Diff of /AdaBoost.ipynb [000000] .. [28fc72]

Switch to unified view

a b/AdaBoost.ipynb
1
{
2
  "cells": [
3
    {
4
      "cell_type": "code",
5
      "execution_count": 128,
6
      "metadata": {
7
        "colab": {
8
          "base_uri": "https://localhost:8080/"
9
        },
10
        "id": "SGXfU_7VEoUf",
11
        "outputId": "f7067405-aea3-45a2-d352-f6fce9b34267"
12
      },
13
      "outputs": [
14
        {
15
          "output_type": "stream",
16
          "name": "stdout",
17
          "text": [
18
            "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"
19
          ]
20
        }
21
      ],
22
      "source": [
23
        "from google.colab import drive\n",
24
        "drive.mount('/content/drive')"
25
      ],
26
      "id": "SGXfU_7VEoUf"
27
    },
28
    {
29
      "cell_type": "code",
30
      "execution_count": 129,
31
      "metadata": {
32
        "id": "3fb9958c-527b-47ca-a515-fc2ffc560f48"
33
      },
34
      "outputs": [],
35
      "source": [
36
        "import pandas as pd\n",
37
        "import numpy as np\n",
38
        "import seaborn as sns\n",
39
        "import matplotlib.pyplot as plt\n",
40
        "#from imblearn.over_sampling import SMOTE\n",
41
        "from imblearn.under_sampling import NearMiss\n",
42
        "from sklearn.model_selection import train_test_split, RandomizedSearchCV\n",
43
        "from sklearn.preprocessing import StandardScaler\n",
44
        "from sklearn.ensemble import AdaBoostClassifier\n",
45
        "from imblearn.pipeline import Pipeline as ImbPipeline\n",
46
        "from sklearn.metrics import classification_report\n",
47
        "from sklearn.tree import DecisionTreeClassifier\n",
48
        "from collections import Counter\n",
49
        "import warnings\n",
50
        "warnings.filterwarnings('ignore')\n",
51
        "warnings.filterwarnings(\"ignore\", category=UserWarning, module=\"joblib\")\n",
52
        "warnings.filterwarnings(\"ignore\", category=UserWarning, module=\"sklearn\")\n",
53
        "warnings.filterwarnings('ignore', category=UserWarning, message=\"Line Search failed\")"
54
      ],
55
      "id": "3fb9958c-527b-47ca-a515-fc2ffc560f48"
56
    },
57
    {
58
      "cell_type": "code",
59
      "execution_count": 130,
60
      "metadata": {
61
        "colab": {
62
          "base_uri": "https://localhost:8080/"
63
        },
64
        "id": "23fa808c-e180-4f48-8cd9-09a00a32f799",
65
        "outputId": "c8c69249-26ad-4bdd-e634-bc1613365b41"
66
      },
67
      "outputs": [
68
        {
69
          "output_type": "stream",
70
          "name": "stdout",
71
          "text": [
72
            "      Name        FC     logFC    logCPM   P-Value       FDR  SCLC  NSCLC\n",
73
            "0  KRT16P5 -1.474275 -0.560006 -2.065784  0.423250  0.645529   0.0    0.0\n",
74
            "1  KRT16P3 -1.158475 -0.212227  0.698547  0.598622  0.779482   0.0    0.0\n",
75
            "2  KRT16P2  1.785481  0.836313  3.744968  0.060200  0.211667   0.0    0.0\n",
76
            "3  KRT16P6 -2.534136 -1.341494  0.404997  0.023716  0.123727   0.0    0.0\n",
77
            "4    CRHBP  1.441891  0.527962 -0.015277  0.034942  0.153404   0.0    0.0\n",
78
            "Name       0\n",
79
            "FC         0\n",
80
            "logFC      0\n",
81
            "logCPM     0\n",
82
            "P-Value    0\n",
83
            "FDR        0\n",
84
            "SCLC       0\n",
85
            "NSCLC      0\n",
86
            "dtype: int64\n"
87
          ]
88
        }
89
      ],
90
      "source": [
91
        "#load data and preprocess\n",
92
        "file_path = \"/content/drive/MyDrive/ML_HW_4_5/labelled data.csv\"\n",
93
        "data = pd.read_csv(file_path,index_col=0).fillna(0)\n",
94
        "print(data.head())\n",
95
        "print(data.isnull().sum())"
96
      ],
97
      "id": "23fa808c-e180-4f48-8cd9-09a00a32f799"
98
    },
99
    {
100
      "cell_type": "markdown",
101
      "source": [
102
        "EDA"
103
      ],
104
      "metadata": {
105
        "id": "MkHa06tdNJOb"
106
      },
107
      "id": "MkHa06tdNJOb"
108
    },
109
    {
110
      "cell_type": "code",
111
      "source": [
112
        "print(data.shape)\n",
113
        "print()\n",
114
        "print(data.describe)\n",
115
        "print()\n",
116
        "print(data.info)\n",
117
        "print()\n",
118
        "print(data.duplicated())\n",
119
        "print()\n",
120
        "print(data.dtypes)"
121
      ],
122
      "metadata": {
123
        "colab": {
124
          "base_uri": "https://localhost:8080/"
125
        },
126
        "id": "m1zN40S1Ma-m",
127
        "outputId": "cb3a97ed-66fc-4641-8a37-2d61e0b169ae"
128
      },
129
      "id": "m1zN40S1Ma-m",
130
      "execution_count": 131,
131
      "outputs": [
132
        {
133
          "output_type": "stream",
134
          "name": "stdout",
135
          "text": [
136
            "(19778, 8)\n",
137
            "\n",
138
            "<bound method NDFrame.describe of                Name        FC     logFC    logCPM   P-Value       FDR  SCLC  \\\n",
139
            "0           KRT16P5 -1.474275 -0.560006 -2.065784  0.423250  0.645529   0.0   \n",
140
            "1           KRT16P3 -1.158475 -0.212227  0.698547  0.598622  0.779482   0.0   \n",
141
            "2           KRT16P2  1.785481  0.836313  3.744968  0.060200  0.211667   0.0   \n",
142
            "3           KRT16P6 -2.534136 -1.341494  0.404997  0.023716  0.123727   0.0   \n",
143
            "4             CRHBP  1.441891  0.527962 -0.015277  0.034942  0.153404   0.0   \n",
144
            "...             ...       ...       ...       ...       ...       ...   ...   \n",
145
            "19773  LOC105369958  2.196994  1.135531  1.382694  0.003199  0.040235   0.0   \n",
146
            "19774         ABCC2  3.461301  1.791314  5.336636  0.000671  0.015864   0.0   \n",
147
            "19775         TRAV6  3.849574  1.944699 -0.401490  0.000016  0.001372   0.0   \n",
148
            "19776  LOC105369904  2.226049  1.154485 -1.006838  0.002616  0.035713   0.0   \n",
149
            "19777  LOC101928636  2.279563  1.188757  0.151617  0.000219  0.007721   0.0   \n",
150
            "\n",
151
            "       NSCLC  \n",
152
            "0        0.0  \n",
153
            "1        0.0  \n",
154
            "2        0.0  \n",
155
            "3        0.0  \n",
156
            "4        0.0  \n",
157
            "...      ...  \n",
158
            "19773    0.0  \n",
159
            "19774    0.0  \n",
160
            "19775    0.0  \n",
161
            "19776    0.0  \n",
162
            "19777    0.0  \n",
163
            "\n",
164
            "[19778 rows x 8 columns]>\n",
165
            "\n",
166
            "<bound method DataFrame.info of                Name        FC     logFC    logCPM   P-Value       FDR  SCLC  \\\n",
167
            "0           KRT16P5 -1.474275 -0.560006 -2.065784  0.423250  0.645529   0.0   \n",
168
            "1           KRT16P3 -1.158475 -0.212227  0.698547  0.598622  0.779482   0.0   \n",
169
            "2           KRT16P2  1.785481  0.836313  3.744968  0.060200  0.211667   0.0   \n",
170
            "3           KRT16P6 -2.534136 -1.341494  0.404997  0.023716  0.123727   0.0   \n",
171
            "4             CRHBP  1.441891  0.527962 -0.015277  0.034942  0.153404   0.0   \n",
172
            "...             ...       ...       ...       ...       ...       ...   ...   \n",
173
            "19773  LOC105369958  2.196994  1.135531  1.382694  0.003199  0.040235   0.0   \n",
174
            "19774         ABCC2  3.461301  1.791314  5.336636  0.000671  0.015864   0.0   \n",
175
            "19775         TRAV6  3.849574  1.944699 -0.401490  0.000016  0.001372   0.0   \n",
176
            "19776  LOC105369904  2.226049  1.154485 -1.006838  0.002616  0.035713   0.0   \n",
177
            "19777  LOC101928636  2.279563  1.188757  0.151617  0.000219  0.007721   0.0   \n",
178
            "\n",
179
            "       NSCLC  \n",
180
            "0        0.0  \n",
181
            "1        0.0  \n",
182
            "2        0.0  \n",
183
            "3        0.0  \n",
184
            "4        0.0  \n",
185
            "...      ...  \n",
186
            "19773    0.0  \n",
187
            "19774    0.0  \n",
188
            "19775    0.0  \n",
189
            "19776    0.0  \n",
190
            "19777    0.0  \n",
191
            "\n",
192
            "[19778 rows x 8 columns]>\n",
193
            "\n",
194
            "0        False\n",
195
            "1        False\n",
196
            "2        False\n",
197
            "3        False\n",
198
            "4        False\n",
199
            "         ...  \n",
200
            "19773    False\n",
201
            "19774    False\n",
202
            "19775    False\n",
203
            "19776    False\n",
204
            "19777    False\n",
205
            "Length: 19778, dtype: bool\n",
206
            "\n",
207
            "Name        object\n",
208
            "FC         float64\n",
209
            "logFC      float64\n",
210
            "logCPM     float64\n",
211
            "P-Value    float64\n",
212
            "FDR        float64\n",
213
            "SCLC       float64\n",
214
            "NSCLC      float64\n",
215
            "dtype: object\n"
216
          ]
217
        }
218
      ]
219
    },
220
    {
221
      "cell_type": "code",
222
      "source": [
223
        "print(data.columns[data.isna().any()])\n",
224
        "print()"
225
      ],
226
      "metadata": {
227
        "colab": {
228
          "base_uri": "https://localhost:8080/"
229
        },
230
        "id": "9A0vU-rYM47R",
231
        "outputId": "ddabfc5c-5387-4f20-8244-2152d061df03"
232
      },
233
      "id": "9A0vU-rYM47R",
234
      "execution_count": 132,
235
      "outputs": [
236
        {
237
          "output_type": "stream",
238
          "name": "stdout",
239
          "text": [
240
            "Index([], dtype='object')\n",
241
            "\n"
242
          ]
243
        }
244
      ]
245
    },
246
    {
247
      "cell_type": "code",
248
      "source": [
249
        "correlation_matrix = data.corr()\n",
250
        "# Create a heatmap using Seaborn\n",
251
        "plt.figure(figsize=(10, 8))\n",
252
        "sns.heatmap(correlation_matrix, annot=True, cmap=\"coolwarm\", fmt=\".2f\", linewidths=.5)\n",
253
        "plt.title(\"Correlation Matrix\")\n",
254
        "plt.show()"
255
      ],
256
      "metadata": {
257
        "colab": {
258
          "base_uri": "https://localhost:8080/",
259
          "height": 699
260
        },
261
        "id": "bXSyUBFmNkgr",
262
        "outputId": "6ca94eff-aa58-420b-a1d4-45a761cb4f3f"
263
      },
264
      "id": "bXSyUBFmNkgr",
265
      "execution_count": 134,
266
      "outputs": [
267
        {
268
          "output_type": "display_data",
269
          "data": {
270
            "text/plain": [
271
              "<Figure size 1000x800 with 2 Axes>"
272
            ],
273
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvwAAAKqCAYAAABGj4plAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADFEklEQVR4nOzdd3hT1f8H8Hd22rTpXpTRUpAtCLL3ko2gIopIAUFwIRQEUaCy5OdgOfiKCAIKDgQZArIRKnuUvbro3nslbXJ/f1RSQtvQlq6k79fz3OcxN+fce+4hpp987jnnigRBEEBERERERBZJXN0NICIiIiKiysOAn4iIiIjIgjHgJyIiIiKyYAz4iYiIiIgsGAN+IiIiIiILxoCfiIiIiMiCMeAnIiIiIrJgDPiJiIiIiCwYA34iIiIiIgvGgJ+IaoWNGzdCJBIhLCyswo4ZFhYGkUiEjRs3VtgxzV2vXr3Qq1ev6m4GERE9hAE/EZVbcHAwpkyZgoYNG0KpVEKtVqNr165YvXo1cnJyqrt5FWbr1q1YtWpVdTfDyPjx4yESiaBWq4vt63v37kEkEkEkEuHLL78s8/Gjo6PxySefIDAwsAJaS0RE1Ula3Q0gIvO0d+9ejBo1CgqFAuPGjUPLli2h1WoREBCADz74ADdu3MD3339f3c2sEFu3bsX169cxffp0o/0NGjRATk4OZDJZtbRLKpUiOzsbe/bswcsvv2z03pYtW6BUKpGbm1uuY0dHR2PhwoXw8vJCmzZtSl3v4MGD5TofERFVHgb8RFRmoaGheOWVV9CgQQMcPXoUHh4ehvfeeecdBAUFYe/evU98HkEQkJubCysrqyLv5ebmQi6XQyyuvhuVIpEISqWy2s6vUCjQtWtX/PLLL0UC/q1bt2LIkCHYvn17lbQlOzsb1tbWkMvlVXI+IiIqPQ7pIaIy+/zzz5GZmYn169cbBfsPNGrUCO+//77hdX5+PhYvXgwfHx8oFAp4eXnho48+gkajMarn5eWFoUOH4sCBA3j22WdhZWWFtWvX4vjx4xCJRPj1118xb948eHp6wtraGunp6QCAs2fPYuDAgbCzs4O1tTV69uyJf//997HXsWvXLgwZMgR16tSBQqGAj48PFi9eDJ1OZyjTq1cv7N27F/fv3zcMkfHy8gJQ8hj+o0ePonv37lCpVLC3t8fzzz+PW7duGZX55JNPIBKJEBQUhPHjx8Pe3h52dnaYMGECsrOzH9v2B8aMGYP9+/cjNTXVsO/8+fO4d+8exowZU6R8cnIyZs2ahVatWsHGxgZqtRqDBg3ClStXDGWOHz+O9u3bAwAmTJhguO4H19mrVy+0bNkSFy9eRI8ePWBtbY2PPvrI8N7DY/h9fX2hVCqLXP+AAQPg4OCA6OjoUl8rERGVDzP8RFRme/bsQcOGDdGlS5dSlZ80aRI2bdqEl156CTNnzsTZs2exbNky3Lp1C3/++adR2Tt37uDVV1/FlClTMHnyZDRp0sTw3uLFiyGXyzFr1ixoNBrI5XIcPXoUgwYNQrt27eDv7w+xWIwff/wRffr0wcmTJ9GhQ4cS27Vx40bY2NjAz88PNjY2OHr0KBYsWID09HR88cUXAICPP/4YaWlpiIyMxMqVKwEANjY2JR7z8OHDGDRoEBo2bIhPPvkEOTk5+Prrr9G1a1dcunTJ8GPhgZdffhne3t5YtmwZLl26hB9++AGurq747LPPStW3L7zwAqZOnYodO3Zg4sSJAAqy+02bNkXbtm2LlA8JCcHOnTsxatQoeHt7Iy4uDmvXrkXPnj1x8+ZN1KlTB82aNcOiRYuwYMECvPnmm+jevTsAGP17JyUlYdCgQXjllVcwduxYuLm5Fdu+1atX4+jRo/D19cXp06chkUiwdu1aHDx4ED/99BPq1KlTquskIqInIBARlUFaWpoAQHj++edLVT4wMFAAIEyaNMlo/6xZswQAwtGjRw37GjRoIAAQ/v77b6Oyx44dEwAIDRs2FLKzsw379Xq90LhxY2HAgAGCXq837M/Ozha8vb2F/v37G/b9+OOPAgAhNDTUqNyjpkyZIlhbWwu5ubmGfUOGDBEaNGhQpGxoaKgAQPjxxx8N+9q0aSO4uroKSUlJhn1XrlwRxGKxMG7cOMM+f39/AYAwceJEo2OOHDlScHJyKnKuR/n6+goqlUoQBEF46aWXhL59+wqCIAg6nU5wd3cXFi5caGjfF198YaiXm5sr6HS6ItehUCiERYsWGfadP3++yLU90LNnTwGA8N133xX7Xs+ePY32HThwQAAgLFmyRAgJCRFsbGyEESNGPPYaiYioYnBIDxGVyYNhNLa2tqUqv2/fPgCAn5+f0f6ZM2cCQJGx/t7e3hgwYECxx/L19TUazx8YGGgYupKUlITExEQkJiYiKysLffv2xYkTJ6DX60ts28PHysjIQGJiIrp3747s7Gzcvn27VNf3sJiYGAQGBmL8+PFwdHQ07H/66afRv39/Q188bOrUqUavu3fvjqSkJEM/l8aYMWNw/PhxxMbG4ujRo4iNjS12OA9QMO7/wbwHnU6HpKQk2NjYoEmTJrh06VKpz6lQKDBhwoRSlX3uuecwZcoULFq0CC+88AKUSiXWrl1b6nMREdGT4ZAeIioTtVoNoCBALo379+9DLBajUaNGRvvd3d1hb2+P+/fvG+339vYu8ViPvnfv3j0ABT8ESpKWlgYHB4di37tx4wbmzZuHo0ePFgmw09LSSjxmSR5cy8PDkB5o1qwZDhw4gKysLKhUKsP++vXrG5V70NaUlBRDXz/O4MGDYWtri99++w2BgYFo3749GjVqVOwzB/R6PVavXo01a9YgNDTUaL6Ck5NTqc4HAJ6enmWaoPvll19i165dCAwMxNatW+Hq6lrqukRE9GQY8BNRmajVatSpUwfXr18vUz2RSFSqcsWtyFPSew+y91988UWJS0eWNN4+NTUVPXv2hFqtxqJFi+Dj4wOlUolLly5hzpw5Ju8MVCSJRFLsfkEQSn0MhUKBF154AZs2bUJISAg++eSTEst++umnmD9/PiZOnIjFixfD0dERYrEY06dPL9M1m/p3Ks7ly5cRHx8PALh27RpeffXVMtUnIqLyY8BPRGU2dOhQfP/99zh9+jQ6d+5ssmyDBg2g1+tx7949NGvWzLA/Li4OqampaNCgQbnb4ePjA6DgR0i/fv3KVPf48eNISkrCjh070KNHD8P+0NDQImVL+2PlwbXcuXOnyHu3b9+Gs7OzUXa/Io0ZMwYbNmyAWCzGK6+8UmK5P/74A71798b69euN9qempsLZ2dnwurTXXBpZWVmYMGECmjdvji5duuDzzz/HyJEjDSsBERFR5eIYfiIqs9mzZ0OlUmHSpEmIi4sr8n5wcDBWr14NoGC4CYAiT6pdsWIFAGDIkCHlbke7du3g4+ODL7/8EpmZmUXeT0hIKLHug8z6w5l0rVaLNWvWFCmrUqlKNcTHw8MDbdq0waZNm4yWybx+/ToOHjxo6IvK0Lt3byxevBjffPMN3N3dSywnkUiK3D3Ytm0boqKijPY9+GHy8HWU15w5cxAeHo5NmzZhxYoV8PLygq+vb5FlWYmIqHIww09EZebj44OtW7di9OjRaNasmdGTdk+dOoVt27Zh/PjxAIDWrVvD19cX33//vWEYzblz57Bp0yaMGDECvXv3Lnc7xGIxfvjhBwwaNAgtWrTAhAkT4OnpiaioKBw7dgxqtRp79uwptm6XLl3g4OAAX19fTJs2DSKRCD/99FOxQ2natWuH3377DX5+fmjfvj1sbGwwbNiwYo/7xRdfYNCgQejcuTPeeOMNw7KcdnZ2JofaPCmxWIx58+Y9ttzQoUOxaNEiTJgwAV26dMG1a9ewZcsWNGzY0Kicj48P7O3t8d1338HW1hYqlQodO3Y0OceiOEePHsWaNWvg7+9vWCb0xx9/RK9evTB//nx8/vnnZToeERGVQ/UuEkRE5uzu3bvC5MmTBS8vL0Eulwu2trZC165dha+//tpoWcu8vDxh4cKFgre3tyCTyYR69eoJc+fONSojCAXLcg4ZMqTIeR4sy7lt27Zi23H58mXhhRdeEJycnASFQiE0aNBAePnll4UjR44YyhS3LOe///4rdOrUSbCyshLq1KkjzJ4927CE5LFjxwzlMjMzhTFjxgj29vYCAMMSncUtyykIgnD48GGha9eugpWVlaBWq4Vhw4YJN2/eNCrzYFnOhIQEo/3FtbM4Dy/LWZKSluWcOXOm4OHhIVhZWQldu3YVTp8+Xexymrt27RKaN28uSKVSo+vs2bOn0KJFi2LP+fBx0tPThQYNGght27YV8vLyjMrNmDFDEIvFwunTp01eAxERPTmRIJRhZhgREREREZkVjuEnIiIiIrJgDPiJiIiIiCwYA34iIiIiIgvGgJ+IiIiIqIqcOHECw4YNQ506dSASibBz587H1jl+/Djatm0LhUKBRo0aYePGjWU6JwN+IiIiIqIqkpWVhdatW+Pbb78tVfnQ0FAMGTIEvXv3RmBgIKZPn45JkybhwIEDpT4nV+khIiIiIqoGIpEIf/75J0aMGFFimTlz5mDv3r24fv26Yd8rr7yC1NRU/P3336U6DzP8RERERETlpNFokJ6ebrRV5JPET58+jX79+hntGzBgAE6fPl3qY/BJu0RERERk1vbKmlTbuc9//CoWLlxotM/f37/Cnq4eGxsLNzc3o31ubm5IT09HTk4OrKysHnuMGhXwV+c/lqUbkncHsR+Mre5mWDT3L37G0Mk3q7sZFuuvdc0xeOK16m6GRdu3oRUG+AZWdzMs2oFNbTBxYXx1N8NibfB3Zf9Wsg3+rtXdhBpn7ty58PPzM9qnUCiqqTXFq1EBPxERERGROVEoFJUa4Lu7uyMuLs5oX1xcHNRqdamy+wADfiIiIiIycyKZqLqbUGk6d+6Mffv2Ge07dOgQOnfuXOpjcNIuEREREVEVyczMRGBgIAIDAwEULLsZGBiI8PBwAAVDhMaNG2coP3XqVISEhGD27Nm4ffs21qxZg99//x0zZswo9TmZ4SciIiIisyaWmk+G/8KFC+jdu7fh9YPx/76+vti4cSNiYmIMwT8AeHt7Y+/evZgxYwZWr16NunXr4ocffsCAAQNKfU4G/EREREREVaRXr14w9Ris4p6i26tXL1y+fLnc52TAT0RERERmTSTjKHVT2DtERERERBaMAT8RERERkQXjkB4iIiIiMmvmNGm3OjDDT0RERERkwZjhJyIiIiKzZskP3qoIzPATEREREVkwBvxERERERBaMQ3qIiIiIyKxx0q5pzPATEREREVkwZviJiIiIyKxx0q5pzPATEREREVkwBvxERERERBaMQ3qIiIiIyKxx0q5pzPATEREREVkwZviJiIiIyKyJJMzwm8IMPxERERGRBWOGn4iIiIjMmpgZfpOY4SciIiIismAM+ImIiIiILBiH9BARERGRWROJOaTHFGb4iYiIiIgsGDP8RERERGTWRBLmsE1h7xARERERWTAG/EREREREFoxDeoiIiIjIrHEdftOY4SciIiIismDM8BMRERGRWeOynKYxw09EREREZMGY4SciIiIis8Yx/KYxw09EREREZMFqfYbfsduzaDjzDdi1bQllHVdcePFtxO0+YrpOjw5o/uWHsGneGLkRMQha9j9Ebv7TqEyDt8agod8bULi7IP3qbdyYvhhp569V5qXUaNZd+kHVcwjEtnbIiwlHxs7NyIsIKbl8twGw7twPEgcn6LMykHv1HDL2/w7k5wEAZN5NoOo1BDJPb0jsHJCycSU0Ny5W1eXUWK8Nd8GA7vZQWUtwKygba7bEIjpea7LOkF4OeGGAExzspAiN0GDtLzG4G5ZreN9eLcHEl9zwTHMbWCnFiIzV4Pd9iTh1KaOyL6dGGjvCFQN7OEJlLcHNoGx8uznqsX08tI8jXhzo8l8f5+J/W6JxNzTH8L67ixyTRrujRWMVZFIRLl7PwP+2xCA1Pb+yL6fGGTfSHQN7OcHGWoKb97Lw1aYIRMeV3L8tm6gwapArGntZw8lBhk9Wh+L0pbQnPq4lG9FLhR5tlbBWihEUkYfNezMQn6wzWadPeysM7GINOxsxImLzsWV/BkKjCz+fUgnwygAbdGihhFQKXA/S4ud9GUjPEir7cmoc9i/VRGXK8B89ehTNmzdHenp6kffS0tLQokULnDx5ssIaVxUkKmukX72D69MWlqq8lVddtN+9FknHzyLg2ecR+vUmtFq7BM79uxnKeIwahGZfzMW9Jd8ioMNIZFy9jY5710Pu4lhZl1GjKVt3hO2w15B56E8krpqH/OhwOEyaA7FKXXz5Np1hO3g0Mg/tQOIXs5G2bR2UrTvBdtDLhjIiuQL50eFI37mpqi6jxntxoBOG9XXEtz/HYOanocjVClg0vT5k0pJvc3Z/Vo1JL7vhlz0JeH9xCEIjc7FoegPY2UoMZfwmeqKuuwKLvwnHO58E4/TlDMyZUhcN6ymr4rJqlJcGOWN4P2d8szkKM5YEI1ejx+KZ3ib7uEd7O0we7YGtu+Px3sIghETkYrGft6GPFXIRls70giAAcz8PwaxPgyGViOA/rQFEtewO9cuDXfF8fxd8vTEC7y+6i1yNHp/O8oFMVnJHKBVihETk4JufIiv0uJZqUFdr9Otohc17M7Dkh2RotAJmjrWHVFJynfYtFBj9nA12/5OFhWuTERGXD7+x9rC1Luy/VwfaoPVTCqzZlobPNqbC3laCd162q4IrqlnYv9VHJBFV22YOyhTwr1q1CpMnT4ZaXTRQs7Ozw5QpU7BixYoKa1xVSDhwAnf9VyFu1+FSlW/w5ivICY3ErdmfIfN2CO6v2YLY7Qfg/f54Qxnv6RMQsf53RG7agcxbwbj2tj902bmoN/7FSrqKms26xyBknz2GnAsnoIuPRvqOHyHkaWDVoWex5WVejaENu4fcwNPQpSRCe/c6cgNPQ1avoaGM9s5VZB74A5rrF6rqMmq85/s64re9iTh7JRNhURqs2BAFR3spOj9jW2KdEf2dcOBkKg6fSkNEjBbf/hwDjVaP/l3tDWWa+Vhjz9Fk3A3LRVxiHn7bm4isbB0aNah9Af+I/s74dU88zgRmICwyF8t/iICTvRSd2xb/4xUARg5wxt8nUnAoIAUR0Rp8szkKGq0ez3UvSAA0b6yCq7McK9ZHIixKg7AoDZavj0RjLyu0bqaqqkurEUYMcMEve2Jx+nI6QiNy8fn39+FkL0OXtiUHNheuZmDT9liculg0q/8kx7VU/TtaYc+JLATe0SIyXocfdqbD3laMtk0VJdYZ0MkaJy7lICAwF9GJOmz+KwPaPAHdn7ECAFgpROj+jBV+PZCJ22F5uB+Tjw270tG4vhwNPWvXQAL2L9VUZQr4r1y5goEDB5b4/nPPPYeLFy17WIV9pzZIPHraaF/CoQA4dGoDABDJZLBr2wKJR04VFhAEJB49BftOz1RhS2sIiQQyT29o790o3CcI0N67AVmDRsVWyQu7B1ldL0OAL3F0gaJpa2huX6mKFpslN2cZHO1lCLyVadiXnaPHnZAcNG1oVWwdqQRo1ECJwFtZhn2CAATeykJTH2vDvlvB2ejeXg0bazFEIqBHezXkMjGu3ckq7rAWy93lvz6++WgfZ6PZQ/31MKlEhEYNrIzqCAIQeDPT0McyqQgQgLz8wlvz2jwBggC0aFx7An53Fzmc7GW4dMO4f2+HZKNZo/L3Q2Ud1xy52IthbyvBzZA8w74cjYCQyDz41JMVW0ciBhrUkeJmSOHwJwHAzRAtfOoW1GngIYVUIjIqE5ukQ2KqrsTjWiL2b/USicXVtpmDMv00jIuLg0xW8odLKpUiISHhiRtVkyncnKGJSzTap4lLhMzOFmKlAjIHO4ilUmjikx4pkwRVk4aobcQqW4gkEugzjbNvusw0yF09iq2TG3gaYpUtHN9eAIgAkUSK7NOHkXV0d1U02Sw52BX8r5yabjxONDUjH/Z2xf9vrraRQiIRFRknnpqej7ruhdmoz9ZGYs6Uuvh1dVPk5wvQaPVYuiYCMQl5jx7SojmoC777UorpL4eS+thWAolEVGydeh4FfXw7JBu5Gj0mjnLHpu2xAIAJL7lDIhGVeFxL5PjgM5xm/LlKTc8zvFeTjmuO1DYFgUl6lt5of3qWHnaq4oMWW2sxJGJRsXU8nAv6z85GjLx8ATkaoUgZOxvzCIYqAvuXarIyfdt5enri+vXraNSo+Mzs1atX4eFRfBD3MI1GA41GY7RPoSj5dhfVLvKGzaDqOxzpf25EXngQJM7uUA8fC1W/Ecg6vLO6m1cj9Oqoxjtj6xheL/w6vNLONXaEK1RWEny8/D7SM/PR6RlbzJlSF3M+D8P9KM3jD2CmenWyx3vjCvvYf9X9SjlPeoYOn/4vHO++XgfD+zpBEIB/zqbiXlgOBAuej9e7swPeH1/X8Hr+ipIn8VP5dGqlwLihhUP6Vm0tedgTlR37l8xJmQL+wYMHY/78+Rg4cCCUSuPxuzk5OfD398fQoUMfe5xly5Zh4ULjSbL+/v5oX5bGVBNNXCIUbs5G+xRuzshLy4A+VwNtYgr0+flQuDo9UsYJmljjOwO1gT4rA4JOB7GN8VhZiY0d9BnFfznaDHgJuRf/Rc654wCA/NhIZMgVsHtxIrKO7IJFR0GldDYwE3dCgg2vZbKCLI+9WoKUtMJssr1twaowxUnPzIdOJ8Bebfw1YK+WGjLS7i4yDOvjiLf9gxEeXRDch0Zq0KKRNYb2dsC3P8dW6HXVJGcD03EnJNvw+sHEXAe11LiP1VKEhJfQxxk66HQCHIrp4+SHjnH5Ribe+PAu1DYS6HQCsnL0+HllU8Ses9xVZM5cTsOd4MJhYYbPsJ3MqG/s1TIEh+cUqV9aD45V0cc1B4F3tAiJTDG8lv73MVSrxEjLLMwoq1VihMcVvyJURrYeOr0A9SMZ6oePkZaph0wqgpVCZJSFfvQ8lob9W7PwSbumlele0Lx585CcnIynnnoKn3/+OXbt2oVdu3bhs88+Q5MmTZCcnIyPP/74sceZO3cu0tLSjLa5c+eW+yKqUuqZQDj16WS0z7lvF6ScCQQACHl5SLt0A859OhcWEIng1LszUs9crsKW1hA6HfKiQiFv1KJwn0gEeaMWyLsfVGwVkVwOQXjkS0zPL7WH5Wj0iEnIM2zh0Rokp+ahTdPCMclWSjGaNLTC7ZDig5p8HRB0P9doYqhIBLRupsLt4IJAVyEv+IrQ641/ZOkFQGThS8jk5OoRE681bA/6uHVzG0OZgj62xq3g7GKPka8TEHQ/p0gft2lmY+jjh6Vn6pCVo0frpirY20pxJrDoimiWIidXj+h4rWG7H5WLpNQ8PPNQ/1orxWja0Bq3gso/XyQ2QVspxzUHuVoB8Sk6wxadoENqhg7NGxYOzVXKRWhYV4bgiOKH6On0wP3ofDRrKDfsEwFo1lCO4MiCOvdj8pGvE9D8oTLuThI420tKPK4lYP+SOSlTht/NzQ2nTp3CW2+9hblz50L4L9MqEokwYMAAfPvtt3Bzc3vscRQKRY0ZwiNRWUPVqL7htbV3XahbN4U2OQ25ETFossQPSk83XJkwBwBw//tf0eDt19B02QeI2Lgdzr07wWPUIJwfPsVwjNBVP6L1hs+QevE60s5fhdc0X0hVVojYtKPKr68myD6xH3ajpyAvMhR5EcFQdR8IkVyBnPP/AADsXpkCXVoKMvf/DgDQ3LwM6x6DkB91H3nhwZA4uxVk/W9eNmT3RXIFJM6FnzWJowukdepDn50FfWpS0UbUAruOJGP0EBdExWsRl5iHsc+7IDk1H6cvF66Xv9SvAU5fTsdfxwqyUjsPJWHGxDq4F5aDu6E5eL6fE5RyMQ7/mwoAiIzVIDpOg3df98CGbXFIz9KhcxtbtGmmwqKvI6rjMqvVzkOJeGWoK6LjNIhL0OL1kW5ISs3H6UuFgfmns7xx6lI6/jpa8Dn880Ai/CbVLezj/k5QKMQ4FFCYGezfzQHh0blIy9ChmY81pozxwM5DiYiKtdwMf3F2HkjAq8PdEBWnQWyCFr4veCApNQ+nHlpX//9m++DUpTTsPlxwx1SpEKOOW+HfE3cXORrWt0JGZj4SkvNKfdza4tDZHAztrkJckg4JqTqM7G2D1Aw9Lt0uHJ4363V7XLqtwdHzBcmCA2eyMWmEGmHR+QiNykP/TtZQyEQICCx4P0cj4OTlHIx+zgZZOXrkaAS8NsgWQRF5CImqXc+SYP9WHz5p17QyBfwhISHw9vbGvn37kJKSgqCgIAiCgMaNG8PBwaGy2lip7Nq1ROcjPxleN//yIwBAxOYduPrGXCg8XGBVr3BeQk5YJM4Pn4Lmy+fC671xyI2MxbUp85B4KMBQJmbbfshdHPGU/7SCB29duYVzQydBG187A9HcK2chVqlhO+DFggdvRd9Hyg+fQ59ZECRJ7J2NhulkHtkJAQJsBo6CxM4B+sx05N66jMz92wxlZHUbwvGtwrtJ6uFjAQA5F04g7bfvq+jKapbtfydBKRfjvdfrQGUtxs172ViwOtxo9Rd3FxnUNoX/25+8kA47WwnGPu8CB7UUIREaLFgdjtSMgsm/Oh3wyVcR8H3BFfPfqw8rhRgx8Vqs/DEaF65nFmmDpftjfyKUCjHe8/WEjbUEN+5lY8GKUKM+9nCVGz3H4MT5NKhtpXh9hBsc7KQIicjFgpWhRpOlPd3l8H3RDbYqCeIT8/DbXwn482DtGwL4+754KBVivD++3n/9m4WPvwxBXt7D/asw+gw/5W2NL+YWziubOsYTAHDwZDKW/xBe6uPWFvv/zYZCJoLvMFtYK8W4F56HFT+nIv+h+f6ujhLYWhcOADh/QwNb60yM6KUyPBhq5ZZUo4c+/fJ3JoQBwNsv20EmEeF6sAY/7a193xHsX6qpRIJQ+gHREokEMTExcHV1BQCMHj0aX331Vamy+qWxV9akQo5DRQ3Ju4PYD8ZWdzMsmvsXP2Po5JvV3QyL9de65hg8sfY+rboq7NvQCgN8A6u7GRbtwKY2mLgwvrqbYbE2+LuyfyvZBn/X6m5Csa4M7FFt527994lqO3dplWkM/6O/Dfbt24esLMseA0lEREREZM64gCsRERERkQUr0xh+kUhUZGUOS1+pg4iIiIhqNnN54m11KVPALwgCxo8fb1hhJzc3F1OnToVKZfx48h07audqNERERERENU2ZAn5fX1+j12PHchIoEREREVUvPnjLtDIF/D/++GNltYOIiIiIiCoBBzwREREREVmwMmX4iYiIiIhqGj5p1zRm+ImIiIiILBgz/ERERERk1jhp1zRm+ImIiIiILBgz/ERERERk1vjgLdPYO0REREREFowBPxERERGRBeOQHiIiIiIya5y0axoz/EREREREFowZfiIiIiIya8zwm8YMPxERERGRBWPAT0RERERkwTikh4iIiIjMGof0mMYMPxERERGRBWOGn4iIiIjMGp+0axp7h4iIiIjIgjHDT0RERERmTSzhGH5TmOEnIiIiIrJgDPiJiIiIiCwYh/QQERERkVnjspymMcNPRERERGTBmOEnIiIiIrPGZTlNY+8QEREREVkwBvxERERERBaMQ3qIiIiIyKxx0q5pzPATEREREVkwZviJiIiIyKwxw28aM/xERERERBaMGX4iIiIiMmtcltM09g4RERERkQVjwE9EREREZME4pIeIiIiIzBon7ZomEgRBqO5GEBERERGVV8TbL1bbueut2V5t5y6tGpXhj/1gbHU3wWK5f/Ez9sqaVHczLNqQvDvoNuyf6m6GxQrY0xM9RgZUdzMs2ok/u/EzXMkC9vTEG4sTqrsZFmv9fBf2byVbP9+luptQLE7aNY29Q0RERERkwRjwExERERFZsBo1pIeIiIiIqMxEnLRrCjP8REREREQWjBl+IiIiIjJrXJbTNGb4iYiIiIgsGAN+IiIiIiILxiE9RERERGTWuA6/aewdIiIiIiILxgw/EREREZk1Tto1jRl+IiIiIiILxgw/EREREZk1juE3jb1DRERERGTBGPATEREREVkwBvxEREREZNZEYlG1beXx7bffwsvLC0qlEh07dsS5c+dMll+1ahWaNGkCKysr1KtXDzNmzEBubm6pz8eAn4iIiIioivz222/w8/ODv78/Ll26hNatW2PAgAGIj48vtvzWrVvx4Ycfwt/fH7du3cL69evx22+/4aOPPir1ORnwExEREZFZM6cM/4oVKzB58mRMmDABzZs3x3fffQdra2ts2LCh2PKnTp1C165dMWbMGHh5eeG5557Dq6+++ti7Ag9jwE9EREREVE4ajQbp6elGm0ajKbasVqvFxYsX0a9fP8M+sViMfv364fTp08XW6dKlCy5evGgI8ENCQrBv3z4MHjy41G1kwE9EREREVE7Lli2DnZ2d0bZs2bJiyyYmJkKn08HNzc1ov5ubG2JjY4utM2bMGCxatAjdunWDTCaDj48PevXqxSE9RERERFSLiMXVts2dOxdpaWlG29y5cyvs0o4fP45PP/0Ua9aswaVLl7Bjxw7s3bsXixcvLvUx+OAtIiIiIqJyUigUUCgUpSrr7OwMiUSCuLg4o/1xcXFwd3cvts78+fPx+uuvY9KkSQCAVq1aISsrC2+++SY+/vhjiEvx0DFm+ImIiIjIrIlEomrbykIul6Ndu3Y4cuSIYZ9er8eRI0fQuXPnYutkZ2cXCeolEgkAQBCEUp2XGX4iIiIioiri5+cHX19fPPvss+jQoQNWrVqFrKwsTJgwAQAwbtw4eHp6GuYBDBs2DCtWrMAzzzyDjh07IigoCPPnz8ewYcMMgf/jMOAnIiIiIrMmKsWwlppi9OjRSEhIwIIFCxAbG4s2bdrg77//NkzkDQ8PN8roz5s3DyKRCPPmzUNUVBRcXFwwbNgwLF26tNTnZMBPRERERFSF3n33Xbz77rvFvnf8+HGj11KpFP7+/vD39y/3+czn5xAREREREZVZmQJ+nU6Hq1evIicnp8h72dnZuHr1KvR6fYU1joiIiIjocczpSbvVoUwB/08//YSJEydCLpcXeU8ul2PixInYunVrhTWOiIiIiIieTJkC/vXr12PWrFnFzgiWSqWYPXs2vv/++wprHBERERHRY1Xjg7fMQZlaeefOHXTq1KnE99u3b49bt249caOIiIiIiKhilCngz8rKQnp6eonvZ2RkIDs7+4kbRUREREREFaNMAX/jxo1x6tSpEt8PCAhA48aNn7hRRERERESlxUm7ppUp4B8zZgzmzZuHq1evFnnvypUrWLBgAcaMGVNhjSMiIiIioidTpgdvzZgxA/v370e7du3Qr18/NG3aFABw+/ZtHD58GF27dsWMGTMqpaFERERERMURicxj8mx1KVPAL5PJcPDgQaxcuRJbt27FiRMnIAgCnnrqKSxduhTTp0+HTCarrLYSEREREVEZlSngBwqC/tmzZ2P27NmV0R4iIiIiorIxk7H01aVMAf+GDRvw2muvQaFQVFZ7qoV1l35Q9RwCsa0d8mLCkbFzM/IiQkou320ArDv3g8TBCfqsDORePYeM/b8D+XkAAJl3E6h6DYHM0xsSOwekbFwJzY2LVXU5NY5jt2fRcOYbsGvbEso6rrjw4tuI233EdJ0eHdD8yw9h07wxciNiELTsf4jc/KdRmQZvjUFDvzegcHdB+tXbuDF9MdLOX6vMS6nx3njNC8Oec4etSoprt9Lx5Zp7iIwp+mTsB1q3sMOYF+qhiY8NnJ0UmLv0Ok6eSSqx/Ky3G2PEoDpYvS4I23ZHVcYl1HgTX62PYf3cYaOS4NrtDKxYG4TImNwSy7dursYrI+qiiY8Kzo4KfLTsJgLOJRuVmTC6Pvp0c4arswL5+QLuBGdi3ZYw3LqXWdmXU+PwM1x5ej+rxMDO1rCzESMiLh9b/85EaHR+ieWfbSbHiF4qONtLEJeswx9HsnAtSGtU5vme1ujxjBLWSjGCIvLw0/5MxCfrKvtSaiz2MdVUZRrwNHnyZKSlpRle16lTB2FhYRXdpiqlbN0RtsNeQ+ahP5G4ah7yo8PhMGkOxCp18eXbdIbt4NHIPLQDiV/MRtq2dVC27gTbQS8byojkCuRHhyN956aquowaTaKyRvrVO7g+bWGpylt51UX73WuRdPwsAp59HqFfb0KrtUvg3L+boYzHqEFo9sVc3FvyLQI6jETG1dvouHc95C6OlXUZNd5rL9bDS0M98eWae3hz1mXk5OqwYlEryGUlZz2slBIEhWZixXf3Hnv8Hp2c0KKJGglJmopstlkZM9ITLw6pg+VrgzBlzhXkanT4ckFLk32sVEoQHJaJld+XnESIiM7BqnXBGD/9Et756Cpi43Ox3L8l7NRlvglr1vgZrjztmyswur8Ndp/IwsJ1KYiIy8eMMXawtS6+b33qSvHmC2qcDMzFwnUpuHxHg3dfVsPTpfDBm4O6WKFfByv8tC8TSzekQJMnwG+MHaRFn81ZK7CPqSYrU8AvCILR64yMDOj1+gptUFWz7jEI2WePIefCCejio5G+40cIeRpYdehZbHmZV2Now+4hN/A0dCmJ0N69jtzA05DVa2goo71zFZkH/oDm+oWquowaLeHACdz1X4W4XYdLVb7Bm68gJzQSt2Z/hszbIbi/Zgtitx+A9/vjDWW8p09AxPrfEblpBzJvBePa2/7QZeei3vgXK+kqar5Rwz2x+ff7CDibhOCwLCxZeRtOjgp07+RcYp0zF5Ox7ucwnDCREQUAZ0c5pk9pjEXLbyE/XzBZ1pKNGuqJn7ZFIOBcMkLuZ2Pp6rtwcpSjW0enEuucvZSCH7aG4+TZkvv48MkEXLyahpg4DcIisvHNj6GwUUnh00BVGZdRY/EzXHme62SFE5dz8e8VDWISdfhpbya0eQK6tVEWW75fBytcD9LiwOkcxCTqsPN4Nu7H5KNPeyujMn+dzEbgXS0i43VYvysD9rZitG1qWaMASot9XL1EYnG1bebAPFpZWSQSyDy9ob13o3CfIEB77wZkDRoVWyUv7B5kdb0MAb7E0QWKpq2huX2lKlpcK9h3aoPEo6eN9iUcCoBDpzYAAJFMBru2LZB45KFnQggCEo+egn2nZ6qwpTVHHTclnB0VOB+YYtiXla3DzbvpaNm0+LtVpSUSAfP9muKXHREIDa+9D9bzcFPAyVGOC1dSDfuysnW4dS8DLZs8WR8/TCoVYfhz7sjIykdwWFaFHbem42e48kjEQAMPKW6FFg4VEQDcDM2DT93iF9rwqSvDzdA8o303QrSG8s72YtjbSnDzoWPmaASEROXBx7N23ZkC2MdU85XpEyMSiSASiUp8bW7EKluIJBLoM9OM9usy0yB39Si2Tm7gaYhVtnB8ewEgAkQSKbJPH0bW0d1V0eRaQeHmDE1cotE+TVwiZHa2ECsVkDnYQSyVQhOf9EiZJKiaNERt5OggBwCkpBr/8UhJ1RreK6/XXqwHnV7Atj21a7zzo5zs/+vjNOPxtcmpWjjaP/nqZJ2fdYC/X1MoFWIkpWgx85PrSMsoeeyvpeFnuPLYWoshEYuQnml8Rz49Sw8P5+I/u3Y2YqRnPVI+Uw+1Smx4v+AYxndL0rP0UNvUvlwi+7j6mcsDsKpLmQL+B0twPgjyMzMz8cwzz0D8yO2M5OTk4qobaDQaaDTGYyjNZSKwvGEzqPoOR/qfG5EXHgSJszvUw8dC1W8Esg7vrO7mUS3Rv6crPnjnKcPr2YsqZ7JyEx8bjBpeFxOn175J5/17uGDm1MI7fXOW3jBR+sldvpaGN/wuw04tw7D+blg4qymmzLmC1LS8x1c2Q/wMExFVnTIF/D/++GOFnHTZsmVYuNB4Aqe/vz+mVsjRS0+flQFBp4PYxs5ov8TGDvqMtGLr2Ax4CbkX/0XOueMAgPzYSGTIFbB7cSKyjuwChNo3NrSiaeISoXAzHrOrcHNGXloG9LkaaBNToM/Ph8LV6ZEyTtDEGt8ZsFQB55Jw827hHBG5rOBHt4O9DEkphRloB3s5gkLKv9LL0y3s4GAnw/YNnQz7pBIR3p3og5eH18WoSWfLfeyaLuBcMm7evWx4LXvQx3ZyJKUUBuGO9nIEhT750JtcjR5RsbmIis3FzbsZ2PptOwzp64YtOyKf+Ng1ET/DVScjWw+dXiiSFVarxEjLLH4eXtpDmWZD+Ycy0g/qqVUipD30z6NWiRERW3vuTD3APqaarkwBv6+vb4WcdO7cufDz8zPap1AokDLvjQo5fqnpdMiLCoW8UYvCZTNFIsgbtUD2qUPFVhHJ5RCER/7nNfOJyzVN6plAuAzqYbTPuW8XpJwJBAAIeXlIu3QDzn06Fy7vKRLBqXdn3F/zcxW3tnrk5OgQlWO8LFtisgbPtnYwBJ/WVhI0f0qNnfuiy32eA8ficOGhMdUAsGLR0zhwLA57D8eW+7jmICdXh6hY4z5OStai3dP2CAor7ONmjW2x8++YCj+/SFwYBFsifoarjk4P3I/JRzMvOS7fKfgxJQLQzFuGo+eLX/I0ODIPzbxlOHyu8P3m3nIERxb82E1M1SM1Q4dm3nJExBWUUcpFaOgpw/GLJS9Ta6nYxzUAn7RrUrXM+lAoFDVmCE/2if2wGz0FeZGhyIsIhqr7QIjkCuSc/wcAYPfKFOjSUpC5/3cAgObmZVj3GIT8qPvICw+GxNmtIOt/87Ihuy+SKyBxdjOcQ+LoAmmd+tBnZ0GfanolCUskUVlD1ai+4bW1d12oWzeFNjkNuRExaLLED0pPN1yZMAcAcP/7X9Hg7dfQdNkHiNi4Hc69O8Fj1CCcHz7FcIzQVT+i9YbPkHrxOtLOX4XXNF9IVVaI2LSjyq+vpti2Owq+o+sjIjoHMXG5mDTWC0nJGpw8U3jXY9WSp3HidCJ27C0IoKyUYnh6FK4I4eGmRCNvFTIy8xGXoEF6Rj7SHxlHnp8vIClFi4ioktdGt1Tb/orCuFH1EBlT0MdvjGmApGQtAh5agWflwpY4eSYJO/YX/AiwUorh6f5IH3upkJ6Zj/hEDZQKMV5/qR7+PZ+MpBQt7GylGDm4DpwdFTh2qnbcsXqAn+HKc/BMDt543hZhMXkIjc5Hvw5WUMhE+PdKQeD4xvO2SMnQY8fRgh9bh8/lYPY4ezzXyQpX72nRoYUCXnWk2Lw3w3DMw+dyMLSbNeKSdUhM1WFkLxVSM/S4dLv2LXsKsI+pZitXwO/g4FDsZF2RSASlUolGjRph/PjxmDBhwhM3sLLlXjkLsUoN2wEvFjx4K/o+Un74HPrMdACAxN7ZaJhO5pGdECDAZuAoSOwcoM9MR+6ty8jcv81QRla3IRzf+tjwWj18LAAg58IJpP32fRVdWc1h164lOh/5yfC6+ZcfAQAiNu/A1TfmQuHhAqt6hZOkc8IicX74FDRfPhde741DbmQsrk2Zh8RDAYYyMdv2Q+7iiKf8pxU8eOvKLZwbOgna+Nr3g+qBLdsjoFRKMPvdp2CjkuLazTTM9L8GbV7h59fT3Qr26sIJZE0b2eLrZW0Mr6dNKhizvu9ILD5ddafK2m4utv4ZBaVSgllvNSro41vpmLX4ulEf13FXwu6hPm7iY4uvlrQyvH5vYsHE8v1H47Ds63vQ6wU0qGuFgb2bwk4tQ3pGHm4HZeK9j68iLKJ2rSjDz3DlOX9TA1trEUb0VEH930OhVm5NM0wIdVSLjUakBkfmY92f6RjZW4UXeqsQn6zDN7+nIyqh8K7M/lM5kMtE8B1iC2ulCPfC87Byaxrya+kzodjH1YuTdk0TCY8url8KK1euxNKlSzFo0CB06NABAHDu3Dn8/fffmDFjBkJDQ/HTTz/h66+/xuTJk0t93NgPxpa1KVRK7l/8jL2yJtXdDIs2JO8Oug37p7qbYbEC9vREj5EBjy9I5Xbiz278DFeygD098cbihOpuhsVaP9+F/VvJ1s93qe4mFCt9xfRqO7fab1W1nbu0ypXhDwgIwJIlSzB1qvE027Vr1+LgwYPYvn07nn76aXz11VdlCviJiIiIiMrMTB6AVV3K1TsHDhxAv379iuzv27cvDhw4AAAYPHgwQkJKfpQ8ERERERFVvnIF/I6OjtizZ0+R/Xv27IGjoyMAICsrC7a2tk/WOiIiIiIieiLlGtIzf/58vPXWWzh27JhhDP/58+exb98+fPfddwCAQ4cOoWfPnhXXUiIiIiKiYhS3mAwVKlfAP3nyZDRv3hzffPMNduwoWAaxSZMm+Oeff9ClSxcAwMyZMyuulUREREREVC7lXoe/a9eu6Nq1a0W2hYiIiIio7Dhp16RyB/w6nQ47d+7ErVu3AAAtWrTA8OHDIZFIKqxxRERERET0ZMoV8AcFBWHw4MGIiopCkyYFa7svW7YM9erVw969e+Hj41OhjSQiIiIiovIp1/2PadOmwcfHBxEREbh06RIuXbqE8PBweHt7Y9q0aRXdRiIiIiKiEonEomrbzEG5Mvz//PMPzpw5Y1iCEwCcnJzwf//3fxzXT0RERERUg5Qr4FcoFMjIyCiyPzMzE3K5/IkbRURERERUaiJO2jWlXL0zdOhQvPnmmzh79iwEQYAgCDhz5gymTp2K4cOHV3QbiYiIiIionMoV8H/11Vfw8fFB586doVQqoVQq0aVLFzRq1AirVq2q4CYSEREREZkgFlXfZgbKNaTH3t4eu3btQlBQkGFZzmbNmqFRo0YV2jgiIiIiInoypQ74/fz8TL5/7Ngxw3+vWLGi/C0iIiIiIqIKU+qA//Lly6UqJxKZx60NIiIiIrIMIk7aNanUAf/DGXwiIiIiIjIP5RrDT0RERERUY5jJ5NnqwvsfREREREQWjAE/EREREZEF45AeIiIiIjJrIjFz2Kawd4iIiIiILBgz/ERERERk3rgsvEnM8BMRERERWTBm+ImIiIjIvHEMv0nsHSIiIiIiC8aAn4iIiIjIgnFIDxERERGZN07aNYkZfiIiIiIiC8YMPxERERGZNT54yzT2DhERERGRBWPAT0RERERkwTikh4iIiIjMm4g5bFPYO0REREREFowZfiIiIiIyb2Iuy2kKM/xERERERBaMAT8RERERkQXjkB4iIiIiMmsiTto1ib1DRERERGTBRIIgCNXdCCIiIiKi8sr97fNqO7dy9OxqO3dp1aghPUMn36zuJlisv9Y1R7dh/1R3MyxawJ6e2CtrUt3NsFhD8u7g5Zlh1d0Mi/b7ci+MmhFa3c2waNtWeuPrvcyzVZb3hojw6W+66m6GRftotKS6m0DlUKMCfiIiIiKiMuMYfpPYO0REREREFowBPxERERGRBeOQHiIiIiIybyI+adcUZviJiIiIiCwYM/xEREREZN7EzGGbwt4hIiIiIrJgDPiJiIiIiCwYh/QQERERkXnjOvwmsXeIiIiIiCwYM/xEREREZN7EXJbTFGb4iYiIiIgsGDP8RERERGTeOIbfJPYOEREREZEFY8BPRERERGTBOKSHiIiIiMybiJN2TWGGn4iIiIjIgjHDT0RERETmTcwctinsHSIiIiIiC8aAn4iIiIjIgnFIDxERERGZN07aNalMAb9EIilVOZ1OV67GEBERERFRxSpTwC8IAho0aABfX18888wzldUmIiIiIqLS45N2TSpTwH/u3DmsX78eq1evhre3NyZOnIjXXnsNDg4OldU+IiIiIiJ6AmX6OfTss8/if//7H2JiYuDn54c///wTdevWxSuvvIJDhw5VVhuJiIiIiEomFlffZgbK1UqlUomxY8fiyJEjuH79OuLj4zFw4EAkJydXdPuIiIiIiOgJlHuVnsjISGzcuBEbN25EdnY2PvjgA6jV6opsGxERERERPaEyBfxarRZ//vkn1q9fj5MnT2LQoEFYtWoVBg0aVOoVfIiIiIiIKhSX5TSpTAG/h4cHbG1t4evrizVr1sDV1RUAkJWVZVSOmX4iIiIiopqhTAF/SkoKUlJSsHjxYixZsqTI+4IgQCQScR1+IiIiIqo6XJbTpDIF/MeOHausdhARERERUSUoU8Dfs2fPymoHERERERFVgjLd/9Dr9fjss8/QtWtXtG/fHh9++CFycnIqq21ERERERI8nElXfZgbKFPAvXboUH330EWxsbODp6YnVq1fjnXfeqay2ERERERHREypTwL9582asWbMGBw4cwM6dO7Fnzx5s2bIFer2+stpHRERERGSamT1p99tvv4WXlxeUSiU6duyIc+fOmSyfmpqKd955Bx4eHlAoFHjqqaewb9++0ndPWRoXHh6OwYMHG17369cPIpEI0dHRZTkMEREREVGt9Ntvv8HPzw/+/v64dOkSWrdujQEDBiA+Pr7Y8lqtFv3790dYWBj++OMP3LlzB+vWrYOnp2epz1mmSbv5+flQKpVG+2QyGfLy8spymBrrteEuGNDdHiprCW4FZWPNllhEx2tN1hnSywEvDHCCg50UoREarP0lBnfDcg3v26slmPiSG55pbgMrpRiRsRr8vi8Rpy5lVPbl1DhvvOaFYc+5w1YlxbVb6fhyzT1ExpQ8B6R1CzuMeaEemvjYwNlJgblLr+PkmaQSy896uzFGDKqD1euCsG13VGVcQo3k2O1ZNJz5BuzatoSyjisuvPg24nYfMV2nRwc0//JD2DRvjNyIGAQt+x8iN/9pVKbBW2PQ0O8NKNxdkH71Nm5MX4y089cq81LMwssD7NG3kw1UVmLcDtXgh+1JiE3MN1lnQFdbDOtlB3tbCe5Ha7HhzyQERxT/3TJ3kiueaWaNL36Mx/nr2ZVxCTXa6IH26NvZFiqlGLfDNFi3LbFU/Tu8z0P9uyMJQeGF/fvJO+5o0cjKqM7BU+lYt63k7xNLdDVgCy4fW4/sjEQ412mKHiPnwa3B08WWTYq9h7P7v0JC5A1kpESj2/Nz0aanb5FymalxOPXXl7h/+wTytbmwc66Pvq9+Crd6rSr7cmqkdo1E6NhUBBslEJcKHLykR0xy8WWd1UCPlmK4OwL2KhEOXdbj/F3BqEznZiI0qSuCky2QrwMiE4FjV/VIrn0hxGMJZjKWHgBWrFiByZMnY8KECQCA7777Dnv37sWGDRvw4YcfFim/YcMGJCcn49SpU5DJZAAALy+vMp2zTBl+QRAwfvx4vPDCC4YtNzcXU6dONdpnjl4c6IRhfR3x7c8xmPlpKHK1AhZNrw+ZtOQPUPdn1Zj0sht+2ZOA9xeHIDQyF4umN4CdbeFTh/0meqKuuwKLvwnHO58E4/TlDMyZUhcN6ylLPK4leu3FenhpqCe+XHMPb866jJxcHVYsagW5rOT+tVJKEBSaiRXf3Xvs8Xt0ckKLJmokJGkqstlmQaKyRvrVO7g+bWGpylt51UX73WuRdPwsAp59HqFfb0KrtUvg3L+boYzHqEFo9sVc3FvyLQI6jETG1dvouHc95C6OlXUZZuH53moM6q7Guj+S8NHqGGi0Aj5+083k90TnNtYYN9wRfxxMxZyV0bgfrcXHb7pBbVP063dIDzWEYo5RWzzfxw6Deqjx/bYkzF0VDY1Gj3lT3U32b5c2KviOcMK2A6mYs/y//p3iXqR/D59Ox+QF4Ybt590lRGEW6t7lfQjY9X9oP+AdjPbbAac6TbD7+0nIzij+R0++Nhd2TvXQeehMWNu6FFsmNzsN279+FWKJFMMnr8Nrc/ai2/NzoLSyq8xLqbGa1ROhbxsRAm4I2HBQj/hUAa/0FMNaUXx5mRRIzRJw/IqAzJzi/8+v7yLCxXsCNh3W45d/9JCIgVd7iiGTFFucqolGo0F6errRptEUH49otVpcvHgR/fr1M+wTi8Xo168fTp8+XWyd3bt3o3PnznjnnXfg5uaGli1b4tNPPy3Tc6/KFPCPGzcOrq6usLOzM2xjx45FnTp1jPaZo+f7OuK3vYk4eyUTYVEarNgQBUd7KTo/Y1tinRH9nXDgZCoOn0pDRIwW3/4cA41Wj/5d7Q1lmvlYY8/RZNwNy0VcYh5+25uIrGwdGjWoXQH/qOGe2Pz7fQScTUJwWBaWrLwNJ0cFundyLrHOmYvJWPdzGE6YyOoDgLOjHNOnNMai5beQn1/7wqWEAydw138V4nYdLlX5Bm++gpzQSNya/Rkyb4fg/potiN1+AN7vjzeU8Z4+ARHrf0fkph3IvBWMa2/7Q5edi3rjX6ykqzAPg3uoseNwKi7cyEF4TB6++SUBDmop2re0LrHO0B52OHImA8fPZyIqLg/rtidBmyegdwfj75YGdeQY2lON//1Wu7LODxvSU43tB1Nx4Xp2Qf9uTYCDWoL2rUz0by81jpzOwPFzmYiMy8P325Kg1Qro09G4fzVaAakZOsOWo6ld3xWB/2xEi06j0LzDi3B0b4TeLy2EVKbErXPbiy3vVr8Vug6fjaeeGQKJVFZsmUtHf4CNvQf6vboMbg2ehtqpLuo36QY75/qVeSk1VocmIgSGCLgaKiAxHdh/QUB+PtDau/gfrDHJwNErAm5GCMgvYSrkbyf0uBZWcLz4VOCvc3rYqURwr925lxpn2bJlRnGwnZ0dli1bVmzZxMRE6HQ6uLm5Ge13c3NDbGxssXVCQkLwxx9/QKfTYd++fZg/fz6WL19e7ENwS1KmIT0bN24sS3Gz4eYsg6O9DIG3Mg37snP0uBOSg6YNrXDifHqROlIJ0KiBEtv2Jxr2CQIQeCsLTX2sART80b4VnI3u7dU4fzUDWTl6dH9WDblMjGt3sir9umqKOm5KODsqcD4wxbAvK1uHm3fT0bKpGkdOJpT72CIRMN+vKX7ZEYHQ8No3/KE87Du1QeJR4yxCwqEANF/+EQBAJJPBrm0LBH+2trCAICDx6CnYd3qmKptao7g6SuGgluLq3cIhezm5AoLCNXiqgQKnAov+Py2RAA3ryrHzaJphnyAA1+7m4qkGhWk/uUyE919zxvodSUjLqJ1PKnd1Kujfaw/1b3augKD7GjTxUuDU5aL9K5UADesq8Odh4/69ei/HqH8BoHs7G3RvZ4PUDB0u3sjGHwdToc2rHUG/Ll+L+MgbaNf3TcM+kViMuk91RmxYYLmPG3rjKOo36Yb9m95HdPB5qOzc0KrLq2jR+eUKaLV5EYsBDwfg9C3jz1RonABPZxFQQffuFP/99so1Pdq4dqrGJ+3OnTsXfn5+RvsUihJu7ZSDXq+Hq6srvv/+e0gkErRr1w5RUVH44osv4O/vX6pjlCng1+l0uHHjBho3bgwrK+PxkNnZ2QgKCkLLli0hLueM5eriYFfQDanpxn9oUzPyYW9XfBepbaSQSERITTceW5qano+67oX/yJ+tjcScKXXx6+qmyM8XoNHqsXRNBGISLGPeQ2k4OsgBACmpxteckqo1vFder71YDzq9gG17as+Y/SelcHOGJi7RaJ8mLhEyO1uIlQrIHOwglkqhiU96pEwSVE0aVmVTaxR7dcE99EcD8rQMneG9R6lVkoLviUfqpGbqUMe1MGvq+7wj7tzX4MKN2vtcE/v/hkKmZhbtK3vb4vvX9r/+Le7fxPOh/g24lIWE5DSkpOejvoccY4c5oo6rDF/+WPwEOUuTk5UCQa+Dla2T0X5rW2ekxoeW+7jpSRG4fuoXtOk5Hs/2nYK4iGs48edSiKUyNGs/8kmbbVas5YBYLEJWrvH+rFzASV1x5+n3jBgRCQIS0h5flqqOQqEodYDv7OwMiUSCuLg4o/1xcXFwd3cvto6HhwdkMhkkksLvwmbNmiE2NhZarRZy+eNjqTIF/D/99BO++eYbnD17tsh7crkcEydOxPTp0zF27FiTx9FoNEXGNlXkL6HH6dVRjXfG1jG8Xvh1eKWda+wIV6isJPh4+X2kZ+aj0zO2mDOlLuZ8Hob7UZY53rx/T1d88M5ThtezF1XORM8mPjYYNbwuJk6/WCnHp9qtW1sV3nypMEBa9kOcidLl166FFVo2UmL2itq12lm3tipMeblwSN+ydZXTvwBw+HThDMfwmDykpuvg/44H3JykiEsyPSGYSiYIAlzrtUDnIQWZTZe6zZEccw/XT/1a6wL+qjCwnQgudsBPR7gUerGqMcNfFnK5HO3atcORI0cwYsQIAAUZ/CNHjuDdd98ttk7Xrl2xdetW6PV6Q1L97t278PDwKFWwD5Qx4F+/fj1mzZpl9AvDcCCpFLNnz8Y333zz2IB/2bJlWLjQeIJhwS2JqrkNeDYwE3dCgg2vZbKCzrNXS5CSVvjlb28rRWhEbpH6AJCemQ+dToC92rgL7dVSpPyX9Xd3kWFYH0e87R+M8OiC4D40UoMWjawxtLcDvv25+LFa5i7gXBJu3r1geC3/r38d7GVISim8D+lgL0dQSGaR+qX1dAs7ONjJsH1DJ8M+qUSEdyf64OXhdTFqUtEfplSQzVe4Gc+dULg5Iy8tA/pcDbSJKdDn50Ph6vRIGSdoYo3vDFiyCzeyce9+4Y/yBxNH7WwlRhl7O1sJwqKKv7+enqUr+J54JENtb1N4jJaNrODmJMXGJcbjnmf6uuBWiAYL/2eZ3xMXbmQj6MvCO3PS//rX3kZidLfV3kaCsOji+zfjv/61e6R/7WwlRe7YPuxeeMG/q7uzrFYE/FYqB4jEEuQ8MkE3OyMR1rYlz6N6HJXaBY5ujYz2Obj5IPjqwXIf01xlawG9XoDqkel5KiWKZP3L47m2IjSqI8JPR/XIqL03Ai2Gn58ffH198eyzz6JDhw5YtWoVsrKyDKv2jBs3Dp6enoZ5AG+99Ra++eYbvP/++3jvvfdw7949fPrpp5g2bVqpz1mmgP/OnTvo1KlTie+3b98et27deuxxShrr9OK7wSXUqFg5Gj1yEox/ISen5qFNUxVCIwr+EFgpxWjS0Ar7/0kp7hDI1wFB93PRupkKZwILskciEdC6mQp/HS1Y/UEhLwh09XrjsXt6ARCZ0fJRZZWTo0NUjvEf28RkDZ5t7YCg0IJxuNZWEjR/So2d+8qf1TxwLA4XAo3/fVYsehoHjsVh72HLDJIqQuqZQLgM6mG0z7lvF6ScCQQACHl5SLt0A859Ohcu7ykSwal3Z9xf83MVt7b65GoE5GqMg8GU9Hy0aqzE/f8CUCuFCI3qK3DwVPFr5Ol0QEikFi0bKw1LbIpEQMvGSvz9b0GdnUfTcPSscf3lH3hi065kXLhpuX/ZczUCYovp35ZPKQ0BvpVChEYNFDhQQv/m64CQSA1aPWXcv60aW+HvgKJzrx7w8pQbzlcbSKRyuNZtgYh7p9GwVcHKIIJej8h7Z/B0t9fKfVx3r2eQ8siQoNSEMNg61imhhuXS64GYFMDLTYS7UYV/873cClbZeRLPtRWhiacIPx/TI632TP+zaKNHj0ZCQgIWLFiA2NhYtGnTBn///bdhIm94eLjR8Ph69erhwIEDmDFjBp5++ml4enri/fffx5w5c0p9zjIF/FlZWUhPL/lLNCMjA9nZj584WZaxTlVl15FkjB7igqh4LeIS8zD2eRckp+bj9OXCPzRL/Rrg9OV0/HWsIMjceSgJMybWwb2wHNwNzcHz/ZyglItx+N9UAEBkrAbRcRq8+7oHNmyLQ3qWDp3b2KJNMxUWfR1RHZdZbbbtjoLv6PqIiM5BTFwuJo31QlKyBifPFGaMVy15GidOJ2LH3oIfAVZKMTw9CueKeLgp0chbhYzMfMQlaJCekY/0DOM/2Pn5ApJStIiIstxA6VESlTVUjQqzw9bedaFu3RTa5DTkRsSgyRI/KD3dcGVCwRfD/e9/RYO3X0PTZR8gYuN2OPfuBI9Rg3B++BTDMUJX/YjWGz5D6sXrSDt/FV7TfCFVWSFi044qv76aZN+JdLzQzw4xiXmIT8rHK4MckJKeb7Re/vypbjh3LRsH/gvo/zqRhndecUFIhAZB4VoM7qGGQi7C8XMF76dl6IqdqJuYqkNCcu0ISB/Y+086Xuxvj9iEfMQn52H0IAekpOtw/lph/y54yx3nrmXh74D/+vd4Ot4Z44zgCC2C7mswpGdB/x7770eUm5MU3dra4PKtbGRk6dGgjhy+IxxxM6hgpaXaok3P8Tj8y4dwrdcSbvWfxpV/NiFfm4NmHQqW0j60dQ5Uald0GToTQMFE3+S4giScTpeHrLQ4JETdgkxuDXuXBoZjbv/qVVw4/B0atR6EuPCruHHmd/Qetah6LrKanbsjYFhHEWKSgegkAR2aiCCTAldDCwL+YR1FyMgGjl8reC0WF6zFDwASMWBrBbjaA3n5QMp/N78HtBOhRX0R/gjQQ5sPwx0ETV7BD14qZE7r8APAu+++W+IQnuPHjxfZ17lzZ5w5c6bc5ytTwN+4cWOcOnUKTz9d/IM6AgIC0Lhx43I3pjpt/zsJSrkY771eByprMW7ey8aC1eHIe2iZR3cXGdQ2hV128kI67GwlGPu8CxzUUoREaLBgdbjhVr1OB3zyVQR8X3DF/Pfqw0ohRky8Fit/jMaF6+UfymKOtmyPgFIpwex3n4KNSoprN9Mw0/+a0SoZnu5WsFcXTrRr2sgWXy9rY3g9bVLBreN9R2Lx6ao7Vdb2ms6uXUt0PvKT4XXzLwtW24nYvANX35gLhYcLrOp5GN7PCYvE+eFT0Hz5XHi9Nw65kbG4NmUeEg8FGMrEbNsPuYsjnvKfVvDgrSu3cG7oJGjja++SkQCw61g6FHIxprzkDGsrMW6H5uLT7+OMvifcnGRQqwqHmJwOzIZalYyXBzjAXl0w/OfTdXFIy+Q43EftOpoGpVyEKS87/de/GixdG2vcv85S2D7Uv6cCs6C2EWP0wAf9q8HStYX9m68T8PRTSsMPgaRUHc5ezcL2g6lVfXnVqvEzg5GTmYxzf3+NrPQEuHg2w7A31xmG9GSkRBvdec5Kj8dvywvH4V8+vgGXj29AHZ/2eOGdgu8bt/qtMGjC1zi9dwXOH1wDtWNddH9+Lpq0G1a1F1dD3IoQYK0AerQUQaUUIS4V+O0fPbL+GxmothZBEAo/y7ZKYNKAws9yp6YidGoK3I8XsOVYwee3XaOCLO/YPsbD1vacLViuk6i0RMLDn77H+Pzzz/H555/j6NGjRYL+K1euoG/fvpg9ezZmz55drsYMnXyzXPXo8f5a1xzdhv1T3c2waAF7emKvrEl1N8NiDcm7g5dnhlV3Myza78u9MGpG+VdtocfbttIbX+9loFZZ3hsiwqe/MfVdmT4aXTOf+pV94vdqO7d1j5q/FG2ZMvwzZszA/v370a5dO/Tr1w9NmzYFANy+fRuHDx9G165dMWPGjEppKBERERERlV2ZAn6ZTIaDBw9i5cqV2Lp1K06cOAFBEPDUU09h6dKlmD59OmSy4p/IR0RERERUKcxsDH9VK1PADxQE/U8ybIeIiIiIiKqOeTylgIiIiIiIyqXMGX4AcHBwKHYdeZFIBKVSiUaNGmH8+PGGBwgQEREREVUaMXPYppQr4F+wYAGWLl2KQYMGoUOHDgCAc+fO4e+//8Y777yD0NBQvPXWW8jPz8fkyZMrtMFERERERFR65Qr4AwICsGTJEkydOtVo/9q1a3Hw4EFs374dTz/9NL766isG/ERERERUqcztwVtVrVz3Pw4cOIB+/foV2d+3b18cOHAAADB48GCEhIQ8WeuIiIiIiOiJlCvgd3R0xJ49e4rs37NnDxwdHQEAWVlZsLW1fbLWERERERHREynXkJ758+fjrbfewrFjxwxj+M+fP499+/bhu+++AwAcOnQIPXv2rLiWEhEREREVR8RJu6aUK+CfPHkymjdvjm+++QY7duwAADRp0gT//PMPunTpAgCYOXNmxbWSiIiIiIjKpVwBPwB07doVXbt2rci2EBERERGVmcAMv0nlDvh1Oh127tyJW7duAQBatGiB4cOHQyKRVFjjiIiIiIjoyZQr4A8KCsLgwYMRFRWFJk2aAACWLVuGevXqYe/evfDx8anQRhIRERERlYjLcppUrvsf06ZNg4+PDyIiInDp0iVcunQJ4eHh8Pb2xrRp0yq6jUREREREVE7lyvD/888/OHPmjGEJTgBwcnLC//3f/3FcPxERERFRDVKugF+hUCAjI6PI/szMTMjl8iduFBERERFRaXHSrmnl6p2hQ4fizTffxNmzZyEIAgRBwJkzZzB16lQMHz68ottIRERERETlVK6A/6uvvoKPjw86d+4MpVIJpVKJLl26oFGjRli1alUFN5GIiIiIyASRqPo2M1CuIT329vbYtWsXgoKCDMtyNmvWDI0aNarQxhERERER0ZMpdcDv5+dn8v1jx44Z/nvFihXlbxEREREREVWYUgf8ly9fLlU5kZnc2iAiIiIiC8FJuyaVOuB/OINPRERERETmoVxj+ImIiIiIagqBI0xM4v0PIiIiIiILxoCfiIiIiMiCcUgPEREREZk3Tto1ib1DRERERGTBmOEnIiIiIrMmgJN2TWGGn4iIiIjIgjHDT0RERERmTeAYfpPYO0REREREFowBPxERERGRBeOQHiIiIiIybxzSYxJ7h4iIiIjIgjHDT0RERERmTRBxWU5TmOEnIiIiIrJgDPiJiIiIiCwYh/QQERERkVnjOvymiQRBEKq7EURERERE5ZV89WS1ndvx6e7Vdu7SqlEZ/sETr1V3EyzWvg2t0GNkQHU3w6Kd+LMbXp4ZVt3NsFi/L/fCXlmT6m6GRRuSdwdHvZ6u7mZYtD5hVzH+k7jqbobF2viJG8bNj6nuZli0zYs9qrsJxeOkXZN4/4OIiIiIyILVqAw/EREREVFZcQy/aewdIiIiIiILxoCfiIiIiMiCcUgPEREREZk1AZy0awoz/EREREREFowZfiIiIiIya5y0axp7h4iIiIjIgjHgJyIiIiKyYBzSQ0RERETmjU/aNYkZfiIiIiIiC8YMPxERERGZNYE5bJPYO0REREREFowZfiIiIiIyawLH8JvEDD8RERERkQVjwE9EREREZME4pIeIiIiIzBqftGsae4eIiIiIyIIxw09EREREZk0AJ+2awgw/EREREZEFY8BPRERERGTByh3wBwcHY968eXj11VcRHx8PANi/fz9u3LhRYY0jIiIiInocQSSuts0clKuV//zzD1q1aoWzZ89ix44dyMzMBABcuXIF/v7+FdpAIiIiIiIqv3IF/B9++CGWLFmCQ4cOQS6XG/b36dMHZ86cqbDGERERERE9jiASVdtmDsoV8F+7dg0jR44sst/V1RWJiYlP3CgiIiIiIqoY5Qr47e3tERMTU2T/5cuX4enp+cSNIiIiIiIqLQGiatvMQbkC/ldeeQVz5sxBbGwsRCIR9Ho9/v33X8yaNQvjxo2r6DYSEREREVE5lSvg//TTT9G0aVPUq1cPmZmZaN68OXr06IEuXbpg3rx5Fd1GIiIiIiIqp3I9aVcul2PdunWYP38+rl+/jszMTDzzzDNo3LhxRbePiIiIiMgkc1kes7qUK+B/oH79+qhfv35FtYWIiIiIiCpYuQL+iRMnmnx/w4YN5WoMEREREVFZmcvk2epSroA/JSXF6HVeXh6uX7+O1NRU9OnTp0IaRkRERERET65cAf+ff/5ZZJ9er8dbb70FHx+fJ24UERERERFVjAqb4SAWi+Hn54eVK1dW1CGJiIiIiB5LEImrbTMHFdrK4OBg5OfnV+QhiYiIiIjoCZRrSI+fn5/Ra0EQEBMTg71798LX17dCGkZEREREVBqctGtauQL+y5cvG70Wi8VwcXHB8uXLH7uCT002doQrBvZwhMpagptB2fh2cxSi47Um6wzt44gXB7rAwU6K0Ihc/G9LNO6G5hjed3eRY9Jod7RorIJMKsLF6xn435YYpKbXvjshE1+tj2H93GGjkuDa7QysWBuEyJjcEsu3bq7GKyPqoomPCs6OCny07CYCziUblZkwuj76dHOGq7MC+fkC7gRnYt2WMNy6l1nZl1MjvTzAHn072UBlJcbtUA1+2J6E2ETTn7UBXW0xrJcd7G0luB+txYY/kxAcUfznfu4kVzzTzBpf/BiP89ezK+MSaiTHbs+i4cw3YNe2JZR1XHHhxbcRt/uI6To9OqD5lx/Cpnlj5EbEIGjZ/xC52Xj+U4O3xqCh3xtQuLsg/ept3Ji+GGnnr1XmpdRonq+PRv0p4yF3cUbmrbu4678MGVeuF1tWJJWiwdtvwOPF4ZC7uyI7JAzB/7cKyf/8ayjTOWA/rOp6FqkbuflX3F3waaVdR003srcKPdtawVopxr0ILTb/lYG4ZJ3JOn3bW2FQVxXsbMQIj83Hz/vTERpV+N0ikwKvPGeLji2VkEqB60FabN6bgfQsfWVfTo3zQh8b9HrWuqB/w7XYuDvt8f3bwRqDu6lgZyNBRGweftqbjpCoPMP7vZ61QuenreDlIYOVUoypS2ORnStU9qWQBSnXkJ5jx44ZbUeOHMGvv/6KN998E1LpEy3tX21eGuSM4f2c8c3mKMxYEoxcjR6LZ3pDJi35F2OP9naYPNoDW3fH472FQQiJyMViP2/Y2UoAAAq5CEtnekEQgLmfh2DWp8GQSkTwn9YAolr2Q3TMSE+8OKQOlq8NwpQ5V5Cr0eHLBS0hl5XcEUqlBMFhmVj5fUiJZSKic7BqXTDGT7+Edz66itj4XCz3bwk7tXl+Dp/E873VGNRdjXV/JOGj1THQaAV8/Kabyc9w5zbWGDfcEX8cTMWcldG4H63Fx2+6QW1T9KthSA81auufF4nKGulX7+D6tIWlKm/lVRftd69F0vGzCHj2eYR+vQmt1i6Bc/9uhjIeowah2RdzcW/JtwjoMBIZV2+j4971kLs4VtZl1GiuQweg8bwPELb6O5wfMhqZN++gzebvIHMqvj8aznoXnmNewl3/ZTjbbwSit2xDq7UrYdOiqaHMheFjENC+t2G7/NpkAED8voNVck010eCu1ujf0Rqb/srAoh+SodEKmPm6PWQmvjI7tFDglQG22Hk8E/5rkxARl4dZYx1gqyr8bnl1gC3aNFHg222pWPZjCuxtxXhvtF0VXFHNMqS7Cv07qbBxdxoWrk2ERivgA19Hk/3bsaUSYwapsfNYJhb8LxHhsfn4wNcRtqrC72GFTIRr9zTYc6J2JrNKg2P4TTOPVlaBEf2d8eueeJwJzEBYZC6W/xABJ3spOrdVl1hn5ABn/H0iBYcCUhARrcE3m6Og0erxXPeCP1DNG6vg6izHivWRCIvSICxKg+XrI9HYywqtm6mq6tJqhFFDPfHTtggEnEtGyP1sLF19F06OcnTr6FRinbOXUvDD1nCcPJtUYpnDJxNw8WoaYuI0CIvIxjc/hsJGJYVPg9rVvwAwuIcaOw6n4sKNHITH5OGbXxLgoJaifUvrEusM7WGHI2cycPx8JqLi8rBuexK0eQJ6d7A1KtegjhxDe6rxv99K/rewZAkHTuCu/yrE7TpcqvIN3nwFOaGRuDX7M2TeDsH9NVsQu/0AvN8fbyjjPX0CItb/jshNO5B5KxjX3vaHLjsX9ca/WElXUbPVmzQO0b9uR8y2XcgOCsGdjxdDn5ODOi+PKLa8+8ihCPv2ByQdD0BuRBSifv4dSccCUH/SOEOZvOQUaBOSDJtz357IDgtH6pkLVXRVNc9znayx+0QWLt/RIDIuH+v+TIeDrQRtmypKrDOgswr/XMpBQGAuohN02PRXBrR5Ano8YwUAsFKI0KOtFX45kIFboXm4H5OP9bvS0bi+HD51ZVV1aTXCgM4q7P4nE5duaxARl4+121NhbytB22bKEusM7KLC8QvZOHk5B9EJ+di4Jw2aPAE921oZyhw4nY2/TmYhKCKvxOMQmVLqgP+ZZ55B27ZtS7WZG3cXGRztZQi8WfjLOTtHjzsh2WjmU3ywJJWI0KiBlVEdQQACb2ai6X91ZFIRIAB5+YV5UW2eAEEAWjSuPQGph5sCTo5yXLiSatiXla3DrXsZaNmk5B9UZSWVijD8OXdkZOUjOCyrwo5rDlwdpXBQS3H1buEQqZxcAUHhGjzVoPg/5BIJ0LCuHNfuFdYRBODa3VyjOnKZCO+/5oz1O5KQlmH6tjQVsO/UBolHTxvtSzgUAIdObQAAIpkMdm1bIPHIqcICgoDEo6dg3+mZKmxpzSCSSWHbshmS/z1TuFMQkPzvWajbti62jlguh15jPPRMn5sLu/bF959IJoXbiCGI+X1nRTXb7Lg4SGBvK8HNkMJ+y9EICI7Mg09debF1JBLAq47UqI4gADdCtIZg3quOFFKJyKhMTKIOiam6WhXwP+jfG8Eaw74cjYCQSC0a1TPVvzLcCCmsIwjAzWBNiXWIyqPU4x5GjBhRic2oXg7qgi+klEfG1aem58PBrvguUttKIJGIiq1Tz6MgWLodko1cjR4TR7lj0/ZYAMCEl9whkYhKPK4lcrIv+NJKSTP+45ycqoWj/ZP/Mej8rAP8/ZpCqRAjKUWLmZ9cR1pG7ZojYa8uGEb2aECelqEzvPcotargM5z6SJ3UTB3quBb+u/g+74g79zW4cCPn0UNQCRRuztDEJRrt08QlQmZnC7FSAZmDHcRSKTTxSY+USYKqScOqbGqNIHNwgFgqhTbRuD+0CUmw9vEutk7SiVOoN+l1pJ67iJz7EXDo2hEuA/tCJC7+8+7yXB9I1baI+WNXhbffXNj9N1QvLdN4XH16lt7w3qNsrcWQiEXF1vFwlv93XAny8oUiY8pNHdcSldS/aVl62JvqX4kI6Y/WydTDw7n2xAkVgZN2TSv1p8nf37/CTqrRaKDRaIz2KRQl306saL062eO9cXUMr/1X3a+U86Rn6PDp/8Lx7ut1MLyvEwQB+OdsKu6F5UCw4MHQ/Xu4YObURobXc5beqNTzXb6Whjf8LsNOLcOw/m5YOKsppsy5gtQ0y7312a2tCm++VDgcatkPcZVynnYtrNCykRKzV0RXyvGJyuvews/Q9P/80enILgiCgJz7kYjZtgseJQwB8hg9EsnH/4U2PqFqG1qNOrdSwndY4fC8lVtSq68xFqjz00pMGF44T2H5zynV2Boi06rl5+OyZcuwcKHx5LeCHxRVM3b1bGA67oQUrjDyYFKjg1qKlLTCzLC9WoqQ8OJXkUnP0EGnE+DwyORQe7UUyQ8d4/KNTLzx4V2obSTQ6QRk5ejx88qmiD1nevUfcxZwLhk37xau5CSTFWQ2HOzkSEopDMId7eUICn3yoTe5Gj2iYnMRFZuLm3czsPXbdhjS1w1bdkQ+8bFrqgs3snHvfuGP5gefYTtbiVHG3s5WgrCo4j9r6VkFn2F7W+OMqL1N4TFaNrKCm5MUG5fUNyoz09cFt0I0WPi/2Aq5HkujiUuEws3ZaJ/CzRl5aRnQ52qgTUyBPj8fClenR8o4QRNrfGegNshLKegPubNxf8hdnKBNKL4/8pJTcO3N6RAr5JDa20MbFw+fD6cjJ7zo//dKTw84du2Ea1NnVEr7a6rLdzQIfmilF+l//6vb2YiNstBqVcHKO8XJyNZDpxeKZOrVKjHSMgu+J9IydZBJRbBWioyy/AVlLHeVnsu3NQiOLPx8Gr6HH+lfO5UY9031r04oslDCo8egxxNq22ooZVSue206nQ5ffvklOnToAHd3dzg6OhptjzN37lykpaUZbXPnzi1PU8olJ1ePmHitYQuP1iA5NQ+tm9sYylgpxWjS0Bq3gotfejBfJyDofo7R5FuRCGjTzAa3i6mTnqlDVo4erZuqYG8rxZnA9Iq/sBoiJ1dnCMCjYnMRFpGNpGQt2j1tbyhjbSVBs8a2uH6n4vtBJAbkMsu+jZyrERCXlG/YIuPykJKej1aNCyeGWSlEaFRfgbv3NcUeQ6cDQiK1aPlQHZEIaNlYaaiz82gaPlgejdkrCjcA2LQrGWt+q32BaWmlngmEU59ORvuc+3ZByplAAICQl4e0Szfg3KdzYQGRCE69OyP1jPGyx7WBkJePjOu34NClY+FOkQgOXToi/dIVk3X1Gi20cfEQSaVwGdgPiYeOFynjMWoEtEnJSDp6soJbXrPlagXEJ+sMW3SCDqkZOjT3LhwbrlSI4FNXhuDI4hMDOh0QFp1vVEckApo3lCM4suDHRFh0PvJ1glEZdycJnO0lhjKW6NH+jYrPL+jfhoUjFpQKERrWlSOohKWOC/o3Dy0eqlPQv4oS6xCVR7ky/AsXLsQPP/yAmTNnYt68efj4448RFhaGnTt3YsGCBY+tr1AoqnQIT2nsPJSIV4a6IjpOg7gELV4f6Yak1HycvlQYkH46yxunLqXjr6MF40z/PJAIv0l1cS8sB3dDc/B8fycoFGIcCii8rde/mwPCo3ORlqFDMx9rTBnjgZ2HEhEVW7v+R972VxTGjaqHyJgcxMTl4o0xDZCUrEXAQyvwrFzYEifPJGHH/hgABT+6PN0LVynwcFOikZcK6Zn5iE/UQKkQ4/WX6uHf88lIStHCzlaKkYPrwNlRgWOnal8wuu9EOl7oZ4eYxDzEJ+XjlUEOSEnPN1ovf/5UN5y7lo0D/2YAAP46kYZ3XnFBSIQGQeFaDO6hhkIuwvFzBe+nZeiKnaibmKpDQnLtmSchUVlD1ajwLoe1d12oWzeFNjkNuRExaLLED0pPN1yZMAcAcP/7X9Hg7dfQdNkHiNi4Hc69O8Fj1CCcHz7FcIzQVT+i9YbPkHrxOtLOX4XXNF9IVVaI2LSjyq+vJoj4YTOaLV+CjGs3kR54DfXeGAuJtRWit+0EADRbvhSauDiEfP4VAEDdphUUbq7IuHkbCnc3eE9/CyKxGOFrfzQ+sEgEj5eeR+z23RB0nHR+8Ew2hvVQITZZh8QUHV7oo0JKhg6XbhcmBmaPs8fF2xocOVcwb+fA6SxMHmmH0Og8hETl4blO1lDIRDh5ueAOeI5GwIlLOXhlgC0yc/TI0QgYO9gW9yK0Fh3wF+fA6Sw838sGccn5SEjR4cW+tkjN0OHSrcLRAnPGO+LirVwcPlvw3fz3qSxMfsEeoVH/9W9nayjkIpy4VDhvys5GDDsbMdycCm7T1HWTIlcjIClNh6wcCx4jTBWmXAH/li1bsG7dOgwZMgSffPIJXn31Vfj4+ODpp5/GmTNnMG3atIpuZ6X7Y38ilAox3vP1hI21BDfuZWPBilCjFXY8XOWGNfYB4MT5NKhtpXh9hBsc7KQIicjFgpWhRg/V8nSXw/dFN9iqJIhPzMNvfyXgz4O1Lxjd+mcUlEoJZr3VCDYqKa7dSsesxdehzSvs3zruStipCyeLNvGxxVdLWhlevzexYDLj/qNxWPb1Pej1AhrUtcLA3k1hp5YhPSMPt4My8d7HVxEWUXseCvXArmPpUMjFmPKSM6ytxLgdmotPv48z+gy7OcmgVhV+hk8HZkOtSsbLAxxgry4Y/vPpujjeSn6EXbuW6HzkJ8Pr5l9+BACI2LwDV9+YC4WHC6zqeRjezwmLxPnhU9B8+Vx4vTcOuZGxuDZlHhIPBRjKxGzbD7mLI57yn1bw4K0rt3Bu6CRo42vn0qfxfx2AzNEBDWe8DbmLMzJu3cEV37eQl1jwsD2lpzsgFH4uxQo5Gs56F8r6daHLykbSsQDcnPER8tMzjI7r2K0TlHXrILoWr87zsH3/ZkMhF2HCMFtYK8W4G67F8p9TkffQ73dXRylsrQsD9XM3NLBVZWBkbxvDg7eW/5xi9FCtXw5kQBCAd0fbQyYR4VqwBj/tNf63qA32nsyCQibChOF2hgdvfbk5+ZH+lcDWuvAu9NnrubBVpeOFvjaws5EgPCYPX2xONurfPu2tMbJP4XyMeZMKhgx+vyMVAZe5oAIACAKH9JgiEoSyTx9VqVS4desW6tevDw8PD+zduxdt27ZFSEgInnnmGaSlpZWrMYMn1t4nTFa2fRtaocfIgMcXpHI78Wc3vDwzrLqbYbF+X+6FvbIm1d0MizYk7w6Oej1d3c2waH3CrmL8J5UzyZ6AjZ+4Ydz8mOpuhkXbvNjj8YWqQVBwaLWdu1EJq4nVJOUa6Fy3bl3ExBT8D+Xj44ODBwueWnj+/PkaN1SHiIiIiCybAHG1beagXK0cOXIkjhw5AgB47733MH/+fDRu3Bjjxo3DxIkTK7SBRERERERUfmUaw//NN99g7Nix+L//+z/DvtGjR6N+/fo4ffo0GjdujGHDhlV4I4mIiIiISsIHb5lWpgz/xx9/jDp16uC1117D0aNHDfs7d+4MPz8/BvtERERERDVMmQL+2NhYfPfdd4iOjkb//v3h7e2NxYsXIyIiorLaR0RERERET6BMAb+VlRXGjRuHY8eO4d69e3j99dexfv16eHt7Y+DAgdi2bRvy8mrXmrtEREREVL0EiKptMwflnlrcsGFDLFq0CKGhodi/fz+cnJwwfvx4eHp6VmT7iIiIiIgsyrfffgsvLy8olUp07NgR586dK1W9X3/9FSKRCCNGjCjT+Z54LSGRSASpVAqRSARBEJjhJyIiIqIqZU4Z/t9++w1+fn7w9/fHpUuX0Lp1awwYMADx8fEm64WFhWHWrFno3r17mc9Z7oA/IiICixYtQsOGDdG/f39ER0dj3bp1hvX5iYiIiIjI2IoVKzB58mRMmDABzZs3x3fffQdra2ts2LChxDo6nQ6vvfYaFi5ciIYNG5b5nGUK+LVaLX799Vc899xz8Pb2xrp16zBmzBjcvXsXR48exWuvvQalUlnmRhARERERWTqtVouLFy+iX79+hn1isRj9+vXD6dOnS6y3aNEiuLq64o033ijXecu0Dr+7uzuys7MxdOhQ7NmzBwMGDIBYbB5PGCMiIiIiy1Sdk2c1Gg00Go3RPoVCAYVCUaRsYmIidDod3NzcjPa7ubnh9u3bxR4/ICAA69evR2BgYLnbWKZofd68eYiIiMAff/yBQYMGQSwW45dffkFWVla5G0BEREREZK6WLVsGOzs7o23ZsmUVcuyMjAy8/vrrWLduHZydnct9nDJl+P38/IrsmzJlCjp27Fiu8URERERERE9KEKovwz937twiMXJx2X0AcHZ2hkQiQVxcnNH+uLg4uLu7FykfHByMsLAwo4fb6vV6AIBUKsWdO3fg4+Pz2DaWKeAvjiAIT3oIIiIiIiKzVNLwneLI5XK0a9cOR44cMSytqdfrceTIEbz77rtFyjdt2hTXrl0z2jdv3jxkZGRg9erVqFevXqnO+8QBPxERERERlY6fnx98fX3x7LPPokOHDli1ahWysrIwYcIEAMC4cePg6emJZcuWQalUomXLlkb17e3tAaDIflPKFPDr9Xp88cUX2L17N7RaLfr27Yt9+/bxYVtEREREVG3M5Ym3ADB69GgkJCRgwYIFiI2NRZs2bfD3338bJvKGh4dX+KI4ZQr4ly5dik8++QT9+vWDlZUVVq9ejfj4+HI9AICIiIiIqDZ69913ix3CAwDHjx83WXfjxo1lPl+Zfj5s3rwZa9aswYEDB7Bz507s2bMHW7ZsMUweICIiIiKqaub0pN3qUKaAPzw8HIMHDza87tevH0QiEaKjoyu8YURERERE9OTKNKQnPz+/yJN0ZTIZ8vLyKrRRRERERESlZS6Z9upSpoBfEASMHz/eaOmh3NxcTJ06FSqVyrBvx44dFddCIiIiIiIqtzIF/L6+vkX2jR07tsIaQ0REREREFatMAf+PP/5YWe0gIiIiIiqX6nzSrjmo2EU+iYiIiIioRuGTdomIiIjIrOk5adckZviJiIiIiCwYA34iIiIiIgvGIT1EREREZNa4Dr9pzPATEREREVkwZviJiIiIyKxxWU7TmOEnIiIiIrJgzPATERERkVnjGH7TmOEnIiIiIrJgDPiJiIiIiCwYh/QQERERkVnjpF3TmOEnIiIiIrJgzPATERERkVnjpF3TmOEnIiIiIrJgDPiJiIiIiCyYSBAEobobQURERERUXudup1XbuTs0tau2c5dWjRrDP8A3sLqbYLEObGqDbsP+qe5mWLSAPT0xakZodTfDYm1b6Y2jXk9XdzMsWp+wq9gra1LdzbBoQ/LuYPwncdXdDIu18RM3jJsfU93NsGibF3tUdxOoHGpUwE9EREREVFb66m5ADccx/EREREREFowZfiIiIiIya3zwlmnM8BMRERERWTAG/EREREREFoxDeoiIiIjIrPFJu6Yxw09EREREZMGY4SciIiIis8ZJu6Yxw09EREREZMEY8BMRERERWTAO6SEiIiIis8ZJu6Yxw09EREREZMGY4SciIiIis6YXqrsFNRsz/EREREREFowZfiIiIiIyaxzDbxoz/EREREREFowBPxERERGRBeOQHiIiIiIya3zSrmnM8BMRERERWTBm+ImIiIjIrAlcltMkZviJiIiIiCwYA34iIiIiIgvGIT1EREREZNb0XIffJGb4iYiIiIgsGDP8RERERGTWuCynaczwExERERFZMGb4iYiIiMiscVlO05jhJyIiIiKyYAz4iYiIiIgsGIf0EBEREZFZE7gsp0nM8BMRERERWTBm+ImIiIjIrOk5adekCs3wX7p0CUOHDq3IQxIRERER0RMoc8B/4MABzJo1Cx999BFCQkIAALdv38aIESPQvn176PX6Cm8kERERERGVT5mG9Kxfvx6TJ0+Go6MjUlJS8MMPP2DFihV47733MHr0aFy/fh3NmjWrrLYSERERERXBJ+2aVqYM/+rVq/HZZ58hMTERv//+OxITE7FmzRpcu3YN3333HYN9IiIiIqIapkwZ/uDgYIwaNQoA8MILL0AqleKLL75A3bp1K6VxVW3cSHcM7OUEG2sJbt7LwlebIhAdpy2xfMsmKowa5IrGXtZwcpDhk9WhOH0p7YmPa6neeM0Lw55zh61Kimu30vHlmnuIjMkpsXzrFnYY80I9NPGxgbOTAnOXXsfJM0kllp/1dmOMGFQHq9cFYdvuqMq4hBpv9EB79O1sC5VSjNthGqzblojYxHyTdQZ0tcXwPnawt5XgfrQWG3YkISi88PP5yTvuaNHIyqjOwVPpWLet5H8LS+T5+mjUnzIechdnZN66i7v+y5Bx5XqxZUVSKRq8/QY8XhwOubsrskPCEPx/q5D8z7+GMp0D9sOqrmeRupGbf8XdBZ9W2nXURI7dnkXDmW/Arm1LKOu44sKLbyNu9xHTdXp0QPMvP4RN88bIjYhB0LL/IXLzn0ZlGrw1Bg393oDC3QXpV2/jxvTFSDt/rTIvxSyM7K1Cz7ZWsFaKcS9Ci81/ZSAuWWeyTt/2VhjUVQU7GzHCY/Px8/50hEYVfrf0bGeFzq2UaOAhhZVCjLf/Lx7ZubVzFuULfWzQ61nrgv4N12Lj7rTH928HawzupoKdjQQRsXn4aW86QqLyDO/3etYKnZ+2gpeHDFZKMaYuja21/VsSPmnXtDJl+HNycmBtbQ0AEIlEUCgU8PDwqJSGVbWXB7vi+f4u+HpjBN5fdBe5Gj0+neUDmazkW0RKhRghETn45qfICj2uJXrtxXp4aagnvlxzD2/OuoycXB1WLGoFuYl+sFJKEBSaiRXf3Xvs8Xt0ckKLJmokJGkqstlm5fk+dhjUQ43vtyVh7qpoaDR6zJvqDpm05D7u0kYF3xFO2HYgFXOWR+N+tBYfT3GH2sb4q+Hw6XRMXhBu2H7enVzZl1OjuA4dgMbzPkDY6u9wfshoZN68gzabv4PMybHY8g1nvQvPMS/hrv8ynO03AtFbtqHV2pWwadHUUObC8DEIaN/bsF1+bTIAIH7fwSq5pppEorJG+tU7uD5tYanKW3nVRfvda5F0/CwCnn0eoV9vQqu1S+Dcv5uhjMeoQWj2xVzcW/ItAjqMRMbV2+i4dz3kLsX/m9UWg7tao39Ha2z6KwOLfkiGRitg5uv2kJlI/3VoocArA2yx83gm/NcmISIuD7PGOsBWVfjdopCJcC1Ig79OZlXBVdRcQ7qr0L+TCht3p2Hh2kRotAI+8HU02b8dWyoxZpAaO49lYsH/EhEem48PfB1hqyr8HlbIRLh2T4M9JzKr4CrIEpV50u4PP/yAr776Cl999RXy8/OxceNGw+sHmzkaMcAFv+yJxenL6QiNyMXn39+Hk70MXdralVjnwtUMbNoei1MXi2b1n+S4lmjUcE9s/v0+As4mITgsC0tW3oaTowLdOzmXWOfMxWSs+zkMJ0xk9QHA2VGO6VMaY9HyW8jPr70/8Yf0VGP7wVRcuJ6N8Jg8fLM1AQ5qCdq3si6xztBeahw5nYHj5zIRGZeH77clQasV0KejrVE5jVZAaobOsOVoalc/15s0DtG/bkfMtl3IDgrBnY8XQ5+Tgzovjyi2vPvIoQj79gckHQ9AbkQUon7+HUnHAlB/0jhDmbzkFGgTkgybc9+eyA4LR+qZC1V0VTVHwoETuOu/CnG7DpeqfIM3X0FOaCRuzf4MmbdDcH/NFsRuPwDv98cbynhPn4CI9b8jctMOZN4KxrW3/aHLzkW98S9W0lWYh+c6WWP3iSxcvqNBZFw+1v2ZDgdbCdo2VZRYZ0BnFf65lIOAwFxEJ+iw6a8MaPME9Him8M7fwTPZ2BuQjeDIvBKPUxsM6KzC7n8ycem2BhFx+Vi7PRX2thK0baYssc7ALiocv5CNk5dzEJ2Qj4170qDJE9CzbWH/Hjidjb9OZiEoonb3ryl6iKptMwdlGtJTv359rFu3zvDa3d0dP/30k1EZkUiEadOmVUzrqoi7ixxO9jJculH4yzk7R4/bIdlo1kiFf86m1qjjmps6bko4OypwPjDFsC8rW4ebd9PRsqkaR04mlPvYIhEw368pftkRgdDw7IporllydZLCQS3Ftbu5hn3ZuQKC7mvQxEuBU5eLZt2kEqBhXQX+PFz4g1UQgKv3cvBUA+M//t3b2aB7OxukZuhw8UY2/jiYCm1e7Qj6RTIpbFs2w/01PxTuFAQk/3sW6rati60jlsuh1xgP29Pn5sKu/TMlnsNtxBBE/PBTse+TMftObZB49LTRvoRDAWi+/CMAgEgmg13bFgj+bG1hAUFA4tFTsO9U/L9BbeDiIIG9rQQ3Qwo/mzkaAcGRefCpK8fZ60XvkEokgFcdKfYGFH6HCAJwI0QLn7qyKmm3uXjQvzeCC/sxRyMgJFKLRvXkOHstt0idgv6VYc/JwjhBEICbwRo0qicHULvvmFDFKVPAHxYWVknNqF6OdgXdkJpm/Ms5NT3P8F5NOq65cXSQAwBSUo37ISVVa3ivvF57sR50egHb9tTOMfsP2NtKAACpmcbjRFMzdYb3HmWrkkAiESEtw7hOWoYOnq6Ff8gDLmUhITkNKen5qO8hx9hhjqjjKsOXP8ZX8FXUTDIHB4ilUmgTje80aROSYO3jXWydpBOnUG/S60g9dxE59yPg0LUjXAb2hUhc/L+Fy3N9IFXbIuaPXRXefkukcHOGJi7RaJ8mLhEyO1uIlQrIHOwglkqhiU96pEwSVE0aVmVTaxS7/4bqpWUaL5+dnqU3vPcoW2sxJGJRsXU8nJ/s+9vSlNS/aVl62JvqX4kI6Y/WydTDw7n2xAlU+arl06TRaKDRGGcSFIqSbydWtN6dHfD++MKJxvNXhFTZuWuD/j1d8cE7Txlez15UOZPkmvjYYNTwupg4/WKlHL8m69ZWhSkvFw6HWrYurtLOdfh0huG/w2PykJqug/87HnBzkiIuyfSE4Nrq3sLP0PT//NHpyC4IgoCc+5GI2bYLHiUMAfIYPRLJx/+FNr78d7uIHtW5lRK+wwqH563cklp9jbFAnZ9WYsLwwuG5y39OMVGaKhsn7ZpW5oBfr9dj48aN2LFjB8LCwiASieDt7Y2XXnoJr7/+OkSix49lWrZsGRYuNJ6c5e/vD2BEWZtTLmcup+FOcOFtMpms4Je3vZ0MyWmFAYy9Wobg8JJXkXmcB8eq6OPWdAHnknDzbuE4ZPl//etgL0NSSuGtZAd7OYJCyj8B6ekWdnCwk2H7hk6GfVKJCO9O9MHLw+ti1KSz5T52TXfhRjaCviy8qyH9b2KuvY0EqemFGXt7GwnCootfESojSwedToDdI3cA7GyNj/Goe+EFP9bdnWW1IuDPS0mBPj8fcmcno/1yFydoExKLr5OcgmtvTodYIYfU3h7auHj4fDgdOeFFJ/grPT3g2LUTrk2dUSntt0SauEQo3Izn/yjcnJGXlgF9rgbaxIJ/M4Wr0yNlnKCJLf7fzBJdvqNB8EMrvUj/+1/dzkZslIVWqwpW3ilORrYeOr1Q5A6AWiVGWqbplWcs3eXbGgRHFn6eHiyQ8Gj/2qnEuG+qf3VCkYUSHj0G0ZMq06RdQRAwfPhwTJo0CVFRUWjVqhVatGiB+/fvY/z48Rg5cmSpjjN37lykpaUZbXPnzi3XBZRHTq4e0fFaw3Y/KhdJqXl4prmNoYy1UoymDa1xK6j84+diE7SVctyaLidHh6iYXMMWGp6NxGQNnm3tYChjbSVB86fUuH47vdznOXAsDr7vXcCEaYVbQpIGv/wZAT//qxVxKTVWrkZAbGK+YYuMzUNKej5aPlU4McxKIUKjBgrcCSt+5aJ8HRASqUGrh+qIRECrxla4e7/k1Y68PP8bopVu+cE+AAh5+ci4fgsOXToW7hSJ4NClI9IvXTFZV6/RQhsXD5FUCpeB/ZB46HiRMh6jRkCblIykoycruOWWK/VMIJz6dDLa59y3C1LOBAIAhLw8pF26Aec+nQsLiERw6t0ZqWcuV2FLq1euVkB8ss6wRScUTLpv7l04FEepEMGnrgzBkcUnBnQ6ICw636iOSAQ0byiv9RN0H+3fqPj8gv5tWDhiQakQoWFdOYIiTPVvHlo8VKegfxUl1qHiCYKo2jZzUKYM/8aNG3HixAkcOXIEvXv3Nnrv6NGjGDFiBDZv3oxx48aVcIQCCoWiSofwlMbOAwl4dbgbouI0iE3QwvcFDySl5uHUQ+vq/99sH5y6lIbdhwt+0SsVYtRxK7wOdxc5Gta3QkZmPhKS80p93Npg2+4o+I6uj4joHMTE5WLSWC8kJWtw8kxhdmTVkqdx4nQiduyNBgBYKcXw9ChcpcDDTYlG3ipkZOYjLkGD9Ix8pGcYB535+QKSUrSIiLLcOygl2ftPOl7sb4/YhHzEJ+dh9CAHpKTrcP5a4WTmBW+549y1LPwdUDBM56/j6XhnjDOCI7QIuq/BkJ5qKOQiHDtb8L6bkxTd2trg8q1sZGTp0aCOHL4jHHEzKAfhMbXnj33ED5vRbPkSZFy7ifTAa6j3xlhIrK0QvW0nAKDZ8qXQxMUh5POCVcrUbVpB4eaKjJu3oXB3g/f0tyASixG+9kfjA4tE8HjpecRu3w1BV3uzpRKVNVSN6hteW3vXhbp1U2iT05AbEYMmS/yg9HTDlQlzAAD3v/8VDd5+DU2XfYCIjdvh3LsTPEYNwvnhUwzHCF31I1pv+AypF68j7fxVeE3zhVRlhYhNO6r8+mqSg2eyMayHCrHJOiSm6PBCHxVSMnS4dLvwR/7scfa4eFuDI+cKvkcPnM7C5JF2CI3OQ0hUHp7rZA2FTISTlwsnodrZiGFnI4arY0FYUddVilytgKQ0HbJyas9YiwOns/B8LxvEJecjIUWHF/vaIjVDh0u3CvtqznhHXLyVi8NnC76b/z6Vhckv2CM06r/+7WwNhVyEE5cK/4496F83p4LbNHXdpMjV1L7+pfIrU8D/yy+/4KOPPioS7ANAnz598OGHH2LLli2PDfhrot/3xUOpEOP98fVgYy3BjXtZ+PjLEOQ9tBKJh6sCapvCLnvK2xpfzG1keD11TMFDdA6eTMbyH8JLfdzaYMv2CCiVEsx+9ynYqKS4djMNM/2vGa304uluBXt14WTRpo1s8fWyNobX0yYV9PW+I7H4dNWdKmu7udh1NA1KuQhTXnaCtZUYt0M1WLo2FnkPLVXq5iyFrapwCM+pwCyobcQYPdAB9moJwqI0WLo2znArOV8n4OmnlIYfAkmpOpy9moXtB1Or+vKqVfxfByBzdEDDGW9D7uKMjFt3cMX3LeQlFjyPQOnpDgiFt9/FCjkaznoXyvp1ocvKRtKxANyc8RHy0zOMjuvYrROUdesg+vedVXk5NY5du5bofKRwhaLmXxasthOxeQeuvjEXCg8XWNUrfOZLTlgkzg+fgubL58LrvXHIjYzFtSnzkHgowFAmZtt+yF0c8ZT/tIIHb125hXNDJ0EbX7seGPeoff9mQyEXYcIwW1grxbgbrsXyn1OR91DuxNVRClvrwh/0525oYKvKwMjeNoYHby3/OQXpWYWf+d7PWmFEr8K72R9NLHjewQ870xAQWHR1Gku192QWFDIRJgy3Mzx468vNyY/0rwS21oUDLM5ez4WtKh0v9LWBnY0E4TF5+GJzslH/9mlvjZF9CudjzJtUMKTt+x2pCLhc+xJcVHYiQSj9NAd3d3f8/fffaNOmTbHvX758GYMGDUJsbGy5GjPAN7Bc9ejxDmxqg27D/qnuZli0gD09MWpGaHU3w2JtW+mNo15PV3czLFqfsKvYK2tS3c2waEPy7mD8J5U3yb622/iJG8bNj6nuZli0zYtr5gNXd56vvrukI9oXvwJbTVKmMfzJyclwc3Mr8X03NzekpHCWOhERERFRTVGmIT06nQ5SaclVJBIJ8vNrx0Q+IiIiIqoZuCynaWUK+AVBwPjx40uccPvo2vpERERERFS9yhTwjxs37rHr7JvjhF0iIiIiIktVpoB/wYIF8PLyglhcpqH/RERERESVRoB5rIdfXcoUuTdu3BiJiYXrpo8ePRpxcVxtgIiIiIiopirzk3Yftm/fPmRlWe4TY4mIiIio5tML1beZA47NISIiIiKyYGUawy8SiYpM2n3cJF4iIiIiosrEZTlNe6JlOXNzczF16lSoVCqjcjt27Ki4FhIRERERUbmVKeD39fU1ej127NgKbQwREREREVWsMgX8P/74Y2W1g4iIiIioXDikxzRO2iUiIiIismBlyvATEREREdU0eoGLyJjCDD8RERERkQVjwE9EREREZME4pIeIiIiIzBon7ZrGDD8RERERkQVjhp+IiIiIzBoz/KYxw09EREREZMGY4SciIiIis6Znht8kZviJiIiIiCwYA34iIiIiIgvGIT1EREREZNYEPmnXJGb4iYiIiIgsGDP8RERERGTWuCynaczwExERERFVoW+//RZeXl5QKpXo2LEjzp07V2LZdevWoXv37nBwcICDgwP69etnsnxxGPATEREREVWR3377DX5+fvD398elS5fQunVrDBgwAPHx8cWWP378OF599VUcO3YMp0+fRr169fDcc88hKiqq1OdkwE9EREREZk0vVN9WVitW/H979x3X5PH4AfyTMEIgEEQQHAgqCFKtG0XrRtFW666tWme1w/antS5aLW1tS21rbfVrlwtnrbturXthndRtEVFBhiAQdoDk+f2BBiJhBIGQ8Hm/Xs8fee6eyz33PByXe+7u+QGTJk3C+PHj4ePjg19//RXW1tZYuXKlzvjr16/He++9h1atWsHb2xvLly+HWq3G4cOHy/ydbPATEREREVWBnJwcXLx4Ef7+/pp9YrEY/v7+CA0NLVMamZmZyM3NhYODQ5m/l5N2iYiIiMioGXLSrlKphFKp1NonkUggkUiKxE1MTIRKpYKzs7PWfmdnZ9y6datM3zd79mzUq1dP60dDadjDT0RERERUTsHBwZDL5VpbcHBwpXzXN998g40bN2L79u2wsrIq83Hs4SciIiIio2bIHv7AwEBMnz5da5+u3n0AcHR0hJmZGeLj47X2x8fHw8XFpcTv+f777/HNN9/g0KFDePHFF/XKI3v4iYiIiIjKSSKRwM7OTmsrrsFvaWmJtm3bak24fToB18/Pr9jv+PbbbzF//nzs378f7dq10zuP7OEnIiIiIqoi06dPx9ixY9GuXTv4+vrixx9/REZGBsaPHw8AGDNmDOrXr68ZFrRgwQJ8+umn2LBhA9zd3REXFwcAkMlkkMlkZfpONviJiIiIyKiVZ3lMQxkxYgQSEhLw6aefIi4uDq1atcL+/fs1E3kfPHgAsbhgEM4vv/yCnJwcDBs2TCudoKAgfPbZZ2X6Tjb4iYiIiIiq0Pvvv4/3339fZ9ixY8e0Pt+7d++5v48NfiIiIiIyaoactGsMOGmXiIiIiMiEiQSBv4mIiIiIyHgtO2S4755U9vdfGUy1GtIz4fNHhs6CyVoZVAcT5ycYOhsmbcU8JyzZw9/PleWDV0QY91l86RGp3EI+c2YZV7KQz5yxx8LL0NkwWa/k3kbitVBDZ8OkOTYvfulIQ1KrDZ2D6o1DeoiIiIiITFi16uEnIiIiItIXB6iXjD38REREREQmjD38RERERGTU2MNfMvbwExERERGZMDb4iYiIiIhMGIf0EBEREZFRU3NIT4nYw09EREREZMLYw09ERERERk0w6KxdkQG/u2zYw09EREREZMLY4CciIiIiMmEc0kNERERERo3r8JeMPfxERERERCaMPfxEREREZNTUakPnoHpjDz8RERERkQljDz8RERERGTWO4S8Ze/iJiIiIiEwYG/xERERERCaMQ3qIiIiIyKipOaSnROzhJyIiIiIyYezhJyIiIiKjxkm7JWMPPxERERGRCWODn4iIiIjIhHFIDxEREREZNcGgs3ZFBvzusmEPPxERERGRCWMPPxEREREZNS7LWTK9evhVKhWuXLmCrKysImGZmZm4cuUK1Gp1hWWOiIiIiIiej14N/rVr12LChAmwtLQsEmZpaYkJEyZgw4YNFZY5IiIiIqLSCILhNmOgV4N/xYoVmDFjBszMzIqEmZubY9asWfj9998rLHNERERERPR89Grw3759Gx07diw2vH379rh58+ZzZ4qIiIiIiCqGXpN2MzIykJqaWmx4WloaMjMznztTRERERERlpeas3RLp1cPv6emJM2fOFBt+6tQpeHp6PnemiIiIiIioYujV4B85ciTmzp2LK1euFAn7999/8emnn2LkyJEVljkiIiIiotJw0m7J9BrS8+GHH2Lfvn1o27Yt/P394e3tDQC4desWDh06hM6dO+PDDz+slIwSEREREZH+9GrwW1hY4ODBg1i0aBE2bNiAEydOQBAENG3aFF999RWmTZsGCwuLysorERERERHpSe837VpYWGDWrFmYNWtWkTCVSoWYmBjUq1evQjJHRERERFQaYxlaYyh6N/hLcu3aNbRp0wYqlaoik60yg7rboGsbK1hbiXEnKhdr9qThUVLJ59KzvRR9O1lDLhMjKi4P6/elITImTxNubga8HiCD7wtWMDcHrt3Jwbq9aUjNqFl3Zo92Vujr96Sc4vOwYX+6Vjk9q10zSwzqbgNHezPEJ6mw5XAGrt7J0YozsJs1urYuuF5r96WXer1M2ZVT63H56ApkpiXCsZ43ug6eC2e3F3XGfRwXjn/2LUZC9HWkJcfgpYGBaNVtbJF46SnxOLP7e9y/dQJ5OdmQOzZErze+hrNri8o+nWprcA8bdGsjhbWVGOFROVizOw3xpdx3vdpL0a+zDeQyMR7E5WHdvlREPiy4/y3Mgdf72KJD84J6Ys2eNKRm1Lw3l1dG+XZrK4VfCyu41TWHVCLGe988QmZ2zaqDHV5qh8YfTYS8TXNY1auDC0PfQ/zOwyUf09UXPt/PgczHE9lRsbgT/Aui12zXiuP27kg0nj4REhcnpF65hevT5kNx/mplnkq1tnXfIWz4ax+SUhTwcG+IDyeOho9nY51x9xw5ia+XrtDaZ2lhjqMbl2s+C4KA5Ru3Y9eh40jLzMSLXp6YMXkMXOu5VOp5kOnRa9KuKevX2Rr+HaRYsycNXy5PgjJHwEej7WFe9B1jGu1fkGBEHxl2Hs/A578lISo+D9NH28PWWqSJ80ZfGVo2leDnzQosCEmBva0Zprwmr4Izqj7a+0gworcMO09k4PNlyYiKz8OHI+Va5VRYkwbmmDzEDifDsvH5smRcvq3E+6/Zob5TwcXo10kKf18p1u5Nx1crk6HMFTB9pLzE62XKwi/vxam/vkH7gCkYMX0batfzws7f30Jm2mOd8fNysiGv7Qq//h/B2tZJZ5zsTAW2LnkDYjNzvDppGUbN3oOXBs6GlbRm3b+FvdzZGr07WGP17jR88bSeeNMeFiV0nfi+IMHrAbbYcSwdQb89RlR8LmaMrgVbm0L1RIAtWnlJsHRzCoJXJcPeVowPRtS8cq6s8pVYiHD1jhK7T2ZUwVlUT2Y21ki9chvX/u/zMsWXujdA+52/4fGxf3Cq3UBELlmNFr99CcfeL2ni1B3eD82+C0T4l0txyncw0q7cQoc9K2Dp5FBZp1GtHTr9D5aEbMSE1wZh5Xefw8PNFdPnf49kRfHLmdtYS7Fz+Y+abeuvC7XC1+/Yiy17/8bMt8diWfCnsLKSYPr8hVDm5BSTYs2lFgSDbcaADf4neneQYteJDITdzkH0IxWW70iFva0YbbwlxR4T0NEaJy5l4VRYNmISVVizOw05uQK6tJYCAKQSEbq0lmLjgXTcupeL+7F5WPlXKjwbWqJx/Qp9uFKt9ekoxYnL2Tj9rxKxiSqs3ZOOnFwBL7Wy0hnf31eKa3dycCA0C7GJKuw4lon7sXno2V6qFWf3yUyE/Zd/vVb8lVbq9TJlYcdD8ELH4fDxHQoHFw/0GPY5zC2scPPcVp3xnRu2QOdXZ6Fp61dgZq573s2lI8shs68L/zeC4ez2IuxqN0BDr5cgd2xYmadSrfXpaI2dJzJw+bYS0fF5WLY9FbVszUquJ/xscPxpPZGgwuon9UTXQvVE1zZS/HEgDTcj8+uJFU/qiSYNatacqMooXwA4eDYTe05lIiI6typOo1pKOHAC/wX9iPi/DpUpvtvk15EVGY2bsxYg/dZd3P95PeK2HkCjqeM0cRpNG4+oFZsQvXob0m9G4Op7QVBlZsN13NBKOovq7c9dBzDAvxte6dkFjVzrY+bbYyGRWGL34RPFHiMCULuWvWZzsC/4oS8IAjbtPoixw15FF9828HB3xbwPJiExORknz12qgjMiU8IGPwAnezHsbc1w427BP4MspYC70blo4qr7H66ZGHCrZ44bdwt+ZQsAbtzN0fyTdqtrDnMzkVacuMcqJKaoik3X1JiJ88vhZuQz5RSZW2xjpkkDC9yI1P7HfL1QuTo+vV6F0sxSCrj7MBdNatAPqadUeTl4FH0drk07afaJxGI0aOqHuHth5U438voR1HFtjn2rp2LFp52wceFgXA/dVAE5Nk5Otcye1BPa911EdC6aNLDUeYyZGeD+bD0haN/P7vWK1hOxiU/qiRrU4K+s8qXyse/YColHQrX2Jfx9CrU6tgIAiCwsIG/zAhIPF3o3jyAg8cgZ2HdsXYU5rR5yc/NwO+Ie2r/oo9knFovR7sUXcO2/iGKPy8pWYsjbH2Hw5OmY/c1PuPvgoSYsJj4Bj1MUaFcoTZmNNXw8m+Da7eLTJNJFr9aRrvX3C7t9+/ZzZcZQ7GT5v3ueHS+bmqGG3Eb3byJbazHMxCKdx9R1zC9WuUyM3DwBWUqhSBy5rGb81tKUU7quctL9D1kuExct13Q17J5cC7nmehUtV7saUq6FZWUkQ1CrILWtrbXf2tYRKY8iy51u6uMoXDvzB1p1G4d2vd5GfNRVnNj+FcTmFmjWfvDzZtvoPL3vFDru5eL+np/e/7qOqeto+SRdM+TmCUXGlNekegKovPKl8pE4O0IZn6i1TxmfCAu5LcRWEljUkkNsbg7lo8fPxHkMGy/dY9ZNWUpaGlRqtVYPPQA4yO3w4GGszmPc6tdF4JSJaOLWABmZWfjjr31455Mvse7Hr1CntgOSUhT5aehI8/GTMCog1LwpT3rRq8HfqlUriEQiCDrGKz3dLxLpHpddmFKphFKp1NonkVTdUIyOLSQY099W8/nHDfzDIXqWIAio4/oC/F6ZDgBwauCDpNhwXDuzsUY0+P1aWGHsgIJ6YtH6FMNlxgSxfKmma+7lgeZeHprPLbw8MHLqx9hx8Cgmv1Ezh0VR5dGrwR8ZWf7ewsKCg4Px+efaE4eCgoIA0XsVkn5pwm7n4G50suaz+ZNSsLMRa/UU2dmI8SBe90oyaZlqqNSCpte58DFP01Ckq2FhLoJUItLq5X/2e0yZppxkxZfTsxSFevM18Qv1+j89zs5GBEW6dppRccWv/GOqpDa1IBKbIeuZCbqZaYmwtnUsd7o2dk5wcPbQ2lfLuQkirhwsd5rG5PJtJSIeFgwtezohXC7TUU8Uc989vf+f7aHOv//zV55RpKtgYS6CtZVIq5ff1OuJqipfKh9lfCIkztr1h8TZEbmKNKizlchJTIY6Lw+SOrWfiVMbyjjtJwM1gb2tLczEYk2v/FNJitQiPfTFMTc3R9NGDfEw9hGAgp79pBQFHGvZa6Xp6V5z51IVR1dnNBXQ63mxm5tbmbbSBAYGQqFQaG2BgYHlPgl9ZecIeJSs0mwxCSqkpKng07hgiImVpQiNG1ggIkr3JC+VGrgfk4dmjQseG4sANGtsqZkYdj82D3kqAT6F4rjUNoOjvVmx6ZoalTq/HJq5P1NOjSyKnUAXEZ2LZo20h/v4NCoo18QUNVLSVGjWqCBNK0sRGte3QMTDmtfgNzO3RJ0GLyAqvGC8raBWIzr8LFzcW5U7XRf31kh+ZkhQSsI92DrUjPdsZOcIeJSk0myaeqLwfScRoUkDC0RE614xQ6UC7sXkaR0jEgE+heqJezFP6olGOuoJE55kWlXlS+WTcjYMtXt21Nrn2KsTks+GAQCE3FwoLl2HY0+/gggiEWr38EPK2ctVmNPqwcLCHF5N3HHh6g3NPrVajYtXbqB50yZlSkOlUiPifjRqP2nc13N2Qm17OS4WSjMjMws3wiPQ3KtsaRI9pVeDPzw8HG+88QZSU4suMaVQKDBy5EjcvXu31HQkEgns7Oy0tqoc0qPL3/9koX8XG7Rqaon6dczw1mA7pKSpcelWwdCjGW/aa60Uc+BsJrq1kaJTSyvUdTTDm/1tIbEQ4VRYFoD8CWcnL2dhRB8ZvN0t4FbXHBMG2uFOVC7u1qCG6cGzWejaxgqdXpSgrqMZRr8sg8RChNP/ZgMAJg60xZCeNpr4h85loXkTS/TpKIVLbTO82tUa7vXMceR8llac/i9Zo+XT6zXItsj1qkladRuHG2c34+b57UiKj8CxLZ8hLycLzXyHAAD+3jAbZ3YXLPemystBwsObSHh4EypVLjIU8Uh4eBMpCfe10oy//y8uHPoVKQn3cfviLlw/uwktOo+q8vOrLg6ezcSArjZo5SVBgzrmmDzYDslpKq37btYYe/TyLVRPhGagW1spOj+pJ8a8kl9PnLycf/9nKQWcuJSF1wNsNfXExEF2CI/KqXGN1sooXyD/qUFDF3PUcch/nNugjjkaupjDRlr6EFRTYWZjDbuW3rBr6Q0AsG7UAHYtvWHlWhcA4PXldLRctUAT//7vG2HdyBXewTNh49UYbu+MRN3h/RD5U4gmTuSPq+A68TXUf3MQZN6N0XzpZzC3kSJq9bYqPbfqYsSAAOw6dBx7j57CvegYfP/7GmQrlXilZxcAwPzFv+OXdZs18Vdu+gv/hF3Dw7hHuH33Hr746TfEJT7GAP+uAPKHSr/Wvw9Wb9mFk+cvI+J+FOYv/h2OtWqhi28bg5xjdaZWG24zBnoN6fnuu+/g6uoKOzu7ImFyuRyurq747rvv8Msvv1RYBqvKvtOZkFiIMHaAbf4LXx7k4od1Kcgr9FS4joMZbK0LfiOdv66ErXU6BnW30bx4a9H6FK3JpH/sT4cQALz3mhwWZiJci1Bi7Z501CTnbyhhay3CoG42sHvy4q1FGxSacnKwE2u9IS8iOn85vsE9bDCkhw0eJanwv02peJhQcDH2ncmCpYUIY1+xhbWVCOEPcrFog0LretUknq1fRlZ6Es7tX4KM1AQ41W+GAZOXaYb0pCXHaM2vyUh9hD8XFozDv3xsJS4fW4l6TdpjyJS1APKX7uw3fglC9/yA8wd/hp1DA3QZGAivtgOq9uSqkb2nMyGxFGH8k3rivwc5WLguBbmFfr/XcTCHrXVBQ/3cdSVsbdIwuIdM82KoheuStSam/3EgDYIAvD/CHhZmIlyNUGLtnrSqPLVqobLKt0c7KQZ1l2k+fzwhf5345TsUOBVW8MPAlMnbNoff4bWazz7ffwwAiFqzDVcmBkJS1wnSJ41/AMi6F43zr74Nn4WBcP9gDLKj43D17blI/PuUJk7s5n2wdHJA06D/y3/x1r83ca7/W8h5pPv9H6bOv3MHpCjSsHzjdiSlKODZqCEWzv1IMzQnPvGxVj2clpGBBb+sQlKKArYya3g1dsdvX81FI9f6mjijBr2MrGwlvv11FdIzMvGid1MsnPcRJJaclE76EQl6DHry8vLCunXr0L59e53hFy9exMiRI8u9Ws+Ezx+V6zgq3cqgOpg4P8HQ2TBpK+Y5YckejiGsLB+8IsK4z+INnQ2TFvKZM8u4koV85ow9Fl6GzobJeiX3NhKvhZYekcrNsblf6ZEMIGiN4Z6Ifj6m+i8DrFcP/4MHD1CnTp1iwx0dHREVFfXcmSIiIiIiKitO2i2ZXmP45XI5IiKKf9nDnTt3dA73ISIiIiIiw9Crwd+1a1csWbKk2PDFixejS5cuz50pIiIiIqKyUguG24yBXg3+wMBA7Nu3D8OGDcO5c+c0S2r+888/GDp0KA4cOFCly2sSEREREVHJ9BrD37p1a2zZsgUTJkzA9u3bNfsFQYCjoyM2bdqENm24VBQRERERUXWhV4MfAPr374/79+9j//79uHPnDgRBgJeXF/r06QOpVFp6AkREREREFUgwlrE1BqLXkJ7Q0FDs3r0bUqkUgwcPxsyZM+Hs7Ixp06bBzc0NkydPhlJZM198RERERERUHenV4P/iiy9w/fp1zeerV69i0qRJ8Pf3x5w5c7Br1y4EBwdXeCaJiIiIiIojCIbbjIFeDf6wsDD06tVL83njxo3w9fXFsmXLMH36dCxevBibNm2q8EwSEREREVH56DWGPzk5Gc7OzprPx48fR79+/TSf27dvzxdvEREREVGVUnMMf4n06uF3dnZGZGQkACAnJweXLl1Cx44dNeFpaWmwsKj+rxcmIiIiIqop9Grwv/zyy5gzZw5OnjyJwMBAWFtba71o68qVK2jSpEmFZ5KIiIiIiMpHryE98+fPx5AhQ9CtWzfIZDKsXr0alpaWmvCVK1eiT58+FZ5JIiIiIqLiCMYye9ZA9GrwOzo64sSJE1AoFJDJZDAzM9MK37x5M2QyWYVmkIiIiIiIyk/vF28BgFwu17nfwcHhuTJDRERERKQvQW3oHFRveo3hJyIiIiIi48IGPxERERGRCSvXkB4iIiIioupCzUm7JWIPPxERERGRCWMPPxEREREZNS7LWTL28BMRERERmTD28BMRERGRUVOr2cNfEvbwExERERGZMDb4iYiIiIhMGIf0EBEREZFR45zdkrGHn4iIiIjIhLGHn4iIiIiMmsBJuyViDz8RERERkQljg5+IiIiIyIRxSA8RERERGTU1Z+2WiD38REREREQmjD38RERERGTUOGm3ZOzhJyIiIiIyYezhJyIiIiKjxh7+krGHn4iIiIjIhLHBT0RERERkwjikh4iIiIiMGkf0lIw9/EREREREJow9/ERERERk1Dhpt2QiQeCryYiIiIjIeL2zINlg3/3r7FoG++6yqlY9/BM+f2ToLJislUF1MHF+gqGzYdJWzHPC13+qDJ0Nk/XxCDOMmRdr6GyYtDXz67KMK9ma+XWReC3U0NkwWY7N/bDHwsvQ2TBpr+TeNnQWqByqVYOfiIiIiEhfHLBSMk7aJSIiIiIyYezhJyIiIiKjpuak3RKxh5+IiIiIyISxh5+IiIiIjBrH8JeMPfxERERERFVo6dKlcHd3h5WVFTp06IBz586VGH/z5s3w9vaGlZUVWrRogb179+r1fWzwExERERFVkT///BPTp09HUFAQLl26hJYtWyIgIACPHulenv7MmTN44403MHHiRFy+fBmDBg3CoEGDcO3atTJ/Jxv8RERERGTUBLVgsE1fP/zwAyZNmoTx48fDx8cHv/76K6ytrbFy5Uqd8X/66Sf07dsXM2fORLNmzTB//ny0adMG//vf/8r8nWzwExERERFVgZycHFy8eBH+/v6afWKxGP7+/ggN1f1SvtDQUK34ABAQEFBsfF04aZeIiIiIjFp5etorilKphFKp1NonkUggkUiKxE1MTIRKpYKzs7PWfmdnZ9y6dUtn+nFxcTrjx8XFlTmP7OEnIiIiIiqn4OBgyOVyrS04ONjQ2dLCHn4iIiIionIKDAzE9OnTtfbp6t0HAEdHR5iZmSE+Pl5rf3x8PFxcXHQe4+Liold8XdjDT0RERERGTS0IBtskEgns7Oy0tuIa/JaWlmjbti0OHz5ckHe1GocPH4afn5/OY/z8/LTiA8Dff/9dbHxd2MNPRERERFRFpk+fjrFjx6Jdu3bw9fXFjz/+iIyMDIwfPx4AMGbMGNSvX18zLGjq1Kno1q0bFi5ciFdeeQUbN27EhQsX8Pvvv5f5O9ngJyIiIiKjZshJu/oaMWIEEhIS8OmnnyIuLg6tWrXC/v37NRNzHzx4ALG4YBBOp06dsGHDBsydOxcff/wxPD09sWPHDjRv3rzM38kGPxERERFRFXr//ffx/vvv6ww7duxYkX3Dhw/H8OHDy/19bPATERERkVETBOPp4TcETtolIiIiIjJhbPATEREREZkwDukhIiIiIqOmNqJJu4bAHn4iIiIiIhPGHn4iIiIiMmrGtCynIbCHn4iIiIjIhOnV4I+JicGMGTOQmppaJEyhUGDmzJmIj4+vsMwREREREdHz0avB/8MPPyA1NRV2dnZFwuRyOdLS0vDDDz9UWOaIiIiIiEojCILBNmOgV4N///79GDNmTLHhY8aMwe7du587U0REREREVDH0mrQbGRmJhg0bFhveoEED3Lt373nzRERERERUZoJabegsVGt69fBLpdISG/T37t2DVCp93jwREREREVEF0avB36FDB6xdu7bY8DVr1sDX1/e5M0VERERERBVDryE9M2bMQO/evSGXyzFz5kw4OzsDAOLj4/Htt98iJCQEBw8erJSMEhERERHpwjftlkyvBn+PHj2wdOlSTJ06FYsWLYKdnR1EIhEUCgUsLCywZMkS9OzZs7LySkREREREetL7Tbtvv/02+vfvj02bNuHOnTsQBAFNmzbFsGHD0KBBg8rIIxERERFRsYxleUxD0bvBDwD169fHhx9+WGT/o0ePsHz5cnz88cfPnTEiIiIiInp+ek3aLU1sbCzmzZtXkUkSEREREZVIUAsG24xBhTb4iYiIiIioemGDn4iIiIjIhJVrDL+pGtTdBl3bWMHaSow7UblYsycNj5JUJR7Ts70UfTtZQy4TIyouD+v3pSEyJk8Tbm4GvB4gg+8LVjA3B67dycG6vWlIzTCOR0AVpUc7K/T1e1JO8XnYsD9dq5ye1a6ZJQZ1t4GjvRnik1TYcjgDV+/kaMUZ2M0aXVsXXK+1+9JLvV6mrK2HCB28RZBZAfEpwMFLasQm6Y7raAd0bS6GiwNgbyPC35fVOP+f9j3p10wErwYi1LYF8lRAdCJw9IoaSWmVfy7V2ZCeMnRvZw1rKzHCH+QgZKcC8aXcd718rfHySzaQy8wQFZeLtXtScfdhria8ezsp/F6Uwr2uBaRWYrzzVRwys2tWHfEUy7fybN13CBv+2oekFAU83Bviw4mj4ePZWGfcPUdO4uulK7T2WVqY4+jG5ZrPgiBg+cbt2HXoONIyM/GilydmTB4D13oulXoe1ZXDS+3Q+KOJkLdpDqt6dXBh6HuI33m45GO6+sLn+zmQ+XgiOyoWd4J/QfSa7Vpx3N4dicbTJ0Li4oTUK7dwfdp8KM5frcxTMUrGMrTGUPRq8E+fPr3E8ISEhOfKjCH162wN/w5SLN+RisRkFQb3kOGj0fb4ZOlj5BXzv6b9CxKM6CPD2j1puBudi94drTF9tD0+/t9jpGXm33hv9JXhRU8Jft6sQJZSwKh+tpjymhzBq1Kq7uQMrL2PBCN6y7B2bxruPsxD7w5SfDhSjk9+TtKUU2FNGphj8hA7bD2SgSvhOejQXIL3X7PDF8uS8TAh/2L06ySFv68UK/5KQ2KKCoO622D6SDnm/pJU7PUyZc1cRejVSoT9FwXEPBbQvqkIr3cT47e9amQqi8a3MAdSMgTcigL8W+tOs6GTCBfDBcQmCRCLge4txHijmxi/71MjtwaWMQC80sUGvTvaYNm2FCQkqzC0ly1mjnVA4JIE5Bbz+7VDcyuM7GeHkJ0KRETnIsDPBjPHOmDWTwlIy8h/FbzEQoSr4UpcDVfitT52VXhG1QvLt/IcOv0PloRsxMy3x8LHszE27T6I6fO/xx9LvkEtue4ysbGW4o/FwZrPIpFIK3z9jr3YsvdvzP1gEurWccKyjdswff5CrPvpK0gsLSv1fKojMxtrpF65jaiQrWi3ZWmp8aXuDdB+52948PtGhI2Zgdo9/dDity+RHZuAxL9PAQDqDu+HZt8F4tqUIKSc+xeN/m8sOuxZgWMv9EVOQjE9OkQ66DWk5/LlyyVu0dHR6Nq1a2XltVL17iDFrhMZCLudg+hHKizfkQp7WzHaeEuKPSagozVOXMrCqbBsxCSqsGZ3GnJyBXRpLQUASCUidGktxcYD6bh1Lxf3Y/Ow8q9UeDa0ROP6NefhSp+OUpy4nI3T/yoRm6jC2j3pyMkV8FIrK53x/X2luHYnBwdCsxCbqMKOY5m4H5uHnu2lWnF2n8xE2H/512vFX2mlXi9T5uslQthdAVciBSSmAvsuCMjLA1o2EumMH5sEHPlXwI0oAXlq3Wn+eUKNq/fy03uUAuw+p4bcRgQXh8o7j+ouwM8GO4+n49ItJaLi8/Db1hTY25qhTTPd9zIA9O1kg2MXMnHychZiEvIQsksBZa6Abm0K7ucDoZnYfTIDd6Jyi02nJmD5Vp4/dx3AAP9ueKVnFzRyrY+Zb4+FRGKJ3YdPFHuMCEDtWvaazcFergkTBAGbdh/E2GGvootvG3i4u2LeB5OQmJyMk+cuVcEZVT8JB07gv6AfEf/XoTLFd5v8OrIio3Fz1gKk37qL+z+vR9zWA2g0dZwmTqNp4xG1YhOiV29D+s0IXH0vCKrMbLiOG1pJZ2G81ILaYJsx0KvVefTo0crKh0E52Ythb2uGG3cL/hlkKQXcjc5FE1cLnLtetIvUTAy41TPHnlMZmn0CgBt3c9CkgQUAwK2uOczNRLhxt2AoStxjFRJTVGjiaoG7D4sf0mIqzMT55bD3dKZmnwDgRmTuk3LKKnJMkwYWOHhWe//1uzlo7ZXfmHd8er0iC8o1Syng7sNcNKlvrvN6mTKxGKhbCwi9qf20JDJeQH1HEfJL/PlJ8m9rZOeUHM9UOdUyg72tGa5HFNxf+fVEDjxcLfHP1ewix5iZAe71LLDrZLpmnyAANyKU8HC1BJBR5JiaiuVbeXJz83A74h7eHPyKZp9YLEa7F1/Atf8iij0uK1uJIW9/lP++ncZueHvkMDRuWB8AEBOfgMcpCrR70UcTX2ZjDR/PJrh2OwL+L3WsvBMyEfYdWyHxSKjWvoS/T8FnYf7S5iILC8jbvICIBb8VRBAEJB45A/uOxTyaJSqG3pN2U1NToVYX/TWjVquRmppaIZmqanay/GJIzdA+r9QMNeQ2uovI1loMM7FI9zFP0pPLxMjNE5ClFIqNY+o05ZRefDk9Sy4TFy3XdDXsbArKNT+NouVqV0PKtTBrS0AsFiHjmfZQRjZgU3zHqN78W4sRlSAgQVFxaRqTp/ed4pl7WZGhhn0x952ttRhmZkXvf0V6zakDyorlW3lS0tKgUqu1eugBwEFuh6QU3X/QbvXrInDKRHwz5//w6dTJENRqvPPJl3j0OH8YydPjdKX5uJg0SZvE2RHK+EStfcr4RFjIbSG2ksDSsRbE5uZQPnr8TJzHkLg4VmVWyQTo1cO/fft2zJ49G2FhYbC2ttYKy8rKQvv27fH9999jwIABJaajVCqhVGr3wkokVTcUo2MLCcb0t9V8/nEDKyeikvRtK4KTHFh72DgeXVYEvxetMP7VgsbMwnXJBsyN6WH5Vm/NvTzQ3MtD87mFlwdGTv0YOw4exeQ3OJyEqh9O2i2ZXg3+X375BbNmzSrS2AcAGxsbzJ49G//73/9KbfAHBwfj888/19oXFBQEiN7TJzvlFnY7B3ejC/65mD8pBTsbsVbvkp2NGA/idQ+7SctUQ6UWNL3OhY95moYiXQ0LcxGkEpFWL/+z32PKNOUkK76cnqUo1JuviV+o1//pcXY2IijSC8WxyV8pqabJzAHUaqFIb76NFYr0+pdHnzYieNQTYe0RNdKKjsAyWZdvKRERXdD7ZmGePx9CLtO+d+U2Ytwv5r5Ly1RDpSp6/z+bRk3E8q069ra2MBOLi/TmJylSi/TQF8fc3BxNGzXEw9hHAAp69pNSFHCsZa+Vpqd7w4rJuIlTxidC4qzdUy9xdkSuIg3qbCVyEpOhzsuDpE7tZ+LUhjJO+8kAUWn0euZ57do1dO/evdjwrl274urV0peKCgwMhEKh0NoCAwP1ycpzyc4R8ChZpdliElRISVPBp7GFJo6VpQiNG1ggophJXio1cD8mD80aF6xEIALQrLElIqLzj7kfm4c8lQCfQnFcapvB0d6s2HRNjUqdXw7N3J8pp0YWmnJ6VkR0Lpo1stDa59OooFwTU9RISVOhWaOCNK0sRWhc3wIRNWBexLPUaiA2GXB31p6g6+4swsPE5+vx6NNGBK/6Iqw/qoaihg2Hzs4R8ChJpdkePsp7Uk8UPI20kojQuIEl7kTpntigUgH3YnLxQqFjRCLAp7Gk2GNqCpZv1bGwMIdXE3dcuHpDs0+tVuPilRto3rRJmdJQqdSIuB+N2k8a9/WcnVDbXo6LhdLMyMzCjfAINPcqW5o1XcrZMNTuqT3XwbFXJySfDQMACLm5UFy6DseefgURRCLU7uGHlLOXqzCnxoFv2i2ZXj38ycnJyMsrvkGVm5uL5OTSH8tKJJIqHcJTFn//k4X+XWwQ/1iFhJT8ZTlT0tS4dKtg6NGMN+1x6ZYSR87nd3MeOJuJtwbZ4V5MHiIf5i/LKbEQ4VRYfniWUsDJy1kY0UeGjCy1ZlnOO1G5NWLC7lMHz2Zh4kBb3IvNRWRMHvx9pZBYiHD63/zu54kDbZGcpsa2I/ktykPnsjBrjD36dJTiSngOfF+QwL2eOdbsKVgA/tC5LPR/yRrxSfmToAd3tylyvWqSc7cFDOggQmwSEPNYgK+XCBbmwJXI/IpoQAcR0jKBY1fzP4vF+WvxA/kTq22lQB17IDcPSH7y1CSgrQgvNBRhyyk1cvIK5gMoc1Ejlz4FgAOhGRjYXYb4pDzNspEpaSpculnwKGX2OAdcvJmNQ//kT1TffyYDk4bYI/JhLu4+zEUfP2tILEU4cangcYlcJoZcJoZzbTMAQANnc2QrBTxWqJCRZRz/TCoCy7fyjBgQgK+WLIN3k0aaZTmzlUq80rMLAGD+4t/h6FAL744eDgBYuekvvNC0CRq41EF6ZiY27NiHuMTHGOCfvxKfSCTCa/37YPWWXWhQ1wX16jhi2R/b4FirFrr4tjHYeRqSmY01bDwKnm5YN2oAu5beyElSIDsqFl5fTodVfWf8O342AOD+7xvh9t4oeAfPRFTIVjj26Ii6w/vh/Ktva9KI/HEVWq5cgJSL16A4fwXu/zcW5jZSRK3eVuXnR8ZNrwa/u7s7Lly4AG9vb53hFy5cgJubW4VkrKrtO50JiYUIYwfYPnnhSy5+WJei1bCp42AGW+uChyLnrytha52OQd1tNC/eWrQ+RWsy6R/70yEEAO+9JoeFmQjXIpRYuycdNcn5G0rYWoswqJsN7J68eGvRBoWmnBzsxBAK/c+NiM7Dsu2pGNzDBkN62OBRkgr/25SqWYMfAPadyYKlhQhjX7GFtZUI4Q9ysWiDosY2RG9GCbCWAF2bi2BjJUJ8CvDncTUynvz+sbMWQShUyLZWwFsBZprPHb1F6OgN3H8kYP3R/KEQbT3y7/XRPQviAcCuf/KX66yJ9pzMgMRChPGvyjUvhvp+TZLWGvHP1hP/XMuGrU0qhvSSQS4zw4PYXHy3JklrYnrP9tYY3LNgXtHct/If8/++LQWnLteccVQs38rj37kDUhRpWL5xO5JSFPBs1BAL536kGZoTn/hYa539tIwMLPhlFZJSFLCVWcOrsTt++2ouGrnW18QZNehlZGUr8e2vq5CekYkXvZti4byPauQa/AAgb9scfofXaj77fJ+/2k7Umm24MjEQkrpOkLrW1YRn3YvG+Vffhs/CQLh/MAbZ0XG4+vZczRr8ABC7eR8snRzQNOj/8l+89e9NnOv/FnKemchL0PofR0WJBD1K6JNPPsG6detw7tw5ODs7a4XFxcWhQ4cOGD16NL766qtyZWbC54/KdRyVbmVQHUycb7wvRjMGK+Y54es/a+gvjirw8QgzjJkXa+hsmLQ18+uyjCvZmvl1kXgttPSIVC6Ozf2wx8LL0Nkwaa/k3jZ0FnQa+K7h8vXXL9X/ntOrh3/OnDn466+/4OnpidGjR8PLK/8Eb926hfXr18PV1RVz5syplIwSEREREZH+9Grw29ra4vTp0wgMDMSff/6pGa9vb2+v6dm3tbUtJRUiIiIiooqj6x1RVECvBj8AyOVy/Pzzz1i6dCkSExMhCAKcnJy0xv4REREREVH1oHeD/ymRSAQnJycAwPHjx5GRkQE/Pz/UqlWrwjJHRERERFQaY1ke01D0avAvWLAA6enpmD9/PoD8GdH9+vXDwYMHAQB16tTB4cOH8cILL1R8TomIiIiISG96vXjrzz//RPPmzTWft2zZghMnTuDkyZNITExEu3btirxBl4iIiIiIDEevHv7IyEi8+OKLms979+7FsGHD0LlzZwDA3LlzMXz48IrNIRERERFRCQSBk3ZLolcPf15entYbckNDQ9GpUyfN53r16iExMbHickdERERERM9Frx7+Jk2a4MSJE2jcuDEePHiA//77D127dtWER0dHo3bt2hWeSSIiIiKi4nDSbsn0avBPmTIF77//Pk6ePImzZ8/Cz88PPj4+mvAjR46gdevWFZ5JIiIiIiIqH70a/JMmTYKZmRl27dqFrl27IigoSCs8JiYG48ePr9AMEhERERGVhD38JdN7Hf4JEyZgwoQJOsN+/vnn584QERERERFVHL0a/GKxuNQ36opEIuTl5T1XpoiIiIiIqGLo1eDfvn17sWGhoaFYvHgx1Goui0REREREVUfNZTlLpFeDf+DAgUX23b59G3PmzMGuXbswatQofPHFFxWWOSIiIiIiej56rcNfWExMDCZNmoQWLVogLy8PYWFhWL16Ndzc3Coyf0REREREJRLUgsE2Y6B3g1+hUGD27Nnw8PDA9evXcfjwYezatQvNmzevjPwREREREdFz0GtIz7fffosFCxbAxcUFf/zxh84hPkREREREVH3o1eCfM2cOpFIpPDw8sHr1aqxevVpnvG3btlVI5oiIiIiISiNw0ZgS6dXgHzNmTKnLchIRERERUfWhV4M/JCSkkrJBRERERFQ+xjJ51lDKvUoPERERERFVf3r18BMRERERVTcCX7xVIvbwExERERGZMDb4iYiIiIhMGIf0EBEREZFRU3PSbonYw09EREREZMLYw09ERERERo0v3ioZe/iJiIiIiEwYG/xERERERCaMQ3qIiIiIyKjxTbslYw8/EREREZEJYw8/ERERERk1vmm3ZOzhJyIiIiIyYezhJyIiIiKjxjH8JWMPPxERERGRCWODn4iIiIjIhHFIDxEREREZNb5pt2Ts4SciIiIiMmEiQRA4y0FPSqUSwcHBCAwMhEQiMXR2TBLLuHKxfCsfy7hysXwrH8u4crF8qSqxwV8OqampkMvlUCgUsLOzM3R2TBLLuHKxfCsfy7hysXwrH8u4crF8qSpxSA8RERERkQljg5+IiIiIyISxwU9EREREZMLY4C8HiUSCoKAgTrKpRCzjysXyrXws48rF8q18LOPKxfKlqsRJu0REREREJow9/EREREREJowNfiIiIiIiE8YGPxERERGRCWODnypU9+7dMW3aNENnwySwLE3PZ599hlatWhk6G0REVMOwwV+CcePGQSQSFdnu3LkDAIiLi8MHH3yAxo0bQyKRwNXVFQMGDMDhw4cNnHPTERISovMaLF++XBMnJycH3377LVq2bAlra2s4Ojqic+fOWLVqFXJzcw2Y++qnLGVV+L63tLSEh4cHvvjiC+Tl5QEAjh07BpFIhFq1aiE7O1sr/fPnz2uONQalnetTCxcu1Hm+AJCZmQk7OzssXry4qrJtkkqqbwuHWVhYwNnZGb1798bKlSuhVqu10nF3d9fEtba2RosWLbTqi5omISEB7777Lho2bAiJRAIXFxcEBATg9OnTmjiXL1/G8OHD4ezsDCsrK3h6emLSpEn477//AAD37t2DSCRCWFhYsd9TE+rhp/fhN998o7V/x44dWnXesmXL0LJlS8hkMtjb26N169YIDg7WOiY1NRWffPIJvL29YWVlBRcXF/j7+2Pbtm14upZKWTp9jh49ipdffhm1a9eGtbU1fHx88NFHH+Hhw4cVc9JkMtjgL0Xfvn0RGxurtTVq1Aj37t1D27ZtceTIEXz33Xe4evUq9u/fjx49emDKlCmGzrZJsbOzK3INRo0aBSD/n0xAQAC++eYbTJ48GWfOnMG5c+cwZcoULFmyBNevXzdw7qsPfcrq6X0fHh6Ojz76CJ999hm+++47rfRsbW2xfft2rX0rVqxAw4YNq+R8KkpZzvXNN99ERkYGtm3bVuT4LVu2ICcnB6NHj66qLJus4urbwmH37t3Dvn370KNHD0ydOhX9+/cv8gPtiy++QGxsLK5du4bRo0dj0qRJ2LdvnyFOyeCGDh2Ky5cvY/Xq1fjvv/+wc+dOdO/eHY8fPwYA7N69Gx07doRSqcT69etx8+ZNrFu3DnK5HPPmzSvTd9SketjKygoLFixAcnKyzvCVK1di2rRp+L//+z+EhYXh9OnTmDVrFtLT0zVxUlJS0KlTJ6xZswaBgYG4dOkSTpw4gREjRmDWrFlQKBRlystvv/0Gf39/uLi4YOvWrbhx4wZ+/fVXKBQKLFy4sELOl0yIQMUaO3asMHDgQJ1h/fr1E+rXry+kp6cXCUtOTq7cjFVj3bp1E6ZOnSoIgiAkJSUJb775pmBvby9IpVKhb9++wn///acV//fffxcaNGggSKVSYdCgQcLChQsFuVyuCV+1apXW52ctWLBAEIvFwqVLl4qE5eTk6Lw+xqKiy7KsZaXrvu/du7fQsWNHQRAE4ejRowIAYe7cuYK/v78mTmZmpiCXy4V58+YJxlK1lHauhQ0ZMkTo1atXkf3dunUTRowYIQiCIMyaNUvw9PQUpFKp0KhRI2Hu3LlCTk6OJm5QUJDQsmVLrWOfXuOnBg4cKIwdO1bzOTs7W/joo4+EevXqCdbW1oKvr69w9OhRvc+1uiupvi0u7PDhwwIAYdmyZZp9bm5uwqJFi7TiOTg4CB9++GEF5tY4JCcnCwCEY8eO6QzPyMgQHB0dhUGDBhV7vCAIQmRkpABAuHz5ss54plwPFzZ27Fihf//+gre3tzBz5kzN/u3bt2vqvIEDBwrjxo0rMZ13331XsLGxER4+fFgkLC0tTcjNzRUEQXf98FRUVJRgaWkpTJs2TWd4TW6HkG7s4S+HpKQk7N+/H1OmTIGNjU2RcHt7+6rPVDU0btw4XLhwATt37kRoaCgEQcDLL7+sebx7+vRpvPPOO5g6dSrCwsLQu3dvfPXVV3p9x/r16+Hv74/WrVsXCbOwsNB5fYxRRZTl85SVVCpFTk6O1r4333wTJ0+exIMHDwAAW7duhbu7O9q0afO8p2tQus4VACZOnIgjR47g/v37mn13797FiRMnMHHiRAD5Tz1CQkJw48YN/PTTT1i2bBkWLVr0XPl5//33ERoaio0bN+LKlSsYPnw4+vbti/Dw8OdK1xT07NkTLVu21PnkBQDUajW2bt2K5ORkWFpaVnHuDE8mk0Emk2HHjh1QKpVFwg8cOIDExETMmjVL5/Fl/V9WU+phADAzM8PXX3+NJUuWIDo6uki4i4sLzp49q1VPFKZWq7Fx40aMGjUK9erVKxIuk8lgbm5eaj42b96MnJyc5752VHOwwV+K3bt3aypNmUyG4cOH486dOxAEAd7e3obOXrUVHh6OnTt3Yvny5ejSpQtatmyJ9evX4+HDh9ixYwcAYMmSJejXrx9mzJiBpk2b4r333kO/fv2KpKVQKLSugYuLi9b3mPp1qKiyLE9ZCYKAQ4cO4cCBA+jZs6dWWJ06ddCvXz+EhIQAyH+UPWHChHKfp6GVdK4AEBAQgHr16mHVqlWafSEhIXB1dUWvXr0AAHPnzkWnTp3g7u6OAQMGYMaMGdi0aVO58/TgwQOsWrUKmzdvRpcuXdCkSRPMmDEDL730klY+TIWu+rY03t7euHfvnta+2bNnQyaTQSKRYNiwYahVqxbeeuutSsp19WVubo6QkBCsXr0a9vb26Ny5Mz7++GNcuXIFADQ/Gp+3Dq0J9XBhgwcPRqtWrRAUFFQkLCgoCPb29nB3d4eXlxfGjRuHTZs2aeaaJCYmIjk5uULK3M7ODnXr1n2udKjmYIO/FD169EBYWJhmW7x4sWZCDRXv5s2bMDc3R4cOHTT7ateuDS8vL9y8eRMAcPv2bfj6+mod9+xnIL/XtPA1OHPmjCasJlyLiipLfcrqacPLysoK/fr1w4gRI/DZZ58ViTdhwgSEhITg7t27CA0N1cytMCa6zrV///5aDc/169fDzMwMY8eORUhICARBgFqtxurVqzF+/HiIxflV6Z9//onOnTvDxcUFMpkMc+fO1TwBKY+rV69CpVKhadOmWvk5fvw4IiIiKqoIqg1d9W1pBEEoMkl85syZCAsLw5EjR9ChQwcsWrQIHh4elZXtam3o0KGIiYnBzp070bdvXxw7dgxt2rTR3McVoSbUw89asGABVq9eramDn6pbty5CQ0Nx9epVTJ06FXl5eRg7diz69u0LtVpdoWVuLIsjUPVQ+nOjGs7GxqbIPwqJRAKRSIRbt24ZKFc1i1gsLvafddOmTXkdykifsurRowd++eUXWFpaol69esU+Yu7Xrx8mT56MiRMnYsCAAahdu3ZFZrlK6DrXrKwsrRVJnJ2dAeT/wAkODsaRI0egVqsRFRWF8ePHA4DmB8/nn3+OgIAAyOVybNy4scTJc2KxuEgDoPCKJunp6TAzM8PFixdhZmamFU8mkz3vqVc7uurb0ty8eVMzsfcpR0dHeHh4wMPDA5s3b0aLFi3Qrl07+Pj4VGR2jYaVlRV69+6N3r17Y968eXjrrbcQFBSEH3/8EQBw69Yt+Pn5lTv9mlgPd+3aFQEBAQgMDMS4ceOKhDdv3hzNmzfHe++9h3feeQddunTB8ePH0a1bN9jb2z93eTVt2hQKhQKxsbHs5acyYQ9/OTg4OCAgIABLly5FRkZGkfCUlJSqz1Q106xZM+Tl5eGff/7R7Hv8+DFu376t+afr5eWF8+fPax337OfSjBw5EocOHcLly5eLhOXm5uq8PsamospSn7J62vBq2LBhieNJzc3NMWbMGBw7dsxoh/PoOlepVKppMHp4eMDW1hYA0KRJE3Tr1g0rV67EqlWr4O/vDzc3NwDAmTNn4Obmhk8++QTt2rWDp6dnseN4n3JyckJsbKzms0qlwrVr1zSfW7duDZVKhUePHmnlx8PDQ2toW0115MgRXL16FUOHDi02jqurK0aMGIHAwMAqzFn15uPjg4yMDPTp0weOjo749ttvdcYr6/+ymlAP6/LNN99g165dCA0NLTHe03o6IyMDYrEYr7/+OtavX4+YmJgicdPT04usOqXLsGHDYGlp+dzXjmoONvjLaenSpVCpVPD19cXWrVsRHh6OmzdvYvHixc/VU2IqPD09MXDgQEyaNAmnTp3Cv//+i9GjR6N+/foYOHAgAOCDDz7A3r178cMPPyA8PBy//fYb9u3bp9djymnTpqFz587o1asXli5din///Rd3797Fpk2b0LFjR5OY2FhRZVlZZTV//nwkJCQgICCgQs63ups4cSK2bduG7du3aybrAvnX6cGDB9i4cSMiIiKwePHiIsuWPqtnz57Ys2cP9uzZg1u3buHdd9/V+kfdtGlTjBo1CmPGjMG2bdsQGRmJc+fOITg4GHv27KmsU6yWlEol4uLi8PDhQ1y6dAlff/01Bg4ciP79+2PMmDElHjt16lTs2rULFy5cqKLcVg+PHz9Gz549sW7dOly5cgWRkZHYvHkzvv32WwwcOBA2NjZYvnw59uzZg1dffRWHDh3CvXv3cOHCBcyaNQvvvPOOVnq3b9/WGnIVFhaG3NzcGlEP69KiRQuMGjVKa+jZu+++i/nz5+P06dO4f/8+zp49izFjxsDJyUnTNvjqq6/g6uqKDh06YM2aNbhx4wbCw8OxcuVKtG7dWmsJz4SEhCJlHh8fD1dXVyxatAg//fQTJk6ciOPHj+P+/fs4ffo03n77bcyfP7/Ky4OqOQOsDGQ0SlomThAEISYmRpgyZYrg5uYmWFpaCvXr1xdeffVVk1wyr6x0LSUpl8sFqVQqBAQE6FxKsn79+pqlJL/88kvBxcVFE17aspyCkL9sYXBwsNCiRQvByspKcHBwEDp37iyEhIRoljczRhVdloJQtrIq7b5/uixnccu+FV6irror7Vx1ebr8qIODg5Cdna0VNnPmTKF27dqCTCYTRowYISxatEjr/n12Wc6cnBzh3XffFRwcHIQ6deoIwcHBRZblzMnJET799FPB3d1dsLCwEOrWrSsMHjxYuHLlSjnOuPoqbVlOAAIAwdzcXHBychL8/f2FlStXCiqVSiuurmU5BUEQAgIChH79+lVCzquv7OxsYc6cOUKbNm0EuVwuWFtbC15eXsLcuXOFzMxMTbzz588LQ4YMEZycnASJRCJ4eHgIkydPFsLDwwVBKFiWU9cWFRWl+S5TrIcL03WPRkZGCpaWlpo6b8uWLcLLL78s1K1bV7C0tBTq1asnDB06tMjfa0pKijBnzhzB09NTsLS0FJydnQV/f39h+/btglqtFgQh/3+ArjKfP3++Jp2///5bCAgIEGrVqiVYWVkJ3t7ewowZM4SYmJjKLQwyOiJBqIGzbajamjRpEm7duoWTJ08aOitGj2VJREREACftkoF9//336N27N2xsbLBv3z6sXr0aP//8s6GzZZRYlkRERKQLe/jJoF577TUcO3YMaWlpaNy4MT744IMi40apbFiWREREpAsb/EREREREJoyr9BARERERmTA2+ImIiIiITBgb/EREREREJowNfiIiIiIiE8YGPxERERGRCWODn4iIiIjIhLHBT0RERERkwtjgJyIiIiIyYWzwExERERGZsP8HzEfCBYlz49kAAAAASUVORK5CYII=\n"
