Download this file

171 lines (151 with data), 5.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function [n,r] = boxcount(c,varargin)
%BOXCOUNT Box-Counting of a D-dimensional array (with D=1,2,3).
% [N, R] = BOXCOUNT(C), where C is a D-dimensional array (with D=1,2,3),
% counts the number N of D-dimensional boxes of size R needed to cover
% the nonzero elements of C. The box sizes are powers of two, i.e.,
% R = 1, 2, 4 ... 2^P, where P is the smallest integer such that
% MAX(SIZE(C)) <= 2^P. If the sizes of C over each dimension are smaller
% than 2^P, C is padded with zeros to size 2^P over each dimension (e.g.,
% a 320-by-200 image is padded to 512-by-512). The output vectors N and R
% are of size P+1. For a RGB color image (m-by-n-by-3 array), a summation
% over the 3 RGB planes is done first.
%
% The Box-counting method is useful to determine fractal properties of a
% 1D segment, a 2D image or a 3D array. If C is a fractal set, with
% fractal dimension DF < D, then N scales as R^(-DF). DF is known as the
% Minkowski-Bouligand dimension, or Kolmogorov capacity, or Kolmogorov
% dimension, or simply box-counting dimension.
%
% BOXCOUNT(C,'plot') also shows the log-log plot of N as a function of R
% (if no output argument, this option is selected by default).
%
% BOXCOUNT(C,'slope') also shows the semi-log plot of the local slope
% DF = - dlnN/dlnR as a function of R. If DF is contant in a certain
% range of R, then DF is the fractal dimension of the set C. The
% derivative is computed as a 2nd order finite difference (see GRADIENT).
%
% The execution time depends on the sizes of C. It is fastest for powers
% of two over each dimension.
%
% Examples:
%
% % Plots the box-count of a vector containing randomly-distributed
% % 0 and 1. This set is not fractal: one has N = R^-2 at large R,
% % and N = cste at small R.
% c = (rand(1,2048)<0.2);
% boxcount(c);
%
% % Plots the box-count and the fractal dimension of a 2D fractal set
% % of size 512^2 (obtained by RANDCANTOR), with fractal dimension
% % DF = 2 + log(P) / log(2) = 1.68 (with P=0.8).
% c = randcantor(0.8, 512, 2);
% boxcount(c);
% figure, boxcount(c, 'slope');
%
% F. Moisy
% Revision: 2.10, Date: 2008/07/09
% History:
% 2006/11/22: v2.00, joined into a single file boxcountn (n=1,2,3).
% 2008/07/09: v2.10, minor improvements
% control input argument
error(nargchk(1,2,nargin));
% check for true color image (m-by-n-by-3 array)
if ndims(c)==3
if size(c,3)==3 && size(c,1)>=8 && size(c,2)>=8
c = sum(c,3);
end
end
warning off
c = logical(squeeze(c));
warning on
dim = ndims(c); % dim is 2 for a vector or a matrix, 3 for a cube
if dim>3
error('Maximum dimension is 3.');
end
% transpose the vector to a 1-by-n vector
if length(c)==numel(c)
dim=1;
if size(c,1)~=1
c = c';
end
end
width = max(size(c)); % largest size of the box
p = log(width)/log(2); % nbre of generations
% remap the array if the sizes are not all equal,
% or if they are not power of two
% (this slows down the computation!)
if p~=round(p) || any(size(c)~=width)
p = ceil(p);
width = 2^p;
switch dim
case 1
mz = zeros(1,width);
mz(1:length(c)) = c;
c = mz;
case 2
mz = zeros(width, width);
mz(1:size(c,1), 1:size(c,2)) = c;
c = mz;
case 3
mz = zeros(width, width, width);
mz(1:size(c,1), 1:size(c,2), 1:size(c,3)) = c;
c = mz;
end
end
n=zeros(1,p+1); % pre-allocate the number of box of size r
switch dim
case 1 %------------------- 1D boxcount ---------------------%
n(p+1) = sum(c);
for g=(p-1):-1:0
siz = 2^(p-g);
siz2 = round(siz/2);
for i=1:siz:(width-siz+1)
c(i) = ( c(i) || c(i+siz2));
end
n(g+1) = sum(c(1:siz:(width-siz+1)));
end
case 2 %------------------- 2D boxcount ---------------------%
n(p+1) = sum(c(:));
for g=(p-1):-1:0
siz = 2^(p-g);
siz2 = round(siz/2);
for i=1:siz:(width-siz+1)
for j=1:siz:(width-siz+1)
c(i,j) = ( c(i,j) || c(i+siz2,j) || c(i,j+siz2) || c(i+siz2,j+siz2) );
end
end
n(g+1) = sum(sum(c(1:siz:(width-siz+1),1:siz:(width-siz+1))));
end
case 3 %------------------- 3D boxcount ---------------------%
n(p+1) = sum(c(:));
for g=(p-1):-1:0
siz = 2^(p-g);
siz2 = round(siz/2);
for i=1:siz:(width-siz+1),
for j=1:siz:(width-siz+1),
for k=1:siz:(width-siz+1),
c(i,j,k)=( c(i,j,k) || c(i+siz2,j,k) || c(i,j+siz2,k) ...
|| c(i+siz2,j+siz2,k) || c(i,j,k+siz2) || c(i+siz2,j,k+siz2) ...
|| c(i,j+siz2,k+siz2) || c(i+siz2,j+siz2,k+siz2));
end
end
end
n(g+1) = sum(sum(sum(c(1:siz:(width-siz+1),1:siz:(width-siz+1),1:siz:(width-siz+1)))));
end
end
n = n(end:-1:1);
r = 2.^(0:p); % box size (1, 2, 4, 8...)
if any(strncmpi(varargin,'slope',1))
s=-gradient(log(n))./gradient(log(r));
semilogx(r, s, 's-');
ylim([0 dim]);
xlabel('r, box size'); ylabel('- d ln n / d ln r, local dimension');
title([num2str(dim) 'D box-count']);
elseif nargout==0 || any(strncmpi(varargin,'plot',1))
loglog(r,n,'s-');
xlabel('r, box size'); ylabel('n(r), number of boxes');
title([num2str(dim) 'D box-count']);
end
if nargout==0
clear r n
end