Diff of /Phase1.ipynb [000000] .. [d0879a]

Switch to unified view

a b/Phase1.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "markdown",
5
   "id": "2e4374d0",
6
   "metadata": {},
7
   "source": [
8
    "# Phase 1\n",
9
    "## UK Smokers Prediction ML Project\n",
10
    "### 21 April 2024\n",
11
    "\n",
12
    "Wong Yi Wei (Ethan) S3966890"
13
   ]
14
  },
15
  {
16
   "cell_type": "markdown",
17
   "id": "29f059e3",
18
   "metadata": {},
19
   "source": [
20
    "## Table of Contents\n",
21
    "* [1.0 Literature Review](#1)<br>\n",
22
    "* [2.0 Introduction](#2)<br>\n",
23
    "* [3.0 Goals and Objectives](#3)<br>\n",
24
    "* [4.0 Data Preprocessing and Cleaning](#4)<br>\n",
25
    "    * [4.1 Data Cleaning](#4.1) <br>\n",
26
    "    * [4.2 Data Preprocessing](#4.2) <br> \n",
27
    "* [5.0 Data Exploration and Visualization](#5)<br>\n",
28
    "    * [5.1 Descriptive Statistics](#5.1) <br>\n",
29
    "    * [5.2 One-Variable](#5.2) <br> \n",
30
    "    * [5.3 Two-Variable](#5.3) <br>\n",
31
    "    * [5.4 Three-Variable](#5.4) <br> \n",
32
    "* [6.0 Summary and Conclusion](#6)<br>\n",
33
    "* [7.0 References](#7)<br>\n",
34
    "\n",
35
    "***"
36
   ]
37
  },
38
  {
39
   "cell_type": "markdown",
40
   "id": "8eba3ce1",
41
   "metadata": {},
42
   "source": [
43
    "## Setup"
44
   ]
45
  },
46
  {
47
   "cell_type": "code",
48
   "execution_count": 2,
49
   "id": "033ee1c4",
50
   "metadata": {},
51
   "outputs": [],
52
   "source": [
53
    "import pandas as pd\n",
54
    "import numpy as np\n",
55
    "pd.set_option('display.max_columns', None)\n",
56
    "import seaborn as sns\n",
57
    "import matplotlib.pyplot as plt"
58
   ]
59
  },
60
  {
61
   "cell_type": "markdown",
62
   "id": "27a598c1",
63
   "metadata": {},
64
   "source": [
65
    "***\n",
66
    "\n",
67
    "## 1.0 Literature Review <a class=\"anchor\" id=\"1\"></a>\n",
68
    "\n",
69
    "It is widely known that smoking is harmful to the human health, and also towards the environment. A study on smoking mortality has revealed that mortality among smokers are 2 to 3 times higher than a person who has never touched a cigarette in their lives (Carter et al. 2015), and findings from this study were that in the United States (US), there are at least 60,000 additional deaths among US men and women yearly due to cigarette smoking. Smoking is also responsible for almost 600,000 deaths resulting from second hand smoking every year (Durmuşoğlu and Çiftçi 2019).  Furthermore, a conference paper has noted that their findings support their hypothesis where men will have a much higher rate in smoking when compared to women (Kor et al. 2019).\n",
70
    "\n",
71
    "Due to the differences in human biology, men and women bodies deal with risks caused by smoking differently. In a study conducted for smoking and gender, it was revealed that the impact of smoking may be more detrimental amongst women in postmenopausal due to the lack of oestrogens within the body (Bolego et al. 2002). Although the risk is higher, smoking nevertheless still poses a harmful risk to the human body. People who started smoking have their factors that enabled them to pursue smoking, it could be demographic factors, or even socio-economic factors. In a study done to understand socio demographic factors leading to smoking, it was identified that age is an important factor leading to smoking among the younger population where there was an association between smokers and their parent’s smoking habit (Farzana et al. 2014). This is revealing as people in the medium to high age groups have an important role in impacting the younger generation to start smoking. Moreover, another study has shown that smoking in the younger age leads to the acceleration of smoking related diseases (Redgrave et al. 2010).\n",
72
    "\n",
73
    "Other demographic factors such as income level could potentially have an impact on smokers. In an article published on associations between income level and smoking, lower income groups were consistently associated with a higher smoking rate, followed by medium income and higher income groups (Casetta et al. 2017). However, results from the World Health Survey in an article noted that smoking prevalence rate were higher in middle income countries compared to lower income countries, and varied amongst gender (Hosseinpoor 2012). Nevertheless, low- and middle-income individuals were more prone to smoking prevalence. A study conducted in the US which tackles the race and smoking prevalence found that back young adults have a much higher prevalence in smoking cigarettes (Chen-Sankey 2021). Although there may be different race groups comprised in other countries, this study reveals that other ethnicities from white could be prone to smoking prevalence. A study done in the United Kingdom (UK) revealed that non-Hispanic whites were less likely to smoke intermittently when compared to other ethnics (Trinidad et al. 2009).  Furthermore, another study has found that there are significant associations between ancestry and smoking related traits for different ethnicities (Choquet et al. 2021). Moreover, with the addition of low education and low-income level, there are a higher association with smoking frequencies (Chen et al. 2022).\n",
74
    "\n",
75
    "In a finding from a published article, it was noted that only 21% of countries around the world are on track to achieve their tobacco prevalence targets by 2025 (Bilano et al. 2015). This indicates that there are many countries around the world struggling to control tobacco prevalence amongst their population, which could lead to more smokers in the future. In a conference paper published, it was found that smoking amongst the younger population in the UK have significantly reduced amongst the younger population before the popularity of pre-disposable vapes (Tattan-Birch 2024). Although nicotine prevalence has increased, this paper indicates that smoking amongst younger population have reduced. In addition, a conference held by the UK Centre for Tobacco Control Studies identified that between 1996 and 2010, smoking prevalence amongst young teenagers have significantly declined in their proportion within the population (Britton et al. 2012). \n",
76
    "\n",
77
    "\n",
78
    "\n",
79
    "***"
80
   ]
81
  },
82
  {
83
   "cell_type": "markdown",
84
   "id": "52da6a10",
85
   "metadata": {},
86
   "source": [
87
    "## 2.0 Introduction <a class=\"anchor\" id=\"2\"></a>\n",
88
    "\n",
89
    "Smoking prevalence in the United Kingdom (UK) has statistically significantly decreased over time, from 20.2% of smokers in 2011 to 12.9% of smokers in 2022, which accounts for 7.3% decrease within the population (Revie and Mais 2023).  In this machine learning project, we will analyze and provide prediction on the future population of smokers in the UK. This project will be contained within 2 different phases, Phase 1 and Phase 2. In this report, we will be focusing on Phase 1, where the task in this phase is to perform data pre-processing, data exploration, and data visualization as appropriate. <br>\n",
90
    "\n",
91
    "This project uses the UK smoking data retrieved from *Kaggle*, which can be accessed at __[https://www.kaggle.com/datasets/mexwell/uk-smoking-data?resource=download](https://www.kaggle.com/datasets/mexwell/uk-smoking-data?resource=download)__ (MacQuarrie 2024). This dataset consists of the survey data on smoking habits in the UK, and is recommended by the author to be used in analyzing the demographic characteristics of smokers and types of tobacco consumed within the UK population. Within this dataset, there is a total of 1691 rows of observations and 12 columns of variables. We will now identify the dataset features and the target features which will be used future analysis. <br>\n",
92
    "\n",
93
    "The dataset features are as follows: <br>\n",
94
    "\n",
95
    "| Variable | Data Type | Units | Brief Description |\n",
96
    "|-----------|-----------|-------|-----------------------------|\n",
97
    "|gender| nominal categorical | Not Applicable | Gender of the respondent | \n",
98
    "|age| numeric | Not Applicable | Age of the respondent  |\n",
99
    "|marital_status| nominal categorical | Not Applicable | Marital status of the respondent (Divorced, Married, Separated, and Widowed) |\n",
100
    "|highest_qualification| ordinal categorical | Not Applicable | Highest education level attained of the respondent (A Levels, Degree, GCSE/CSE, GCSE/ O Level, Higher/ Sub Degree, No Qualification, ONC/ BTEC) |\n",
101
    "|nationality| nominal categorical | Not Applicable | Nationality of the respondent (British, English, Irish, Scottish, Welsh, Other, Refused, Unknown) |\n",
102
    "|ethnicity| nominal categorical | Not Applicable | Ethnicity of the respondent (Asian, Black, Chinese, Mixed, White, Refused, Unknown)|\n",
103
    "|gross_income| ordinal categorical | Pound Sterling (£) | Gross income of the respondent (Under 2,600, 2,600 to 5,200, 5,200 to 10,400, 10,400 to 15,600, 15,600 to 20,800, 20,800 to 28,600, 28,600 to 36,400, Above 36,400, Unknown) |\n",
104
    "|region| nominal categorical | Not Applicable | Region where the participant is located (London, Midlands & East Anglia, Scotland, South East, South West, The North, Wales)|\n",
105
    "|smoke| binary | Not Applicable | Smoking status of the participant (Yes/ No) |\n",
106
    "|amt_weekends| numeric | Not Applicable | Number of cigarettes smoked per day on weekends by the participant |\n",
107
    "|amt_weekdays| numeric | Not Applicable | Number of cigarettes smoked per day on weekdays by the participant |\n",
108
    "|type| nominal categorical | Not Applicable | Type of cigarettes used by the participant | \n",
109
    "<br>\n",
110
    "\n",
111
    "The target features are as follows: <br>\n",
112
    "\n",
113
    "|Variable| Feature Type |\n",
114
    "|----------|----------|\n",
115
    "|age| numerical|\n",
116
    "|gender| categorical | \n",
117
    "|highest_qualification| categorical |\n",
118
    "|nationality| categorical |\n",
119
    "|ethnicity| categorical |\n",
120
    "|gross_income| categorical |\n",
121
    "|smoke| categorical |\n",
122
    "|amt_weekends| numerical |\n",
123
    "|amt_weekdays| numerical |\n",
124
    "\n",
125
    "For the target features, we shall use the smoke variable as our response variable, and the latter as our dependent variable. The reason the smoke variable is chosen is because it tells us whether the respondent is a smoker or not. Thus, rendering it to only allow two possible outcomes from the variable which are expressed mathematically as:\n",
126
    "\n",
127
    "$$smoke =\\begin{cases}0,& non-smoker\\\\1,& smoker\\end{cases}$$\n",
128
    " \n",
129
    "\n",
130
    "***"
131
   ]
132
  },
133
  {
134
   "cell_type": "markdown",
135
   "id": "fcb86b09",
136
   "metadata": {},
137
   "source": [
138
    "## 3.0 Goals & Objectives <a class=\"anchor\" id=\"3\"></a>\n",
139
    "\n",
140
    "In this project throughout both phases, the primary goal is to predict smokers in the United Kingdom, based on various demographics within the data, and to look for ways to improve upon the current dataset and models for future analysis.\n",
141
    "\n",
142
    "In this Phase 1 report, the goal is to obtain a clean and tidy dataset for further analysis and to get the data to be ready for modeling which will be carried out in Phase 2 of the project. The objectives of this report to achieve the goals for this phase is by data handling, and data exploration and visualization, and cleaning the dataset as appropriate, such as by dealing with missing values, outliers, and incorrect values.\n",
143
    "\n",
144
    "To simplify and aid in achieving the objectives, there will be 6 sections in this report which are introduction, goals and objectives, data preprocessing and cleaning, data exploration and visualization, and summary and conclusion, respectively.\n",
145
    "\n",
146
    "***\n",
147
    "\n",
148
    "## 4.0 Data Cleaning and Preprocessing <a class=\"anchor\" id=\"4\"></a>\n",
149
    "\n",
150
    "In this section of the report, we will be performing our data cleaning and preprocessing to prepare the data for further analysis. This section would we divided into two sub-sections, data cleaning and data preprocessing. In the first subsection, data cleaning would focus on any data consistencies, and taking appropriate actions to deal with missing values. The second subsection, data preprocessing would focus on ensuring that the data structure is correct and make any changes as appropriate.\n",
151
    "Before we perform any of the data cleaning or preprocessing process, The data will first be imported into *Python* from the *Kaggle* resource which were already downloaded under the name ```Phase1_Group85.csv```."
