[d6960c]: / feature_selection / Boruta-example.ipynb

Download this file

1426 lines (1425 with data), 186.9 kB

{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example for Boruta Selection."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Warning message:\n",
      "\"package 'Boruta' was built under R version 4.0.4\"\n",
      "Warning message:\n",
      "\"package 'ranger' was built under R version 4.0.4\"\n"
     ]
    }
   ],
   "source": [
    "library(Boruta)\n",
    "library(ranger)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "mydata <- read.csv(\"./example.csv\",header=T)\n",
    "mydata <- mydata[complete.cases(mydata),]\n",
    "predictors <- data.frame(mydata[1:83])\n",
    "decision <- data.frame(mydata[,84])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "mydata <- data.frame(predictors[1:83], decision = factor(decision[, 1]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      " 1. run of importance source...\n",
      "\n",
      " 2. run of importance source...\n",
      "\n",
      " 3. run of importance source...\n",
      "\n",
      " 4. run of importance source...\n",
      "\n",
      " 5. run of importance source...\n",
      "\n",
      " 6. run of importance source...\n",
      "\n",
      " 7. run of importance source...\n",
      "\n",
      " 8. run of importance source...\n",
      "\n",
      " 9. run of importance source...\n",
      "\n",
      " 10. run of importance source...\n",
      "\n",
      " 11. run of importance source...\n",
      "\n",
      " 12. run of importance source...\n",
      "\n",
      " 13. run of importance source...\n",
      "\n",
      " 14. run of importance source...\n",
      "\n",
      "After 14 iterations, +0.85 secs: \n",
      "\n",
      " confirmed 10 attributes: log.sigma.3.0.mm.3D_firstorder_Median, log.sigma.5.0.mm.3D_glcm_Idm, original_firstorder_Median, original_firstorder_Skewness, original_gldm_LargeDependenceLowGrayLevelEmphasis and 5 more;\n",
      "\n",
      " rejected 26 attributes: log.sigma.1.0.mm.3D_firstorder_Minimum, log.sigma.1.0.mm.3D_firstorder_Skewness, log.sigma.1.0.mm.3D_ngtdm_Strength, log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized, log.sigma.2.0.mm.3D_glrlm_RunVariance and 21 more;\n",
      "\n",
      " still have 47 attributes left.\n",
      "\n",
      "\n",
      " 15. run of importance source...\n",
      "\n",
      " 16. run of importance source...\n",
      "\n",
      " 17. run of importance source...\n",
      "\n",
      " 18. run of importance source...\n",
      "\n",
      "After 18 iterations, +1.1 secs: \n",
      "\n",
      " confirmed 1 attribute: wavelet.LHH_firstorder_Kurtosis;\n",
      "\n",
      " rejected 10 attributes: log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized, log.sigma.2.0.mm.3D_glcm_Imc1, log.sigma.2.0.mm.3D_glrlm_LongRunLowGrayLevelEmphasis, log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis, wavelet.HHH_glcm_Idn and 5 more;\n",
      "\n",
      " still have 36 attributes left.\n",
      "\n",
      "\n",
      " 19. run of importance source...\n",
      "\n",
      " 20. run of importance source...\n",
      "\n",
      " 21. run of importance source...\n",
      "\n",
      "After 21 iterations, +1.2 secs: \n",
      "\n",
      " rejected 4 attributes: log.sigma.2.0.mm.3D_firstorder_Maximum, log.sigma.2.0.mm.3D_firstorder_Minimum, log.sigma.2.0.mm.3D_glszm_SmallAreaEmphasis, wavelet.HLL_glszm_GrayLevelVariance;\n",
      "\n",
      " still have 32 attributes left.\n",
      "\n",
      "\n",
      " 22. run of importance source...\n",
      "\n",
      " 23. run of importance source...\n",
      "\n",
      " 24. run of importance source...\n",
      "\n",
      " 25. run of importance source...\n",
      "\n",
      " 26. run of importance source...\n",
      "\n",
      " 27. run of importance source...\n",
      "\n",
      " 28. run of importance source...\n",
      "\n",
      "After 28 iterations, +1.5 secs: \n",
      "\n",
      " confirmed 2 attributes: log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis, log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis;\n",
      "\n",
      " still have 30 attributes left.\n",
      "\n",
      "\n",
      " 29. run of importance source...\n",
      "\n",
      " 30. run of importance source...\n",
      "\n",
      " 31. run of importance source...\n",
      "\n",
      "After 31 iterations, +1.6 secs: \n",
      "\n",
      " confirmed 1 attribute: log.sigma.4.0.mm.3D_glszm_SmallAreaEmphasis;\n",
      "\n",
      " still have 29 attributes left.\n",
      "\n",
      "\n",
      " 32. run of importance source...\n",
      "\n",
      " 33. run of importance source...\n",
      "\n",
      " 34. run of importance source...\n",
      "\n",
      " 35. run of importance source...\n",
      "\n",
      " 36. run of importance source...\n",
      "\n",
      " 37. run of importance source...\n",
      "\n",
      "After 37 iterations, +1.9 secs: \n",
      "\n",
      " rejected 1 attribute: log.sigma.1.0.mm.3D_ngtdm_Busyness;\n",
      "\n",
      " still have 28 attributes left.\n",
      "\n",
      "\n",
      " 38. run of importance source...\n",
      "\n",
      " 39. run of importance source...\n",
      "\n",
      " 40. run of importance source...\n",
      "\n",
      "After 40 iterations, +2 secs: \n",
      "\n",
      " confirmed 1 attribute: wavelet.LHL_glszm_GrayLevelNonUniformityNormalized;\n",
      "\n",
      " still have 27 attributes left.\n",
      "\n",
      "\n",
      " 41. run of importance source...\n",
      "\n",
      " 42. run of importance source...\n",
      "\n",
      " 43. run of importance source...\n",
      "\n",
      "After 43 iterations, +2.1 secs: \n",
      "\n",
      " confirmed 1 attribute: log.sigma.3.0.mm.3D_firstorder_90Percentile;\n",
      "\n",
      " rejected 1 attribute: wavelet.LLH_glcm_Correlation;\n",
      "\n",
      " still have 25 attributes left.\n",
      "\n",
      "\n",
      " 44. run of importance source...\n",
      "\n",
      " 45. run of importance source...\n",
      "\n",
      " 46. run of importance source...\n",
      "\n",
      "After 46 iterations, +2.2 secs: \n",
      "\n",
      " rejected 1 attribute: original_shape_Sphericity;\n",
      "\n",
      " still have 24 attributes left.\n",
      "\n",
      "\n",
      " 47. run of importance source...\n",
      "\n",
      " 48. run of importance source...\n",
      "\n",
      "After 48 iterations, +2.3 secs: \n",
      "\n",
      " rejected 2 attributes: wavelet.HLL_ngtdm_Busyness, wavelet.LHL_firstorder_Skewness;\n",
      "\n",
      " still have 22 attributes left.\n",
      "\n",
      "\n",
      " 49. run of importance source...\n",
      "\n",
      " 50. run of importance source...\n",
      "\n",
      " 51. run of importance source...\n",
      "\n",
      "After 51 iterations, +2.4 secs: \n",
      "\n",
      " rejected 2 attributes: wavelet.HHH_gldm_SmallDependenceLowGrayLevelEmphasis, wavelet.HLH_glcm_Correlation;\n",
      "\n",
      " still have 20 attributes left.\n",
      "\n",
      "\n",
      " 52. run of importance source...\n",
      "\n",
      " 53. run of importance source...\n",
      "\n",
      " 54. run of importance source...\n",
      "\n",
      "After 54 iterations, +2.6 secs: \n",
      "\n",
      " confirmed 1 attribute: wavelet.HLL_glszm_GrayLevelNonUniformityNormalized;\n",
      "\n",
      " rejected 1 attribute: wavelet.LHL_glszm_GrayLevelVariance;\n",
      "\n",
      " still have 18 attributes left.\n",
      "\n",
      "\n",
      " 55. run of importance source...\n",
      "\n",
      " 56. run of importance source...\n",
      "\n",
      " 57. run of importance source...\n",
      "\n",
      " 58. run of importance source...\n",
      "\n",
      " 59. run of importance source...\n",
      "\n",
      " 60. run of importance source...\n",
      "\n",
      " 61. run of importance source...\n",
      "\n",
      " 62. run of importance source...\n",
      "\n",
      "After 62 iterations, +2.9 secs: \n",
      "\n",
      " confirmed 1 attribute: wavelet.HHH_glcm_Correlation;\n",
      "\n",
      " still have 17 attributes left.\n",
      "\n",
      "\n",
      " 63. run of importance source...\n",
      "\n",
      " 64. run of importance source...\n",
      "\n",
      "After 64 iterations, +3 secs: \n",
      "\n",
      " rejected 1 attribute: log.sigma.4.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis;\n",
      "\n",
      " still have 16 attributes left.\n",
      "\n",
      "\n",
      " 65. run of importance source...\n",
      "\n",
      " 66. run of importance source...\n",
      "\n",
      " 67. run of importance source...\n",
      "\n",
      " 68. run of importance source...\n",
      "\n",
      " 69. run of importance source...\n",
      "\n",
      " 70. run of importance source...\n",
      "\n",
      " 71. run of importance source...\n",
      "\n",
      " 72. run of importance source...\n",
      "\n",
      " 73. run of importance source...\n",
      "\n",
      " 74. run of importance source...\n",
      "\n",
      " 75. run of importance source...\n",
      "\n",
      " 76. run of importance source...\n",
      "\n",
      " 77. run of importance source...\n",
      "\n",
      " 78. run of importance source...\n",
      "\n",
      " 79. run of importance source...\n",
      "\n",
      " 80. run of importance source...\n",
      "\n",
      " 81. run of importance source...\n",
      "\n",
      " 82. run of importance source...\n",
      "\n",
      " 83. run of importance source...\n",
      "\n",
      " 84. run of importance source...\n",
      "\n",
      " 85. run of importance source...\n",
      "\n",
      " 86. run of importance source...\n",
      "\n",
      " 87. run of importance source...\n",
      "\n",
      "After 87 iterations, +3.8 secs: \n",
      "\n",
      " confirmed 1 attribute: log.sigma.1.0.mm.3D_glcm_Correlation;\n",
      "\n",
      " still have 15 attributes left.\n",
      "\n",
      "\n",
      " 88. run of importance source...\n",
      "\n",
      " 89. run of importance source...\n",
      "\n",
      " 90. run of importance source...\n",
      "\n",
      "After 90 iterations, +3.9 secs: \n",
      "\n",
      " rejected 1 attribute: original_glcm_Correlation;\n",
      "\n",
      " still have 14 attributes left.\n",
      "\n",
      "\n",
      " 91. run of importance source...\n",
      "\n",
      " 92. run of importance source...\n",
      "\n",
      " 93. run of importance source...\n",
      "\n",
      " 94. run of importance source...\n",
      "\n",
      " 95. run of importance source...\n",
      "\n",
      " 96. run of importance source...\n",
      "\n",
      " 97. run of importance source...\n",
      "\n",
      " 98. run of importance source...\n",
      "\n",
      " 99. run of importance source...\n",
      "\n",
      " 100. run of importance source...\n",
      "\n",
      " 101. run of importance source...\n",
      "\n",
      " 102. run of importance source...\n",
      "\n",
      " 103. run of importance source...\n",
      "\n",
      " 104. run of importance source...\n",
      "\n",
      " 105. run of importance source...\n",
      "\n",
      " 106. run of importance source...\n",
      "\n",
      " 107. run of importance source...\n",
      "\n",
      " 108. run of importance source...\n",
      "\n",
      " 109. run of importance source...\n",
      "\n",
      " 110. run of importance source...\n",
      "\n",
      " 111. run of importance source...\n",
      "\n",
      " 112. run of importance source...\n",
      "\n",
      " 113. run of importance source...\n",
      "\n",
      " 114. run of importance source...\n",
      "\n",
      " 115. run of importance source...\n",
      "\n",
      " 116. run of importance source...\n",
      "\n",
      " 117. run of importance source...\n",
      "\n",
      " 118. run of importance source...\n",
      "\n",
      " 119. run of importance source...\n",
      "\n",
      "After 119 iterations, +5 secs: \n",
      "\n",
      " confirmed 2 attributes: wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis, wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis;\n",
      "\n",
      " still have 12 attributes left.\n",
      "\n",
      "\n",
      " 120. run of importance source...\n",
      "\n",
      " 121. run of importance source...\n",
      "\n",
      " 122. run of importance source...\n",
      "\n",
      " 123. run of importance source...\n",
      "\n",
      " 124. run of importance source...\n",
      "\n",
      " 125. run of importance source...\n",
      "\n",
      " 126. run of importance source...\n",
      "\n",
      " 127. run of importance source...\n",
      "\n",
      " 128. run of importance source...\n",
      "\n",
      " 129. run of importance source...\n",
      "\n",
      " 130. run of importance source...\n",
      "\n",
      " 131. run of importance source...\n",
      "\n",
      " 132. run of importance source...\n",
      "\n",
      " 133. run of importance source...\n",
      "\n",
      " 134. run of importance source...\n",
      "\n",
      " 135. run of importance source...\n",
      "\n",
      " 136. run of importance source...\n",
      "\n",
      " 137. run of importance source...\n",
      "\n",
      " 138. run of importance source...\n",
      "\n",
      " 139. run of importance source...\n",
      "\n",
      " 140. run of importance source...\n",
      "\n",
      " 141. run of importance source...\n",
      "\n",
      " 142. run of importance source...\n",
      "\n",
      " 143. run of importance source...\n",
      "\n",
      " 144. run of importance source...\n",
      "\n",
      " 145. run of importance source...\n",
      "\n",
      " 146. run of importance source...\n",
      "\n",
      " 147. run of importance source...\n",
      "\n",
      " 148. run of importance source...\n",
      "\n",
      " 149. run of importance source...\n",
      "\n",
      " 150. run of importance source...\n",
      "\n",
      " 151. run of importance source...\n",
      "\n",
      " 152. run of importance source...\n",
      "\n",
      " 153. run of importance source...\n",
      "\n",
      " 154. run of importance source...\n",
      "\n",
      " 155. run of importance source...\n",
      "\n",
      " 156. run of importance source...\n",
      "\n",
      " 157. run of importance source...\n",
      "\n",
      " 158. run of importance source...\n",
      "\n",
      " 159. run of importance source...\n",
      "\n",
      " 160. run of importance source...\n",
      "\n",
      " 161. run of importance source...\n",
      "\n",
      " 162. run of importance source...\n",
      "\n",
      " 163. run of importance source...\n",
      "\n",
      " 164. run of importance source...\n",
      "\n",
      "After 164 iterations, +6.6 secs: \n",
      "\n",
      " confirmed 1 attribute: wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis;\n",
      "\n",
      " still have 11 attributes left.\n",
      "\n",
      "\n",
      " 165. run of importance source...\n",
      "\n",
      " 166. run of importance source...\n",
      "\n",
      " 167. run of importance source...\n",
      "\n",
      " 168. run of importance source...\n",
      "\n",
      " 169. run of importance source...\n",
      "\n",
      " 170. run of importance source...\n",
      "\n",
      " 171. run of importance source...\n",
      "\n",
      " 172. run of importance source...\n",
      "\n",
      " 173. run of importance source...\n",
      "\n",
      " 174. run of importance source...\n",
      "\n",
      " 175. run of importance source...\n",
      "\n",
      " 176. run of importance source...\n",
      "\n",
      " 177. run of importance source...\n",
      "\n",
      " 178. run of importance source...\n",
      "\n",
      " 179. run of importance source...\n",
      "\n",
      " 180. run of importance source...\n",
      "\n",
      "After 180 iterations, +7.1 secs: \n",
      "\n",
      " confirmed 1 attribute: wavelet.HLH_glszm_SizeZoneNonUniformityNormalized;\n",
      "\n",
      " still have 10 attributes left.\n",
      "\n",
      "\n",
      " 181. run of importance source...\n",
      "\n",
      " 182. run of importance source...\n",
      "\n",
      " 183. run of importance source...\n",
      "\n",
      " 184. run of importance source...\n",
      "\n",
      " 185. run of importance source...\n",
      "\n",
      " 186. run of importance source...\n",
      "\n",
      " 187. run of importance source...\n",
      "\n",
      " 188. run of importance source...\n",
      "\n",
      " 189. run of importance source...\n",
      "\n",
      " 190. run of importance source...\n",
      "\n",
      " 191. run of importance source...\n",
      "\n",
      " 192. run of importance source...\n",
      "\n",
      " 193. run of importance source...\n",
      "\n",
      " 194. run of importance source...\n",
      "\n",
      " 195. run of importance source...\n",
      "\n",
      " 196. run of importance source...\n",
      "\n",
      " 197. run of importance source...\n",
      "\n",
      " 198. run of importance source...\n",
      "\n",
      " 199. run of importance source...\n",
      "\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAPFBMVEUAAAAAAP8A/wBNTU1o\naGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD//wD///+cFXkmAAAA\nCXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dh3azPJQA+deO4+RL2+X933VNl4QkrqSL\nKZ45J7EBNUCDCtiuagAoptq6AABnAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEA\nFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUAB\nRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAk\nAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQ\nAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQ\nCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEA\nFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUAB\nRAJQ4AkiVQAHI6OW64uzQRYAmiASgAKIBKAAIgEogEgACiASgAKIBKAAIgEogEgACiASgAKI\nBKAAIgEogEgACiASgAKIBKAAIgEogEgACiASgAKIBCAi/nFyRAIQ0FoUUQmRAARUxv/w9owk\nVwWRYF9UzmswQEaaK4JIsC8QCUABRALQgDESgALM2gGowH0kgNVBJAAJC1+Uj0gAMqK1EpEA\nZCASgAKIBKAAIgGsDSIBKIBIAAogEoAMxkgACiASgAKIBKAAIgEogEgAa4NIAAogEoACiAQg\ngzESgAKIBKAAIgEogEgACiASwNogEoACiASgACIByGCMBKAAIgEogEgACiASgAKIBLA2iASg\nACIBKIBIADIYIwEogEgACiASgAKIBKAAIgGsDSIBKIBIAAogEoCM/YyRvj9uVcPt/r1WFgBr\nsReR/q7VxNsqWQCsx15EuleXfz/tu9+vS3VfIwuA9diLSJfqZ3z/U13WyAJgPfYiUlWFFtSy\nANgIWiQABZ47Rvr6bd8xRoLjUMV7T0OojITTo3S8GbN2179VsgDQpbWoU2kvY6S6/r6395Eu\ntw/uI8ExqKb/+xFpT1kACKiM14OIVJmskwVAIgcU6clZAAgYRVq6wiMSQIRhjFT9TwMiAWQx\nzNrtSKSqEg+DEAl2Q1dXdyTSJyLB4dhhi1T/XOIfnlDIAkCXXY6RfuIPBmlkAaDJNGu3J5Ee\nvbuf5UBlWQAoslORdpQFgABEAtBgl2OkPWUBIGGPs3a7ygJAxu7uI+0rC4AUEAmgiO7pAUQC\nKKP7VB8iARSBSAAKIBKAAogEoAUiASjAR80BFEAkgDK6MRIiARTBZAOAAogEoAAiASiASABa\nIBKAAogEoAAiAZTBGAlAAUQCUACRABRAJAAFEAlAC0QCUACRABRAJIAy+DwSgAKV8xoNlJHu\niiAS7AdEAlAAkQAUQCQARRAJYG0QCUABRAKII6qNiAQQh8kGAAUQCUABRAJQAJEAFEEkgLVB\nJAAFEAkgwtLnkMZwGUlnFGd/WQBIMD4ZyxgJIBdEAlAAkQAUQCQABRAJQIGlr+Eaw2UknVGc\n/WUBIAGRABRAJAAFGCMBKIBIAAogEkAR3SN2iARQSFMNEQmgkFYknv4GKAORABRAJAAlGCMB\nKIBIAAogEkAhTH8DKIBIAPmMs3SOSPFIGfmkR9lhFgAhKuMVkQAyQSQABczqxxgJIBNEAlAG\nkQAKcZ61QySAHKroYsJGtSg7zAIgROW8psRZN8oOswAIgUgACjgiiWojIgE4BMZGjJEAUkAk\nAH0QCaAEe4wU/+YGRALocVWp7G3RL0FBJIABZ5qumm1CJIBlwiItjpMQCWDAL1I1XxWMmpHb\nmiASbIH/DmwvUved+gtRM3JbE0SCDfHdR2KyAaCMXqThXyRQRrrrgkiwA8wxUtV27cImIRLA\nQPgDSEw2AIiJTn8z2QAgIyJSP0ZCJIBFwveRmGwAEBO5j1QtzH8jEoADN2QBMlj4bUseEQKQ\n4a9w1hipu4+UmEJGpqogEjyV8OBofM9kA8ASle/F+TwSLRLAAosiMUaC1yI+b7AU2Xrh80jw\nqiyNZJaiWy/mWqa/4ZWojP+lqdiLTDbA67DYAVuKGN6ISPA6aIo0PRJE1w5ejFKRrPlu61eY\nEQleCeEYafZMkGf62xGJj1HACyGetfM/wxAWaVFRRIJTIbyPJHi4bhRpaotokQAskkVijAQw\np++peZqYYbZuJpIRL5hgRhlWBZFAldAnjnxP1fUC2SIxRgJoiPbloiJ1EnJDFqAO9eUckVpZ\nZi3SEIYfGgNwbrmGF4MiidLPKNKaIBIo4zfHsxWRABaJz755RZLdmUIkeCWSRZI+K4FIcCoW\nvlprDGa9WFsckULh/AmmgEiwYwJ1J3/6O5bqYrbKUXaYBZyFwIy2Gyq61ieS9RXFiATnZjaG\niYvkn63zztohErwQszGMTCTBfSTTJMZIcG5SW4zk+0jM2sErIBZJFJ77SPCirCDS7GMUSQkn\ngEiwH6RjJG80730kRIIXJHHWLrDWjI9I8JKsdR8JkeAlWPjQ6xjI6vwl3EdCJHgB5l26XpnK\nWhLcOHIWEQleifmN0vCtofCiGXi4A4tI8Dr4BjfeEPG+nLWpvwOLSPA6INJesoBDExZJdovW\noxkiwQsyHyNZG4SrTesQCV6L+PfMIdJzs4CDMhokuo8UmrXzbEUkeCWW+nTJN46GV1ck64N9\nwmIlgUiwHeG5hOL7SLZI3jyWy7VulB1mAcckV6RIdPtObGKXLpD7SlF2mAUckzVEsgxCJHgJ\nEsdI0VS6F0SCFyTz91Ui099BkRgjwZnJ+n0VRAJIIf0+kiPSNO2NSPCCyG8cTa54RJrHSck9\no8BrgkiQjPw+kjOfMGuKEAleGPn0t2NOUKSC3FeKssMs4Gyki2Q/VYdIAHXKfaSASLMxUkbu\nK0fZYRZwUgTT30siLSSVkq1ylB1mAScFkZ6bBZwUwX0kRIJzk/D5H09k6yXhxhH3keBUSH+K\naAwe/a5iXxPkzHcjEpyRyvifED7wq3ryvpzzzZDM2sGhkbYDS99G7FmLSPA6yDtU0afqfMkg\nErwOQZHGh7EDvyxhR/DVnfijDMzawakIj5HiDy0g0pZZwO4Iz9rJn/5xunTxaTpEgnMSuo/k\nn06IB2qtDAyKmP6GlyQ6LxdZlM0uIBKcFNkTDsvT34UiJRX5KVF2mAXslsUnHKLT32agNJH4\nPBLsiaIH5toEjP+RAD6RxvmDaJsT/Lp80VgsWqaVo+wwC1iHxAfmfCk4r/VSE2QGzJldCPbp\nGCPBZiw2J8IUBCK5EepFkaKz4dGExaVeN8oOs4BVyJnwWk5CfB/pwCJ93Zp2/PYrjv55rarb\nl3qpYBcoiORp1MT3kRZmF4QibTH9/dZNdFSXZZO6jvNbtzN37VLBLlARaRhmhR6u8+eRPd89\ne6RhA5E+q7e/Zmc/q/fleE3Ee3X/q+vfe/WpXCrYB7PmJGcSL/ARI29W9qydqkhJRS6Lcqn+\nxPM0bZAmwoO/6qpcKticyvMjyWWTeIF4kenvslm7eLY5RZVGif6+tBvPDDcPb3dj4WiMZ846\nfcJJvMA5LxYp/tCq3V7NE06hUKRr3yL9xFuYLl4T8X0o60W5VLAx3uupeLTRC+f45FElvNi+\nzRFpnp+01JlhPVH6MdLXJT7m6eJVt4/Pr+rf4+3fPT7bgEiHYxjV2KcuUaS0JsjNpM4XSTSb\nIdmBFKwot76sb4J4RhNaXf6USwXb4q/kTxHJDJg0RpqGEduL1N5Hqm7/JBF/fj4/b7d2yuEe\n9QiRjke0tTCnsqPRZSKFA2XOLjgZiPWfp5DCE2o5Ih0Of9fOGDmJzqkzVAoMiurgYqFIzhIi\nwfMJTd7K7gm5kayXeKDs6e95Et6lpBJnR/m7N9NvS121oizgECzduFAUST79LZzvLilqfhwz\nyu9lmDyQP2yXmAUcBdEoaArrnei2F1cSKZiBqCGMlik3ylv13rRFf/fqlpG5KAs4JfEqnLPY\nvh3mu6PPBM2TiBYqZ39So4yXFd2HERDp9Cg0QeZW9/nuJZFqb4rbidQ/Olf/IRIkoShSu8q+\nNRQQKTiM21yke/X2/Xj5flv4XERBFnAORL0omUi+EEWzCzu4j/Qmf7IhNws4Bc4toligpUFR\nPV9MnV2Iai0qaqDkCdhR/jVPNrwtP2lXkAWcgaTLvGj6zEwx9bHUqFcbzNqtBCIdl9CFXFEk\njwVSkUQZIBJsiPNgj/AjEXVs8dki5fTp7ARXjrLDLEAf/5A9GiiwNnlROkYSlSKHUpE+rpFJ\nxWwQ6ZCIRKq9W0umv1NECpgjKnKUQpE+jJtgiiDSIdlIpHZVnkiy7CUUiiT5ZGwGiHRIopPI\nioMia5N16zX1o3uy7CUUirTS15Qg0pFI+8yePQMhm5GI9Mtsg6Qf3VMcHOWnYEa5Vbqfn/Bk\nAbtH1IlLqsLy3qFUJCe75c5iIoUi/V7aR4S0QaRDkdRrUxDJ3Lok0mp9OX+CuVEqJhsgcJnP\nmsqOrjW3jo+naoq05RgJkSAukj9wqXz++Tnph8l3J9JKINIhEYlUe7cm9OViHzUKP+4dN2fz\nWbuVQKRD8hyRYhPd4fnupGYyAy2Rvvmo+euw9FyqvSTqRSmJVJZByQClVKQ7Y6QXZKx3lbEY\nDyybtROMkaQi5ZciqzIXRpk8WvgNvvwsYH8kDS1SRArEsTYtPAwk61GGC5X5QzSFIl2qf/Vb\n9fv7VqneTkKkfVPSa3uySMmDIkkjG04wN0pj7sejNfrR/aw5Iu0bQQ9MGCjuYolImbMLVd+1\nS62CCiJ9NQ+uMkZ6RUQi5cTxLPrvwIpFkpraT5on1+dCkW6Prt1vda2/EQlkItXercvyxb8g\nSCpSoOM3rQ78GMAihSJ9NRm23yS0/GPMmVnAYdiFSIEURc1kvZlIjwFS3fyepe7X2iHSzlms\njuZSzoyEJ+FMkeQZ9O+26dqtBCLtG9ll3h8oKlRsjBQQyR0jFZZio8mGlUCkfbOaSL440Yfr\nVriPJNilSMKZUcYW8BL9lfKSLGB/lPTa0kWKmqN/H6mq6+ffkB0y/GXW7pUQzYzJps+iLpaI\nJBoUebc++xGhL+uB22t6Qqqlgg0QiZQTR1+kpLmHDErcu5oe8YhQJtoP/G6ISKTauzUSR1Uk\nZ25D9titBK0xki5nqVkyTrO3zxHJ/uTR0tflL4kkKauEQpFuuvePfFmcn033NqtBjPfanKWc\nGQlrU5FIkQyMaYXNRaJFUmDbvc3JXTag9weKChUbIw3mCEVaLoXRq9tcpCvfa1cOIkXjuCJp\n3Uea3moMUwtF+rvxvXbbU1QR9EWKd6rEIrnm5IkU7oWOBcq8cyTKRxrFbGQVQaRECg6Yokj+\nyYakRWOtbJou/z7SJNK4ZrvvbECkfbDRAROJlBwn6ZmggvtIvUCWUNn1uFCklXgtkRT2VuuA\nOVfExAukSKTau9UwKM2cgvtIznPe1SxACoi0PTsSKT7EWPKqWKQMc5a+jiva06uM57wLbykV\ni/Sv+Vjf7V9e7rIszs62eyuaKXAW4702Z0k+I1EgUk7Jh76cPUbaSKS3/lKg+t0niKSTrqhf\nViJSStsTG6yYfTotkexc3GeBjDHS2MWze3qJFIr0WV2aL7T7Uv7lPkQqSq+7sgrHznsQyZSi\nVKR459MQyiiQ0RRtNEa6Vj/t6w9Pf2+Kp1MlrRdJx1okkkg+c6uOSNHcu/fTtaWa78SmLZI9\nd6gGIiUyFylQb5eipmUX9UoUSCKSZDZ8sWzT+8GXecANx0hTi8QnZLckQSTNe34ikZbjPEmk\n6aJvzvG5B4ox0mFR2NuUFkk0opEF9sf1tQX27LS7qCLSYrfT6T25jwZtOkZi1k4BdZGMVcEN\nwpSSvIqI9H8NVWhRc7LBXxjz7dSJsxrnjZ9s+HfjPlIh6+xtsF54K9yspxMLvNBrc5bacvTm\nDK3L80QK7qqnh7vhs3YrgUgq6Up+DkxjBm65nRpF6l5dr5JEcuKMvcTlw2jeMCpofIJ7uX6U\nHWaxI9T3VpJgaLD9XJH6xRSRhhSnYVa4R+nba2OMFC12Ijpdu3fVnxl7NZFiCOfY/J0qUZzw\nrIQ4zrJ8+iIF8xP08MruGPnRmmxQ/QlZRJpIkiInTpJITlhPEvOuVrZI5oND6SKFG6hpskGR\nQpHuTH+vjL5IOebEk/Io405w70mkwoluP4UiXXhEqJx4rz4jiRKRlntG8ZQdVYYtMpF6cyxy\nf7c8JlI1/NOjUCQeEVIgX6TQpHV+drLJhkhcRZFmE9wZRQ2MMZUHSPPcU6PcxxZJdZCESFlR\ncyYm8mft3Iajf/FPcKuIlCT5k+tQ6WTDRztG+r7wZEM+aiIlzby5i+kiOVL89yCoSvmsXbio\nkU7c8yju2tmXpe1KdWDURSqZtTu8SBvVnZcSSbOIzyJp4iBWl2Y776+OotLsQyT3ICTshz6l\nXbt1WC2Lw3mU1boE4ohmueTZKYpkzs9piXSwMdI6INJIkkjxOAnmuBPNvqb8+SIF9g+Rnp/F\nLkWKFqpcJHeOPF7T5AP5LJF8M33JIvl3oPLu7bMoFel+0R4fzbI4RMIlFIgkuvwmzW7FRbLa\nBT2RhGOkwH6JFtemUKS7/kSDm8X5UZ+1SwoUn6/wLI4WpIgUaIJEIo31K8Gcp88rFc/aqT5j\n58tiY55wRo4mUqCxEYnk3xoVSVSo2X4dTiS1koSy2JzVC6MukqyTIxoNeRY3EMkpTKzk1fQg\n3VNVKu7aHeuHxnIS3tbqpDFSfBQUt060m+ki9QTiFInk2a/ZtxDLUGi+Sicb3t5+S4uwlMXW\nCe9ZJCfU6iK1AUUiOaOgZ4nU/U/bpz380Fj9dazJhk1FyjpKSSLF46SYE+nhLYjkn04oE0k6\ny+DuWsrB21akj4PN2u2ydUmp0f1K93hHRYoPLfz5+eIsSOEXyW9OmUjB3axq+7Ov4u6qOPBi\nKplRlD8Z68viGAmX5J4uUl7rEu/4RRPuqvP/NghFipuzlkjO9wRF9zRweDIpFOkVZu30yBEp\nnlS8z+NfK2qv8kUSmZMn0vKOVP23eqcMe3Yh0sfBZu1y0CvM/kQyuuU7EsnuHcYLZS2OLVKd\nMhG3hzFS/fH2XVaA5Sy2ZvXC+DIIjDrdXovfEZFe3RW8c2NcnA13rfdxkVIGRQGRFgbbApG6\nFintlO1h1s65cmixqzGSFUd7T+e5iVRxF/3NiZv0fNEVaVr0xV9bJOH4LXxMcntpCicVkVLj\nrO1V4LLrL4yzehORrIluJZHiOx8WKatFUqG0a7cOhxEpLUVRWLO2xLtazuopcN+kBebIrQxs\nc6bFakjBSHFBpPIx0lLnLXAQTJHGMdKzQaTCJBRE8lb3QAsRqVqOBXWoOiaI5F0MfSSi/IN9\ns92Md9V8x6CftXs+iFSYxGoite+DXS2zpg0VMWRdpL+kIdKwmCKS3Q+cH5pMkY7ZItlXpGOM\nkfRRF8naIhOpr+BLInmyC46R1hVpzN7pjYZKvrwjdS/SEcdIZxMptBPphUlM6Zki2VMDVZZI\ngWmFDJFmOx8/Qotd1ngLtiqv0bUTei7qQcgyLA8sGiP5RRI0QU4cf+/Qv1gk0qwJEokU2Xlr\n8Zgt0oroZmHccJOdqOjaAiVFmNUjLJK5uCSSGTgkkrdR0xfJv5vB3YscGm+kY46RVkRZpOl/\ngkhj/2yxZ76UUhpJInXrnixSoLEpEilpUBQ+BczarZiFVTMTsl0+bZ5FwdqFAaWiSJ6iSkWK\njZFURbIX4523eNy6nobtnqO0MoiUWoicnp6nJLPVw/mXidR3Ybo+1oJIvhSjIrkJO4tlIsUb\nm3DJw4dzWkSk4iwiR+8gIvlqWHzWLm7BPEW5SPFAKiIFDo33kCSIxGRDcRbhOLOhjuyaFQ0S\nGkH5AzkpxmuNuSVHpClORM3VRXJmJGZ2x3c+3tMLHkYmGxSyiIhUDf8WwqaPdxYKY3faCkSa\nqb+JSD0SkYZs588uRG2In5hIl7VGJK0sFpoGSdiVREoMbKwNSyESqQ1oDxrWF8m+UxS8ceQ/\nNKIDFRGptr+z4Ym8hkhuoJhI3ou/OAl/oJT98akyLA79pZ64BU6gWBxFkXJ2c742JY6xOLT8\niLR2Fv4ul3ersCMWba+0RSqxIGExbYxk2Z21m8ED5pyewLjUFImu3XOyiHbQk0Tq3ju1Z+FU\ni7zaoUiDKl6RpEc1sJvRIyQ4BfblkBuyT8oi5RzH+n/D+6miGxtdvWZRnQYx7G/gSYPVRXK6\nkEsixY+fpLEpafbNRZWvX8jiPCKljJHicYpFcte6Uc0MZqPxSPpnEilyVIvibNKvq19OJCes\nqI8V2bokUsDbShLYk/5WIjmBgiKJxjtxZURxwinRIpVnkSOSaHVkrVSkSNWSimT29BRF8rY9\nSZMNwd1MEil6rOXyVb4NTwGRFldLRLJHvCGRokl468UhRfLvtMgr2Un0imSOSzcw6cVE8l/L\n4lsjl0O/BVKRnMBO2JVFcoY/K4gUR0EkaaJP4TwipSQs6q/bgbxzbAUiOSP4WSFsc0QVPMec\nHBfXECneHQzEXUr0mZxUJKurFU44QSTvSZop4+jlT9jXuszLJG6CFp5s8LY564gkOsiSQx+9\n4IXO7RRwA4/OKlLaqNUfKN7H794LRfIkERisDEkkNEFOEgvm2A2hjkjx4ydqbERe1cahmcfp\nNg7/ns15RBJ1tlcTydzoF2mqALHGxk5CU6SEFJ8hkj9OPIn+OI7/vAlxH6kwC5FIztZoKME1\nc0mkgHRRkczAWVNuGeYoiZTcNZ5vXYwzPZe6lTJ+Xlsk0erIWqlIVa0rkr/tyTdnQSRHzU3v\nI43JNI/U7Uils4okCGv0taJJeLviVtVyAi2KZAZyqrCsOXmuSOMBc8r47PtIlflRo8q6cbQ9\nJxNp6diaZ3Fxcs1fGE9zUuuJFK/nXnOKbshmiGQe6yryZY9xkkWaLhz90vh/F5xHJFHUFJEi\nl9BABR9CrC5SggWaIoXMURApfsy73Ot+aFRPBiHSaln4WxVfwooiea/chl7iMdIKIsk6ixKR\n5odR3ITHz4TkmE8tkXXVQqS1ssgWya728yTSRXLSVxCpwIKyJHzHL3iUly9Eiyl5RDLeTt+4\nRYukn4W/OfEEms0UdAJVVj13khCNTmp/nR2SKBEpmu16Itld1vlhLRDJHyechJsaY6S1sqgi\nS/amSE0LVRpZ0xCos7YFdYpIIn9FzUmOSEsHObA1SaRoA+Xr2o2rqo0+VO4HkeqQSGZSwj6W\nZDgSTdGVby8iyfplBSL5N1qnYPzXrbIXN+esIsUCrieSJJC/FIEmSGWmwMwv1ORZi47zdaJI\n/hMi8ip2/XP7mTvq19UnFGm58xEXyT8uWF8kURMk8SppjORsdcoWPKpJw5/wmZjHiaZQTTN3\nCRk9ifOIJIrqF6nb5K1h/jiaIvmQVXsdkazS9EvTxeRZIolavr5ww7+ptAn5rsVZRYp1tiUi\nOXVJVyQrRZtoPnVUCn8S8TjWzpuXj5xBkbvVvxgNJDC0stfsZayESOOmULWv53FKRHLru7W4\nKJJZGr8yq4hUixb9pyBJzWgc36rKDbAR5xHJ30fol8budR2vac8QKbaoKdLYpsZFMreGjl/o\nxBSIJEo4KlJlP8O6MacTyVqyBBo37UMk72hIUST38Kwhkn9rkki+/NzTZo6CxmQqawMiqWXh\nE8l7npJEEo1dZCI5E3J5Ii1301YRSdYvKxDJv7FbNw1XpyDz+7Mbc1aRnLX5IiUv7kgkz14v\nihQ/fiKR/CdE5JVXJHuLPbvg6XFsw+lEWu5sP10kx5xYGxfv/41FDc3P1XXtESkun5li4lGV\nDX/8iEWaB6yMZ4MqZu1WyiLacwiI1G1SEMnf5iT0DuODoroWXBFSRYof85VFmo2G5oHixlV1\n7b0APJ2zihRIYSWRLGW2FmlqXHJE8rrhtlaynp5/MRbIl0/A0r106QYQady0mkgJKSYNYQKB\n/cdiUST/8StwJNpshdT0pORXZi9duoHziOS/ojoJhi/kKiIVJLGGSH2wavy41WzgFjxSkQtR\neNGfREgkaUohZfbRpRs4nUjOkqdePH2yQUEk71xAUArf4XMyCB7rJJH8W5dF8j0v52sdhy7q\nrpTxg0hFzYln+LOGSPMdMZtW0eFbFCnaotfeQJIk3OmEftxT2Z/KO4Iqcc4qkrM2JlKOBZF5\nhE1Eil5Fuvd2UeOBg0dVJNKU4TzQcNhqU569jXdyOKxIs85A9BxHxkg7F0mwI7O9Drjhj5Mk\nkj+DeBKe6JX5BSajY8LY++SwIqVdQs3FIpGWJ+S2FGm5YhujrfiREq31d+IWMVoks4t3aJPO\nKtIwSDXPrq/9yBQpJ4mIfMoiiY5QvO2WtVN+gxbPXmXF28/zciWcWyS7OgqahhVFcgqVOkby\n7WqeSPLjt5hiTitWGy2S3adDJHWSRfLPAKdU4dWnv0WlSBPJbnAXj1t8+BhdG08iHmi+ljFS\nbpTVs5h1hV5BpPnWJAv0kkjNh1m73CirZxEVSTQ6eYZIZlEDItlFNQ6FaOwS3xjv//nHSKIk\nvIECs6r9e6dF4j7SOpSLZK5VsEDBRVmh/G1pvSSSv86m9OU02iszYLTbOTRBZ+jT9RxYJOvM\nzCqesTZLJOdO0Xoi2dMXg0iheqgokqiNi68Nn6el3poxYXf4xqgFkVwLHHM0RfKNkWY7EN/b\nuAVJbkRdtNeGumnB8rqfBA9y/D5dz1lF8tXZEpFkScRsCxSqX60qUvwwitorM9C83Vg0dbnJ\ncqIc5+nUAIjkWpBkjiuF2S9bEGnqvEVFih+KHJHiW30iTWukpnpEil0kjKMReAo8HHknIJKo\nOUkSqbbdCA5/fJt8e0AAABhHSURBVIGX3IgfqJzAi2vnTi3kV3m7dlGR6smWWbhjDKQOLJIV\nwb2gJ4hkNUWFIpnZB0SqZ5VVXaRAnHhPL5hERKRwPuZcQkCQKbxtnRtwKfo+QCRrHmFdkZzd\nSxLJvxg4GtHVgVbF2mpOGXpEspNwpher/mHU/vJUD0ItFTcgkmiPt+eoIjnzw3ZlFc6xeSbk\npOb4M7B3QCySvQNZIlXepVGKYLbhFM0dmbb7Sm73vMZFs/taTWp6xjuItBoCkezaadfDlEFR\n1pMNznVXOkYS7U9clWSRjHqe08Y5SfgysGNXswDW6yypaTnQBUSkAhJE6i98zxbJXxhvI+Pf\nGkwifkgk7dXYVHvq+TyOu9q31m1GjCSGUyCzNOBKNZU61GDt3KOjizQ+a5IiUqTjpyqSnU94\nt+wrQfSQWI7UwXo7rfVYI2vy/IHmSQynIEH0eSZDP907z+10FnfK0UXqg28n0rw9dPdDNmtn\nj/mkhyImUreT4WTijkxJROJUbr/MyM8ZI3lfzYy8pTG27nwW/OAiDUu2IwmzCyuJZFYr6TxC\n7V0rE8m/6KRW0ASF83PvGI0tZ7fSrv4RrRfZeQ/vZCLFLYhrpiGSswNJIol6a9ED5buuG/VP\n0AQlijTmOeU8u3dkFSrfhhIHnwEirSmSp6jG1iSRkuq7GXBqEuJNUIq4thrmZEPdLYaqfX7/\nDJFyEIs0XOFkIi0vCmf6nKLmieQOQEpEih2wovtIbkrzJsXbyIQTzZ0xQKQc5CINXfGoSJFB\nUeKzdv6yBTtvzlbRTmeZIzonSaZKUqrH9mV2aygjUVGee/Xo6CINV0kFkWqrdUkTaWynfPVp\ncfpbtNP+mlpqgTj7WBJuyzr19DSrCrN2GaSMkczKmj5NpyJSsOAykVKaE2dRX6SkwnhEit9c\nLYL7SCtkkSRSoC+nItLy+CPe8VvaW1k7lXNO/HGSUvJ07camaNfVXh9EcoYwOiKZi4kiBYYw\ngcMQ3RoPHHE/JcXKO033UhI1nFuklEU74XigeVEjldQZzsUDP1Ek/9rUs+vcR0KkVaPoZxGt\n/rsRyVfUYOC4SIX13ZOik1LOGKkeO3WI9JQo+lmsIpJojOQvaolI/pSSREqp/nGR4inMm1R/\nn+7lPEKkJZHsYdZS2Xy1Mu0+0kL/T7YYLZzMVF/8avw3xZk9aze7Zf0aHF+k4jHSdOY9Ig3Z\n2YGkBbfHSEU7He0OJp2T7M7iJLglkjVGQqRVo+hnoSdSbVet4DSdqM5miSQ4oO5zSW6zlXBO\nZFMevojjq5WEPWtH127VKPpZBEQS3YG1t9ZlIlW+F2ujdLIhsKOxjUVj++hITZbX1NfzD5Ve\niKeK9P1xa+vw7f5dmkWBSPWsgntGNHkiuVf7EpEWW4jlrfHAEfej0St3ldlaItKqUVr+rkYl\nfyvMokwkJwlPwmGR/EWNVNLE6e/4Wn/uMkRNkL1oP/2TUCBEWiVKy726/Ptp3/1+Xap7WRb+\nbpp0UGQmEUh4JlK8qJHquKZIScRF6vbVNsfqtckeG2WMtGaUlkv1M77/qS5lWQz1/b8GLZG6\niuLOdy8UxFvimEihSa0SkUShBCL5NllmVcaLPzmJbSfkiSI5807zzWavbDExRySr+stmF6as\nfL3/oEjJdTZr+jtxCjlHJP+wzhPejTep4r8gvKBG52mRYiI5cepZFRGJlNP7D4yRIoETKRmS\nRAdHkcQN717RmADPHSN9/bbvVhgjrShSONByKZ2kIqHyUBPJ1wL6EzfXItLIE0Wq34y+2/Wv\nLIuUyYZ6VqPjIlV1gkjRoYyCSPFD4XTPkpC2kYGWC5EsnilS/X1v7yNdbh9a95F0RTLWGmO1\nHJHMtYvDvmKRhCQPwha+jmFhr15rqPRUkRSzSJm1q2cixfOJD8r9gVPaKVkS/sKkbHVLnHOu\n49+UF4tYzx08M68tUjR32fgjKpKMDJGymhOlE8ftJB+INM9WoTkpHvxH12ZWZbUTt6yx7CJ0\nJl5EJDPOPH3/aQ8UQrT7OV7Jj6vkcu/ZpyfWakRaJ4p+FomTDWacenae9UVywkriyKfejFTD\nMbatyoi0ThT9LPyOrCJSQusSGt4XzBhEwu9YJMZI60TRzyJRJGeMFBcpbo5/cRy1eIf3fbUK\nNDnRvfVsFIm0cVVm1m6VKPpZOA/Kqd9HSl2cUq08Cfs1C6S4vHHKKCZSUOvnwH2kFaLoZ+GK\ntPCIkCNSPJ+kmYJJGcuaedRwC5Eu0iRmNKrzrLb6iXsxV6KcRKT+ddP7SB6R5uFiXbVY+u5a\ncRVeelY7n5frvUU5rEjebtqm95GyRYomX3rVn/c3tdh2ELY3XkSkQBwnu8q7Vly2sWbNan+V\nLVIpU7bFSgZThvoMIplxgp/kc+I4lUBLpODwfspzlVZBEED/pCGSxSlFGlIoEin00dFY2WL3\nkTJn7eIg0l44j0j22mp5sQ6JFDfHvxiYE7Bes+4jxREcqNIsNkj5iBxfpMq71hcoJJI7elhL\npBDrihRsCEvJS/msU+aHF8k6MVKR4vkk9OWEIsVZVaQ1q256yuedMj+4SO23Ts++Ad8JVAdF\nEuS+NNkVFUmC9mzarjlvd/DoItXj1LJvssH7HNFitkk7WCySMJtT2HbiCYrDijQ40s1z116R\nnJSC95Hk2UoDKcSx4p+kR4RIhVFWyWIcIE2NTqpISaOhlEBO2JyjLPrW7YPVSEQqjLJKFtV4\nkT6fSNLfSjlajWSMVBZllSwckdo30TtF/gdd59mKpulEcfJF8kbfTCS1EdpZ+qhzDixSbXft\n2uXQdILPq2A+sdx9j9Etp5R6yMTFfUqVVK3955g1mXNwkfoTkypSPJ+kHRSJlIq/KdpqjHTe\n/pgixxbJPMf2GCmQoPooaJ3p75lIW/aITjxDoMjxRLI+8Ol8bC3x+e5AthkirfMZBSPJDXtE\niCThaCLNPvBpeyWclwukv9qepU827GhQjkgSDifS9N/jyKJIzlrRkKmAgjooa4IYI+2Fg4lk\n1kwrUP+Yw3lESstgVXjMW8BZROpXh+4UBYzxuBjLPamowXyM/FIySs9dDx7zXuTAIuUkKJp7\neIpIOjVttzX15bqDBxMp9wTFmyBx7omBY3N5KjVttx/BeL0JisOJtHQhTxoUpeZuliM+ASjN\n46Q17eS75+FoIi1WYW/nLW34sxxo1Dm7STh5TTv57nl4DZFCW3NpvyUuIZV5yLPXNMZIq0TR\ny2Kal8sSaTF9Ee6zsssRQqtOW9OYtVslil4Wi19l/RyRzBdJhEAanhT2On2QzGl2RMbBRHI/\nybeYQo5IizuY3C/zTw56NapTBIXdcDSRCsvgzD0k5j4GUGiRYgER6XgcTyTrA0hqCScFSh4j\nSTn7FMSJOZpIi1U4o9cW+sbuWDJps3ZSEOmwHEyk0skGwahfcmtoraEMIh2Wg4k0/GJLeLIh\nXaR4juGCpIROC4hHx+PFRApntepeyUVi1u6gHE6k6WXHIqWPuoJR4RgcViThFPYWIs2bFdw4\nPYcTqWziWW2MtJwJIr0URxNJ/z6S+rCEqbdX5GAidXdw0j+PFN3Kz31DMYcTafplsWhU+fS3\nOoj0ihxNpMX2IybSkz6ZzRjpBTmeSLLO25bNArN2L8jJRJp9pnybKlxwHwmOyQFFEiWQ9R11\nq7GPUsCKnFSkXbHbL80CPRAJQIEDioRlsD/OLhLWwVNAJAAFEAlAAUQCUOCAIm2UEkCEs4uk\nDveEwAciJcF3KoCfA4q0ZTXe03NHsCfOLpJuYfmoEQRApJzUEAkcECknNUQCB0RKgjES+Dmg\nSCnpaE9WM2sHfs4t0gpwHwl8IBKAAgcUCctgfxxNJONXzQH2w+FE+q8BkWBnIBKAAogEoAAi\nASiASAAKHE4kZu1gjyASgAKIBKDA4URijAR7BJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUAB\nRAJQ4HAi8WQD7JGjiQSwSxAJQAFEAlDggCJhGewPRAJQAJEAFEAkAAUQCUCBA4oEsD8QCUAB\nRAJQ4IAiYRnsD0QCUACRABRAJAAFEAlAgQOKBLA/EAlAAUQCUOCAImEZ7A9EAlAAkQAUOJ5I\nfBkX7JCjicT32sEuOZ5Iwz+AHXEwkXqFMAl2xtFE6sdIiAT74mgiVQySYI8cT6SaiTvYH4gE\noMDxRKJrBzvkaCIx2QC75GgiMf0Nu+RgInFDFvbJ8URiiAQ75GgiMWUHu+R4IgHsEEQCUACR\nABRAJAAFEAlAAUQCUACRABRAJAAFEAlAAUQCUACRABQ4nkg8awc75Ggi8TEK2CWHE+lZRQBI\n4WAiVUsBADYBkQAUQCQABQ4mEmMk2CeHE4lZO9gjRxOJ+0iwS44nEsAOQSQABRAJQAFEAlAA\nkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABRAJQAFEAlAAkQAUQCQABXYq\nEsDByKjl+uJk5V/FFkWB9JPYKNvTJHGEkquBSLvL9jRJHKHkaiDS7rI9TRJHKLkaiLS7bE+T\nxBFKrgYi7S7b0yRxhJKrgUi7y/Y0SRyh5Gog0u6yPU0SRyi5Goi0u2xPk8QRSq4GIu0u29Mk\ncYSSq4FIu8v2NEkcoeRqINLusj1NEkcouRqItLtsT5PEEUquxtYiAZwCRAJQAJEAFEAkAAUQ\nCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAVWEyn2ReQLX1J+\nuX3+tm9+P2+X5eDidLNCDnxeq8v9z1hxvzgrRPy9V9X7T1+GhmssDdUd+nzCRdMtxpd32/iu\neWMtmDSH6u7fry/fymAhQiG+HumnpR5JeY8iParXe/vmvftdgD2IdG9r/WWq9G+dBonJ1Jc2\n2k9Xho7Lr0Ixl0P+5PzGQipOHtfKu00m0u1xbD68hb4u1R9RMf8u1ZtvYyT1w4l0vbRvLte0\nk79eVfmp3v+aa/r7sOK7uvzUP5fqOy2de5PCvbo177vS/r75T2c9BZGwGPJR1ueLVJWIVFWh\nK8xi/REV8626ZEb3xsqJJEq4RKR7e83+CbXsmekWcKucDO5V0wH4V32kpXOp/sZkhsSuVbAv\noSfSZ/V2PJGEuSRu7kN8hkTdh0hfj/P19tUV515d2nr29WikL31v9DGyuPdFfYw6rp/Ntb29\nzH911en9cY2vqq/qswlQ/Ru7do+9vvXJRXbGTNfJbVY6c/Pj76NN/d53m80izzJouLVn4adr\nW/pNVhKzJM1kLmZiX1M7VzvFHov59ruUZOUNMESt7eMgZn5yhiPz13drr82loRlAfk77NCza\nv9mVJlL/g19diL9rc6CHszcmO57pIYRTvS72RutoPXq6X0a2Uz7z1J1qMy7ZSQqPqJDPbv8/\nmzxv/buPbl17ZtuRxa1vWRvemqt0s+W9C9DUsccOtTv+qKyGSO3oIm6SnW7/9n06QWbprM1t\nZ/xxZN/6gppFNvibemGV20S5SbjLBvfq04z75460zHINi83oLJLkIJITYIxa/2Read2TMx2Z\nt/ZS8tscktt4yNs8xkU1kW5NjuPZG5J9M7K99WUaq9dtttE+WtdhlSnSrZ3ecFO3q820ZCeZ\ncXAjXJo+2b+mZjzK8PfItH33r1nX5PSvH1lU09t/j3Pzr92TS933ldrdrNvzZog0JBfBTvdx\nHR1zm5fO2tyn3v2/WEU2+Zw6YR6R3CTs5ZF/w1kN9WmscjXhH0m8d24GkhzScANMUT3ZyHBP\nznRkum7tx+OQfDXZ/L1VX8NxtRbtIvbvRpwFzy71u+WePetM9yGM6mUV4s2dGG2vU39msYx8\nZqnbGU9LdpIZBzdCNVa1qh2HO1ehW7vyq3l/a0M+9re7qH0/rgY//WWu7RV+t90K42DayQVy\nN9Md3xpl+PKENFL/nRfZ4PcydRA8ItlJ+JN88Hm7dA1rSCSrXP0x++vcDCQ5LLsBpqi+3REx\nOzlGbk1durbZNPWv7UVU80W7iP27RJG+u+UvKyXjTPchrOplFGI2I9TmdjMTs/KZpW5mXPmH\ntMoiPRrG28+PXb7H2fj6eBsPy1ie8e3bY6fv1c+jev0O/YPmctdcDI2DOSUXxEl3Vtnt0s1C\neos88Xcxptc8Itn/50lOvFef5lpns1OucBazSP4yOOkm4p6c6ci8P7z67VpKw4rZoid/a89D\nh8E994G65TnTsUIMSV8+2ra19hyuWep2xtOSnWTsIGbw0QxlLr9Wcd7G641/378eZ+lyra/X\nsSPRnrTmAqgrkl26mEhTkSfezNb8UiJS10gMa3+d+e99ieSenOnIfD+2ND2HZ4nkrVu5In01\nNyl/p0gxkZyMxyU7ycUjmcrX/Tr1Y5v/79X182uaNvCUurp+P65s92bSZOikXqq+N2MFLxXJ\nKl1EJKPIA7/XN/PY3fqhtjlrV8/PSqDY5sF4tL6zkbCZyMYiOSfHPDIPvy5XO2EnV12RPHXL\nDjFf40t3WHXtLmACkZyMhyU7yVkmCtgVqX3XHfuu4/ndvB/6oO2k5WPs14xZ37vJ1q4qt/cu\n00Uy0p2NkezSOWORQJF7vpxm46OPfDdTXRapu4/0W5n17+r04Z1yvRljJF+SRvZugLfyMZJ7\ncswjc68+29HezZ6Duc2mZNyFbJGsFcaZ7kPMqldov4e9+Bjef89EMuvnvKyea+MskyKu3aSO\nddVoxnA/Xbf6yzdr1+5G1U7vdnvfba666RhrFwQixWbt7NI5s2OBIne43a/5kw0ykdqrw9/N\nGCPNn2xwyvXZzCXdu7GIL0kjezfAFFVw8ELYJ8c8Mr/dlu6QPzK7GWdgWDRa8VKRzLP3Wzuz\ndu6Rc8pUe5Ju6thPk+xnM71niuSkblebaclOMvW4xvnXdUy/zdN5r8aV3ex+d2fHuN9Tdy3l\n8MxGs7k5Sb+zgykQaXYfyRidOaWbNrs10Cxyu/a9cpJ6FHnMxluJZ7W+e3sxo3XMuttOuYz7\nSE6S7q7PAkz3kZYPXhDr5JhHZugc9QUeBxHT4rUyRoOeUUuSSNPZ65M17yN1UWbVaxpRzZNu\n+6n9faGbJayTul1tpiU7yeTjGqe97TvNVA+18O27byQ/jFvPl/EJhI/2qvlh3mC5TKcgTSQz\n3ebG/rdRx5zSjZtnNdAoch/dFemvffp7ylYoUpNnX7ouwTfPPWanXM080W/tSdLd9XmAIarg\n4AWxT455Mv8N/afPR+V7n4o4Ln5fFUWazl6f7HSmx6gf1pMNZpnmSdeNM+9tnHczn1nqTrUZ\nl+wk4wfxDEQeChVs3oy9lgu8nFmkdpT1GJB4P3SyuHkz9louiHFmkfrnwvwPyy9ufirVhLhc\nZpyTsOIurX20TnMOfHy+NZ9Azd38TKzTLCwXIu0k6S79VVIFeDEQCUABRAJQAJEAFEAkAAUQ\nCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEA\nFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQaZdcxl91+TL+d1g/c2fx5VsJ\nTwGR9shX1f8udX2tpv89QZGunMzt4Njvkfeq/fnzOvjbuV6RzvM7SQeEY79HHh27S3dmEOkg\ncOx3yL/qXt+bX5LtfmeuHn8M/O9a3Yau3b3/UfVRtfHX6D6v1cX4OW5GTs8AkXbIW/Vdf7e/\nau6IdKseio1vqz5IXVsitVvaTZ/dTz1+brkvrwIi7Y+/dsruUv3VdtfuYcewqqouP/XPpWm1\nphDdu68m1N9bM1lxqX6a5u260X68FIi0P5qeXT327Wrj//ew0E3qfT06ejORbq2Af90munXP\nApH2x7UV5qdtSWyR6uFl9tZ8N/549/3RA/z5ef4OvCKItDt+RxV+C0WqPy6P18vvBjvxciDS\n7vgYVfjIE8lM7Ot+ZYz0DBBpd1yrrgn5bQwIitT0/qYx0rc5RnIGRtxeegYc5L3x09jR8lb9\n1G3/bvzfrjZn7b4a7z6bSbpqCPWv2VR/Nqlcm/kKZu2eAiLtjfvYonxV94cLzVx4998S6b3p\n+zXKtTeLbs3KLtTDv6ofGf3reojfW+3KK4FIe+NyMd9+Xxs5uv/2wOheXT7a5Y9L9d6u7EK1\nTzZU7233sH2yAY+eASIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoAC\niASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBIAAogEoACiASgACIBKIBI\nAAogEoACiASgACIBKIBIAAogEoAC/w+3qEEyw433NAAAAABJRU5ErkJggg==",
      "text/plain": [
       "plot without title"
      ]
     },
     "metadata": {
      "image/png": {
       "height": 420,
       "width": 420
      }
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAPFBMVEUAAAAAAP8A/wBNTU1o\naGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD//wD///+cFXkmAAAA\nCXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nOzdiWLjNrIFUBOd5HVmMkmI+v9/fS2gllsF\ngItMybINzKTblkhiqwOAi9RvNNNMM707vX10AWaa6SukCWmmmS5IE9JMM12QJqSZZrogTUgz\nzXRBmpBmmumCNCHNNNMFaUKaaaYL0oQ000wXpAlpppkuSBPSTDNdkCakmWa6IE1IM810QZqQ\nZprpgjQhzTTTBWlCmmmmC9KENNNMF6QJaaaZLkgT0kwzXZAmpJlmuiBNSDPNdEGakGaa6YI0\nIc000wVpQppppgvShDTTTBekCWmmmS5IE9JMM12QJqSZZrogTUgzzXRBmpBmmumCNCHNNNMF\naUKaaaYL0oQ000wXpAlpppkuSBPSTDNdkCakmWa6IE1IM810QZqQZprpgjQhzTTTBWlCmmmm\nC9KENNNMF6QJaaaZLkgT0kwzXZAmpJlmuiBNSDPNdEGakGaa6YI0Ic000wVpQppppgvShDTT\nTBekCWmmmS5IE9JMM12QJqSZZrogTUgzzXRBmpBmmumCNCHNNNMFaUKaaaYL0oQ000wXpAlp\nppkuSBPSTDNdkCakmWa6IE1IM810QZqQZprpgjQhzTTTBWlCmmmmC9KENNNMF6QJaaaZLkgT\n0kwzXZAmpJlmuiBNSDPNdEGakGaa6YI0Ic000wVpQppppgvShDTTTBekCWmmmS5IE9JMM12Q\nJqSZZrogTUgzzXRBmpBmmumCNCHNNNMFaUKaaaYL0oQ000wXpAlpppkuSBPSTDNdkCakmWa6\nIE1IM810QZqQZprpgjQhzTTTBWlCmmmmC9KENNNMF6QJaaaZLkgT0kwzXZAmpJlmuiBNSDPN\ndEGakGaa6YI0Ic000wVpQppppgvShDTTTBekJ0B6m2mmT5buiPLr4XxAFjPNdGWakGaa6YI0\nIc000wVpQppppgvShDTTTBekCWmmmS5IE9JMM12QJqSZZrogTUgzzXRBmpBmmumCNCHNNNMF\naUKaaaYL0oQ000wXpAlpppkuSBPSTDNdkCakmWa6IE1IM810QZqQZprpgjQhzTTTBWlCmmmm\nC9KENNNMF6QJaaaZLkgT0gum9NEFmOl0mpBeME1Iny9NSC+YJqTPlyakF0wT0udLE9ILpgnp\n86UJ6QXThPT50oT0gumFIL1QUV47TUgvmF4oel+oKK+dJqQXTC8UvS9UlNdOE9ILpvQ64fs6\nJXnxNCG9XkovFL6vU5IXTxPS66UJ6ROmCen10oT0CdOE9HppQvqEaUJ6vTQhfcI0Ib1eeilI\nr1OU104T0uulCekTpgnp9dLrQXqd8rxsmpBeL01InzBNSK+XJqRPmCak10sT0idME9LrpQnp\nE6YJ6aNTG6QvBImL8jLled00IX10mpC+RJqQPjq9KiQWdPvrsptJr1CvB6UJ6YNTJ0hfD9JV\nBXqFej0oTUgfnLqQnhNx25lMSKfShPTBaUL6GmlC+uA0IX2NNCF9cGohJXoFSOkUpIPlnZDe\nucsLZvEqaUJ6pXR/ASekj02dGJ2QrkvnMkzvuM4/IX1senlI9f/XQHr+df1T+b3r3HRC+tjU\n6bznQdrK5SSkQwWekN67ywtm8SJpQnpoOrVWm5A+cZqQHpruh3S2pBPSx6YPhLQd1hPSuTQh\nfWjqoXkRSFKOdGTJ86KQzmWI9Txd1AnpQ9PLQko0IZ1KE9KHpvdCek9gXgjpYNh9HkjnB7MJ\n6UPTZ4G0k9HrQjqTI9RzQvpk6ctAChv0N/94SJv5B0jnCjshfWgaQTraiZ8FUtrP8RHpXkj4\n58E0IR1Nj4iB5P/wLx7J8D0fAn8/pBS2HpfrM0CCfpiQHpgmpHHme5DShHTNLi+Yxen0bEiH\njHwJSI/T1ZR8Qvr49Ih/l+GDIW2EygFIwGIHUrLI3AZ5dfqqkP735x9vt/THz/89KovHpQdD\nSuHFY8ugl4Xkft+D9Kg5KQ5RXwTSv7+9Wfr9IVk8Mj0AEvTXi0FKtAsJd4+H8r8nCNLeKcum\n6Pekd0I6VaonQvr59uO/f5ef/vnrx9vPR2TxyPQsSGeC610heBBSLdoupDAFnYA0mPAuSB1I\nGxm16+wXhfTj7W/9+e+3H4/I4oHpEeuPrwwJfk/hP7/dMyHtXV/5HJDe3ka/XJbFA1M37N7X\n/7CA8Ocbh4/+HEj9slwAyf6piwnpRPrsM9K7IPW2/PSQXMTdA2kwUV2VYMbHDLe2/gyQfp0j\n/fVP+ekzniN9S0htbDWbND+3vz8G0uh0J8Ufvxwk+h2u2v3270OyeFzqQzrc1J0NfRReAGlv\n+9T8dhxSs2kTce+CdFrS8Kpmahrk60Gi//0s95F+/PHn57uP1I27SyBxxLa9dwjSie0/H6Rx\njUald1S+LKRXyuJs2oe02exfAlJT2y1IvkI9SFjvd0FyTfDtIb1hekwWZ9N4kJXX3BZb7f65\nIEk4RUjNbePBsR4FyYvpQ2p8fTdIT87iSLoSUvvm8yG5DVzIhDccJJeVj9IWUuq/OYJEye3X\nKcrg94StfwCS5DIhfUSKJ66dfj083DXvxfXIwyGF8o0gJdnwOKQwcT0BEu460n0XJFfICemi\n1FwBCi37CEgxy+0Ckoub7R0OQ3LfaecLuQGp4dSF1NrchNQ2eLsrbHYNpHiAQ+mpTzYcPg36\npJA2Wv7TQEr4x8dAGtcoQGp4dCHZ0PBFIP3n80GKbXoRpBBRLkZfAhIWq1fIsDvqaWsygpSw\nUIcg+csLj4d0RtIzl3Z//9j+8MQFWVybTkFK7fvNkTDwzkPqR30Mu70yuKM1G/uA7gwTvZh9\nDyR3iPDzWUihBRGSZ9tNRyCNd3/qOdLf2w8GXZHFpekAJIp9u3mkfUjdgJLfu/16AlJ79M0s\n3gkp1jY2YWo2imV4AKTN5mk2eVVIv1Z3f+9v9L4srkynIQ0bOkDyHYpvtpNGtzj9ArwXUvym\nhfOQ3KcAw7sXQHK5w+DTy/ASSL0G76d51W4jpdgp10CKXwKMMbYBqXm7Ce13Q+oWui0k0eiX\nuyG511PzU/uOg9QWBxvL2rsHKRRgE9LY0YS0la6GhKe8nRht+vkeSN3bwr0o0n19DZpCh18u\ngzSM0cOQIo+gLLndoi47aFPaCenqtAPJ09mBVP/PGw0hbc0QbRjEMf3pkNxrFr/vgpRijXoF\n2oOUcN9NSMlXYkJ6QMLeuRZSP0abjrsLUqcMqRdFWhQ/Vrgt3PZ3QgqDBP/Z/APipyBpRS+B\nFDt6Qro4tZB8S14PqQtlnMFhSE2sweE+BlKnjPZDan/0vx6A5L6X6RQkbKMJ6Yr0AZA6BRhk\nZ7+44DoJ6fZWr2qdcr0kJHkt+SMkK68UfQCpaZoJ6fp0B6QNEh6SD5AjkDrHPwgJojvhK+Wn\neO14WK7zkLoBugcp+Z9DO40guU2by5e4xUlInfbupwlpnN4PyQ+z2JUvB6lThABplOnDIMW4\nPwqpP5FsQPKZTkhXJ+hzH0Xt+81vYfNXg5Sany6DBLs9E5J7wHhCel4WB9IFkODN50BKne7e\ngdQWqFuuXUhWvy1Io9w6+5yC1DtWzKCFBC9OSA9LpyClzgYbkPxxHgopQR4tJAo1HJbrOKTk\ndulB6mbW7HMGUvdY8cU+JP9G98Rw67icJqRxGkHaCKmmnzDGxh1/B6QUXxpASvIpvRDVpyF1\ny3E5pBT+3IM0HoU6GRyBFK4DTUgXpB1IfUFhEMeefxekePxjkGBK9CG695lF3KdTqMFYkkJt\neiP9AFJD6MGQNIvjkDYzmpDG6QpIGBPQ/SGjURfFaIfsxpBgL/gJi5noUkgB66WQfGWSe+Mu\nSL6/JqRnpKsh1R+6EbtZgt7x3wspHrof2ndBCvnHhrkPUuIJKcEb5yBRXN3Ka0kOz290IMV6\nddJ3h7TVOO+BFAL2ekjW92NIuPuHQHIBupubr0t4JY0gHXXkIcGD+BES7jIhjVJsjLTRRi5C\n8ecmgKnph4+B5D6gGmIilCu8dRxS0x7bkJrC3AUpVUpXQ0ow9mxA2goSSROS/TnYFhr5ZSAl\nLJYPuH5IPBNS/xBnIDkvtlOy+O+y3U5OHviZkO5JDaTajjuDeMLX7oUE+e0UqvNGKODHQupf\nTuhu37bs3ZAs52sh+cYMEZDcXxvpm0LC7sVrxr2rNPdAgpOVEDi9yW8TUgwXOehJSNRs28kl\nvN4vV9NGD4LUq52DdCC8O0VJ0HgHILmNN9KEhJC69/LPQcIxrAtpXKj+G68HabTv+yGlzi/u\nR3+x8rAhLAr2OChpykn4/oQUk7Rm7NaNmE/htcOQbLN3QQqxDyXehtQ96gWQhvtuL1vvheQq\n+gRIoUwTUjcpgjhqfyikjeJSvDUE7Juyx3IPDnkU0pGyHoTUK/9WwR4HKfH/DkMaPyPp0veE\n5G6z60/DgOxCinLCr4+DpCUdQWqDN7wX3xnF5DFI0BDDHULpUufNISTsrfdAsp7B77DYhwQb\nb6QJyf4YQIqP08QB6hykk8UFuVCaV4IUjI82G+wCb6bQiNbAVtFHQwpfyuIGsgkJks0mEGwb\nk1R4pduufUh6wMshDc/zQsF7mTbzG2TTzX63hC3gvSOdhgQdoaPIPc2qPbMBqRmRjuY2IQ0h\ntT/oZnuQEhxwqw/2IkHucl0LqYn90Zrs0Ix0aPtDkDY34hcvgQSI9MdtSMMm0jQh6Y8vCKm5\nZOfKvg1pMMdcCakzs422TLjVR0MK92ThWBPSwQQXCnAysj8HfsIBng2pCf2mxEchpRgqWNRz\nxWu+4/FOSM0IFneAw78Lku03ghQPOiGNUrhR2oPUiuof4CikOMr5o+2V93Uhdar1BEjhs33n\n0y4kckWdkPqpB6m9TqM/bhwgxHPb+rjyGkLaC4UepJ74EJqj4uPaCI52CaSNah6DtJv1fZBS\n59cJ6b0pWeM8GtI4zmHTXUjtZndCkthJnbLeCymSHG4fbsX58h3+IMTDIPku980jXTAhYUIE\n90HqzBFPgOQO3+xzClIM6k1IW8XrQNrYdgvSMRCPgZTcNhPSMLURtguJUm9X3eD5kML85/se\nX2uK0DtShBRtHS1eA2kj1F4HEjQeXsHEvyakXroPUhp3Uy+MKbS+btM6CAdrj9bPcgdSR82X\nhTTIfrOc8bfzkHbz+o6Qwpjm7qizrCsgwVvvhtSG3WlIMohcBCnWequaZyBtxO1dkEIdNiE1\nLTshaToLCRpzC1J7UPz9KCQ3OY7TFZDsIsnHQGrbGJ+gi8e9EpLfCiHhIVJ4s8lkQsKfHgIp\nhtBpSHtnSn1I2N/t9NPS6lVXh+YtSFvt4A91DFK85H4GUtu0e6kLyfaekA6mD4aUwgvdHe+B\ntH0hrz2grWO6kDaLNyxUr3m3jtTNtGm9QQ0eC6lvZrNSPn15SE1LNT3Yg7Q5vjZ5vBfSTlb7\nkI6U8V5Io9kq5NwLbGz7g5DiA7nxcBPSB2XRQsILqIlCR14BqVn9vxikZvx/KUixSGG/CemD\nskiuyeIvD4IUjjZcup2ABIF1J6ReaaSyj4HkBrG7IQ3C+mpIUI4JqZMmJMgqBn8fUgr7fDAk\n+CkU7r2QYgVS57UJiZM9iJCw86+F1L1XYUfbgkRpP6s+pBjEO2W8H1L/8N2IjO0AoXk/JJfV\nCUhS24OQ/Oe77KcJ6ZYslN0nWfTuJIWOvHdG6v8uORyD1Nsq+T+gRgcgwRcQaE6+OLuQmqfF\nm13bkg4mk5Cr6w48bMPMHfYspFD8xso+pINx8H0g4dg0guSGv2EDnhH2PkhwIyeM0B5SP4Pk\n9jJIbchsQOoX7AikJvt+4XqQkj/+nZCadtqGNHpzQiLsl88LKQ7zUHDcbHB0+Lkf4E3W74U0\nyOcQpKZPoqHjkCJJV9wupOa1CUnTFqROU38kpM5ZvT2OsAlpcD0gQvLx2v3b/9J9d/SelfIp\nkPZjfEK6MovzkEjfGkM6KimF3u+8j4XoQHLxFl7bgeR224Hkg22T2fYR+pA6jZDcy7EDLoWE\njXUIUthpQqIAKUbeS0DSP9oMXelaSPD3x0FqI7vzlNW7IYXNw5GHGmDECZA26zYhtck9q4mt\nmOTNMLZbbI4d7TVtc7jUe9OykhJtQoK/Uihk6nV2G4hbkPAAF0JyoegOswupcdOMJ5vHPwip\n35PfF9JG0Ds17tWHQ9JQgJx7T7q5crbvjiH1LoWHQgwCpgmRfUidwnU3ugBS+0aKFTkJKYXd\ndyF1LvNsp28AKWH36Kvy0gBS+0EE2Hu7adt7IO3xwwZ3Qmq2sX23EHRfdtj9S4+CFDTZKz1h\nm5ASboJHsr9CGb47pEGljkDy9yG3IaXOJ3ri3sPUu5mIxUzhd9vnJCQocTsaD7IcvgxHjJDa\nimxA8ji6kNwmqTlIH1L/b9ih9whDcyXnHkjHJH0HSDxePQxSE8UPh+QP8SBIIZNtSBrgY0gO\nga/cPqSYbw9SWx84hwyH++6QxjUfbu6+6Vm31tjABoZh8n5I1gPxz8GoaqVrh9QmruPYm3wN\nmiMfhgSlejAkdwv6nZCgPc5DagcgfdP1x4QEkLDRPgQS7DWE1EbCfZDagOrUYbTTSUh9Cv71\nY5D0vLTzYFSnlFA069Gw4Q6k0dmulHBCwjfuhLR5zHHcDiH1nhXFvb4wpBTfHEBqj9jpg1A4\n7dtYT3fgtpW4FINOdp8WOCbpi0AaVXUTkv/Bv3gCUgq/ketF+/OdkHzpsIJxz0dAiu0xghTz\n3IEEWfWOeBZSxIjZNHkMMiD6FpD6lToEKTb+ANLOYHUIUsMpHKwNvtEr4bPy/IcbeS+CBI0Q\n320hpfhj8y4SaYcC2WkDkh97Om/iRiNIkE0X0iAlv8WE1IWU8A/X/ocgNZF5IaQ2QI9C6uxp\nv7RV+ThIrgJ4d+hxkKgZSrFQvfRdIY3XYRoCHwepF8obkOLt0MdAGhfqkZC0etuQbOO23M2I\n428iPQbSEUmfDlI/KrYgnZ+RBsHnN+rnHkZKeWkXkrzR3g7tQXKHegakuPm9kDqAXJ7uKN0u\n6Jdt3Gp6pJDH7pPHE1LY+DgkmxX62VC7bZP7MUith3EGT4NkB2qPuAGpUxfcOnVj9hCkttTU\nlu0QpE4ed0Da3OVrQ6rj4RAS+X65EhL5qeWBkEJMNoftBumLQILfDwz6vpB+zwAotftESAcy\n8m3ar4mkCSn+Gbsm5hv38B3Uh9QU7zpIPnQ6Pl4SUlucXhv2t/Sb9E/eOpCody67nVEDaSN9\nPkidCj0Skp38+z5K8pJvY/jpIkidfTYgtZmNz9lPQIq5noPUyT9mfTjGG0g9M4MqHyiIO5Jr\ngZ2dvyukaMf9kvxvyf2AkKS12+nDv9hXMeqakbL+PndDGlPdgNRRfhDSNo+7IXUnnwnpSBbH\nISUX7Zt2CLs+bO1/sl30/31Im8W7HJLs1ayjPhiS5n8RpCa7ZtwYHeJdkHb3/WqQfIdeCCm5\n314IUthrGxIWdAypX4LvDWkvfUJIbf12ILU0KPRHD1LHkM9JD/5SkDrx/2BI7bEipLrnVli2\n3ba56cYGo8YjW6IfTOfgfSlI0KPlzOg+SNji7U9hqxSjplvevophPw3e24e0OxDbj71odZA6\nrUyxpUbFTT6n14B0ZGb0m39DSGE8lqd374Skf8O28mPY6hCkgYrnQHIvfgFImy03IZ3JYgOS\nn0wCJNfIbfyfhOR+R50HCkw74dD/WOFTIDlM7XEeBMnvPSFdle6DlPRjRDUQ0ilICQ/nf0jh\nZ8xaj5yGH7g8D2lM4hUhtSHnl5NPhbQx3ExIMbUd6SHJ9KQz0x6kMITGHzYgyZETF+BQeaV4\nZ9OlkDYz6OW0RWwTkvXHobS34d2Q7P1LyuHT14UkT1K/A1L33W5Z7kHxLEj4+jYkuJ3bKd4Y\nUnNB7KGQwgaDYNjY+2A6PoXe0ueE1AyA3MHpCKTemLs7yp2P+r10rp/2i3ES0qhInx/Szv4T\nkqW238aQ+A3bYQBpp/G/BqStL5AlB6lTvBQ3aTLYgrQ3UcTtd4oZsx6/f+bNO7e8pS8ECf/P\nW01IPq9yQWS8GHVKhpDGZbgK0oGJs5PpwaNPSJB0ytFftyEl261z85ZCz/fyewlIu/dijkCK\ns0fYbIfJK0Dyb09I78jCX1C1fhpAIrdhF9LOGPg5II1Xdgl+GEJKhyBtlGEH0sFGPAfpbDNO\nSJDkBtGnhnTPIZ8CaZhHkpYfHADfeyikfqad45za/v4tb+lTQ4KYAEW64Gsg4fvh0s+