274
          },
275
          "metadata": {}
276
        }
277
      ]
278
    },
279
    {
280
      "cell_type": "code",
281
      "execution_count": 135,
282
      "metadata": {
283
        "id": "899e19db-549e-49e5-a0da-7fa1467afff9"
284
      },
285
      "outputs": [],
286
      "source": [
287
        "#feature selection\n",
288
        "features = data[['FC', 'logFC', 'P-Value']]\n",
289
        "targets = {'NSCLC': data['NSCLC'], 'SCLC': data['SCLC']}"
290
      ],
291
      "id": "899e19db-549e-49e5-a0da-7fa1467afff9"
292
    },
293
    {
294
      "cell_type": "code",
295
      "source": [
296
        "nsclc = data['NSCLC']\n",
297
        "sclc = data['SCLC']"
298
      ],
299
      "metadata": {
300
        "id": "JOJMqGN3E1n0"
301
      },
302
      "id": "JOJMqGN3E1n0",
303
      "execution_count": 136,
304
      "outputs": []
305
    },
306
    {
307
      "cell_type": "code",
308
      "source": [
309
        "nm = NearMiss()\n",
310
        "print('SCLC Original Shape:', Counter(sclc))\n",
311
        "features_nm_sclc, nm_sclc = nm.fit_resample(features, sclc)\n",
312
        "print('SCLC Resample Shape:', Counter(nm_sclc))\n",
313
        "print('NSCLC Original Shape:', Counter(nsclc))\n",
314
        "features_nm_nsclc, nm_nsclc = nm.fit_resample(features, nsclc)\n",
315
        "print('NSCLC Resample Shape:', Counter(nm_nsclc))"
316
      ],
317
      "metadata": {
318
        "colab": {
319
          "base_uri": "https://localhost:8080/"
320
        },
321
        "id": "HZNVKpm4E4jC",
322
        "outputId": "418338fe-44fd-4518-9ca8-d70197bf9766"
323
      },
324
      "id": "HZNVKpm4E4jC",
325
      "execution_count": 137,
326
      "outputs": [
327
        {
328
          "output_type": "stream",
329
          "name": "stdout",
330
          "text": [
331
            "SCLC Original Shape: Counter({0.0: 18857, 1.0: 921})\n",
332
            "SCLC Resample Shape: Counter({0.0: 921, 1.0: 921})\n",
333
            "NSCLC Original Shape: Counter({0.0: 19087, 1.0: 691})\n",
334
            "NSCLC Resample Shape: Counter({0.0: 691, 1.0: 691})\n"
335
          ]
336
        }
337
      ]
338
    },
339
    {
340
      "cell_type": "code",
341
      "source": [
342
        "features_sclc = features_nm_sclc\n",
343
        "features_nsclc = features_nm_nsclc\n",
344
        "sclc = nm_sclc\n",
345
        "nsclc = nm_nsclc"
346
      ],
347
      "metadata": {
348
        "id": "viq_jXlFE8o9"
349
      },
350
      "id": "viq_jXlFE8o9",
351
      "execution_count": 138,
352
      "outputs": []
353
    },
354
    {
355
      "cell_type": "code",
356
      "execution_count": 139,
357
      "metadata": {
358
        "colab": {
359
          "base_uri": "https://localhost:8080/",
360
          "height": 963
361
        },
362
        "id": "26952ab4-1311-48af-8ca9-3d327b96b9da",
363
        "outputId": "1c4123f6-2cc7-4813-ed36-fb9d1e86e3f3"
364
      },
365
      "outputs": [
366
        {
367
          "output_type": "display_data",
368
          "data": {
369
            "text/plain": [
370
              "<Figure size 1500x600 with 4 Axes>"
371
            ],
372
            "image/png": "iVBORw0KGgoAAAANSUhEUgAABNQAAAIQCAYAAABJ4TMRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+rklEQVR4nOzde1xVZd7//zcgbMQExAQk0SjLQx6DRNK8tRAyanJyutMsHaO88wsVMqNmmSLW2FhqmpjTSew3cmd2sFJTd5iaiSeSyUM6NaNjZeBMiqQmbGH9/ujBut0hyrJ94PB6Ph48bF3rs691XZ+1zcVnX3stH8MwDAEAAAAAAACoE19vDwAAAAAAAABoSCioAQAAAAAAABZQUAMAAAAAAAAsoKAGAAAAAAAAWEBBDQAAAAAAALCAghoAAAAAAABgAQU1AAAAAAAAwAIKagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAahdzcXPn4+OjQoUPeHgqARo6CGoBGofri6Xw/jz/+uBlXWVmpxYsXa+DAgQoLC5PNZtOVV16pMWPGaOfOnV6cAQAAAOq7Q4cO1XrN2bdv3xrxGzZs0F133aXIyEgFBAQoPDxcd9xxh959910vjB6AKzXz9gAAwJWys7MVExPj1NatWzdJ0k8//aS77rpLa9as0YABA/TEE08oLCxMhw4d0ltvvaUlS5bo8OHDateunTeGDgAAgAZixIgRuu2225za2rRp47Q9bdo0ZWdn65prrtH//M//qEOHDvrhhx+0evVqDRs2TEuXLtW9997ryWEDcCEKagAalSFDhiguLu68+yZMmKA1a9Zo7ty5ysjIcNo3bdo0zZ071wMjBAAAQEN3/fXX67777qt1/9tvv63s7Gz97ne/U15envz9/c19EyZM0Nq1a+VwODwxVABuwlc+ATQJ3377rf7yl79o8ODBNYppkuTn56c//vGPrE4DAABoZBYuXKjrrrtONptNUVFRSktLU2lpaY24nJwcXXXVVWrevLn69OmjTz/9VAMHDtTAgQMtH/Opp55SWFiYXn/9dadiWrXk5GTdfvvtlzAbAPUFBTUAjcqJEyf0n//8x+lHkj766COdPXtW999/v5dHCAAAAE/JyspSWlqaoqKiNHv2bA0bNkx/+ctflJSU5LRC7KWXXlJ6erratWunWbNm6aabbtLQoUP17bffnrff06dP17jmrO7vq6++0v79+zV06FC1bNnSI/ME4Hl85RNAo5KYmFijzTAMffnll5Kk7t27e3pIAAAA8IJ///vfmjlzppKSkvTRRx/J1/fn9SSdO3dWenq6/vrXv2rMmDGqqKjQU089pRtuuEHr169Xs2Y//5rco0cP/f73vz/vNximTZumadOmObV98sknGjhwINedQBNBQQ1Ao5KTk6Nrr722RntZWZkk8SkhAABAE/Hxxx+roqJCGRkZZjFNkh566CE98cQTWrVqlfmk9x9++EEzZ840i2mSNHLkSI0fP/68fY8dO1Z33323U1vPnj0lcd0JNBUU1AA0Kn369DnvQwmCg4MlST/++KOnhwQAAAAv+Ne//iVJ6tSpk1N7QECArrrqKnN/9Z8dO3Z0imvWrJmuvPLK8/Z9zTXXnPebERLXnUBTwT3UADQJnTt3liTt3r3byyMBAABAY8Z1J9A0UFAD0CQMGTJEfn5++utf/+rtoQAAAMADOnToIEk6cOCAU3tFRYUOHjxo7q/+8+uvv3aKO3v2rA4dOmT5uNdee606deqk999/XydPnryEkQNoCCioAWgSoqOj9dBDD2ndunV68cUXa+yvqqrS7Nmza32SEwAAABqWxMREBQQEaP78+TIMw2x/7bXXdOLECaWkpEiS4uLi1Lp1a73yyis6e/asGbd06VIdP378ko49ffp0/fDDD3rwwQed+qy2bt06rVy58pL6BlA/cA81AE3G7Nmz9Y9//EOPPvqo3n33Xd1+++1q1aqVDh8+rOXLl2v//v0aPny4t4cJAAAAF2jTpo0mT56s6dOn69Zbb9VvfvMbHThwQAsXLtQNN9yg++67T9LP91TLysrSI488optvvln//d//rUOHDik3N1dXX321fHx8LB/7nnvu0e7du/XMM89o165dGjFihDp06KAffvhBa9asUX5+vvLy8lw9ZQAeREENQJMRFBSkjz76SLm5uVqyZIlmzJih06dPKyoqSjfffLOWLl2qK664wtvDBAAAgItkZWWpTZs2WrBggcaPH6+wsDCNHTtWf/rTn+Tv72/GpaenyzAMzZ49W3/84x/Vs2dPffDBB3r00UcVGBh4Scd++umndfPNN2v+/Pl66aWXdOzYMbVq1Up9+/bV+++/r9/85jeumiYAL/Axzl37CgAAAAAAVFVVpTZt2uiuu+7SK6+84u3hAKhnuIcaAAAAAKBJO3PmjH651uSNN97QsWPHNHDgQO8MCkC9xgo1AAAAAECTtmHDBo0fP1533323Wrdurc8//1yvvfaaunTposLCQgUEBHh7iADqGe6hBgAAAABo0q688kpFR0dr/vz5OnbsmMLCwjRq1Cg9++yzFNMAnBcr1AAAAAAAAAALuIcaAAAAAAAAYAEFNQAAAAAAAMCCJn0PtaqqKh05ckQtW7aUj4+Pt4cDAABcxDAM/fjjj4qKipKvL58fwrW4hgQAoHGycg3ZpAtqR44cUXR0tLeHAQAA3OSbb75Ru3btvD0MNDJcQwIA0LjV5RqySRfUWrZsKUk6ePCgwsLCvDwaz3E4HFq3bp2SkpLk7+/v7eF4DPNuOvNuinOWmDfzbhrqOu+ysjJFR0eb/9YDrlT9vvrmm28UHBzs8v6b6t/vuiA3tSM3tSM3tSM3tSM3tWvMubFyDWmpoDZz5ky9++672r9/v5o3b64bb7xRf/7zn9WpUycz5syZM/rDH/6gN998U+Xl5UpOTtbChQsVERFhxhw+fFjjxo3TJ598ossuu0yjR4/WzJkz1azZ/w1nw4YNyszM1N69exUdHa0pU6bo97//vdN4cnJy9Nxzz6m4uFg9e/bUiy++qD59+tR5PtVL9Fu2bOmWi6H6yuFwKCgoSMHBwY3uzX8hzLvpzLspzlli3sy7abA6b76OB3eofl8FBwe7raDWFP9+1wW5qR25qR25qR25qR25qV1TyE1driEt3VRk48aNSktL09atW2W32+VwOJSUlKRTp06ZMePHj9eHH36o5cuXa+PGjTpy5Ijuuusuc39lZaVSUlJUUVGhLVu2aMmSJcrNzdXUqVPNmIMHDyolJUWDBg1SUVGRMjIy9OCDD2rt2rVmzLJly5SZmalp06bp888/V8+ePZWcnKyjR49amRIAAAAAAABgiaUVamvWrHHazs3NVXh4uAoLCzVgwACdOHFCr732mvLy8nTzzTdLkhYvXqwuXbpo69at6tu3r9atW6d9+/bp448/VkREhHr16qUZM2Zo0qRJysrKUkBAgBYtWqSYmBjNnj1bktSlSxdt3rxZc+fOVXJysiRpzpw5euihhzRmzBhJ0qJFi7Rq1Sq9/vrrevzxx391YgAAAAAAAIDz+VX3UDtx4oQkmfcfKywslMPhUGJiohnTuXNntW/fXgUFBerbt68KCgrUvXt3p6+AJicna9y4cdq7d6969+6tgoICpz6qYzIyMiRJFRUVKiws1OTJk839vr6+SkxMVEFBQa3jLS8vV3l5ubldVlYm6eflig6H4xKz0PBUz7UpzVli3k1p3k1xzhLzZt5NQ13n3dTyAgAAAM+65IJaVVWVMjIy1K9fP3Xr1k2SVFxcrICAAIWGhjrFRkREqLi42Iw5t5hWvb9634ViysrK9NNPP+n48eOqrKw8b8z+/ftrHfPMmTM1ffr0Gu2ffPKJgoKC6jDrxsVut3t7CF7BvJuOpjhniXk3Ncz7/E6fPu2hkQAAAKApuuSCWlpamvbs2aPNmze7cjxuNXnyZGVmZprb1U9vGDRokFq3bu3FkXmWw+GQ3W7X4MGDG+0NBM+HeTedeTfFOUvMm3k3DXWdd/UqdAAAAMAdLqmglp6erpUrV2rTpk1q166d2R4ZGamKigqVlpY6rVIrKSlRZGSkGbN9+3an/kpKSsx91X9Wt50bExwcrObNm8vPz09+fn7njanu43xsNptsNluNdn9//yb1y0g15t20NMV5N8U5S8y7qWHete8HAAAA3MXSUz4Nw1B6erree+89rV+/XjExMU77Y2Nj5e/vr/z8fLPtwIEDOnz4sBISEiRJCQkJ2r17t9PTOO12u4KDg9W1a1cz5tw+qmOq+wgICFBsbKxTTFVVlfLz880YAAAAAAAAwB0srVBLS0tTXl6e3n//fbVs2dK851lISIiaN2+ukJAQpaamKjMzU2FhYQoODtYjjzyihIQE9e3bV5KUlJSkrl276v7779esWbNUXFysKVOmKC0tzVw99vDDD2vBggWaOHGiHnjgAa1fv15vvfWWVq1aZY4lMzNTo0ePVlxcnPr06aMXXnhBp06dMp/6CTQFVz6+6qIxNj9Ds/pI3bLWqrzSxyXHPfRsikv6AQAAADzFldfDVnDtDDROlgpqL730kiRp4MCBTu2LFy/W73//e0nS3Llz5evrq2HDhqm8vFzJyclauHChGevn56eVK1dq3LhxSkhIUIsWLTR69GhlZ2ebMTExMVq1apXGjx+vefPmqV27dnr11VeVnJxsxtxzzz3697//ralTp6q4uFi9evXSmjVrajyoAAAAAAAAAHAlSwU1wzAuGhMYGKicnBzl5OTUGtOhQwetXr36gv0MHDhQu3btumBMenq60tPTLzomAAAAAAAAwFUs3UMNAAAAAAAAaOooqAEAAMDtNm3apDvuuENRUVHy8fHRihUrnPYbhqGpU6eqbdu2at68uRITE/XVV185xRw7dkwjR45UcHCwQkNDlZqaqpMnTzrFfPHFF7rpppsUGBio6OhozZo1q8ZYli9frs6dOyswMFDdu3e/6DcnAAAAfomCGgAAANzu1KlT6tmzZ623BZk1a5bmz5+vRYsWadu2bWrRooWSk5N15swZM2bkyJHau3ev7Ha7Vq5cqU2bNmns2LHm/rKyMiUlJalDhw4qLCzUc889p6ysLL388stmzJYtWzRixAilpqZq165dGjp0qIYOHao9e/a4b/IAAKDRsXQPNQAAAOBSDBkyREOGDDnvPsMw9MILL2jKlCm68847JUlvvPGGIiIitGLFCg0fPlxffvml1qxZox07diguLk6S9OKLL+q2227T888/r6ioKC1dulQVFRV6/fXXFRAQoOuuu05FRUWaM2eOWXibN2+ebr31Vk2YMEGSNGPGDNntdi1YsECLFi3yQCYAAEBjwAo1AAAAeNXBgwdVXFysxMREsy0kJETx8fEqKCiQJBUUFCg0NNQspklSYmKifH19tW3bNjNmwIABCggIMGOSk5N14MABHT9+3Iw59zjVMdXHAQAAqAtWqAEAAMCriouLJUkRERFO7REREea+4uJihYeHO+1v1qyZwsLCnGJiYmJq9FG9r1WrViouLr7gcc6nvLxc5eXl5nZZWZkkyeFwyOFw1HmedVXdpzv6bujITe3ITe2qc2LzNbx6/PqI903tyE3tGnNurMyJghoAAABwATNnztT06dNrtK9bt05BQUFuO67dbndb3w0duakduandjLgqrxy3ITz4hPdN7chN7Rpjbk6fPl3nWApqAAAA8KrIyEhJUklJidq2bWu2l5SUqFevXmbM0aNHnV539uxZHTt2zHx9ZGSkSkpKnGKqty8WU73/fCZPnqzMzExzu6ysTNHR0UpKSlJwcLCVqdaJw+GQ3W7X4MGD5e/v7/L+GzJyUztyU7vq3Dy101flVT4eP/6erGSPH7OueN/UjtzUrjHnpnoVel1QUAMAAIBXxcTEKDIyUvn5+WYBraysTNu2bdO4ceMkSQkJCSotLVVhYaFiY2MlSevXr1dVVZXi4+PNmCeffFIOh8O8wLfb7erUqZNatWplxuTn5ysjI8M8vt1uV0JCQq3js9lsstlsNdr9/f3d+ouEu/tvyMhN7chN7cqrfFRe6fmCWkM4H7xvakduatcYc2NlPjyUAAAAAG538uRJFRUVqaioSNLPDyIoKirS4cOH5ePjo4yMDD399NP64IMPtHv3bo0aNUpRUVEaOnSoJKlLly669dZb9dBDD2n79u367LPPlJ6eruHDhysqKkqSdO+99yogIECpqanau3evli1bpnnz5jmtLnvssce0Zs0azZ49W/v371dWVpZ27typ9PR0T6cEAAA0YKxQAwAAgNvt3LlTgwYNMreri1yjR49Wbm6uJk6cqFOnTmns2LEqLS1V//79tWbNGgUGBpqvWbp0qdLT03XLLbfI19dXw4YN0/z58839ISEhWrdundLS0hQbG6vLL79cU6dO1dixY82YG2+8UXl5eZoyZYqeeOIJXXPNNVqxYoW6devmgSwAAIDGgoIaAAAA3G7gwIEyjNqfsOfj46Ps7GxlZ2fXGhMWFqa8vLwLHqdHjx769NNPLxhz99136+67777wgAEAAC6Ar3wCAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlguqG3atEl33HGHoqKi5OPjoxUrVjjt//3vfy8fHx+nn1tvvdUp5tixYxo5cqSCg4MVGhqq1NRUnTx50inmiy++0E033aTAwEBFR0dr1qxZNcayfPlyde7cWYGBgerevbtWr15tdToAAAAAAACAJZYLaqdOnVLPnj2Vk5NTa8ytt96q77//3vz53//9X6f9I0eO1N69e2W327Vy5Upt2rRJY8eONfeXlZUpKSlJHTp0UGFhoZ577jllZWXp5ZdfNmO2bNmiESNGKDU1Vbt27dLQoUM1dOhQ7dmzx+qUAAAA4GWVlZV66qmnFBMTo+bNm+vqq6/WjBkzZBiGGWMYhqZOnaq2bduqefPmSkxM1FdffeXUj6s+uAUAALiQZlZfMGTIEA0ZMuSCMTabTZGRkefd9+WXX2rNmjXasWOH4uLiJEkvvviibrvtNj3//POKiorS0qVLVVFRoddff10BAQG67rrrVFRUpDlz5piFt3nz5unWW2/VhAkTJEkzZsyQ3W7XggULtGjRIqvTAgAAgBf9+c9/1ksvvaQlS5bouuuu086dOzVmzBiFhITo0UcflSTNmjVL8+fP15IlSxQTE6OnnnpKycnJ2rdvnwIDAyX9/MHt999/L7vdLofDoTFjxmjs2LHKy8uT9H8f3CYmJmrRokXavXu3HnjgAYWGhjp9wAsAAHAhbrmH2oYNGxQeHq5OnTpp3Lhx+uGHH8x9BQUFCg0NNYtpkpSYmChfX19t27bNjBkwYIACAgLMmOTkZB04cEDHjx83YxITE52Om5ycrIKCAndMCQAAAG60ZcsW3XnnnUpJSdGVV16p3/3ud0pKStL27dsl/bw67YUXXtCUKVN05513qkePHnrjjTd05MgR8xYk1R/cvvrqq4qPj1f//v314osv6s0339SRI0ckyemD2+uuu07Dhw/Xo48+qjlz5nhr6gAAoAGyvELtYm699VbdddddiomJ0T/+8Q898cQTGjJkiAoKCuTn56fi4mKFh4c7D6JZM4WFham4uFiSVFxcrJiYGKeYiIgIc1+rVq1UXFxstp0bU93H+ZSXl6u8vNzcLisrkyQ5HA45HI5Ln3QDUz3XpjRnqXHO2+ZnXDzG13D60xXqew4b47muC+bNvJuCus67qeWlMbjxxhv18ssv6+9//7uuvfZa/e1vf9PmzZvNQtfBgwdVXFzs9IFqSEiI4uPjVVBQoOHDh1/0g9vf/va3tX5w++c//1nHjx9Xq1ataozN09eQTfXvd12Qm9qRm9pV58SV18OXcvz6iPdN7chN7RpzbqzMyeUFteHDh5v/3b17d/Xo0UNXX321NmzYoFtuucXVh7Nk5syZmj59eo32Tz75REFBQV4YkXfZ7XZvD8ErGtO8Z/Wpe+yMuCqXHbehPACkMZ1rK5h308K8z+/06dMeGglc5fHHH1dZWZk6d+4sPz8/VVZW6plnntHIkSMlyfzQ9EIfqLrqg9tfqu0act26dW69hmyqf7/rgtzUjtzUzpXXw1Y0hGtn3je1Ize1a4y5sXIN6fKC2i9dddVVuvzyy/X111/rlltuUWRkpI4ePeoUc/bsWR07dsy871pkZKRKSkqcYqq3LxZT273bJGny5MnKzMw0t8vKyhQdHa1BgwapdevWlz7JBsbhcMhut2vw4MHy9/f39nA8pjHOu1vW2ovG2HwNzYir0lM7fVVe5eOS4+7JSnZJP+7SGM91XTBv5t0U1HXe1SuI0HC89dZbWrp0qfLy8sz752ZkZCgqKkqjR4/26thqu4ZMSkpScHCwy4/XVP9+1wW5qR25qV11blx5PWxFfb525n1TO3JTu8acGyvXkG4vqH377bf64Ycf1LZtW0lSQkKCSktLVVhYqNjYWEnS+vXrVVVVpfj4eDPmySeflMPhME+O3W5Xp06dzE8NExISlJ+fr4yMDPNYdrtdCQkJtY7FZrPJZrPVaPf39290b4K6YN4NX3ll3S8Iyqt8LMVfSEPJX2M611Yw76aFede+Hw3LhAkT9Pjjj5vfdujevbv+9a9/aebMmRo9erT5oWlJSYl5XVm93atXL0ly2Qe3v+Sta8im+ve7LshN7chN7Vx5PWxFQzgfvG9qR25q1xhzY2U+lh9KcPLkSRUVFamoqEjSz/ezKCoq0uHDh3Xy5ElNmDBBW7du1aFDh5Sfn68777xTHTt2VHLyz1X5Ll266NZbb9VDDz2k7du367PPPlN6erqGDx+uqKgoSdK9996rgIAApaamau/evVq2bJnmzZvn9MngY489pjVr1mj27Nnav3+/srKytHPnTqWnp1udEgAAALzs9OnT8vV1vjT18/NTVdXPX9GKiYlRZGSk8vPzzf1lZWXatm2b+YHquR/cVjvfB7ebNm1yukfKLz+4BQAAuBjLBbWdO3eqd+/e6t27tyQpMzNTvXv31tSpU+Xn56cvvvhCv/nNb3TttdcqNTVVsbGx+vTTT50+1Vu6dKk6d+6sW265Rbfddpv69++vl19+2dwfEhKidevW6eDBg4qNjdUf/vAHTZ061elR5jfeeKPy8vL08ssvq2fPnnr77be1YsUKdevW7dfkAwAAAF5wxx136JlnntGqVat06NAhvffee5ozZ45++9vfSpJ8fHyUkZGhp59+Wh988IF2796tUaNGKSoqSkOHDpXkug9uAQAALsbyVz4HDhwow6j96Shr1178nk5hYWHKy8u7YEyPHj306aefXjDm7rvv1t13333R4wEAAKB+e/HFF/XUU0/p//2//6ejR48qKipK//M//6OpU6eaMRMnTtSpU6c0duxYlZaWqn///lqzZo0CAwPNmKVLlyo9PV233HKLfH19NWzYMM2fP9/cX/3BbVpammJjY3X55ZfX+OAWAADgYtx+DzUAAADgYlq2bKkXXnhBL7zwQq0xPj4+ys7OVnZ2dq0xrvrgFgAA4EIsf+UTAAAAAAAAaMooqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFjAQwkAAAAAAG535eOrvHJcm5+hWX28cmgAjRgr1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAA9cJ3332n++67T61bt1bz5s3VvXt37dy509xvGIamTp2qtm3bqnnz5kpMTNRXX33l1MexY8c0cuRIBQcHKzQ0VKmpqTp58qRTzBdffKGbbrpJgYGBio6O1qxZszwyPwAA0HhQUAMAAIDXHT9+XP369ZO/v78++ugj7du3T7Nnz1arVq3MmFmzZmn+/PlatGiRtm3bphYtWig5OVlnzpwxY0aOHKm9e/fKbrdr5cqV2rRpk8aOHWvuLysrU1JSkjp06KDCwkI999xzysrK0ssvv+zR+QIAgIatmbcHAAAAAPz5z39WdHS0Fi9ebLbFxMSY/20Yhl544QVNmTJFd955pyTpjTfeUEREhFasWKHhw4fryy+/1Jo1a7Rjxw7FxcVJkl588UXddtttev755xUVFaWlS5eqoqJCr7/+ugICAnTdddepqKhIc+bMcSq8AQAAXAgr1AAAAOB1H3zwgeLi4nT33XcrPDxcvXv31iuvvGLuP3jwoIqLi5WYmGi2hYSEKD4+XgUFBZKkgoIChYaGmsU0SUpMTJSvr6+2bdtmxgwYMEABAQFmTHJysg4cOKDjx4+7e5oAAKCRYIUaAAAAvO6f//ynXnrpJWVmZuqJJ57Qjh079OijjyogIECjR49WcXGxJCkiIsLpdREREea+4uJihYeHO+1v1qyZwsLCnGLOXfl2bp/FxcVOXzGtVl5ervLycnO7rKxMkuRwOORwOH7NtM+ruk939N3QkZvaNYTc2PwM7xzX13D609Pq8zlpCO8bbyE3tWvMubEyJwpqAAAA8LqqqirFxcXpT3/6kySpd+/e2rNnjxYtWqTRo0d7dWwzZ87U9OnTa7SvW7dOQUFBbjuu3W53W98NHbmpXX3Ozaw+3j3+jLgqrxx39erVXjmuFfX5feNt5KZ2jTE3p0+frnMsBTUAAAB4Xdu2bdW1a1enti5duuidd96RJEVGRkqSSkpK1LZtWzOmpKREvXr1MmOOHj3q1MfZs2d17Ngx8/WRkZEqKSlxiqnero75pcmTJyszM9PcLisrU3R0tJKSkhQcHGx1qhflcDhkt9s1ePBg+fv7u7z/hozc1K4h5KZb1lqvHNfma2hGXJWe2umr8iofjx9/T1ayx49ZVw3hfeMt5KZ2jTk31avQ64KCGgAAALyuX79+OnDggFPb3//+d3Xo0EHSzw8oiIyMVH5+vllAKysr07Zt2zRu3DhJUkJCgkpLS1VYWKjY2FhJ0vr161VVVaX4+Hgz5sknn5TD4TB/CbDb7erUqdN5v+4pSTabTTabrUa7v7+/W3+RcHf/DRm5qV19zk15peeLWU7Hr/Lxyhjq6/k4V31+33gbualdY8yNlfnwUAIAAAB43fjx47V161b96U9/0tdff628vDy9/PLLSktLkyT5+PgoIyNDTz/9tD744APt3r1bo0aNUlRUlIYOHSrp5xVtt956qx566CFt375dn332mdLT0zV8+HBFRUVJku69914FBAQoNTVVe/fu1bJlyzRv3jynFWgAAAAXwwo1AAAAeN0NN9yg9957T5MnT1Z2drZiYmL0wgsvaOTIkWbMxIkTderUKY0dO1alpaXq37+/1qxZo8DAQDNm6dKlSk9P1y233CJfX18NGzZM8+fPN/eHhIRo3bp1SktLU2xsrC6//HJNnTpVY8eO9eh8AQBAw0ZBDQAAAPXC7bffrttvv73W/T4+PsrOzlZ2dnatMWFhYcrLy7vgcXr06KFPP/30kscJAADAVz4BAAAAAAAACywX1DZt2qQ77rhDUVFR8vHx0YoVK5z2G4ahqVOnqm3btmrevLkSExP11VdfOcUcO3ZMI0eOVHBwsEJDQ5WamqqTJ086xXzxxRe66aabFBgYqOjoaM2aNavGWJYvX67OnTsrMDBQ3bt3bxCPIwYAAAAAAEDDZrmgdurUKfXs2VM5OTnn3T9r1izNnz9fixYt0rZt29SiRQslJyfrzJkzZszIkSO1d+9e2e12rVy5Ups2bXK6b0VZWZmSkpLUoUMHFRYW6rnnnlNWVpZefvllM2bLli0aMWKEUlNTtWvXLg0dOlRDhw7Vnj17rE4JAAAAAAAAqDPL91AbMmSIhgwZct59hmHohRde0JQpU3TnnXdKkt544w1FRERoxYoVGj58uL788kutWbNGO3bsUFxcnCTpxRdf1G233abnn39eUVFRWrp0qSoqKvT6668rICBA1113nYqKijRnzhyz8DZv3jzdeuutmjBhgiRpxowZstvtWrBggRYtWnRJyQAAAAAAAAAuxqX3UDt48KCKi4uVmJhotoWEhCg+Pl4FBQWSpIKCAoWGhprFNElKTEyUr6+vtm3bZsYMGDBAAQEBZkxycrIOHDig48ePmzHnHqc6pvo4AAAAAAAAgDu49CmfxcXFkqSIiAin9oiICHNfcXGxwsPDnQfRrJnCwsKcYmJiYmr0Ub2vVatWKi4uvuBxzqe8vFzl5eXmdllZmSTJ4XDI4XDUeZ4NXfVcm9KcpcY5b5ufcfEYX8PpT1eo7zlsjOe6Lpg3824K6jrvppYXAAAAeJZLC2r13cyZMzV9+vQa7Z988omCgoK8MCLvstvt3h6CVzSmec/qU/fYGXFVLjtuQ3kASGM611Yw76aFeZ/f6dOnPTQSAAAANEUuLahFRkZKkkpKStS2bVuzvaSkRL169TJjjh496vS6s2fP6tixY+brIyMjVVJS4hRTvX2xmOr95zN58mRlZmaa22VlZYqOjtagQYPUunVrK1Nt0BwOh+x2uwYPHix/f39vD8djGuO8u2WtvWiMzdfQjLgqPbXTV+VVPi457p6sZJf04y6N8VzXBfNm3k1BXeddvQodAAAAcAeXFtRiYmIUGRmp/Px8s4BWVlambdu2ady4cZKkhIQElZaWqrCwULGxsZKk9evXq6qqSvHx8WbMk08+KYfDYV4s2+12derUSa1atTJj8vPzlZGRYR7fbrcrISGh1vHZbDbZbLYa7f7+/k3ql5FqzLvhK6+se4GsvMrHUvyFNJT8NaZzbQXzblqYd+37AQAAAHex/FCCkydPqqioSEVFRZJ+fhBBUVGRDh8+LB8fH2VkZOjpp5/WBx98oN27d2vUqFGKiorS0KFDJUldunTRrbfeqoceekjbt2/XZ599pvT0dA0fPlxRUVGSpHvvvVcBAQFKTU3V3r17tWzZMs2bN89pddljjz2mNWvWaPbs2dq/f7+ysrK0c+dOpaen//qsAAAAAAAAALWwvEJt586dGjRokLldXeQaPXq0cnNzNXHiRJ06dUpjx45VaWmp+vfvrzVr1igwMNB8zdKlS5Wenq5bbrlFvr6+GjZsmObPn2/uDwkJ0bp165SWlqbY2Fhdfvnlmjp1qsaOHWvG3HjjjcrLy9OUKVP0xBNP6JprrtGKFSvUrVu3S0oEAAAAAAAAUBeWC2oDBw6UYdT+tEAfHx9lZ2crOzu71piwsDDl5eVd8Dg9evTQp59+esGYu+++W3ffffeFBwwAAAAAAAC4kOWvfAIAAAAAAABNGQU1AAAAAAAAwAIKagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAAABZQUAMAAAAAAAAsoKAGAAAAAAAAWEBBDQAAAAAAALCAghoAAAAAAABgAQU1AAAAAAAAwAIKagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAAABZQUAMAAAAAAAAsoKAGAACAeufZZ5+Vj4+PMjIyzLYzZ84oLS1NrVu31mWXXaZhw4appKTE6XWHDx9WSkqKgoKCFB4ergkTJujs2bNOMRs2bND1118vm82mjh07Kjc31wMzAgAAjQkFNQAAANQrO3bs0F/+8hf16NHDqX38+PH68MMPtXz5cm3cuFFHjhzRXXfdZe6vrKxUSkqKKioqtGXLFi1ZskS5ubmaOnWqGXPw4EGlpKRo0KBBKioqUkZGhh588EGtXbvWY/MDAAANHwU1AAAA1BsnT57UyJEj9corr6hVq1Zm+4kTJ/Taa69pzpw5uvnmmxUbG6vFixdry5Yt2rp1qyRp3bp12rdvn/7617+qV69eGjJkiGbMmKGcnBxVVFRIkhYtWqSYmBjNnj1bXbp0UXp6un73u99p7ty5XpkvAABomJp5ewAAAABAtbS0NKWkpCgxMVFPP/202V5YWCiHw6HExESzrXPnzmrfvr0KCgrUt29fFRQUqHv37oqIiDBjkpOTNW7cOO3du1e9e/dWQUGBUx/VMed+tfSXysvLVV5ebm6XlZVJkhwOhxwOx6+dcg3Vfbqj74aO3NSuIeTG5md457i+htOfnlafz0lDeN94C7mpXWPOjZU5UVADAABAvfDmm2/q888/144dO2rsKy4uVkBAgEJDQ53aIyIiVFxcbMacW0yr3l+970IxZWVl+umnn9S8efMax545c6amT59eo33dunUKCgqq+wQtstvtbuu7oSM3tavPuZnVx7vHnxFX5ZXjrl692ivHtaI+v2+8jdzUrjHm5vTp03WOpaAGAAAAr/vmm2/02GOPyW63KzAw0NvDcTJ58mRlZmaa22VlZYqOjlZSUpKCg4NdfjyHwyG73a7BgwfL39/f5f03ZOSmdg0hN92yvHOvQpuvoRlxVXpqp6/Kq3w8fvw9WckeP2ZdNYT3jbeQm9o15txUr0KvCwpqAAAA8LrCwkIdPXpU119/vdlWWVmpTZs2acGCBVq7dq0qKipUWlrqtEqtpKREkZGRkqTIyEht377dqd/qp4CeG/PLJ4OWlJQoODj4vKvTJMlms8lms9Vo9/f3d+svEu7uvyEjN7Wrz7kpr/R8Mcvp+FU+XhlDfT0f56rP7xtvIze1a4y5sTIfHkoAAAAAr7vlllu0e/duFRUVmT9xcXEaOXKk+d/+/v7Kz883X3PgwAEdPnxYCQkJkqSEhATt3r1bR48eNWPsdruCg4PVtWtXM+bcPqpjqvsAAACoC1aoAQAAwOtatmypbt26ObW1aNFCrVu3NttTU1OVmZmpsLAwBQcH65FHHlFCQoL69u0rSUpKSlLXrl11//33a9asWSouLtaUKVOUlpZmrjB7+OGHtWDBAk2cOFEPPPCA1q9fr7feekurVq3y7IQBAECDRkENAAAADcLcuXPl6+urYcOGqby8XMnJyVq4cKG538/PTytXrtS4ceOUkJCgFi1aaPTo0crOzjZjYmJitGrVKo0fP17z5s1Tu3bt9Oqrryo5uf7e4wgAANQ/FNQAAABQL23YsMFpOzAwUDk5OcrJyan1NR06dLjoE/UGDhyoXbt2uWKIAACgieIeagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAAABZQUAMAAAAAAAAsoKAGAAAAAAAAWEBBDQAAAAAAALCAghoAAAAAAABgAQU1AAAAAAAAwAIKagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAAABZQUAMAAAAAAAAsoKAGAAAAAAAAWODyglpWVpZ8fHycfjp37mzuP3PmjNLS0tS6dWtddtllGjZsmEpKSpz6OHz4sFJSUhQUFKTw8HBNmDBBZ8+edYrZsGGDrr/+etlsNnXs2FG5ubmungoAAAAAAABQg1tWqF133XX6/vvvzZ/Nmzeb+8aPH68PP/xQy5cv18aNG3XkyBHddddd5v7KykqlpKSooqJCW7Zs0ZIlS5Sbm6upU6eaMQcPHlRKSooGDRqkoqIiZWRk6MEHH9TatWvdMR0AAAAAAADA1MwtnTZrpsjIyBrtJ06c0Guvvaa8vDzdfPPNkqTFixerS5cu2rp1q/r27at169Zp3759+vjjjxUREaFevXppxowZmjRpkrKyshQQEKBFixYpJiZGs2fPliR16dJFmzdv1ty5c5WcnOyOKQEAAAAAAACS3FRQ++qrrxQVFaXAwEAlJCRo5syZat++vQoLC+VwOJSYmGjGdu7cWe3bt1dBQYH69u2rgoICde/eXREREWZMcnKyxo0bp71796p3794qKChw6qM6JiMj44LjKi8vV3l5ubldVlYmSXI4HHI4HC6YecNQPdemNGepcc7b5mdcPMbXcPrTFep7Dhvjua4L5s28m4K6zrup5QUAAACe5fKCWnx8vHJzc9WpUyd9//33mj59um666Sbt2bNHxcXFCggIUGhoqNNrIiIiVFxcLEkqLi52KqZV76/ed6GYsrIy/fTTT2revPl5xzZz5kxNnz69Rvsnn3yioKCgS5pvQ2a32709BK9oTPOe1afusTPiqlx23NWrV7usL3dqTOfaCubdtDDv8zt9+rSHRgIAAICmyOUFtSFDhpj/3aNHD8XHx6tDhw566623ai10ecrkyZOVmZlpbpeVlSk6OlqDBg1S69atvTgyz3I4HLLb7Ro8eLD8/f29PRyPaYzz7pZ18fsG2nwNzYir0lM7fVVe5eOS4+7Jqt9frW6M57oumDfzbgrqOu/qVegAAACAO7jlK5/nCg0N1bXXXquvv/5agwcPVkVFhUpLS51WqZWUlJj3XIuMjNT27dud+qh+Cui5Mb98MmhJSYmCg4MvWLSz2Wyy2Ww12v39/ZvULyPVmHfDV15Z9wJZeZWPpfgLaSj5a0zn2grm3bQw79r3AwAAAO7ilqd8nuvkyZP6xz/+obZt2yo2Nlb+/v7Kz8839x84cECHDx9WQkKCJCkhIUG7d+/W0aNHzRi73a7g4GB17drVjDm3j+qY6j4AAAAAAAAAd3F5Qe2Pf/yjNm7cqEOHDmnLli367W9/Kz8/P40YMUIhISFKTU1VZmamPvnkExUWFmrMmDFKSEhQ3759JUlJSUnq2rWr7r//fv3tb3/T2rVrNWXKFKWlpZmryx5++GH985//1MSJE7V//34tXLhQb731lsaPH+/q6QAAAAAAAABOXP6Vz2+//VYjRozQDz/8oDZt2qh///7aunWr2rRpI0maO3eufH19NWzYMJWXlys5OVkLFy40X+/n56eVK1dq3LhxSkhIUIsWLTR69GhlZ2ebMTExMVq1apXGjx+vefPmqV27dnr11VeVnFy/7+sEAAAAAACAhs/lBbU333zzgvsDAwOVk5OjnJycWmM6dOhw0acIDhw4ULt27bqkMQIAAAAAAACXyu33UAMAAAAAAAAaEwpqAAAA8LqZM2fqhhtuUMuWLRUeHq6hQ4fqwIEDTjFnzpxRWlqaWrdurcsuu0zDhg2r8eT3w4cPKyUlRUFBQQoPD9eECRN09uxZp5gNGzbo+uuvl81mU8eOHZWbm+vu6QEAgEaGghoAAAC8buPGjUpLS9PWrVtlt9vlcDiUlJSkU6dOmTHjx4/Xhx9+qOXLl2vjxo06cuSI7rrrLnN/ZWWlUlJSVFFRoS1btmjJkiXKzc3V1KlTzZiDBw8qJSVFgwYNUlFRkTIyMvTggw9q7dq1Hp0vAABo2Fx+DzUAAADAqjVr1jht5+bmKjw8XIWFhRowYIBOnDih1157TXl5ebr55pslSYsXL1aXLl20detW9e3bV+vWrdO+ffv08ccfKyIiQr169dKMGTM0adIkZWVlKSAgQIsWLVJMTIxmz54tSerSpYs2b96suXPn8oArAABQZ6xQAwAAQL1z4sQJSVJYWJgkqbCwUA6HQ4mJiWZM586d1b59exUUFEiSCgoK1L17d0VERJgxycnJKisr0969e82Yc/uojqnuAwAAoC5YoQYAAIB6paqqShkZGerXr5+6desmSSouLlZAQIBCQ0OdYiMiIlRcXGzGnFtMq95fve9CMWVlZfrpp5/UvHnzGuMpLy9XeXm5uV1WViZJcjgccjgcv2Km51fdpzv6bujITe0aQm5sfoZ3jutrOP3pafX5nDSE9423kJvaNebcWJkTBTUAAADUK2lpadqzZ482b97s7aFI+vmBCdOnT6/Rvm7dOgUFBbntuHa73W19N3Tkpnb1OTez+nj3+DPiqrxy3NWrV3vluFbU5/eNt5Gb2jXG3Jw+fbrOsRTUAAAAUG+kp6dr5cqV2rRpk9q1a2e2R0ZGqqKiQqWlpU6r1EpKShQZGWnGbN++3am/6qeAnhvzyyeDlpSUKDg4+Lyr0yRp8uTJyszMNLfLysoUHR2tpKQkBQcHX/pka+FwOGS32zV48GD5+/u7vP+GjNzUriHkpluWdx7+YfM1NCOuSk/t9FV5lY/Hj78nq/7en7EhvG+8hdzUrjHnpnoVel1QUAMAAIDXGYahRx55RO+99542bNigmJgYp/2xsbHy9/dXfn6+hg0bJkk6cOCADh8+rISEBElSQkKCnnnmGR09elTh4eGSfv70PDg4WF27djVjfrlaxG63m32cj81mk81mq9Hu7+/v1l8k3N1/Q0Zualefc1Ne6fliltPxq3y8Mob6ej7OVZ/fN95GbmrXGHNjZT4U1AAAAOB1aWlpysvL0/vvv6+WLVua9zwLCQlR8+bNFRISotTUVGVmZiosLEzBwcF65JFHlJCQoL59+0qSkpKS1LVrV91///2aNWuWiouLNWXKFKWlpZkFsYcfflgLFizQxIkT9cADD2j9+vV66623tGrVKq/NHQAANDw85RMAAABe99JLL+nEiRMaOHCg2rZta/4sW7bMjJk7d65uv/12DRs2TAMGDFBkZKTeffddc7+fn59WrlwpPz8/JSQk6L777tOoUaOUnZ1txsTExGjVqlWy2+3q2bOnZs+erVdffVXJyfX3K1kAAKD+YYUaAAAAvM4wLv70vcDAQOXk5CgnJ6fWmA4dOlz0BuADBw7Url27LI8RAACgGivUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYAEFNQAAAAAAAMACCmoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwoJm3BwAAAAAAQGN15eOrvHLcQ8+meOW4QFPBCjUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGBBM28PAAAAAADgOVc+vsrbQwCABo8VagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAAABY0+Huo5eTk6LnnnlNxcbF69uypF198UX369PH2sAAAAFCPcQ0JoLGry73ybH6GZvWRumWtVXmlj8uOfejZFJf1BdRXDXqF2rJly5SZmalp06bp888/V8+ePZWcnKyjR496e2gAAACop7iGBAAAv1aDXqE2Z84cPfTQQxozZowkadGiRVq1apVef/11Pf74414eHQAAAOojriEBwL28+SRZVsfBUxpsQa2iokKFhYWaPHmy2ebr66vExEQVFBSc9zXl5eUqLy83t0+cOCFJOnbsmHsHW884HA6dPn1aP/zwg/z9/b09HI9x17zjZ+a7rC+r6vIXuFmVodOnq9TM4avKKtcs4/7hhx9c0o+78B5n3k0B877wvH/88UdJkmEYnhoaGghXX0M6HA6Xj7Gp/v2ui8aUG1dfQ9p8DU3pXaVeT76r8otc8zXYXwIvkTuuhxuLxpgbV/2u0pj+f+NqjTk3Vq4hG+z/S//zn/+osrJSERERTu0RERHav3//eV8zc+ZMTZ8+vUb7tdde65YxAvXFvS7u7/LZLu4QANzkxx9/VEhIiLeHgXrEldeQMTExbhkjcKlcfc3XmJCb2jW23PC7ClyhLteQDbagdikmT56szMxMc7u0tFQdOnTQ4cOHm9TFdllZmaKjo/XNN98oODjY28PxGObddObdFOcsMW/m3TTUdd6GYejHH39UVFSUB0eHxuqX15BVVVU6duyYWrduLR8f16/oaKp/v+uC3NSO3NSO3NSO3NSO3NSuMefGyjVkgy2oXX755fLz81NJSYlTe0lJiSIjI8/7GpvNJpvNVqM9JCSk0b0J6iI4OJh5NyFNcd5Ncc4S825qmHftmtKHZag7V11DhoaGumuIpqb697suyE3tyE3tyE3tyE3tyE3tGmtu6noN2WCf8hkQEKDY2Fjl5//fvQeqqqqUn5+vhIQEL44MAAAA9RXXkAAAwBUa7Ao1ScrMzNTo0aMVFxenPn366IUXXtCpU6fMJzYBAAAAv8Q1JAAA+LUadEHtnnvu0b///W9NnTpVxcXF6tWrl9asWVPjJrO1sdlsmjZt2nm/BtqYMW/m3dg1xTlLzJt5Nw1Ndd5wrV97DeluvM9rR25qR25qR25qR25qR25qR25+5mPwPHkAAAAAAACgzhrsPdQAAAAAAAAAb6CgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYEGTLKht2LBBPj4+5/3ZsWOHJOnQoUPn3b9161Yvj/7XufLKK2vM6dlnn3WK+eKLL3TTTTcpMDBQ0dHRmjVrlpdG6xqHDh1SamqqYmJi1Lx5c1199dWaNm2aKioqnGIa4/nOycnRlVdeqcDAQMXHx2v79u3eHpJLzZw5UzfccINatmyp8PBwDR06VAcOHHCKGThwYI3z+vDDD3tpxK6RlZVVY06dO3c29585c0ZpaWlq3bq1LrvsMg0bNkwlJSVeHPGvd77/d/n4+CgtLU1S4znPmzZt0h133KGoqCj5+PhoxYoVTvsNw9DUqVPVtm1bNW/eXImJifrqq6+cYo4dO6aRI0cqODhYoaGhSk1N1cmTJz04C+suNG+Hw6FJkyape/fuatGihaKiojRq1CgdOXLEqY+6/PsGNFSrVq1SfHy8mjdvrlatWmno0KHeHlK9Ul5erl69esnHx0dFRUXeHo7X1eXat6lp7NfEl6Iu19GQnn32Wfn4+CgjI8PbQ6k3vvvuO913331q3bq1mjdvru7du2vnzp3eHpZXNMmC2o033qjvv//e6efBBx9UTEyM4uLinGI//vhjp7jY2Fgvjdp1srOzneb0yCOPmPvKysqUlJSkDh06qLCwUM8995yysrL08ssve3HEv87+/ftVVVWlv/zlL9q7d6/mzp2rRYsW6YknnqgR25jO97Jly5SZmalp06bp888/V8+ePZWcnKyjR496e2gus3HjRqWlpWnr1q2y2+1yOBxKSkrSqVOnnOIeeughp/Pa0IvEknTdddc5zWnz5s3mvvHjx+vDDz/U8uXLtXHjRh05ckR33XWXF0f76+3YscNpvna7XZJ09913mzGN4TyfOnVKPXv2VE5Oznn3z5o1S/Pnz9eiRYu0bds2tWjRQsnJyTpz5owZM3LkSO3du1d2u10rV67Upk2bNHbsWE9N4ZJcaN6nT5/W559/rqeeekqff/653n33XR04cEC/+c1vasRe6N83oKF65513dP/992vMmDH629/+ps8++0z33nuvt4dVr0ycOFFRUVHeHka9YeXatyloCtfEl6Ku19FN2Y4dO/SXv/xFPXr08PZQ6o3jx4+rX79+8vf310cffaR9+/Zp9uzZatWqlbeH5h0GjIqKCqNNmzZGdna22Xbw4EFDkrFr1y7vDcwNOnToYMydO7fW/QsXLjRatWpllJeXm22TJk0yOnXq5IHRec6sWbOMmJgYc7sxnu8+ffoYaWlp5nZlZaURFRVlzJw504ujcq+jR48akoyNGzeabf/1X/9lPPbYY94blBtMmzbN6Nmz53n3lZaWGv7+/sby5cvNti+//NKQZBQUFHhohO732GOPGVdffbVRVVVlGEbjPM+SjPfee8/crqqqMiIjI43nnnvObCstLTVsNpvxv//7v4ZhGMa+ffsMScaOHTvMmI8++sjw8fExvvvuO4+N/df45bzPZ/v27YYk41//+pfZdrF/34CGyOFwGFdccYXx6quvenso9dbq1auNzp07G3v37m1013Ku9Mtr36akKV4TX4rzXUc3ZT/++KNxzTXXGHa7vVFeZ16qSZMmGf379/f2MOqNJrlC7Zc++OAD/fDDDxozZkyNfb/5zW8UHh6u/v3764MPPvDC6Fzv2WefVevWrdW7d28999xzOnv2rLmvoKBAAwYMUEBAgNmWnJysAwcO6Pjx494YrlucOHFCYWFhNdoby/muqKhQYWGhEhMTzTZfX18lJiaqoKDAiyNzrxMnTkhSjXO7dOlSXX755erWrZsmT56s06dPe2N4LvXVV18pKipKV111lUaOHKnDhw9LkgoLC+VwOJzOfefOndW+fftGc+4rKir017/+VQ888IB8fHzM9sZ4ns918OBBFRcXO53bkJAQxcfHm+e2oKBAoaGhTqutExMT5evrq23btnl8zO5y4sQJ+fj4KDQ01Kn9Qv++AQ3R559/ru+++06+vr7q3bu32rZtqyFDhmjPnj3eHlq9UFJSooceekj/3//3/ykoKMjbw6nXarv2beya6jXxpajtOrqpSktLU0pKitN7Bz/XTuLi4nT33XcrPDxcvXv31iuvvOLtYXlNM28PoD547bXXlJycrHbt2pltl112mWbPnq1+/frJ19dX77zzjoYOHaoVK1ac92smDcWjjz6q66+/XmFhYdqyZYsmT56s77//XnPmzJEkFRcXKyYmxuk1ERER5r7GsJTz66+/1osvvqjnn3/ebGts5/s///mPKisrzXNXLSIiQvv37/fSqNyrqqpKGRkZ6tevn7p162a233vvverQoYOioqL0xRdfaNKkSTpw4IDeffddL47214mPj1dubq46deqk77//XtOnT9dNN92kPXv2qLi4WAEBATUKDRERESouLvbOgF1sxYoVKi0t1e9//3uzrTGe51+qPn/n+3tdva+4uFjh4eFO+5s1a6awsLBGc/7PnDmjSZMmacSIEQoODjbbL/bvG9AQ/fOf/5T0870z58yZoyuvvFKzZ8/WwIED9fe//71J/+JrGIZ+//vf6+GHH1ZcXJwOHTrk7SHVW+e79m0qmuI18aWo7Tq6qXrzzTf1+eefm/dXx//55z//qZdeekmZmZl64okntGPHDj366KMKCAjQ6NGjvT08z/P2EjlXmjRpkiHpgj9ffvml02u++eYbw9fX13j77bcv2v/9999fL5c3Xsq8q7322mtGs2bNjDNnzhiGYRiDBw82xo4d6xRTvYR+3759bp+LFZcy72+//da4+uqrjdTU1Iv2X1/Pd1189913hiRjy5YtTu0TJkww+vTp46VRudfDDz9sdOjQwfjmm28uGJefn29IMr7++msPjcz9jh8/bgQHBxuvvvqqsXTpUiMgIKBGzA033GBMnDjRC6NzvaSkJOP222+/YExjOM/6xVcfP/vsM0OSceTIEae4u+++2/jv//5vwzAM45lnnjGuvfbaGn21adPGWLhwoVvH6yq/nPe5KioqjDvuuMPo3bu3ceLEiQv288t/34D6pK7XMEuXLjUkGX/5y1/M1545c8a4/PLLjUWLFnlxBu5T19zMmzfP6Nevn3H27FnDMBrn7Tt+yd3Xvo1RU7wmvhR1vY5uCg4fPmyEh4cbf/vb38w2vvL5f/z9/Y2EhASntkceecTo27evl0bkXY1qhdof/vAHpxUL53PVVVc5bS9evFitW7eu0yqk+Ph480bY9cmlzLtafHy8zp49q0OHDqlTp06KjIys8TTA6u3IyEiXjNdVrM77yJEjGjRokG688cY6PWShvp7vurj88svl5+d33nNZ386jK6Snp5s3Xz93pen5xMfHS/r509qrr77aE8Nzu9DQUF177bX6+uuvNXjwYFVUVKi0tNRplVpjOff/+te/9PHHH1905VljPM/V56+kpERt27Y120tKStSrVy8z5pc3WT579qyOHTvW4M+/w+HQf//3f+tf//qX1q9f77Q67Xx++e8bUJ/U9Rrm+++/lyR17drVbLfZbLrqqqvMr/o3NnXNzfr161VQUCCbzea0Ly4uTiNHjtSSJUvcOErvcPe1b2PU1K6JL4WV6+imoLCwUEePHtX1119vtlVWVmrTpk1asGCBysvL5efn58URelfbtm2d/k2SpC5duuidd97x0oi8q1EV1Nq0aaM2bdrUOd4wDC1evFijRo2Sv7//ReOLioqcfompL6zO+1xFRUXy9fU1vyKUkJCgJ598Ug6Hw8yJ3W5Xp06d6t3XPa3M+7vvvtOgQYMUGxurxYsXy9f34rcPrK/nuy4CAgIUGxur/Px8DR06VNLPS7nz8/OVnp7u3cG5kGEYeuSRR/Tee+9pw4YNNb6ufD5FRUWS1GDP7fmcPHlS//jHP3T//fcrNjZW/v7+ys/P17BhwyRJBw4c0OHDh5WQkODlkf56ixcvVnh4uFJSUi4Y1xjPc0xMjCIjI5Wfn28W0MrKyrRt2zaNGzdO0s//Dy8tLVVhYaH5lOL169erqqrKLDI2RNXFtK+++kqffPKJWrdufdHX/PLfN6A+qes1TGxsrGw2mw4cOKD+/ftL+vnvw6FDh9ShQwd3D9Mr6pqb+fPn6+mnnza3jxw5ouTkZC1btqxB///uQtx97dsYNZVr4ktxKdfRTcEtt9yi3bt3O7WNGTNGnTt31qRJk5p0MU2S+vXrpwMHDji1/f3vf2+0/yZdlJdXyHnVxx9/XOvXIXNzc428vDzjyy+/NL788kvjmWeeMXx9fY3XX3/dCyN1jS1bthhz5841ioqKjH/84x/GX//6V6NNmzbGqFGjzJjS0lIjIiLCuP/++409e/YYb775phEUFOT0VYOG5ttvvzU6duxo3HLLLca3335rfP/99+ZPtcZ4vt98803DZrMZubm5xr59+4yxY8caoaGhRnFxsbeH5jLjxo0zQkJCjA0bNjid19OnTxuGYRhff/21kZ2dbezcudM4ePCg8f777xtXXXWVMWDAAC+P/Nf5wx/+YGzYsME4ePCg8dlnnxmJiYnG5Zdfbhw9etQwjJ+X7bdv395Yv369sXPnTiMhIaHG0uyGqLKy0mjfvr0xadIkp/bGdJ5//PFHY9euXcauXbsMScacOXOMXbt2mU+zfPbZZ43Q0FDj/fffN7744gvjzjvvNGJiYoyffvrJ7OPWW281evfubWzbts3YvHmzcc011xgjRozw1pTq5ELzrqioMH7zm98Y7dq1M4qKipz+rlc/kbou/74BDdVjjz1mXHHFFcbatWuN/fv3G6mpqUZ4eLhx7Ngxbw+tXmkKX/msq7pc+zYlTeGa+FJc7Doa/4evfP6f7du3G82aNTOeeeYZ46uvvjKWLl1qBAUFGX/961+9PTSvaNIFtREjRhg33njjeffl5uYaXbp0MYKCgozg4GCjT58+xvLlyz08QtcqLCw04uPjjZCQECMwMNDo0qWL8ac//anG/WX+9re/Gf379zdsNptxxRVXGM8++6yXRuwaixcvrvU+E9Ua4/k2DMN48cUXjfbt2xsBAQFGnz59jK1bt3p7SC5V23ldvHixYRg/3wNhwIABRlhYmGGz2YyOHTsaEyZMuOi9l+q7e+65x2jbtq0REBBgXHHFFcY999zjdK+wn376yfh//+//Ga1atTKCgoKM3/72t43iInrt2rWGJOPAgQNO7Y3pPH/yySfnfU+PHj3aMAzDqKqqMp566ikjIiLCsNlsxi233FIjHz/88IMxYsQI47LLLjOCg4ONMWPGGD/++KMXZlN3F5p39S/J5/v55JNPDMOo+79vQENUUVFh/OEPfzDCw8ONli1bGomJicaePXu8Pax6h4La/6nLtW9T09iviS/Fxa6j8X8oqDn78MMPjW7duhk2m83o3Lmz8fLLL3t7SF7jYxiG4Y6VbwAAAAAAAEBj1DS/TA8AAAAAAABcIgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUATV5WVpZ8fHy8PQwAAAAAQANBQQ2A1+Tm5srHx8f8CQwM1LXXXqv09HSVlJTUiD969KiaNWum++67r9Y+f/zxRzVv3lx33XWXO4cOAAAAAGjCmnl7AACQnZ2tmJgYnTlzRps3b9ZLL72k1atXa8+ePQoKCjLjwsPDNXjwYL3//vs6ffq0075q7777rs6cOXPBohsAAAAAAL8GK9QAeN2QIUN033336cEHH1Rubq4yMjJ08OBBvf/++zViR44cqZMnT+qDDz44b195eXkKCQlRSkqKu4cNAAAAAGiiKKgBqHduvvlmSdLBgwdr7Pvtb3+rFi1aKC8vr8a+o0ePKj8/X7/73e9ks9n06aef6u6771b79u1ls9kUHR2t8ePH66effrrg8Q8dOiQfHx/l5ubW2Ofj46OsrCyntu+++04PPPCAIiIiZLPZdN111+n111+v+4QBAAAAAA0KX/kEUO/84x//kCS1bt26xr4WLVrozjvv1Ntvv61jx44pLCzM3Lds2TJVVlZq5MiRkqTly5fr9OnTGjdunFq3bq3t27frxRdf1Lfffqvly5e7ZKwlJSXq27evfHx8lJ6erjZt2uijjz5SamqqysrKlJGR4ZLjAAAAAADqDwpqALzuxIkT+s9//qMzZ87os88+U3Z2tpo3b67bb7/9vPEjR45UXl6e3n77bY0dO9Zsz8vL0xVXXKH/+q//kiT9+c9/VvPmzc39Y8eOVceOHfXEE0/o8OHDat++/a8e+5NPPqnKykrt3r3bLAA+/PDDGjFihLKysvQ///M/TmMAAAAAADR8fOUTgNclJiaqTZs2io6O1vDhw3XZZZfpvffe0xVXXHHe+KSkJLVp08bpa58HDx7U1q1bNWLECPn6/vy/tnMLWadOndJ//vMf3XjjjTIMQ7t27frV4zYMQ++8847uuOMOGYah//znP+ZPcnKyTpw4oc8///xXHwcAAAAAUL+wQg2A1+Xk5Ojaa69Vs2bNFBERoU6dOsnX11cnT57UyZMnzTg/Pz+1adNGzZo10z333KOFCxfqu+++0xVXXGEW16q/7ilJhw8f1tSpU/XBBx/o+PHjTsc8ceLErx73v//9b5WWlurll1/Wyy+/fN6Yo0eP/urjAAAAAADqFwpqALyuT58+iouLq9H+/PPPa/r06eZ2hw4ddOjQIUnSfffdpwULFuh///d/9cc//lH/+7//q65du6pXr16SpMrKSg0ePFjHjh3TpEmT1LlzZ7Vo0ULfffedfv/736uqqqrW8fj4+Jy3vbKy0mm7uo/77rtPo0ePPu9revToUetxAAAAAAANEwU1APXWqFGj1L9/f3P73K9wxsfH6+qrr1ZeXp4GDx6svXv36plnnjH37969W3//+9+1ZMkSjRo1ymy32+0XPW6rVq0kSaWlpU7t//rXv5y227Rpo5YtW6qyslKJiYmW5gYAAAAAaLi4hxqAeuuqq65SYmKi+dOvXz+n/SNHjtSuXbs0bdo0+fj46N577zX3+fn5Sfr5PmfVDMPQvHnzLnrc4OBgXX755dq0aZNT+8KFC522/fz8NGzYML3zzjvas2dPjX7+/e9/X3ySAAAAAIAGhxVqABqs++67T9nZ2Xr//ffVr18/XXnllea+zp076+qrr9Yf//hHfffddwoODtY777xT415qtXnwwQf17LPP6sEHH1RcXJw2bdqkv//97zXinn32WX3yySeKj4/XQw89pK5du+rYsWP6/PPP9fHHH+vYsWOumi4AAAAAoJ5ghRqABuuaa67RDTfcIMn5YQSS5O/vrw8//FC9evXSzJkzNX36dF1zzTV644036tT31KlTlZqaqrffflsTJ05UZWWlPvrooxpxERER2r59u8aMGaN3331X6enpmjdvno4dO6Y///nPv36SAAAAAIB6x8c49/tQAAAAAAAAAC6IFWoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwoJm3B+BNVVVVOnLkiFq2bCkfHx9vDwcAALiIYRj68ccfFRUVJV9fPj8EAACAazXpgtqRI0cUHR3t7WEAAAA3+eabb9SuXTtvDwMAAACNjFsKat99950mTZqkjz76SKdPn1bHjh21ePFixcXFSfr5U+Np06bplVdeUWlpqfr166eXXnpJ11xzjdnHsWPH9Mgjj+jDDz+Ur6+vhg0bpnnz5umyyy4zY7744gulpaVpx44datOmjR555BFNnDixzuNs2bKlpJ8vtoODg100+585HA6tW7dOSUlJ8vf3d2nfcEauPYt8exb59izy7VnuzHdZWZmio6PNf+sBAAAAV3J5Qe348ePq16+fBg0apI8++kht2rTRV199pVatWpkxs2bN0vz587VkyRLFxMToqaeeUnJysvbt26fAwEBJ0siRI/X999/LbrfL4XBozJgxGjt2rPLy8iT9fKGclJSkxMRELVq0SLt379YDDzyg0NBQjR07tk5jrf6aZ3BwsFsKakFBQQoODuaXMjcj155Fvj2LfHsW+fYsT+SbWzoAAADAHVxeUPvzn/+s6OhoLV682GyLiYkx/9swDL3wwguaMmWK7rzzTknSG2+8oYiICK1YsULDhw/Xl19+qTVr1mjHjh3mqrYXX3xRt912m55//nlFRUVp6dKlqqio0Ouvv66AgABdd911Kioq0pw5c+pcUAMAAAAAAACscvldej/44APFxcXp7rvvVnh4uHr37q1XXnnF3H/w4EEVFxcrMTHRbAsJCVF8fLwKCgokSQUFBQoNDTWLaZKUmJgoX19fbdu2zYwZMGCAAgICzJjk5GQdOHBAx48fd/W0AAAAAAAAAEluWKH2z3/+Uy+99JIyMzP1xBNPaMeOHXr00UcVEBCg0aNHq7i4WJIUERHh9LqIiAhzX3FxscLDw50H2qyZwsLCnGLOXfl2bp/FxcVOXzGtVl5ervLycnO7rKxM0s9fOXE4HL9m2jVU9+fqflETufYs8u1Z5NuzyLdnuTPfnEMAAAC4k8sLalVVVYqLi9Of/vQnSVLv3r21Z88eLVq0SKNHj3b14SyZOXOmpk+fXqN93bp1CgoKcssx7Xa7W/pFTeTas8i3Z5FvzyLfnuWOfJ8+fdrlfQIAAADVXF5Qa9u2rbp27erU1qVLF73zzjuSpMjISElSSUmJ2rZta8aUlJSoV69eZszRo0ed+jh79qyOHTtmvj4yMlIlJSVOMdXb1TG/NHnyZGVmZprb1U8AS0pKcstDCex2uwYPHsyNrd2MXHsW+fYs8u1Z5Nuz3Jnv6lXoAAAAgDu4vKDWr18/HThwwKnt73//uzp06CDp5wcUREZGKj8/3yyglZWVadu2bRo3bpwkKSEhQaWlpSosLFRsbKwkaf369aqqqlJ8fLwZ8+STT8rhcJgX4Xa7XZ06dTrv1z0lyWazyWaz1Wj39/d32y9O7uwbzsi1Z5FvzyLfnkW+Pcsd+eb8AQAAwJ1c/lCC8ePHa+vWrfrTn/6kr7/+Wnl5eXr55ZeVlpYm6efH12dkZOjpp5/WBx98oN27d2vUqFGKiorS0KFDJf28ou3WW2/VQw89pO3bt+uzzz5Tenq6hg8frqioKEnSvffeq4CAAKWmpmrv3r1atmyZ5s2b57QCDQAAAAAAAHA1l69Qu+GGG/Tee+9p8uTJys7OVkxMjF544QWNHDnSjJk4caJOnTqlsWPHqrS0VP3799eaNWsUGBhoxixdulTp6em65ZZb5Ovrq2HDhmn+/Pnm/pCQEK1bt05paWmKjY3V5ZdfrqlTp2rs2LGuntKv0i1rrcorfTx6zEPPpnj0eAAAAAAAAE2JywtqknT77bfr9ttvr3W/j4+PsrOzlZ2dXWtMWFiY8vLyLnicHj166NNPP73kcQIAAAAAAABWufwrnwAAAAAAAEBjRkENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALKKgBAAAAAAAAFlBQAwAAAAAAACygoAYAAAAAAABYQEENAAAAAAAAsICCGgAAAAAAAGABBTUAAAAAAADAAgpqAAAAAAAAgAUU1AAAAAAAAAALXF5Qy8rKko+Pj9NP586dzf1nzpxRWlqaWrdurcsuu0zDhg1TSUmJUx+HDx9WSkqKgoKCFB4ergkTJujs2bNOMRs2bND1118vm82mjh07Kjc319VTAQAAAAAAAGpwywq16667Tt9//735s3nzZnPf+PHj9eGHH2r58uXauHGjjhw5orvuusvcX1lZqZSUFFVUVGjLli1asmSJcnNzNXXqVDPm4MGDSklJ0aBBg1RUVKSMjAw9+OCDWrt2rTumAwAAAAAAAJiauaXTZs0UGRlZo/3EiRN67bXXlJeXp5tvvlmStHjxYnXp0kVbt25V3759tW7dOu3bt08ff/yxIiIi1KtXL82YMUOTJk1SVlaWAgICtGjRIsXExGj27NmSpC5dumjz5s2aO3eukpOT3TElAAAAAAAAQJKbCmpfffWVoqKiFBgYqISEBM2cOVPt27dXYWGhHA6HEhMTzdjOnTurffv2KigoUN++fVVQUKDu3bsrIiLCjElOTta4ceO0d+9e9e7dWwUFBU59VMdkZGRccFzl5eUqLy83t8vKyiRJDodDDofDBTP/P9X92XwNl/Zr5dhNRfV8m9q8vYV8exb59izy7VnuzDfnEAAAAO7k8oJafHy8cnNz1alTJ33//feaPn26brrpJu3Zs0fFxcUKCAhQaGio02siIiJUXFwsSSouLnYqplXvr953oZiysjL99NNPat68+XnHNnPmTE2fPr1G+7p16xQUFHRJ872YGXFVbun3QlavXu3xY9YHdrvd20NoUsi3Z5FvzyLfnuWOfJ8+fdrlfQIAAADVXF5QGzJkiPnfPXr0UHx8vDp06KC33nqr1kKXp0yePFmZmZnmdllZmaKjo5WUlKTg4GCXHsvhcMhut+upnb4qr/Jxad8XsyeraX3ttTrXgwcPlr+/v7eH0+iRb88i355Fvj3LnfmuXoUOAAAAuINbvvJ5rtDQUF177bX6+uuvNXjwYFVUVKi0tNRplVpJSYl5z7XIyEht377dqY/qp4CeG/PLJ4OWlJQoODj4gkU7m80mm81Wo93f399tvziVV/movNKzBbWm+kugO88jaiLfnkW+PYt8e5Y78s35AwAAgDu55Smf5zp58qT+8Y9/qG3btoqNjZW/v7/y8/PN/QcOHNDhw4eVkJAgSUpISNDu3bt19OhRM8Zutys4OFhdu3Y1Y87tozqmug8AAAAAAADAXVxeUPvjH/+ojRs36tChQ9qyZYt++9vfys/PTyNGjFBISIhSU1OVmZmpTz75RIWFhRozZowSEhLUt29fSVJSUpK6du2q+++/X3/729+0du1aTZkyRWlpaebqsocfflj//Oc/NXHiRO3fv18LFy7UW2+9pfHjx7t6OgAAAAAAAIATl3/l89tvv9WIESP0ww8/qE2bNurfv7+2bt2qNm3aSJLmzp0rX19fDRs2TOXl5UpOTtbChQvN1/v5+WnlypUaN26cEhIS1KJFC40ePVrZ2dlmTExMjFatWqXx48dr3rx5ateunV599VUlJzete4cBAAAAAADA81xeUHvzzTcvuD8wMFA5OTnKycmpNaZDhw4XfVLlwIEDtWvXrksaIwAAAAAAAHCp3H4PNQAAAAAAAKAxoaAGAAAAAAAAWEBBDQAAAAAAALCAghoAAAAAAABgAQU1AAAAAAAAwAIKagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAAABZQUAMAAAAAAAAsoKAGAAAAAAAAWEBBDQAAAAAAALCAghoAAAAAAABgAQU1AAAAAAAAwAIKagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAAABZQUAMAAAAAAAAsoKAGAAAAAAAAWEBBDQAAAAAAALCAghoAAAAAAABgAQU1AAAAAAAAwAIKagAAAAAAAIAFbi+oPfvss/Lx8VFGRobZdubMGaWlpal169a67LLLNGzYMJWUlDi97vDhw0pJSVFQUJDCw8M1YcIEnT171ilmw4YNuv7662Wz2dSxY0fl5ua6ezoAAAAAAABo4txaUNuxY4f+8pe/qEePHk7t48eP14cffqjly5dr48aNOnLkiO666y5zf2VlpVJSUlRRUaEtW7ZoyZIlys3N1dSpU82YgwcPKiUlRYMGDVJRUZEyMjL04IMPau3ate6cEgAAAAAAAJo4txXUTp48qZEjR+qVV15Rq1atzPYTJ07otdde05w5c3TzzTcrNjZWixcv1pYtW7R161ZJ0rp167Rv3z799a9/Va9evTRkyBDNmDFDOTk5qqiokCQtWrRIMTExmj17trp06aL09HT97ne/09y5c901JQAAAAAAAEDN3NVxWlqaUlJSlJiYqKefftpsLywslMPhUGJiotnWuXNntW/fXgUFBerbt68KCgrUvXt3RUREmDHJyckaN26c9u7dq969e6ugoMCpj+qYc79a+kvl5eUqLy83t8vKyiRJDodDDofj107ZSXV/Nl/Dpf1aOXZTUT3fpjZvbyHfnkW+PYt8e5Y78805BAAAgDu5paD25ptv6vPPP9eOHTtq7CsuLlZAQIBCQ0Od2iMiIlRcXGzGnFtMq95fve9CMWVlZfrpp5/UvHnzGseeOXOmpk+fXqN93bp1CgoKqvsELZgRV+WWfi9k9erVHj9mfWC32709hCaFfHsW+fYs8u1Z7sj36dOnXd4nAAAAUM3lBbVvvvlGjz32mOx2uwIDA13d/a8yefJkZWZmmttlZWWKjo5WUlKSgoODXXosh8Mhu92up3b6qrzKx6V9X8yerGSPHs/bqnM9ePBg+fv7e3s4jR759izy7Vnk27Pcme/qVegAAACAO7i8oFZYWKijR4/q+uuvN9sqKyu1adMmLViwQGvXrlVFRYVKS0udVqmVlJQoMjJSkhQZGant27c79Vv9FNBzY375ZNCSkhIFBwefd3WaJNlsNtlsthrt/v7+bvvFqbzKR+WVni2oNdVfAt15HlET+fYs8u1Z5Nuz3JFvzh8AAADcyeUPJbjlllu0e/duFRUVmT9xcXEaOXKk+d/+/v7Kz883X3PgwAEdPnxYCQkJkqSEhATt3r1bR48eNWPsdruCg4PVtWtXM+bcPqpjqvsAAAAAAAAA3MHlK9Ratmypbt26ObW1aNFCrVu3NttTU1OVmZmpsLAwBQcH65FHHlFCQoL69u0rSUpKSlLXrl11//33a9asWSouLtaUKVOUlpZmrjB7+OGHtWDBAk2cOFEPPPCA1q9fr7feekurVq1y9ZQAAAAAAAAAk9ue8nkhc+fOla+vr4YNG6by8nIlJydr4cKF5n4/Pz+tXLlS48aNU0JCglq0aKHRo0crOzvbjImJidGqVas0fvx4zZs3T+3atdOrr76q5OSmdf8wAAAAAAAAeJZHCmobNmxw2g4MDFROTo5ycnJqfU2HDh0u+rTKgQMHateuXa4YIgAAAAAAAFAnLr+HGgAAAAAAANCYUVADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYAEFNQAAAAAAAMACCmoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYAEFNQAAAAAAAMACCmoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYIHLC2ovvfSSevTooeDgYAUHByshIUEfffSRuf/MmTNKS0tT69atddlll2nYsGEqKSlx6uPw4cNKSUlRUFCQwsPDNWHCBJ09e9YpZsOGDbr++utls9nUsWNH5ebmunoqAAAAAAAAQA0uL6i1a9dOzz77rAoLC7Vz507dfPPNuvPOO7V3715J0vjx4/Xhhx9q+fLl2rhxo44cOaK77rrLfH1lZaVSUlJUUVGhLVu2aMmSJcrNzdXUqVPNmIMHDyolJUWDBg1SUVGRMjIy9OCDD2rt2rWung4AAAAAAADgpJmrO7zjjjuctp955hm99NJL2rp1q9q1a6fXXntNeXl5uvnmmyVJixcvVpcuXbR161b17dtX69at0759+/Txxx8rIiJCvXr10owZMzRp0iRlZWUpICBAixYtUkxMjGbPni1J6tKlizZv3qy5c+cqOTnZ1VMCAAAAAAAATG69h1plZaXefPNNnTp1SgkJCSosLJTD4VBiYqIZ07lzZ7Vv314FBQWSpIKCAnXv3l0RERFmTHJyssrKysxVbgUFBU59VMdU9wEAAAAAAAC4i8tXqEnS7t27lZCQoDNnzuiyyy7Te++9p65du6qoqEgBAQEKDQ11io+IiFBxcbEkqbi42KmYVr2/et+FYsrKyvTTTz+pefPm5x1XeXm5ysvLze2ysjJJksPhkMPhuPQJn0d1fzZfw6X9Wjl2U1E936Y2b28h355Fvj2LfHuWO/PNOQQAAIA7uaWg1qlTJxUVFenEiRN6++23NXr0aG3cuNEdh7Jk5syZmj59eo32devWKSgoyC3HnBFX5ZZ+L2T16tUeP2Z9YLfbvT2EJoV8exb59izy7VnuyPfp06dd3icAAABQzS0FtYCAAHXs2FGSFBsbqx07dmjevHm65557VFFRodLSUqdVaiUlJYqMjJQkRUZGavv27U79VT8F9NyYXz4ZtKSkRMHBwbWuTpOkyZMnKzMz09wuKytTdHS0kpKSFBwcfOkTPg+HwyG73a6ndvqqvMrHpX1fzJ6spnUfuepcDx48WP7+/t4eTqNHvj2LfHsW+fYsd+a7ehU6AAAA4A5uKaj9UlVVlcrLyxUbGyt/f3/l5+dr2LBhkqQDBw7o8OHDSkhIkCQlJCTomWee0dGjRxUeHi7p50+ug4OD1bVrVzPml6uw7Ha72UdtbDabbDZbjXZ/f3+3/eJUXuWj8krPFtSa6i+B7jyPqIl8exb59izy7VnuyDfnDwAAAO7k8oLa5MmTNWTIELVv314//vij8vLytGHDBq1du1YhISFKTU1