152
   ]
153
  },
154
  {
155
   "cell_type": "code",
156
   "execution_count": 3,
157
   "id": "b4cc49ae",
158
   "metadata": {},
159
   "outputs": [
160
    {
161
     "data": {
162
      "text/plain": [
163
       "(1691, 12)"
164
      ]
165
     },
166
     "execution_count": 3,
167
     "metadata": {},
168
     "output_type": "execute_result"
169
    }
170
   ],
171
   "source": [
172
    "#Import data\n",
173
    "smoke=pd.read_csv('Phase1.csv')\n",
174
    "smoke.shape"
175
   ]
176
  },
177
  {
178
   "cell_type": "code",
179
   "execution_count": 3,
180
   "id": "cc1e16bb",
181
   "metadata": {},
182
   "outputs": [
183
    {
184
     "data": {
185
      "text/plain": [
186
       "['gender',\n",
187
       " 'age',\n",
188
       " 'marital_status',\n",
189
       " 'highest_qualification',\n",
190
       " 'nationality',\n",
191
       " 'ethnicity',\n",
192
       " 'gross_income',\n",
193
       " 'region',\n",
194
       " 'smoke',\n",
195
       " 'amt_weekends',\n",
196
       " 'amt_weekdays',\n",
197
       " 'type']"
198
      ]
199
     },
200
     "execution_count": 3,
201
     "metadata": {},
202
     "output_type": "execute_result"
203
    }
204
   ],
205
   "source": [
206
    "#Column names\n",
207
    "smoke.columns.to_list()"
208
   ]
209
  },
210
  {
211
   "cell_type": "code",
212
   "execution_count": 4,
213
   "id": "2764cf75",
214
   "metadata": {},
215
   "outputs": [
216
    {
217
     "data": {
218
      "text/html": [
219
       "<div>\n",
220
       "<style scoped>\n",
221
       "    .dataframe tbody tr th:only-of-type {\n",
222
       "        vertical-align: middle;\n",
223
       "    }\n",
224
       "\n",
225
       "    .dataframe tbody tr th {\n",
226
       "        vertical-align: top;\n",
227
       "    }\n",
228
       "\n",
229
       "    .dataframe thead th {\n",
230
       "        text-align: right;\n",
231
       "    }\n",
232
       "</style>\n",
233
       "<table border=\"1\" class=\"dataframe\">\n",
234
       "  <thead>\n",
235
       "    <tr style=\"text-align: right;\">\n",
236
       "      <th></th>\n",
237
       "      <th>gender</th>\n",
238
       "      <th>age</th>\n",
239
       "      <th>marital_status</th>\n",
240
       "      <th>highest_qualification</th>\n",
241
       "      <th>nationality</th>\n",
242
       "      <th>ethnicity</th>\n",
243
       "      <th>gross_income</th>\n",
244
       "      <th>region</th>\n",
245
       "      <th>smoke</th>\n",
246
       "      <th>amt_weekends</th>\n",
247
       "      <th>amt_weekdays</th>\n",
248
       "      <th>type</th>\n",
249
       "    </tr>\n",
250
       "  </thead>\n",
251
       "  <tbody>\n",
252
       "    <tr>\n",
253
       "      <th>1540</th>\n",
254
       "      <td>Male</td>\n",
255
       "      <td>49</td>\n",
256
       "      <td>Married</td>\n",
257
       "      <td>No Qualification</td>\n",
258
       "      <td>English</td>\n",
259
       "      <td>White</td>\n",
260
       "      <td>20,800 to 28,600</td>\n",
261
       "      <td>Wales</td>\n",
262
       "      <td>Yes</td>\n",
263
       "      <td>20.0</td>\n",
264
       "      <td>20.0</td>\n",
265
       "      <td>Packets</td>\n",
266
       "    </tr>\n",
267
       "    <tr>\n",
268
       "      <th>549</th>\n",
269
       "      <td>Female</td>\n",
270
       "      <td>69</td>\n",
271
       "      <td>Widowed</td>\n",
272
       "      <td>GCSE/O Level</td>\n",
273
       "      <td>British</td>\n",
274
       "      <td>White</td>\n",
275
       "      <td>5,200 to 10,400</td>\n",
276
       "      <td>Midlands &amp; East Anglia</td>\n",
277
       "      <td>No</td>\n",
278
       "      <td>NaN</td>\n",
279
       "      <td>NaN</td>\n",
280
       "      <td>NaN</td>\n",
281
       "    </tr>\n",
282
       "    <tr>\n",
283
       "      <th>1100</th>\n",
284
       "      <td>Male</td>\n",
285
       "      <td>86</td>\n",
286
       "      <td>Widowed</td>\n",
287
       "      <td>Other/Sub Degree</td>\n",
288
       "      <td>British</td>\n",
289
       "      <td>White</td>\n",
290
       "      <td>20,800 to 28,600</td>\n",
291
       "      <td>South East</td>\n",
292
       "      <td>No</td>\n",
293
       "      <td>NaN</td>\n",
294
       "      <td>NaN</td>\n",
295
       "      <td>NaN</td>\n",
296
       "    </tr>\n",
297
       "    <tr>\n",
298
       "      <th>855</th>\n",
299
       "      <td>Male</td>\n",
300
       "      <td>72</td>\n",
301
       "      <td>Divorced</td>\n",
302
       "      <td>No Qualification</td>\n",
303
       "      <td>English</td>\n",
304
       "      <td>White</td>\n",
305
       "      <td>10,400 to 15,600</td>\n",
306
       "      <td>Midlands &amp; East Anglia</td>\n",
307
       "      <td>No</td>\n",
308
       "      <td>NaN</td>\n",
309
       "      <td>NaN</td>\n",
310
       "      <td>NaN</td>\n",
311
       "    </tr>\n",
312
       "    <tr>\n",
313
       "      <th>966</th>\n",
314
       "      <td>Female</td>\n",
315
       "      <td>93</td>\n",
316
       "      <td>Widowed</td>\n",
317
       "      <td>Other/Sub Degree</td>\n",
318
       "      <td>English</td>\n",
319
       "      <td>White</td>\n",
320
       "      <td>5,200 to 10,400</td>\n",
321
       "      <td>London</td>\n",
322
       "      <td>Yes</td>\n",
323
       "      <td>0.0</td>\n",
324
       "      <td>3.0</td>\n",
325
       "      <td>Packets</td>\n",
326
       "    </tr>\n",
327
       "    <tr>\n",
328
       "      <th>1659</th>\n",
329
       "      <td>Female</td>\n",
330
       "      <td>31</td>\n",
331
       "      <td>Single</td>\n",
332
       "      <td>Other/Sub Degree</td>\n",
333
       "      <td>Scottish</td>\n",
334
       "      <td>White</td>\n",
335
       "      <td>5,200 to 10,400</td>\n",
336
       "      <td>Scotland</td>\n",
337
       "      <td>Yes</td>\n",
338
       "      <td>60.0</td>\n",
339
       "      <td>30.0</td>\n",
340
       "      <td>Packets</td>\n",
341
       "    </tr>\n",
342
       "    <tr>\n",
343
       "      <th>1268</th>\n",
344
       "      <td>Female</td>\n",
345
       "      <td>21</td>\n",
346
       "      <td>Single</td>\n",
347
       "      <td>GCSE/O Level</td>\n",
348
       "      <td>British</td>\n",
349
       "      <td>White</td>\n",
350
       "      <td>2,600 to 5,200</td>\n",
351
       "      <td>South East</td>\n",
352
       "      <td>No</td>\n",
353
       "      <td>NaN</td>\n",
354
       "      <td>NaN</td>\n",
355
       "      <td>NaN</td>\n",
356
       "    </tr>\n",
357
       "    <tr>\n",
358
       "      <th>1102</th>\n",
359
       "      <td>Male</td>\n",
360
       "      <td>61</td>\n",
361
       "      <td>Married</td>\n",
362
       "      <td>No Qualification</td>\n",
363
       "      <td>British</td>\n",
364
       "      <td>Unknown</td>\n",
365
       "      <td>5,200 to 10,400</td>\n",
366
       "      <td>South East</td>\n",
367
       "      <td>No</td>\n",
368
       "      <td>NaN</td>\n",
369
       "      <td>NaN</td>\n",
370
       "      <td>NaN</td>\n",
371
       "    </tr>\n",
372
       "    <tr>\n",
373
       "      <th>968</th>\n",
374
       "      <td>Female</td>\n",
375
       "      <td>57</td>\n",
376
       "      <td>Divorced</td>\n",
377
       "      <td>No Qualification</td>\n",
378
       "      <td>British</td>\n",
379
       "      <td>White</td>\n",
380
       "      <td>15,600 to 20,800</td>\n",
381
       "      <td>London</td>\n",
382
       "      <td>No</td>\n",
383
       "      <td>NaN</td>\n",
384
       "      <td>NaN</td>\n",
385
       "      <td>NaN</td>\n",
386
       "    </tr>\n",
387
       "    <tr>\n",
388
       "      <th>1531</th>\n",
389
       "      <td>Female</td>\n",
390
       "      <td>89</td>\n",
391
       "      <td>Single</td>\n",
392
       "      <td>No Qualification</td>\n",
393
       "      <td>Welsh</td>\n",
394
       "      <td>White</td>\n",
395
       "      <td>Refused</td>\n",
396
       "      <td>Wales</td>\n",
397
       "      <td>No</td>\n",
398
       "      <td>NaN</td>\n",
399
       "      <td>NaN</td>\n",
400
       "      <td>NaN</td>\n",
401
       "    </tr>\n",
402
       "  </tbody>\n",
403
       "</table>\n",
404
       "</div>"
405
      ],
406
      "text/plain": [
407
       "      gender  age marital_status highest_qualification nationality ethnicity  \\\n",
408
       "1540    Male   49        Married      No Qualification     English     White   \n",
409
       "549   Female   69        Widowed          GCSE/O Level     British     White   \n",
410
       "1100    Male   86        Widowed      Other/Sub Degree     British     White   \n",
411
       "855     Male   72       Divorced      No Qualification     English     White   \n",
412
       "966   Female   93        Widowed      Other/Sub Degree     English     White   \n",
413
       "1659  Female   31         Single      Other/Sub Degree    Scottish     White   \n",
414
       "1268  Female   21         Single          GCSE/O Level     British     White   \n",
415
       "1102    Male   61        Married      No Qualification     British   Unknown   \n",
416
       "968   Female   57       Divorced      No Qualification     British     White   \n",
417
       "1531  Female   89         Single      No Qualification       Welsh     White   \n",
418
       "\n",
419
       "          gross_income                  region smoke  amt_weekends  \\\n",
420
       "1540  20,800 to 28,600                   Wales   Yes          20.0   \n",
421
       "549    5,200 to 10,400  Midlands & East Anglia    No           NaN   \n",
422
       "1100  20,800 to 28,600              South East    No           NaN   \n",
423
       "855   10,400 to 15,600  Midlands & East Anglia    No           NaN   \n",
424
       "966    5,200 to 10,400                  London   Yes           0.0   \n",
425
       "1659   5,200 to 10,400                Scotland   Yes          60.0   \n",
426
       "1268    2,600 to 5,200              South East    No           NaN   \n",
427
       "1102   5,200 to 10,400              South East    No           NaN   \n",
428
       "968   15,600 to 20,800                  London    No           NaN   \n",
429
       "1531           Refused                   Wales    No           NaN   \n",
430
       "\n",
431
       "      amt_weekdays     type  \n",
432
       "1540          20.0  Packets  \n",
433
       "549            NaN      NaN  \n",
434
       "1100           NaN      NaN  \n",
435
       "855            NaN      NaN  \n",
436
       "966            3.0  Packets  \n",
437
       "1659          30.0  Packets  \n",
438
       "1268           NaN      NaN  \n",
439
       "1102           NaN      NaN  \n",
440
       "968            NaN      NaN  \n",
441
       "1531           NaN      NaN  "
442
      ]
443
     },
444
     "execution_count": 4,
445
     "metadata": {},
446
     "output_type": "execute_result"
447
    }
448
   ],
449
   "source": [
450
    "#10 Random observations\n",
451
    "smoke.iloc[:, -12:].sample(n=10,random_state=8)"
452
   ]
453
  },
454
  {
455
   "cell_type": "markdown",
456
   "id": "19669cdb",
457
   "metadata": {},
458
   "source": [
459
    "In the above codes, firstly for the shape of the data we can see that there are 1697 observations of data and 12 columns of variables. Next, the column names in the list for the data is correct with the identical column names from the dataset file. Finally, 10 random observations from the dataset is provided with the output above. From the random observations, we can identify that there are many missing values which exists in the ```amt_weekends```, ```amt_weekdays```, and ```type``` columns. These issues would be dealt later in this report.\n",
460
    "\n",
461
    "Now that we are satisfied that the dataset have been imported into *Python* with no issues, we will now proceed with the data cleaning and transformation of the data.\n",
462
    "\n",
463
    "### 4.1 Data Cleaning <a class=\"anchor\" id=\"4.1\"></a>\n",
464
    "\n",
465
    "In the first step of data cleaning, we would first look for the unique values in all the variables from all observations. Data cleaning is a very important as uncleaned data would have a negative or lead to misguided directions during analysis (Samarth 2023). In this step, we would understand the data and look out for are any inconsistencies or missing values."