ZxcRF\naUIaZ3NowzareJzeqxOSpS4k7S3VswnpzJP7E5Lssg0J2vnZkHrV2dr+YEGOp68CSZ+rQ0j2\no+z4SpDuSHdDwmn4c0OKbz0e0rHtPyck3zUKSZ/T4R8GkDiSzuB4EUib5Xg/JDfQ9A/zLkjH\nmvFKSFuFPFqQbwyJ37eHWG3HOyG9StqENKyRzdF7kJoWaw6jVs5COhyTE9J1aUIapCsgWXs1\nm+1Dsnt3mzGK7yKk7ScrfGmH7/Yy7UHCA6Ww/ZHkIO3t9Vkh4aJNftABdwip/L5xa/+TJhkZ\nBlVCPDYCjSDB4i3F94eQuAu66z6AREeafXsW6JSJBtXZg7RXlGTnCl8ZknHgIOEf7f9fGlJq\nft6EJMG8AYmHInsKohe01vBu4ngipNih4+pMSPsf7OtA0rfktS8KqROQFvrjPc5D6o7+Hwsp\nnYTUmT8nJEvYcolcyztI1IFkXZGGgfdaKRbySZA64bwDqTsBaFYvA2nrumNzDI2n7wIp2VuH\nIQ1PO1/L1z4k6epNSNAcO5AAXmeD5A6HWbSQpKFdhruteyUky9R+gLXrblG+D6TaMtiB8BUB\nXUhA8PNBskLfA0mjbgwp0RlIDs5FkLbC9hpIWq6dkrhjfAtI7q1NSLQJ6XADvyOdPvhVkOTB\nhWOQUELcwGb8ayA1uZyDRGlQnT1IR0x/fUgJWwbe8uNNE1uXQzo0wJ7YfvsAqVfIg5BOzUjn\nIMEVU8xSi4qh3o34WNqLIeH4cy+knY0/PyTXHschWbTAm4earLPLTmG3ft9+OeTAFEI8aY32\njn0cUjfoeRUt55kIibRgLj9pzy1IcUDbgJRCxbUuJyHttJcvWhpl4NNnhYTDbBfScBzZg7Tf\nvu3B9gq78fv2y2GeAUiwh9XItUT/J8WU4vuHIPEZKf93DBKeszdQGjfhGL4tYouDiKas5yA1\nzSG7fV9IuFWn+vuQjksabxuCKeSxsX37RoSUYsdeCIkugQR9w7s1A1woXVPwOyFBpQLtpIfo\nQmpO96BFvjkk2Da88jhIbfS2BboCkruKkuy/90CSV/HYZyFx03YgpW1IW7Jc9UOLT0jvyCK0\ntI/MZgLo7G5N3myMrX8gpZh789PFkNjQAyG5oBlBMkxQSCuHg5Q6kFJTumsgIYc9SMln2oGU\n3HG+KiRrmdOQOgOYvZO6Ow2LchGk8TULv4a7E5KzcjckuWa3CwmitoXEtYg5+B+GrXQQkp4K\nxUEzJShjDxJkESFthsWXg9Tf2L/imiq8cxpS06/up6OQhnkehhQKfhgSnJAfhET2TecAKdlB\ntiCFM7xei8mebVvsQ7ICnYEEbTchuVeHvz8fkotui6e44wlI4gmyciHTFsVDiqEMbZGOQkqb\nkCxqFZI1+TFIoTpyvE1ISVcI74UElVFI41XDLX11SN3dx5BiOG4dp9O80DNWSoSkAtzrW8Nd\n6O/jkFJ7hAOQRmHOxzwFSTdL+hmXcQ741PkdkCT+U3wJtrJDCA1/FHJ7AiTS5ew4TUh+36b/\nhgdMpKfd7cZ+veT2eTYkN9ri1jgEk+6fyBt0ZdmAhIP4JqTunOeOJQ3V5o/b2d6o5iAkpoGH\nGUDCrbeC6/NBCr28s3Tt7r8BqXl5AxIEUHsEhIQvw4KecOs2Hz2CI7EJCQiksBdsiU2AJy9S\nVrym5pagEn0GyTpBIUHojiCFOnULOYbkGo5LSTKmBUjhjCdACnYpvPGtIKWmtfdSF1Jqf5Of\nB4fnqKAPghRDMd0LSbccQGrK2ULysddA0tJ0II0L6aYM3QjyhN2Vq4ckK72TkHDVgJC2I21C\ncscKWdA+pP7G90JqVQ4gxcXRSUgW1/505CAk6kEyoi0kzPowpDC6hDxh92T18Cu3BPVBEVKx\n05DGsfZNIcV+9JDwkLZtMzw2wxREtxvmEVKMBX25nzEEjRxrE1IsgA8HLPc9kHQ+9EEtQRsh\n6e93QXItJ2WRd0eQYIsAyewkPRgeBXJPvhL60peC5EPtJCI+wH2Q/PnQhZDSEUjGeQwpwW/H\nINmhroUEHDoZWse5QmIB8RUsi6xrW0g43uxDkoJgC0Jr9SD1F+CSPjWkPUbd989B8oEcttiF\nlPAX3sAGRbdb8gdwwZdcSRWSD4AzkNyqzEQMILlaG2MI2TGkZNkApOQLL0XrQArdbZcvcPcT\nkKA/O0fR5mm6PMWWielTQ9o7zHFIPrKHkDD4ZTcXZ31IrsPb6ceWDX1I+LLNCV5/DON4WwbK\nLIHShRTZ+UK1kDgrO0U5AklDdQAJSncIEv7kIXFm2ifvhUTD9Jkh7aajkKDv4o7W6P4NDaJ3\nQ9I5ygoGeiDCSH58JyQI+iOQ3Hw4gCQh7lsWCTlIybePawnc0S+mAFK/O3xD3A/J+LedNEyf\nDdIZRy8DKWE+A0g4+GPUETlIhJCw0FgHiJ6jkJzHbUh+xZRSD5LPwEOC4jWQcMMACXNBEb5f\nNOABEnTD0RmphWS90U/fE5LvQAjOZkcNlmYP4pHrWkg+4lxnah6HIPnwcKUhH66bkHAUcQFq\nmyEkjc0ACX5Xjr7wkKOD5JtU8zoHSXoRyjUhnUi7kKyZNiHRWUiuK7qQ4F0ItvOQEEyA1IRA\nC0libg8SZqLllCkoQYhvQoJypGYUgBzfBQkWvw0kBH0EEnbS94YUtnY9RRqF2kqHIUG44DVx\nHbwBBcGBXRdbN2qwBUQnIUm0SA6HIUHNDYPONxhBGmYahlYQCD6ElFpIWtnQ3m6bhOXUPtD9\nNiFZG7AehWRN6/bKyxsAACAASURBVCZVbCnrvQ6kcfh9MkinHJ2FFCcq28W9Bee6LaTkusJl\nA5CgV6x7T0Ayjk2hJYjwuljE0ECycSJCSnHfLiSpxy4kzQenwS4kH/dWqjEk285Bgk5BSNx5\ncJRtSDj29dL3hpTwFU/C7wLvJP0Tzw1IttM+c5AwkLYhaXBjxlCPpJFiSxfcZgjJxcvjIOFx\nfEs1kGJzDyDZ79xIWAOsFNl+3L7SRlKXTUiaNV4+8cuGCQn23ofUjJWpyTdpBPUhEfleOA3J\n+s9XO2kI6npqCAk8DiEZF4JfrawOkqJIcOJuJ0cNpIT7kC+EhrWVfQ8SVngLkk1agl5rCZP+\nHZDaOLD0ySDR5qiwtykGeX0/wcsJwjbFPeKRAYt1hi78IyTdysV26N4eJI+EABL0tdvEBVFb\n5QEkeQtiP2yo2yVZLWm8KiRrqEOQrFAIyTrHjyPHIbk2sHycnDshjdNng5S2q9Ns7H+XI2jr\nAIKzkEi7xg74bEgQu3uQXNGtNB1IrqwWePrbAJIvjIXpGFJ/RjoKyb9pLWBZNTPSUUjSqV8Y\nkh+H9lKApO0JAU7Wi1uQQqbQZw4SHDJhV6cIyXKzRRgssCCYMD8tfQspRANCSlghgSRB4hS6\nI48hWYRqtPYgWQkbSJ7CCBIOBAAp+b1DF1lWoMi22YSkS8mvD+mW3g0JzsOTvezG5+OQvMAe\npKTdfhASnHZp4GmB+pC8tBYStMQ+JClhU3+er2DBJJlZtaW8ByCFZvaQwjlegOSHvQ1IlDrV\ngOpBIaSwCCnpeGKo+umrQXJvPg8S+WMESBr8mgFAkrFOdwCAdrwNSD4YGkgpjKbHIGHb7EBK\nuNEIkmQLZcBaYdGkLFdAghq4+vT6GgvL9bIugdmpn74dpGSSJJYipNjDu5DIekl/ayDZcRGS\nhfk5SNq1Cd/VvZNuQRryUPY+JJw3k1QC6p/ugSRHPAjJJi2ElOCQAVKyLczbhHQkC+z7wZv6\nS/urhlgn3A9Cgs7G4nhW7ZwzhKRTzBYky9J62SJsVEvLFSQKmWQV4bcCpOTDUMI4WYgBJAhP\nhIRDyLsgSVYHIclw6TUZJPPWbTup2VeGZGE2es9+2YWEQxj88Q5IBG2P46mNfhrFWpwRJO0+\nCEGrw0FIWEzSOFQv1moXQEqbkGw4kFomyP4SSPayK/w2JG0/ba4+JNpIXwySp3MAkvS3tV8b\nYWNILhZaSNDJEZIysJjG2IRDjiApRReeEE8WSxuQMJJTSlAKQzKGJAW3WiIkgtfdEGGhnFzj\nJqyozpoHICXLQot7HBK24IQkb90DCbjoKG5Z+eywF85BMqQIScMMIFnxLJSC3WOQeEVyBpJu\nQSnB1hGSHwEIsiXXjg0kp3ILkoW4NhpSx/EvQNJX9iFhX1rjYJ9I13xdSN1qOTqx7tgh0lMQ\n76RBjDw2IUHzJuwkksZXBIAmQErYaR4Sjsl9SK6WFu6Whe0rGxkTCT6EBLU6BUk1DSFZI/iD\nQeMCJA7fHiT7UePgnZBgO4Wk1RdIYVSO6bNDSvGtLUjJOsR6JkCSoLE8tAP0oEmbPUCSKYUc\nJAt8B8nWKDq/dCFhfEH5HEWob4SkFLERINysFTH/I5AIMuhC0qOMIbmhfg+SDS1JK6TjDEBy\nQ5BtBD9Ao6WE221B2kxfE5J1hnvTQsPaGuKWLDS2IOng5CFpZ+pI7CFBTIqPAEnDFoNDwzGW\nz1O0+lqkR0guVqCoVnnNX/cwhNZY2mga1gNIhqeBpCOHh4S9AfWHvgqQdNTSpt2G5MYhbTLX\nAg6Skv7ykFJ46x5I2JIWqwchSWYWXn1IfnD1gyxAkiLeA8mOapAk5PqQwGAXUrLan4SEr0NF\nIiTDBS8TQLIXucJHINkM5UYCbT5rZCuUNapuCx3yzSDZiIe/6ZsQyhprOAhtQtJoHUNyAzh0\neAeSlqCBZINlHxK5oxAUJw7KFl2SEY4D6hSa1EPSbA22DhcwIhyCBKXE96GxkQpAMjrQaS0k\nbdEDkLSJNiBBh3xTSNbG90KSiJTx2kGSjpQekx37kISB7Wi5W3AESBYPEuk2TkPgb0GCKAXU\nDhIc3ioveP1QYA1hIboJKZF/3ZVSBwlrSgeJWyJAspbZgCR9JZlafolizawgFjPfGFKoXwMJ\nJfUg2egaIEmsEXSqHASDUrOQpseiXQkJXtNK2v+1fhgIEgYWkggJwmYTkv6u5bZmDGD6kDSn\nCMk6AZsWWoJw9xaS9cEAEo5qWOFtSNa43woSUnGDsrSN7AFjHULSMZP0eBAkehiLuIOQMORs\nPLcQN0Aa2+4NDWrd1Tq2gaRUPSSpyRCSDkSSu4eULA8oXYSkuUkzmfkWkhaPwtFxqHFDC6CT\nw5+FZLsZJNc3NsgmqNG3gGQxewCSxRZEuaJROyRN3kCCMNDwsjJIZvoLjOddSDC4WsC5w2td\nZLyAHiXJWl8MkCy09UetojEhi0YocQeS7grGtyBhUzku74Ok4WxE4+hE2kYJmoNse9fsXUgA\nSiEpYenr8yF71S7XZrEHyfxon+hvd0KC8W8HEuBNcPijkNSMlp60vBpeWjrRRZaXQoKRw2o1\nhmTBBkG2C0mOIoMGNI4jYFW0VrI+2IZkh1BICSqFkECw42d9PYYEIxdCwkp/NUga5xC38kYD\nSfrYIoDcaKghQLKLHlUaz0HSfTXvZDl7SOg0QMIICWAghuB195ZAgmK6aINIxbCEUli1x5Ag\n6jYgGVnLEsYqB4EAkq+oVR6CWqsFhduCZBlbPZI2VWhz1+4BkssKWvXbQNJe0FhOuKkjFlo5\nmT3porOQbAvSknlIFvYWYocggT3Jzg2escvNlh/ftU2slBGSBO4QktWAtBBbkKAcmq+9ugsp\nliZA0sP4d3HkafboQMKMrDm+GSSrnQUKQFJLCAmi0kOyWBcaAMl8OUidkd5DQmLW/whJ+2kI\nSYPPQbJ9tS7Y94ZnAxIMwQ6SxTqEqI1UERIEXheS1pDcDghJjZIvcWA9hkR+0z6kiA1aN0CC\ng3x5SGqDyLoAISXdGoNuCEl7VuLZ9tTDbEPSQCLoDSici0kNd+1xcGr9qj9rtPg62SihGVoF\nNTdDYAH9fkja0HocOLQeIEAiK7aMFQgJKkRWBWsc3QA6xkOy+oNvbW3nHCuHRdAm/zaQtHo9\nSLZdsj9sKIPGr7ton0dIFkCKwCBhpEgGPq41xnwnO0je6AiSxZftY0XsQXJONQIVslQWK4qQ\nTHaAZG3ptm0gJWwe1wEASdCdgWQ/9iBZX1ij64ENkiuOhsWEhJASbncUkkaddZCHZNEqkFyk\nbEFyI6P9BJCkXK708HYfUoJSuaxIqkdQEMeogeQsHoRkJt4FycK6gYQ1g04hXzrYWSFZE/cg\nARyocwuJvi4kauonnRgguZDWfiSJIONDTQ/ZcAsR0ECyyczGU+tOUCIdEygdgYSx0IUUcGhN\nufIaw8oIYj1CAp7kDw1ZexPWNkNIOGEESDBi+TamDiTLMWHb2IEo+WO4xoPNZd8+JN9ZE1IL\nCQawLiT/O8Yp9hhGtORGOh1BF7rQdt2jnU3wq/WkCMP8NdvkIKkbODRA0uayQhGUkEJRAYj9\nGSBBHhjgLgIpHAA8AiRrAg/Jolz6r4WkBQ6QwH1yCTrOXsJKNP/hdt8akgbmPiRo+/shmafO\nUf2r+5Ag6CwqGkiIAw5kZaEEzbEDSSesLiRpMx/I74WU+pBIIPlj9iBJ4ZKGgTWZK6w1jO4r\nzR0O61/9NpCsG/kFm4oMEraidCKRb2MY3s9A0qZGSBb8GiIbkFw82O8QtfojwX9YdP3N8vCQ\nrHoQnWQHDZBkNz1cC4kseylUsnL0IFm5qclhBAmzG0NKLST3BxZ3CMmOqS1gvXtvyF60y8VZ\nbEGCKQoaI0LiHhVIGBIwmDVDoQ916kLSvENPmhiLyk1I1oEWlA6S7QnbuQ0SRC7hQbC52mzh\n0E2EEXDxAemC3Bo0QHKbOb2ujeztMaTkttTiwUTdQLIhwQ1P2MNxW4LNvhakBEPsCJKPWYDk\n5/wtSNaJoR91f9qDFMZFHeVjVITIgIFbgtAFLYZfHxLEyxCSqwzuBrXz78tGHpK9A5nafqR7\n4SxtZnFfq5IL+IgTm0t3071Rbg9SHADcygMLBYc2b/eF7GW7XJqFtIaDBE2nG1ksSegQNK4O\nd67lKCk3woAMHScsxHQPkltg+KkRomcTkgYhhJfuBTFAmovsAXGYNAoMEg7I+JeDJNW2MLfS\nwOQFu0DckZbZ9YAdxNWZQtFTUwFIRO2P5uQYJF+lASQbz+yYd4XsZbtcmoWEI0ACI4cgSRsp\nJG3rESTfYdrHAIkQUnK7afdESBqYMRw6kCSqSP/XHKsLSXL2kalb+Cizo7lI60GyaMVCR0g2\nCWGlWkhQ2S4k5NRA0qbgAIEcyO+7Bwm31qJ/fUg4H1gHyAsdSEBNIFlv+sA1SN1mbiHJcW1C\nwp3uh9RAcAhc6MP7AInC/nBcOIAPooOQmqIHSDopU78V3VGhyf1xUvgL1hDYvrAYMJBbkKzD\ndyFpy90XspftcmkWMmVILJfXoOHlBXKNB/3rIJG5AXbakB1I1kEGyYriosz6W8fJVojvvATB\n5zajZBUXt1YYf1i3igJIGB4YSpZ79+dmm7aKAMmcdyHF+uqrfUjtxvgDwUYAScfAPqSYgauO\ng+Q6/YtB0tiToZFf1Ar7rUaQNLBhkXQMkvWKg2Q9i0sPfCP1omkbkgWDQrIAiusai5QIiUKt\nHCQtALnKBUoIpbveCj/L2LIDSX7vQopt2P4whoRt52rVhYSHxZy1rl8SkrV9gnlAWhMhYSf6\nBRGuTeCFpBDcrGftix0TZiRpemBl4RggaeA7SDqKbkPCGSlCwn0sSvqQYHstnd8PErSmbxI/\nf+L2ybWLGz3CUW2iPgDJVS5Z7gcgka82QrK3Qk2sm74iJBwlyM0/0poUGjmFBt6FpJ0LrqD5\npe2JKGTjxuG7ILVZQXXsF4DkfG9DIsvKtneQ+OCuYMn9chqSj+GmmC0kchu2JbZy2OYc59CQ\nyMUqFQrYQMJyIq+vDqlpzrIVdSBBGGNIjyERZIEzmhNJrsusDxkSePHh5oIR48lDkv07kFye\nHpLlYpAsUl1IG1jCI7oN2+kJ2zvWzNVLjtiFpD8DpNhQNPhhCxL20Q4kGIkhJlzJrCr3hex1\nu1yWhYQ2YY0JmqV2BkPCRg092AxcuBQmt5WGQYSEfRNj2WiQdnmI4EGsSMz7chOGMsHc4Tq9\nCQSLknOQ7BfJEQ8b/qZ4HN7Dvewq4Irp+9IXzzWqz0DbyB0DZv64fYBkEPXVFlLM4I6QvXSX\ny7KASFMFgkHDnngO7kUvbi+NBi/gYWR4a6N6D5KtT3YhUShcA8kGB9jMIMWoi4HgIJGUrWmR\nAInsl4TvhAQji/0GFbMAbmrqiwmQYuccgNRGPvkM4Xg9SGEa/J6Q9CXtOw8JogR71fWh75wx\nJGhTmMscJHKhgC+1cdiBpEeSA29ActXxcYBxovGHkGI5yB12FxJGl5GHV/x2cvRBtq4eZG+Q\n/Qc6XEW1iSIkn2EfUupDou72XxiSRpv9rm8S/n0dJIszXNRD1A0g+fwgXwo9C0ZtjEiaje35\nDkhNUTATCBpXZcIqxSwaSA6QBWFbTiwKNl2Ti8+6hQRNAzXwGQ4hdQvsiUE3nA3ZS3e5LIs+\nJKl7hIQ95SFhG/sQxb6gPiQ3cJFAso5xdkMfxT4PkGRngmNJD9pvZP1LydUFj4UFMEjtHGix\n0sF6L6RAZA+SVa0B5iA1g14DSYsQSgUtgjV25ehACo10R8heustlWThIroetF7nByTc0hc1i\nD8J79uYGJDtugGTtThDmMTRSCp3qXzJI8M4Ykg0sLhe/GJJJs2Patu/V3ZpZ45KwEmSDOkLC\njXuQQpxSKGhordBSvJkOEM7GcUiaoyM1sJW+IiSrl7W7QKIxJAgO6InQOdDu+jrEhofkotPH\nCt0DyWXpSxaDHMu1Ccmiyw0TUJSYwx4kVwl4UxujB4naPbEshEV1e9ovroRaOWhPgBTbo4HU\nrNsSZEL9Tc6H7KW7XJZF8u3DL7nRjkj+04a2Jgmd4iNAeqANF1xZ0SYkbPiwuLSsW1zWtQGS\nq5i9hZAS1MNl34UUMjgGCdskcDAh25B8I6QWkvWtFbRpwP7SDtas4fS0hYSdHQrmKuA3sb9P\nh+ylu1yWxR6kishGP4MEHSYt3oEUfrA9/WqymS4cJBflvp+kCLZd3CYUBAISBNqr1NtJopFC\n3U9BwtJi1BOg6kJq2jNIHEHS8nlB0AcRknakQZIsDJKrL7kqhtJKeMFGWiiMuHMhezTK//rj\n7dcLf/xzePf//Pb29sdfZ7KA1IHk4qULybdaBxJ6cZO5ZRYgxfgPS7smBrAgyXWvT20kc+ny\ncUj2X4Tks2hXMLj5GUg+7whJgjrh+3pI/L8VIg5W2nknIBEEAb4WSxaa1fUMQJJSnw3Zg1H+\n+9vbDdLbj31Jb2+6w9vbz+NZYHKQSCA5WbKua/pf48KiL0CiFhL0jMZUCN7mN/vdxWXvl+hp\nBImyfw2oNJDs7wEkbJERJISQICg3IMFr1qZEzVtQL30RLOk6dADJ9XbCGSQoxdFU89mEJLnD\nNlaNx0L6z9vv/96A/Oft//b3u+348+3nv0T//Hz7z9EsfNKaksw++pIMZeQhWSPKXzbwuDA6\nCcmFTcJEGl69QA4bxleaHxkS1zeWzXIJoZ+0qHhADKztGck2tsEHt23qakduMrEfXEx7SDA6\ntIXXfvOQ7NWQr86C2DKhpwgOEuuslXsWpB9v/1Ygb/sHKpvcdviV/n377WgWLiVoNZ6qtyD5\nBiJoetd4AVIAMoQUj4yd+35IPt63IblYtgoQbt9ACoNB8kexPzR+oTyhCm1bN1vH3Twkt5s2\ntN8eyLhY95Ds4LuQdEXo5PuDPwtSWdadgSTbtdu/YRodI2GrCSRd3DpIPpFvMt+DLvTMWoKc\nrNHJQ3LLA6PqOEJunSjE/ouBLzlvQ3KTgi93OJ4re6Te2+FOSO3Wu5Bs7ZhkkGybpoGEW44g\nRSOYj9SN4ka+1AQ/7Ks4mHCX33hG+nt7hqn73Xb8P4H042gWLiVstQBJsZyChJEQILXhbJDs\ncBZuCMpFQRcShtthSHHfzoykv8UmwO1d9d15A2SAkKBsyFbbKubTZNj2SA+SjkEBkpaG3D56\nXAsAzDZAsjq7H0Yzkvvz0ZD4HOmvH9vnPHW/tz/+/M9fb//99eO/P7evNmxDwqbDIUobDxY1\nrmcptCty4vdpCEnAEnQw4VaOC45zKM5lHjsYMYRSZLcDhdywoha6g+jtQ9LjWes6SLBWpS1I\nrpbUQPKxfgiSvdtA0q0iJIsFa09fRJRI8c2mJvRoSPQHr8V+P7CfLdve3n78ezgLl7qQyCJP\nISWfLL7hPWt+6BeIoQV37EDy3Hw8wFB/DhKEuoMEk0IYCjqQLORDcAwgNfF5HpIvhb6pmcSS\n2jJiBCkeq2m0HiTY2kHSruhDCgcObfEESOU+0tsf/z2y499//+c/f/xRLjn83HR0HpIGHaz0\nmkTJB1Kv+QmXRov1k75OFCDBkSxkiODdEaR4ftKDJD9nNzZsQ9Iit5BcyJuMg5DitOBaAcvs\nK+Z4QHVdy8kGC0LKnfAeQ4pKtAE2ITm4MTx8W6RHQnpIOrC04/r1FsPdsRv6DBvTmxtCsl7i\nUojacHKkhwdIZJ3tuylKbCDBDjuQMC9pEhesfk/Ml3pZuoINIFGzLWTgW2MHEogVSAkhObih\nHaAztYuS/r4NyddbOzg2rgXE14LkYlEhwTs44sTes0jR8DsCKdlUB5mNINExSL5ECAkS/+qX\ndpiVC5kUIcVDtpCsKP6w7gU85fNzSURHuIkem+AH+d03rTToAi3sIRG2kmuctlTyg4cUJq0Q\nTiNIEBAPhPTvz9vlt72l2ruywORq3kCyZTeOQIYH4w4g4aBEBL0+hqT93oEUDqPbnYGERSop\na7hhItxdXjNI5I9hG8IQHSNGWs0VQauDdbAGHEMit60vL1mJZVOGpAXIrphdSCBDiw0H1vod\ngwRFx/et3OdD9tgu//yQiwfHH7Y7mYVPWilpGOxfgET2PnYTNHALSbZpIbnWt+Z3kHxMkuuP\n8j+58IZR50JiB5J72b/r4qGF5HfoQIJ1W7LGg2N7SLaR8KbOy1gsg2S/24IcIZ+ChK3Qh6Tv\nE5QiJ1v47kPC1+4J2UO7/P72f7e56N+fb3+cP9CxLHyCJtceDpAIfyZrZhcotk/YBrppCZBg\nRWJzfYSk5YJRTCG53jXDMCjAMOC6dwuSiweJp3dCQs4IiRJUS2rRgaTZHYBkXfErLUgit1tQ\nB5KUufVvNYYGU0g+LPqQ/E/3hOyhXfQZhANPNtyZhU8YDgYJ8RB2k0OCDTyEBD1RIGFfOUi2\nl/SPNrlBgph2kKSgvtvxUIRH7UDyI6WVPEIKu0BEhsNo7jJkbECC7QMkgveg2SlBs0n9B5Ck\nXbqQLAaggPpe6hzR1aj+mbV62EoaOXDI+NM9IXtoF350jv59AUiksWldsQcJ98fNy683SJj6\nkLR/jMEuJPwPSwWHCpBun6NwL8Da1He1g4QesLiwo+ys03kDSQ5n7Q1YTkFye+FOtsVS9yeE\nZGHcgSTtNYKUsEYBErk2Mq2hTSF87gjZQ7v8fPv9f7/++t/vO5+LeEcWPkEjkv2/A8m6jzAS\nsFPTNqSNGcnyCT2aSLunibj9GSnhW+7YDAlixL/bg+QL7/duIBEeAd/Tw2u1FRXu79rIgjEs\n7dpy6lYAiUaQkocEkwlUPFTTbSuQZPYl7QTrwDAPxeY+H7LHdvn9+JMN92bhEoTEJiQHCiPB\nL2sIY1aPxklmJHg/OIB+6kOSIEl9SO4IfUgSAS0kgoDFxYc0hqt/8nt3ICWfQdgNIKVmazeX\nHoaEhWogccQ3kKTLrPQBUqxmqDpDkmx1SgJIWOnnQaL/3p5s+H3/Sbt3ZIHJ9y0EKw5JoXNt\na2keC7UuJO7GCgljDprcO9C+JQkzWc0BJFgatmkMqSb/yT5R1AnQk5BsnxEkF07QPLZxgGQQ\nsLy8pZUTRgGEtCTLIkKS4G+TtqzLt1FYjy1Dmi5IrFcbSKFN7gjZK3e5LgtopGbt5IaQLiTd\nWuKGXMxqFmNILtibuLaACZCohUQ+ICKk2JnZbWsZOkj4ah+SHTVC6mwZMGC1YUoIEccFUfhQ\nHsy5tLQfoaDR0y6kwAk6AIrtd66//eqGLI1ZymBNF1oMBo0QIqdC9spdrsvC9570gKzjsBFC\nYNjSDhuMXMNLFjIjpcX1BUIigJSl2SOk+o7OSDkRxA81kOKqz4bpZH0Pne4gAULyJXWBFA8S\nMo9t5nfrQAICeqRFILnWbcAjJHvLXeEBSDr8SMeHrpO3xpCkJSsk7QM6AsleOh+yV+5yXRbW\nJLZaL6+HQRY6V9rHmthah/AXPpIO/ku9OwiQ4GB3QUowBeIRZA8/IOCCq+7samR4sGQOkp9p\noHlCzAQNfgdqXkLFI0gpuyg8CqleKpXdAiTV4iA1RcL4iJCK8BYSLEX9gtNDuitkj+3y5297\nH2q9J21+Z4NWynWJg4RDZgcSdnGElPSqgIdEKXTTCBLmsAcpRBqhoBYSue4eQgLJIQf3J8Lx\nGkKAa/X0JYIiOJABUoxibDfpTGvGemiYkQif/h5DggrZRhGS/HIeEiZ62DnSn/ufDr8nHbnY\nACORhCS2WQOJcIPkWgtaSUMgtZCgP1tIRD5m4Ui8bYCUtiDx+/aLg6TlII0Xsmo6SL4dXMAE\nSAniegsSYck3IMVWTtgWSAGpVEh68F1ImDZnpAaSlob0eKkt9NMgHflk7B3pFCQb2/uQpAds\ne9i2C4nbP54jQX+6M5wRJHKQMrWQEu7SQIJqlp197Ei0HYYEO2n2zXuhfbh6dhyTaJAolGpx\n7/tsXWu7berf3OZGuIFEmCk2YQeSHV4WibVPZLasvQGbDyBBo50P2UO7XDsRdbPwyXW8RqQb\nPMhGI9wUFkbWxluQlvIR2QYRpdjwEZJ1ddbDjiHlpCfmFCApibrzQrE0Fko6lhBU7hQkSqH8\nPvjde35G2oXkzqFsQ6ntAiVb6t6kDYscGkhuvTCAVFPWRr2RkqupFCH5lsWg0jHxdMge2uWP\nt2s/P9HJwieLMuwnN4YegIRdjPFa/p8BErmMpHVDAboz0u2FLJDKVl1IySAZgrOQoCL1GBKB\nACnjMUPkQPUN4NZ7rhWohUQuIwhHv6WDVH85Asl2dv1MMtD1IFmj3i6eHoSUngfpnx/lEaGr\n0/bnkZL7kwaQQiOSDFhkYxgGAUFL3wvJfkkNJBJIlhNC4j0EM+RRIeUOJCiHVroeYw+SXlHr\nRPsAkrT1DqTacF6srUnvgKRbS3UCJDukRUenVNBhHUguZHBNaFPegyEd+Cq6e9IeJDcQIaQQ\nPdCIZJBgHLNDWgR3IUVvGMV7kNIJSBbnLgAAUoguhERSPbhi5solErKEImQzgiQF9v+5qQ1b\nm9z1AtnCfmjpnoKkPSYd5wGE1sCkWef6OYqkI5eD5A4C3a0PeJ0N2WNR/mkhuSAwJQKJIiTT\n1kDKDSTpJYNEtrSzUL4MErWQrMAOEu81huTrV3cMs5AbRKRKcPTF7sjGbTcgpTEkP9YdhNSs\n1bqQsg4LEZJ8bkWO8mBID0p750gtJGxa7GW/kbSEvQ5TjXSFQUoBEkHLHoYkvX0GUhPOFZIg\n8DVDSDSE5PZASJITYe0gzhtIfk2JOuqaju8aIKQkx8CW1wIcgATnP3JK00LCwrsQwNt5+Qgk\nIpjB/THOh+yVu1yWhYscqzZpdwZI9rctqNwISm5FXP5XlnaUHKQkc56b+yKkenoigVYhZSlZ\nrn0orLRjIySSD6VjPfON4YLRhTGTZXeJzT4kq+kIkgs/gJROQSKE5Mp6BpJVlvQrlLqQbLDb\nhlRf3ISkbUdJMgAAIABJREFUvWzjAECS06pzIXsyyv/3nI+aWyONIWEvN5DqUWD0IbdHCUsO\n8goJ3oChEfspQMpdSNSBJLkNIdliJd/2BUg+eGqB+WuNC5RsMUC+DgIpYXDakAyx6NeEu5Dy\nNiShbnvpmGSQsp+RxpA4GMhXL0DS8p+HBMVMWhJKY0fvhvTzyedI7Rpe1nRu0d+DpB04gCRC\nDRIFSNYdbrxDSDllLZBCIobER+5ByhodERJxHruQkn0/+D4kShicOhpZrX7V3a+vSMLsGkgp\nQqp53SDlY5CkuxASdH+AlBESfyIJILnFI4bNkyCZo51/g+/+LFzqQkotpCb+j0IihpT4YgPF\nA40hcYhmK1CAlOBy+BhSCks7DoccIGG0HIKkOVIzI3G7JJcEkpwtkDYRwd7yDkLScyQ8YtNu\nAEkljSG5DqMACXvQulIbhyHJERtI1s5SsxZS5qg4H7LHdvnx9l/6/e2ff35/u/R20kFIVt8W\nkr3jGtlBkl+h9XchSbtbHkchUfaQSPfm1R1xYewb84eQrAUAkq0bW0iZdBYKkKwlsJlq3ZNm\nSLoD1QriHNFCSocgcbKP9A8gmfYKKVu3HYSU9QKOh5TguLIn6OSRKUuTPg7SbUX356/Z6O9r\nP2t+B6RkJ6+h+/zfxOLkQSBCSHVhtQcpJ5dJhCSFI3lCjhSSnLLa1dWyaJMxX5eAuB6T7ldI\neEfILfG0HBmh1Hw2IMlfOp/VtAlJzur8MfcguXbrQaK8A4k2IEFWCIl2IGENNAjscusTIf11\ne3D1ufeRND6s3WypgF3mB93y7IosFPqQUgn4249LCpBk0BQqcuwNSGXrUu7TkMjVIGeElDVO\nbKvb59XCjIQNBZCSQcI2In2lvrBIa2NQSeQiJFbTQMLr33YGCvHOgb0Jye82hOQ42cbSQ0k+\nn+wgWaGI+xXro71YK1yrk8+H7LEo/+PX0u6ft9/of8/7GMUAkoWViw7HaeF2iZB0uOUoLI3e\nQNJOyRqMNkXoqe0yhJRxZDRI0keCByBJpsSQFs5OswiQpMY555StyJuQ4NTJLY3JQ0pJgzdz\n3JKO8l1I1IWEZZJp1ENKS2dG0iKMZiSZpnF7HPz4gkXm9rZzI4REvj4tJBpPSe+E9NcNUPkm\nof1/jPnOLEJCIkNI2iB9SLV1ScdZhVQD1UECt/XdESR+f5FJByClOyBhkSqkemV4A5K2Sw9S\nAkh2oxggaTxJYwEkfohHCijTgA1qpVWWPUguwYpQIP0qpEBKeoLj6kF86knSMXX5IFMkBoS+\nUNq3gaSBQfUuh85IpPXR4VA76XGQfp0g0e3fs7z2a+2OQFIlCSDgu53uM0jUQNKDZA72JcGV\nK2AmnaYhl/F04AZJDlwniREk29vW33WBhpD4XMMg3aYWg2R/6CKIZBu8ciCQgL6DZAtbbash\nJEWiszCfRfDVNwbfQtL/Y5Nm+AjSAFLGffqQ4FuIbWQYQCKBpNMkf7trhoI2kPaeWv1kTzbY\nute6AkKd+DzCe5IfFlvaRUjkIaURpJwEEq7KbTi8rU30G+jqY8Z8kStA0m3oAKQ6TS7UhcT1\nM78NJGogwWme7pf85hUSB3OElAESGaS6rl2yzJwIHS1Bn2T5LB/lCElKehCS1D77TAVSnfBr\n/+mMxH3IX9y/CSk99hzpQekoJGgv9rAPSZbCGcJ/F5IcyCClFhKdgyRdaZDqZ2WGkMKM5OZb\n/pQNh07dBtbBEggISQspbxik3ECiJBdDJAOLQw+JDBL2lRa3D0lat0CSHtL2ttM0D4n2IOnp\nTbalxwBSBkikDcOQpL8fBkmvMfzY/FfK35NFTNA5tiLR4XIAqfytkAQMN1UOkGgASVvThnIJ\ngD4kHmZLEJFAisfii3kCKXtIsplBsrjCQSVn/lKImjFCojEkXw0QVSCV97KfkXh224ZUC4rn\n/z1IUrtF//kchpQ6kHT9zoNnVkiy/JOD1rZckh4Tb+dJW2U3Ii/WKDUUcjJIWRudngDpn6c9\nIhQhyRkO1XcCJPcjn9RmHtaOQXLLBG7UXCcYgEQMKScHKWUJAoZkfLXb9cqArCIE0u04Sx+S\nLdNs9sv6qQ2FBFOuXKg6CokAUg4zkl4fyVL7MSQbiAwSSevUv+uTECS/eEhZg5ibGCCV//FE\n4iCRfnx9F1LZb6n3wGUJmBSPLixJB6LTIbsf5X+9Yfrt/IH2s2hSgJQcJF7aaXzBkFhnq9t0\nUQdvKusp0jGHkZSWB0j61CpMIg6STBoKaVFIpF9F6CFphOf7IaVYSfGV4BzJQUoKiTqQCBpL\nIOVF4jLzgEIGScJMSiCQ0hgSQLUQRkjl0BVScpBSF1LtAQeJBpBK29yKnyOkbJCyPgU0hpQf\nc7HhN3T0rEeEtiEtY0jrGUjE/1yffFvhBqSskEpULHI1O40h8TIhQuKlOJVON0i5D0nOnhCS\nFNMgWXPIwoVztsmIdJawSaOFxFd+rQZZDiBjvl1syD1IejKm4R0glbRQgSStfRSSXT6BM9xN\nSFKoXDYuZ6ZZL7xYDfMzINHzv0WoBykrJOpA0u0dpBq/2zPS7egLRCJJwGxCusVRDxLfBhxB\nSgKpdqFMIfuQuNwekladbFYySOQgESkwi/YepDol1dtsAIkCpCVlvtrgIOUGkswJ25DIzk+0\nOuX1CEkMZIOUhpBkBqtXBf2MpGOvnL8Sgj4dssei/I9r7x/1snBpB1Ja/BeE/OJjkJYEkOoF\n4jJ66y0GCcI+JBt8ObRtKZFtA4FE+g5Aqt0l66gISaMz6/kDQ6qHclft7PJBja/6ABLJh2hb\nSHoCZZCqBLmqqC9sQqqP3vL/ai5chfJ4j0KSVtECZK1jB1KdglMdORwkaRYHiRK04hCSjEod\nSHKFjlucwwJvrwkkHp30tu/5kD0W5R8xIykNbnxewZW3l0WXEsxnjZDKArnGwxFIOhvZpKRr\nG5n3PCS9jGpnLQIpJTeedyF1ZqQIKdV5FENzG1JqIUkbcgRm2Y+njTyElABS3oUkx5NfZfjS\na4z11IoGkLjkMseTTuQtpGTNWSHpOMNlJblThJAyQoKiGiTm+WBIvz35e+0iJFvhlHcDJGpn\npBQhJYSUepBgvj8AiRa5MKfX0UoMCiQ8ka2dmuWuOT8uJ6P17dXbtQuFRAgp9SDxswUeEmxO\ndnU3QlpyShCxFVJWwpQMkqzmSCClXUhZynkYkrasQcoIiWe0eouBPCRSSDp3l1buQaqX+mUZ\nnltIt3Z4PKR//3jy99o5SPW3LiTR9AvSug1JFmk6YsrpaoGUEkYEj2G1e113y/qJl3Z8n2UE\nqUafjOYOUpabuKVcQ0iGMdX1GUDKGgq6ftqClAIkcpBuLxZIZUFMciQJ8QEkUjh9SHpGUiCl\nRTcKkNKdkJaF2wUhyf1xa/Gy4ksRkkzKz4T09K/jwnOkW2Ascope3i0fcxZpWSFRhJSyBLZE\nJAVIfMW3C0lO/wOktAtJVh5yFtuFVIvH5a8XAT0kixkJ0Mz1WShC4nPuAMnGIq03Q+LdeJ6Q\nO/oAiSdlnjdz4m0aSHkXUo3KzJDksPuQUgcSjE8ISdSRrPjk1rHecyuQykc3ZL3qIOlyWfrg\na0PiHykBJBpDoixtSxx02bZ3kDLx0CqtO4CUGkiJIUnv14urtRdHkKgLSddQBVKW9SITkFOF\nWqqFI9JuqyxSLoSUdiHlVKeJXK/ljCDh1FQnLoFU84uQEtmHWOpsIJD4lC8rJDJAXUhy8UKW\nw3aVuohZ2qVdyZz3rHtRF1IaQ6LHQXpQeh+kVO30IRFAWjlqZHHAXeEh4SCOk4qHxPFaIWlM\n8rhMCinzqtyupxokHvXER+KAyKJvCEl5L/CJgJr/ko9Aqks5mccAUgJIfKmZ+Ep2tirw9YfU\nQIIRJkKqMeoh8QJTTjJzttHGIOl0zLl3IaUOJJ2Rsp2hKiReVOt1O4ZU+yDpM0PjJ4S+AiT5\nsQzA9RbqqvFikG5Nu4iYDUjcNUt9dFOvcMlZS4REFrYCyU1XFVKWOxJZ9gRIMn8JDl0uHYCk\nG9eIvOWulwE8JL1sh/rtNs/CR9uGpBHWhST3kRJD4kvSPUi14AaJj+chQdd4SDgSwVU73SXb\nLUOujy5DMwP1kApFyllGMC1iDZxnQPrv7WN9f/z3/GGOZwEpuUQKiQRSZkjcHjdEfLFh0Tbh\ny5oMiW/AAqTcg5QTLwoR0iqnqFkiLHwYJ/sRlIdP+WEMqQZnvYXsIGX5xHqS49WR805ISfNe\n5N6vQMoNJIywJEukFhIZJNdbOeHcXtpzEUhZINWsE08vsj2surKFeAeSLI7rJ9YNkp5KJVkD\nICRykAiq6SFtrOzeDel3PkO69LtPNr/8xEGyO9jkIdEY0spTe779JOetZBhgRiKGRCNI1twC\niRSSDZvyWwdSTggpJT20QaI8gpQBUqqRv/Bgq5DKECtPH+hZSzZMLSQySBXkIiOQFFoXXghp\nSQqJ982+txSGnmct+QCkrBON/CaLrjqrKSSd+CukWkievnizPIaUhpAQ6/mQPRbl/3n7cftC\nu78u/pf7DkNaAFJyMxIxpGSQsoOU9yHxrboUIC0ASdbbNVx3IJF8fA0h6ZpKxm+FlBtIBY8E\nEtlKkzwkW3YtPFDL6JwUksVmzawsIgVS2oGUBBIPD6kHKQVIEu18zugh8cEWaV+FJHOfFlZH\nMj1JPA6JkoeUDVLdmE+fpZqlSLW7l8dC+u3t7/L33097+hs7hkg/FFbfYUi3xxnqt0YFSOWS\n7ppkMQSQdHEgMVhvLSwwTwik2yVpB6meyJYAX+SKuYOUtbx6NtyDZGfhWd9bslxgFEgpQkpi\nZ6lHy5pxrlHA8eUhaRkUUm4gEUBizzJXJvVKCCnlzoxk60kGQHJ7IM5Im5DqkFS7zkOy6Yor\nypByB1JdBQOkMvjJjCNXTFO9iFMnpOUJkPSq95Muf2folz1IySDdngtfBZIMWylA4mNywC0c\nvBL1VLvx1xEXCW6GJDFaIdVm70DKWWckCd+KhddU+tQLr1tSnd84iDwknYbqL7wukdN8nZFG\nkHILiXh4MEhpE5Jmk0iudJZBhAcGhiR9I3FvkGqhHSRSSCn3Iek82oXETxwSQ5KHmQSSdGLJ\nsQOJBBKvKOUeLV+KeNqM9JxPyPYgUf0oNJXVj0CiWvM184zEy+AStKs8U9xC4kXHbb7PfkYq\nHm+QbJb4tYTMbgYpk0KYkXT870Eq8aeQUgdSqhLKc3cIiVmTxld5nCDXBX0fkowVDhJfey9P\nbo8gZfkM6y4kXqYNIOnAok/0lpbUGakOXwwpS+PVrKqJOqLoitIg1XCokFIXko6GtZf4APWu\ngdzH7kOiZ0B69jkSQrottAxSRkhloXNrBoW0rD1IyT4XUGObIeUASWalCunWSQApcXDkOsTW\nGOIbjDK0Mi65N+Eh6WpMFY0hyajMN00AUrmGnDuQeImjkOzHLJNnhFQvf1MHUrLZZQeSjC9y\nimiQpLYVUgJIpJCyQtLzmpoV6cM8VOflJERyVkj1lhZFSNqsHUgMtELKcryslyLqQzF3hOzB\nXZ581c4greVp02VFSLq0u12XFki1N09AqkPdUlYD+DG9Cum2yNmAlBwk6kMigFQfhdDQyhJt\nCilJINx+qUsXg8TDfoTEkxbf1WogyRgue6Z66VpXSDXEBRJ/EsqeRsv1zuYGpBQg1emE47YP\nqbbZUg8UIZFAEhdJ7p5Jy9XbGFlGqsWuwHtIGSAtAknuRmfDJXyfBon++8cz7yNZEARIWbuy\nNMEeJAm1epNBL/14SIkXAUnnigqJlwa5XGZnMgpJn0NiSEnv6tT4zw5SWTLoqbZAqt8ioZCY\nC0Mq52m8h6zzykEFktYupz4kmRVT0owBUrL7SMQ3fQES8f9rlGWZXWtmPLFlefz7VtOFrxDw\nMi1LTQESXwdtIMkIpZC4gWpRdKIVSLXZ6/HhqR8urp6i3dq8bsWQMk/11qIfAukhaRNSfZrO\nICWAlARSvRCskBYaQtIZSQbb2n8ekgzFAIk8pDyGJI8AASS+/J3lonGWYVoo1ZiTJ88UUkZI\nSbu9jNAVUqXGxeYn/yIk0h+5wgApe0gkkOpMx2NAbiAVPMSQkvp1kGQOUUiLQco66+oFMpkh\nEZJ4MUh8IiefTRMiDlIeQqrP+sqtoizjk0HKeo5Ux9jzIXvpLpdl4SHdrsVVSFneKafca4F0\nI9VAWhFSVkjUh0S8tNM1TYG0Cq+1QuLBclVIMlHwAp5v48iIvw1J752WkYEM0pIZEhVI+qlO\nHRLqRYsl0zakfARS/VCRfMwEIImbMsjz09Qcql1Ii96Nkmve1gj2lOsi0csXTFpIuk7MiReW\nzDJCShESX5FJ9vy9TEBLbiDVYmS5kiGQ+ENTj1/a/d+l/8zYNqT678HdrjwzpHJBulxWQEgL\nAaQlISQetG9vRkgEkG4dhpDKoW4HGEBaepByAynLBxIVkpxdI6T6UoBUA46yrX941CwHFUg1\nEULSoEo27SmkhSN/UUiZ66KQyjxvz3TWySj3IfHSagCJWzcrpKyQqAuJV2zy0FPNLwOkLJAW\n6yiFlA1S1q0XvkcAkGSxqnv1IOVnXGy49J+QPQypLO1uLUMA6SZEIGWElHqQ5Pa2h7QqJJLQ\nrSbLHd0WEgmk3IWUbAm2AYnzGkJK74HEZ9tymYRnhcxlVkikkOT5IoUkMypfsqs3OetYbzXJ\nixSWISW+us/PG/chlbwLpKyQsiy0GkjCQ1YKCqmdkRyktA0pO0h8jeJZkH4+//J3/b7U2xW3\nWxOstRsWhHSbNORSTK4q+Im7ConXddkg5e6MlO3ZFQ+J46RASu2MJCcROCPJcqvOiwip9F9m\ncMxC1u/1tIhHRtmOP520SJQVIxQh1aVdjpC4IPr4YICUPSSJPKVeb7GIVdKJNGkBFRLVEV4h\nZYHEl5aJL01I9gope0i1zCNIclNMIHGBK6Ra5hYSw1mWfUj1AqA0QfnyipMheyzKfzz5EaGy\nCFnqjASQkkCq5zAnIS3lRw0sgZQtLBUSP2MkN11XvVzKZxlcArl3yefGNSAWWdDDtyH0IVGE\nZHEqMaXDKjMnygxJ5luGRBpNBon04cIeJI1lgZSWzpJHNs5yGZ4s3vhyXJYptRaT9E6wTHwN\npNxCgnMXDylJpHMby9cMVCq08K4KKUm3l6d/GVICSGkPUnogpA94RKic9tXnunOFtAKktAdJ\nBuwdSAtPJDV0FdKS6rpx5QX66iDp08tyfzzL/cQeJF411Wf0soV54itXpX5xRkoMaUkREk8a\nBZJ8ZMgeYxPQ+iSM1ZcvOeOgkfWZt6TKaizrdCSQtH49SEvx7SBVD/UG2xFIi67QsoOUMpFB\nKvVY5Pa0g2Q3wKSFGVLqQeIJMPFTkbL+pEdD+qkz0qUnSXuQVoG0tpBu5z49SOWRO4G0Mg1C\nSCnLOD2AlBjSynel9AJggKS38hmSdJI8c8Af36yQ6hi4wIxEGokLrxh51kJIJJAWvqTOJ00M\nSY6eFRJS3YSUaiRmhVQfhqX3QMryB0xK/AGmpY4SPUgyLXYgJYMkq8v6beUASfaUTpWj1itw\nCKm0GkMihJSfBYn+LOdI//vxvCcbAqRfv698+21JDaTSdOXiwLoykBL+a5IZvH7BSFHCd4Zq\nrwRI5dMXqUZvgVS7RlaKXC45V5beRkj20Piin4/X5ycdpASQ7Hq2QBI+ByAlgCQxLIXIEpNU\nCy03qUggFWEUIGW9ZJeTxBxASgyJMt+Gq4/SYnvoCm0MyZUZIWWAVGe4LCdK1QXxbaMISRfY\nA0hyLtyBVN+Up6MfuLRz6fzBTpbKQfpV79sTDBVSXQ7lgqtCKtvdmrxCqr/AnRiZkRhS6SiG\nxD3Lwyw/DYmQZIxbtcdLhh1IGr8ASc4bBBLVK2RyOgCQcoCkK5uFqvHE5/UOkjjiK8syjWVZ\n6OxCqpeSF16NVcIGiTYhZYO05AAJTnPK+qBASruQCCAlDyk7SFna2kPSKosWnnC7kOrVI51E\n+c2vBol40Ps1p+QAqZ4ARUhLmZFWDykHSEmXHeUqeU4AiRQS6ZlCD1JpbYYEj3cl6Fy58dpA\nqn/zwywKiRc5C0etXCfnO7/ZQUoBkjznBJAkhAkWe2X2WMq8xzAl+wpoDKnOgsQXHKR8Aokv\nndfKSXvkpJfdDVKSWdwg2Wq2dOcSIBkfgMTNKk2+iN86NmxD0mlxH9Lydf7FPm6jda1PeN8D\nqTzDfWujekOWRzKGJD8gpDXLQyoCSa5/y9KOIqRskHRGQkgSsVmZ8IU0fn2pPapX6nJCSKlC\nIoWUARKroZqTQMqyds0kYZrkDKhwNUhZIekngg1SlkdDO5ASQ5L6ICQ+Mslz4YW6h1SuPPJ6\nOomk+hiRSGVI1IO0JA8pO0hcZK6PQKrZtDNS0p3Zj0D6Ml/HJZDyWi+irdIbq4f0a7P1VyCs\nBQlD4sEOId0uHNSlHULStUYPEimkjJBoA5Kcvw8hUYBEHlItcB/Smg2S3LnJVgsPSZZg5Xf5\nWEN9ZNMg8TZ1ciMpo0HSjcqsR3LZ0kNKY0jyqKiHVD4hQXzSv0BWCz/rUyfOurSr19aIzwb7\nkNSGXKUvf1RI1IdUn3CSW0oBEn1BSOUyW7l2sKxytQwhlfXKGFIySEXQrfXq5ewa9ApJVvjr\n7de1/qUzUkZIGnoKieDOjZ+R+DpQhUR2jmTBo5D0mAqJ57c+JF6oOEhJrkfJ+YnePeEbmgKJ\nr6twZAZICSEtWS43HIFUos/VrAepzBHcu31IfPEo8RUghVQeexBIdc2okPixJn4uImdpuwKp\n5l6XurJ+XspydgCJHgrp54+nftOqQEoyIxUHK0O6RbZBuj2pWmL2F6R6eWG1i0B1NM5UJheD\nxI/kMaTUQCohsSaFpOGvQU96dUCeXaiQFn20NutHkAQSnx/z90jq0Jg7kHjHhclwnnzdr/a8\nzqs1U4BUXl7cjASQpOAyTw4gJQdpaSBJ3DeQqH7Ci2QJGSHxxyk9JDig3tZiSFLaJJD4Mye8\nf/0CqDpi2WlPPdHh87nMn31NGSHV48JVuzpq1Va6I2QP7fLz2V9Z7CCVy3fL6iCVIF2zQCqz\nFzfT7TxJ5hSOGFozQ+JheuXoH0FK5Tr4qo/MyMi1CBnSCxqUZBSsnUv2jPqSeZ3PJ0AIiWyN\nMYBUKh0gyaF4JM588Z6XdrVwPER0INW9BpASQ5Lq2mLx1h3iFyDpg6c1b5uRyjf2BEjZQyJu\nTFkhyPqrLmz5/CpCWph7gUR8sPp1G7WmCCk3kLh6vFaQpyfdjLTw9P7ALz+59Bm7XhYuJYZR\nbws5SFn6jUNhrU+0ljVerqfNFVLO8jklhpSHkJKHlMuHa25f3mqQ5CEtIUN65tqDVK538KQl\nkMggZYV0CzcOuQUgyXpykfPAvCT94rA+JA6iJBet+DKYhyTf1Ogh5Q6kytsgkV0MKTHNK0uG\nRDrLKCQZaIQdD1lLfTLKQ8oIKQmkpQcpOUi17gwp8afGBBL3kIckbAWSX9o9AdL5/U9m4ZJC\nKmcnAEmnZ4VUPl7hIeUkk9PK1xeyh1Sv5NWOWyukDJDqP7JwgyQtn/IqXaCQ+FwNIJWYpg1I\nuYGUK6QS35Q8pBQh5axPO8upTuJSEUCqi8akkBaAlDYhkdbPIC0OEt8Oz3wjO+mEqj1Sl3YL\nf5651JQh1cmAiOTKipzu1QVanW8KpProAkLithVIdYAYQ6J63RAhWVE9JL5M9CRIP5/9D40x\nDIVUF8/lWYOlXkJwkEq0lTfqRLMLaelAyuWaRZ28+KKZgyRDGkLisYxDyUOSe0MKKccZqVYq\nQuLlSulxg8S3Hj0kXszwlRmZXRES1e8VH0HiFRTlCCnrp8nlHIm94C0gB4nkvLTgBUg1Xx5U\nyq1OExwg1as4/ICSfL+6zhwMiSe/FlJOctG+QsoKif9WSISQakXkCYxyDvC4iw2///7P+SOc\nywKTLBnugFRmG55KGNItQJdkkHhcM0hZIJU8eDl/e6yCXy+QlrpskzEs1xOYsoSQETFCklX+\nMUi5BnwqKzD5DJFC4rHhGKR67b3ei/GQlE/OG5CSg5RqDC99SNlDIoEkEx41kPgNBynr5UqS\nkUn/oYLM2ykkbleBJF/IkXldUCenLUi1VnxNI9WztlsFHg/prydfbFgkImRpVy7MMaSEkMpJ\nUoWUVrqx+HVetfLZzVoUlOdPDZKstPM+pBq95XPrS9bLcC2k6qh2M9UOTxzdDhIxpBUhrQAp\nIyRqIMl3I3hI9REduX1al0QKaeHMy5TWh1RPi6TA9TFcXcwtHP4ISfZ0kHKElBRSHez5aUOD\npCVJO5DkBFUgJT2rBEgyK1VI+nUzeQBJmjzpFKqQFnoYpD+ffdVuqeEukFLSK9xyfWDJq4eU\nIyRqIfGEpZDWFlJWSCQ3HuQKB6/aAVIddz0kXqQZJFvakfwT9Ss/zNNCSlZQg1QWeUsJ8YWf\nBxxAojGkMkTD0o4jM/MdqR1IcuHdQbJ9uERy2WzJd0DiF/hsKUIqRap3HfjkRx5w4gLzoeQf\nTeTr5G5myruQ+GP0D4N08Sdje1m4xEP/UuK+Qirx0UK6PeG9cuMkWsuPqwy75VYsQ1o5Ite1\nnqfGGan0/1phll9aSElgrF1I2UFaZEapkEjuyHYhyUJ2AxIJpCTHpA1IZWhN+jxs5usai/EB\nSHyOvlRUfOGPv0aZFjnNt8vwA0hkN6EAUp2ye5CkyluQskK6VZGfg+NLlkchxRmJl63Uh1Su\nMd4Rssd2efpVuyW1kNbMd4Nurbby4s9Bql+cv+r6Za23hRQSL/f4FiFDwvC4nWetPJIWSCXI\nDRK1kPRQSS9aNJAW+ToCqtFdIeU+JHGdoN8ZUvlIbYIrgXImBZCyQEo9SCVO+Sn3Gu5bkBKf\nTnhIEoI+OgVScpAIIGVechHPB3w2xw2hJzO5Xq1uIZFC4ptHACknD6mu+WRU8jNSD1J5dGvh\nKxnPKsS4AAAgAElEQVRLethDq38++6pdbUKFtPYgZYRULo+nAOkW8iSXCiIkynzozMN7bWCD\nlPcg5XpxYASJ5LA1BPViQ3n4DyDpheYTkPIQUioBWP4ZsB4knjD5pVrrBlLiDA2SnunxpbgW\nkvIxSGlxM5KHRABJbhRLfRPPSwIphRmpjBN62cM+VSSHK/jqQ3NZWiDLtRSEtPD9wKdBoj9/\n/9/5I5zLApNdSkj1QkIqN1hug3d5NKh+VqhewVv5E371Y3i5XvBeA6SF43k1SLd3DJI2MF9g\nUEjEkFJvRsryT/wqJF339CBRgFQX6+qFT63GkPh6M0LiZ9IoQkoGSSdHfhz6FjA6X8rbAonD\nPc5ISerFVw31Ejo/P6Ak5Z5vThy/HNEBklxid5DSYUiMM/EoAs/NCaTUh0QIabETrnqRKD8c\n0rP/VfOlPPctgrKHVGQchpQdpGpLIJWDyE12g5QipLULqYa2dj/MSA6SzDUVUi5fKUZdSLwi\n4Thde5CW5CDxIUu4yu2WWwDqzc28KDQHCcbnxGu+XUgEkOAT2tlBWhIcWVdqAqk8/ro0kKiB\nVJ76aCFlhZQjpAUhLfVryzqQtJ+/FaTb06oV0u2idFoDpHLFgRBSPeEBSJk/H7fw0FieaK33\nhFpIdaUlqxc4R1r5QxuZLzGXnjVINSoQEq63qIGUDBJtQ6pnCC0kDn8uUckFISWGxEeSGQs+\ne53lYQh9K2vZ9fIIXwwGSOQgJYGU5Ar1svDtKIbCC2Z5aMBD4o8lMSSCIamWPEJa+EiKszZh\n6kNa8jYkPglTSPkpkB6U9iCtfF7kICWGtAZIS5lBbESt5/SFzcIKlgopO0iVUGUbIDHj7CDx\nFaKEkLi3u5ByA0l/rl1pdzf0unyBpF8oYudIERJ1IZFcHFAQBqnkwZCyQlo8pCzTU4VUDkV8\nLA8pBUgyOiQ5lToAKcUZSSHJZ6oYUlrkxLQeM0AihbTIPyrGV+2qldRAum1U5ucs50zfAVLq\nQ7pdiCjruwZSUkj1uxrWCmlFSEkgcbcvWR6KQEhZvihPLq0ypBVPkQVS7WY5kQ+QSL9yjxco\nPUhJIeUBpFXPUxgSeUi8oARIi9Sar2XZ03P1oQd7kAEhZYMkxyKGlBlSlquWOjrQ0kDKDpI+\nH6KQdJHMI4ddE6lzv0CS4aPq4EkdIdWLdktWSDAjJV0iIKSMkMqzmssXglSo8GOrt0obpF8n\nLQZpBUhZIa1ZIZFCyvJAqEC6PQJeIPEDRysHzgYkqg8n1bMlBykpJOJu3oTEJ8RUt7MnwKqO\nIaS1jtwKiQRStg/LKSRqICWERHJTkod6uP8KkEgg5TGkRYYWhMSfA15kDtZzpFukLwrptiMl\n/ryDNGStQlr4M19JIeVFFrTSwiULWNplgVT/DUP+NzoDpNruRD1IctPsfMjuR/mDvvhks1RZ\nzvfrfVSFVGtdIKWlPMHTmZFWHY/HkJJCIn7QZ+VzEX5Wtj8jMaRVId3OzdZFHlFJfONVHi2D\n5dIGpMQPCerDzYkLz6NvDYMtSKXJOLBuvzlImRCS3HIh/pIEhSQV5a9m6UJiGgyJFFIGSGV2\nZEjyCVw5xcv1/HDR+0d8RhYgZf63zORfjepA4nFAIGUHqfApFXFPNSik2p5jSOUwZ0N2P8o/\nCNIqJ/nLaku7+oD2WuYrgXSbqDJ/CG9tIK0NpMx3NgwSKaTyuNFCCqk85LY6SMkg1RMNOakq\nQbwypEUh6WCZGZKeUMi4KqcGNQD6kEpMGyT+Vre8AynzIZYIieTMqb692ApVTsIWPoWRjzGV\nr1Phm2fsN9EIUtYZKUPMZlajkJLNfx5SXcMZpMzLuSXJWWf9aIZBknFBIZGDVB+cJT6TNEj1\nWsnCt9r4WI+C9MC0B+l2kmSQyiMKDtJtruLFWV6zXDzLY0iZz5WyQVrXOqDJ59azQsoB0moz\nEsdRgLQqpNurvMijbF+g7CARQqINSKuHVL8lK9vHFPqQcoQk/xJvjfIeJAmyISRebJ6DREtd\nzRmkWuG0A6k+WOch5REkOe0RSFzmCCl5SCVKSg0CpC9zjqRhy58eWDNDSnXdtQqksqgzSCtL\nkVPtbJCIL1swpDVCkhmpjtoGiS940IqQ6o0kD6kszOo9olS3bCBleiekcq68ASm7GYkipCyQ\nrAgCqf6bDfg8KcmJyCKQZP3nIFGAVAuY44ykkNIYEoUZKQdIt6waSMldP6hnS6k8daqQUhZI\nsrRLdsl/yR1IX2ZGUkj12+j2IZVngzjAPaSVT3OoRmaElBHSyssf3qzaqR+uG0PK+5B4KZfk\nH5MQIjVSl1w3Lz24kE2n25D0sBk/LMeQ6sVluci18D0ggJQFEtUT821IuQspR0jEkGop61MM\nVO91Okg5NZDKl18OIMmZU856hXwHUvkcRLlAaM/I9CDxqdYin32vkOhLQlq7kGitZ54GaW0h\nUYW0yNQkkFaBVO9N5XodL/OVjdIhDKmuLktPGyRqIa0NJFno1GUE72mQbB21MCS+Yrfo6c8q\n16cVEq0BEgVI9ZKUQaon0XwPieptkhrxHlJuIC3kINXrEx1ImR8St487GCT+Jsg9SItAghkp\nL11IBJAWnvTkk/QKqajvQaIUIJXVagOplO18yN4R5delDUgrQ1r5FtDtWoP828urPDJUbhDx\nBWyGRPzZcX5orV6w4IAsl9kqqDGk+umgdR1Dqu8ESBQgEWWwInvmpI8pjCBleWTPIHEAB0jy\nGW+BxGs74mdQdUZqINnVjnKa3oeULTrlqrlCynxer5ByB1L9geMVIeUtSHkIiTykbJCyGU95\nA1KOkHI9oEGi2o35K50j8ScgEnx9/Vq/HqhCyvLVQVkgUYG0ekjJIKUCqH6mwiCllRdwfFmh\nA6kQ0ydNb/knhrQuA0gJIckUVwpBfOlp0TP6gqoHaSELmgApt5DoIKRSTg8pc6xxee2awwYk\nOgdJjss3CgDSUuNZ/tlQrhtDqtOdflyY457FGyQCSHyTl0iunxqkPISkt9S+IiT+p4rq7dXy\nj63UZVz9N8DKN4HXpxLKJ8Fvn4vdgLQiJFrWCql8TV4LaS2Bv9Zr6QNIBJDK9xvVD5nuQOIT\nDbmBuGiwBki3dyMk2oYkUZIjpPpSmW8UknDQwBFINIBUo3kMKQOkTPLliwIpyyMfcoqmkPi5\nXfiWVoa0yPxtZ2BLffjhTkjaEvLsIp4j6WOH/C+pfzFIieXk+hXgNxVr/VZivqO0li/1Xutp\nEUDKPUj10a206sUG/r7JehLmINX/MaT6lkGiHqSFIREv7Vai4lEhpfU8JBnhAVIySPbUKUMi\ngERbkGgLUj3mNiQKkEiPB6eHA0ikkORj4B1I0nseUsIZKTOkbJD0IyUtJOKvRA6QytlogJRL\nqJwO2Tui/Lq0s7TLHlJxtMoyu1xxywwJfOV6DY+f00qrPanAkPjhPf0G5OQg1XtAAml1kFaA\nlHj4q5AW6kCq0SQ3aBhi6bUWEk8tNXJ6kMhBSgCJFFJeOFYoy0cLu5A0ZBFSfdLmCCQONw9J\nZiSAdIvGHiTelD9024OU+5AoQpJFY96ERAyJGkj0LSCV9qyP0WU+DTJI9TJeAymvW5DqV7dm\ngZQ8pGWpn9xIAikFSASQSkeudZwrXzpukHIfEodZhcQBcAhS2RQhZQlbhsSnSAxpkSUUGSTO\nBCBZ4AirBhJ1IMkVeYZUIzRAqh8SIYBUgjf1IdVW4JvJfIwupHLZjSHJrSp5Hssg1fLFGYkY\nEoVzJIGUA6THfWfDg9IGpLpCS3XxlhmCSMo6aRRIeQfSKvvfLgtQB1LiJyZuh1mSzGs7kMgg\nZYVU13O5QoIYzjJQl/7bhaQfoAFIeeF/Dk1G6E1I9W2+0UgCqYT5CUjkIekpkoNEA0i3Uu1A\nqt8vQR1I+TikvAWpHIGoA2nhpvWQqO5/PmQv3eWyLDqQ0jakVSDVyUvWfknux95mGPKQig/+\nB8jriVKFJNfryjdNFkhUn8YGSHXiIf00bTkjSeXB0rqQM0h8x5JPYXMPkiT5PFp9vE5O2QOk\nLJD4mVAHib8mWU6Z+GpxhCQ3ko5BynbprAcpGyRu+XwvJP6OmJqDQkp8x7uFlBSSnIouXBOG\nRLuQskCi7wdp3YHEt3luMwk1kMqwtVZIS/0n0FMf0jqGtEZIZJCyQOK13bLI+MqQcg8SBUj1\nIVKGRHL5GyHl5CCVYxdIZJBIPuEjkGgDUjmCXbCot1FJbnGegkQOUrkyAZDwpnD9RCFfaDRI\nZJDk4xYVErdVBxI1kGoblH4RSPLQKrWQpA34+KdD9tJdLstiXT2keruIT5JyC0mu2uUs1Byk\n1ELKK0Nah5BWhsSTykpyCTtCoi1INQxlvIuQNMZrf/IQXKakGsQIqTzHpOFKcq3aIJUbkKTx\nsAgkqt8cTvxe0pNqhmSlQ0j1MobUoAuJJ1gHSUaWGo1LC6l+pSBJ4xRIKSsk6kIqrZPkvi5A\nIjn74zbah0Q6fikkrRXPSF/n8vcYUs484SikLJD4cnUXUjZIJR51RoqQaAcSZYBU/kmeX28w\npKV89O+2XQuJWkj8FfmL3sLkG/ECiRBS7ftE2vV9SCRXv8ulD4W02FPfAKk+EXcUksQ9qy+Q\nCEovkGTtVXoyQiofYuLRJxNCyj1IxJ8tKpnbrTMHST8Fz+UbQeLL8bWOMONThuYov32hpZ2H\nVK7RrXwJmv9jSHkMqV6ui5DK67dp5XZD9ziktYG0Rkh0DhI/NiOQVoaUShECJBZjkGqwtpDS\neyFxaAdINmhnnT5roDtINIakV9kzDSDVjwIiJDoEqZ4/CiQaQKIAqTzN8C0g8fN1unhzkG6h\nnPRiXYXEj+dFSLmBVP899AApdSDJFXeGJLOhQqLUQqIVIK0aXRIkVdoWpLo2vD1VTaQzj4Ok\nC7MxpEwdSGkIKV8EqYx9+5CyQcoBUlZIFX6FpN+9oPegy6L0Wkj0FSFRF5KcInlIeTVIawfS\nInecEFJ9NKJCkufG5XO4LaQlR0g1EsplVoFUPza2Bam8uMpl2wCpfF0lQFpk/uIHMXuQOCSo\nOqqnCgqJdiHZVQLahCQnNFuQshwmWXQS1W86MUg8V2aoRSneABIlDyn3ICWDlPqQ6mUPhcSj\ngxSc9H8CacPRZ4O0yhfUrRLACmntQVodpFTvxQikPIKUGBJ/wkgOU3OUf9liDIlaSLclYyFx\nq0SmEaQsXcnXYXnjFSBhgCqkDJDSMUj1N4ZEfUj11R4k6kCSK1tJ7+Q4ZvdCSggpC6Q8gJS3\nISUuOkKqTbR0IdlBvxqkLJA4bPnCNkDigO9BynyvqX674yKXktzSrqztBNJqkLLYBUjlxtPt\nG1jKJEO1RLdiCiSi0pcVEumMpJAyQNJxL0IqH+EVSBkgkUFaFRJxdLSQMkCqN0/K1BIhwdyi\n67wuJFmptZDkrucxSDr6DyFRgqNHSNSFVA68GKSabQ8SD24LXEGhHqT6TUfnQ/bSXS7LwiDp\njBQgyTspDSCtAVLSfwZm4RkFIWUPiQKktUJaA6T67VJjSOWAHpItIOqNYYRUbhU9CZKGUP2/\nn5HkgbZ6UIQkvwwgkUDKCqlexe9DksahMaTaPgYJYv4QpHqph747pNxCygFSvf5g6Opssgup\nfCHw7VwKIPHzDHzWtQmJGki0BYnqUoyv5fEprQz+crEAICWbISokAkgrq7mlBa411BPvhQnc\nLnERfw1pgFRz0zMDjeZnQiLNmhgSP5XOBxtA0oCvES+Q9NaQh0TEH8GifUi62P1ykFaDlJoZ\nSZ6DM0grQuJflrq+WwVSfeSbJy0qD0OkpJD4okWGGSkDpJX6kAqPVW+uA6R6SA1EhZSpgcQv\nLfzNJWNIWSDV3l7gwYYyLdaVFCmkJJDyFiSSCGwhcdEp24VynsTqN4zgGg0gye78iG6FJBOR\nlGMIiSIk4huvMhszpLQHKRuk+hJDIoOkPOWvrwQprxuQ1sOQ8tKDVDcpxy2f/GRIawupbEQr\nP0hxHyQ9ZRBIyWJ5E1LdqPazPgu21v/IIMnCsGy+BSltQ+I39GLyRZDIQ9JxpAcpkc0SZyDx\nV2AcgUQRks3IXxoS33t1kEpQDyDlBtLtY7AO0u275xpIqz7aA5DkhpWDRAyprOdaSOVEaCW5\nIbuuum7qQqKyiqddSPrTvZBoDMlmo/LHwm5lbUY6o3YhGcdTkJSMh0QIqa4CB5DoBCT5hYsj\n382KDZyhKb4WpPoddWtnRuLHHOwcif8nthpIMCOVf9PZQSrfBVG/a4t0ebcH6Xa6VAuqkEj6\nG2ekI5ByB9J6GFKNeYVUb90Sb7AFySJHIPGBWkgUIfFk6iDpMcmG9pIYUpLqSs02IfEsTvwZ\nqBEkPvHbgZS1p2gLEimku0L20l0uy6KeCeXVIK0DSKuDVF68hflgaVc+rFwhrQIpO0gFQbmw\nsA2JC3oIkjBhSLxaH0Fa9yDlU5DUTpJSlN9giXUSksxnDpL9dSckGkEqT+nJhblNSPw90XQM\nkkyME5LdIh1DogUg3T6cUe7U6IXyLiRCSCSQEkCiLiSqZzsVUrlHS1dCqgdaJeoFknjgY56A\nBLGDkPLSgVQDjMvRh5QFEs9XCKkul7pLO9qCVD/bWuqVtiDVTI5Bqo8GOUgyOBkkrfrxkB2n\nD75qJ9cO9iClBtJqkHKFlAHSkg2SPB7EX6MqdgBSbiGVywkrFpY8pPLx2Xo5Yl01phRSbiDJ\nSC6QVjJIFCHJ/ghJ+l2fyqsbMCTOz51z3weJNmYkOM+AQO1AgqvRA0h0CFL9HiKDRNuQyIoj\nA5Q0oEEqP3wlSHkTEn/qvL6deNnlIfHEpJD4enf5cIV8rslByg0kfqSiWdqNIeUISR8Yp+sh\nkTuK/JavgCT/5JD1hoMkK80NSFiobUi9pV1dR9Y5ZxuSXBioGy8JV6l9SNJmG5CslTrpk0Fy\nZ0HyONAWJJ1jbEOElOSJVIZEq4O0CiSqkAqYtQepPCVk1xpqYWkPUkkKSX7N/9/evag3qkJR\nAJbT63Q6bZX3f9fTqMDesLmomKCudb4zTYwCIr+3pGkISSchjR2zDJLOQmK0xyGqzF7bVjKY\nU7KZ0DTff65WARJp5e2x+VgeuxudgKTndZgPEPO3ZyUh2Y8ZZiCZvYdpmzksDieENF2bGBwB\nJHdImWbxIbmPQYyQ/nOQ9DBBmsT0WoY0jmYCaXpLaRrjIaTpjvft9Huc2hdCMkNCgqTdgHAH\ntG2Q+F1gConYLoFkh3IIaUhC0hlIugiSoz/8Z9tgITEIgz1e+qMrAYl0kpQrQBoESLfRbY9I\n/XSiE0Kaf4ncQRof9YaTHggkd/fbYpIg3d5Z0j05h/AhabOha0MyYyQNScchDT6k+eRnIGM8\nC0l7rZwhDcNQAklHIJlroGnpDKQhaAddH4PNaXNHpLNBMt/4GFwjpSBpAklPkObPgt9OmSyk\nCUkSktbmHHG6xCqHNF5lTZB6uykNJLqWDJIugETK03yG6dnwn4WkZ0jm1TJIw1pIui6keWcw\nveEagaTprepBzx/nc6UH7aDrY49a1u0pIfXuy7yH3n3N6gJI2kIa/+jIfwGk6YbEeDvOQhq/\nKciHZN6tCiAZSQlIej0kvnNOQRrcM3rWsg4SmcXVYiERUasgaQ7JXAEKkCZfDpJ2kEgd6yC5\nQ54PSZ8PElVSDmnoM5B6Cmn+dOx8lzoFqZ+uoJKQfrf2PLmf9+gZSLoyJDPUzRxrINFZWDMt\nJDtTAMmyKIBki51m5JD03pDcC44R6YtrQxr/zsQwH2fsqSCBpA2kfr6tMNFYDmn+ZEMhJP8a\nia+oNmPDvhSBNG/jpZBcjQwSO4mRpgWQyMHKtIe8aGp3s4iQrBBSIYNki/cgaZWDpAFJiLtn\nNn8ojkIi7xVlIY1/usVBGgmkIc0SSiCZq6RWIY3332y8T754V+XztCWQ6IumdhmSppBYuQyS\nWyfrjUHSu0HSA5lwMkj/MUi9AMne9XZvKE1j30G6/ZlYAZI2M8YhzSeHHqSeQDJ8opAmbdPn\n7saVWglpMOOUjjC7PIWkh3JIpEoHiQ4jCRKplb+oa0Ny/zNIwz0gJRwdDVJv/uxR6ojkQdI+\npAmFgTQzykDqOSRmqRDSfHFWBklXhDSYwhwkWlEBpOgwKoVkC5MHcDEkAkFPH1pX5qvQE5B0\nCEkPUjtIAwNIcXtjzgppyELSAST7yIPUb4U0/5iOSINeCcn+MpPZvhySv7QmB6QWILFpYZXe\nfmAlJFtHHpLQDNrAi0AaDCTqyIM0/xbSYH6HKANp+n8DJKpoMhJAmreGBKnPQ+rnEVQCiR6h\nMpDCirUw2CICyPi1jfMW2QSJ/Tbd4JrFIA15SO61DCRye9Ee+lNNNzkkpH7+uGkZpJ5B0gTS\n7W/SO0jeEWn+UJ12kBy3Ykjk/t30OAop2EjufkIIaaaRg8RP7cgoz0IagldWQNK2gdli1kCa\nHir7t6FSkGhflEHSp4dkPxi0ENLkwd3kLobUi5C0q2sxpHHKWkjunKMQ0jwe6EXUvSCFFZRC\n0glIpJo1kMJ1E+e0HXdBSATUMAxZSDoJab7T3s/HshCSuXsgQXIXRXO7tQDJrFQWkilkISQy\nZE4GyX7paRRS2FCvhYA0Q9KTkLWQ9HZIvYFk7/fpBZDIRdFdIOkopKDiQRpmMUis6vWQhnBC\n8oj0AEhJRyeGJF4jaXONNMqYvruOQDkGJPPmo33r9MGQ6Ex3gaTphx0MJFpfTUjs7mc8h4XU\nr4PU2yOSCGm+8iGQBvp6b5/YkiKQtIGpyTMdg6T7cCstgxQuvhqSWFxrkNykQkh+C+OQ2KOT\nQ7JcYpDm33AIIJljyXQuJ0HS5tA1C2KQNIPkiiOQenLDexMk/lkEuwSFZJaO7YIpJFbYISBN\n+S812whpsOtaGZKZ/6SQ3B9fHmKQphvdFtLAPMQh9QaS1u4XXgd7JItCmn8WQXKbZTkkzSG5\nESG9S+8GlgApnQWQhGEXvrgGkn8OF1tYgiRVQTp7ESS3w8rkyJCiR6SeH5GykDSDNJNxkHQI\nqTfngVpHIM3zuyfLIUk7/PkcZuCQhJ7ikASV8TQAyT0vgqT5DRdAylbhQxp6Mbr3IZlTNotG\nW0gGie7tfzKk3kIiC8yi7BMZkntYB1LkjoA/r310YkgakFZUERyRIpAGD1IfgdT/p6OQ5psJ\n9OYChaQzkHQvQ3KrYh6tgcSKktIQpHwxNSANe0Eq67bTQuqHkiNSAEnHIZlCYpD6piDZGeZ5\nAYmXAUj00wwUEkNFTvvmb1Uw7wLR486vojQkPX8nJIfUWxXmLaPeXDhRSPzUzjzaDMlt2uYh\nifM/GlKuEy4EScazFJIugNSHkMzTqTnzP725Qb4Ekp3tSpAiAzmYWgpJm6ujDKRM/VLN9ukF\nIEXjQeqzkOzpXh+FpN1BKYCkDSRdFVI4TluDVLCk0KZw6t0gLW3gSSFpCil2hdSz66diSOa4\nNVazFJK7bopAMg8GLU1aBSmbA0OyAaQtSUAaNkBy76CugKQLIdHGCpDoq3OOAalkYUBakgNC\nmt60cSdwtSBNTYpCYoencFXMg9YgyXMWLZyvo3lI4eznhFR0ajfUg6RFSKxJ94Q0lG/aQ0GK\nzp+FNK/kUL56i3JSSP0iSHqGNCyBpN2tu57wMbVLkMxs0zPW3MRK3hWSBqSVKSz30JCikrwj\nUjEk+1IUkl4GKbWSgFRSeCGkJau3LGWfEAIk+7wPIWlA8gpbtWRBMeshmVNXQFpURRySJo9H\nRObz3oNOXSOZ6yIOiV32FEKS1CQh2SQgBVMuBylbOiCtqSI47sQhmbvd49f1yJDsJEelIUji\njPbGXWHBgLQ1gGQmbYakyyBJzS1a20HPX0dcMCMgyYsC0sIqQi4lkKYd/mZIWoSUuDfXEKQF\ni8ljpwVI8dkAaWEVfVEGc1p3TkjFI4ZdTm2EVFjhOkjFxacqBqTyKiJw/OmAxBYwT1qAtCmA\nVKuKtB8Pknlyuxc+Ljzfmevd0CeQzPNZke7vC6lwRkDaoers1/wV5NCQEmGQhnJI9nCUgOT7\nAKQVdawsfpeqLwipWFIakvYg6UdDKr2Ubx7Sro4AqVoVqfO5KKS+HJKOQKLOFkAqS3OQ1g/J\nE0IqLPZ4kJYfkczfKbafXtgIyXezFRIf7/n5doGU/AMVxTkopPQhqagMQHK3F6YJDpLuBUh9\n6OYckOhguhYklTm3KyrkrJCIqAqQdBrS1tUthWQGS2TmcDjwglOjXLHFK0FKnzKVpfhICUhL\nqkj8UqxwMNIXgxSMBw9SouQQ0ioF54WUW5dTQ6pzROI39VqGFGztRZDI0nUgpS89yqIAaUs2\nQeKmKCSVh6QZJDZBk3sTLI1A4haEgtNndnTpSpAqHJIagCS0Q8ipIAWXUFlI4wxqH0jlo2j8\nlanCGacfsfp8SMrOq5ZAGp+sk8QKrQCJlbEXpHxDs+tyJUjKQbK5CiRVAokuvlLBOSAF7c5b\nuxSkkYwASZVC0nlISniUy1JIclRYqYWkio5IGyF5WL3BtwpVycHCZPWtd0DKQhovgHKQxiHD\nINm3j8wE8nIxpAWnRlUgCWdnFJJW2WU13w0sHPnKYnUq7wpJVYMUbrrTQRK1UEjKm6IdJNVL\nkLQISWkLitpRIiQWuxEWjMTdICkydXdI9jpMKTKhoLxERfeAFJ4SB20Vzpr93BXSvz+v3S2v\n7/9WVpGDpBR7WgipVwEkVQtSwWWsdFIiL1Yfkt9GQirTcv9lW4cipRbB9O5xTLEvlUNaeUV2\nOEg/z53Ly7oq0id2t/sGs6TfTWHfNiqGpOZJ/XyQ8iEpM0M8bhsUQlIiJHFQKBGS4j/5qMxD\nip2AZYewdFlhIM3neaWQhAbQdpdFDcJxtWjBYBERUqbUO0J6757+fo2Pvj+fuvdVVUiAlIXU\nq/mZmtAwSEovgTRKWgXJjYGFkJQ3VSg7hKTIEZD+ME/IcUo69VHBqCk9Fvgt5JDM6xRSrLGP\nFi0AABhYSURBVDzWAI4herwUnlNIiyQFmyloqnSw93NHSE/dl3381T2tqkJ0pOwRSfUEkwBp\nksQK1GpaUNstOkEa5zfzGEhmhnh8SLltqtypnbu0kHffSoDkdtmeJ1K6nUOGJI9O8oIKXiSt\n9ZcaYrOLTTRVKXmBlZAWXt5FIdkzzMYgdV3syTyFJFZGGpJiz1U5pJ5DmjsuDUnuVztgDCTx\nLIEOKnJEsgvQpcjQUrUhiesQQBIPlf6K2TpWQlLeISxcM2GvxCGRvl0iSYJk/m8SUq0jkvYc\nuZM7NV8eTbNwSGpcWvVeh6Qg+Yce07HsPE8H87CRGI43RRee5iK3qO1RzI1iMnQHaY/vbWa6\nAx92gxQM1gJIZh7vqEZXmRvLQaLP3cFQaa9tmbOCGCTlvdgMpN9rpM/v8dGmayRzWyeEpLSZ\nkoLEh/YMiXZeb0dQ728rAily/sBGIYdkrusVWZpA8jZZMCiUZpDE2TV7NM7PSxAam14Fb03p\nTlqE5Jep6M8AEm86L1OFzY7slebHFBLXFyGgxPntc78f0pLuefv7hZy7Pf+sqoLc37Z3Fdyh\nSJvDlTYTtQSJ7lYJJNNnDpLbCKxzdfCETp2XtD/osCHF0P1dcK/BPuVcJhjTNO+VsA06DSnY\nbwsvBUOJvcQGoICOTyf/ckiSHfYkAs2b393n8Grxl2Iu+S6LzEBrbw6S/vc+vo/09Ppn7ftI\n9G0i1SvvnM6HNH3UR93eSRo7YVxmKsf860EaJ9kLKRX8E44or33mZwjJ27F6ZRdBuo0WatQu\n6o0vW2UKkoqe8WQgmSkEtL/i/mqwH947BNQO3x/4PVcGibeVcx+r8ImJkKRz2HYgba8iuDzy\nT/AIJD1d5CgKiR3O55Ot6RN5dk8/vgNFMvW1krZS2LP+6/JmUFrYhNIIVHx+1o6YELbcIEAK\neQhLh/sQUoRStEXCDEJLaMlsjKpwbu/JSkhC81mPc9UBJKGSlKSDQYq9IxuHdDuZG+bjUN+z\nbpuHJYM0z0bCIPEB429WcUMnhlgpJFK7G4rBsAqW9iGZXYXUGnFFgpGo/FkClDIkxRdjrKIt\nKYc0vTAEc/hdnIJkVyVYVZ+YnHNC6jkkPb/F0PublEJSpA5WpeHgBo3bjfm707iGYCP4+8Il\nkPiAFMIg8WGkpIb6C7OhFlsJOl+sPE8t2wFkIHkrEzbb1a/MB89VZAahKLsseUlp4YRXiQ/9\nHBBS5OMNaj4WaQZpdKIcJBM7FA0k0kkSJLPFTXfbFxWbbSdIpppBDbQpie06rx+HRMZxESQy\n51pIXmWKL7UYEptbkYmKffDczuH1LfvpQaJbWKpefM3lyJB0HpKaPqgwv4USgdTrJKS5f2Nj\nxm2ccFAsgCRuPzYCtYFkl8hrGAY2W8GxzG9aopHk1Xh5yjtsezZLPs0TUPaYZ/YnZA4BUtDH\nBU2Rci5I2kCa5hu3Uu+ujDikcRuMc7jPp8518Dq9DRmFlHiPVtoCKj2DNNwHeqc89z7jfLrD\n7ymvhSQ1klxfJCCp8Gn8IBdpjpvPbjTzeEERvMsLllqSs0Ca3oaNQZrf06dAyIE8B8ksMP8r\nHnbYFhZerwrJLyASCdL87zpIwS6Er0JRVkAKm0G6vKwIQPLDLox0FNL06nQfuxIktpg3jf0T\nfzlapjTDdkg6hGQWXA5JPBavHIzZHom1x7RiJSR2FgdIMiR7GCIHLZ2HNE0uhyQddTLjYjdI\nBYlAygyi4JeqpoXCz4zeC5IvgO+6AGlFFTtB8n9HKR5p8KQ3S3ZbxyCFC1WClBtEwZ2s2HzL\nGsMXXHREIo+5n5WQ1h9NY7kCJC1BIh25DJI8LTPeHglJlp9MY5DYop6fQhF+HwOSJ0d7kMav\ny7o3pPx4y0KSjhoCpKXf77HyK1PJ+VzRbCvKX7usvXpTiyGFB7aKOSgkTSFphmpnSGKy420F\nJKnQu0Oqvd92pW4seOmXNfnfTVF9xc4Lafx/XCT3zdrbIeWgZC/u94I0l74+rUIiRRWW5N0r\nASQHSacgzXPo+0BKZi2kcBIgCUXt08SlOSgkS6YXIOnjQYrcwvCz8x/Eu1sAaeUi9aoog2Se\nT4u0DylyByPMaSDVG/1tODoapP6IkAreAC0NIAllNZFDQ+qTkHQpJP+zDPUhVSsJkISymsjh\nIGlHKICk60CqHkDyU/FtHEBaU8VKSNkA0n1T/f3Qh+c0kPqGIdXLaSA9ugHVA0jF87QQQGo1\nZ4GkAelIAaR1i1Srgh2DNAEFSMhDc1ZI5EYcICH755CQdHhyB0jIQ3M0SOEHVBkkLUAqCSAh\n23I4SNpc/wAS0lAODEkbOjOk+SuEtJ1lQQAJ2ZbTQRrnWnpAugCk891wbivngaQBKRVA2jeA\nZMo9RACp1RwM0i0CpH4rpKMEkFrNSSCZx2eHtD6AtG+OCUlTSBqQCgJI++YUkHQI6TBXPfcK\nIO0bQLpIAGnfnBOSBiQ/gLRvjg9J94CUz/l+tzvIY9fw6JA0h9QbSLjZwNPK9yiWZtMXlj8i\nR4akAak4gLRzjgvJnMeZ95XIQQqQggDSzjkypN4+lyBBEs0VID10Dc8Fyd1sWPp7FGfPQyBt\nqHKFCkBaWIX5ShMLSQNSNoC0c04Dyd1qACQh54f04JPXS0E61mVC1RwM0ormAtLSKiKQzFcI\naUASAkg758CQtAfJ3fLeBdKxFQLSzjksJJ2ARN5kYgGke1e6fskVkB66ic4Eibwif/wbkO5c\n6eo6AalOAKl2akFaUsqGOleoAKSlVfhC7gXp0JIAaUE5a3JeSGG2DSZAmsq5S52AVCeLIOm7\nQDrah9W8ANKCctbkHJD8V44PqXJl1UZZrhTFHh8S0rpSAKkwaxdeWWWrkHLFHB7S2kYDUmEO\nD+k+w+xhkJRf++qarwKp5MOoDJJyDwBpcznpUhQg7bpIzSoeBmnd0geDlD3gZCDR19f39woV\ngLS0iuWQTM8A0uZ6ASmWw0Eq+jUjNlMWUukIuyOk2vcIG4FUulIPhbSuFEDaG9JKfhuaGlmu\nAqRsJ6QhzX2Rb0hMRWJJQFpYRREkxZ8o70Fq7kSRgLQUkjf3GkgqmJ5dZEtW35UBpLKhvraD\nV56jNQbJHdPTpSg2/P25lWSDvKzInFqClOrMUqOZXAZS0pEKHsxPFH/gLyX7Cp61Dimzv743\nJFun3Y+ljxuKnoRrWhKZI9NwQCqtohASP8FwG+bwkFKl7QaJHNPTxQR9LUGKrQNRemdI0mhZ\nGkCKbB5v6tpT8DtCSr6mHw7JTV8GiW3KFZAKVtsbLas22cEgpa+QLg4pM8zKICX7ohSSMipE\nSLF18yDNSyg6Q7x2QFpURfqA5LaD1DWLIClv3rIODmd4MCQ6MldDcguvhOQ6bzEkOnOqdsV+\nsFfy631BSMnQHSfv/hQkn4w89SKQYjsVsv7JFti5Fe3zYkjcQx6S8h+VQfKnXBqSuMGrQQr6\ns6iDhSGyGlL5wTO1SDuQZBtiNVSFD0nYvbFHQhdkJ5E6WP2LckBI0ZWtAUl5CwWlpFtWCVJs\n3KduMIrL1IBECaSL2ReSsN2LING5FP0hzHElSPMZd01IpCM3QgpmWffOahxSfAdCl/EGRlnr\nXVFSU4shTY2MQHKvyEsLkLyV4pD8FU1CUu4dYSXPwfprWQ4ISditef3DbZh/t0Aq62ARkixi\nESS6LvIaeKvnr08BpGCIyR1YBIk3KAJJ6KmlkITWivuBcFcQgcQ2/7IcDpKiW2eepLz+WQ2J\nUaRzF3WwND7ykMSXeWlpSKQ76Gil9WQJ5CF5HzuIF8EgTT+rQBKqL4Hk6madKnkMj28LclBI\nbjczKtoAiW3UJZAyRbHmyisxr0D4cjkkNyMXUxFSMESLIBHaj4ckaFI6fLckvXPL5GiQ5n5R\n2T6XIdHOIgUEy62H5C2qeJWTe9bUFCT/4jiEpPjZSAkkthLBjJF9SrCakVbbJSkkf30pfb50\nfKNKjun+KNa6CCR3wZSFVKbq4JBoP3oMvC7mJz/TBOXNKz33CiEtiYwwPkrotjaFKNbSbZCk\njR4yjUBSgrj1kPiSHiT2InndX1zYHBUg8bXx541BinWAmINBoutG+4RB4t1ihy+bardCCpLQ\n5aQp8iYLBk5YGF8FaUNxSCpYzaDOcElNl+T/sgb53dMQJFJGMMjNwwqQQqvhqMjn2JBYl8iQ\nbE9Lex0VdpkIif/0RrcOZ2LbRoYkbr+wbXzM+ZDCRcsh8Q6JQpKrkMLHJyvQL5bZYovnIfFp\nwWCPbBW+cfwqWa1+M04JiWYbJG7RG/YLIAmbkJ+6xbZHDpKmb8b40v0q2ZQkJG8EBoPJH3GV\nIdF+V8LiSyHFt4L8XMWL8jvWnYrrgpwHkutWNnKTkIT3jSRI3mZiBiVIvPYopPgezw3FpZC4\nnTgkvx98SME+JVKrNIJ3gBQMcq//iyFpdiQsgVT42ZRDQ1LBkzikyNOtkKLvPWyBRNq2FZKs\n2v81k82Q3N1Du9yDIMnbgT4Py7o4JOl3vpZCYj9ikLytRE7zaTeLu8IEpOiCu0FyBQVlKO+n\nOLqkWuPfZ7IeEpmX69ZkFkCqVwVf83WQ6LMQkvfMgzRtzEJIMS4JSLQAYZiJiwa7Bj4yYwNe\nhBQO9qDW+C0JBikc3SHSOKTwQ6YEkriJ5MayMt2rUUgi41hOBon1iLwJhYWDnVsxJOXVJhYp\ntSO2HsJY9jXKpvzSREixAa+8BZyCMkjxuVKQ+FTX7hCStLR/6BVaJzUtPLxJkCzWS0Ci2RGS\nvKfyIQW9vRqS8q9g6DCXmxkrNIAUmTMGKbIghbkVkr9ByiF5e4ywcdJT8egmQnJdcS1IpFtT\nkGLjnu/185BcH8cgeeO/FJJXowrLcIO8EiTyUQuVby17NV+BksrzP4hHZpEgBdX7kPxNFH8a\n7kFD0nb6FSFpoVt3hxQOb7HIxZD4cxESO6uMlloEiVa8EJK4M/fmlV4rhBQp1zvKeR1h9jOx\n2yA+tDyk+L6S5ISQ+HYohySVEAxXxTZ/OaTswUN8oo8BqXjl3EQz3N0c5kdwIz1WZhpSdEVE\nSNo/7lweEuuRKpCEDuZTYyNvFSRhB+qGDdebOecgR4tiSAVHGNZIZzo/L59KIEX3RBlI5Fm4\nKyrbI9DaAYmnHUhsY+4BKX/Y2AkSPRhsgxT8W7JwIaSiNYlBstegpJBrQfLftT8ApKCwsEIf\n0vh/KaQiR7a5CyBFxqA0a2rqYkjBTFsgmYV8SGEhyQ4HJDt9LaToBgtPDmJNFh75DeB7xihe\nqfa9IZXuJGJT4ytT1nLxkw+6bE0iZQCSTjLQ3hjQ0qzSZ/i85wGk2DAohRT/1o32IRUP1rAA\n8mRFIW75u0BKd+QJIZFI6x7ZbBFIYf+Gy6tIFxMDmTGf/KRNFFI6GyBlF+CtfTgkf19XAxIt\nAJCi31dbFVL0oO8uqfPbMzqayHBtBtKiMVpUWJOQ+LEfkLxJ9p/InElI8UNHovaSXw2LbnUJ\nUkn114HkLUuPIYBUKdshiYvvAClabZuQVNE6FVd8DEip0q4JKXUKVQRpWe0PhVT4q9Jk1NQj\nUpitx7cKkKJnA4A05TiQYiWHkIrLW3L0PDKkWGkVIJEuBKRgSvJapOZAUuzH5rKIqaIFAAmQ\n9ku2dxuFpBUgFRcHSHeoIjtQqkOqVBg5+Syr/LKQVPCoqA3xkuYWAhLNHSFVzdIBvmAUsQXu\nv/r7QdpYqg8p0corQto8w2MCSMXF7QEp0zeAtGKGxwSQiosDpPtVkcjFId0/x4EUDyAdJ4BU\nWlwtSPRT+YB0mix1sXQUnQ/S5lIB6YwBpNLi6kFyPwHpNAGk0uKqQ8r3DSCdN4shPeouy36Q\nthdVWiYgnTdHglT3MyD1SwKkCweQ6pUESBcOINUsEpAum8XjCZDiRebKBKTz5jCQat8vBKQ7\nVoGEAaT1ZQISYnMWSHsEkJDiAFI8gIQUB5DiASSkOIC0PoCEPD6AtFMA6VoBpJ0CSNcKIO0U\nQLpWAGmnANK1Akg7BZCuFUDaKYB0rQDSTgGkawWQdgogXSuAtFMA6VoBpJ0CSNfKw343t14A\nCWkggLRPAOliAaR9AkgXCyDtE0C6WABpnwDSxQJI+wSQLhZA2ieAdLEA0j4BpIsFkPYJIF0s\ngLRPAAk5WAAJQSoEkBCkQgAJQSoEkBCkQgAJQSoEkBCkQgAJQSoEkBCkQgAJQSoEkBCkQgAJ\nQSoEkBCkQgAJQSoEkBCkQgAJQSoEkBCkQgAJQSoEkBCkQgAJQSoEkBCkQgAJQSqkUUgIcrCs\nGOX14Ryi7rKghZvTfAMrtRCQUkELN6f5BgLSHYIWbk7zDQSkOwQt3JzmGwhIdwhauDnNNxCQ\n7hC0cHOabyAg3SFo4eY030BAukPQws1pvoGAdIeghZvTfAMB6Q5BCzen+QYC0h2CFm5O8w0E\npDsELdyc5ht4AkgIcpoAEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJU\nCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJUyMMgvT91T+8/j6o9HfpN6g2288NsNNK2pppp\nGthqP348S/22rYWPgvQydvHzg2pP54sMgAbb+WX+WAJpW1PNNA1stR/fx7Y83czU68IHQfrX\nPX3pr6fu32OqT+erezUPG2znb2umjUba1lQzbQMb7cev7u3ndtR8q9qFD4L03n3+/vu3+/OY\n6tP5cM1qr50f3Ys5WXJta6mZroGN9uPr1LpbIyt24YMgvXbfmu2yWspH92EettfO7l3P45S0\nraVmugY23Y9jIyt24YMgdR390Vheu8+33+vO28P22vnlN+r2o6VmugY23Y8/3UvVLgSkMK/T\nNfJvR7fZzrYhaQKp4X78uJ3KAdKu6bq/v3us99uJSZPtPAqklvvx++l2DgdId8jP7VZok+08\nCqQpTfbjz9PtOHkCSE+NdayUW+OabOfcGtK2xprJ29FgA/XL9H5RxS586F2775bu4gRxt3Ua\naye7a/ftbjk108wQUlsN/H5++R4fVOzCB0H6M961/+zeH1N9Ok/d7U3vsU+bbOc8TknbGmum\nPWS22Y+f4/2PWyp2IT7ZEOb91ps/4zt0Tbaz8U822AY22o/f1tEJPtmgn+2d0fby8zQ2btw3\ntdhOc+ZE2tZWM+cGNtqPb537DGC9LnwUpJ/xs7YPqjyXW+OeP+zD1tppIJG2tdVM2sD2+rEj\nkOp1YSu3URDk0AEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQ\nCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQ\nCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQCgEkBKkQQEKQCgGkJvL19tS9\nfY4PC/5A/fTH5t667n31X7NHKgcbooW8T3+L8fn2F+pLIb3+LvAHkFoJNkQD+dM9/R6Nfn5/\nfBdBGtN13/u2ClkSQHp8vkdA+vb3tt+WQNqxScjSYGs8Pu/dn+nBz+vHDOTz98Rt/hPbny9d\n9/LJHv3OMv9d7knTx3P3NP7x8K77ee5e52LnJ9Mst39/j2Gv3dOfe67adQJIj89L90We3Yb8\nn8nJTdLH9PCDPvIgvY6PX8ZlX6eltHtCIT3dZoSkPQJIjw8/SZuG/F+t/47Tn27K/nbP9NH4\ngv3ns3v50T8v3eft6e9DV9D4hEL6nfBxKwCpHkB6fEJI5FHXfdqnn/yF+Z/X7ubl53ZK13X/\naEH/XHkTpH9BbUiloFcfHwnS9+efl/HR++8Z2td46ucecUidiVfS/IRCCmtDKgW9+vi82muk\nz595oL8YGr/XS7cLm/G2nn0ESO0Fvfr4/DHX///MBdBb9/zx+W2G/Of783xhMz/yIdmSAOlh\nQa8+PvZ9pJf5ltw02L9FIfZlco30Gc6mOaR/gLRz0KsN5G38ZMPtTR7tbgt8TddIz9MNvGf6\niEP62z193W6Ov8qQnn91/rwA0s5Br7aQF++zdvNn72532f4Kjzikeeng40Xzk/Htp1dA2jno\n1Sby93ekv/wdH44D/e336b/P8UMK4+cZxhvZ9pEH6fbJhu4t+MCrefLnqXvDNdLeQa8iSIUA\nEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUA\nEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIUA\nEoJUCCAhSIUAEoJUCCAhSIUAEoJUCCAhSIX8Dy5EcxL9wBXtAAAAAElFTkSuQmCC",
      "text/plain": [
       "plot without title"
      ]
     },
     "metadata": {
      "image/png": {
       "height": 420,
       "width": 420
      }
