],\n",
1152
              "       [5.01158655e-01],\n",
1153
              "       [9.99999762e-01],\n",
1154
              "       [2.13489216e-03],\n",
1155
              "       [1.00000000e+00],\n",
1156
              "       [3.31123471e-02],\n",
1157
              "       [1.00000000e+00],\n",
1158
              "       [2.12847046e-03],\n",
1159
              "       [1.00000000e+00],\n",
1160
              "       [9.99511719e-01],\n",
1161
              "       [9.95730221e-01],\n",
1162
              "       [1.97975934e-02],\n",
1163
              "       [6.99095987e-03],\n",
1164
              "       [9.99991894e-01],\n",
1165
              "       [2.27933144e-03],\n",
1166
              "       [1.92354538e-03],\n",
1167
              "       [1.00000000e+00],\n",
1168
              "       [9.99994516e-01],\n",
1169
              "       [9.99999523e-01],\n",
1170
              "       [9.87651706e-01],\n",
1171
              "       [9.99999881e-01],\n",
1172
              "       [9.99894619e-01],\n",
1173
              "       [1.10436892e-02],\n",
1174
              "       [4.87535028e-03],\n",
1175
              "       [5.66245290e-05],\n",
1176
              "       [9.98538613e-01],\n",
1177
              "       [9.99999642e-01],\n",
1178
              "       [4.83682483e-01],\n",
1179
              "       [4.05326784e-01],\n",
1180
              "       [5.89253902e-01],\n",
1181
              "       [9.99999523e-01],\n",
1182
              "       [9.99339998e-01],\n",
1183
              "       [9.99960899e-01],\n",
1184
              "       [9.99967337e-01],\n",
1185
              "       [5.03293574e-02],\n",
1186
              "       [9.99888062e-01],\n",
1187
              "       [1.00000000e+00],\n",
1188
              "       [9.99958158e-01],\n",
1189
              "       [9.99970555e-01],\n",
1190
              "       [9.99898553e-01],\n",
1191
              "       [5.17294705e-02],\n",
1192
              "       [1.00000000e+00],\n",
1193
              "       [9.99969125e-01],\n",
1194
              "       [9.99550998e-01],\n",
1195
              "       [1.00000000e+00],\n",
1196
              "       [9.99998569e-01],\n",
1197
              "       [4.57099676e-02],\n",
1198
              "       [9.99508381e-01],\n",
1199
              "       [6.47619545e-01],\n",
1200
              "       [4.82181460e-02],\n",
1201
              "       [3.26992482e-01],\n",
1202
              "       [1.00000000e+00],\n",
1203
              "       [1.00000000e+00],\n",
1204
              "       [6.77119434e-01],\n",
1205
              "       [9.99994159e-01],\n",
1206
              "       [9.99999881e-01],\n",
1207
              "       [9.99399900e-01],\n",
1208
              "       [9.99931693e-01],\n",
1209
              "       [1.02043085e-01],\n",
1210
              "       [2.64167413e-03],\n",
1211
              "       [9.99997735e-01],\n",
1212
              "       [9.99999881e-01],\n",
1213
              "       [9.99999523e-01],\n",
1214
              "       [9.89206791e-01],\n",
1215
              "       [1.44354524e-02],\n",
1216
              "       [1.00000000e+00],\n",
1217
              "       [1.61957890e-02],\n",
1218
              "       [9.04303014e-01],\n",
1219
              "       [1.00000000e+00],\n",
1220
              "       [4.19442914e-03],\n",
1221
              "       [9.99979019e-01],\n",
1222
              "       [3.17975044e-01],\n",
1223
              "       [9.99995708e-01],\n",
1224
              "       [9.89016354e-01],\n",
1225
              "       [1.00000000e+00],\n",
1226
              "       [9.67190325e-01],\n",
1227
              "       [9.99614358e-01],\n",
1228
              "       [8.84264350e-01],\n",
1229
              "       [9.86232340e-01],\n",
1230
              "       [2.45566643e-03],\n",
1231
              "       [9.99540448e-01],\n",
1232
              "       [1.00000000e+00],\n",
1233
              "       [1.00000000e+00],\n",
1234
              "       [1.00000000e+00],\n",
1235
              "       [9.99984622e-01],\n",
1236
              "       [9.46505308e-01],\n",
1237
              "       [1.00000000e+00],\n",
1238
              "       [9.99998212e-01],\n",
1239
              "       [9.99999762e-01],\n",
1240
              "       [9.99777615e-01],\n",
1241
              "       [9.99957561e-01],\n",
1242
              "       [1.15558632e-01],\n",
1243
              "       [9.99892712e-01],\n",
1244
              "       [1.00000000e+00],\n",
1245
              "       [9.99936342e-01],\n",
1246
              "       [1.11514097e-02],\n",
1247
              "       [2.79436726e-03],\n",
1248
              "       [9.99112308e-01],\n",
1249
              "       [9.27779649e-04],\n",
1250
              "       [9.99990940e-01],\n",
1251
              "       [9.99971747e-01],\n",
1252
              "       [1.00000000e+00],\n",
1253
              "       [1.11002484e-02],\n",
1254
              "       [9.42763746e-01],\n",
1255
              "       [9.72311437e-01],\n",
1256
              "       [1.99509319e-03],\n",
1257
              "       [1.03185941e-02],\n",
1258
              "       [9.99856830e-01],\n",
1259
              "       [1.00000000e+00],\n",
1260
              "       [8.84238064e-01],\n",
1261
              "       [1.00000000e+00],\n",
1262
              "       [9.99971271e-01],\n",
1263
              "       [9.99982119e-01],\n",
1264
              "       [6.42004192e-01],\n",
1265
              "       [1.13778906e-02],\n",
1266
              "       [1.79906487e-02],\n",
1267
              "       [3.06266814e-01],\n",
1268
              "       [4.21514385e-04],\n",
1269
              "       [1.00000000e+00],\n",
1270
              "       [7.84004450e-01],\n",
1271
              "       [9.99998927e-01],\n",
1272
              "       [9.90493596e-01],\n",
1273
              "       [3.13388139e-01],\n",
1274
              "       [9.99949455e-01],\n",
1275
              "       [2.70243496e-01],\n",
1276
              "       [7.89658912e-03],\n",
1277
              "       [9.99894261e-01],\n",
1278
              "       [9.99990463e-01],\n",
1279
              "       [9.99947309e-01],\n",
1280
              "       [6.34111580e-04],\n",
1281
              "       [9.99992132e-01],\n",
1282
              "       [9.46811199e-01],\n",
1283
              "       [9.99915361e-01]], dtype=float32)"
1284
            ]
1285
          },
1286
          "metadata": {
1287
            "tags": []
1288
          },
1289
          "execution_count": 44
1290
        }
1291
      ]
1292
    },
1293
    {
1294
      "cell_type": "code",
1295
      "metadata": {
1296
        "id": "yIkNpzCuwLaO",
1297
        "colab_type": "code",
1298
        "colab": {}
1299
      },
1300
      "source": [
1301
        ""
1302
      ],
1303
      "execution_count": 0,
1304
      "outputs": []
1305
    }
1306
  ]
1307
}