466
   ]
467
  },
468
  {
469
   "cell_type": "code",
470
   "execution_count": 5,
471
   "id": "9d8759bc",
472
   "metadata": {},
473
   "outputs": [
474
    {
475
     "name": "stdout",
476
     "output_type": "stream",
477
     "text": [
478
      "gender\n",
479
      "['Male' 'Female']\n",
480
      "\n",
481
      "age\n",
482
      "[38 42 40 39 37 53 44 41 72 49 29 79 25 27 30 47 69 55 34 36 56 71 58 83\n",
483
      " 73 31 26 57 22 78 74 85 75 80 33 81 76 59 54 28 89 64 61 20 82 23 67 43\n",
484
      " 18 63 50 66 62 17 68 65 35 52 60 16 24 32 48 91 70 87 21 77 46 51 84 45\n",
485
      " 19 90 86 88 93 95 97]\n",
486
      "\n",
487
      "marital_status\n",
488
      "['Divorced' 'Single' 'Married' 'Widowed' 'Separated']\n",
489
      "\n",
490
      "highest_qualification\n",
491
      "['No Qualification' 'Degree' 'GCSE/O Level' 'GCSE/CSE' 'Other/Sub Degree'\n",
492
      " 'Higher/Sub Degree' 'ONC/BTEC' 'A Levels']\n",
493
      "\n",
494
      "nationality\n",
495
      "['British' 'English' 'Scottish' 'Other' 'Welsh' 'Irish' 'Refused'\n",
496
      " 'Unknown']\n",
497
      "\n",
498
      "ethnicity\n",
499
      "['White' 'Mixed' 'Black' 'Refused' 'Asian' 'Chinese' 'Unknown']\n",
500
      "\n",
501
      "gross_income\n",
502
      "['2,600 to 5,200' 'Under 2,600' '28,600 to 36,400' '10,400 to 15,600'\n",
503
      " '15,600 to 20,800' 'Above 36,400' '5,200 to 10,400' 'Refused'\n",
504
      " '20,800 to 28,600' 'Unknown']\n",
505
      "\n",
506
      "region\n",
507
      "['The North' 'Midlands & East Anglia' 'London' 'South East' 'South West'\n",
508
      " 'Wales' 'Scotland']\n",
509
      "\n",
510
      "smoke\n",
511
      "['No' 'Yes']\n",
512
      "\n",
513
      "amt_weekends\n",
514
      "[nan 12.  6.  8. 15.  5. 20. 25. 40.  4. 30. 10.  7.  9.  2. 50. 16. 35.\n",
515
      " 18.  1.  0.  3. 60. 24. 45.]\n",
516
      "\n",
517
      "amt_weekdays\n",
518
      "[nan 12.  6.  8.  2. 20. 15. 25.  4. 10.  0. 30.  3.  7. 40.  9.  5. 50.\n",
519
      " 18. 35.  1. 55. 16. 24. 45.]\n",
520
      "\n",
521
      "type\n",
522
      "[nan 'Packets' 'Hand-Rolled' 'Both/Mainly Packets'\n",
523
      " 'Both/Mainly Hand-Rolled']\n",
524
      "\n"
525
     ]
526
    }
527
   ],
528
   "source": [
529
    "#Unique values\n",
530
    "colnames=['gender','age','marital_status','highest_qualification','nationality','ethnicity','gross_income'\n",
531
    "          ,'region','smoke','amt_weekends','amt_weekdays','type']\n",
532
    "\n",
533
    "for i in colnames:\n",
534
    "    print(i)\n",
535
    "    print(smoke[i].unique())\n",
536
    "    print('')"
537
   ]
538
  },
539
  {
540
   "cell_type": "markdown",
541
   "id": "6a20f69d",
542
   "metadata": {},
543
   "source": [
544
    "From the output above, we can identify that there are missing values present in variables amt_weekdays, amt_weekends, and type. In variables ```nationality```, ```ethnicity```, and ```gross_income```, we can see that there are 2 unique names \"refused\" and \"unknown\". Since both these names represent an unknown value, we will replace it with a singular value labeled \"unknown\". "
545
   ]
546
  },
547
  {
548
   "cell_type": "code",
549
   "execution_count": 6,
550
   "id": "d3631d52",
551
   "metadata": {},
552
   "outputs": [],
553
   "source": [
554
    "#Nationality, ethnicity, gross_income replacement\n",
555
    "smoke['nationality'] = smoke['nationality'].replace('Refused', 'Unknown')\n",
556
    "smoke['ethnicity'] = smoke['ethnicity'].replace('Refused', 'Unknown')\n",
557
    "smoke['gross_income'] = smoke['gross_income'].replace('Refused', 'Unknown')"
558
   ]
559
  },
560
  {
561
   "cell_type": "code",
562
   "execution_count": 7,
563
   "id": "c5044cf7",
564
   "metadata": {},
565
   "outputs": [
566
    {
567
     "data": {
568
      "text/plain": [
569
       "18"
570
      ]
571
     },
572
     "execution_count": 7,
573
     "metadata": {},
574
     "output_type": "execute_result"
575
    }
576
   ],
577
   "source": [
578
    "#Nationality \"unknown\" count\n",
579
    "smoke.query('nationality == \"Unknown\"').nationality.count()"
580
   ]
581
  },
582
  {
583
   "cell_type": "code",
584
   "execution_count": 8,
585
   "id": "71cf8847",
586
   "metadata": {},
587
   "outputs": [
588
    {
589
     "data": {
590
      "text/plain": [
591
       "15"
592
      ]
593
     },
594
     "execution_count": 8,
595
     "metadata": {},
596
     "output_type": "execute_result"
597
    }
598
   ],
599
   "source": [
600
    "#Ethnicity \"unknown\" count\n",
601
    "smoke.query('ethnicity == \"Unknown\"').ethnicity.count()"
602
   ]
603
  },
604
  {
605
   "cell_type": "code",
606
   "execution_count": 9,
607
   "id": "276da618",
608
   "metadata": {},
609
   "outputs": [
610
    {
611
     "data": {
612
      "text/plain": [
613
       "126"
614
      ]
615
     },
616
     "execution_count": 9,
617
     "metadata": {},
618
     "output_type": "execute_result"
619
    }
620
   ],
621
   "source": [
622
    "#Gross_income \"unknown\" count\n",
623
    "smoke.query('gross_income == \"Unknown\"').gross_income.count()"
624
   ]
625
  },
626
  {
627
   "cell_type": "markdown",
628
   "id": "4f3dcea5",
629
   "metadata": {},
630
   "source": [
631
    "In the above codes, we have converted all \"refused\" values into a singular \"unknown\" value. Furthermore, the amount of occurrences of the \"unknown\" value within the dataset for variables ```nationality```, ```ethnicity```, and ```gross_income```  was also calculated for further data cleaning.\n",
632
    "\n",
633
    "We can observe that there are 126, 18, and 15 counts of unknowns for variables ```nationality```, ```ethnicity```, and ```gross_income```. Since the sum of these is 159 and we have a total of 1691 observations, we are comfortable with omitting these observations to ensure a more complete dataset for further analysis. However, since these data could be important for analysis in dealing with the other variable's missing values, we will deal with this when the process is completed.\n",
634
    "\n",
635
    "Now, to deal with the missing values within the dataset, we will identify the amount of missing values present within the dataset for each variables."
636
   ]
637
  },
638
  {
639
   "cell_type": "code",
640
   "execution_count": 10,
641
   "id": "bd1cf428",
642
   "metadata": {},
643
   "outputs": [
644
    {
645
     "name": "stdout",
646
     "output_type": "stream",
647
     "text": [
648
      "Missing Values: \n",
649
      " gender                      0\n",
650
      "age                         0\n",
651
      "marital_status              0\n",
652
      "highest_qualification       0\n",
653
      "nationality                 0\n",
654
      "ethnicity                   0\n",
655
      "gross_income                0\n",
656
      "region                      0\n",
657
      "smoke                       0\n",
658
      "amt_weekends             1270\n",
659
      "amt_weekdays             1270\n",
660
      "type                     1270\n",
661
      "dtype: int64\n"
662
     ]
663
    }
664
   ],
665
   "source": [
666
    "#No. of N/A in dataset\n",
667
    "na_values = smoke.isnull().sum()\n",
668
    "print(\"Missing Values:\",'\\n', na_values)"
669
   ]
670
  },
671
  {
672
   "cell_type": "markdown",
673
   "id": "9b8789b8",
674
   "metadata": {},
675
   "source": [
676
    "From the above output which shows the amount of missing values present in the variables, we can see that there are 1270 missing values for variables ```amt_weekends```,```amt_weekdays```, and ```type```. Since ```type``` is not relevant to our target features, we will then drop the column. Variables ```amt_weekends``` and ```amt_weekdays``` will be dealt with in appropriate data cleaning techniques."
677
   ]
678
  },
679
  {
680
   "cell_type": "code",
681
   "execution_count": 11,
682
   "id": "c3a719ed",
683
   "metadata": {},
684
   "outputs": [],
685
   "source": [
686
    "#Remove type column\n",
687
    "smoke=smoke.drop('type', axis=1)"
688
   ]
689
  },
690
  {
691
   "cell_type": "markdown",
692
   "id": "1c369bf5",
693
   "metadata": {},
694
   "source": [
695
    "To deal with the missing values for ```amt_weekends``` and ```amt_weekdays```, we will first replace the values for the respondents who are non smokers with 0 as they do not smoke any cigarettes. However, the categorical feature for ```smoke``` should be converted into numeric as the values are binary, and this step could also aid in Phase 2 of the project."
696
   ]
697
  },
698
  {
699
   "cell_type": "code",
700
   "execution_count": 12,
701
   "id": "295eeee5",
702
   "metadata": {},
703
   "outputs": [],
704
   "source": [
705
    "#Replace 1/0 for Yes/No\n",
706
    "smoke['smoke'] = smoke['smoke'].map({'Yes':1, 'No':0})\n",
707
    "\n",
708
    "#Replace non-smokers with 0 amount\n",
709
    "smoke.loc[smoke.smoke == 0, ['amt_weekends', 'amt_weekdays']]=0,0"
710
   ]
711
  },
712
  {
713
   "cell_type": "code",
714
   "execution_count": 13,
715
   "id": "3ec97f4b",
716
   "metadata": {},
717
   "outputs": [
718
    {
719
     "name": "stdout",
720
     "output_type": "stream",
721
     "text": [
722
      "Missing Values: \n",
723
      " gender                   0\n",
724
      "age                      0\n",
725
      "marital_status           0\n",
726
      "highest_qualification    0\n",
727
      "nationality              0\n",
728
      "ethnicity                0\n",
729
      "gross_income             0\n",
730
      "region                   0\n",
731
      "smoke                    0\n",
732
      "amt_weekends             0\n",
733
      "amt_weekdays             0\n",
734
      "dtype: int64\n"
735
     ]
736
    }
737
   ],
738
   "source": [
739
    "#No. of N/A in dataset\n",
740
    "na_values1 = smoke.isnull().sum()\n",
741
    "print(\"Missing Values:\",'\\n', na_values1)"
742
   ]
743
  },
744
  {
745
   "cell_type": "code",
746
   "execution_count": 14,
747
   "id": "dc70190d",
748
   "metadata": {},
749
   "outputs": [
750
    {
751
     "name": "stdout",
752
     "output_type": "stream",
753
     "text": [
754
      "      age  smoke  amt_weekends  amt_weekdays\n",
755
      "591    42      1           0.0           2.0\n",
756
      "812    64      1           0.0           0.0\n",
757
      "927    22      1           0.0           7.0\n",
758
      "966    93      1           0.0           3.0\n",
759
      "1201   37      1           0.0           4.0\n",
760
      "1505   28      1           0.0           1.0\n"
761
     ]
762
    }
763
   ],
764
   "source": [
765
    "#Test weekends\n",
766
    "rslt_weekends=smoke.loc[(smoke['smoke'] == 1) & (smoke['amt_weekends'] == 0)]\n",
767
    "print(rslt_weekends[['age','smoke','amt_weekends','amt_weekdays']])"
768
   ]
769
  },
770
  {
771
   "cell_type": "code",
772
   "execution_count": 15,
773
   "id": "bfb487ed",
774
   "metadata": {},
775
   "outputs": [
776
    {
777
     "name": "stdout",
778
     "output_type": "stream",
779
     "text": [
780
      "      age  smoke  amt_weekends  amt_weekdays\n",
781
      "69     44      1           5.0           0.0\n",
782
      "85     27      1          10.0           0.0\n",
783
      "247    31      1           5.0           0.0\n",
784
      "264    40      1           5.0           0.0\n",
785
      "786    34      1           3.0           0.0\n",
786
      "812    64      1           0.0           0.0\n",
787
      "828    55      1           1.0           0.0\n",
788
      "891    30      1           1.0           0.0\n",
789
      "923    29      1           6.0           0.0\n",
790
      "995    26      1           5.0           0.0\n",
791
      "1016   40      1           2.0           0.0\n",
792
      "1303   36      1          10.0           0.0\n",
793
      "1320   43      1           5.0           0.0\n",
794
      "1386   42      1          12.0           0.0\n",
795
      "1613   68      1           1.0           0.0\n",
796
      "1661   23      1           5.0           0.0\n"
797
     ]
798
    }
799
   ],
800
   "source": [
801
    "#Test weekdays\n",
802
    "rslt_weekdays=smoke.loc[(smoke['smoke'] == 1) & (smoke['amt_weekdays'] == 0)]\n",
803
    "print(rslt_weekdays[['age','smoke','amt_weekends','amt_weekdays']])"
804
   ]
805
  },
806
  {
807
   "cell_type": "code",
808
   "execution_count": 16,
809
   "id": "bbbb2241",
810
   "metadata": {},
811
   "outputs": [
812
    {
813
     "name": "stdout",
814
     "output_type": "stream",
815
     "text": [
816
      "Empty DataFrame\n",
817
      "Columns: [age, smoke, amt_weekends, amt_weekdays]\n",
818
      "Index: []\n"
819
     ]
820
    }
821
   ],
822
   "source": [
823
    "#Test non-weekends\n",
824
    "rslt_nonweekends=smoke.loc[(smoke['smoke'] == 0) & (smoke['amt_weekends'] > 0)]\n",
825
    "print(rslt_nonweekends[['age','smoke','amt_weekends','amt_weekdays']])"
826
   ]
827
  },
828
  {
829
   "cell_type": "code",
830
   "execution_count": 17,
831
   "id": "4f2d3d64",
832
   "metadata": {},
833
   "outputs": [
834
    {
835
     "name": "stdout",
836
     "output_type": "stream",
837
     "text": [
838
      "Empty DataFrame\n",
839
      "Columns: [age, smoke, amt_weekends, amt_weekdays]\n",
840
      "Index: []\n"
841
     ]
842
    }
843
   ],
844
   "source": [
845
    "#Test non-weekdays\n",
846
    "rslt_nonweekdays=smoke.loc[(smoke['smoke'] == 0) & (smoke['amt_weekdays'] > 0)]\n",
847
    "print(rslt_nonweekdays[['age','smoke','amt_weekends','amt_weekdays']])"
848
   ]
849
  },
850
  {
851
   "cell_type": "markdown",
852
   "id": "739e03b4",
853
   "metadata": {},
854
   "source": [
855
    "In the above outputs, we have successfully replaced the missing values in ```amt_weekends``` and ```amt_weekdays```. Furthermore, we have also performed testing for any abnormalities such as 0 value during the weekend and weekdays smoking amount if the respondent is a smoker. Another test was also done to test if any of the non-smokers have any data within the smoking amount during the weekends and weekdays. This is important as it ensures that the data is consistent. \n",
856
    "\n",
857
    "Interestingly, from the ```rslt_weekends``` and ```rslt_weekdays``` it was observed that some of the respondents only smoke on the weekends and not on weekdays, and vice versa. \n",
858
    "\n",
859
    "Now that these these variables with missing values are dealt with, we will revert to our previous suggestion of removing the observations with unknown values in the ```nationality```, ```ethnicity```, and ```gross_income``` variables. Furthermore, we will also create a new dataset with the updated values, and discretize numeric feature for variable ```age``` to 3 levels (Young, Middle-Aged, and Old). The reason behind this discretizing method is to reduce the number of numerical data within the variable and aids in future analysis."