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAPFBMVEUAAAAAAP8A/wBNTU1o\naGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD//wD///+cFXkmAAAA\nCXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2di3bjOKxleSdVuanues3o//91OrEtkSAA\nAiRkUfLZq1cnkvgSxc2X7FRaAADDpKMLAMAVgEgABACRAAgAIgEQAEQCIACIBEAAEAmAACAS\nAAFAJAACgEgABACRAAgAIgEQAEQCIACIBEAAEAmAACASAAFAJAACgEgABACRAAgAIgEQAEQC\nIACIBEAAEAmAACASAAFAJAACgEgABACRAAgAIgEQAEQCIACIBEAAEAmAACASAAFAJAACgEgA\nBACRAAgAIgEQAEQCIACIBEAAEAmAACASAAFAJAACgEgABACRAAgAIgEQAEQCIACIBEAAEAmA\nACASAAFAJAACgEgABACRAAgAIgEQAEQCIACIBEAAEAmAACASAAFAJAACgEgABACRAAgAIgEQ\nAEQCIACIBEAAEAmAACASAAFAJAACgEgABACRAAgAIgEQAEQCIACIBEAAEAmAACASAAFAJAAC\ngEgABACRAAgAIgEQAEQCIACIBEAAEAmAACASAAFAJAACgEgABACRAAgAIgEQAEQCIACIBEAA\nEAmAACASAAFAJAACgEgABACRAAgAIgEQAEQCIACIBEAAEAmAACASAAFAJAACeIJICYCT0dHK\n48U5IAsAIoFIAAQAkQAIACIBEABEAiAAiARAABAJgAAgEgABQCQAAoBIAAQAkQAIACIBEABE\nAiAAiARAABAJgAAgEgABQCQAAoBIAAQAkQAwoX+dHCIBYODLIkUliASAgZT9X77ekeSuQCQw\nF4n8FAN0pLkjEAnMBUQCIACIBEAEWCMBEAB27QAIAe+RANgdiASAhcYfyodIANhQWyVEAsAG\nRAIgAIgEQAAQCYC9gUgABACRAAgAIgFgA2skAAKASAAEAJEACAAiARAARAJgbyASAAFAJAAC\ngEgA2MAaCYAAIBIAAUAkAAKASAAEAJEA2BuIBEAAEAmAACASADawRgIgAIgEQAAQCYAAIBIA\nAUAkAPYGIgEQAEQCIACIBIANrJEACAAiARAARAIgAIgEQAAQCYC9gUgABACRAAgAIgFgY541\n0q8f7+mT949fe2UBwF7MItLfb2nj+y5ZALAfs4j0kd7+/f3125+fb+ljjywA2I9ZRHpLv9ff\nf6e3PbIAYD9mESkl6SAsCwAOAiMSAAE8d43088/Xb1gjgfOQ9NnTI1RHwv4oN75nu3bf/u6S\nBQCxfFl0U2mWNdKy/Pr4eo/09v4D75HAOUjb/+cRaaYsADCQsp8nESnl7JMFAE5OKNKTswDA\nwCpSq4eHSAAoPNZI6f98ApEA6OKxazeRSCmZl0EQCUzDra1OJNI/EAmcjglHpOX3m/7liYAs\nAIhlyjXSb/2DQRFZABDJtms3k0j/ze5+twONZQFAIJOKNFEWABiASABEMOUaaaYsALAw467d\nVFkAYGO690hzZQGAB4gEwBC3Tw9AJADGuH2rDyIBMAREAiAAiARAABAJgCggEgAB4KvmAAQA\nkQAY47ZGgkgADIHNBgACgEgABACRAAgAIgEQBUQCIACIBEAAEAmAMbBGAiAAiARAABAJgAAg\nEgABQCQAooBIAAQAkQAIACIBMAa+jwRAAIn8VAN1pLsjEAnMA0QCIACIBEAAEAmAQCASAHsD\nkQAIACIBoGNqjRAJAB1sNgAQAEQCIACIBEAAEAmAQCASAHsDkQAIACIBoND6HtIariPpjuLM\nlwUAFrJvxmKNBEAvEAmAACASAAFAJAACgEgABND6M1xruI6kO4ozXxYAWIBIAAQAkQAIAGsk\nAAKASAAEAJEAGOL2ETuIBMAgn80QIgEwyJdI+PQ3AGNAJAACgEgABIE1EgABQCQAAoBIAAyC\n7W8AAoBIAPSz7tIRkfRIHfn4o0yYBQASKfsJkQDoBCIBEEDe/LBGAqATiARAMBAJgEHIZ+0g\nEgA9JPXQcTEsyoRZACCRyE9PnH2jTJgFABIQCYAAiEim1giRACAIayOskQDwAJEAiAciATBC\nuUbS/3IDRALgDlUlldfUP4ICkQB4QLbpUnUJIgHQRhapuU6CSAA84EVK9SkxakduewKRwBHw\nb2DvIt3+pn4jakduewKRwIFw75Gw2QDAGHeRHv9TAnWkuy8QCUxAvkZKX1M72SSIBMAD+QtI\n2GwAwIy6/Y3NBgBsKCLd10gQCYAm8nskbDYAYEZ5j5Qa+98QCQACXsgC0EHj37bER4QAsME3\nuGKNdHuP5EyhI9NQIBJ4KvLiaP0dmw0AtEjcD/J9JIxIADRoioQ1Engt9H2DVuTiB76PBF6V\n1kqmFb34kZ/F9jd4JVL2/9FUykNsNoDXoTkBa0WUL0Ik8DpEirR9JAhTO/BijIpU7HcX/woz\nRAKvhHGNVH0miNn+JiLhaxTghTDv2vGfYZBFaioKkcClML5HMny4bhVpG4swIgFQ4BYJayQA\nau4zNWaIeezWVSJl8cQEO8qwKxAJhCJ944j7VN1doFIkrJEA+ESdy6ki3STEC1kAFmkuR0T6\nkqUakR5h8A+NAUBeucqHokim9DuKtCcQCQTDm8NchUgANNF331iRbG+mIBJ4JdwiWT8rAZHA\npWj8aa01WPGjuEJEksLxCXqASGBihLbTv/2tpdrMNjjKhFmAqyDsaNNQ6llOpOJPFEMkcG2q\nNYwuEr9bx+7aQSTwQlRrGJtIhvdIuUlYI4Fr4x0x3O+RsGsHXgGzSKbweI8EXpQdRKq+RuFK\n2AFEAvNgXSOx0dj3SBAJvCDOXTvhbB4fIoGXZK/3SBAJvASNL72ugYrJn+M9EkQCL0A9pbsr\nk4ojw4sjcgiRwCtRvyiVXw3Jh3ngxxtYiAReB25xw4bQ53LFpfsbWIgEXgeINEsW4NTIItle\n0TKaQSTwgtRrpOKC8XRuHUQCr4X+d+Yg0nOzACdlNcj0HknatWOuQiTwSrTmdO4XR4+fVKTi\ni33GYrmASOA45L2E4fdIpUhsHu1y7RtlwizAOekVSYlevol1TumE3HeKMmEW4JzsIVJhEEQC\nL4FzjaSmcvsBkcAL0vnvqyjb36JIWCOBK9P176tAJAA8+N8jEZG2bW+IBF4Q+4ujzRVGpDqO\nJ/eOAu8JRAJu7O+RyH5CNRRBJPDC2Le/iTmiSAO57xRlwizA1fCLVH6qDiIBsHjeIwkiVWuk\njtx3jjJhFuCiGLa/WyI1kvJkGxxlwizARYFIz80CXBTDeySIBK6N4/s/TOTih+PFEd4jgUth\n/aeI1uDq3yrmhiCy3w2RwBVJ2f8d4YV/Vc8+lyN/GRK7duDUWMeB1l8jZs5CJPA62CdU6qfq\nuGQgEngdRJHWD2ML/7JEGYFrO/pHGbBrBy6FvEbSP7QAkY7MAkyHvGtn//QPmdLp23QQCVwT\n6T0Sv52gB/qyUlgUYfsbvCTqvpxyaNtdgEjgotg+4dDe/h4UyVXkp0SZMAswLc1POKjb33kg\nn0j4PhKYiaEPzH0lkP1fCcCJtO4fqGOO+OfyTWsxtUw7R5kwC7APzg/McSmQn0trCMoD9uwu\niHM6rJHAYTSHE2MKBpFohKUpkrobriZsLvW+USbMAuxCz4ZXOwnze6QTi/Tz/XMcf/9jjv7P\nt5Tef4aXCkxBgEjMoGZ+j9TYXTCKdMT29/fbRkd6a5t0mzh/v93MR3SpwBSEiPRYZkkfruPz\n6N7vrj7ScIBI/6Tvfz9v9p/0v+14nxE/0sffZfnzkf4JLhWYg2o46dnEE75ixGZV7tqFiuQq\n8liUt/TXvE/zFeQzwn/8Td+CSwUOJzH/SPLYJp4QT9n+Htu107PtKao1ivrvS9N4ebg6fDmN\nBWdjfXLF4zNu4gnPfFgk/UOr5XhVJ+xhUKRv9xHptz7C3OJ9RvzfR1nfgksFDobtT82rjbtw\nxCdGFfnw69ceker8rKXuDMtEua+Rfr7pa55bvPT+45+f6d//fv37oe82QKTT8VjVlI/OKZJv\nCKKZLP0imXYzLDfgoYjyfi/rd0O8bAhNb3+DSwWOhW/kTxEpD+haI23LiONF+nqPlN7/tUT8\n/fuff97fv7YcPlSPINL5UEeLfCtbjW4TSQ7UubtAMjDrX6fg4QmtHCKdDn5ql62cTM+ULJWE\nRdEiHg6KRI4gEng+0uat7Z0QjVT80AN1b3/XSbBHrhJ3R/n78bn91pqqDWUBTkHrxUWgSPbt\nb+N+90hR++PkUf68PTYP7B+2c2YBzoJpFbSFZTe6y8OdRBIzMA2Eapl6o3xP//s5Fv39SO8d\nmZuyAJdEb8I9h1+/Pva71c8E1Umoheq5H2+UtVuJ/TACRLo8AUNQfpV+vrsl0sKmeJxI94/O\nLX8hEnARKNLXqfLVkCCSuIw7XKSP9P3Xfz9+fW98L2IgC3ANTLMom0hciKHdhQneI323f7Kh\nNwtwCcgrIi1Qa1G01Ife3QVVa1NRhZI7KKP8+/nJhu/tT9oNZAGugKubN22f5Sl6P5aqenXA\nrt1OQKTzInXkgSIxFlhFMmUAkcCBkA/2GL8SsWiHzxapZ05XJrhzlAmzAPHwS3Y1kHDWfWhd\nI5lK0cOoSD++KZuK3UCkU2ISaWGvjmx/e0QSzDEVWWVQpB/ZS7BAINIpOUikr1N9ItmytzAo\nkuWbsR1ApFOibiIHLoqKS8WrV+9X92zZWxgUaac/UwKRzoTvO3vlDoRtR0KZl5UGWb+6F7g4\n6k8hj/KeYr8/wWQBpsc0iXM1Yfvs0CoSya49WXQyKNKft6+PCEUDkU6Fa9YWIFJ+tSXSbnM5\nPsHeKAmbDUDo5ru2stWz+dX146mRIh25RoJIQBeJDzwqH78/Z/0y+XQi7QREOiUmkRb2qmMu\np33VSP64t27O4bt2OwGRTslzRNI2uuX9btcw2UGUSL/wVfPXofW51PLINIsKEmksg5EFyqhI\nH1gjvSBru0vZoR7YtmtnWCNZReovRVdjHoyyedT4N/j6swDz4VpaeEQS4hSXGh8Gss0o5UJ1\n/kM0gyK9pX+X7+nPn+8p9HUSRJqbkVnbk0VyL4osg6ycYG+UT3N//Dca/Y79rjlEmhvDDMwY\nSHdxRKTO3YV0n9p5m2CASD8/P7iKNdIrYhKpJw5zyL+BNYtkNfW+ae5uz4Mivf83tfuTvi2/\nIBKwibSwV9vy6X8gyCqSMPHbTgv/GECTQZF+fmb49ZeE2v8Yc2cW4DRMIZKQommYXA4T6b8F\n0vL571nG/lk7iDQ5zeaYH/XsSDAJd4pkz+D+2zFTu52ASHNj6+b5QKpQ2hpJEImukQZLcdBm\nw05ApLnZTSQujvrhuh3eIxluSUm4M8o6Ar6p/0r5SBZgPkZmbX6RVHPi3yOlZXn+C9lHhn+w\na/dKmHbGbNtnqosjIpkWRezVZ39E6Gfxgdtv/oRCSwUOwCRST5x4kVx7Dx2MuPct9wgfEeok\n+gO/B2ISaWGvKnFCRSJ7G7aP3VqIWiPFcpWWZeMyd/sckcpvHrX+XH5LJEtZLQyK9B77/ojL\n4vocerddA6I+ayNHPTsSxaUhkZQMsm2Fw0XCiBTAsXfbk7ttQc8HUoXS1kgPc4witUuRzeoO\nF+kb/q7dOBBJjUNFinqPtP0asUwdFOnvO/6u3fEMNYR4kfRJlVkkak6fSPIsdC1Q55sjUz7W\nKPkgGwhEcjJQYYEi8ZsNrsPsrG2brv890ibSeua4v9kAkebgoAozieSO4/pM0MB7pLtAhVDd\n7XhQpJ14LZEC7jaqwkiP6OwgTSIt7NXMIJ85A++RyOe8UxXAA0Q6nolE0pcYLa+GReowp/Xn\nuNSZXso+5z34SmlYpH8/v9b3/m9f7rYsrs6xd2vaKSCH+qyNHNl3JAZE6in5Yy5XrpEOEun7\nvSsI/dsnECkmXdO8bEQkz9ijLVbyOV2USGUu9LNA2RppneKVMz0ngyL9k94+/6Ddz+B/uQ8i\nDaV361mNa+cZRMqlGBVJn3xmQmUFyoaig9ZI39Lvr5+/8envQ2EmVdZ24aprk0gm+fKrMSKp\nud9+3/qWVN/EoSNSuXcYBkRyUosktNtWVF92qlemQBaRLLvhzbJtvz98qQMeuEbaRiR8Q/ZI\nHCJFvvMzidSO8ySRtk4/3+OjFYU10mkJuFvPiGRa0dgC83G5saDcnaaHISI1p51k9kQ/GnTo\nGgm7dgGEi5SdEi8YU3J5pYj0/z5J0mHkZgNfmPzXbRJXDM4Hf7Lh33e8Rxpkn7sV2wXb4KqZ\njha4MWsjR1/luJvzGF2eJ5J4q8wM98DP2u0ERApJ1/LPgUXswLXHqVWk20/qlUskEmedJbar\nMX9hNDD4iHe5f5QJs5iI8Lu1JCgttp8r0v3QI9IjxW2ZJc8oubvO1khqsZ3ETO3+N/SfGXs1\nkTSMe2z8pMoUR96VMMdpyxcvkpifYYY39saIJ2qzIfSfkIVIGy4peuK4RCJhmSTqqVa3SPkH\nh/wiyQPUttkQyKBIH9j+3pl4kXrM0ZNilKEb3DOJNLjRzTMo0hs+IjSOPqvvSGJEpPbMSE+Z\nqPK4YhPpbk5B779bromUHv+LY1AkfEQogH6RpE3r/uxsmw1K3ECRqg3ujqIKa8zgBVKduzfK\nxzoihS6SIFJX1J6Nif5dOzpw3H/wG9whIrkkf3IbGt1s+PG1Rvr1hk829BMmkmvnjR76RSJS\n/M9/iKqM79rJRVUmcc9jeGpXdkvHlerEhIs0smt3epEOajsvJVJkEZ+Fa+NAa0vVzfPN0VSa\nOUSileC4j3hGp3b7sFsWp/Ooa3QR4ph2uezZBYqU789FiXSyNdI+QKQVl0h6HIc5dKOZG8qf\nL5JwfxDp+VlMKZJaqHGR6B653tLsC/kukbidPrdI/A0k9m6fxahIH2/R66Mqi1MkPMKASKbu\n17W7pYtUjAtxIhnXSMJ9mQ73ZlCkj/iNBprF9QnftXMF0vcrmMPVAo9IwhBkEmltXw5znr6v\nNLxrF/oZOy6Lg3nCEzmbSMJgYxKJv6qKZCpUdV+nEymsJFIWh7N7YcJFsk1yTKsh5vAAkUhh\ntJKn7YN0T1VpeGp3rn9orCfhY612rZH0VZBunek2/SLdEeIMicTcV/VXiG0EDF+jmw3fv/8Z\nLUIri6MTnlkkEmp3kb4CmkQiq6BniXT7v++eZviHxpaf59psOFSkrlpyiaTH8ZijzPAaIvHb\nCWMiWXcZ6K15Ku9YkX6cbNduytHF06LvJ2l9qyLpSws+Py5OQwpeJN6cMZHE20xL+d1X83TV\nHLiZSmeU4G/GclmcI+GR3P0i9Y0u+sRPTfjWnP/vJ0aRdHP2Eon8nSD1ToXq6WRQpFfYtYuj\nRyQ9KX3Ow581jVf9IpnM6ROpfSPp/le9PcueKUT6cbJdux7iCjOfSNm0fCKRytmhXqjicB2R\nFs9G3AxrpOXH919jBWhncTS7F4bLQFh10lkL74hJr1sPfnNjPayWu8XvukieRZEgUmOxbRDp\nNiL5HtkMu3ak54hiqjVSESf6TuvcTKrQQ344oUnXh1Sk7ZCLv7dIxvWbXCe9s7SAhwqRvHH2\n9krodvnCkNOHiFRsdAeJpN+8LFLXiBTC6NRuH04jki9FU9i8tehTLXJ6C3wf0oQ98iKD0pzt\nMD1SyFJsiDS+RmpN3oRKyEVa10jPBiINJhEgEtvchRFCaVrEgkVqjg6R2EPpKxHjX+yrblOf\nqnF1cN+1ez4QaTCJ3UT6+l2cauUt7dEQJeuU+VKESI9Dj0jlPLCumk6RzjkilT3SOdZI8YSL\nVFyxiXRv4C2RmOzENdK+Iq3Zk9moVPL2jSx3kc64RrqaSNJN+AvjTOmZIpVbA6lLJGFboUOk\n6ub1GmpOWfURbFdeY2pn9Nw0g7BlOB7YtEbiRTIMQSQOPzvkD4dEqoYgk0jKzReH5xyRdiQ2\ni+yFm+1BqWcHlDSRNw9ZpPywJVIeWBKJHdTiReJvU7w9pWrYSOdcI+1IsEjb/x0irfOz5sy8\nlZIPl0i3c08WSRhshkRyLYrkR4Bdux2zKFqmI9v2Y2MODWcbC8pAkZiiWkXS1kihIpWH+uRN\nj7ss27KdqaWdgUjeQvTM9JiSVKcfz98m0n0Kc5tjNUTiUlRFogmTwzGR9MFGLrlcndshRBrO\nQqm9k4jEtTB91063oE7RLpIeKEQkoWrYKnGIhM2G4SzkONVSx9ZnqUGkFRQfiKSot5r8So9I\nWxxFzd1FIjsSld36zeszPbEasdkQkIUiUnr8rxHWv95pFKactA2IVKl/iEh3LCI9sq0/u6Da\noD8YZcq6QKSoLBpDgyXsTiI5A2dnZSlMIn0FLBcN+4tUvikSXxzxVWOqKEWkpfybDU/kNUSi\ngTSR2M7fnAQfyHM/nCqPw8d86Y5uAQmkxQkUqec267OeONnhY+SHSHtnwU+52KvGiZg6XkWL\nNGKB49C3Rirs7rpNscLI4xHWpblImNo9Jwt1gu4S6fY7aT2NR23yakKRHqqwIllrVbhNtYYM\nj6DsDvFC9klZeJ6xNv97/L419Owi1auKSgZE2V/hkwa7i0SmkC2R9PqzDDYjw35+GPLnF7q4\njkieNZIeZ1gkepZGzTOoVuNK+lcSSanVoTiHzOuWlxOJhDXNsZSrLZEEb5MlMJP+USKRQKJI\npvWOrowpjpwSRqTxLHpEMp1WzlpFUpqWVaR8phcoEjv2uDYbxNt0iaTWtV2+xF14ChCpedoi\nUrnilURSk2DbxSlF4m/a5JXtIbIi5evSA0x6MZH4vky/qnSHvAVWkUhgEnZnkcjyZweRdAJE\nsib6FK4jkidh03y9DMTusQ2IRFbwVSFKc0wNvMecHhf3EEmfDgpxW4k+k4uKVEy15IQdIrEP\nqVKG6MUnzI0udZnMQ1Djkw3smLOPSKZKtlS92uFJz3YLeIBHVxXJt2rlA+lz/NvvRpGYJITF\nyiMJxxBEkmiYUw6EMSLp9WcabExeLVnV1HFuFx//ezbXEck02d5NpPwiL9LWALTBpkwiUiRH\nis8QiY+jJ3Gvx/V/bEJ4jzSYhUkkclUNZegzWyIJ0qki5YG7ttw6zAkSyT01rq8242yfSz1K\nGZ7XFsl0WjlrFSktsSLxY0+/OQ2RiJqHvkdak/n8SN1EKl1VJEPYbK6lJsFOxYumRQI1RcoD\nkSZsG06eK9JaYaSMz36PlPKvGqXixdHxXEykVt3mT7G5ucYXhhlOljiR9HbOmjP0QrZDpLyu\nk/LHHnXcIm0dx/1o/f8UXEckU1SPSEoXKjTwR4jdRXJYECmSZE6ASHqd33Jf7kujZTMIIu2W\nBT+qcAkHisT23Jle5jXSDiLZJosWkepqNA/h+pOw1Pk2EhW9FkTaK4tukcpmXyfhF4mkHyDS\ngAVjSXD1J9ZyuyNqpsSIlP26/cUtjEjxWfDDCROo2im4CZSKdk6SMK1OFr7NPpIYEUnNdj+R\nyilrXa0DIvFx5CRoalgj7ZVFUo7KS0pLkxqNbWgQ2mxpweIRyeSvaTjpEalVycJVl0jqAMVN\n7dZT6aAvlfNApEUSKU/KOMeyLEfUFKl8s4hkm5cNiMRfLB7B+r/bqfLwcK4qkhZwP5EsgfhS\nCENQyE5Bnp805BWHxPnFKRL/QExeaf0fnWdONK9bLihSe/Khi8SvC/YXyTQEWbxyrZHIVVI2\nsVZdyx/5SdRx1BTStnPnyOhJXEckU1RepNsltoXxcSJF4rA1+xiRitLcj7bO5FkimUa+e+Ee\n/9tK68h3L64qkjbZtohE2lKsSEWKJWo+iyoFn4Qep7j5vPvoWRTRq/yhGshgaCrPzLJWgkjr\nJanZL3WcEZFoey8OmyLlpeGV2UWkxXTIPwKXmmoc7lSiAQ7iOiLxc4T70Tq9XvSW9gyRtMNI\nkdYxVRcpvyrVn/RgBkQyJayKlMrPsB7M5UQqjgqB1ktziMSuhgJFotWzh0j8VZdIXH70seWr\noDWZVFyASGFZcCKxz8klkmntYhOJbMj1idSepu0ikm1eNiASf/F2bluubkHq97MHc1WRyNl+\nkdyHE4nE3HVTJL3+TCLxD8TkFStSeaXcXWBmHMdwOZHak+2ni0TM0cY4ff63FlXan1uWhRFJ\nly9P0VmrtuUPj1mkOmDKPhuUsGu3UxbqzEEQ6XYpQCR+zHHMDvVF0bIYegSvSHqd7yxStRqq\nA+nGpWVhO4Cnc1WRhBR2EqlQ5miRtsGlRyTWDTpa2WZ6/KEWiMtHsHSWKd0DiLRe2k0kR4qu\nJYwQmK+Lpkh8/Q04og5bkppMSrwys0zpHlxHJL5HJQnKHXmISANJ7CHSPVhav25VLdzEmlI6\nIvmQT0ISyZqSpMwcU7oHlxOJHDHt4umbDQEisXsBohRc9ZEMxLp2icRfbYvEfV6OGx0fU9Sp\nlOGBSEPDCbP82UOk+kbyodVUfU2R1BF9YQNZkqDbCfd1Tyq/lXcGVXSuKhI5q4nUY4Gyj3CI\nSGovcvu9LKoeWKxVk0hbhnWgR7UtuTyzrXd6OK1I1WRAfcbKGmlykQw3Ut214AYfxyUSn4Ge\nBBM95X/AZHXMGHtOTiuSrwvND4dEam/IHSlSu2Fnqy29pkxn+Ulck2xEyqd4pzbpqiI9Fqn5\n0+XGj06RepJQ5AsWyVRD+thtG6d4g5pPLxXx5vm83AjXFqlsjoahYUeRSKG8ayTuVvtEstdf\nM8WeUWzJRqRyTgeRwnGLxO8Ae5rw7tvfplL4RCoH3Ga96ctH9ayehB6oPos1Um+U3bOopkKv\nIFJ91WVBXBLefLBr1xtl9yxUkUyrk2eIlBdVEKksalYVprWLflGf//FrJFMSbCBhV/X+OxmR\n8B5pH8ZFys8GWBDgoq1Q/Fi6tETi26xnLhcxXuUB1WnnYwi6wpzuzolFKp5M1fCys10ikTdF\n+4lUbl88RJLaYaBIpjFOPys/p9ZsLduwO/1g9AVEohYQcyJF4tZI1Q3od6tb4HJDdbE8K03T\nxPLSb4KLnH9Od+eqInFtdkQkWxKabUKh7qdDRdKr0TRe5YHqcaNpanvIIlHO8+lUAYhELXCZ\nQ6XI52UNkbbJmwkQyt4AACAASURBVCqSXhU9IulXOZG2M1ZTGZG0TiKrDeFT4HLkSYBIpuHE\nJdJSuiEuf7jALTf0iuoJ3DxbO9XIL7FTO1WkZbOlCneOhdSJRSoi0A7dIVIxFA2KlGcviLRU\njTVcJCGOPtMTk1BEkvPJ9xIEQbbwpXU0YCv6HECkYh9hX5HI7blE4g+F2lBPC6NKcTXfMmRE\nKpMg24vp/mHUe/e0PIRqFVcQyXTHx3NWkcj+cNlYjXtszIac1Rw+g/IGzCKVN9AlUmKPVinE\nbOUU8xvZrnMlL2de62E+fU2bmsx6ByLthkGksnWW7dCzKOr6ZAPpd61rJNP96Kq4Rcraec8Y\nR5LgMihjpypA8bNKajsWpoAQaQCHSPeO79ki8YVhBxn+qpiEXiWW8Wodqpl2Xsehp7mzdBjJ\nkng8ApulgitpK7U0YE3u0dlFWj9r4hFJmfiFilTmI99W2ROoVVI4sojtdjvLWGMb8vhAdRKP\nR+AQvc7kMU9n97nJZHFSzi7SPfhxItXjIb0P265dueazVoUm0u0m5WR0R7YklDiJzsuy/Mga\nif2ZZ8SWJrs6+S74yUV6HJWOOHYXdhIpb1bWfYSFPWsTiT8kqQ0MQXJ+9I3ROnLeTpbNX9G6\nyeQzvIuJpFugaxYhErkBl0im2ZpaUVy/nrU/wxDkFGnNc8u5endUFKrfhhEHnwFE2lMkpqjZ\nVZdIrvaeB9yGBH0I8ohbqpFvNiy3Q6nZ98/PIFIPZpEePZxNpPahcaePFLVPJLoAGRFJq7Ch\n90g0pXpIYQcZOdHeHQOI1INdpMdUXBVJWRQ5P2vHl02cvJGrppvuMsf0TFymWlJa1vGlejXU\nkagpz1k9OrtIj14yQKSlGF18Iq3jFNeemtvfppvmW+qoBebstSToyLrN9CKbCnbtOvCskfLG\n6t+mCxFJLLhNJM9wQg7jRXIVhhFJf7k6BN4j7ZCFSyRhLhciUnv9oU/8WndrG6d6ngkfx5US\nM7Vbh6Kpm308EIksYWJEyg+dIglLGKEa1Kt6YMV9T4qJ3aZ7KYk+ubZInsMyYT1QXVSlkZLl\nnB74iSLxZ71Pl7xHgki7RonPQm3+04jEFVUMrIs02N6ZFElKPWukZZ3UQaSnRInPYheRTGsk\nvqgjIvEpuUTyNH9dJD2Fekjl53Qv5xFEaolULrNaZeNape89UmP+ZztUC2czlYuf1v9tcarP\n2lWvrF+D84s0vEbanjwj0iO7MpC14OUaaeim1emg65l0TxY3wQuRijUSRNo1SnwWcSItZdMS\nt+lMbbZLJEOF0s8l0WHL8UxsWx5cxPVnkUS5a4ep3a5R4rMQRDK9gS2vLmMiJe5HcdG62SDc\nqHZxaG2vrtRseW1zPX6p9EI8VaRfP96/2vD7x6/RLAZEWqoGzqxo+kSivf2ISM0Ron1VD6y4\nr0ZP9FQ+WkKkXaN88fdb1si/D2YxJhJJgklYFokvqtJIndvf+lk+dxumIag8LD/94ygQRNol\nyhcf6e3f31+//fn5lj7GsuCnadZFUZ6EkHAlkl5UpTnuKZILXaTbvZbmFLM228dGsUbaM8oX\nb+n3+vvv9DaWxaO9/88nUSLdGgrd724UhC2xJpK0qTUikimUQSTuUmFWyn7wyVlsuyBPFIns\nO9WX81lZMzEiUtH8bbsLW1bc7F8Uyd1mu7a/nVvIPSLxyzomPI23qcJ3CC+o0XVGJE0kEmep\nmohJpJ7Zv7BGUgI7GVmSqIsjJfHMu1c0RuC5a6Sff75+22GNtKNIcqB2KUlSSqg+wkTiRkA+\n8fwsRFp5okjL92zu9u3vWBaezYalatG6SGlxiKQuZQJE0quCTM9cWMdIYeSCSAXPFGn59fH1\nHunt/UfUe6RYkbKz2VqtR6T8bHPZNyySEfcirPHnGBp39VpLpaeKFJiFZ9duqUTS89EX5Xxg\nzzhlS4IvjOcqLXHPs9b/Up4WcakdvDKvLZKau239oYpko0OkruEk6MHhdRIHRKqzDRhOhhf/\n6tnOphz24Noa2zqhK/EiIuVx6vT5xy4UwnT7PV7Z69XS3TP39MRWDZH2iRKfhXOzIY+zVM85\nXiQS1hLHvvWWpSrHOLYpQ6R9osRnwTuyi0iO0UVa3g/sGCjhJxYJa6R9osRn4RSJrJF0kXRz\n+MN11cIu7+/NShhy1LtlLppEOrgpY9dulyjxWZAPyoW/R/IebqkmJmFeMyHF9sUtI00kUevn\ngPdIO0SJz4KK1PiIEBFJz8e1U7ApU1hTR5VHCL9Im5hqVPJZ7fAH92KuqFxEpPvPQ98jMSLV\n4bSpmpY+PWtuwq3PavfzcrM3ldOKxE7TDn2P1C2Smvxor1/PN6M4dhE2Gy8ikhCHZJfYs+ay\nrS2rav2pW6RRtmyHlRRTBssVRMrjiN/kI3FII4gSSVzeb3nuMioYAsQ/NIhUcEmRHikMiSR9\ndVQrm/YeqXPXTgcizcJ1RCrPpvbhIomkm8MfCnsCxc+u90g6hooazeKAlM/I+UVK7FkukCQS\nXT3sJZLEviKJA+EofSlfdcv89CIVD8Yqkp6PYy5nFElnV5H2bLr+lK+7ZX5ykb7+6nT1F/BJ\noEUUyZB7a7NLFclC9G7a1Fx3Onh2kZZ1a5nbbGA/R9TM1nWDwyIZs7mEbRfeoDitSA9Hbvvc\nCysSSUl8j2TP1hooIE4R/yIzIog0GGWXLNYF0jboeEVyrYY8gUjYnlo2/dXtk7VIiDQYZZcs\n0tpJX08k67+VcrYWiTXSWJRdsiAiff2iviniP+haZ2vapjPF6ReJjX6YSGErtKvMUWtOLNJS\nTu2+jqXtBM4rMR8td+5jdO2UvFVmLu5TmmRo67/GrknNyUW6PxivSHo+rhs0ieSFH4qOWiNd\ndz4WyLlFyp9xuUYSEgxfBe2z/V2JdOSM6MI7BIGcT6TiC5/ka2vOz3cL2XaItM93FLIkD5wR\nQSQLZxOp+sJn6ZVxX05If7c78282TLQoh0gWTifS9n/GkaZI5KxpyTTAQBu0DUFYI83CyUTK\nW2YR6P4xh+uI5MtgV/AxbwNXEel+WnpTJBjDuKjl7iqqmE+Wnycjf+5x4GPeTU4sUk+Cpr2H\np4gU09KmbakvNx08mUi9D0gfgsy5OwNre3khLW3ar2C83gbF6URqdeSuRZE397wc+gagNY+L\ntrSL3x7D2URqNmF28uZb/rQDrTp3DwkXb2kXvz2G1xBJutrL11+Jc6RSh7x6S8MaaZcocVls\n+3JdIjXTN0E/K9uOIJ26bEvDrt0uUeKyaP4p6+eIlP+wRBDSYFKYdfvAzWVuxMbJRKLf5Gum\n0CNS8wbd8zJ+c5DVaPEICqbhbCINloHsPThzXwMEjEhaQIh0Ps4nUvEFpLCEXYHcayQrV9+C\nuDBnE6nZhDtmbdJf7NaS8e3aWYFIp+VkIo1uNhhW/ZZXQ3stZSDSaTmZSI9/sUXebPCLpOco\nF8QT2hcQHp2PFxNJzmrXu7KLhF27k3I6kbYfE4vkX3WJUcE5OK1Ixi3sI0SqhxW4cXlOJ9LY\nxnPYGqmdCUR6Kc4mUvx7pPBlCbbeXpGTiXR7g+P/PpJ6Ff/cNxjmdCJt/7KYGtW+/R0ORHpF\nziZSc/zQRHrSN7OxRnpBzieSbfJ25LCAXbsX5GIiVd8pP6YJD7xHAufkhCKZEuj6G3W7MUcp\nwI5cVKSpmPaPZoE4IBIAAZxQJFgG5uPqIsE68BQgEgABQCQAAoBIAARwQpEOSgkAhauLFA7e\nCQEOiOQCf1MB8JxQpCOb8UyfOwIzcXWRYguLrxoBAYjUkxpEAgSI1JMaRAIEiOQCayTAc0KR\nPOlEb1Zj1w7wXFukHcB7JMABkQAI4IQiwTIwH2cTKftXzQGYh9OJ9D+fQCQwGRAJgAAgEgAB\nQCQAAoBIAARwOpGwawdmBCIBEABEAiCA04mENRKYEYgEQAAQCYAAIBIAAUAkAAKASAAEAJEA\nCAAiARAARAIggNOJhE82gBk5m0gATAlEAiAAiARAACcUCZaB+YBIAAQAkQAIACIBEABEAiCA\nE4oEwHxAJAACgEgABHBCkWAZmA+IBEAAEAmAACASAAFAJAACOKFIAMwHRAIgAIgEQAAnFAmW\ngfmASAAEAJEACOB8IuGPcYEJOZtI+Lt2YErOJ9LjfwBMxMlEuisEk8BknE2k+xoJIoG5OJtI\nCYskMCPnE2nBxh2YD4gEQADnEwlTOzAhZxMJmw1gSs4mEra/wZScTCS8kAVzcj6RsEQCE3I2\nkbBlB6bkfCIBMCEQCYAAIBIAAUAkAAKASAAEAJEACAAiARAARAIgAIgEQAAQCYAAIBIAAZxP\nJHzWDkzI2UTC1yjAlJxOpGcVAQAPJxMptQIAcAgQCYAAIBIAAZxMJKyRwJycTiTs2oEZOZtI\neI8EpuR8IgEwIRAJgAAgEgABQCQAAoBIAAQAkQAIACIBEABEAiAAiARAABAJgAAgEgABQCQA\nAoBIAAQAkQAIACIBEABEAiAAiARAABAJgAAmFQmAk9HRyuPF6co/aYemQPFJHJTtZZI4Q8nD\ngEjTZXuZJM5Q8jAg0nTZXiaJM5Q8DIg0XbaXSeIMJQ8DIk2X7WWSOEPJw4BI02V7mSTOUPIw\nINJ02V4miTOUPAyINF22l0niDCUPAyJNl+1lkjhDycOASNNle5kkzlDyMCDSdNleJokzlDwM\niDRdtpdJ4gwlD+NokQC4BBAJgAAgEgABQCQAAoBIAAQAkQAIACIBEABEAiAAiARAABAJgAAg\nEgABQKQr0POH2EAoRz8B8gf5ysP6Yl7gxtX7GTnPPG4ZmJRCu1hdlbP1Xi0Pye3V98TcoTFb\n8RHoFcVcVR+BUo+tJ+K7Ac/zCuNgkZJ2WF9M2dnm1fyQqc78opbyULZqYEZYManG/Sy03bmy\nJYGrQ6mimtWoH5oz8t6A/XnF8SIi8fmYAvdnW/WzA3fQaIbLI0NbwuSqfGiqKLM5vU/EewMQ\n6VoiVZW7q0g3i5IpYXJVPoRIVg4WyWMSrYPG1fqoSlgITFPWLlZXlSI2CqUmRZsHm/IaQE24\nylY51CtKF0mvGt1YrsjmG/A8rzAOFonOfYpDZi1bL4qFq0JGhsD1wlcr8RCepEhQWm+eMmp1\nzh+6CmW6Hefjc9xAI5+9OHpEehJT3uZAofSJ0W7ZzsGUNzBloSJIi7KPZQqcbv/TurT6apmS\nHrianmVx9Xw9IjWzNdMokxp4IK7rBpr5KA9oiENFYtqhNq9I6/+4CVh+lZmvk5yLNx50AcJG\nKYso3hGTrTwzUuMyYfmZP1MXapOt62LzlyZVVlSVUvXiyN6i6MPV35OVUatktEdCJdxnkTTX\niJTWO70fZT/q9Wh9VAQu3FCrszhsPJmGZX4lbc+Y3p7aR3uzLQIX1dqU2363dVx7RiSq2oWy\nZRQ72DBmFIlUss0r14PRROKaJX1q5Mkk6TnpgfVClYFHGmkz2zxwVfdymZx3q9ZjOyPrDTTL\nCJE8h/o2Z/XYurtdPSVft1vFleuClFAfZJqdCglc/tB7HHvVDAT23oBmziW3v+sZ+bLe+cK5\nUQ3o4lUhpy2u9mSKYvlEYpNa+MD65J4NLNxPHVUpY9O68oddpMbdBonENho9n5SVcS8OFYl5\nr1icVN1wvXnYUjelvBZlcbaWZv51YNHBdsrGqmlkS+qCM1ZKSe+8PNapGVVRtRvgAu//Gulg\nkXa8xcTtAikDB31OWz+mTwaq1/da98cmlTetMiktXxK1OPJl68E1MdI/2eCJq06YfWXUH1A/\nR4u0OHb11emMaZtTiMvMBrazLlwDFCmUHpe9+brE/mwD0R9QXDbFD3dc9wOyJnw8xUziUSbn\ni8S6iSkiperQKFLrfR8/f7GVXH3G+tnifozvPk2B9TZbV6OV1v5II7I5LJfPVUUqJsrmtiQt\nOYWUSGNZX7fz2T4CJy5uXXz5OVXTqTKwYwFCb6+KymVnypYLuV4mFVWlVFzV71avx1ZGTEp8\niVv5XFWk8obL23R1eKYRabtaTKRb/uZjEzuYSTKwhRKbuzQuMilVcTWvmtnKGbAVleSrJOG6\nauQyKhnpN1Dfj72S4zhWJGbOL4vUaApsn63E+O8i3/nXYeX2rQ8j9P4aT7Flg5lGGdXA5QVS\nUUxdFNVI4yu9FXN7YkbW1p+qwNJ41UrJz6EiVbeZV0J9URqzk3qVzfieoF6uukx6iVsp+bpD\n0pvYb89VxrqlFQUgFcXKID0gTSSujHJG/SJlJ3fmUJFqmMo1RDInLHSHanr3pyIUilzVS0YD\nt2bzWhmzqK1tGT1bsfbKlsyl1K7G1Iq7lId84OKoob6vjHFMJlIXWlerBTEG/noyenPbrurZ\nloGrq2X7MFhmRM9Wi6Wn5Mp2JK4xalr/L+/DeCYuHg4WSb8jtmUJHVFbhuyg3YObC6VH1W+v\nP9tGVF8ZxWp1fxnL00jVMdWIoQaZoW4XDh+RlNpLZEYiTaISH7jMRS1D41gplB5Tbx71VgRz\nuP0obq8VVStjFVepVg96tiOBlUSUw/vJ0vWxDM1FOYZHv0Rmv2md8HKHWXQ+MMnC3kfT8YqO\nBUUp9LmcXgrLKMPXhfAiyVRG6w4I2783qjEgWzawOGgyh55HHcfhIpVVXV4aEKluWmWW9n6K\n7e1lYZWUmhMypYx6tlR9PXB1KFVrVVF6NfZnq2ckVyqXRasv0y93c7BI1YukojEtxfBPDmlK\nJLBnpKBeVQnrhbKm1GparbYkZ8vko5RRDdxM+CnZ9onEnvuqUTosxjf7qUak+/H2+1KoRQ5p\nQs2rnjLpY45xLNP7Wf/wRepCj6vsDqopO8rkylavRzWjEZHEATeYw0X6hE7pjE9V7fxpktp8\nncZVpyh1YDnbVmCyEFDC0oTq+zG3t0anTAulzYEbKamHarZGk5Ip6muIpI1IesRmwmrccrxn\nrt5n3HRUIXlUV+UJop5UHdfxaLTW0s6WJlUlnISUSDVq2bZKoWSkRE1ViYUyZlN+6cYHOVgk\nZY1En4S6hmBfRKh9ZdnwShfkZmlplexFa+9QDZr3tmJphmUHbTOHa3hSwo1sPeuPVnv30JwE\nKI86jsNHpBzXHVof2MJLWD+2iIdaZFucqcMIDc/wnEe+ZdN0ko6KVpHGGBGpYRJbxx35NEoR\nnqIz/+w2G11p1TaVnvQRgL/weGZSN1UWQu9m66tstkkIbC2ys9ttlVEvQvZIlrKiSM2UV/kH\nZCtFIyMuJTp2m/K56oiUih/V1XLnko0qHG69Dpt2ygI0OiiaDFuo/CHLxdPvlsQtO5XGc6pb\nmlbGKq5ey9U6PqlXhcB6PaoZ8SnZsiVcdo2klYL2s4leVY6ZCVNrXJFSKk+SQtGrWo/LtaV8\nTJXGTqZQPduO8iETWLkLRUktsJ6tmlGgSC8yIqkTdDrvo+Y0mla7LPyDcokkJ84nZSjVo3Ct\niWwZRyvj11CQhMBq0q3enivjDiKpJhWBU2LbxfXWSNWTIaZoda0PMl+NxdQ6aLbsk9HbXTGa\nsWVKfFJKkdWSV6FoE9bKWDakRnfF5GttM3XVKPWoxqUpkZGc6WAl6a46Iql7Ko261tNlO2WS\nrVDbZHVS9mpCu+Ov8rlmgZUiCyVnz+opkWzJDZuKLKSkS0fuVq8pLSO93vRs6SxnrwZ/tEiU\n4rmQx6Q+NkunvPBH/hLaX1DpSWlxyd3SQyWhRhnJ1E4N3GizbLbWm1fupxHTEfaekzNGB3OJ\n1No+S62pgjRzoD1ylS+JywWyoPezda6a+0zCNF3pflpl1OKUMyNLSkIZXfTcQXHYGqa237rL\n6CnTcyGD8OPU+jsJTdwoA9VNuE5hKS5aU65KoVFm66vdPC5jtXpDnjJqUUn+el+uV6MvW0eZ\n+V5ETqBoX64pg4OjRySuN5FfxThEamQrjwWV3c3BzD4zcsx9HLdXl1jPVg1M89UnmOqQ6sm2\nEdhQyXK2JPAlRaqUKYenKmw2LNctTZxYGP5IA6MoH9bV+dddtlIoJp9ydF5vz/IPpcplTKSi\n2MBiX9Y4rB+QELhZRiUqG1Z4evqjjmMukegOC+lbyhCkKZGG5xkp1NqthktVSVcv3IhbhCc3\n70mp0W2wRRajKoeM+0pcy7io5EM6XyHblOp8XkGknZJvXiDziGJgdC0TSOpVNlpSVRRHrejj\nU9Us7W2p2b9rZVLjOjLiB3apk7R0V2qQLg4Wid/hfhyUAfVkhPNarnyktbsjXbaQIpuSK7Bc\n5GyUUKPosxvuDuQZGBtTGmHzQ/7Vp3V0NmXE320j2+28ED6Go0UqSdyP9WIx06nGbNkKbndQ\nzpaK5JvdkLPKFEUqFJ3PPUJrUXWRHDOwRk21OnstsGcwMy2ghGerz0J2mwLNLBLTs6qRmauJ\nv6Q1rdUhoc7VZ0zOqs9Ybax1i86DC/dj8VcurOFaS4ZSdz2wwzp+hKWZS4UqL5S9SBxHi6T1\nrEznaFaJRq02QUnMshHmIlXNn7Rv5XbqAorlbcdVVSoK3ChjlapjCGoaWpRRjauPI66uQIta\nnU/7tPmDRUqP/9bD7Acfg/b2VtGS8oyLSdRStsvGrLDZ/NXApph8d5DqbkMoSFcZHysfNSU+\nNz5woxRaRrZHsK7VhMDNud8QU4hE+1IlPJWBxG7kJj/UqoXGDP/lSKEXSk+EC9lTRlW5NbdH\ntbp7kd5qs8te30DdEPiI5Gcsk4lErlb9dxk1S4Fc/YxWPWJbj9Ysst6yluoRa5Wch62LXKRS\nrYv00Vcpoxq4qlYPHo0cVd5IaP3RFMn5qDtKcRR3i9QJutAhk/qrJCsHg76qS+KKaZv4JPFQ\nD0wKVV8tL1UakQPR31Zd0Fpef1QFUYrIlKkMrFeNmlEz27zEjWrcj4NFKhoJ7S/K9lB1pOuP\nxEqWV2ejF1ZKt6NIdXsWW4CqUT21aYi0lOur4kfdP5XPgyqZXVUfQVMkOaM6atlOdJGe1cCP\nFolg7rSWreqZ6/Qp0hGdmJoWcVI1JpLWDpnmYO1KuZbkEmnJ2r3UolN1sSkDLbRDJCUjplbL\nG85L3BBJftSjzCVSUn7c+1GxwMZWWadctcM83KBINNOuq7fT8s27yrisiXGB2azNIuVl3FGk\nLSxfV4x1+e/8ox7laJG0kaJeBkvNnZ5utso8H59I6iAjZ9ssVKPI2s27yvh1tUxBmOZm+Zll\nSFJgvYxBInF1oY/dcRwsUl0TzNntolkkeXeGF0lswi436JTLM3mTpp9ZCDGqp4z2bZedRaoz\nEwKPicTf0tVF0vdt7SI1c9S77CywouSajHHS3bJbPafefNLefOl2a+Xdgks3oEwZvNnKGcnZ\nVq2nlc/riFRfTPmhIpKYVN1rMQHkkaJRKBFXxbJlTOSUdvPMOVfP0jbZlhJfRle2A0idXTHg\nXVMkLf9EQ0g9TdFvtXLg4js+ylAVSg1o7f65MpKY6s2Xh64yyoH9TcM8ODvKaElFOHycy28z\n8FMr7byfhjRol52GbQ5iveq8YTpDKZNRRMnCV/OdyDLWUeuKU7JVark6Y+0WuMB6Papxm5Vc\n3A8N7BomBzh6RCpJ2cPdT6R28xebi7NQW7+btp+2YcWKQSQtW1Uk3RyXV1Kpmx2SLRn28HGO\nF+kZ08rDyO+a6ViLoyJW19ROTEotoBhXTqkUqf1Q19ZVZsi2M7NIfLamEcnaU0llVOIk/rQR\niJTnn8/sNJFSeSglx57izosjDn08ZLVKflE+XNEQSbwTJrAjapRI65W876nutny1W+RDAuv1\nqGakVnJdXpqtpQca5WCRmPax1oJQ59busThTnZb2iutrVYOmhdI6vMdT3O4olXerlKJXJLbi\n2IbIBa7CFE2d3q12VT2ss1WSalRydY4PbIg7wFwi3Q7Wqi/7kqLupVm12KLLc9JtF4mzRawL\nZX/G5e3Jld8WqRGVVAzJVglMq7X+JGpZF+pV/ZDUo5aUVsnduwvXFkkPzLQPJkE5av4KVixP\nJZ1axJHHpi+wuUa7eWRcEfoLVY4Sapmq6KSMqkh6SXwjUiLntsDKLsa1RCJ1L4Zqn3Xs+rRq\n1ygSM24oeVoKxhXTH6+VrZhk1Sz13l6pxjrw0LDSqmRZpMcvTNSLiUQQnoytG7Ok1MqfSVhK\nKHFX9f4vmT+/zseXy62uxsurdpGkIurxpcB6PapxtaMqBRJYyuTSIumPiDY09YnTY7ILpAXW\nO1o1e72RVp2lrYFzF6uojlGzIULRRBudlVpGI6mdEZdNqs5YQu/W3k8kkjpOPRq+UGFVS1N6\nNJqLXihjW+JadH2Y51pPdsrklJQa2eqjZtW/Swf1CSVmqx7VjPiHJfSo/BOBSNt5raHlDeZ+\nnSZAW5p1bBObQLsB0MANkWr5xdY/IpJIYvxdyoriVMoHWDqZI0GlbJsZcc8qFZmK2TqmMSPM\nJZJUHH5EqgOUj19ueFuYPKz4ZJSXt/Sq2ts3mj87BImNbxeRpCuyHeRqdUk7rLPVfKDBlfvR\nCmSatvuZSSSuCd+vZP/no97i0xj5IT8isWky3ur7p8IErApcrYOJDUzyJpHcGyJsuon/vaqo\nZKzGOrBej3pGjyOLSJYnEsxMIsncPZE7k6rpMzMQdoxRusieEclXnZVXSilI6zf2q0K5leGL\n/l5VFDuVXYUl6TpGJD2j7hEJIukIa6QsgB67Sq1+QsIT1dOiDcczP68L1Zqb2miPzmIcfXeh\ntRC1bjc0MyrMIE++uUai6fLD8SiTiZQeA7wxcPErmXEofTbt7csWUF717QAX2VZGainpRW60\nfnWAGhGpTKG5I5aUwHo9ahm1WoQ+CIZ1SPYyHE71KMq5D+lM8l/F5RV7VW8BjWZpnFVxAnGq\nN2Tniti6n6ri5KSkGxK6Ai2Qs5Hqd+DCEeslRWr1pJ6y50MW1w6V2mXnfcLVOs/8F2pONY6y\nsdkillHrFk2KSDsk0bIy/cr1/G6b1UiqRqlHPSNy9HlQml+NQWqtQiSjSMk0BCkpV70xc5GN\nSrJttNUyeiCjLAAAA7BJREFUH6YtlYG5a7bb01FbtKmi5DKSwHo9yhmVlfz4TWgIjM5yoeKY\nS6Sl2ABtrmWFNLb/Sw2vzlZupbQB2EcKUQmhUKTI7JTLGJWLIlWXowm4mmFDJDWROJGqmpIr\ndYjJRCpRZg51B77FWv8nVGdSGynTKTM9nN7PpvygrOR6E0965KRU5SGJSsfC6vZSHZS/oTKX\nemDPWzS9qvYxWj3qGakiVffTEGkvZhaJls3YmfCDgqMjarWH9lVRdtq65YGwLlXZ72r3U50n\n2RZhPC2gNSLRbLQRyZFRJZKWAkSq6CwbK5IWXh7csutSoRwyJP0VRtP9nvcCTLb8QJjnaa0L\nNoAYWK9HNSNm4KtfPKn5iF1bFDOL1Fm4vM6MKZE+Wq3uRlcqPybSofY4SZdXJCp7u1K2ctfA\nlN1B37g/jjySlzrvkfc+SYZRNGfSupXGzt2S3vDYpkXmMKmMWc/w+BvIN2qFoUGgFqleXmWH\nedJlGVsjEr0hbohii8ZdrZ+HEJdma6hWU301Au8205tZJArtTLS60rtdvtJrr7ytnkwk6jKT\nVmcrxSMql2FRVLGMtLGrkxu5hPRsLQ0T3tXA1bN6SpKw6mEcJxKpqgOt7Hq3e5hI5bCijovl\n4egHXxyrgm6RTFPhOJFs+UCkhbZCh0j6Kqd+5NLqhBOpUmM7ptNPPrRt1705cNDsU6OM8vqK\nnBS0pzHEq0JgekgerkHCDpGGatXFzCK1OhO2k2av1Umr9fm4yPXNfJfGZkvNbNBoJ3qJl7wt\n6t2uNhxXDc+1RjKsc5SZa98aSeozjQ0hjBOJVHUmfKsV0uLGHGPcIowuEs10+7+7d0zcjyxp\na1QmWyUfPiXhrK0S1Lh6e/eMSHq2XWkE5DcF2iOuu071uv7YlEqQ8tE7cNvkgRZKK7I2jLQS\npleVGxJSYguoVyO9G7Ue1bhSB2QcoNKyJLELjWNmkXwfR+Ceasp/WbK7bUw/tIz1QpXZNorM\nFeoelzaIhkhsS2uXQA5smxkNjBjs+x1jTMfZr7pc5CcfxtQiEfS+XurwOJFo76h1tHqDpLtp\nZbbFWWOnTIpMUlajCiWkfbSDqqK0q3rFtepRyYivZDElGjgXaaAudE4kkt4RiV02OyK5MnKo\nxIuk5yOIRHMxOGhkpClp8apG6lJJzajx0leJSkekvZhXJKkDl4Kzh2ur1LrORlK32EKhiqtO\nkRq77qlI2RJVKWN+Pf/RGCZ5pdlspWKyh5aHK1Zy43MpVWBTSUf5/3P3PQYAeyiNAAAAAElF\nTkSuQmCC",