VZmamwsLCFBwcrEceeUQJCQnq27evJCkpKUldu3bV/fffr1mzZqm4uFhTpkxRWlqaWQx7+OGHtWDBAk2cOFEPPPCA1q9fr7feekurVq1y9XQAAAAAAAAAJy4vqB09elSjRo3S999/r5CQEPXo0UNr167V4MGDJUlz586Vr6+vhg0bpvLyciUnJ2vhwoXm6/38/LRy5UqNGzdOCQkJatGihUaPHq3s7GwzJiYmRqtWrdL48eM1b948tWvXTq+++qqSk5vWVx0BAAAAAADgeS4vqL322msX3B8YGKicnBzl5OTUGtOhQ4eL3lh/4MCB2rVr1yWNEQAAAAAAALhUvt4eAAAAAAAAANCQUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYAEFNQAAAAAAAMACCmoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYAEFNQAAAAAAAMACCmoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYAEFNQAAAAAAAMAClxfUZs6cqRtuuEEtW7ZUeHi4hg4dqgMHDjjFnDlzRmlpaWrdurUuu+wyDRs2TCUlJU4xhw8fVkpKioKCghQeHq4JEybo7NmzTjEbNmzQ9ddfL5vNpo4dOyo3N9fV0wEAAAAAAACcuLygtnHjRqWlpWnr1q2y2+1yOBxKSkrSqVOnzJjx48frww8/1PLly7Vx40YdOXJEd911l7m/srJSKSkpqqio0JYtW7RkyRLl5uZq6tSpZszBgweVkpKiQYMGqaioSBkZGXrwwQe1du1aV08JAAAAAAAAMDVzdYdr1qxx2s7NzVV4eLgKCws1YMAAnThxQq+99pry8vJ08803S5IWL16sLl26aOvWrerbt6/WrVunffv26eOPP1ZERIR69eqlGTNmaNKkScrKylJAQIAWLVqkmJgYzZ49W5LUpUsXbd68WXPnzlVycrKrpwUAAAAAAABIckNB7ZdOnDghSQoLC5MkFRYWyuFwKDEx0Yzp3Lmz2rdvr4KCAvXt21cFBQXq3r27IiIizJjk5GSNGzdOe/fuVe/evVVQUODUR3VMRkZGrWMpLy9XeXm5uV1WViZJcjgccjgcv3qu56ruz+ZruLRfK8duKqrn29Tm7S3k27PIt2eRb89yZ745hwAAAHAntxbUqqqqlJGRoX79+qlbt26SpOLiYgUEBCg0NNQpNiIiQsXFxWbMucW06v3V+y4UU1ZWpp9++knNmzevMZ6ZM2dq+vTpNdrXrVunoKCgS5vkRcyIq3JLvxeyevVqjx+zPrDb7d4eQpNCvj2LfHsW+fYsd+T79OnTLu8TAAAAqObWglpaWpr27NmjzZs3u/MwdTZ58mRlZmaa22VlZYqOjlZSUpKCg4NdeiyHwyG73a6ndvqqvMrHpX3XZ3uyPP912+pcDx48WP7+/h4/flNDvj2LfHsW+fYsd+a7ehU6AAAA4A5uK6ilp6dr5cqV2rRpk9q1a2e2R0ZGqqKiQqWlpU6r1EpKShQZGWnGbN++3am/6qeAnhvzyyeDlpSUKDg4+Lyr0yTJZrPJZrPVaPf393fbL07lVT4qr2w6BTVv/gLqzvOImsi3Z5FvzyLfnuWOfHP+AAAA4E4uf8qnYRhKT0/Xe++9p/Xr1ysmJsZpf2xsrPz9/ZWfn2+2HThwQIcPH1ZCQoIkKSEhQbt379bRo0fNGLvdruDgYHXt2tWMObeP6pjqPgAAAAAAAAB3cPkKtbS0NOXl5en9999Xy5YtzXuehYSEqHnz5goJCVFqaqoyMzMVFham4OBgPfLII0pISFDfvn0lSUlJSeratavuv/9+zZo1S8XFxZoyZYrS0tLMFWYPP/ywFixYoIkTJ+qBBx7Q+vXr9dZbb2nVqlWunhIAAAAAAABgcvkKtZdeekknTpzQwIED1bZtW/Nn2bJlZszcuXN1++23a9iwYRowYIAiIyP17rvvmvv9/Py0cuVK+fn5KSEhQffdd59GjRql7OxsMyYmJkarVq2S3W5Xz549NXv2bL366qtKTvb8PbwAAAAAAADQdLh8hZphGBeNCQwMVE5OjnJycmqN6dChw0WfVjlw4EDt2rXL8hgBAAAAAACAS+XyFWoAAAAAAABAY0ZBDQAAAAAAALCAghoAAAAAAABgAQU1AAAAAAAAwAIKagAAAAAAAIAFFNQAAAAAAAAACyioAQAAAAAAABZQUAMAAAAAAAAsoKAGAAAAAAAAWEBBDQAAAAAAALCgmbcHgMblysdXefyYNj9Ds/p4/LAAAAAAAKCJYoUaAAAAAAAAYAEFNQAAAAAAAMACCmoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFjQzNsDAFylW9ZalVf6ePy4h55N8fgxAQAAAACA97BCDQAAAAAAALCAghoAAAAAAABggcsLaps2bdIdd9yhqKgo+fj4aMWKFU77DcPQ1KlT1bZtWzVv3lyJiYn66quvnGKOHTumkSNHKjg4WKGhoUpNTdXJkyedYr744gvddNNNCgwMVHR0tGbNmuXqqQAAAAAAAAA1uLygdurUKfXs2VM5OTnn3T9r1izNnz9fixYt0rZt29SiRQslJyfrzJkzZszIkSO1d+9e2e12rVy5Ups2bdLYsWPN/WVlZUpKSlKHDh1UWFio5557TllZWXr55ZddPR0AAAAAAADAicsfSjBkyBANGTLkvPsMw9ALL7ygKVOm6M4775QkvfHGG4qIiNCKFSs0fPhwffnll1qzZo127NihuLg4SdKLL76o2267Tc8//7yioqK0dOlSVVRU6PXXX1dAQICuu+46FRUVac6cOU6FN8ATrnx8ldeOzQMRAAAAAADwPI/eQ+3gwYMqLi5WYmKi2RYSEqL4+HgVFBRIkgoKChQaGmoW0yQpMTFRvr6+2rZtmxkzYMAABQQEmDHJyck6cOCAjh8/7qHZAAAAAAAAoCly+Qq1CykuLpYkRUREOLVHRESY+4qLixUeHu60v1mzZgoLC3OKiYmJqdFH9b5WrVqd9/jl5eUqLy83t8vKyiRJDodDDofjUqd1XtX92XwNl/aLmqpz3BRz7er3rZVjeuPYTRH59izy7VnuzDfnEAAAAO7k0YKat82cOVPTp0+v0b5u3ToFBQW55Zgz4qrc0i9qaoq5Xr16tdeObbfbvXbspoh8exb59ix35Pv06dMu7xMAAACo5tGCWmRkpCSppKREbdu2NdtLSkrUq1cvM+bo0aNOrzt79qyOHTtmvj4yMlIlJSVOMdXb1THnM3nyZGVmZprbZWVlio6OVlJSkoKDgy99YufhcDhkt9v11E5flVf5uLRvOLP5GpoRV0WuPaQ634MHD5a/v7+3h9PoVf+/hHx7Bvn2LHfmu3oVOgAAAOAOHi2oxcTEKDIyUvn5+WYBraysTNu2bdO4ceMkSQkJCSotLVVhYaFiY2MlSevXr1dVVZXi4+PNmCeffFIOh8O8ALfb7erUqVOtX/eUJJvNJpvNVqPd39/fbb84lVf5qLySIo8nkGvPcuffG9REvj2LfHuWO/LN+QMAAIA7ufyhBCdPnlRRUZGKiook/fwggqKiIh0+fFg+Pj7KyMjQ008/rQ8++EC7d+/WqFGjFBUVpaFDh0qSunTpoltvvVUPPfSQtm/frs8++0zp6ekaPny4oqKiJEn33nuvAgIClJqaqr1792rZsmWaN2+e0+ozAAAAAAAAwB1cvkJt586dGjRokLldXeQaPXq0cnNzNXHiRJ06dUpjx45VaWmp+vfvrzVr1igwMNB8zdKlS5Wenq5bbrlFvr6+GjZsmObPn2/uDwkJ0bp165SWlqbY2Fhdfvnlmjp1qsaOHevq6QCoZ658fJXXjn3o2RSvHRsAAAAAUH+4vKA2cOBAGUbtT1v08fFRdna2srOza40JCwtTXl7eBY/To0cPffrpp5c8TgC/TrestU3uK7beKObZ/AzN6uPxw6KJ8Vahmvc3AAAAGiqXf+UTAAAAAAAAaMw8+lACAMCl8daKQL7m6lne/EozAAAAgLqjoAYAqFVTK/DwFUQAAAAAdUFBDQCAX2iK9wgEAAAAUHfcQw0AAAAAAACwgIIaAAAAAAAAYAEFNQAAAAAAAMACCmoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYAEFNQAAAAAAAMACCmoAAAAAAACABRTUAAAAAAAAAAsoqAEAAAAAAAAWUFADAAAAAAAALKCgBgAAAAAAAFhAQQ0AAAAAAACwgIIaAAAAAAAAYEGDL6jl5OToyiuvVGBgoOLj47V9+3ZvDwkAAAAAAACNWIMuqC1btkyZmZmaNm2aPv/8c/Xs2VPJyck6evSot4cGAAAAAACARqpBF9TmzJmjhx56SGPGjFHXrl21aNEiBQUF6fXXX/f20AAAAAAAANBINfP2AC5VRUWFCgsLNXnyZLPN19dXiYmJKigoOO9rysvLVV5ebm6fOHFCknTs2DE5HA6Xjs/hcOj06dNq5vBVZZWPS/uGs2ZVhk6friLXHkK+PYt8exb59qzqfP/www/y9/d3ad8//vijJMkwDJf2CwAAAEgNuKD2n//8R5WVlYqIiHBqj4iI0P79+8/7mpkzZ2r69Ok12mNiYtwyRnjOvd4eQBNDvj2LfHsW+fYsd+f7xx9/VEhIiJuPAgAAgKamwRbULsXkyZOVmZlpbldVVenYsWNq3bq1fHxcuxKhrKxM0dHR+uabbxQcHOzSvuGMXHsW+fYs8u1Z5Nuz3JlvwzD0448/KioqyqX9AgAAAFIDLqhdfvnl8vPzU0lJiVN7SUmJIiMjz/sam80mm83m1BYaGuquIUqSgoOD+aXMQ8i1Z5FvzyLfnkW+Pctd+WZlGgAAANylwT6UICAgQLGxscrPzzfbqqqqlJ+fr4SEBC+ODAAAAAAAAI1Zg12hJkmZmZkaPXq04uLi1KdPH73wwgs6deqUxowZ4+2hAQAAAAAAoJFq0AW1e+65R//+9781depUFRcXq1evXlqzZk2NBxV4g81m07Rp02p8xRSuR649i3x7Fvn2LPLtWeQbAAAADZWPwfPkAQAAAAAAgDprsPdQAwAAAAAAALyBghoAAAAAAABgAQU1AAAAAAAAwAIKagAAAAAAAIAFFNR+hZycHF155ZUKDAxUfHy8tm/ffsH45cuXq3PnzgoMDFT37t21evVqD4204bOS61deeUU33XSTWrVqpVatWikxMfGi5wbOrL63q7355pvy8fHR0KFD3TvARsZqvktLS5WWlqa2bdvKZrPp2muv5f8nFljN9wsvvKBOnTqpefPmio6O1vjx43XmzBkPjbZh27Rpk+644w5FRUXJx8dHK1asuOhrNmzYoOuvv142m00dO3ZUbm6u28cJAAAAWEVB7RItW7ZMmZmZmjZtmj7//HP17NlTycnJOnr06Hnjt2zZohEjRig1NVW7du3S0KFDNXToUO3Zs8fDI294rOZ6w4YNGjFihD755BMVFBQoOjpaSUlJ+u677zw88obJar6rHTp0SH/84x910003eWikjYPVfFdUVGjw4ME6dOiQ3n77bR04cECvvPKKrrjiCg+PvGGymu+8vDw9/vjjmjZtmr788ku99tprWrZsmZ544gkPj7xhOnXqlHr27KmcnJw6xR88eFApKSkaNGiQioqKlJGRoQcffFBr165180gBAAAAa3wMwzC8PYiGKD4+XjfccIMWLFggSaqqqlJ0dLQeeeQRPf744zXi77nnHp06dUorV6402/r27atevXpp0aJFHht3Q2Q1179UWVmpVq1aacGCBRo1apS7h9vgXUq+KysrNWDAAD3wwAP69NNPVVpaWqeVKLCe70WLFum5557T/v375e/v7+nhNnhW852enq4vv/xS+fn5Ztsf/vAHbdu2TZs3b/bYuBsDHx8fvffeexdcwTpp0iStWrXK6cOm4cOHq7S0VGvWrPHAKAEAAIC6YYXaJaioqFBhYaESExPNNl9fXyUmJqqgoOC8rykoKHCKl6Tk5ORa4/H/t3d/IU31cRzHPzZdf8CIsE0rL0KCApPAbmbddBUE1k0kFMOLQqKCMAglV4ssGSFBFxX0B7wqL6IiUtZfuqi7aoKQGTZqEE7yqpGB5r7PRTSw7Hmec57cnrPeL9iFx9/k8/swOOzrOds3brr+0cTEhKamprR06dK5ilk03PZ98uRJBQIB7dmzJx8xi4abvu/cuaNQKKQDBw4oGAyqtrZWXV1dmp6ezldsz3LTd0NDg168eJG7LTSZTKq/v19bt27NS+Y/DedKAAAAeEVpoQN40fj4uKanpxUMBmccDwaDev369azPSafTs65Pp9NzlrMYuOn6R21tbVq+fPlPb9LwMzd9P336VFevXtXAwEAeEhYXN30nk0k9fvxYu3fvVn9/v0ZGRrR//35NTU0pGo3mI7Znuel7165dGh8f16ZNm2Rm+vr1q/bt28ctn3PkV+fKT58+6cuXL1q4cGGBkgEAAAAzcYUailosFlNvb69u3bqlBQsWFDpO0clkMgqHw7p8+bIqKioKHeePkM1mFQgEdOnSJdXX16upqUkdHR3cOj5Hnjx5oq6uLl24cEEvX77UzZs31dfXp87OzkJHAwAAAFBAXKHmQkVFhXw+n8bGxmYcHxsbU2Vl5azPqaysdLQe37jp+rvu7m7FYjE9fPhQdXV1cxmzaDjt++3bt3r37p0aGxtzx7LZrCSptLRUw8PDqqmpmdvQHubm9V1VVaWysjL5fL7csbVr1yqdTmtyclJ+v39OM3uZm76PHTumcDisvXv3SpLWrVunz58/q6WlRR0dHZo3j/9L/U6/OlcuXryYq9MAAADwv8I7ARf8fr/q6+tnfEh1NpvVo0ePFAqFZn1OKBSasV6SHjx48Mv1+MZN15J05swZdXZ2Kh6Pa8OGDfmIWhSc9r1mzRoNDg5qYGAg99i2bVvuG/qqq6vzGd9z3Ly+N27cqJGRkdzgUpLevHmjqqoqhmn/wE3fExMTPw3Nvg8z+U6f349zJQAAADzD4Epvb6/Nnz/fenp67NWrV9bS0mJLliyxdDptZmbhcNja29tz6589e2alpaXW3d1tQ0NDFo1GrayszAYHBwu1Bc9w2nUsFjO/3283btyw0dHR3COTyRRqC57itO8fNTc32/bt2/OU1vuc9p1Kpay8vNwOHjxow8PDdvfuXQsEAnbq1KlCbcFTnPYdjUatvLzcrl+/bslk0u7fv281NTW2c+fOQm3BUzKZjCUSCUskEibJzp49a4lEwt6/f29mZu3t7RYOh3Prk8mkLVq0yI4cOWJDQ0N2/vx58/l8Fo/HC7UFAAAAYFbc8ulSU1OTPn78qOPHjyudTmv9+vWKx+O5D1NOpVIzrmpoaGjQtWvXFIlEdPToUa1evVq3b99WbW1tobbgGU67vnjxoiYnJ7Vjx44ZfycajerEiRP5jO5JTvvGf+O07+rqat27d0+tra2qq6vTihUrdOjQIbW1tRVqC57itO9IJKKSkhJFIhF9+PBBy5YtU2Njo06fPl2oLXjK8+fPtXnz5tzPhw8fliQ1Nzerp6dHo6OjSqVSud+vWrVKfX19am1t1blz57Ry5UpduXJFW7ZsyXt2AAAA4O+UmHHPCgAAAAAAAPBvcZkJAAAAAAAA4AADNQAAAAAAAMABBmoAAAAAAACAAwzUAAAAAAAAAAcYqAEAAAAAAAAOMFADAAAAAAAAHGCgBgAAAAAAADjAQA0AAAAAAABwgIEaAAAAAAAA4AADNQAAAAAAAMABBmoAAAAAAACAAwzUAAAAAAAAAAf+AtDeU+X+pLtQAAAAAElFTkSuQmCC\n"
373
          },
374
          "metadata": {}
375
        },
376
        {
377
          "output_type": "display_data",
378
          "data": {
379
            "text/plain": [
380
              "<Figure size 640x480 with 2 Axes>"
381
            ],
382
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGiCAYAAAB6c8WBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+SUlEQVR4nO3de3zO9f/H8ee12S7HzWG2sciZyvErW0hF0yJCh6+IOUUOIctXpjEd1xEJKYUUUZLIkIbKcTnNIXNmwuZ82LDj9fvDr4vr2sg111ybz+P+vX1ut+/13vvz/rw/tbbXXu/X5/0xWSwWiwAAgGG5uXoCAADAtQgGAAAwOIIBAAAMjmAAAACDIxgAAMDgCAYAADA4ggEAAAyOYAAAAIMjGAAAwOAIBgAAMDiCAQAA8onff/9dbdu2Vfny5WUymTR//vx/PWflypX6z3/+I7PZrGrVqmn69OkOX5dgAACAfCIlJUX16tXTxIkTb6r/gQMH9MQTT6h58+basmWLXn75Zb3wwgtaunSpQ9c18aIiAADyH5PJpB9//FHt27e/bp9XX31VixYt0vbt261tzz33nM6ePaslS5bc9LXIDAAAkIdSU1N1/vx5myM1NdUpY69du1bBwcE2bSEhIVq7dq1D4xRyymycIP3kfldPAflIxspZrp4C8pHy3ae7egrIZ84k783T8Z35Oylqwgy9/vrrNm2RkZEaPXr0LY+dmJgoPz8/mzY/Pz+dP39ely5dUpEiRW5qnHwTDAAAkG9kZTptqPDwcIWFhdm0mc1mp43vDAQDAADkIbPZnGe//P39/ZWUlGTTlpSUJC8vr5vOCkgEAwAAZGfJcvUMbkrjxo0VHR1t07Zs2TI1btzYoXEoIAQAwF5WlvMOByQnJ2vLli3asmWLpCuPDm7ZskUJCQmSriw5hIaGWvv37dtX+/fv17BhwxQfH69Jkybpu+++05AhQxy6LpkBAADsWFyUGdiwYYOaN29u/fxPrUG3bt00ffp0HTt2zBoYSFLlypW1aNEiDRkyRB9//LHuuusuffHFFwoJCXHouvlmnwGeJsC1eJoA1+JpAtjL66cJ0o7ucNpYnuXvc9pYeYXMAAAA9hxM7xd0BAMAANgrIAWEzkIBIQAABkdmAAAAe07cdKggIBgAAMAeywQAAMBIyAwAAGCPpwkAADA2V2065CosEwAAYHBkBgAAsMcyAQAABmewZQKCAQAA7BlsnwFqBgAAMDgyAwAA2GOZAAAAgzNYASHLBAAAGByZAQAA7LFMAACAwbFMAAAAjITMAAAAdiwWY+0zQDAAAIA9g9UMsEwAAIDBkRkAAMCewQoICQYAALBnsGUCggEAAOzxoiIAAGAkZAYAALDHMgEAAAZnsAJClgkAADA4MgMAANhjmQAAAINjmQAAABgJmQEAAOwZLDNAMAAAgB2jvbWQZQIAAAyOzAAAAPZYJgAAwOB4tBAAAIMzWGaAmgEAAAyOzAAAAPZYJgAAwOBYJgAAAEZCZgAAAHssEwAAYHAsEwAAACMhMwAAgD2DZQYIBgAAsGewmgGWCQAAMDgyAwAA2DPYMgGZgXxgw5ZtGjAsUs2ffF61m7ZSzO9rXD0l5JHZ63ap1QfzFBg5U10+jda2wydv2P+b1TvVbuxPCoqcpZD3f9AHi/5UavrV96xvPJCkQTOWq+W7c1X/ta+1/K+EvL4F3KLwiMHauXeNjp7Yrh8XfqUqVe/+13Ne6NNFcTtW6tjJHVq2Yq7+07Cuzdd9fX00ecqHit+3Vn8nbdXKVT+pbbsQmz5xO1bqTPJem+PlsBedem93FEuW844CwKFgYPny5br33nt1/vz5bF87d+6c7rvvPv3xxx9Om5xRXLp0WTWrVdFrr/R39VSQh5ZuPaiPojfoxRZ19e2AJ1TDv5T6T4/R6eRLOfaPjjug8b9s0ost6mrey08qskNj/bLtkD5Zttna51JahmqUK6XwtoG36zZwCwYP6aMX+3ZT2OBRavnI07qYckk/zJ8ms9nzuud0eLq13ooaofeiPtEjD7bT9u3x+mH+NPmULW3t8+mUD1WtemV1/u+Lahr0hBYuWKppM8arTt17bcZ6+82xqlnlAevx+eQZeXavBV5WlvOOAsChYGDcuHHq3bu3vLy8sn3N29tbL774osaMGeO0yRlFs8aNNKhPNwU/3NTVU0Ee+nr1X3rq/upq37CaqvqWVES7B1TYw13zN+7LsX/coROqX9FXretVVkCp4mpSvbwer1tJ2/++mk14sGaAXmrZQC3uq3i7bgO3oO+A7vrw/YlavOhX7dixS/36DJV/OT890bbldc/p/1JPzZg+R7O++UG74vcqbNBIXbx0SV26PmvtExjUQFMmf61NG7fq0MHD+uj9STp39rzqN6htM1byhRQdP37Sely8mHMgCuNxKBiIi4vT448/ft2vP/bYY9q4ceMtTwq406RnZGrn0dMKquZvbXNzMymoWjltTTiR4zn17i6rv46esi4l/H36glbtPqIHawTcljnDue6uVEH+/r5aueLqMuD588nauCFOjQIb5HiOh4eH6jeorZUrVlvbLBaLfluxxuac2PWb1eHp1ipZylsmk0lPPfOEzIXNWvXHepvxXn7lRe079Kd+W71AAwe/IHd3dyff5R3EYMsEDhUQJiUlycPD4/qDFSqkEydy/sF2rdTUVKWmptq0uaWmymw2OzIdoMA4czFVmVkWlSlexKa9TPHCOnjiXI7ntK5XWWdTLqvHlKWSxaKMLIueDayhFx6pczumDCfz8/ORJJ04blsncvz4Sfn6lc3xnDJlSl35uXr8lE37ieMnVb1GFevnHqEDNfWr8TpweKPS09N16eJlde3UXwf2H7L2+ezTGYqL26Gzp88q8IH/aNToofLz91VE+DvOusU7SwFJ7zuLQ5mBgIAAbd++/bpf37p1q8qVK/ev40RFRcnb29vmeO/jyY5MBbjj/bk/UV/+tl0j2gbq2wFPaEznh/XHrr/1+fKtrp4absKz/31ShxPjrEehG/whdateGzlE3t4l1K5NV7Vo1kETJ0zVtBnjde99Nax9Jk2YqtV/rNeOHbs07ctvFTEiSn36dpWn5/XrFeAaEydOVKVKlVS4cGEFBQUpNjb2hv3HjRunmjVrqkiRIqpQoYKGDBmiy5cvO3RNhzIDrVu31siRI/X444+rcOHCNl+7dOmSIiMj1aZNm38dJzw8XGFhYTZtbheOODIVoEApVdQsdzeTTtkVC55Kviwfu2zBPyb9Gqcn6lfRU42qS5Kq+5fSpfQMvTl/nV54pI7c3Ex5Pm/k3uLoGG3YEGf9/E+RYFlfHyUlXc2g+vr6aNvWv3Ic49SpM8rIyFBZ3zI27WV9fXQ86UqGoVLliurTN1SNG7VS/M49kqTt2+PVuMn9eqFPF4UNHpXj2Bs3xMnDw0MV7w7Q3j0Hcn+jdyoXZQbmzJmjsLAwTZ48WUFBQRo3bpxCQkK0a9cu+fr6Zus/a9YsDR8+XFOnTlWTJk20e/dude/eXSaTyaEaPocyAxERETp9+rRq1Kih999/Xz/99JN++uknvffee6pZs6ZOnz6t11577V/HMZvN8vLysjlYIsCdzKOQu+4pX1qx+xKtbVlZFsXuS1TdijmniC+nZ8jNZPsL/5/PFlnybrJwiuTkFB3Yf8h6xO/co8TE43r4kSbWPiVKFFfD++vpz9jNOY6Rnp6uLZu325xjMpn00CNNrOcULXrlD7Msu19emZlZMrld/0d8nTr3KDMzUydOnLpuH0OzWJx3OGDMmDHq3bu3evTooXvvvVeTJ09W0aJFNXXq1Bz7r1mzRk2bNlXnzp1VqVIlPfbYY+rUqdO/ZhPsOZQZ8PPz05o1a9SvXz+Fh4fL8v83aTKZFBISookTJ8rPz8+hCUC6ePGSEv4+av185GiS4nfvk7dXCZXzzx4JomDq2vRejfxhte4NKKPad/lo5pqdupSWoXYNq0qSIr5fLV+vIhoU8h9J0kO17tI3q3eqVvlSqnOXjxJOX9CkX+P0UK275P7/P+QvpqYr4dQF6zWOnElW/NHT8i5qVrmSxW7/TeKGJk+crqHD+mv/voM6dOiwRkQMUeKxJC1auMzaZ/7PM7Ro4TJN+exrSVfS+5M++0CbN23Tpo1b1W9AdxUrWkQzv5krSdq9a7/27T2osePf1MgR7+r06bN6ok1LNW/RVM8901uS1CiwgRreX0+rfl+nC8kpCgxsoLffe03fzf5J585mf1QczpVTnZzZbM72R3BaWpo2btyo8PBwa5ubm5uCg4O1du3aHMdu0qSJvvnmG8XGxiowMFD79+9XdHS0unbt6tAcHQoG9u/fr8qVKys6OlpnzpzR3r17ZbFYVL16dZUqVcqhC+Oq7fF71HPgq9bP73/yuSSpXatgvR3xiqumBScLqVtJZ1Iu69OYOJ28cEk1y5XSpO4trEWFx86l6NpEQO9H6sgkaeKyOB0/f1Glipn1UK279FLLq1XkO46cUu8vr/4i+Sj6ytM8bRtU0ZvP8KhqfvPx2M9VtFgRjf3kLXl7e2nd2g16pkNPpaamWftUrlxRpctc/Xn64w/R8vEpoxERL8vXr6y2bf1Lz3ToaS0qzMjI0H+f7qXIN/6nb7//XMWKFdWB/YfUv88wLfvlN0lSamqannqmjYaPGCRPs6cOHfpbn06Ypomf5PzXJuTUZYKoqCi9/vrrNm2RkZEaPXq0TdvJkyeVmZmZ7Y9qPz8/xcfH5zh2586ddfLkST344IOyWCzKyMhQ3759NWLECIfmaLJYbj6H4e7urmPHjlnXLTp27Kjx48c7JRuQfnL/LY+BO0fGylmungLykfLdp7t6CshnziTvzdPxL80c6bSx3J6JuKnMwNGjRxUQEKA1a9aocePG1vZhw4bpt99+0/r1to+KStLKlSv13HPP6a233lJQUJD27t2rwYMHq3fv3ho58ubvwaHMgH3cEB0draioKEeGAADAUHL6xZ8THx8fubu7KykpyaY9KSlJ/v7+OZ4zcuRIde3aVS+88IIkqU6dOkpJSVGfPn302muvye0GdSPX4t0EAADYc8GmQ56enmrYsKFiYmKsbVlZWYqJibHJFFzr4sWL2X7h/7OZlAOJf8cyAyaTSSa76mb7zwAAFHguerQwLCxM3bp10/3336/AwECNGzdOKSkp6tGjhyQpNDRUAQEB1qx827ZtNWbMGDVo0MC6TDBy5Ei1bdvWoR0mHV4m6N69uzXdcfnyZfXt21fFitlWLc+bN8+RYQEAyF8cfCTQWTp27KgTJ05o1KhRSkxMVP369bVkyRJrbV5CQoJNJiAiIkImk0kRERE6cuSIypYtq7Zt2+rtt9926LoOFRD+E5n8m2nTpjk0CYkCQtiigBDXooAQ9vK8gPCr4U4bq0i3d502Vl5xKDOQm1/yAAAUOAZ7N4FDwQAAAIZgsGCApwkAADA4MgMAANhz4JHAOwHBAAAAdixZxnoZGMsEAAAYHJkBAADsGayAkGAAAAB7BqsZYJkAAACDIzMAAIA9gxUQEgwAAGCPmgEAAAzOYMEANQMAABgcmQEAAOy56BXGrkIwAACAPZYJAACAkZAZAADAHo8WAgBgcOxACAAAjITMAAAA9lgmAADA2Cw8TQAAAIyEzAAAAPZYJgAAwOAM9jQBwQAAAPYMlhmgZgAAAIMjMwAAgD2DPU1AMAAAgD2WCQAAgJGQGQAAwB5PEwAAYHAsEwAAACMhMwAAgB2jvZuAYAAAAHssEwAAACMhMwAAgD2DZQYIBgAAsMejhQAAGJzBMgPUDAAAYHBkBgAAsGMxWGaAYAAAAHsGCwZYJgAAwODIDAAAYI8dCAEAMDiWCQAAgJGQGQAAwJ7BMgMEAwAA2LFYjBUMsEwAAIDBkRkAAMAeywQAABgcwQAAAMbGdsQukrFylqungHyk0COdXT0F5CMX0j519RSAO1q+CQYAAMg3yAwAAGBwxtqNmEcLAQAwOoIBAADsWLIsTjscNXHiRFWqVEmFCxdWUFCQYmNjb9j/7NmzGjBggMqVKyez2awaNWooOjraoWuyTAAAgD0X1QzMmTNHYWFhmjx5soKCgjRu3DiFhIRo165d8vX1zdY/LS1NLVu2lK+vr+bOnauAgAAdOnRIJUuWdOi6BAMAAOSh1NRUpaam2rSZzWaZzeZsfceMGaPevXurR48ekqTJkydr0aJFmjp1qoYPH56t/9SpU3X69GmtWbNGHh4ekqRKlSo5PEeWCQAAsJflvCMqKkre3t42R1RUVLZLpqWlaePGjQoODra2ubm5KTg4WGvXrs1xmgsWLFDjxo01YMAA+fn5qXbt2nrnnXeUmZnp0O2SGQAAwI4zNx0KDw9XWFiYTVtOWYGTJ08qMzNTfn5+Nu1+fn6Kj4/Pcez9+/dr+fLlev755xUdHa29e/eqf//+Sk9PV2Rk5E3PkWAAAIA8dL0lAWfIysqSr6+vPv/8c7m7u6thw4Y6cuSIPvjgA4IBAABuiQv2GfDx8ZG7u7uSkpJs2pOSkuTv75/jOeXKlZOHh4fc3d2tbffcc48SExOVlpYmT0/Pm7o2NQMAANhxxaOFnp6eatiwoWJiYqxtWVlZiomJUePGjXM8p2nTptq7d6+ysq5GL7t371a5cuVuOhCQCAYAAMjOiQWEjggLC9OUKVP01VdfaefOnerXr59SUlKsTxeEhoYqPDzc2r9fv346ffq0Bg8erN27d2vRokV65513NGDAAIeuyzIBAAD5RMeOHXXixAmNGjVKiYmJql+/vpYsWWItKkxISJCb29W/4ytUqKClS5dqyJAhqlu3rgICAjR48GC9+uqrDl3XZLFY8sXbGC7NfcvVU0A+wlsLca0i5Zu5egrIZzLSjuTp+KfaPuy0scos/M1pY+UVMgMAANjjRUUAAMBIyAwAAGDHYrDMAMEAAAD2DBYMsEwAAIDBkRkAAMAOywQAABgcwQAAAAZntGCAmgEAAAyOzAAAAPYsJlfP4LYiGAAAwA7LBAAAwFDIDAAAYMeSxTIBAACGxjIBAAAwFDIDAADYsfA0AQAAxsYyAQAAMBQyAwAA2OFpAgAADM5icfUMbi+CAQAA7BgtM0DNAAAABkdmAAAAO0bLDBAMAABgx2g1AywTAABgcGQGAACwwzIBAAAGZ7TtiFkmAADA4MgMAABgx2jvJiAYAADAThbLBAAAwEgcCgYyMzO1detWXbp0KdvXLl68qK1btyory2C5FQDAHcdiMTntKAgcCga+/vpr9ezZU56entm+5unpqZ49e2rWrFlOmxwAAK5gyTI57SgIHAoGvvzySw0dOlTu7u7ZvlaoUCENGzZMn3/+udMmBwCAK1gszjsKAoeCgV27dumBBx647tcbNWqknTt33vKkAADA7ePQ0wQpKSk6f/78db9+4cIFXbx48ZYnBQCAKxWU9L6zOJQZqF69utasWXPdr69atUrVq1e/5UkBAOBKWRaT046CwKFgoHPnzoqIiNDWrVuzfS0uLk6jRo1S586dnTY5AACQ9xxaJhgyZIgWL16shg0bKjg4WLVq1ZIkxcfH69dff1XTpk01ZMiQPJkoAAC3S0F5JNBZHAoGPDw89Msvv2js2LGaNWuWfv/9d1ksFtWoUUNvv/22Xn75ZXl4eOTVXAEAuC0KylMAzuLwdsQeHh4aNmyYhg0blhfzAQAAt5lDNQNTp05VampqXs3ljjN73S61+mCeAiNnqsun0dp2+OQN+3+zeqfajf1JQZGzFPL+D/pg0Z9KTc+0fn3jgSQNmrFcLd+dq/qvfa3lfyXk9S3ABTZs2aYBwyLV/MnnVbtpK8X8fv2iXRR8oyOH6vChTbpwbq+WLp6tatUq37B/sweDNP/H6Uo4uFEZaUf05JMh2fqMGhmm7dt+07kze3QiaYeWLp6twEYN8uoW7kgUEN5A7969de7cOevn8uXL6+DBg86e0x1h6daD+ih6g15sUVffDnhCNfxLqf/0GJ1Ozr6VsyRFxx3Q+F826cUWdTXv5ScV2aGxftl2SJ8s22ztcyktQzXKlVJ428DbdRtwgUuXLqtmtSp67ZX+rp4K8tj/hvbXSwN6qv9Lw9XkwbZKuXhR0T/PlNlsvu45xYoV1datf2ng4Neu22f3nv0aPDhC9f/zqB5u3kEHDx3W4uhZ8vEpnRe3cUcy2nbEDi0TWOwWUS5cuMC7CK7j69V/6an7q6t9w2qSpIh2D+iPXUc0f+M+9Xy4drb+cYdOqH5FX7Wud+WvgoBSxfV43Ura9vfVbMKDNQP0YM2A23MDcJlmjRupWeNGrp4GboNBA1/QO1Efa+HCXyRJ3XsM1tG/t6hduxB9992CHM9ZsnSFlixdccNxZ8+eb/N56P9eV6+enVW3zr1avmKVU+aOOwtvLcwD6RmZ2nn0tIKq+Vvb3NxMCqpWTlsTTuR4Tr27y+qvo6esSwl/n76gVbuP6MEa/PIH7kSVK1dUuXJ+ill+9Zfz+fMXFBu7WQ8ENXTadTw8PNT7hed19uw5xW3d4bRx73RG247YocyAyWSSyWS67ueblZqamq32ICs9Q2YPh+sZ86UzF1OVmWVRmeJFbNrLFC+sgyfO5XhO63qVdTblsnpMWSpZLMrIsujZwBp64ZE6t2PKAG4zfz9fSVJSku0fCEnHT8rf3/eWx3+idbBmfjNJRYsW0bFjSXq8VSedOnXmlsc1ioKy1u8sDmUG/nmMsHTp0ipdurSSk5PVoEED6+d/jn8TFRUlb29vm+ODH3/P9U3cCf7cn6gvf9uuEW0D9e2AJzSm88P6Y9ff+nx59g2eABQ8nTp10NnTu62HRx7/8bNi5Wo1bPSYmj3UTkt/WalvZ01W2bJl8vSadxJqBm5g2rRpTrloeHi4wsLCbNqyFo1xytj5QamiZrm7mXTKrljwVPJl+dhlC/4x6dc4PVG/ip5qdGU75+r+pXQpPUNvzl+nFx6pIze3gvENBSBnCxf+otjYqwXBZvOVV8H7+ZVVYuJxa7ufr4+2xN16Ov/ixUvat++g9u07qPWxm7Rzxyr17NFJ770/4ZbHxp3HoWCgW7duTrmo2WzOVi176Q5ZIpAkj0Luuqd8acXuS1SLeytKkrKyLIrdl6jnHqiZ4zmX0zPkZrfk8s9niyySCAaAgiw5OUXJySk2bceOJalF8wcV9/+//EuUKK7AwAaa/PkMp1/fzc1kDUDw74y2THDn/AbOZ7o2vVcjf1itewPKqPZdPpq5ZqcupWWoXcOqkqSI71fL16uIBoX8R5L0UK279M3qnapVvpTq3OWjhNMXNOnXOD1U6y65u11ZzbmYmq6EUxes1zhyJlnxR0/Lu6hZ5UoWu/03iTxx8eIlJfx91Pr5yNEkxe/eJ2+vEirnhLVk5B/jP/lCI8IHac/e/Tp48LBeH/0/HT2apJ9+Wmrt88uSOZr/02JN+nS6pCuPFl67F0HlShVVr959On36jA4fPqqiRYtoRPhgLVz4i44lJsmnTGn169ddAQH+mvvDz7f7FgusAlL35zS5CgZKlSqVY+GgyWRS4cKFVa1aNXXv3l09evS45QkWVCF1K+lMymV9GhOnkxcuqWa5UprUvYW1qPDYuRRd+4+w9yN1ZJI0cVmcjp+/qFLFzHqo1l16qeXVjUJ2HDml3l8us37+KHqjJKltgyp685mmt+W+kPe2x+9Rz4GvWj+//8nnkqR2rYL1dsQrrpoW8sAHH05SsWJFNXnS+ypZ0kurV/+pJ9p2sSmwrlLlbpv9Ae5vWE8xv861fv7ow9GSpK9mfKdeLwxRZmaWatasqq5dPpePT2mdOnVGGzbG6ZHmT+mvv3bftntDwWKy2G8ecBPGjh2rt99+W61atVJg4JUNcGJjY7VkyRINGTJEBw4c0Ndff61PPvlEvXv3vqkxL819y9Fp4A5W6BHefomripRv5uopIJ/JSDuSp+OvKfe008ZqcuwHp42VV3KVGVi1apXeeust9e3b16b9s88+0y+//KIffvhBdevW1fjx4286GAAAIL8oKE8BOEuuNh1aunSpgoODs7U/+uijWrr0ylpX69attX///lubHQAAyHO5CgZKly6thQsXZmtfuHChdZ+BlJQUlShR4tZmBwCAC2Q58XDUxIkTValSJRUuXFhBQUGKjY29qfNmz54tk8mk9u3bO3zNXC0TjBw5Uv369dOKFSusNQN//vmnoqOjNXnyZEnSsmXL9PDDD+dmeAAAXMriose558yZo7CwME2ePFlBQUEaN26cQkJCtGvXLvn6Xv9pooMHD2ro0KFq1ix39TW5KiCUpNWrV2vChAnatWuXJKlmzZoaOHCgmjRpkquJUECIa1FAiGtRQAh7eV1A+Lv/s04b66HE72+6b1BQkBo1aqQJE65sDpWVlaUKFSpo4MCBGj58eI7nZGZm6qGHHlLPnj31xx9/6OzZs5o/f75Dc8z1PgNNmzZV06Y8zgYAuPNkOXGjgZzex5PT5ntpaWnauHGjwsPDrW1ubm4KDg7W2rVrrzv+G2+8IV9fX/Xq1Ut//PFHruaY62AgMzNT8+fP186dOyVJ9913n5588km5u7vndkgAAPKFLCcuE0RFRen111+3aYuMjNTo0aNt2k6ePKnMzEz5+fnZtPv5+Sk+Pj7HsVetWqUvv/xSW7ZsuaU55ioY2Lt3r1q3bq0jR46oZs0r2+tGRUWpQoUKWrRokapWrXpLkwIAwJWcWTOQ0/t47LMCuXHhwgV17dpVU6ZMkY+Pzy2NlatgYNCgQapatarWrVtnfXrg1KlT6tKliwYNGqRFixbd0qQAALhT5LQkkBMfHx+5u7srKSnJpj0pKUn+/v7Z+u/bt08HDx5U27ZtrW1ZWVeeXyhUqJB27dp103+c5yoY+O2332wCAUkqU6aM3n33XeoIAAAFXm4eCbxVnp6eatiwoWJiYqyPB2ZlZSkmJkYvvfRStv61atXStm3bbNoiIiJ04cIFffzxx6pQocJNXztXwYDZbNaFCxeytScnJ8vTk7diAQAKNlc9WhgWFqZu3brp/vvvV2BgoMaNG6eUlBTru35CQ0MVEBCgqKgoFS5cWLVr17Y5v2TJkpKUrf3f5CoYaNOmjfr06aMvv/zSus/A+vXr1bdvXz355JO5GRIAAMPr2LGjTpw4oVGjRikxMVH169fXkiVLrEWFCQkJcnPL1X6BN5SrfQbOnj2rbt26aeHChfLw8JAkpaenq127dpo2bZo1MnEE+wzgWuwzgGuxzwDs5fU+A0v8nnPaWI8nzXbaWHklV5mBkiVL6qefftLevXutjxbec889qlatmlMnBwCAK7iiZsCVbjoYsH8swt6KFSus/3/MmDG5nxEAALitbjoY2Lx58031M5mM9dpHAMCdx1UFhK5y08HAtX/5AwBwJ8syViyQu1cYAwCAO0eu300AAMCdypnvJigICAYAALDjxJcWFggEAwAA2DHao4XUDAAAYHBkBgAAsJNlsMfkCQYAALBjtJoBlgkAADA4MgMAANgxWgEhwQAAAHbYgRAAABgKmQEAAOywAyEAAAbH0wQAAMBQyAwAAGDHaAWEBAMAANjh0UIAAAyOmgEAAGAoZAYAALBDzQAAAAZntJoBlgkAADA4MgMAANgxWmaAYAAAADsWg9UMsEwAAIDBkRkAAMAOywQAABic0YIBlgkAADA4MgMAANgx2nbEBAMAANhhB0IAAAyOmgEAAGAoZAYAALBjtMwAwQAAAHaMVkDIMgEAAAZHZgAAADs8TQAAgMEZrWaAZQIAAAyOzAAAAHaMVkBIMAAAgJ0sg4UD+SYYKN99uqungHzkQtqnrp4C8pFLR/9w9RSAO1q+CQYAAMgvjFZASDAAAIAdYy0SEAwAAJCN0TIDPFoIAIDBkRkAAMAOOxACAGBwRnu0kGUCAAAMjswAAAB2jJUXIBgAACAbniYAAACGQjAAAICdLFmcdjhq4sSJqlSpkgoXLqygoCDFxsZet++UKVPUrFkzlSpVSqVKlVJwcPAN+18PwQAAAHYsTjwcMWfOHIWFhSkyMlKbNm1SvXr1FBISouPHj+fYf+XKlerUqZNWrFihtWvXqkKFCnrsscd05MgRh65rslgs+aJOolTxaq6eAvKRC2mXXD0F5CO8qAj2PHyq5On4wyp1ctpY7x/89qb7BgUFqVGjRpowYYIkKSsrSxUqVNDAgQM1fPjwfz0/MzNTpUqV0oQJExQaGnrT16WAEAAAO84sIExNTVVqaqpNm9lsltlstmlLS0vTxo0bFR4ebm1zc3NTcHCw1q5de1PXunjxotLT01W6dGmH5sgyAQAAdpxZMxAVFSVvb2+bIyoqKts1T548qczMTPn5+dm0+/n5KTEx8abm/eqrr6p8+fIKDg526H7JDAAAYMeZ6+fh4eEKCwuzabPPCjjDu+++q9mzZ2vlypUqXLiwQ+cSDAAAkIdyWhLIiY+Pj9zd3ZWUlGTTnpSUJH9//xue++GHH+rdd9/Vr7/+qrp16zo8R5YJAACwk+XE42Z5enqqYcOGiomJuTqPrCzFxMSocePG1z3v/fff15tvvqklS5bo/vvvd+CKV5EZAADAjsVFGxKHhYWpW7duuv/++xUYGKhx48YpJSVFPXr0kCSFhoYqICDAWnPw3nvvadSoUZo1a5YqVapkrS0oXry4ihcvftPXJRgAACCf6Nixo06cOKFRo0YpMTFR9evX15IlS6xFhQkJCXJzu5rU//TTT5WWlqZnnnnGZpzIyEiNHj36pq/LPgPIl9hnANdinwHYy+t9Bl6q1NFpY004OMdpY+UVMgMAANjJzTbCBRkFhAAAGByZAQAA7BgrL0AwAABANiwTAAAAQyEzAACAHWe+qKggIBgAAMCOqzYdchWCAQAA7BgtM0DNAAAABkdmAAAAOywTAABgcCwTAAAAQyEzAACAnaz88Q6/24ZgAAAAO8YKBVgmAADA8MgMAABgx2jvJiAYAADAjtEeLWSZAAAAgyMzAACAHfYZuEn79u1TRESEOnXqpOPHj0uSFi9erB07djhtcgAAuEKWLE47CoJcBQO//fab6tSpo/Xr12vevHlKTk6WJMXFxSkyMtKpEwQA4HazOPF/BUGugoHhw4frrbfe0rJly+Tp6Wltb9GihdatW+e0yQEAgLyXq5qBbdu2adasWdnafX19dfLkyVueFAAArkTNwE0oWbKkjh07lq198+bNCggIuOVJAQDgShaLxWlHQZCrYOC5557Tq6++qsTERJlMJmVlZWn16tUaOnSoQkNDnT1HAACQh3IVDLzzzjuqVauWKlSooOTkZN1777166KGH1KRJE0VERDh7jgAA3FZGe5ogVzUDnp6emjJlikaOHKnt27crOTlZDRo0UPXq1Z09PwAAbjuj1Qzc0qZDFStWVMWKFZ01FwAA4AK5CgZ69ux5w69PnTo1V5MBACA/KCj7AzhLroKBM2fO2HxOT0/X9u3bdfbsWbVo0cIpEwMAwFUKylq/s+QqGPjxxx+ztWVlZalfv36qWrXqLU8KAADcPk57a6Gbm5vCwsI0duxYZw0JAIBLGG2fAae+tXDfvn3KyMhw5pAAANx2PE1wE8LCwmw+WywWHTt2TIsWLVK3bt2cMjEAAFyFAsKbsHnzZpvPbm5uKlu2rD766KN/fdIAAADkL7mqGVixYoXNERMTo9mzZ6tPnz4qVMipKw8FTnjEYO3cu0ZHT2zXjwu/UpWqd//rOS/06aK4HSt17OQOLVsxV/9pWNfm676+Ppo85UPF71urv5O2auWqn9S2XYhNn7gdK3Umea/N8XLYi069NzjH6MihOnxoky6c26uli2erWrXKN+zf7MEgzf9xuhIOblRG2hE9+WRItj6jRoZp+7bfdO7MHp1I2qGli2crsFGDvLoF3GYbtmzTgGGRav7k86rdtJVifl/j6ind8Yy2A6HTCgghDR7SRy/27aawwaPU8pGndTHlkn6YP01ms+d1z+nwdGu9FTVC70V9okcebKft2+P1w/xp8ilb2trn0ykfqlr1yur83xfVNOgJLVywVNNmjFeduvfajPX2m2NVs8oD1uPzyTPy7F6RO/8b2l8vDeip/i8NV5MH2yrl4kVF/zxTZrP5uucUK1ZUW7f+pYGDX7tun9179mvw4AjV/8+jerh5Bx08dFiLo2fJx6f0dc9BwXHp0mXVrFZFr73S39VTMQyjFRCaLDc50wYNGshkMt3UoJs2bXJ4IqWKV3P4nPxm5941mjj+S00Y/6UkycuruHbtX68BfYdp3txFOZ6zbMVcbd60TcNeeV2SZDKZtH3XH5oy+WuNG/OZJOlwYpyGvhypObPnW8/bd+hPjR71gb7+6jtJVzIDn06crsmTpufdDd5GF9IuuXoKeeLwoU0aO+4zjRl75d+tl1cJHf17i3q+METffbfgX8/PSDuip57pqQULlt6wX4kSxXXm1C49FtJRy1escsrcXenS0T9cPYV8o3bTVvo4aqQefaiJq6fiUh4+VfJ0/EfvesxpY8X8/YvTxsorN53Tb9++fR5Oo+C7u1IF+fv7auWKq+m78+eTtXFDnBoFNsgxGPDw8FD9BrU19qPJ1jaLxaLfVqxRo8CrKd7Y9ZvV4enWWrp0hc6dPa8OT7eWubBZq/5YbzPey6+8qP+9OkB//31Mc79boEkTpikzMzMP7ha5UblyRZUr56eY5Vd/OZ8/f0GxsZv1QFDDmwoGboaHh4d6v/C8zp49p7itO5wyJmA0BSW97yw3HQxERkY67aKpqalKTU21abNYLDedeciP/Px8JEknjp+0aT9+/KR8/crmeE6ZMqVUqFAhnTh+yqb9xPGTql7jatTbI3Sgpn41XgcOb1R6erouXbysrp3668D+Q9Y+n306Q3FxO3T29FkFPvAfjRo9VH7+vooIf8dZt4hb5O/nK0lKSjph0550/KT8/X1vefwnWgdr5jeTVLRoER07lqTHW3XSqVNn/v1EANkY7WkCl9QMREVFydvb2+a4nF6wfmg9+98ndTgxznoU8vDIs2u9NnKIvL1LqF2brmrRrIMmTpiqaTPG6977alj7TJowVav/WK8dO3Zp2pffKmJElPr07SpPz+vXKyBvderUQWdP77YeHh55W1y7YuVqNWz0mJo91E5Lf1mpb2dNVtmyZfL0mgDuDLn66ZSZmamxY8fqu+++U0JCgtLS0my+fvr06RueHx4enm2vgorlClbl8+LoGG3YEGf9/E+RYFlfH5u//Hx9fbRt6185jnHq1BllZGSorK/tD+yyvj46nnQlw1CpckX16Ruqxo1aKX7nHknS9u3xatzkfr3Qp4vCBo/KceyNG+Lk4eGhincHaO+eA7m/UeTawoW/KDb26mO4/3yP+PmVVWLicWu7n6+PtsTdejr/4sVL2rfvoPbtO6j1sZu0c8cq9ezRSe+9P+GWxwaMJquAFP45S64yA6+//rrGjBmjjh076ty5cwoLC9NTTz0lNzc3jR49+l/PN5vN8vLysjkK2hJBcnKKDuw/ZD3id+5RYuJxPfzI1aKeEiWKq+H99fRn7OYcx0hPT9eWzdttzjGZTHrokSbWc4oWLSzpyrsfrpWZmSWT2/X/9dWpc48yMzN14sSp6/ZB3kpOTrH+ct6376D++mu3jh1LUovmD1r7lChRXIGBDbRu/UanX9/NzXTDJ1kAXJ/FiUdBkKvMwMyZMzVlyhQ98cQTGj16tDp16qSqVauqbt26WrdunQYNGuTseRYIkydO19Bh/bV/30EdOnRYIyKGKPFYkhYtXGbtM//nGVq0cJmmfPa1pCvp/UmffaDNm7Zp08at6jegu4oVLaKZ38yVJO3etV/79h7U2PFvauSId3X69Fk90aalmrdoquee6S1JahTYQA3vr6dVv6/TheQUBQY20NvvvabvZv+kc2fP3/5/ELiu8Z98oRHhg7Rn734dPHhYr4/+n44eTdJPP119OuCXJXM0/6fFmvTpdElXHi28di+CypUqql69+3T69BkdPnxURYsW0YjwwVq48BcdS0yST5nS6tevuwIC/DX3h59v9y0iD1y8eEkJfx+1fj5yNEnxu/fJ26uEyjmh3gTIVTCQmJioOnXqSJKKFy+uc+fOSZLatGmjkSNHOm92BczHYz9X0WJFNPaTt+Tt7aV1azfomQ49lZp6dRmlcuWKKl2mlPXzjz9Ey8enjEZEvCxfv7LatvUvPdOhp7WoMCMjQ/99upci3/ifvv3+cxUrVlQH9h9S/z7DtOyX3yRJqalpeuqZNho+YpA8zZ46dOhvfTphmiZ+MvX2/gPAv/rgw0kqVqyoJk96XyVLemn16j/1RNsuNgW1VarcbbM/wP0N6ynm17nWzx99OFqS9NWM79TrhSHKzMxSzZpV1bXL5/LxKa1Tp85ow8Y4PdL8Kf311+7bdm/IO9vj96jnwFetn9//5HNJUrtWwXo74hVXTeuOZrSnCW56n4Fr1axZUzNmzFBQUJAefPBBtWnTRsOHD9ecOXM0cOBAHT9+/N8HsXMn7DMA57lT9xlA7rDPAOzl9T4DjQOaO22stUdWOG2svJKrmoEOHTooJiZGkjRw4ECNHDlS1atXV2hoKO8mAAAUeEbbgdChZYIJEyaoS5cuevfdd61tHTt2VMWKFbV27VpVr15dbdu2dfokAQBA3nFomcDb21vp6enq0KGDevXqpRYtWjhtIiwT4FosE+BaLBPAXl4vEwSWf9hpY8Ue/c1pY+UVh5YJEhMTNXnyZB09elQtW7ZU5cqV9eabb+rw4cN5NT8AAG47ixP/VxA4FAwUKVJEoaGhWrFihfbs2aOuXbvqyy+/VOXKlfX444/r+++/V3p6el7NFQAA5IFcb0dcpUoVvfHGGzpw4IAWL16sMmXKqHv37goICHDm/AAAuO0oIHSQyWRSoUKFZDKZZLFYyAwAAAo8o+0zkOvMwOHDh/XGG2+oSpUqatmypY4ePaopU6bo2LFjzpwfAADIYw5lBtLS0jRv3jxNnTpVy5cvV7ly5dStWzf17NlTVarkbWUnAAC3S0FJ7zuLQ5kBf39/de/eXV5eXlq4cKEOHTqkt956i0AAAHBHyZLFaYejJk6cqEqVKqlw4cIKCgpSbGzsDft///33qlWrlgoXLqw6deooOjra4Ws6FAxERETo8OHDmjt3rlq1aiU3Nzd9++23SklJcfjCAADA1pw5cxQWFqbIyEht2rRJ9erVU0hIyHW3+V+zZo06deqkXr16afPmzWrfvr3at2+v7du3O3TdXL2b4FpeXl7asmXLLWcH2HQI12LTIVyLTYdgL683Harr39hpY/15aKXNy8gkyWw2y2w2Z+sbFBSkRo0aacKECZKuvL6+QoUKGjhwoIYPH56tf8eOHZWSkqKff776htIHHnhA9evX1+TJk296jrkuIPyH0dZVAAB3viyLxWlHVFSUvL29bY6oqKhs10xLS9PGjRsVHBxsbXNzc1NwcLDWrl2b4zzXrl1r01+SQkJCrtv/em750UIAAO40ztw5MDw8XGFhYTZtOWUFTp48qczMTPn5+dm0+/n5KT4+PsexExMTc+yfmJjo0BwdCgaysrL0wQcfaMGCBUpLS9Ojjz6q6OhoNhoCAOA6rrckkJ84FAy8/fbbGj16tIKDg1WkSBF9/PHHOn78uJo1a5ZX8wMA4LbLcsESuI+Pj9zd3ZWUlGTTnpSUJH9//xzP8ff3d6j/9ThUMzBjxgxNmjRJS5cu1fz587Vw4ULNnDlTWVlZDl0UAID8zBUvKvL09FTDhg0VExNjbcvKylJMTIwaN865oLFx48Y2/SVp2bJl1+1/PQ4FAwkJCWrdurX1c3BwsEwmk44ePerQRQEAQHZhYWGaMmWKvvrqK+3cuVP9+vVTSkqKevToIUkKDQ1VeHi4tf/gwYO1ZMkSffTRR4qPj9fo0aO1YcMGvfTSSw5d16FlgoyMDBUuXNimzcPDg/cRAADuKK5YJpCuPCp44sQJjRo1SomJiapfv76WLFliLRJMSEiQm9vVv+ObNGmiWbNmKSIiQiNGjFD16tU1f/581a5d26HrOrTPgJubm1q1amVTCLFw4UK1aNFCxYoVs7bNmzfPoUlI7DMAW+wzgGuxzwDs5fU+A9XLNnTaWHtObHTaWHnFocxAt27dsrV16dLFaZMBAAC3n0PBwLRp0/JqHgAA5BuuWiZwFTYdAgDAjjM3HSoIbnk7YgAAULCRGQAAwI7FYqz9cwgGAACwk2WwZQKCAQAA7BjtjbzUDAAAYHBkBgAAsMMyAQAABscyAQAAMBQyAwAA2GEHQgAADI4dCAEAgKGQGQAAwI7RCggJBgAAsGO0RwtZJgAAwODIDAAAYIdlAgAADI5HCwEAMDijZQaoGQAAwODIDAAAYMdoTxMQDAAAYIdlAgAAYChkBgAAsMPTBAAAGBwvKgIAAIZCZgAAADssEwAAYHA8TQAAAAyFzAAAAHaMVkBIMAAAgB2jLRMQDAAAYMdowQA1AwAAGByZAQAA7BgrLyCZLEbLheRjqampioqKUnh4uMxms6unAxfj+wHX4vsBeYlgIB85f/68vL29de7cOXl5ebl6OnAxvh9wLb4fkJeoGQAAwOAIBgAAMDiCAQAADI5gIB8xm82KjIykOAiS+H6ALb4fkJcoIAQAwODIDAAAYHAEAwAAGBzBAAAABkcwAACAwREMAHngkUce0csvv+zqacAARo8erfr167t6GijgCAZus+7du8tkMmU79u7dK0lKTEzUwIEDVaVKFZnNZlWoUEFt27ZVTEyMi2cOV5o+fXqO3zdffPGFtU9aWpref/991atXT0WLFpWPj4+aNm2qadOmKT093YWzN5Zr/xv39PRUtWrV9MYbbygjI8Om30cffaRSpUrp8uXL2ca4ePGivLy8NH78+Ns1bRgcby10gccff1zTpk2zaStbtqwOHjyopk2bqmTJkvrggw9Up04dpaena+nSpRowYIDi4+NdNGPkB15eXtq1a5dNm7e3t6QrgUBISIji4uL05ptvqmnTpvLy8tK6dev04YcfqkGDBvz1eBv98994amqqoqOjNWDAAHl4eCg8PNzap2vXrgoPD9e8efPUuXNnm/Pnzp2rtLQ0denS5XZPHQZFZsAFzGaz/P39bQ53d3f1799fJpNJsbGxevrpp1WjRg3dd999CgsL07p161w9beTSmTNnFBoaqlKlSqlo0aJq1aqV9uzZY9NnypQpqlChgooWLaoOHTpozJgxKlmypE0fk8mU7fumSJEikqRx48bp999/V0xMjAYMGKD69eurSpUq6ty5s9avX6/q1avfrtuFrv43fvfdd6tfv34KDg7WggULbPr4+vqqbdu2mjp1arbzp06dqvbt26t06dJ69dVXVaNGDRUtWlRVqlTRyJEjb5jpyWmJqn379urevbv1c2pqqoYOHaqAgAAVK1ZMQUFBWrly5a3cMgo4goF84vTp01qyZIkGDBigYsWKZfu6/S8GFBzdu3fXhg0btGDBAq1du1YWi0WtW7e2/kBfvXq1+vbtq8GDB2vLli1q2bKl3n77bYeuMXPmTAUHB6tBgwbZvubh4ZHj9xRunyJFiigtLS1be69evbR8+XIdOnTI2rZ//379/vvv6tWrlySpRIkSmj59uv766y99/PHHmjJlisaOHXtL83nppZe0du1azZ49W1u3btWzzz6rxx9/PFuQCuMgGHCBn3/+WcWLF7cezz77rPbu3SuLxaJatWq5enpwoj179mjBggX64osv1KxZM9WrV08zZ87UkSNHNH/+fEnSJ598olatWmno0KGqUaOG+vfvr1atWmUb69y5czbfN/7+/jbX4Xsn/7FYLPr111+1dOlStWjRItvXQ0JCVL58eZtlw+nTp6tChQp69NFHJUkRERFq0qSJKlWqpLZt22ro0KH67rvvcj2nhIQETZs2Td9//72aNWumqlWraujQoXrwwQezLV/COKgZcIHmzZvr008/tX4uVqyYEhISXDgj5JWdO3eqUKFCCgoKsraVKVNGNWvW1M6dOyVJu3btUocOHWzOCwwM1M8//2zTVqJECW3atMn62c3taizPruL5yz8Bf3p6urKystS5c2e1adNGxYsXt/b57LPP9Pzzz6tbt26aPn26IiMjZbFY9NVXX6lHjx7Wf79z5szR+PHjtW/fPiUnJysjI0NeXl65ntu2bduUmZmpGjVq2LSnpqaqTJkyuR4XBRvBgAsUK1ZM1apVs2kzm80ymUwUCeK63Nzcsn3f/KNGjRp87+Qj/wT8np6eKl++vAoVKqRLly5py5Yt1j5+fn6SpJ49eyoqKkrLly9XVlaWDh8+rB49ekiS1q5dq+eff16vv/66QkJC5O3trdmzZ+ujjz667rXd3NyyBYfX1hgkJyfL3d1dGzdulLu7u02/a4MVGAvBQD5RunRphYSEaOLEiRo0aFC2Nd6zZ89SN1AA3XPPPcrIyND69evVpEkTSdKpU6e0a9cu3XvvvZKkmjVr6s8//7Q5z/7zv+ncubNGjBihzZs3Z6sbSE9PV1paGnUDt1FOAX+RIkVyDOaqVq2qhx9+WFOnTpXFYlFwcLDuvvtuSdKaNWt0991367XXXrP2v7a+ICdly5bVsWPHrJ8zMzO1fft2NW/eXJLUoEEDZWZm6vjx42rWrFmu7xF3FmoG8pGJEycqMzNTgYGB+uGHH7Rnzx7t3LlT48ePV+PGjV09PeRC9erV1a5dO/Xu3VurVq1SXFycunTpooCAALVr106SNHDgQEVHR2vMmDHas2ePPvvsMy1evFgmk+mmr/Pyyy+radOmevTRRzVx4kTFxcVp//79+u677/TAAw9QGJbP9erVS/PmzdOPP/5oLRyUrnz/JCQkaPbs2dq3b5/Gjx+vH3/88YZjtWjRQosWLdKiRYsUHx+vfv366ezZs9av16hRQ88//7xCQ0M1b948HThwQLGxsYqKitKiRYvy6haRzxEM5CNVqlTRpk2b1Lx5c73yyiuqXbu2WrZsqZiYGJsaAxQs06ZNU8OGDdWmTRs1btxYFotF0dHR8vDwkCQ1bdpUkydP1pgxY1SvXj0tWbJEQ4YMUeHChW/6GmazWcuWLdOwYcP02Wef6YEHHlCjRo00fvx4DRo0SLVr186r24MTPP300zKbzSpatKjat29vbX/yySc1ZMgQvfTSS6pfv77WrFmjkSNH3nCsnj17qlu3bgoNDdXDDz+sKlWqWLMC/5g2bZpCQ0P1yiuvqGbNmmrfvr3+/PNPVaxYMS9uDwWAyULlEZDv9O7dW/Hx8frjjz9cPRUABkDNAJAPfPjhh2rZsqWKFSumxYsX66uvvtKkSZNcPS0ABkFmAMgH/vvf/2rlypW6cOGCqlSpooEDB6pv376unhYAgyAYAADA4CggBADA4AgGAAAwOIIBAAAMjmAAAACDIxgAAMDgCAYAADA4ggEAAAyOYAAAAIP7P14DaoYqTG6LAAAAAElFTkSuQmCC\n"
383
          },
384
          "metadata": {}
385
        }
386
      ],
387
      "source": [
388
        "#EDA\n",
389
        "#histograms and correlation matrix\n",
390
        "features.hist(bins=15, figsize=(15, 6), layout=(2, 2))\n",
391
        "plt.show()\n",
392
        "sns.heatmap(features.corr(), annot=True)\n",
393
        "plt.show()"
394
      ],
395
      "id": "26952ab4-1311-48af-8ca9-3d327b96b9da"
396
    },
397
    {
398
      "cell_type": "code",
399
      "execution_count": 140,
400
      "metadata": {
401
        "id": "b2e91298-7a42-4fef-8c0f-a4a52e48cb01"
402
      },
403
      "outputs": [],
404
      "source": [
405
        "def train_test_and_standardize(features, target, test_size=0.2, random_state=42):\n",
406
        "    # Split the data into train and test sets\n",
407
        "    x_train, x_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=random_state)\n",
408
        "\n",
409
        "    # Standardize the features using StandardScaler\n",
410
        "    scaler = StandardScaler()\n",
411
        "    x_train = scaler.fit_transform(x_train)\n",
412
        "    x_test = scaler.transform(x_test)\n",
413
        "\n",
414
        "    return x_train, x_test, y_train, y_test\n",
415
        "\n",
416
        "xtrain_sclc, xtest_sclc, ytrain_sclc, ytest_sclc = train_test_and_standardize(features_sclc, sclc)\n",
417
        "xtrain_nsclc, xtest_nsclc, ytrain_nsclc, ytest_nsclc = train_test_and_standardize(features_nsclc, nsclc)"
418
      ],
419
      "id": "b2e91298-7a42-4fef-8c0f-a4a52e48cb01"
420
    },
421
    {
422
      "cell_type": "code",
423
      "execution_count": 141,
424
      "metadata": {
425
        "id": "784fa15e-b3fc-4fe2-b8bb-89dccd210191"
426
      },
427
      "outputs": [],
428
      "source": [
429
        "# AdaBoost Pipeline\n",
430
        "base_estimator = DecisionTreeClassifier(class_weight='balanced')  # base estimator\n",
431
        "pipeline = ImbPipeline([\n",
432
        "    ('scaler', StandardScaler()),\n",
433
        "    ('adaboost', AdaBoostClassifier(base_estimator=base_estimator))\n",
434
        "])\n",
435
        "\n",
436
        "# Parameter Grid for AdaBoost\n",
437
        "param_grid_adaboost = {\n",
438
        "    'adaboost__n_estimators': [50, 100, 200],\n",
439
        "    'adaboost__learning_rate': [0.05, 0.1, 0.5, 1.0],\n",
440
        "    'adaboost__algorithm': ['SAMME', 'SAMME.R'],\n",
441
        "    'adaboost__random_state': [None, 42, 100],\n",
442
        "    'adaboost__base_estimator__max_depth': [1, 2, 3, 4],\n",
443
        "    'adaboost__base_estimator__min_samples_split': [2, 5, 10],\n",
444
        "    'adaboost__base_estimator__min_samples_leaf': [1, 2, 4, 6],\n",
445
        "    'adaboost__base_estimator__criterion': ['gini', 'entropy'],\n",
446
        "    'adaboost__base_estimator__max_features': [None, 'sqrt', 'log2'],\n",
447
        "    'adaboost__base_estimator__splitter': ['best', 'random']\n",
448
        "}"
449
      ],
450
      "id": "784fa15e-b3fc-4fe2-b8bb-89dccd210191"
451
    },
452
    {
453
      "cell_type": "code",
454
      "execution_count": 142,
455
      "metadata": {
456
        "id": "45807704-f39e-46d8-9715-9e799c989fd6"
457
      },
458
      "outputs": [],
459
      "source": [
460
        "def evaluate_adaboost(x_train, y_train, x_test, y_test, param_grid):\n",
461
        "    grid_search = RandomizedSearchCV(estimator=pipeline, param_distributions=param_grid, scoring='f1',n_iter= 1000, cv=10, verbose=1, n_jobs=-1)\n",
462
        "    grid_search.fit(x_train, y_train)  # Fit on training data\n",
463
        "    best_params = grid_search.best_params_\n",
464
        "    best_score = grid_search.best_score_\n",
465
        "    best_adaboost = pipeline.set_params(**best_params)\n",
466
        "    best_adaboost.fit(x_train, y_train)  # Refit on training data\n",
467
        "    y_test_pred = best_adaboost.predict(x_test)  # Predict on test data\n",
468
        "    report = classification_report(y_test, y_test_pred)\n",
469
        "    return best_params, best_score, report"
470
      ],
471
      "id": "45807704-f39e-46d8-9715-9e799c989fd6"
472
    },
473
    {
474
      "cell_type": "code",
475
      "execution_count": 143,
476
      "metadata": {
477
        "colab": {
478
          "base_uri": "https://localhost:8080/"
479
        },
480
        "id": "c54aca08-253d-4da3-ac79-f5ab64ab64d9",
481
        "outputId": "479b54f1-3b24-4224-aa80-3a098587f1c0"
482
      },
483
      "outputs": [
484
        {
485
          "output_type": "stream",
486
          "name": "stdout",
487
          "text": [
488
            "Fitting 10 folds for each of 1000 candidates, totalling 10000 fits\n",
489
            "Best Parameters for NSCLC: {'adaboost__random_state': 100, 'adaboost__n_estimators': 50, 'adaboost__learning_rate': 0.1, 'adaboost__base_estimator__splitter': 'best', 'adaboost__base_estimator__min_samples_split': 2, 'adaboost__base_estimator__min_samples_leaf': 1, 'adaboost__base_estimator__max_features': 'sqrt', 'adaboost__base_estimator__max_depth': 3, 'adaboost__base_estimator__criterion': 'gini', 'adaboost__algorithm': 'SAMME'}\n",
490
            "Best F1 Score for NSCLC: 0.8498770054338733\n",
491
            "Classification Report for NSCLC (Test Data):\n",
492
            "               precision    recall  f1-score   support\n",
493
            "\n",
494
            "         0.0       0.82      0.82      0.82       142\n",
495
            "         1.0       0.81      0.81      0.81       135\n",
496
            "\n",
497
            "    accuracy                           0.82       277\n",
498
            "   macro avg       0.82      0.82      0.82       277\n",
499
            "weighted avg       0.82      0.82      0.82       277\n",
500
            "\n"
501
          ]
502
        }
503
      ],
504
      "source": [
505
        "best_params_nsclc, best_score_nsclc, report_nsclc = evaluate_adaboost(xtrain_nsclc, ytrain_nsclc, xtest_nsclc, ytest_nsclc, param_grid_adaboost)\n",
506
        "print(\"Best Parameters for NSCLC:\", best_params_nsclc)\n",
507
        "print(\"Best F1 Score for NSCLC:\", best_score_nsclc)\n",
508
        "print(\"Classification Report for NSCLC (Test Data):\\n\", report_nsclc)"
509
      ],
510
      "id": "c54aca08-253d-4da3-ac79-f5ab64ab64d9"
511
    },
512
    {
513
      "cell_type": "code",
514
      "execution_count": 127,
515
      "metadata": {
516
        "id": "7d7a9138-6d26-4ea8-a254-7cf99186473f",
517
        "colab": {
518
          "base_uri": "https://localhost:8080/"
519
        },
520
        "outputId": "2120bb04-d90d-453b-a7f5-d67a30eaf2b8"
521
      },
522
      "outputs": [
523
        {
524
          "output_type": "stream",
525
          "name": "stdout",
526
          "text": [
527
            "Fitting 10 folds for each of 500 candidates, totalling 5000 fits\n",
528
            "Best Parameters for NSCLC: {'adaboost__random_state': 100, 'adaboost__n_estimators': 100, 'adaboost__learning_rate': 0.05, 'adaboost__base_estimator__splitter': 'best', 'adaboost__base_estimator__min_samples_split': 10, 'adaboost__base_estimator__min_samples_leaf': 2, 'adaboost__base_estimator__max_features': 'sqrt', 'adaboost__base_estimator__max_depth': 3, 'adaboost__base_estimator__criterion': 'entropy', 'adaboost__algorithm': 'SAMME.R'}\n",
529
            "Best F1 Score for NSCLC: 0.8115145193902691\n",
530
            "Classification Report for NSCLC (Test Data):\n",
531
            "               precision    recall  f1-score   support\n",
532
            "\n",
533
            "         0.0       0.79      0.88      0.83       188\n",
534
            "         1.0       0.86      0.76      0.80       181\n",
535
            "\n",
536
            "    accuracy                           0.82       369\n",
537
            "   macro avg       0.82      0.82      0.82       369\n",
538
            "weighted avg       0.82      0.82      0.82       369\n",
539
            "\n"
540
          ]
541
        }
542
      ],
543
      "source": [
544
        "best_params_nsclc, best_score_nsclc, report_nsclc = evaluate_adaboost(xtrain_sclc, ytrain_sclc, xtest_sclc, ytest_sclc, param_grid_adaboost)\n",
545
        "print(\"Best Parameters for NSCLC:\", best_params_nsclc)\n",
546
        "print(\"Best F1 Score for NSCLC:\", best_score_nsclc)\n",
547
        "print(\"Classification Report for NSCLC (Test Data):\\n\", report_nsclc)"
548
      ],
549
      "id": "7d7a9138-6d26-4ea8-a254-7cf99186473f"
550
    }
551
  ],
552
  "metadata": {
553
    "colab": {
554
      "provenance": []
555
    },
556
    "kernelspec": {
557
      "display_name": "Python 3",
558
      "name": "python3"
559
    },
560
    "language_info": {
561
      "codemirror_mode": {
562
        "name": "ipython",
563
        "version": 3
564
      },
565
      "file_extension": ".py",
566
      "mimetype": "text/x-python",
567
      "name": "python",
568
      "nbconvert_exporter": "python",
569
      "pygments_lexer": "ipython3",
570
      "version": "3.9.18"
571
    }
572
  },
573
  "nbformat": 4,
574
  "nbformat_minor": 5
575
}