860
   ]
861
  },
862
  {
863
   "cell_type": "code",
864
   "execution_count": 18,
865
   "id": "bc153d05",
866
   "metadata": {},
867
   "outputs": [],
868
   "source": [
869
    "#Removing unknowns from nationality, ethnicity, and gross_income\n",
870
    "smoke.drop(smoke[smoke.nationality == \"Unknown\"].index,inplace=True)\n",
871
    "smoke.drop(smoke[smoke.ethnicity == \"Unknown\"].index,inplace=True)\n",
872
    "smoke.drop(smoke[smoke.gross_income == \"Unknown\"].index,inplace=True)"
873
   ]
874
  },
875
  {
876
   "cell_type": "code",
877
   "execution_count": 19,
878
   "id": "a9d44445",
879
   "metadata": {},
880
   "outputs": [],
881
   "source": [
882
    "#Discretize numeric features\n",
883
    "smoke1=smoke.copy()\n",
884
    "smoke1['age']=pd.qcut(smoke1['age'],\n",
885
    "                      q=3,\n",
886
    "                      labels=['Young','Middle-Aged','Old'])"
887
   ]
888
  },
889
  {
890
   "cell_type": "code",
891
   "execution_count": 20,
892
   "id": "067340f7",
893
   "metadata": {},
894
   "outputs": [
895
    {
896
     "data": {
897
      "text/plain": [
898
       "Young          553\n",
899
       "Middle-Aged    510\n",
900
       "Old            498\n",
901
       "Name: age, dtype: int64"
902
      ]
903
     },
904
     "execution_count": 20,
905
     "metadata": {},
906
     "output_type": "execute_result"
907
    }
908
   ],
909
   "source": [
910
    "#Checking discretized features\n",
911
    "smoke1['age'].value_counts()"
912
   ]
913
  },
914
  {
915
   "cell_type": "code",
916
   "execution_count": 21,
917
   "id": "233af364",
918
   "metadata": {},
919
   "outputs": [
920
    {
921
     "data": {
922
      "text/html": [
923
       "<div>\n",
924
       "<style scoped>\n",
925
       "    .dataframe tbody tr th:only-of-type {\n",
926
       "        vertical-align: middle;\n",
927
       "    }\n",
928
       "\n",
929
       "    .dataframe tbody tr th {\n",
930
       "        vertical-align: top;\n",
931
       "    }\n",
932
       "\n",
933
       "    .dataframe thead th {\n",
934
       "        text-align: right;\n",
935
       "    }\n",
936
       "</style>\n",
937
       "<table border=\"1\" class=\"dataframe\">\n",
938
       "  <thead>\n",
939
       "    <tr style=\"text-align: right;\">\n",
940
       "      <th></th>\n",
941
       "      <th>gender</th>\n",
942
       "      <th>age</th>\n",
943
       "      <th>marital_status</th>\n",
944
       "      <th>highest_qualification</th>\n",
945
       "      <th>nationality</th>\n",
946
       "      <th>ethnicity</th>\n",
947
       "      <th>gross_income</th>\n",
948
       "      <th>region</th>\n",
949
       "      <th>smoke</th>\n",
950
       "      <th>amt_weekends</th>\n",
951
       "      <th>amt_weekdays</th>\n",
952
       "    </tr>\n",
953
       "  </thead>\n",
954
       "  <tbody>\n",
955
       "    <tr>\n",
956
       "      <th>0</th>\n",
957
       "      <td>Male</td>\n",
958
       "      <td>Young</td>\n",
959
       "      <td>Divorced</td>\n",
960
       "      <td>No Qualification</td>\n",
961
       "      <td>British</td>\n",
962
       "      <td>White</td>\n",
963
       "      <td>2,600 to 5,200</td>\n",
964
       "      <td>The North</td>\n",
965
       "      <td>0</td>\n",
966
       "      <td>0.0</td>\n",
967
       "      <td>0.0</td>\n",
968
       "    </tr>\n",
969
       "    <tr>\n",
970
       "      <th>1</th>\n",
971
       "      <td>Female</td>\n",
972
       "      <td>Middle-Aged</td>\n",
973
       "      <td>Single</td>\n",
974
       "      <td>No Qualification</td>\n",
975
       "      <td>British</td>\n",
976
       "      <td>White</td>\n",
977
       "      <td>Under 2,600</td>\n",
978
       "      <td>The North</td>\n",
979
       "      <td>1</td>\n",
980
       "      <td>12.0</td>\n",
981
       "      <td>12.0</td>\n",
982
       "    </tr>\n",
983
       "    <tr>\n",
984
       "      <th>2</th>\n",
985
       "      <td>Male</td>\n",
986
       "      <td>Middle-Aged</td>\n",
987
       "      <td>Married</td>\n",
988
       "      <td>Degree</td>\n",
989
       "      <td>English</td>\n",
990
       "      <td>White</td>\n",
991
       "      <td>28,600 to 36,400</td>\n",
992
       "      <td>The North</td>\n",
993
       "      <td>0</td>\n",
994
       "      <td>0.0</td>\n",
995
       "      <td>0.0</td>\n",
996
       "    </tr>\n",
997
       "    <tr>\n",
998
       "      <th>3</th>\n",
999
       "      <td>Female</td>\n",
1000
       "      <td>Middle-Aged</td>\n",
1001
       "      <td>Married</td>\n",
1002
       "      <td>Degree</td>\n",
1003
       "      <td>English</td>\n",
1004
       "      <td>White</td>\n",
1005
       "      <td>10,400 to 15,600</td>\n",
1006
       "      <td>The North</td>\n",
1007
       "      <td>0</td>\n",
1008
       "      <td>0.0</td>\n",
1009
       "      <td>0.0</td>\n",
1010
       "    </tr>\n",
1011
       "    <tr>\n",
1012
       "      <th>4</th>\n",
1013
       "      <td>Female</td>\n",
1014
       "      <td>Young</td>\n",
1015
       "      <td>Married</td>\n",
1016
       "      <td>GCSE/O Level</td>\n",
1017
       "      <td>British</td>\n",
1018
       "      <td>White</td>\n",
1019
       "      <td>2,600 to 5,200</td>\n",
1020
       "      <td>The North</td>\n",
1021
       "      <td>0</td>\n",
1022
       "      <td>0.0</td>\n",
1023
       "      <td>0.0</td>\n",
1024
       "    </tr>\n",
1025
       "  </tbody>\n",
1026
       "</table>\n",
1027
       "</div>"
1028
      ],
1029
      "text/plain": [
1030
       "   gender          age marital_status highest_qualification nationality  \\\n",
1031
       "0    Male        Young       Divorced      No Qualification     British   \n",
1032
       "1  Female  Middle-Aged         Single      No Qualification     British   \n",
1033
       "2    Male  Middle-Aged        Married                Degree     English   \n",
1034
       "3  Female  Middle-Aged        Married                Degree     English   \n",
1035
       "4  Female        Young        Married          GCSE/O Level     British   \n",
1036
       "\n",
1037
       "  ethnicity      gross_income     region  smoke  amt_weekends  amt_weekdays  \n",
1038
       "0     White    2,600 to 5,200  The North      0           0.0           0.0  \n",
1039
       "1     White       Under 2,600  The North      1          12.0          12.0  \n",
1040
       "2     White  28,600 to 36,400  The North      0           0.0           0.0  \n",
1041
       "3     White  10,400 to 15,600  The North      0           0.0           0.0  \n",
1042
       "4     White    2,600 to 5,200  The North      0           0.0           0.0  "
1043
      ]
1044
     },
1045
     "execution_count": 21,
1046
     "metadata": {},
1047
     "output_type": "execute_result"
1048
    }
1049
   ],
1050
   "source": [
1051
    "#View discretized features\n",
1052
    "smoke1.iloc[0:5]"
1053
   ]
1054
  },
1055
  {
1056
   "cell_type": "code",
1057
   "execution_count": 22,
1058
   "id": "7861a72e",
1059
   "metadata": {},
1060
   "outputs": [
1061
    {
1062
     "data": {
1063
      "text/plain": [
1064
       "(1561, 11)"
1065
      ]
1066
     },
1067
     "execution_count": 22,
1068
     "metadata": {},
1069
     "output_type": "execute_result"
1070
    }
1071
   ],
1072
   "source": [
1073
    "#Updated shape\n",
1074
    "smoke1.shape"
1075
   ]
1076
  },
1077
  {
1078
   "cell_type": "code",
1079
   "execution_count": 23,
1080
   "id": "a0e0e7d2",
1081
   "metadata": {},
1082
   "outputs": [
1083
    {
1084
     "name": "stdout",
1085
     "output_type": "stream",
1086
     "text": [
1087
      "gender\n",
1088
      "['Male' 'Female']\n",
1089
      "\n",
1090
      "age\n",
1091
      "['Young', 'Middle-Aged', 'Old']\n",
1092
      "Categories (3, object): ['Young' < 'Middle-Aged' < 'Old']\n",
1093
      "\n",
1094
      "marital_status\n",
1095
      "['Divorced' 'Single' 'Married' 'Widowed' 'Separated']\n",
1096
      "\n",
1097
      "highest_qualification\n",
1098
      "['No Qualification' 'Degree' 'GCSE/O Level' 'GCSE/CSE' 'Other/Sub Degree'\n",
1099
      " 'Higher/Sub Degree' 'ONC/BTEC' 'A Levels']\n",
1100
      "\n",
1101
      "nationality\n",
1102
      "['British' 'English' 'Scottish' 'Other' 'Welsh' 'Irish']\n",
1103
      "\n",
1104
      "ethnicity\n",
1105
      "['White' 'Mixed' 'Black' 'Asian' 'Chinese']\n",
1106
      "\n",
1107
      "gross_income\n",
1108
      "['2,600 to 5,200' 'Under 2,600' '28,600 to 36,400' '10,400 to 15,600'\n",
1109
      " '15,600 to 20,800' 'Above 36,400' '5,200 to 10,400' '20,800 to 28,600']\n",
1110
      "\n",
1111
      "region\n",
1112
      "['The North' 'Midlands & East Anglia' 'London' 'South East' 'South West'\n",
1113
      " 'Wales' 'Scotland']\n",
1114
      "\n",
1115
      "smoke\n",
1116
      "[0 1]\n",
1117
      "\n",
1118
      "amt_weekends\n",
1119
      "[ 0. 12.  6.  8. 15.  5. 20. 25.  4. 30. 10. 40.  9.  7.  2. 50. 16. 35.\n",
1120
      " 18.  1.  3. 60. 24. 45.]\n",
1121
      "\n",
1122
      "amt_weekdays\n",
1123
      "[ 0. 12.  6.  8.  2. 20. 15. 25.  4. 10. 30.  3. 40.  9.  5. 50.  7. 18.\n",
1124
      " 35.  1. 55. 16. 24. 45.]\n",
1125
      "\n"
1126
     ]
1127
    }
1128
   ],
1129
   "source": [
1130
    "#Updated unique values\n",
1131
    "colnames1=['gender','age','marital_status','highest_qualification','nationality','ethnicity','gross_income'\n",
1132
    "          ,'region','smoke','amt_weekends','amt_weekdays']\n",
1133
    "\n",
1134
    "for i in colnames1:\n",
1135
    "    print(i)\n",
1136
    "    print(smoke1[i].unique())\n",
1137
    "    print('')"
1138
   ]
1139
  },
1140
  {
1141
   "cell_type": "markdown",
1142
   "id": "8b8f80a8",
1143
   "metadata": {},
1144
   "source": [
1145
    "In the above outputs, the process to remove the unknown values from ```nationality```, ```ethnicity```, and ```gross_income``` variables, and discretizing features have been implemented. These updates to the dataset have been copied onto a new dataset named ```smoke1```. \n",
1146
    "\n",
1147
    "From the discretize process, the age of the respondents have been adjusted to 553, 510, and 498 respondents into categories young, middle-aged, and old, respectively. This process uses an equal-frequency binning method to split the ages into 3 categories. The new dataset have also been printed to view the changes made throughout the data cleaning process.\n",
1148
    "\n",
1149
    "It can also be observed that the shape of the dataset has been adjusted to just 1561 rows of observations and 11 variables. Additionally, the unique values for the updated dataset is adjusted accordingly and does not show any unknown values or missing values, with an addition of a categorical data type for variable ```age```. \n",
1150
    "\n",
1151
    "### 4.2 Data Preprocessing <a class=\"anchor\" id=\"4.2\"></a>\n",
1152
    "\n",
1153
    "Now that the data cleaning is completed, we will move on to data preprocessing, where we would check the data types of all variables and convert them as appropriate."
1154
   ]
1155
  },
1156
  {
1157
   "cell_type": "code",
1158
   "execution_count": 24,
1159
   "id": "3470d9ae",
1160
   "metadata": {},
1161
   "outputs": [
1162
    {
1163
     "name": "stdout",
1164
     "output_type": "stream",
1165
     "text": [
1166
      "Data Type\n",
1167
      "gender                     object\n",
1168
      "age                      category\n",
1169
      "marital_status             object\n",
1170
      "highest_qualification      object\n",
1171
      "nationality                object\n",
1172
      "ethnicity                  object\n",
1173
      "gross_income               object\n",
1174
      "region                     object\n",
1175
      "smoke                       int64\n",
1176
      "amt_weekends              float64\n",
1177
      "amt_weekdays              float64\n",
1178
      "dtype: object\n"
1179
     ]
1180
    }
1181
   ],
1182
   "source": [
1183
    "#Check data types\n",
1184
    "print(\"Data Type\")\n",
1185
    "print(smoke1.dtypes)"
1186
   ]
1187
  },
1188
  {
1189
   "cell_type": "markdown",
1190
   "id": "caa09d08",
1191
   "metadata": {},
1192
   "source": [
1193
    "From the above output, variables ```age``` are the only one correct. Hence, we will perform data type conversions for the other variables. The recommended data types for the variables based on the python data types are as below:\n",
1194
    "\n",
1195
    "|Variable|Pandas Type|Python Type|Ordered|\n",
1196
    "|----------|----------|----------|----------|\n",
1197
    "|gender|object|str|N/A|\n",
1198
    "|age|category|N/A|True|\n",
1199
    "|marital_status|category|N/A|False|\n",
1200
    "|highest_qualification|category|N/A|True|\n",
1201
    "|nationality|category|N/A|False|\n",
1202
    "|ethnicity|category|N/A|False|\n",
1203
    "|gross_income|category|N/A|True|\n",
1204
    "|region|category|N/A|False|\n",
1205
    "|smoke|bool|bool|N/A|\n",
1206
    "|amt_weekends|int64|int|N/A|\n",
1207
    "|amt_weekdays|int64|int|N/A|"
1208
   ]
1209
  },
1210
  {
1211
   "cell_type": "code",
1212
   "execution_count": 25,
1213
   "id": "f88a0654",
1214
   "metadata": {},
1215
   "outputs": [
1216
    {
1217
     "name": "stdout",
1218
     "output_type": "stream",
1219
     "text": [
1220
      "Data Type\n",
1221
      "gender                     object\n",
1222
      "age                      category\n",
1223
      "marital_status           category\n",
1224
      "highest_qualification    category\n",
1225
      "nationality              category\n",
1226
      "ethnicity                category\n",
1227
      "gross_income             category\n",
1228
      "region                   category\n",
1229
      "smoke                        bool\n",
1230
      "amt_weekends                int64\n",
1231
      "amt_weekdays                int64\n",
1232
      "dtype: object\n"
1233
     ]
1234
    }
1235
   ],
1236
   "source": [
1237
    "#Data type conversion\n",
1238
    "smoke1['gender']=smoke1['gender'].astype('str')\n",
1239
    "smoke1['marital_status']=smoke1['marital_status'].astype('category')\n",
1240
    "smoke1['nationality']=smoke1['nationality'].astype('category')\n",
1241
    "smoke1['ethnicity']=smoke1['ethnicity'].astype('category')\n",
1242
    "smoke1['region']=smoke1['region'].astype('category')\n",
1243
    "smoke1['smoke']=smoke1['smoke'].astype('bool')\n",
1244
    "smoke1['amt_weekends']=smoke1['amt_weekends'].astype('int64')\n",
1245
    "smoke1['amt_weekdays']=smoke1['amt_weekdays'].astype('int64')\n",
1246
    "\n",
1247
    "from pandas.api.types import CategoricalDtype\n",
1248
    "quali_type=CategoricalDtype(categories=[\"No Qualification\",\"GCSE/CSE\",\"GCSE/O Level\",\"ONC/BTEC\",\"A Levels\",\n",
1249
    "                                        \"Other/Sub Degree\",\"Degree\",\"Higher/Sub Degree\"], ordered = True)\n",
1250
    "smoke1['highest_qualification']=smoke1['highest_qualification'].astype(quali_type)\n",
1251
    "\n",
1252
    "income_type=CategoricalDtype(categories=[\"Under 2,600\",\"2,600 to 5,200\",\"5,200 to 10,400\",\"10,400 to 15,600\",\n",
1253
    "                                        \"15,600 to 20,800\",\"20,800 to 28,600\",\"28,600 to 36,400\",\"Above 36,400\"],\n",
1254
    "                                        ordered = True)\n",
1255
    "smoke1['gross_income']=smoke1['gross_income'].astype(income_type)\n",
1256
    "\n",
1257
    "#Check updated data type\n",
1258
    "print(\"Data Type\")\n",
1259
    "print(smoke1.dtypes)"
1260
   ]
1261
  },
1262
  {
1263
   "cell_type": "code",
1264
   "execution_count": 26,
1265
   "id": "984ef597",
1266
   "metadata": {},
1267
   "outputs": [],
1268
   "source": [
1269
    "smokers=smoke1.loc[(smoke1['smoke'] == True)]\n",
1270
    "non_smokers=smoke1.loc[(smoke1['smoke'] == False)]"
1271
   ]
1272
  },
1273
  {
1274
   "cell_type": "code",
1275
   "execution_count": 27,
1276
   "id": "edaaf51c",
1277
   "metadata": {},
1278
   "outputs": [
1279
    {
1280
     "data": {
1281
      "text/html": [
1282
       "<div>\n",
1283
       "<style scoped>\n",
1284
       "    .dataframe tbody tr th:only-of-type {\n",
1285
       "        vertical-align: middle;\n",
1286
       "    }\n",
1287
       "\n",
1288
       "    .dataframe tbody tr th {\n",
1289
       "        vertical-align: top;\n",
1290
       "    }\n",
1291
       "\n",
1292
       "    .dataframe thead th {\n",
1293
       "        text-align: right;\n",
1294
       "    }\n",
1295
       "</style>\n",
1296
       "<table border=\"1\" class=\"dataframe\">\n",
1297
       "  <thead>\n",
1298
       "    <tr style=\"text-align: right;\">\n",
1299
       "      <th></th>\n",
1300
       "      <th>gender</th>\n",
1301
       "      <th>age</th>\n",
1302
       "      <th>marital_status</th>\n",
1303
       "      <th>highest_qualification</th>\n",
1304
       "      <th>nationality</th>\n",
1305
       "      <th>ethnicity</th>\n",
1306
       "      <th>gross_income</th>\n",
1307
       "      <th>region</th>\n",
1308
       "      <th>smoke</th>\n",
1309
       "      <th>amt_weekends</th>\n",
1310
       "      <th>amt_weekdays</th>\n",
1311
       "    </tr>\n",
1312
       "  </thead>\n",
1313
       "  <tbody>\n",
1314
       "    <tr>\n",
1315
       "      <th>1</th>\n",
1316
       "      <td>Female</td>\n",
1317
       "      <td>Middle-Aged</td>\n",
1318
       "      <td>Single</td>\n",
1319
       "      <td>No Qualification</td>\n",
1320
       "      <td>British</td>\n",
1321
       "      <td>White</td>\n",
1322
       "      <td>Under 2,600</td>\n",
1323
       "      <td>The North</td>\n",
1324
       "      <td>True</td>\n",
1325
       "      <td>12</td>\n",
1326
       "      <td>12</td>\n",
1327
       "    </tr>\n",
1328
       "    <tr>\n",
1329
       "      <th>6</th>\n",
1330
       "      <td>Male</td>\n",
1331
       "      <td>Middle-Aged</td>\n",
1332
       "      <td>Married</td>\n",
1333
       "      <td>Degree</td>\n",
1334
       "      <td>British</td>\n",
1335
       "      <td>White</td>\n",
1336
       "      <td>Above 36,400</td>\n",
1337
       "      <td>The North</td>\n",
1338
       "      <td>True</td>\n",
1339
       "      <td>6</td>\n",
1340
       "      <td>6</td>\n",
1341
       "    </tr>\n",
1342
       "    <tr>\n",
1343
       "      <th>8</th>\n",
1344
       "      <td>Male</td>\n",
1345
       "      <td>Middle-Aged</td>\n",
1346
       "      <td>Single</td>\n",
1347
       "      <td>GCSE/CSE</td>\n",
1348
       "      <td>English</td>\n",
1349
       "      <td>White</td>\n",
1350
       "      <td>2,600 to 5,200</td>\n",
1351
       "      <td>The North</td>\n",
1352
       "      <td>True</td>\n",
1353
       "      <td>8</td>\n",
1354
       "      <td>8</td>\n",
1355
       "    </tr>\n",
1356
       "    <tr>\n",
1357
       "      <th>9</th>\n",
1358
       "      <td>Female</td>\n",
1359
       "      <td>Middle-Aged</td>\n",
1360
       "      <td>Married</td>\n",
1361
       "      <td>No Qualification</td>\n",
1362
       "      <td>English</td>\n",
1363
       "      <td>White</td>\n",
1364
       "      <td>5,200 to 10,400</td>\n",
1365
       "      <td>The North</td>\n",
1366
       "      <td>True</td>\n",
1367
       "      <td>15</td>\n",
1368
       "      <td>12</td>\n",
1369
       "    </tr>\n",
1370
       "    <tr>\n",
1371
       "      <th>20</th>\n",
1372
       "      <td>Female</td>\n",
1373
       "      <td>Young</td>\n",
1374
       "      <td>Married</td>\n",
1375
       "      <td>GCSE/CSE</td>\n",
1376
       "      <td>British</td>\n",
1377
       "      <td>White</td>\n",
1378
       "      <td>2,600 to 5,200</td>\n",
1379
       "      <td>The North</td>\n",
1380
       "      <td>True</td>\n",
1381
       "      <td>6</td>\n",
1382
       "      <td>12</td>\n",
1383
       "    </tr>\n",
1384
       "  </tbody>\n",
1385
       "</table>\n",
1386
       "</div>"
1387
      ],
1388
      "text/plain": [
1389
       "    gender          age marital_status highest_qualification nationality  \\\n",
1390
       "1   Female  Middle-Aged         Single      No Qualification     British   \n",
1391
       "6     Male  Middle-Aged        Married                Degree     British   \n",
1392
       "8     Male  Middle-Aged         Single              GCSE/CSE     English   \n",
1393
       "9   Female  Middle-Aged        Married      No Qualification     English   \n",
1394
       "20  Female        Young        Married              GCSE/CSE     British   \n",
1395
       "\n",
1396
       "   ethnicity     gross_income     region  smoke  amt_weekends  amt_weekdays  \n",
1397
       "1      White      Under 2,600  The North   True            12            12  \n",
1398
       "6      White     Above 36,400  The North   True             6             6  \n",
1399
       "8      White   2,600 to 5,200  The North   True             8             8  \n",
1400
       "9      White  5,200 to 10,400  The North   True            15            12  \n",
1401
       "20     White   2,600 to 5,200  The North   True             6            12  "
1402
      ]
1403
     },
1404
     "execution_count": 27,
1405
     "metadata": {},
1406
     "output_type": "execute_result"
1407
    }
1408
   ],
1409
   "source": [
1410
    "smokers.iloc[0:5]"
1411
   ]
1412
  },
1413
  {
1414
   "cell_type": "code",
1415
   "execution_count": 28,
1416
   "id": "310082f2",
1417
   "metadata": {},
1418
   "outputs": [
1419
    {
1420
     "data": {
1421
      "text/html": [
1422
       "<div>\n",
1423
       "<style scoped>\n",
1424
       "    .dataframe tbody tr th:only-of-type {\n",
1425
       "        vertical-align: middle;\n",
1426
       "    }\n",
1427
       "\n",
1428
       "    .dataframe tbody tr th {\n",
1429
       "        vertical-align: top;\n",
1430
       "    }\n",
1431
       "\n",
1432
       "    .dataframe thead th {\n",
1433
       "        text-align: right;\n",
1434
       "    }\n",
1435
       "</style>\n",
1436
       "<table border=\"1\" class=\"dataframe\">\n",
1437
       "  <thead>\n",
1438
       "    <tr style=\"text-align: right;\">\n",
1439
       "      <th></th>\n",
1440
       "      <th>gender</th>\n",
1441
       "      <th>age</th>\n",
1442
       "      <th>marital_status</th>\n",
1443
       "      <th>highest_qualification</th>\n",
1444
       "      <th>nationality</th>\n",
1445
       "      <th>ethnicity</th>\n",
1446
       "      <th>gross_income</th>\n",
1447
       "      <th>region</th>\n",
1448
       "      <th>smoke</th>\n",
1449
       "      <th>amt_weekends</th>\n",
1450
       "      <th>amt_weekdays</th>\n",
1451
       "    </tr>\n",
1452
       "  </thead>\n",
1453
       "  <tbody>\n",
1454
       "    <tr>\n",
1455
       "      <th>0</th>\n",
1456
       "      <td>Male</td>\n",
1457
       "      <td>Young</td>\n",
1458
       "      <td>Divorced</td>\n",
1459
       "      <td>No Qualification</td>\n",
1460
       "      <td>British</td>\n",
1461
       "      <td>White</td>\n",
1462
       "      <td>2,600 to 5,200</td>\n",
1463
       "      <td>The North</td>\n",
1464
       "      <td>False</td>\n",
1465
       "      <td>0</td>\n",
1466
       "      <td>0</td>\n",
1467
       "    </tr>\n",
1468
       "    <tr>\n",
1469
       "      <th>2</th>\n",
1470
       "      <td>Male</td>\n",
1471
       "      <td>Middle-Aged</td>\n",
1472
       "      <td>Married</td>\n",
1473
       "      <td>Degree</td>\n",
1474
       "      <td>English</td>\n",
1475
       "      <td>White</td>\n",
1476
       "      <td>28,600 to 36,400</td>\n",
1477
       "      <td>The North</td>\n",
1478
       "      <td>False</td>\n",
1479
       "      <td>0</td>\n",
1480
       "      <td>0</td>\n",
1481
       "    </tr>\n",
1482
       "    <tr>\n",
1483
       "      <th>3</th>\n",
1484
       "      <td>Female</td>\n",
1485