      "text/plain": [
       "plot without title"
      ]
     },
     "metadata": {
      "image/png": {
       "height": 420,
       "width": 420
      }
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "set.seed(1)\n",
    "Boruta.mydata <- Boruta(decision ~., data = mydata,doTrace = 2, maxRuns=200, ntree = 500)\n",
    "plot(Boruta.mydata)\n",
    "plotImpHistory(Boruta.mydata)\n",
    "plot(Boruta.mydata, xlab = \"\", xaxt = \"n\")\n",
    "lz<-lapply(1:ncol(Boruta.mydata$ImpHistory),function(i)\n",
    "  Boruta.mydata$ImpHistory[is.finite(Boruta.mydata$ImpHistory[,i]),i])\n",
    "names(lz) <- colnames(Boruta.mydata$ImpHistory)  \n",
    "Labels <- sort(sapply(lz,median))\n",
    "axis(side = 1,las=2,labels = names(Labels), \n",
    "     at = 1:ncol(Boruta.mydata$ImpHistory), cex.axis = 0.7)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Boruta performed 199 iterations in 7.848005 secs.\n",
      "Tentatives roughfixed over the last 199 iterations.\n",
      " 30 attributes confirmed important:\n",
      "log.sigma.1.0.mm.3D_glcm_Correlation,\n",
      "log.sigma.1.0.mm.3D_glszm_GrayLevelNonUniformityNormalized,\n",
      "log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis,\n",
      "log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis,\n",
      "log.sigma.3.0.mm.3D_firstorder_90Percentile and 25 more;\n",
      " 53 attributes confirmed unimportant:\n",
      "log.sigma.1.0.mm.3D_firstorder_Minimum,\n",
      "log.sigma.1.0.mm.3D_firstorder_Skewness,\n",
      "log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized,\n",
      "log.sigma.1.0.mm.3D_ngtdm_Busyness, log.sigma.1.0.mm.3D_ngtdm_Strength\n",
      "and 48 more;\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<style>\n",
       ".list-inline {list-style: none; margin:0; padding: 0}\n",
       ".list-inline>li {display: inline-block}\n",
       ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n",
       "</style>\n",
       "<ol class=list-inline><li>'wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis'</li><li>'log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis'</li><li>'log.sigma.5.0.mm.3D_glcm_Idm'</li><li>'original_firstorder_Median'</li><li>'log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis'</li><li>'wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis'</li><li>'wavelet.LHL_firstorder_Maximum'</li><li>'wavelet.HLL_glszm_GrayLevelNonUniformityNormalized'</li><li>'log.sigma.3.0.mm.3D_firstorder_Median'</li><li>'log.sigma.3.0.mm.3D_firstorder_90Percentile'</li><li>'log.sigma.4.0.mm.3D_glszm_SmallAreaEmphasis'</li><li>'wavelet.LHL_glszm_GrayLevelNonUniformityNormalized'</li><li>'log.sigma.1.0.mm.3D_glszm_GrayLevelNonUniformityNormalized'</li><li>'original_shape_SurfaceVolumeRatio'</li><li>'wavelet.LHH_firstorder_Kurtosis'</li><li>'wavelet.HHL_glrlm_LongRunHighGrayLevelEmphasis'</li><li>'log.sigma.1.0.mm.3D_glcm_Correlation'</li><li>'wavelet.LHH_glcm_Correlation'</li><li>'original_gldm_LargeDependenceLowGrayLevelEmphasis'</li><li>'wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis'</li><li>'wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis'</li><li>'wavelet.HHH_glcm_Correlation'</li><li>'original_firstorder_Skewness'</li><li>'wavelet.LLH_glszm_GrayLevelNonUniformityNormalized'</li><li>'wavelet.LHH_glcm_Idn'</li><li>'wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis'</li><li>'wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis'</li><li>'wavelet.HLH_glszm_SizeZoneNonUniformityNormalized'</li><li>'wavelet.HLH_glcm_Idn'</li><li>'wavelet.HLH_firstorder_Kurtosis'</li></ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 'wavelet.HLL\\_gldm\\_LargeDependenceHighGrayLevelEmphasis'\n",
       "\\item 'log.sigma.1.0.mm.3D\\_glszm\\_SmallAreaLowGrayLevelEmphasis'\n",
       "\\item 'log.sigma.5.0.mm.3D\\_glcm\\_Idm'\n",
       "\\item 'original\\_firstorder\\_Median'\n",
       "\\item 'log.sigma.2.0.mm.3D\\_glszm\\_SmallAreaLowGrayLevelEmphasis'\n",
       "\\item 'wavelet.LHL\\_glszm\\_LargeAreaLowGrayLevelEmphasis'\n",
       "\\item 'wavelet.LHL\\_firstorder\\_Maximum'\n",
       "\\item 'wavelet.HLL\\_glszm\\_GrayLevelNonUniformityNormalized'\n",
       "\\item 'log.sigma.3.0.mm.3D\\_firstorder\\_Median'\n",
       "\\item 'log.sigma.3.0.mm.3D\\_firstorder\\_90Percentile'\n",
       "\\item 'log.sigma.4.0.mm.3D\\_glszm\\_SmallAreaEmphasis'\n",
       "\\item 'wavelet.LHL\\_glszm\\_GrayLevelNonUniformityNormalized'\n",
       "\\item 'log.sigma.1.0.mm.3D\\_glszm\\_GrayLevelNonUniformityNormalized'\n",
       "\\item 'original\\_shape\\_SurfaceVolumeRatio'\n",
       "\\item 'wavelet.LHH\\_firstorder\\_Kurtosis'\n",
       "\\item 'wavelet.HHL\\_glrlm\\_LongRunHighGrayLevelEmphasis'\n",
       "\\item 'log.sigma.1.0.mm.3D\\_glcm\\_Correlation'\n",
       "\\item 'wavelet.LHH\\_glcm\\_Correlation'\n",
       "\\item 'original\\_gldm\\_LargeDependenceLowGrayLevelEmphasis'\n",
       "\\item 'wavelet.LLL\\_gldm\\_LargeDependenceLowGrayLevelEmphasis'\n",
       "\\item 'wavelet.HLL\\_glszm\\_LargeAreaLowGrayLevelEmphasis'\n",
       "\\item 'wavelet.HHH\\_glcm\\_Correlation'\n",
       "\\item 'original\\_firstorder\\_Skewness'\n",
       "\\item 'wavelet.LLH\\_glszm\\_GrayLevelNonUniformityNormalized'\n",
       "\\item 'wavelet.LHH\\_glcm\\_Idn'\n",
       "\\item 'wavelet.LLH\\_glrlm\\_LongRunHighGrayLevelEmphasis'\n",
       "\\item 'wavelet.LHH\\_gldm\\_SmallDependenceLowGrayLevelEmphasis'\n",
       "\\item 'wavelet.HLH\\_glszm\\_SizeZoneNonUniformityNormalized'\n",
       "\\item 'wavelet.HLH\\_glcm\\_Idn'\n",
       "\\item 'wavelet.HLH\\_firstorder\\_Kurtosis'\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 'wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis'\n",
       "2. 'log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis'\n",
       "3. 'log.sigma.5.0.mm.3D_glcm_Idm'\n",
       "4. 'original_firstorder_Median'\n",
       "5. 'log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis'\n",
       "6. 'wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis'\n",
       "7. 'wavelet.LHL_firstorder_Maximum'\n",
       "8. 'wavelet.HLL_glszm_GrayLevelNonUniformityNormalized'\n",
       "9. 'log.sigma.3.0.mm.3D_firstorder_Median'\n",
       "10. 'log.sigma.3.0.mm.3D_firstorder_90Percentile'\n",
       "11. 'log.sigma.4.0.mm.3D_glszm_SmallAreaEmphasis'\n",
       "12. 'wavelet.LHL_glszm_GrayLevelNonUniformityNormalized'\n",
       "13. 'log.sigma.1.0.mm.3D_glszm_GrayLevelNonUniformityNormalized'\n",
       "14. 'original_shape_SurfaceVolumeRatio'\n",
       "15. 'wavelet.LHH_firstorder_Kurtosis'\n",
       "16. 'wavelet.HHL_glrlm_LongRunHighGrayLevelEmphasis'\n",
       "17. 'log.sigma.1.0.mm.3D_glcm_Correlation'\n",
       "18. 'wavelet.LHH_glcm_Correlation'\n",
       "19. 'original_gldm_LargeDependenceLowGrayLevelEmphasis'\n",
       "20. 'wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis'\n",
       "21. 'wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis'\n",
       "22. 'wavelet.HHH_glcm_Correlation'\n",
       "23. 'original_firstorder_Skewness'\n",
       "24. 'wavelet.LLH_glszm_GrayLevelNonUniformityNormalized'\n",
       "25. 'wavelet.LHH_glcm_Idn'\n",
       "26. 'wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis'\n",
       "27. 'wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis'\n",
       "28. 'wavelet.HLH_glszm_SizeZoneNonUniformityNormalized'\n",
       "29. 'wavelet.HLH_glcm_Idn'\n",
       "30. 'wavelet.HLH_firstorder_Kurtosis'\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       " [1] \"wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis\"     \n",
       " [2] \"log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis\"   \n",
       " [3] \"log.sigma.5.0.mm.3D_glcm_Idm\"                              \n",
       " [4] \"original_firstorder_Median\"                                \n",
       " [5] \"log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis\"   \n",
       " [6] \"wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis\"           \n",
       " [7] \"wavelet.LHL_firstorder_Maximum\"                            \n",
       " [8] \"wavelet.HLL_glszm_GrayLevelNonUniformityNormalized\"        \n",
       " [9] \"log.sigma.3.0.mm.3D_firstorder_Median\"                     \n",
       "[10] \"log.sigma.3.0.mm.3D_firstorder_90Percentile\"               \n",
       "[11] \"log.sigma.4.0.mm.3D_glszm_SmallAreaEmphasis\"               \n",
       "[12] \"wavelet.LHL_glszm_GrayLevelNonUniformityNormalized\"        \n",
       "[13] \"log.sigma.1.0.mm.3D_glszm_GrayLevelNonUniformityNormalized\"\n",
       "[14] \"original_shape_SurfaceVolumeRatio\"                         \n",
       "[15] \"wavelet.LHH_firstorder_Kurtosis\"                           \n",
       "[16] \"wavelet.HHL_glrlm_LongRunHighGrayLevelEmphasis\"            \n",
       "[17] \"log.sigma.1.0.mm.3D_glcm_Correlation\"                      \n",
       "[18] \"wavelet.LHH_glcm_Correlation\"                              \n",
       "[19] \"original_gldm_LargeDependenceLowGrayLevelEmphasis\"         \n",
       "[20] \"wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis\"      \n",
       "[21] \"wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis\"           \n",
       "[22] \"wavelet.HHH_glcm_Correlation\"                              \n",
       "[23] \"original_firstorder_Skewness\"                              \n",
       "[24] \"wavelet.LLH_glszm_GrayLevelNonUniformityNormalized\"        \n",
       "[25] \"wavelet.LHH_glcm_Idn\"                                      \n",
       "[26] \"wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis\"            \n",
       "[27] \"wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis\"      \n",
       "[28] \"wavelet.HLH_glszm_SizeZoneNonUniformityNormalized\"         \n",
       "[29] \"wavelet.HLH_glcm_Idn\"                                      \n",
       "[30] \"wavelet.HLH_firstorder_Kurtosis\"                           "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<caption>A data.frame: 83 × 6</caption>\n",
       "<thead>\n",
       "\t<tr><th></th><th scope=col>meanImp</th><th scope=col>medianImp</th><th scope=col>minImp</th><th scope=col>maxImp</th><th scope=col>normHits</th><th scope=col>decision</th></tr>\n",
       "\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;fct&gt;</th></tr>\n",
       "</thead>\n",
       "<tbody>\n",
       "\t<tr><th scope=row>wavelet.HHL_ngtdm_Busyness</th><td>0.7593399</td><td> 0.55520969</td><td>-1.22291201</td><td> 2.260644</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis</th><td>3.1299816</td><td> 3.16172346</td><td> 1.37353238</td><td> 5.144343</td><td>0.678391960</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>log.sigma.2.0.mm.3D_glszm_GrayLevelNonUniformityNormalized</th><td>1.5847670</td><td> 1.77724302</td><td>-0.27840024</td><td> 2.752964</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis</th><td>4.7138412</td><td> 4.72023571</td><td> 2.78458952</td><td> 6.187564</td><td>0.964824121</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>log.sigma.5.0.mm.3D_glcm_Imc2</th><td>1.1273544</td><td> 1.25679627</td><td>-1.00741558</td><td> 2.268682</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLH_glszm_SmallAreaLowGrayLevelEmphasis</th><td>2.7109287</td><td> 2.79056928</td><td> 0.61993730</td><td> 4.944669</td><td>0.507537688</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.4.0.mm.3D_glcm_InverseVariance</th><td>1.7636629</td><td> 1.87649758</td><td>-0.26721442</td><td> 3.425131</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.2.0.mm.3D_ngtdm_Busyness</th><td>0.9662080</td><td> 0.76060024</td><td>-0.95880430</td><td> 2.451466</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>original_shape_Sphericity</th><td>1.8171126</td><td> 1.92044812</td><td>-0.12354507</td><td> 3.292909</td><td>0.050251256</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.1.0.mm.3D_firstorder_Skewness</th><td>0.3055464</td><td>-0.03761914</td><td>-0.94898735</td><td> 2.278264</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLL_firstorder_Minimum</th><td>0.1140878</td><td> 0.09705727</td><td>-1.62080172</td><td> 1.897198</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized</th><td>0.9047254</td><td> 0.86421823</td><td>-0.15608461</td><td> 1.940311</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.5.0.mm.3D_glcm_Idm</th><td>5.0871116</td><td> 5.06937053</td><td> 3.53313148</td><td> 6.710988</td><td>0.989949749</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>log.sigma.5.0.mm.3D_glcm_InverseVariance</th><td>2.8713561</td><td> 2.95018800</td><td> 0.93569252</td><td> 4.410788</td><td>0.592964824</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHL_firstorder_Mean</th><td>0.7356398</td><td> 0.84980435</td><td>-0.61908145</td><td> 2.898140</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HHL_glcm_Correlation</th><td>0.8102958</td><td> 1.27588516</td><td>-1.65245478</td><td> 2.231875</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.2.0.mm.3D_firstorder_Maximum</th><td>1.9554811</td><td> 2.08909189</td><td>-0.85375247</td><td> 2.984795</td><td>0.010050251</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHH_glszm_SizeZoneNonUniformityNormalized</th><td>1.2203626</td><td> 1.35546265</td><td>-1.07738700</td><td> 2.097557</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>original_firstorder_Median</th><td>9.4092208</td><td> 9.42573739</td><td> 6.76116083</td><td>11.574019</td><td>1.000000000</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis</th><td>4.1779070</td><td> 4.22111801</td><td> 1.98573509</td><td> 6.187624</td><td>0.944723618</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLL_glcm_Correlation</th><td>1.4043496</td><td> 1.54175140</td><td>-0.80949020</td><td> 2.648236</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis</th><td>3.1550442</td><td> 3.20755220</td><td> 1.17469984</td><td> 5.077668</td><td>0.663316583</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis</th><td>0.4241797</td><td> 0.39346384</td><td>-1.08093521</td><td> 2.317454</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHL_firstorder_Maximum</th><td>5.6906912</td><td> 5.71119439</td><td> 3.44619731</td><td> 7.517934</td><td>0.994974874</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHL_firstorder_Minimum</th><td>1.7643581</td><td> 1.72034470</td><td> 0.60069088</td><td> 2.650330</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHL_glszm_GrayLevelVariance</th><td>1.8807356</td><td> 1.79839180</td><td>-0.09313518</td><td> 3.693820</td><td>0.065326633</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLL_glszm_GrayLevelNonUniformityNormalized</th><td>3.7941690</td><td> 3.79948969</td><td> 1.30153190</td><td> 6.115853</td><td>0.859296482</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>log.sigma.3.0.mm.3D_firstorder_Median</th><td>6.2465787</td><td> 6.29289477</td><td> 3.99844739</td><td> 7.924644</td><td>1.000000000</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.HHH_glcm_Idn</th><td>0.2756726</td><td> 0.50039872</td><td>-1.52729553</td><td> 3.044195</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.3.0.mm.3D_firstorder_90Percentile</th><td>4.6553855</td><td> 4.70794089</td><td> 1.95220025</td><td> 6.886965</td><td>0.944723618</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>...</th><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td></tr>\n",
       "\t<tr><th scope=row>wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis</th><td> 6.4488293</td><td> 6.4413743</td><td> 4.62056512</td><td> 8.207301</td><td>0.994974874</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis</th><td> 2.9226864</td><td> 2.9303377</td><td> 0.95943171</td><td> 4.773278</td><td>0.608040201</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHL_firstorder_Skewness</th><td> 2.0343858</td><td> 1.9961355</td><td> 0.03515641</td><td> 3.617671</td><td>0.055276382</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LLH_glszm_SmallAreaEmphasis</th><td> 1.7880354</td><td> 1.8804575</td><td>-0.47166084</td><td> 2.962170</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLL_firstorder_Maximum</th><td> 2.8251625</td><td> 2.8747558</td><td> 0.66040095</td><td> 4.891755</td><td>0.577889447</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis</th><td> 1.9600846</td><td> 2.0623879</td><td> 0.70312030</td><td> 3.007084</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized</th><td> 1.9106847</td><td> 1.8589709</td><td> 0.62150826</td><td> 3.521007</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.5.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis</th><td> 1.1462063</td><td> 1.2489272</td><td>-0.39689458</td><td> 2.109299</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HHH_glszm_SmallAreaLowGrayLevelEmphasis</th><td> 1.1668109</td><td> 1.2563544</td><td>-1.49636805</td><td> 2.459588</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>original_glcm_MaximumProbability</th><td> 1.3222096</td><td> 1.3313551</td><td>-0.41708282</td><td> 2.769351</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.2.0.mm.3D_glcm_Imc1</th><td> 1.3153680</td><td> 1.5228056</td><td>-1.27221655</td><td> 2.601329</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HHH_glcm_Correlation</th><td> 3.6189387</td><td> 3.7221104</td><td> 0.49259080</td><td> 5.390554</td><td>0.809045226</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHL_firstorder_Kurtosis</th><td> 1.9502705</td><td> 1.8530184</td><td> 0.51099606</td><td> 3.143427</td><td>0.005025126</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>original_firstorder_Skewness</th><td> 8.1629542</td><td> 8.1210949</td><td> 6.45944554</td><td>10.020941</td><td>1.000000000</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLL_glszm_GrayLevelVariance</th><td> 0.8846436</td><td> 1.0159967</td><td>-1.97491672</td><td> 2.615660</td><td>0.010050251</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LLH_glszm_GrayLevelNonUniformityNormalized</th><td> 2.7085586</td><td> 2.7548094</td><td> 0.08834360</td><td> 5.102175</td><td>0.517587940</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLH_glcm_Correlation</th><td> 2.0300173</td><td> 1.9756835</td><td>-0.02219229</td><td> 3.789634</td><td>0.060301508</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHH_glcm_Idn</th><td> 5.2430554</td><td> 5.2515325</td><td> 3.26612459</td><td> 6.839381</td><td>0.989949749</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis</th><td> 2.7046894</td><td> 2.7861734</td><td>-1.03512052</td><td> 4.537986</td><td>0.547738693</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHL_ngtdm_Busyness</th><td> 0.5578522</td><td> 0.6956037</td><td>-1.37175289</td><td> 1.628859</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.2.0.mm.3D_firstorder_Minimum</th><td> 1.5702400</td><td> 1.8887231</td><td>-0.45150663</td><td> 3.053401</td><td>0.010050251</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.2.0.mm.3D_glrlm_RunVariance</th><td> 0.7216342</td><td> 0.6409358</td><td>-1.02468824</td><td> 2.149550</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis</th><td> 3.1136464</td><td> 3.1446488</td><td> 0.69378392</td><td> 5.435488</td><td>0.713567839</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLH_glszm_SizeZoneNonUniformityNormalized</th><td> 2.9816553</td><td> 2.9985838</td><td> 0.67133977</td><td> 4.977458</td><td>0.648241206</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLL_firstorder_Skewness</th><td> 0.9398361</td><td> 1.0799770</td><td>-1.21388226</td><td> 2.248039</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.1.0.mm.3D_ngtdm_Strength</th><td> 0.9749569</td><td> 1.2314365</td><td>-0.84396761</td><td> 1.969846</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLH_glcm_Idn</th><td> 2.5721679</td><td> 2.5596398</td><td> 0.21096216</td><td> 4.402478</td><td>0.502512563</td><td>Confirmed</td></tr>\n",
       "\t<tr><th scope=row>log.sigma.3.0.mm.3D_ngtdm_Busyness</th><td>-0.1701825</td><td>-0.3669669</td><td>-1.41285987</td><td> 1.080658</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>log.sigma.1.0.mm.3D_firstorder_Minimum</th><td> 0.8156974</td><td> 0.8469521</td><td>-0.50755982</td><td> 2.354324</td><td>0.000000000</td><td>Rejected </td></tr>\n",
       "\t<tr><th scope=row>wavelet.HLH_firstorder_Kurtosis</th><td> 2.4168009</td><td> 2.5035533</td><td>-0.48629616</td><td> 4.188169</td><td>0.437185930</td><td>Confirmed</td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "A data.frame: 83 × 6\n",
       "\\begin{tabular}{r|llllll}\n",
       "  & meanImp & medianImp & minImp & maxImp & normHits & decision\\\\\n",
       "  & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <fct>\\\\\n",
       "\\hline\n",
       "\twavelet.HHL\\_ngtdm\\_Busyness & 0.7593399 &  0.55520969 & -1.22291201 &  2.260644 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.HLL\\_gldm\\_LargeDependenceHighGrayLevelEmphasis & 3.1299816 &  3.16172346 &  1.37353238 &  5.144343 & 0.678391960 & Confirmed\\\\\n",
       "\tlog.sigma.2.0.mm.3D\\_glszm\\_GrayLevelNonUniformityNormalized & 1.5847670 &  1.77724302 & -0.27840024 &  2.752964 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.1.0.mm.3D\\_glszm\\_SmallAreaLowGrayLevelEmphasis & 4.7138412 &  4.72023571 &  2.78458952 &  6.187564 & 0.964824121 & Confirmed\\\\\n",
       "\tlog.sigma.5.0.mm.3D\\_glcm\\_Imc2 & 1.1273544 &  1.25679627 & -1.00741558 &  2.268682 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.HLH\\_glszm\\_SmallAreaLowGrayLevelEmphasis & 2.7109287 &  2.79056928 &  0.61993730 &  4.944669 & 0.507537688 & Rejected \\\\\n",
       "\tlog.sigma.4.0.mm.3D\\_glcm\\_InverseVariance & 1.7636629 &  1.87649758 & -0.26721442 &  3.425131 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.2.0.mm.3D\\_ngtdm\\_Busyness & 0.9662080 &  0.76060024 & -0.95880430 &  2.451466 & 0.000000000 & Rejected \\\\\n",
       "\toriginal\\_shape\\_Sphericity & 1.8171126 &  1.92044812 & -0.12354507 &  3.292909 & 0.050251256 & Rejected \\\\\n",
       "\tlog.sigma.1.0.mm.3D\\_firstorder\\_Skewness & 0.3055464 & -0.03761914 & -0.94898735 &  2.278264 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.HLL\\_firstorder\\_Minimum & 0.1140878 &  0.09705727 & -1.62080172 &  1.897198 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.2.0.mm.3D\\_glrlm\\_GrayLevelNonUniformityNormalized & 0.9047254 &  0.86421823 & -0.15608461 &  1.940311 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.5.0.mm.3D\\_glcm\\_Idm & 5.0871116 &  5.06937053 &  3.53313148 &  6.710988 & 0.989949749 & Confirmed\\\\\n",
       "\tlog.sigma.5.0.mm.3D\\_glcm\\_InverseVariance & 2.8713561 &  2.95018800 &  0.93569252 &  4.410788 & 0.592964824 & Rejected \\\\\n",
       "\twavelet.LHL\\_firstorder\\_Mean & 0.7356398 &  0.84980435 & -0.61908145 &  2.898140 & 0.005025126 & Rejected \\\\\n",
