[addb71]: / train_classifier.py

Download this file

61 lines (47 with data), 2.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# train_classifier.py
import os
import numpy as np
import cv2
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
IMAGE_SIZE = 128
DATASET_PATH = "dataset"
def load_data():
images = []
labels = []
class_names = os.listdir(DATASET_PATH)
class_map = {name: i for i, name in enumerate(class_names)}
for class_name in class_names:
img_folder = os.path.join(DATASET_PATH, class_name, "images")
for img_name in os.listdir(img_folder):
img_path = os.path.join(img_folder, img_name)
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
if img is not None:
img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) / 255.0
images.append(img)
labels.append(class_map[class_name])
X = np.array(images).reshape(-1, IMAGE_SIZE, IMAGE_SIZE, 1)
y = to_categorical(np.array(labels))
return X, y, class_map
def build_classifier(num_classes):
model = Sequential()
model.add(Conv2D(32, 3, activation='relu', input_shape=(IMAGE_SIZE, IMAGE_SIZE, 1)))
model.add(MaxPooling2D(2))
model.add(Conv2D(64, 3, activation='relu'))
model.add(MaxPooling2D(2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(num_classes, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
# Load & train
X, y, class_map = load_data()
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
model = build_classifier(num_classes=len(class_map))
model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=10, batch_size=16)
model.save("app/model/classifier_model.h5")
print("Classifier model saved to app/model/classifier_model.h5")
print(f" Class Map: {class_map}")