       "      <td>Middle-Aged</td>\n",
1486
       "      <td>Married</td>\n",
1487
       "      <td>Degree</td>\n",
1488
       "      <td>English</td>\n",
1489
       "      <td>White</td>\n",
1490
       "      <td>10,400 to 15,600</td>\n",
1491
       "      <td>The North</td>\n",
1492
       "      <td>False</td>\n",
1493
       "      <td>0</td>\n",
1494
       "      <td>0</td>\n",
1495
       "    </tr>\n",
1496
       "    <tr>\n",
1497
       "      <th>4</th>\n",
1498
       "      <td>Female</td>\n",
1499
       "      <td>Young</td>\n",
1500
       "      <td>Married</td>\n",
1501
       "      <td>GCSE/O Level</td>\n",
1502
       "      <td>British</td>\n",
1503
       "      <td>White</td>\n",
1504
       "      <td>2,600 to 5,200</td>\n",
1505
       "      <td>The North</td>\n",
1506
       "      <td>False</td>\n",
1507
       "      <td>0</td>\n",
1508
       "      <td>0</td>\n",
1509
       "    </tr>\n",
1510
       "    <tr>\n",
1511
       "      <th>5</th>\n",
1512
       "      <td>Female</td>\n",
1513
       "      <td>Young</td>\n",
1514
       "      <td>Married</td>\n",
1515
       "      <td>GCSE/O Level</td>\n",
1516
       "      <td>British</td>\n",
1517
       "      <td>White</td>\n",
1518
       "      <td>15,600 to 20,800</td>\n",
1519
       "      <td>The North</td>\n",
1520
       "      <td>False</td>\n",
1521
       "      <td>0</td>\n",
1522
       "      <td>0</td>\n",
1523
       "    </tr>\n",
1524
       "  </tbody>\n",
1525
       "</table>\n",
1526
       "</div>"
1527
      ],
1528
      "text/plain": [
1529
       "   gender          age marital_status highest_qualification nationality  \\\n",
1530
       "0    Male        Young       Divorced      No Qualification     British   \n",
1531
       "2    Male  Middle-Aged        Married                Degree     English   \n",
1532
       "3  Female  Middle-Aged        Married                Degree     English   \n",
1533
       "4  Female        Young        Married          GCSE/O Level     British   \n",
1534
       "5  Female        Young        Married          GCSE/O Level     British   \n",
1535
       "\n",
1536
       "  ethnicity      gross_income     region  smoke  amt_weekends  amt_weekdays  \n",
1537
       "0     White    2,600 to 5,200  The North  False             0             0  \n",
1538
       "2     White  28,600 to 36,400  The North  False             0             0  \n",
1539
       "3     White  10,400 to 15,600  The North  False             0             0  \n",
1540
       "4     White    2,600 to 5,200  The North  False             0             0  \n",
1541
       "5     White  15,600 to 20,800  The North  False             0             0  "
1542
      ]
1543
     },
1544
     "execution_count": 28,
1545
     "metadata": {},
1546
     "output_type": "execute_result"
1547
    }
1548
   ],
1549
   "source": [
1550
    "non_smokers.iloc[0:5]"
1551
   ]
1552
  },
1553
  {
1554
   "cell_type": "markdown",
1555
   "id": "f6c26490",
1556
   "metadata": {},
1557
   "source": [
1558
    "From the output above, the data type conversion has been performed successfully and is aligned with our recommendations. Additionally, we have also generated 2 new data frames for smokers and non-smokers for ease of future analysis. We will now explore the data and conduct further analysis.  \n",
1559
    "\n",
1560
    "***\n",
1561
    "\n",
1562
    "## 5.0 Data Exploration and Visualization<a class=\"anchor\" id=\"5\"></a>\n",
1563
    "\n",
1564
    "In this section, we will now explore the data in detail and create multiple visualizations to help us gain a further understanding into the data. One of the key advantages of exploring the data is to enable any unexpected discoveries within the dataset which may arise. This section will be divided into 4 subsections, descriptive statistics, one-variable plot, two-variable plot, and three variable plots. The first subsection would focus on the descriptive statistics within the dataset, such as the mean, median, and mode for each variables in the dataset. The second subsection would focus on univariate data analysis through data visualization for individual variables. The third subsection would focus on multivariate analysis for two variables. Similarly to the third subsection in the fourth subsection, it would focus on multivariate analysis for three-variables. \n",
1565
    "\n",
1566
    "### 5.1 Descriptive Statistics <a class=\"anchor\" id=\"5.1\"></a>\n",
1567
    "\n",
1568
    "In this section we will first look into the descriptive statistics of the dataset for all variables. \n"
1569
   ]
1570
  },
1571
  {
1572
   "cell_type": "code",
1573
   "execution_count": 29,
1574
   "id": "7f793068",
1575
   "metadata": {},
1576
   "outputs": [
1577
    {
1578
     "data": {
1579
      "text/html": [
1580
       "<div>\n",
1581
       "<style scoped>\n",
1582
       "    .dataframe tbody tr th:only-of-type {\n",
1583
       "        vertical-align: middle;\n",
1584
       "    }\n",
1585
       "\n",
1586
       "    .dataframe tbody tr th {\n",
1587
       "        vertical-align: top;\n",
1588
       "    }\n",
1589
       "\n",
1590
       "    .dataframe thead th {\n",
1591
       "        text-align: right;\n",
1592
       "    }\n",
1593
       "</style>\n",
1594
       "<table border=\"1\" class=\"dataframe\">\n",
1595
       "  <thead>\n",
1596
       "    <tr style=\"text-align: right;\">\n",
1597
       "      <th></th>\n",
1598
       "      <th>gender</th>\n",
1599
       "    </tr>\n",
1600
       "  </thead>\n",
1601
       "  <tbody>\n",
1602
       "    <tr>\n",
1603
       "      <th>count</th>\n",
1604
       "      <td>1561</td>\n",
1605
       "    </tr>\n",
1606
       "    <tr>\n",
1607
       "      <th>unique</th>\n",
1608
       "      <td>2</td>\n",
1609
       "    </tr>\n",
1610
       "    <tr>\n",
1611
       "      <th>top</th>\n",
1612
       "      <td>Female</td>\n",
1613
       "    </tr>\n",
1614
       "    <tr>\n",
1615
       "      <th>freq</th>\n",
1616
       "      <td>885</td>\n",
1617
       "    </tr>\n",
1618
       "  </tbody>\n",
1619
       "</table>\n",
1620
       "</div>"
1621
      ],
1622
      "text/plain": [
1623
       "        gender\n",
1624
       "count     1561\n",
1625
       "unique       2\n",
1626
       "top     Female\n",
1627
       "freq       885"
1628
      ]
1629
     },
1630
     "execution_count": 29,
1631
     "metadata": {},
1632
     "output_type": "execute_result"
1633
    }
1634
   ],
1635
   "source": [
1636
    "#Objects summary\n",
1637
    "smoke1.describe(include='object')"
1638
   ]
1639
  },
1640
  {
1641
   "cell_type": "code",
1642
   "execution_count": 30,
1643
   "id": "5c5f87a5",
1644
   "metadata": {},
1645
   "outputs": [
1646
    {
1647
     "name": "stdout",
1648
     "output_type": "stream",
1649
     "text": [
1650
      "Descriptive Statistics for Numeric Features:\n",
1651
      "        amt_weekends  amt_weekdays\n",
1652
      "count   1561.000000   1561.000000\n",
1653
      "mean       4.187060      3.487508\n",
1654
      "std        8.757758      7.666444\n",
1655
      "min        0.000000      0.000000\n",
1656
      "25%        0.000000      0.000000\n",
1657
      "50%        0.000000      0.000000\n",
1658
      "75%        0.000000      0.000000\n",
1659
      "max       60.000000     55.000000\n"
1660
     ]
1661
    }
1662
   ],
1663
   "source": [
1664
    "#Numeric summary\n",
1665
    "num_cols=['amt_weekends','amt_weekdays']\n",
1666
    "num_stats=smoke1[num_cols].describe()\n",
1667
    "print(\"Descriptive Statistics for Numeric Features:\\n\", num_stats)"
1668
   ]
1669
  },
1670
  {
1671
   "cell_type": "code",
1672
   "execution_count": 31,
1673
   "id": "1f061e0b",
1674
   "metadata": {
1675
    "scrolled": true
1676
   },
1677
   "outputs": [
1678
    {
1679
     "data": {
1680
      "text/plain": [
1681
       "count      1561\n",
1682
       "unique        2\n",
1683
       "top       False\n",
1684
       "freq       1166\n",
1685
       "Name: smoke, dtype: object"
1686
      ]
1687
     },
1688
     "execution_count": 31,
1689
     "metadata": {},
1690
     "output_type": "execute_result"
1691
    }
1692
   ],
1693
   "source": [
1694
    "#Smokers summary\n",
1695
    "smoke1['smoke'].describe()"
1696
   ]
1697
  },
1698
  {
1699
   "cell_type": "code",
1700
   "execution_count": 32,
1701
   "id": "b38d3548",
1702
   "metadata": {
1703
    "scrolled": true
1704
   },
1705
   "outputs": [
1706
    {
1707
     "data": {
1708
      "text/html": [
1709
       "<div>\n",
1710
       "<style scoped>\n",
1711
       "    .dataframe tbody tr th:only-of-type {\n",
1712
       "        vertical-align: middle;\n",
1713
       "    }\n",
1714
       "\n",
1715
       "    .dataframe tbody tr th {\n",
1716
       "        vertical-align: top;\n",
1717
       "    }\n",
1718
       "\n",
1719
       "    .dataframe thead th {\n",
1720
       "        text-align: right;\n",
1721
       "    }\n",
1722
       "</style>\n",
1723
       "<table border=\"1\" class=\"dataframe\">\n",
1724
       "  <thead>\n",
1725
       "    <tr style=\"text-align: right;\">\n",
1726
       "      <th></th>\n",
1727
       "      <th>count</th>\n",
1728
       "      <th>unique</th>\n",
1729
       "      <th>top</th>\n",
1730
       "      <th>freq</th>\n",
1731
       "    </tr>\n",
1732
       "    <tr>\n",
1733
       "      <th>gender</th>\n",
1734
       "      <th></th>\n",
1735
       "      <th></th>\n",
1736
       "      <th></th>\n",
1737
       "      <th></th>\n",
1738
       "    </tr>\n",
1739
       "  </thead>\n",
1740
       "  <tbody>\n",
1741
       "    <tr>\n",
1742
       "      <th>Female</th>\n",
1743
       "      <td>885</td>\n",
1744
       "      <td>2</td>\n",
1745
       "      <td>False</td>\n",
1746
       "      <td>665</td>\n",
1747
       "    </tr>\n",
1748
       "    <tr>\n",
1749
       "      <th>Male</th>\n",
1750
       "      <td>676</td>\n",
1751
       "      <td>2</td>\n",
1752
       "      <td>False</td>\n",
1753
       "      <td>501</td>\n",
1754
       "    </tr>\n",
1755
       "  </tbody>\n",
1756
       "</table>\n",
1757
       "</div>"
1758
      ],
1759
      "text/plain": [
1760
       "       count unique    top freq\n",
1761
       "gender                         \n",
1762
       "Female   885      2  False  665\n",
1763
       "Male     676      2  False  501"
1764
      ]
1765
     },
1766
     "execution_count": 32,
1767
     "metadata": {},
1768
     "output_type": "execute_result"
1769
    }
1770
   ],
1771
   "source": [
1772
    "#Grouped gender smokers summary\n",
1773
    "smoke1.groupby(\"gender\")['smoke'].describe(include='object')"
1774
   ]
1775
  },
1776
  {
1777
   "cell_type": "code",
1778
   "execution_count": 33,
1779
   "id": "d3c41da5",
1780
   "metadata": {},
1781
   "outputs": [
1782
    {
1783
     "name": "stdout",
1784
     "output_type": "stream",
1785
     "text": [
1786
      "Total Smokers:  25.3 %\n",
1787
      "Female Smokers:  24.86 %\n",
1788
      "Male Smokers:  25.89 %\n"
1789
     ]
1790
    }
1791
   ],
1792
   "source": [
1793
    "#Percentage calculations\n",
1794
    "sum_pct=(((1561-1166)/1561)*100)\n",
1795
    "female_pct=(((885-665)/885)*100)\n",
1796
    "male_pct=(((676-501)/676)*100)\n",
1797
    "\n",
1798
    "print(\"Total Smokers: \",round(sum_pct,2),\"%\")\n",
1799
    "print(\"Female Smokers: \",round(female_pct,2),\"%\")\n",
1800
    "print(\"Male Smokers: \",round(male_pct,2),\"%\")"
1801
   ]
1802
  },
1803
  {
1804
   "cell_type": "markdown",
1805
   "id": "bb654cfe",
1806
   "metadata": {},
1807
   "source": [
1808
    "The above outputs shows the summary statistics for the UK smoking data. In the first output, which shows the summary statistics for object type features, it was identified that most respondents are likely female, married, have no qualification, English, white, gross income of £5,200 to £10,400, or is from the North. \n",
1809
    "\n",
1810
    "The second output allows us to understand that for numerical values for variables ```amt_weekends``` and ```amt_weekdays```, there is a mean of 4.19 and 3.49, standard deviation of 8.75 and 7.67, and highest values of 60 and 55 for each variables respectively. Third output shows that there are 1166 non-smokers and 395 smokers in the dataset. Fourth output shows how many smokers are there grouped by the respondents gender. From the above outputs, we can calculate that there are 665 and 501 non-smokers, 220 and 175 smokers for female and male, respectively. This tells us that there are approximately 25.30% of total smokers within the data, and it comprises of 24.86% of female smokers and 25.89% of male smokers. Since our goal is to predict smokers in the UK, we will also look at the descriptive statistics for smokers within the dataset."