       "\twavelet.HHL\\_glcm\\_Correlation & 0.8102958 &  1.27588516 & -1.65245478 &  2.231875 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.2.0.mm.3D\\_firstorder\\_Maximum & 1.9554811 &  2.08909189 & -0.85375247 &  2.984795 & 0.010050251 & Rejected \\\\\n",
       "\twavelet.LHH\\_glszm\\_SizeZoneNonUniformityNormalized & 1.2203626 &  1.35546265 & -1.07738700 &  2.097557 & 0.000000000 & Rejected \\\\\n",
       "\toriginal\\_firstorder\\_Median & 9.4092208 &  9.42573739 &  6.76116083 & 11.574019 & 1.000000000 & Confirmed\\\\\n",
       "\tlog.sigma.2.0.mm.3D\\_glszm\\_SmallAreaLowGrayLevelEmphasis & 4.1779070 &  4.22111801 &  1.98573509 &  6.187624 & 0.944723618 & Confirmed\\\\\n",
       "\twavelet.HLL\\_glcm\\_Correlation & 1.4043496 &  1.54175140 & -0.80949020 &  2.648236 & 0.005025126 & Rejected \\\\\n",
       "\twavelet.LHL\\_glszm\\_LargeAreaLowGrayLevelEmphasis & 3.1550442 &  3.20755220 &  1.17469984 &  5.077668 & 0.663316583 & Confirmed\\\\\n",
       "\tlog.sigma.3.0.mm.3D\\_glszm\\_SmallAreaLowGrayLevelEmphasis & 0.4241797 &  0.39346384 & -1.08093521 &  2.317454 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.LHL\\_firstorder\\_Maximum & 5.6906912 &  5.71119439 &  3.44619731 &  7.517934 & 0.994974874 & Confirmed\\\\\n",
       "\twavelet.LHL\\_firstorder\\_Minimum & 1.7643581 &  1.72034470 &  0.60069088 &  2.650330 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.LHL\\_glszm\\_GrayLevelVariance & 1.8807356 &  1.79839180 & -0.09313518 &  3.693820 & 0.065326633 & Rejected \\\\\n",
       "\twavelet.HLL\\_glszm\\_GrayLevelNonUniformityNormalized & 3.7941690 &  3.79948969 &  1.30153190 &  6.115853 & 0.859296482 & Confirmed\\\\\n",
       "\tlog.sigma.3.0.mm.3D\\_firstorder\\_Median & 6.2465787 &  6.29289477 &  3.99844739 &  7.924644 & 1.000000000 & Confirmed\\\\\n",
       "\twavelet.HHH\\_glcm\\_Idn & 0.2756726 &  0.50039872 & -1.52729553 &  3.044195 & 0.005025126 & Rejected \\\\\n",
       "\tlog.sigma.3.0.mm.3D\\_firstorder\\_90Percentile & 4.6553855 &  4.70794089 &  1.95220025 &  6.886965 & 0.944723618 & Confirmed\\\\\n",
       "\t... & ... & ... & ... & ... & ... & ...\\\\\n",
       "\twavelet.LLL\\_gldm\\_LargeDependenceLowGrayLevelEmphasis &  6.4488293 &  6.4413743 &  4.62056512 &  8.207301 & 0.994974874 & Confirmed\\\\\n",
       "\twavelet.HLL\\_glszm\\_LargeAreaLowGrayLevelEmphasis &  2.9226864 &  2.9303377 &  0.95943171 &  4.773278 & 0.608040201 & Confirmed\\\\\n",
       "\twavelet.LHL\\_firstorder\\_Skewness &  2.0343858 &  1.9961355 &  0.03515641 &  3.617671 & 0.055276382 & Rejected \\\\\n",
       "\twavelet.LLH\\_glszm\\_SmallAreaEmphasis &  1.7880354 &  1.8804575 & -0.47166084 &  2.962170 & 0.005025126 & Rejected \\\\\n",
       "\twavelet.HLL\\_firstorder\\_Maximum &  2.8251625 &  2.8747558 &  0.66040095 &  4.891755 & 0.577889447 & Rejected \\\\\n",
       "\tlog.sigma.3.0.mm.3D\\_glszm\\_SmallAreaEmphasis &  1.9600846 &  2.0623879 &  0.70312030 &  3.007084 & 0.005025126 & Rejected \\\\\n",
       "\tlog.sigma.1.0.mm.3D\\_glrlm\\_GrayLevelNonUniformityNormalized &  1.9106847 &  1.8589709 &  0.62150826 &  3.521007 & 0.005025126 & Rejected \\\\\n",
       "\tlog.sigma.5.0.mm.3D\\_glszm\\_SmallAreaLowGrayLevelEmphasis &  1.1462063 &  1.2489272 & -0.39689458 &  2.109299 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.HHH\\_glszm\\_SmallAreaLowGrayLevelEmphasis &  1.1668109 &  1.2563544 & -1.49636805 &  2.459588 & 0.005025126 & Rejected \\\\\n",
       "\toriginal\\_glcm\\_MaximumProbability &  1.3222096 &  1.3313551 & -0.41708282 &  2.769351 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.2.0.mm.3D\\_glcm\\_Imc1 &  1.3153680 &  1.5228056 & -1.27221655 &  2.601329 & 0.005025126 & Rejected \\\\\n",
       "\twavelet.HHH\\_glcm\\_Correlation &  3.6189387 &  3.7221104 &  0.49259080 &  5.390554 & 0.809045226 & Confirmed\\\\\n",
       "\twavelet.LHL\\_firstorder\\_Kurtosis &  1.9502705 &  1.8530184 &  0.51099606 &  3.143427 & 0.005025126 & Rejected \\\\\n",
       "\toriginal\\_firstorder\\_Skewness &  8.1629542 &  8.1210949 &  6.45944554 & 10.020941 & 1.000000000 & Confirmed\\\\\n",
       "\twavelet.HLL\\_glszm\\_GrayLevelVariance &  0.8846436 &  1.0159967 & -1.97491672 &  2.615660 & 0.010050251 & Rejected \\\\\n",
       "\twavelet.LLH\\_glszm\\_GrayLevelNonUniformityNormalized &  2.7085586 &  2.7548094 &  0.08834360 &  5.102175 & 0.517587940 & Confirmed\\\\\n",
       "\twavelet.HLH\\_glcm\\_Correlation &  2.0300173 &  1.9756835 & -0.02219229 &  3.789634 & 0.060301508 & Rejected \\\\\n",
       "\twavelet.LHH\\_glcm\\_Idn &  5.2430554 &  5.2515325 &  3.26612459 &  6.839381 & 0.989949749 & Confirmed\\\\\n",
       "\twavelet.LLH\\_glrlm\\_LongRunHighGrayLevelEmphasis &  2.7046894 &  2.7861734 & -1.03512052 &  4.537986 & 0.547738693 & Confirmed\\\\\n",
       "\twavelet.LHL\\_ngtdm\\_Busyness &  0.5578522 &  0.6956037 & -1.37175289 &  1.628859 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.2.0.mm.3D\\_firstorder\\_Minimum &  1.5702400 &  1.8887231 & -0.45150663 &  3.053401 & 0.010050251 & Rejected \\\\\n",
       "\tlog.sigma.2.0.mm.3D\\_glrlm\\_RunVariance &  0.7216342 &  0.6409358 & -1.02468824 &  2.149550 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.LHH\\_gldm\\_SmallDependenceLowGrayLevelEmphasis &  3.1136464 &  3.1446488 &  0.69378392 &  5.435488 & 0.713567839 & Confirmed\\\\\n",
       "\twavelet.HLH\\_glszm\\_SizeZoneNonUniformityNormalized &  2.9816553 &  2.9985838 &  0.67133977 &  4.977458 & 0.648241206 & Confirmed\\\\\n",
       "\twavelet.HLL\\_firstorder\\_Skewness &  0.9398361 &  1.0799770 & -1.21388226 &  2.248039 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.1.0.mm.3D\\_ngtdm\\_Strength &  0.9749569 &  1.2314365 & -0.84396761 &  1.969846 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.HLH\\_glcm\\_Idn &  2.5721679 &  2.5596398 &  0.21096216 &  4.402478 & 0.502512563 & Confirmed\\\\\n",
       "\tlog.sigma.3.0.mm.3D\\_ngtdm\\_Busyness & -0.1701825 & -0.3669669 & -1.41285987 &  1.080658 & 0.000000000 & Rejected \\\\\n",
       "\tlog.sigma.1.0.mm.3D\\_firstorder\\_Minimum &  0.8156974 &  0.8469521 & -0.50755982 &  2.354324 & 0.000000000 & Rejected \\\\\n",
       "\twavelet.HLH\\_firstorder\\_Kurtosis &  2.4168009 &  2.5035533 & -0.48629616 &  4.188169 & 0.437185930 & Confirmed\\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "A data.frame: 83 × 6\n",
       "\n",
       "| <!--/--> | meanImp &lt;dbl&gt; | medianImp &lt;dbl&gt; | minImp &lt;dbl&gt; | maxImp &lt;dbl&gt; | normHits &lt;dbl&gt; | decision &lt;fct&gt; |\n",
       "|---|---|---|---|---|---|---|\n",
       "| wavelet.HHL_ngtdm_Busyness | 0.7593399 |  0.55520969 | -1.22291201 |  2.260644 | 0.000000000 | Rejected  |\n",
       "| wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis | 3.1299816 |  3.16172346 |  1.37353238 |  5.144343 | 0.678391960 | Confirmed |\n",
       "| log.sigma.2.0.mm.3D_glszm_GrayLevelNonUniformityNormalized | 1.5847670 |  1.77724302 | -0.27840024 |  2.752964 | 0.000000000 | Rejected  |\n",
       "| log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis | 4.7138412 |  4.72023571 |  2.78458952 |  6.187564 | 0.964824121 | Confirmed |\n",
       "| log.sigma.5.0.mm.3D_glcm_Imc2 | 1.1273544 |  1.25679627 | -1.00741558 |  2.268682 | 0.000000000 | Rejected  |\n",
       "| wavelet.HLH_glszm_SmallAreaLowGrayLevelEmphasis | 2.7109287 |  2.79056928 |  0.61993730 |  4.944669 | 0.507537688 | Rejected  |\n",
       "| log.sigma.4.0.mm.3D_glcm_InverseVariance | 1.7636629 |  1.87649758 | -0.26721442 |  3.425131 | 0.000000000 | Rejected  |\n",
       "| log.sigma.2.0.mm.3D_ngtdm_Busyness | 0.9662080 |  0.76060024 | -0.95880430 |  2.451466 | 0.000000000 | Rejected  |\n",
       "| original_shape_Sphericity | 1.8171126 |  1.92044812 | -0.12354507 |  3.292909 | 0.050251256 | Rejected  |\n",
       "| log.sigma.1.0.mm.3D_firstorder_Skewness | 0.3055464 | -0.03761914 | -0.94898735 |  2.278264 | 0.000000000 | Rejected  |\n",
       "| wavelet.HLL_firstorder_Minimum | 0.1140878 |  0.09705727 | -1.62080172 |  1.897198 | 0.000000000 | Rejected  |\n",
       "| log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized | 0.9047254 |  0.86421823 | -0.15608461 |  1.940311 | 0.000000000 | Rejected  |\n",
       "| log.sigma.5.0.mm.3D_glcm_Idm | 5.0871116 |  5.06937053 |  3.53313148 |  6.710988 | 0.989949749 | Confirmed |\n",
       "| log.sigma.5.0.mm.3D_glcm_InverseVariance | 2.8713561 |  2.95018800 |  0.93569252 |  4.410788 | 0.592964824 | Rejected  |\n",
       "| wavelet.LHL_firstorder_Mean | 0.7356398 |  0.84980435 | -0.61908145 |  2.898140 | 0.005025126 | Rejected  |\n",
       "| wavelet.HHL_glcm_Correlation | 0.8102958 |  1.27588516 | -1.65245478 |  2.231875 | 0.000000000 | Rejected  |\n",
       "| log.sigma.2.0.mm.3D_firstorder_Maximum | 1.9554811 |  2.08909189 | -0.85375247 |  2.984795 | 0.010050251 | Rejected  |\n",
       "| wavelet.LHH_glszm_SizeZoneNonUniformityNormalized | 1.2203626 |  1.35546265 | -1.07738700 |  2.097557 | 0.000000000 | Rejected  |\n",
       "| original_firstorder_Median | 9.4092208 |  9.42573739 |  6.76116083 | 11.574019 | 1.000000000 | Confirmed |\n",
       "| log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis | 4.1779070 |  4.22111801 |  1.98573509 |  6.187624 | 0.944723618 | Confirmed |\n",
       "| wavelet.HLL_glcm_Correlation | 1.4043496 |  1.54175140 | -0.80949020 |  2.648236 | 0.005025126 | Rejected  |\n",
       "| wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis | 3.1550442 |  3.20755220 |  1.17469984 |  5.077668 | 0.663316583 | Confirmed |\n",
       "| log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis | 0.4241797 |  0.39346384 | -1.08093521 |  2.317454 | 0.000000000 | Rejected  |\n",
       "| wavelet.LHL_firstorder_Maximum | 5.6906912 |  5.71119439 |  3.44619731 |  7.517934 | 0.994974874 | Confirmed |\n",
       "| wavelet.LHL_firstorder_Minimum | 1.7643581 |  1.72034470 |  0.60069088 |  2.650330 | 0.000000000 | Rejected  |\n",
       "| wavelet.LHL_glszm_GrayLevelVariance | 1.8807356 |  1.79839180 | -0.09313518 |  3.693820 | 0.065326633 | Rejected  |\n",
       "| wavelet.HLL_glszm_GrayLevelNonUniformityNormalized | 3.7941690 |  3.79948969 |  1.30153190 |  6.115853 | 0.859296482 | Confirmed |\n",
       "| log.sigma.3.0.mm.3D_firstorder_Median | 6.2465787 |  6.29289477 |  3.99844739 |  7.924644 | 1.000000000 | Confirmed |\n",
       "| wavelet.HHH_glcm_Idn | 0.2756726 |  0.50039872 | -1.52729553 |  3.044195 | 0.005025126 | Rejected  |\n",
       "| log.sigma.3.0.mm.3D_firstorder_90Percentile | 4.6553855 |  4.70794089 |  1.95220025 |  6.886965 | 0.944723618 | Confirmed |\n",
       "| ... | ... | ... | ... | ... | ... | ... |\n",
       "| wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis |  6.4488293 |  6.4413743 |  4.62056512 |  8.207301 | 0.994974874 | Confirmed |\n",
       "| wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis |  2.9226864 |  2.9303377 |  0.95943171 |  4.773278 | 0.608040201 | Confirmed |\n",
       "| wavelet.LHL_firstorder_Skewness |  2.0343858 |  1.9961355 |  0.03515641 |  3.617671 | 0.055276382 | Rejected  |\n",
       "| wavelet.LLH_glszm_SmallAreaEmphasis |  1.7880354 |  1.8804575 | -0.47166084 |  2.962170 | 0.005025126 | Rejected  |\n",
       "| wavelet.HLL_firstorder_Maximum |  2.8251625 |  2.8747558 |  0.66040095 |  4.891755 | 0.577889447 | Rejected  |\n",
       "| log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis |  1.9600846 |  2.0623879 |  0.70312030 |  3.007084 | 0.005025126 | Rejected  |\n",
       "| log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized |  1.9106847 |  1.8589709 |  0.62150826 |  3.521007 | 0.005025126 | Rejected  |\n",
       "| log.sigma.5.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis |  1.1462063 |  1.2489272 | -0.39689458 |  2.109299 | 0.000000000 | Rejected  |\n",
       "| wavelet.HHH_glszm_SmallAreaLowGrayLevelEmphasis |  1.1668109 |  1.2563544 | -1.49636805 |  2.459588 | 0.005025126 | Rejected  |\n",
       "| original_glcm_MaximumProbability |  1.3222096 |  1.3313551 | -0.41708282 |  2.769351 | 0.000000000 | Rejected  |\n",
       "| log.sigma.2.0.mm.3D_glcm_Imc1 |  1.3153680 |  1.5228056 | -1.27221655 |  2.601329 | 0.005025126 | Rejected  |\n",
       "| wavelet.HHH_glcm_Correlation |  3.6189387 |  3.7221104 |  0.49259080 |  5.390554 | 0.809045226 | Confirmed |\n",
       "| wavelet.LHL_firstorder_Kurtosis |  1.9502705 |  1.8530184 |  0.51099606 |  3.143427 | 0.005025126 | Rejected  |\n",
       "| original_firstorder_Skewness |  8.1629542 |  8.1210949 |  6.45944554 | 10.020941 | 1.000000000 | Confirmed |\n",
       "| wavelet.HLL_glszm_GrayLevelVariance |  0.8846436 |  1.0159967 | -1.97491672 |  2.615660 | 0.010050251 | Rejected  |\n",
       "| wavelet.LLH_glszm_GrayLevelNonUniformityNormalized |  2.7085586 |  2.7548094 |  0.08834360 |  5.102175 | 0.517587940 | Confirmed |\n",
       "| wavelet.HLH_glcm_Correlation |  2.0300173 |  1.9756835 | -0.02219229 |  3.789634 | 0.060301508 | Rejected  |\n",
       "| wavelet.LHH_glcm_Idn |  5.2430554 |  5.2515325 |  3.26612459 |  6.839381 | 0.989949749 | Confirmed |\n",
       "| wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis |  2.7046894 |  2.7861734 | -1.03512052 |  4.537986 | 0.547738693 | Confirmed |\n",
       "| wavelet.LHL_ngtdm_Busyness |  0.5578522 |  0.6956037 | -1.37175289 |  1.628859 | 0.000000000 | Rejected  |\n",
       "| log.sigma.2.0.mm.3D_firstorder_Minimum |  1.5702400 |  1.8887231 | -0.45150663 |  3.053401 | 0.010050251 | Rejected  |\n",
       "| log.sigma.2.0.mm.3D_glrlm_RunVariance |  0.7216342 |  0.6409358 | -1.02468824 |  2.149550 | 0.000000000 | Rejected  |\n",
       "| wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis |  3.1136464 |  3.1446488 |  0.69378392 |  5.435488 | 0.713567839 | Confirmed |\n",
       "| wavelet.HLH_glszm_SizeZoneNonUniformityNormalized |  2.9816553 |  2.9985838 |  0.67133977 |  4.977458 | 0.648241206 | Confirmed |\n",
       "| wavelet.HLL_firstorder_Skewness |  0.9398361 |  1.0799770 | -1.21388226 |  2.248039 | 0.000000000 | Rejected  |\n",
       "| log.sigma.1.0.mm.3D_ngtdm_Strength |  0.9749569 |  1.2314365 | -0.84396761 |  1.969846 | 0.000000000 | Rejected  |\n",
       "| wavelet.HLH_glcm_Idn |  2.5721679 |  2.5596398 |  0.21096216 |  4.402478 | 0.502512563 | Confirmed |\n",
       "| log.sigma.3.0.mm.3D_ngtdm_Busyness | -0.1701825 | -0.3669669 | -1.41285987 |  1.080658 | 0.000000000 | Rejected  |\n",
       "| log.sigma.1.0.mm.3D_firstorder_Minimum |  0.8156974 |  0.8469521 | -0.50755982 |  2.354324 | 0.000000000 | Rejected  |\n",
       "| wavelet.HLH_firstorder_Kurtosis |  2.4168009 |  2.5035533 | -0.48629616 |  4.188169 | 0.437185930 | Confirmed |\n",
       "\n"
      ],
      "text/plain": [
       "                                                           meanImp   \n",
       "wavelet.HHL_ngtdm_Busyness                                 0.7593399 \n",
       "wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis      3.1299816 \n",
       "log.sigma.2.0.mm.3D_glszm_GrayLevelNonUniformityNormalized 1.5847670 \n",
       "log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    4.7138412 \n",
       "log.sigma.5.0.mm.3D_glcm_Imc2                              1.1273544 \n",
       "wavelet.HLH_glszm_SmallAreaLowGrayLevelEmphasis            2.7109287 \n",
       "log.sigma.4.0.mm.3D_glcm_InverseVariance                   1.7636629 \n",
       "log.sigma.2.0.mm.3D_ngtdm_Busyness                         0.9662080 \n",
       "original_shape_Sphericity                                  1.8171126 \n",
       "log.sigma.1.0.mm.3D_firstorder_Skewness                    0.3055464 \n",
       "wavelet.HLL_firstorder_Minimum                             0.1140878 \n",
       "log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized 0.9047254 \n",
       "log.sigma.5.0.mm.3D_glcm_Idm                               5.0871116 \n",
       "log.sigma.5.0.mm.3D_glcm_InverseVariance                   2.8713561 \n",
       "wavelet.LHL_firstorder_Mean                                0.7356398 \n",
       "wavelet.HHL_glcm_Correlation                               0.8102958 \n",
       "log.sigma.2.0.mm.3D_firstorder_Maximum                     1.9554811 \n",
       "wavelet.LHH_glszm_SizeZoneNonUniformityNormalized          1.2203626 \n",
       "original_firstorder_Median                                 9.4092208 \n",
       "log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    4.1779070 \n",
       "wavelet.HLL_glcm_Correlation                               1.4043496 \n",
       "wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis            3.1550442 \n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    0.4241797 \n",
       "wavelet.LHL_firstorder_Maximum                             5.6906912 \n",
       "wavelet.LHL_firstorder_Minimum                             1.7643581 \n",
       "wavelet.LHL_glszm_GrayLevelVariance                        1.8807356 \n",
       "wavelet.HLL_glszm_GrayLevelNonUniformityNormalized         3.7941690 \n",
       "log.sigma.3.0.mm.3D_firstorder_Median                      6.2465787 \n",
       "wavelet.HHH_glcm_Idn                                       0.2756726 \n",
       "log.sigma.3.0.mm.3D_firstorder_90Percentile                4.6553855 \n",
       "...                                                        ...       \n",
       "wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis        6.4488293\n",
       "wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis             2.9226864\n",
       "wavelet.LHL_firstorder_Skewness                             2.0343858\n",
       "wavelet.LLH_glszm_SmallAreaEmphasis                         1.7880354\n",
       "wavelet.HLL_firstorder_Maximum                              2.8251625\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis                 1.9600846\n",
       "log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized  1.9106847\n",
       "log.sigma.5.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     1.1462063\n",
       "wavelet.HHH_glszm_SmallAreaLowGrayLevelEmphasis             1.1668109\n",
       "original_glcm_MaximumProbability                            1.3222096\n",
       "log.sigma.2.0.mm.3D_glcm_Imc1                               1.3153680\n",
       "wavelet.HHH_glcm_Correlation                                3.6189387\n",
       "wavelet.LHL_firstorder_Kurtosis                             1.9502705\n",
       "original_firstorder_Skewness                                8.1629542\n",
       "wavelet.HLL_glszm_GrayLevelVariance                         0.8846436\n",
       "wavelet.LLH_glszm_GrayLevelNonUniformityNormalized          2.7085586\n",
       "wavelet.HLH_glcm_Correlation                                2.0300173\n",
       "wavelet.LHH_glcm_Idn                                        5.2430554\n",
       "wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis              2.7046894\n",
       "wavelet.LHL_ngtdm_Busyness                                  0.5578522\n",
       "log.sigma.2.0.mm.3D_firstorder_Minimum                      1.5702400\n",
       "log.sigma.2.0.mm.3D_glrlm_RunVariance                       0.7216342\n",
       "wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis        3.1136464\n",
       "wavelet.HLH_glszm_SizeZoneNonUniformityNormalized           2.9816553\n",
       "wavelet.HLL_firstorder_Skewness                             0.9398361\n",
       "log.sigma.1.0.mm.3D_ngtdm_Strength                          0.9749569\n",
       "wavelet.HLH_glcm_Idn                                        2.5721679\n",
       "log.sigma.3.0.mm.3D_ngtdm_Busyness                         -0.1701825\n",
       "log.sigma.1.0.mm.3D_firstorder_Minimum                      0.8156974\n",
       "wavelet.HLH_firstorder_Kurtosis                             2.4168009\n",
       "                                                           medianImp  \n",
       "wavelet.HHL_ngtdm_Busyness                                  0.55520969\n",
       "wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis       3.16172346\n",
       "log.sigma.2.0.mm.3D_glszm_GrayLevelNonUniformityNormalized  1.77724302\n",
       "log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     4.72023571\n",
       "log.sigma.5.0.mm.3D_glcm_Imc2                               1.25679627\n",
       "wavelet.HLH_glszm_SmallAreaLowGrayLevelEmphasis             2.79056928\n",
       "log.sigma.4.0.mm.3D_glcm_InverseVariance                    1.87649758\n",
       "log.sigma.2.0.mm.3D_ngtdm_Busyness                          0.76060024\n",
       "original_shape_Sphericity                                   1.92044812\n",
       "log.sigma.1.0.mm.3D_firstorder_Skewness                    -0.03761914\n",
       "wavelet.HLL_firstorder_Minimum                              0.09705727\n",
       "log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized  0.86421823\n",
       "log.sigma.5.0.mm.3D_glcm_Idm                                5.06937053\n",
       "log.sigma.5.0.mm.3D_glcm_InverseVariance                    2.95018800\n",
       "wavelet.LHL_firstorder_Mean                                 0.84980435\n",
       "wavelet.HHL_glcm_Correlation                                1.27588516\n",
       "log.sigma.2.0.mm.3D_firstorder_Maximum                      2.08909189\n",
       "wavelet.LHH_glszm_SizeZoneNonUniformityNormalized           1.35546265\n",
       "original_firstorder_Median                                  9.42573739\n",
       "log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     4.22111801\n",
       "wavelet.HLL_glcm_Correlation                                1.54175140\n",
       "wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis             3.20755220\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     0.39346384\n",
       "wavelet.LHL_firstorder_Maximum                              5.71119439\n",
       "wavelet.LHL_firstorder_Minimum                              1.72034470\n",
       "wavelet.LHL_glszm_GrayLevelVariance                         1.79839180\n",
       "wavelet.HLL_glszm_GrayLevelNonUniformityNormalized          3.79948969\n",
       "log.sigma.3.0.mm.3D_firstorder_Median                       6.29289477\n",
       "wavelet.HHH_glcm_Idn                                        0.50039872\n",
       "log.sigma.3.0.mm.3D_firstorder_90Percentile                 4.70794089\n",
       "...                                                        ...        \n",
       "wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis        6.4413743 \n",
       "wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis             2.9303377 \n",
       "wavelet.LHL_firstorder_Skewness                             1.9961355 \n",
       "wavelet.LLH_glszm_SmallAreaEmphasis                         1.8804575 \n",
       "wavelet.HLL_firstorder_Maximum                              2.8747558 \n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis                 2.0623879 \n",
