--- a +++ b/utils/segmentation.py @@ -0,0 +1,58 @@ +import cv2 +import numpy as np +import os +from tensorflow.keras.models import load_model + +# Load model at module level (only once) +MODEL_PATH = os.path.join(os.path.dirname(__file__), '..', 'app', 'model', 'unet_model.h5') +try: + unet_model = load_model(MODEL_PATH) + print(f"Successfully loaded model from {MODEL_PATH}") +except Exception as e: + raise RuntimeError(f"Failed to load U-Net model: {str(e)}") + +def smart_resize(image, target_size=(128, 128)): + """Resizes with aspect ratio preservation using zero-padding""" + h, w = image.shape[:2] + scale = min(target_size[0]/h, target_size[1]/w) + new_h, new_w = int(h * scale), int(w * scale) + + resized = cv2.resize(image, (new_w, new_h)) + delta_h = target_size[0] - new_h + delta_w = target_size[1] - new_w + + padded = cv2.copyMakeBorder(resized, + delta_h//2, delta_h - delta_h//2, + delta_w//2, delta_w - delta_w//2, + cv2.BORDER_CONSTANT, value=0) + return padded + +def segment_lung(image_path): + """Processes any X-ray image to segmentation mask""" + try: + # Read and validate + image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) + if image is None: + raise ValueError("Invalid image file") + + # Preprocess + processed = smart_resize(image) + processed = processed.astype(np.float32) / 255.0 + input_tensor = np.expand_dims(processed, axis=(0, -1)) + + # Predict + mask = unet_model.predict(input_tensor)[0] + binary_mask = (mask > 0.5).astype(np.uint8) * 255 + + # Resize back to original for clinical use + final_mask = cv2.resize(binary_mask, (image.shape[1], image.shape[0])) + return final_mask + + except Exception as e: + raise ValueError(f"Segmentation failed: {str(e)}") + + + + + +