1811
   ]
1812
  },
1813
  {
1814
   "cell_type": "code",
1815
   "execution_count": 34,
1816
   "id": "5da73516",
1817
   "metadata": {},
1818
   "outputs": [
1819
    {
1820
     "name": "stdout",
1821
     "output_type": "stream",
1822
     "text": [
1823
      "Descriptive Statistics for Numeric Features:\n",
1824
      "        amt_weekends  amt_weekdays\n",
1825
      "count   1561.000000   1561.000000\n",
1826
      "mean       4.187060      3.487508\n",
1827
      "std        8.757758      7.666444\n",
1828
      "min        0.000000      0.000000\n",
1829
      "25%        0.000000      0.000000\n",
1830
      "50%        0.000000      0.000000\n",
1831
      "75%        0.000000      0.000000\n",
1832
      "max       60.000000     55.000000\n"
1833
     ]
1834
    }
1835
   ],
1836
   "source": [
1837
    "#Numeric summary (smokers)\n",
1838
    "smoker_stats=smokers[num_cols].describe()\n",
1839
    "print(\"Descriptive Statistics for Numeric Features:\\n\", num_stats)"
1840
   ]
1841
  },
1842
  {
1843
   "cell_type": "code",
1844
   "execution_count": 35,
1845
   "id": "bf7485b9",
1846
   "metadata": {},
1847
   "outputs": [
1848
    {
1849
     "data": {
1850
      "text/html": [
1851
       "<div>\n",
1852
       "<style scoped>\n",
1853
       "    .dataframe tbody tr th:only-of-type {\n",
1854
       "        vertical-align: middle;\n",
1855
       "    }\n",
1856
       "\n",
1857
       "    .dataframe tbody tr th {\n",
1858
       "        vertical-align: top;\n",
1859
       "    }\n",
1860
       "\n",
1861
       "    .dataframe thead tr th {\n",
1862
       "        text-align: left;\n",
1863
       "    }\n",
1864
       "\n",
1865
       "    .dataframe thead tr:last-of-type th {\n",
1866
       "        text-align: right;\n",
1867
       "    }\n",
1868
       "</style>\n",
1869
       "<table border=\"1\" class=\"dataframe\">\n",
1870
       "  <thead>\n",
1871
       "    <tr>\n",
1872
       "      <th></th>\n",
1873
       "      <th colspan=\"8\" halign=\"left\">amt_weekends</th>\n",
1874
       "      <th colspan=\"8\" halign=\"left\">amt_weekdays</th>\n",
1875
       "    </tr>\n",
1876
       "    <tr>\n",
1877
       "      <th></th>\n",
1878
       "      <th>count</th>\n",
1879
       "      <th>mean</th>\n",
1880
       "      <th>std</th>\n",
1881
       "      <th>min</th>\n",
1882
       "      <th>25%</th>\n",
1883
       "      <th>50%</th>\n",
1884
       "      <th>75%</th>\n",
1885
       "      <th>max</th>\n",
1886
       "      <th>count</th>\n",
1887
       "      <th>mean</th>\n",
1888
       "      <th>std</th>\n",
1889
       "      <th>min</th>\n",
1890
       "      <th>25%</th>\n",
1891
       "      <th>50%</th>\n",
1892
       "      <th>75%</th>\n",
1893
       "      <th>max</th>\n",
1894
       "    </tr>\n",
1895
       "    <tr>\n",
1896
       "      <th>gender</th>\n",
1897
       "      <th></th>\n",
1898
       "      <th></th>\n",
1899
       "      <th></th>\n",
1900
       "      <th></th>\n",
1901
       "      <th></th>\n",
1902
       "      <th></th>\n",
1903
       "      <th></th>\n",
1904
       "      <th></th>\n",
1905
       "      <th></th>\n",
1906
       "      <th></th>\n",
1907
       "      <th></th>\n",
1908
       "      <th></th>\n",
1909
       "      <th></th>\n",
1910
       "      <th></th>\n",
1911
       "      <th></th>\n",
1912
       "      <th></th>\n",
1913
       "    </tr>\n",
1914
       "  </thead>\n",
1915
       "  <tbody>\n",
1916
       "    <tr>\n",
1917
       "      <th>Female</th>\n",
1918
       "      <td>220.0</td>\n",
1919
       "      <td>15.013636</td>\n",
1920
       "      <td>8.523124</td>\n",
1921
       "      <td>0.0</td>\n",
1922
       "      <td>10.0</td>\n",
1923
       "      <td>15.0</td>\n",
1924
       "      <td>20.0</td>\n",
1925
       "      <td>60.0</td>\n",
1926
       "      <td>220.0</td>\n",
1927
       "      <td>11.940909</td>\n",
1928
       "      <td>7.394998</td>\n",
1929
       "      <td>0.0</td>\n",
1930
       "      <td>6.0</td>\n",
1931
       "      <td>10.0</td>\n",
1932
       "      <td>18.5</td>\n",
1933
       "      <td>35.0</td>\n",
1934
       "    </tr>\n",
1935
       "    <tr>\n",
1936
       "      <th>Male</th>\n",
1937
       "      <td>175.0</td>\n",
1938
       "      <td>18.474286</td>\n",
1939
       "      <td>11.190522</td>\n",
1940
       "      <td>0.0</td>\n",
1941
       "      <td>10.0</td>\n",
1942
       "      <td>20.0</td>\n",
1943
       "      <td>25.0</td>\n",
1944
       "      <td>60.0</td>\n",
1945
       "      <td>175.0</td>\n",
1946
       "      <td>16.097143</td>\n",
1947
       "      <td>11.240155</td>\n",
1948
       "      <td>0.0</td>\n",
1949
       "      <td>8.0</td>\n",
1950
       "      <td>15.0</td>\n",
1951
       "      <td>20.0</td>\n",
1952
       "      <td>55.0</td>\n",
1953
       "    </tr>\n",
1954
       "  </tbody>\n",
1955
       "</table>\n",
1956
       "</div>"
1957
      ],
1958
      "text/plain": [
1959
       "       amt_weekends                                                     \\\n",
1960
       "              count       mean        std  min   25%   50%   75%   max   \n",
1961
       "gender                                                                   \n",
1962
       "Female        220.0  15.013636   8.523124  0.0  10.0  15.0  20.0  60.0   \n",
1963
       "Male          175.0  18.474286  11.190522  0.0  10.0  20.0  25.0  60.0   \n",
1964
       "\n",
1965
       "       amt_weekdays                                                    \n",
1966
       "              count       mean        std  min  25%   50%   75%   max  \n",
1967
       "gender                                                                 \n",
1968
       "Female        220.0  11.940909   7.394998  0.0  6.0  10.0  18.5  35.0  \n",
1969
       "Male          175.0  16.097143  11.240155  0.0  8.0  15.0  20.0  55.0  "
1970
      ]
1971
     },
1972
     "execution_count": 35,
1973
     "metadata": {},
1974
     "output_type": "execute_result"
1975
    }
1976
   ],
1977
   "source": [
1978
    "#Grouped gender amount smoked (smokers) summary\n",
1979
    "smokers.groupby(\"gender\")[num_cols].describe()"
1980
   ]
1981
  },
1982
  {
1983
   "cell_type": "code",
1984
   "execution_count": 36,
1985
   "id": "d5991aa5",
1986
   "metadata": {},
1987
   "outputs": [
1988
    {
1989
     "data": {
1990
      "text/html": [
1991
       "<div>\n",
1992
       "<style scoped>\n",
1993
       "    .dataframe tbody tr th:only-of-type {\n",
1994
       "        vertical-align: middle;\n",
1995
       "    }\n",
1996
       "\n",
1997
       "    .dataframe tbody tr th {\n",
1998
       "        vertical-align: top;\n",
1999
       "    }\n",
2000
       "\n",
2001
       "    .dataframe thead th {\n",
2002
       "        text-align: right;\n",
2003
       "    }\n",
2004
       "</style>\n",
2005
       "<table border=\"1\" class=\"dataframe\">\n",
2006
       "  <thead>\n",
2007
       "    <tr style=\"text-align: right;\">\n",
2008
       "      <th></th>\n",
2009
       "      <th>count</th>\n",
2010
       "      <th>unique</th>\n",
2011
       "      <th>top</th>\n",
2012
       "      <th>freq</th>\n",
2013
       "    </tr>\n",
2014
       "    <tr>\n",
2015
       "      <th>age</th>\n",
2016
       "      <th></th>\n",
2017
       "      <th></th>\n",
2018
       "      <th></th>\n",
2019
       "      <th></th>\n",
2020
       "    </tr>\n",
2021
       "  </thead>\n",
2022
       "  <tbody>\n",
2023
       "    <tr>\n",
2024
       "      <th>Young</th>\n",
2025
       "      <td>190</td>\n",
2026
       "      <td>1</td>\n",
2027
       "      <td>True</td>\n",
2028
       "      <td>190</td>\n",
2029
       "    </tr>\n",
2030
       "    <tr>\n",
2031
       "      <th>Middle-Aged</th>\n",
2032
       "      <td>139</td>\n",
2033
       "      <td>1</td>\n",
2034
       "      <td>True</td>\n",
2035
       "      <td>139</td>\n",
2036
       "    </tr>\n",
2037
       "    <tr>\n",
2038
       "      <th>Old</th>\n",
2039
       "      <td>66</td>\n",
2040
       "      <td>1</td>\n",
2041
       "      <td>True</td>\n",
2042
       "      <td>66</td>\n",
2043
       "    </tr>\n",
2044
       "  </tbody>\n",
2045
       "</table>\n",
2046
       "</div>"
2047
      ],
2048
      "text/plain": [
2049
       "            count unique   top freq\n",
2050
       "age                                \n",
2051
       "Young         190      1  True  190\n",
2052
       "Middle-Aged   139      1  True  139\n",
2053
       "Old            66      1  True   66"
2054
      ]
2055
     },
2056
     "execution_count": 36,
2057
     "metadata": {},
2058
     "output_type": "execute_result"
2059
    }
2060
   ],
2061
   "source": [
2062
    "#Grouped age amount smoked (smokers) summary\n",
2063
    "smokers.groupby(\"age\")['smoke'].describe()"
2064
   ]
2065
  },
2066
  {
2067
   "cell_type": "code",
2068
   "execution_count": 37,
2069
   "id": "7a161a3d",
2070
   "metadata": {},
2071
   "outputs": [
2072
    {
2073
     "data": {
2074
      "text/html": [
2075
       "<div>\n",
2076
       "<style scoped>\n",
2077
       "    .dataframe tbody tr th:only-of-type {\n",
2078
       "        vertical-align: middle;\n",
2079
       "    }\n",
2080
       "\n",
2081
       "    .dataframe tbody tr th {\n",
2082
       "        vertical-align: top;\n",
2083
       "    }\n",
2084
       "\n",
2085
       "    .dataframe thead th {\n",
2086
       "        text-align: right;\n",
2087
       "    }\n",
2088
       "</style>\n",
2089
       "<table border=\"1\" class=\"dataframe\">\n",
2090
       "  <thead>\n",
2091
       "    <tr style=\"text-align: right;\">\n",
2092
       "      <th></th>\n",
2093
       "      <th>count</th>\n",
2094
       "      <th>unique</th>\n",
2095
       "      <th>top</th>\n",
2096
       "      <th>freq</th>\n",
2097
       "    </tr>\n",
2098
       "    <tr>\n",
2099
       "      <th>highest_qualification</th>\n",
2100
       "      <th></th>\n",
2101
       "      <th></th>\n",
2102
       "      <th></th>\n",
2103
       "      <th></th>\n",
2104
       "    </tr>\n",
2105
       "  </thead>\n",
2106
       "  <tbody>\n",
2107
       "    <tr>\n",
2108
       "      <th>No Qualification</th>\n",
2109
       "      <td>123</td>\n",
2110
       "      <td>1</td>\n",
2111
       "      <td>True</td>\n",
2112
       "      <td>123</td>\n",
2113
       "    </tr>\n",
2114
       "    <tr>\n",
2115
       "      <th>GCSE/CSE</th>\n",
2116
       "      <td>38</td>\n",
2117
       "      <td>1</td>\n",
2118
       "      <td>True</td>\n",
2119
       "      <td>38</td>\n",
2120
       "    </tr>\n",
2121
       "    <tr>\n",
2122
       "      <th>GCSE/O Level</th>\n",
2123
       "      <td>98</td>\n",
2124
       "      <td>1</td>\n",
2125
       "      <td>True</td>\n",
2126
       "      <td>98</td>\n",
2127
       "    </tr>\n",
2128
       "    <tr>\n",
2129
       "      <th>ONC/BTEC</th>\n",
2130
       "      <td>21</td>\n",
2131
       "      <td>1</td>\n",
2132
       "      <td>True</td>\n",
2133
       "      <td>21</td>\n",
2134
       "    </tr>\n",
2135
       "    <tr>\n",
2136
       "      <th>A Levels</th>\n",
2137
       "      <td>20</td>\n",
2138
       "      <td>1</td>\n",
2139
       "      <td>True</td>\n",
2140
       "      <td>20</td>\n",
2141
       "    </tr>\n",
2142
       "    <tr>\n",
2143
       "      <th>Other/Sub Degree</th>\n",
2144
       "      <td>30</td>\n",