       "log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized  1.8589709 \n",
       "log.sigma.5.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     1.2489272 \n",
       "wavelet.HHH_glszm_SmallAreaLowGrayLevelEmphasis             1.2563544 \n",
       "original_glcm_MaximumProbability                            1.3313551 \n",
       "log.sigma.2.0.mm.3D_glcm_Imc1                               1.5228056 \n",
       "wavelet.HHH_glcm_Correlation                                3.7221104 \n",
       "wavelet.LHL_firstorder_Kurtosis                             1.8530184 \n",
       "original_firstorder_Skewness                                8.1210949 \n",
       "wavelet.HLL_glszm_GrayLevelVariance                         1.0159967 \n",
       "wavelet.LLH_glszm_GrayLevelNonUniformityNormalized          2.7548094 \n",
       "wavelet.HLH_glcm_Correlation                                1.9756835 \n",
       "wavelet.LHH_glcm_Idn                                        5.2515325 \n",
       "wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis              2.7861734 \n",
       "wavelet.LHL_ngtdm_Busyness                                  0.6956037 \n",
       "log.sigma.2.0.mm.3D_firstorder_Minimum                      1.8887231 \n",
       "log.sigma.2.0.mm.3D_glrlm_RunVariance                       0.6409358 \n",
       "wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis        3.1446488 \n",
       "wavelet.HLH_glszm_SizeZoneNonUniformityNormalized           2.9985838 \n",
       "wavelet.HLL_firstorder_Skewness                             1.0799770 \n",
       "log.sigma.1.0.mm.3D_ngtdm_Strength                          1.2314365 \n",
       "wavelet.HLH_glcm_Idn                                        2.5596398 \n",
       "log.sigma.3.0.mm.3D_ngtdm_Busyness                         -0.3669669 \n",
       "log.sigma.1.0.mm.3D_firstorder_Minimum                      0.8469521 \n",
       "wavelet.HLH_firstorder_Kurtosis                             2.5035533 \n",
       "                                                           minImp     \n",
       "wavelet.HHL_ngtdm_Busyness                                 -1.22291201\n",
       "wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis       1.37353238\n",
       "log.sigma.2.0.mm.3D_glszm_GrayLevelNonUniformityNormalized -0.27840024\n",
       "log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     2.78458952\n",
       "log.sigma.5.0.mm.3D_glcm_Imc2                              -1.00741558\n",
       "wavelet.HLH_glszm_SmallAreaLowGrayLevelEmphasis             0.61993730\n",
       "log.sigma.4.0.mm.3D_glcm_InverseVariance                   -0.26721442\n",
       "log.sigma.2.0.mm.3D_ngtdm_Busyness                         -0.95880430\n",
       "original_shape_Sphericity                                  -0.12354507\n",
       "log.sigma.1.0.mm.3D_firstorder_Skewness                    -0.94898735\n",
       "wavelet.HLL_firstorder_Minimum                             -1.62080172\n",
       "log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized -0.15608461\n",
       "log.sigma.5.0.mm.3D_glcm_Idm                                3.53313148\n",
       "log.sigma.5.0.mm.3D_glcm_InverseVariance                    0.93569252\n",
       "wavelet.LHL_firstorder_Mean                                -0.61908145\n",
       "wavelet.HHL_glcm_Correlation                               -1.65245478\n",
       "log.sigma.2.0.mm.3D_firstorder_Maximum                     -0.85375247\n",
       "wavelet.LHH_glszm_SizeZoneNonUniformityNormalized          -1.07738700\n",
       "original_firstorder_Median                                  6.76116083\n",
       "log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     1.98573509\n",
       "wavelet.HLL_glcm_Correlation                               -0.80949020\n",
       "wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis             1.17469984\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    -1.08093521\n",
       "wavelet.LHL_firstorder_Maximum                              3.44619731\n",
       "wavelet.LHL_firstorder_Minimum                              0.60069088\n",
       "wavelet.LHL_glszm_GrayLevelVariance                        -0.09313518\n",
       "wavelet.HLL_glszm_GrayLevelNonUniformityNormalized          1.30153190\n",
       "log.sigma.3.0.mm.3D_firstorder_Median                       3.99844739\n",
       "wavelet.HHH_glcm_Idn                                       -1.52729553\n",
       "log.sigma.3.0.mm.3D_firstorder_90Percentile                 1.95220025\n",
       "...                                                        ...        \n",
       "wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis        4.62056512\n",
       "wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis             0.95943171\n",
       "wavelet.LHL_firstorder_Skewness                             0.03515641\n",
       "wavelet.LLH_glszm_SmallAreaEmphasis                        -0.47166084\n",
       "wavelet.HLL_firstorder_Maximum                              0.66040095\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis                 0.70312030\n",
       "log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized  0.62150826\n",
       "log.sigma.5.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    -0.39689458\n",
       "wavelet.HHH_glszm_SmallAreaLowGrayLevelEmphasis            -1.49636805\n",
       "original_glcm_MaximumProbability                           -0.41708282\n",
       "log.sigma.2.0.mm.3D_glcm_Imc1                              -1.27221655\n",
       "wavelet.HHH_glcm_Correlation                                0.49259080\n",
       "wavelet.LHL_firstorder_Kurtosis                             0.51099606\n",
       "original_firstorder_Skewness                                6.45944554\n",
       "wavelet.HLL_glszm_GrayLevelVariance                        -1.97491672\n",
       "wavelet.LLH_glszm_GrayLevelNonUniformityNormalized          0.08834360\n",
       "wavelet.HLH_glcm_Correlation                               -0.02219229\n",
       "wavelet.LHH_glcm_Idn                                        3.26612459\n",
       "wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis             -1.03512052\n",
       "wavelet.LHL_ngtdm_Busyness                                 -1.37175289\n",
       "log.sigma.2.0.mm.3D_firstorder_Minimum                     -0.45150663\n",
       "log.sigma.2.0.mm.3D_glrlm_RunVariance                      -1.02468824\n",
       "wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis        0.69378392\n",
       "wavelet.HLH_glszm_SizeZoneNonUniformityNormalized           0.67133977\n",
       "wavelet.HLL_firstorder_Skewness                            -1.21388226\n",
       "log.sigma.1.0.mm.3D_ngtdm_Strength                         -0.84396761\n",
       "wavelet.HLH_glcm_Idn                                        0.21096216\n",
       "log.sigma.3.0.mm.3D_ngtdm_Busyness                         -1.41285987\n",
       "log.sigma.1.0.mm.3D_firstorder_Minimum                     -0.50755982\n",
       "wavelet.HLH_firstorder_Kurtosis                            -0.48629616\n",
       "                                                           maxImp   \n",
       "wavelet.HHL_ngtdm_Busyness                                  2.260644\n",
       "wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis       5.144343\n",
       "log.sigma.2.0.mm.3D_glszm_GrayLevelNonUniformityNormalized  2.752964\n",
       "log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     6.187564\n",
       "log.sigma.5.0.mm.3D_glcm_Imc2                               2.268682\n",
       "wavelet.HLH_glszm_SmallAreaLowGrayLevelEmphasis             4.944669\n",
       "log.sigma.4.0.mm.3D_glcm_InverseVariance                    3.425131\n",
       "log.sigma.2.0.mm.3D_ngtdm_Busyness                          2.451466\n",
       "original_shape_Sphericity                                   3.292909\n",
       "log.sigma.1.0.mm.3D_firstorder_Skewness                     2.278264\n",
       "wavelet.HLL_firstorder_Minimum                              1.897198\n",
       "log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized  1.940311\n",
       "log.sigma.5.0.mm.3D_glcm_Idm                                6.710988\n",
       "log.sigma.5.0.mm.3D_glcm_InverseVariance                    4.410788\n",
       "wavelet.LHL_firstorder_Mean                                 2.898140\n",
       "wavelet.HHL_glcm_Correlation                                2.231875\n",
       "log.sigma.2.0.mm.3D_firstorder_Maximum                      2.984795\n",
       "wavelet.LHH_glszm_SizeZoneNonUniformityNormalized           2.097557\n",
       "original_firstorder_Median                                 11.574019\n",
       "log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     6.187624\n",
       "wavelet.HLL_glcm_Correlation                                2.648236\n",
       "wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis             5.077668\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     2.317454\n",
       "wavelet.LHL_firstorder_Maximum                              7.517934\n",
       "wavelet.LHL_firstorder_Minimum                              2.650330\n",
       "wavelet.LHL_glszm_GrayLevelVariance                         3.693820\n",
       "wavelet.HLL_glszm_GrayLevelNonUniformityNormalized          6.115853\n",
       "log.sigma.3.0.mm.3D_firstorder_Median                       7.924644\n",
       "wavelet.HHH_glcm_Idn                                        3.044195\n",
       "log.sigma.3.0.mm.3D_firstorder_90Percentile                 6.886965\n",
       "...                                                        ...      \n",
       "wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis        8.207301\n",
       "wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis             4.773278\n",
       "wavelet.LHL_firstorder_Skewness                             3.617671\n",
       "wavelet.LLH_glszm_SmallAreaEmphasis                         2.962170\n",
       "wavelet.HLL_firstorder_Maximum                              4.891755\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis                 3.007084\n",
       "log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized  3.521007\n",
       "log.sigma.5.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis     2.109299\n",
       "wavelet.HHH_glszm_SmallAreaLowGrayLevelEmphasis             2.459588\n",
       "original_glcm_MaximumProbability                            2.769351\n",
       "log.sigma.2.0.mm.3D_glcm_Imc1                               2.601329\n",
       "wavelet.HHH_glcm_Correlation                                5.390554\n",
       "wavelet.LHL_firstorder_Kurtosis                             3.143427\n",
       "original_firstorder_Skewness                               10.020941\n",
       "wavelet.HLL_glszm_GrayLevelVariance                         2.615660\n",
       "wavelet.LLH_glszm_GrayLevelNonUniformityNormalized          5.102175\n",
       "wavelet.HLH_glcm_Correlation                                3.789634\n",
       "wavelet.LHH_glcm_Idn                                        6.839381\n",
       "wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis              4.537986\n",
       "wavelet.LHL_ngtdm_Busyness                                  1.628859\n",
       "log.sigma.2.0.mm.3D_firstorder_Minimum                      3.053401\n",
       "log.sigma.2.0.mm.3D_glrlm_RunVariance                       2.149550\n",
       "wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis        5.435488\n",
       "wavelet.HLH_glszm_SizeZoneNonUniformityNormalized           4.977458\n",
       "wavelet.HLL_firstorder_Skewness                             2.248039\n",
       "log.sigma.1.0.mm.3D_ngtdm_Strength                          1.969846\n",
       "wavelet.HLH_glcm_Idn                                        4.402478\n",
       "log.sigma.3.0.mm.3D_ngtdm_Busyness                          1.080658\n",
       "log.sigma.1.0.mm.3D_firstorder_Minimum                      2.354324\n",
       "wavelet.HLH_firstorder_Kurtosis                             4.188169\n",
       "                                                           normHits   \n",
       "wavelet.HHL_ngtdm_Busyness                                 0.000000000\n",
       "wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis      0.678391960\n",
       "log.sigma.2.0.mm.3D_glszm_GrayLevelNonUniformityNormalized 0.000000000\n",
       "log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    0.964824121\n",
       "log.sigma.5.0.mm.3D_glcm_Imc2                              0.000000000\n",
       "wavelet.HLH_glszm_SmallAreaLowGrayLevelEmphasis            0.507537688\n",
       "log.sigma.4.0.mm.3D_glcm_InverseVariance                   0.000000000\n",
       "log.sigma.2.0.mm.3D_ngtdm_Busyness                         0.000000000\n",
       "original_shape_Sphericity                                  0.050251256\n",
       "log.sigma.1.0.mm.3D_firstorder_Skewness                    0.000000000\n",
       "wavelet.HLL_firstorder_Minimum                             0.000000000\n",
       "log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized 0.000000000\n",
       "log.sigma.5.0.mm.3D_glcm_Idm                               0.989949749\n",
       "log.sigma.5.0.mm.3D_glcm_InverseVariance                   0.592964824\n",
       "wavelet.LHL_firstorder_Mean                                0.005025126\n",
       "wavelet.HHL_glcm_Correlation                               0.000000000\n",
       "log.sigma.2.0.mm.3D_firstorder_Maximum                     0.010050251\n",
       "wavelet.LHH_glszm_SizeZoneNonUniformityNormalized          0.000000000\n",
       "original_firstorder_Median                                 1.000000000\n",
       "log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    0.944723618\n",
       "wavelet.HLL_glcm_Correlation                               0.005025126\n",
       "wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis            0.663316583\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    0.000000000\n",
       "wavelet.LHL_firstorder_Maximum                             0.994974874\n",
       "wavelet.LHL_firstorder_Minimum                             0.000000000\n",
       "wavelet.LHL_glszm_GrayLevelVariance                        0.065326633\n",
       "wavelet.HLL_glszm_GrayLevelNonUniformityNormalized         0.859296482\n",
       "log.sigma.3.0.mm.3D_firstorder_Median                      1.000000000\n",
       "wavelet.HHH_glcm_Idn                                       0.005025126\n",
       "log.sigma.3.0.mm.3D_firstorder_90Percentile                0.944723618\n",
       "...                                                        ...        \n",
       "wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis       0.994974874\n",
       "wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis            0.608040201\n",
       "wavelet.LHL_firstorder_Skewness                            0.055276382\n",
       "wavelet.LLH_glszm_SmallAreaEmphasis                        0.005025126\n",
       "wavelet.HLL_firstorder_Maximum                             0.577889447\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis                0.005025126\n",
       "log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized 0.005025126\n",
       "log.sigma.5.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    0.000000000\n",
       "wavelet.HHH_glszm_SmallAreaLowGrayLevelEmphasis            0.005025126\n",
       "original_glcm_MaximumProbability                           0.000000000\n",
       "log.sigma.2.0.mm.3D_glcm_Imc1                              0.005025126\n",
       "wavelet.HHH_glcm_Correlation                               0.809045226\n",
       "wavelet.LHL_firstorder_Kurtosis                            0.005025126\n",
       "original_firstorder_Skewness                               1.000000000\n",
       "wavelet.HLL_glszm_GrayLevelVariance                        0.010050251\n",
       "wavelet.LLH_glszm_GrayLevelNonUniformityNormalized         0.517587940\n",
       "wavelet.HLH_glcm_Correlation                               0.060301508\n",
       "wavelet.LHH_glcm_Idn                                       0.989949749\n",
       "wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis             0.547738693\n",
       "wavelet.LHL_ngtdm_Busyness                                 0.000000000\n",
       "log.sigma.2.0.mm.3D_firstorder_Minimum                     0.010050251\n",
       "log.sigma.2.0.mm.3D_glrlm_RunVariance                      0.000000000\n",
       "wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis       0.713567839\n",
       "wavelet.HLH_glszm_SizeZoneNonUniformityNormalized          0.648241206\n",
       "wavelet.HLL_firstorder_Skewness                            0.000000000\n",
       "log.sigma.1.0.mm.3D_ngtdm_Strength                         0.000000000\n",
       "wavelet.HLH_glcm_Idn                                       0.502512563\n",
       "log.sigma.3.0.mm.3D_ngtdm_Busyness                         0.000000000\n",
       "log.sigma.1.0.mm.3D_firstorder_Minimum                     0.000000000\n",
       "wavelet.HLH_firstorder_Kurtosis                            0.437185930\n",
       "                                                           decision \n",
       "wavelet.HHL_ngtdm_Busyness                                 Rejected \n",
       "wavelet.HLL_gldm_LargeDependenceHighGrayLevelEmphasis      Confirmed\n",
       "log.sigma.2.0.mm.3D_glszm_GrayLevelNonUniformityNormalized Rejected \n",
       "log.sigma.1.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    Confirmed\n",
       "log.sigma.5.0.mm.3D_glcm_Imc2                              Rejected \n",
       "wavelet.HLH_glszm_SmallAreaLowGrayLevelEmphasis            Rejected \n",
       "log.sigma.4.0.mm.3D_glcm_InverseVariance                   Rejected \n",
       "log.sigma.2.0.mm.3D_ngtdm_Busyness                         Rejected \n",
       "original_shape_Sphericity                                  Rejected \n",
       "log.sigma.1.0.mm.3D_firstorder_Skewness                    Rejected \n",
       "wavelet.HLL_firstorder_Minimum                             Rejected \n",
       "log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized Rejected \n",
       "log.sigma.5.0.mm.3D_glcm_Idm                               Confirmed\n",
       "log.sigma.5.0.mm.3D_glcm_InverseVariance                   Rejected \n",
       "wavelet.LHL_firstorder_Mean                                Rejected \n",
       "wavelet.HHL_glcm_Correlation                               Rejected \n",
       "log.sigma.2.0.mm.3D_firstorder_Maximum                     Rejected \n",
       "wavelet.LHH_glszm_SizeZoneNonUniformityNormalized          Rejected \n",
       "original_firstorder_Median                                 Confirmed\n",
       "log.sigma.2.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    Confirmed\n",
       "wavelet.HLL_glcm_Correlation                               Rejected \n",
       "wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis            Confirmed\n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    Rejected \n",
       "wavelet.LHL_firstorder_Maximum                             Confirmed\n",
       "wavelet.LHL_firstorder_Minimum                             Rejected \n",
       "wavelet.LHL_glszm_GrayLevelVariance                        Rejected \n",
       "wavelet.HLL_glszm_GrayLevelNonUniformityNormalized         Confirmed\n",
       "log.sigma.3.0.mm.3D_firstorder_Median                      Confirmed\n",
       "wavelet.HHH_glcm_Idn                                       Rejected \n",
       "log.sigma.3.0.mm.3D_firstorder_90Percentile                Confirmed\n",
       "...                                                        ...      \n",
       "wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis       Confirmed\n",
       "wavelet.HLL_glszm_LargeAreaLowGrayLevelEmphasis            Confirmed\n",
       "wavelet.LHL_firstorder_Skewness                            Rejected \n",
       "wavelet.LLH_glszm_SmallAreaEmphasis                        Rejected \n",
       "wavelet.HLL_firstorder_Maximum                             Rejected \n",
       "log.sigma.3.0.mm.3D_glszm_SmallAreaEmphasis                Rejected \n",
       "log.sigma.1.0.mm.3D_glrlm_GrayLevelNonUniformityNormalized Rejected \n",
       "log.sigma.5.0.mm.3D_glszm_SmallAreaLowGrayLevelEmphasis    Rejected \n",
       "wavelet.HHH_glszm_SmallAreaLowGrayLevelEmphasis            Rejected \n",
       "original_glcm_MaximumProbability                           Rejected \n",
       "log.sigma.2.0.mm.3D_glcm_Imc1                              Rejected \n",
       "wavelet.HHH_glcm_Correlation                               Confirmed\n",
       "wavelet.LHL_firstorder_Kurtosis                            Rejected \n",
       "original_firstorder_Skewness                               Confirmed\n",
       "wavelet.HLL_glszm_GrayLevelVariance                        Rejected \n",
       "wavelet.LLH_glszm_GrayLevelNonUniformityNormalized         Confirmed\n",
       "wavelet.HLH_glcm_Correlation                               Rejected \n",
       "wavelet.LHH_glcm_Idn                                       Confirmed\n",
       "wavelet.LLH_glrlm_LongRunHighGrayLevelEmphasis             Confirmed\n",
       "wavelet.LHL_ngtdm_Busyness                                 Rejected \n",
       "log.sigma.2.0.mm.3D_firstorder_Minimum                     Rejected \n",
       "log.sigma.2.0.mm.3D_glrlm_RunVariance                      Rejected \n",
       "wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis       Confirmed\n",
       "wavelet.HLH_glszm_SizeZoneNonUniformityNormalized          Confirmed\n",
       "wavelet.HLL_firstorder_Skewness                            Rejected \n",
       "log.sigma.1.0.mm.3D_ngtdm_Strength                         Rejected \n",
       "wavelet.HLH_glcm_Idn                                       Confirmed\n",
       "log.sigma.3.0.mm.3D_ngtdm_Busyness                         Rejected \n",
       "log.sigma.1.0.mm.3D_firstorder_Minimum                     Rejected \n",
       "wavelet.HLH_firstorder_Kurtosis                            Confirmed"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "final.boruta <- TentativeRoughFix(Boruta.mydata)\n",
    "print(final.boruta)\n",
    "getSelectedAttributes(final.boruta, withTentative = F)\n",
    "boruta.df <-  attStats(final.boruta)\n",
    "boruta.df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "R",
   "language": "R",
   "name": "ir"
  },
  "language_info": {
   "codemirror_mode": "r",
   "file_extension": ".r",
   "mimetype": "text/x-r-source",
   "name": "R",
   "pygments_lexer": "r",
   "version": "4.0.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}