2145
       "      <td>1</td>\n",
2146
       "      <td>True</td>\n",
2147
       "      <td>30</td>\n",
2148
       "    </tr>\n",
2149
       "    <tr>\n",
2150
       "      <th>Degree</th>\n",
2151
       "      <td>38</td>\n",
2152
       "      <td>1</td>\n",
2153
       "      <td>True</td>\n",
2154
       "      <td>38</td>\n",
2155
       "    </tr>\n",
2156
       "    <tr>\n",
2157
       "      <th>Higher/Sub Degree</th>\n",
2158
       "      <td>27</td>\n",
2159
       "      <td>1</td>\n",
2160
       "      <td>True</td>\n",
2161
       "      <td>27</td>\n",
2162
       "    </tr>\n",
2163
       "  </tbody>\n",
2164
       "</table>\n",
2165
       "</div>"
2166
      ],
2167
      "text/plain": [
2168
       "                      count unique   top freq\n",
2169
       "highest_qualification                        \n",
2170
       "No Qualification        123      1  True  123\n",
2171
       "GCSE/CSE                 38      1  True   38\n",
2172
       "GCSE/O Level             98      1  True   98\n",
2173
       "ONC/BTEC                 21      1  True   21\n",
2174
       "A Levels                 20      1  True   20\n",
2175
       "Other/Sub Degree         30      1  True   30\n",
2176
       "Degree                   38      1  True   38\n",
2177
       "Higher/Sub Degree        27      1  True   27"
2178
      ]
2179
     },
2180
     "execution_count": 37,
2181
     "metadata": {},
2182
     "output_type": "execute_result"
2183
    }
2184
   ],
2185
   "source": [
2186
    "#Grouuped qualification smokers summary\n",
2187
    "smokers.groupby(\"highest_qualification\")['smoke'].describe()"
2188
   ]
2189
  },
2190
  {
2191
   "cell_type": "code",
2192
   "execution_count": 38,
2193
   "id": "f808b553",
2194
   "metadata": {},
2195
   "outputs": [
2196
    {
2197
     "data": {
2198
      "text/html": [
2199
       "<div>\n",
2200
       "<style scoped>\n",
2201
       "    .dataframe tbody tr th:only-of-type {\n",
2202
       "        vertical-align: middle;\n",
2203
       "    }\n",
2204
       "\n",
2205
       "    .dataframe tbody tr th {\n",
2206
       "        vertical-align: top;\n",
2207
       "    }\n",
2208
       "\n",
2209
       "    .dataframe thead th {\n",
2210
       "        text-align: right;\n",
2211
       "    }\n",
2212
       "</style>\n",
2213
       "<table border=\"1\" class=\"dataframe\">\n",
2214
       "  <thead>\n",
2215
       "    <tr style=\"text-align: right;\">\n",
2216
       "      <th></th>\n",
2217
       "      <th>count</th>\n",
2218
       "      <th>unique</th>\n",
2219
       "      <th>top</th>\n",
2220
       "      <th>freq</th>\n",
2221
       "    </tr>\n",
2222
       "    <tr>\n",
2223
       "      <th>gross_income</th>\n",
2224
       "      <th></th>\n",
2225
       "      <th></th>\n",
2226
       "      <th></th>\n",
2227
       "      <th></th>\n",
2228
       "    </tr>\n",
2229
       "  </thead>\n",
2230
       "  <tbody>\n",
2231
       "    <tr>\n",
2232
       "      <th>Under 2,600</th>\n",
2233
       "      <td>36</td>\n",
2234
       "      <td>1</td>\n",
2235
       "      <td>True</td>\n",
2236
       "      <td>36</td>\n",
2237
       "    </tr>\n",
2238
       "    <tr>\n",
2239
       "      <th>2,600 to 5,200</th>\n",
2240
       "      <td>63</td>\n",
2241
       "      <td>1</td>\n",
2242
       "      <td>True</td>\n",
2243
       "      <td>63</td>\n",
2244
       "    </tr>\n",
2245
       "    <tr>\n",
2246
       "      <th>5,200 to 10,400</th>\n",
2247
       "      <td>106</td>\n",
2248
       "      <td>1</td>\n",
2249
       "      <td>True</td>\n",
2250
       "      <td>106</td>\n",
2251
       "    </tr>\n",
2252
       "    <tr>\n",
2253
       "      <th>10,400 to 15,600</th>\n",
2254
       "      <td>83</td>\n",
2255
       "      <td>1</td>\n",
2256
       "      <td>True</td>\n",
2257
       "      <td>83</td>\n",
2258
       "    </tr>\n",
2259
       "    <tr>\n",
2260
       "      <th>15,600 to 20,800</th>\n",
2261
       "      <td>45</td>\n",
2262
       "      <td>1</td>\n",
2263
       "      <td>True</td>\n",
2264
       "      <td>45</td>\n",
2265
       "    </tr>\n",
2266
       "    <tr>\n",
2267
       "      <th>20,800 to 28,600</th>\n",
2268
       "      <td>38</td>\n",
2269
       "      <td>1</td>\n",
2270
       "      <td>True</td>\n",
2271
       "      <td>38</td>\n",
2272
       "    </tr>\n",
2273
       "    <tr>\n",
2274
       "      <th>28,600 to 36,400</th>\n",
2275
       "      <td>9</td>\n",
2276
       "      <td>1</td>\n",
2277
       "      <td>True</td>\n",
2278
       "      <td>9</td>\n",
2279
       "    </tr>\n",
2280
       "    <tr>\n",
2281
       "      <th>Above 36,400</th>\n",
2282
       "      <td>15</td>\n",
2283
       "      <td>1</td>\n",
2284
       "      <td>True</td>\n",
2285
       "      <td>15</td>\n",
2286
       "    </tr>\n",
2287
       "  </tbody>\n",
2288
       "</table>\n",
2289
       "</div>"
2290
      ],
2291
      "text/plain": [
2292
       "                 count unique   top freq\n",
2293
       "gross_income                            \n",
2294
       "Under 2,600         36      1  True   36\n",
2295
       "2,600 to 5,200      63      1  True   63\n",
2296
       "5,200 to 10,400    106      1  True  106\n",
2297
       "10,400 to 15,600    83      1  True   83\n",
2298
       "15,600 to 20,800    45      1  True   45\n",
2299
       "20,800 to 28,600    38      1  True   38\n",
2300
       "28,600 to 36,400     9      1  True    9\n",
2301
       "Above 36,400        15      1  True   15"
2302
      ]
2303
     },
2304
     "execution_count": 38,
2305
     "metadata": {},
2306
     "output_type": "execute_result"
2307
    }
2308
   ],
2309
   "source": [
2310
    "#Grouped income smokers summary\n",
2311
    "smokers.groupby(\"gross_income\")['smoke'].describe()"
2312
   ]
2313
  },
2314
  {
2315
   "cell_type": "markdown",
2316
   "id": "77a63412",
2317
   "metadata": {},
2318
   "source": [
2319
    "From the output above for numeric summary of smokers, unsuprisingly the mean and standard deviation of the variables ```amt_weekends``` and ```amt_weekdays``` are different due to number of observations changed within the data. As the focus here is to look into the statistics for smokers, we can observe that there is a mean of 16.55 and 13.78, standard deviation of 9.93 and 9.51 for both variables respectively. \n",
2320
    "\n",
2321
    "The next output shows that amount smoked on weekends and weekdays grouped by the gender within the dataset. From the output, we can identify that there is a mean of 15.01 and 18.47, standard deviation of 8.52 and 11.19 for male and female smokers on the amount smoked on the weekends. For amount smoked on weekdays, there is a mean of 11.94 and 16.10, standard deviation of 7.39 and 11.24 for male and female smokers. \n",
2322
    "\n",
2323
    "When the smokers in the data is grouped by age, the frequencies are 190, 139, and 66 for young, middle-aged, and old smokers respectively. This tells us that there are more young smokers than middle-aged smokers, with the least smokers amongst the old age group. Grouped highest qualification of smokers indicates that most smokers have no qualification with 123 observations from the respondents. Contrastingly,  the least amount of smokers have an A-Levels qualification, with 20 observations of data. For gross income of the respondents who are smokers, majority of the smokers have income between £5,200 to £10,400, with 106 observations for smokers. Least amount of smokers have a gross income of between £28,600 to £36,400, with 9 observations.\n",
2324
    "\n",
2325
    "### 5.2 One-Variable <a class=\"anchor\" id=\"5.2\"></a>\n",
2326
    "\n",
2327
    "With the descriptive statistics completed, we will now analyze univariate data with the use of one-variable plots such as frequency graph or density distribution."
2328
   ]
2329
  },
2330
  {
2331
   "cell_type": "code",
2332
   "execution_count": 39,
2333
   "id": "5989aab6",
2334
   "metadata": {
2335
    "scrolled": false
2336
   },
2337
   "outputs": [
2338
    {
2339
     "data": {
2340
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2EklEQVR4nO3dd3hUZd7/8c+QhDRIAgkkRAOhCwakyoJSlKY0kUVWUAEBRYMg0p6NgJQVWHApPiAiq0CEh7LugoVFqsAjC6whUgRRFwUBJYYSkwApJLl/f/jLPA5JKClOuHm/rutcV859vnPO90wmzIdTZhzGGCMAAABLlXF3AwAAACWJsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wA2stW7ZMDocj32nMmDE6ceKEHA6Hli1b5u5WCyU1NVXjxo1Tp06dVKlSJTkcDk2ePLnI623Xrp3zeSpTpozKly+vWrVq6bHHHtPf//535eTk5HlMZGSkBg4ceFPb2b17tyZPnqyff/75ph539bZ27Nghh8Ohv//97ze1nmu5fPmyJk+erB07duRZlvu6OnHiRLFtryRMmDBBVatWlaenp4KCgq5bv2vXLvXt21dVq1aVt7e3/P39dffdd2v06NH66quvSr7hAhTX6xq3N093NwCUtKVLl+quu+5yGQsPD1doaKj27NmjmjVruqmzojl//rwWL16se+65Rz179tTbb79dbOuuUaOG/ud//keSdOnSJR0/flzvv/++HnvsMbVu3VofffSRAgMDnfXr1q1TQEDATW1j9+7dmjJligYOHHhDb8ZF2dbNunz5sqZMmSLpl/D3a127dtWePXtUpUqVEu2hKD744ANNmzZN48eP18MPPyxvb+9r1k+YMEHTpk1Ty5YtNWHCBNWuXVtZWVk6dOiQYmNjNWfOHGVlZcnDw+M32gOgeBF2YL2oqCg1a9Ys32W/+93vfuNufnH58mX5+fkVaR3VqlVTUlKSHA6Hzp07V6xhx9fXN89zM2TIEC1dulSDBg3Ss88+qzVr1jiXNW7cuNi2XZC0tDT5+vr+Jtu6lkqVKqlSpUpu7eF6Dh8+LEkaMWKEKleufM3aVatWadq0aXruuee0cOFCORwO57KOHTtq1KhRWrhwYYn2+1u5cuWKHA6HPD1567vdcBoLt62CTmN98MEHatiwoby9vVWjRg29/vrrmjx5ssubwLVOgV192D33sZ9//rl69+6tChUqOI8mGWO0cOFCNWrUSL6+vqpQoYJ69+6t77777rr9555q+i09/fTT6tKli9577z19//33zvGrTy3l5OTo1VdfVd26deXr66ugoCA1bNhQr7/+uqRfnpOxY8dKkqpXr+7cl9zTRpGRkerWrZvWrl2rxo0by8fHx3mkpaBTZunp6Ro1apTCwsLk6+urtm3bav/+/S417dq1y3OkRpIGDhyoyMhISb/8bnPDzJQpU5y95W6zoNNYS5Ys0T333CMfHx9VrFhRjz76qI4ePZpnO+XKldOxY8fUpUsXlStXThERERo9erQyMjIKfN5//bzOmjVLd911l7y9vVW5cmX1799fp0+fdtZERkZqwoQJkqTQ0NDrngZ69dVXFRISorlz5+b7enI4HBo2bFieozpbt25V+/btFRAQID8/P913333atm2bS03ua//IkSPq27evAgMDFRoaqkGDBik5OdmlNiUlRc8884yCg4NVrlw5PfTQQ/rmm2/y7fk///mP+vXrp8qVK8vb21v16tXTG2+84VKTe3pz+fLlGj16tO644w55e3vr2LFjBT4XsBdhB9bLzs5WVlaWy1SQjRs3qlevXgoODtaaNWs0a9YsrVq1SrGxsUXuo1evXqpVq5bee+89LVq0SJI0dOhQjRw5Uh06dND777+vhQsX6siRI2rVqpV++umnIm8zV+4bdHFcn9SjRw8ZY/Tpp58WWDNr1ixNnjxZffv21T//+U+tWbNGgwcPdl6fM2TIEA0fPlyStHbtWu3Zs0d79uxRkyZNnOv4/PPPNXbsWI0YMUIbN27U73//+2v29fLLL+u7777T22+/rbfffls//vij2rVrd0PB8deqVKmijRs3SpIGDx7s7G3ixIkFPmbGjBkaPHiw7r77bq1du1avv/66Dh06pJYtW+o///mPS+2VK1fUo0cPtW/fXh988IEGDRqkuXPnaubMmdft7fnnn9d//dd/qWPHjvrwww/1pz/9SRs3blSrVq107tw5Sb+c5hs8eLCkX17Pe/bs0ZAhQ/Jd348//qgvv/xSHTt2lI+Pzw09P5K0YsUKderUSQEBAYqNjdXf/vY3VaxYUZ07d84TeCTp97//verUqaN//OMf+uMf/6iVK1fqpZdeci43xqhnz57OYLJu3Tr97ne/08MPP5xnXV9++aWaN2+uw4cPa/bs2Vq/fr26du2qESNGOAPxr8XExOjkyZNatGiRPvroo+se6YKlDGCppUuXGkn5TleuXDHHjx83kszSpUudj2nevLmJiIgwGRkZzrHU1FQTHBxsfv3nkt9jc0kykyZNcs5PmjTJSDKvvPKKS92ePXuMJDN79myX8VOnThlfX18zbty4G97Xs2fP5tnur8XGxhoPDw8TGxt73XW1bdvW3H333QUu//jjj40kM3PmTOdYtWrVzIABA5zz3bp1M40aNbrmdl577TUjyRw/fjzPsmrVqhkPDw/z9ddf57vs19vavn27kWSaNGlicnJynOMnTpwwXl5eZsiQIS771rZt2zzrHDBggKlWrZpz/lrPZ+7rKrfvpKQk4+vra7p06eJSd/LkSePt7W369evnsh1J5m9/+5tLbZcuXUzdunXzbOvXjh49aiSZ6Ohol/F///vfRpJ5+eWXnWO5r7mzZ89ec5179+41kswf//jHPMuysrLMlStXnFPuc3vp0iVTsWJF0717d5f67Oxsc88995h77703Tx+zZs1yqY2OjjY+Pj7Odea+pl5//XWXumnTpuX5PXTu3NnceeedJjk52aX2hRdeMD4+PubChQvGmP97XbRp0+aazwFuDxzZgfXeffddxcXFuUz5nbO/dOmS9u3bp549e6ps2bLO8XLlyql79+5F7uPqIxPr16+Xw+HQk08+6XLUKSwsTPfcc0++dwIVVv/+/ZWVlaX+/fsXeV3GmOvW3HvvvTp48KCio6O1adMmpaSk3PR2GjZsqDp16txwfb9+/VxOw1SrVk2tWrXS9u3bb3rbN2PPnj1KS0vLc2otIiJCDz74YJ4jHQ6HI8/rqWHDhi6nBfOTux9Xb+fee+9VvXr18j2iUhTBwcHy8vJyTv/4xz8k/XJh+YULFzRgwACX121OTo4eeughxcXF6dKlSy7r6tGjh8t8w4YNlZ6ersTERJd9e+KJJ1zq+vXr5zKfnp6ubdu26dFHH5Wfn5/L9rt06aL09HTt3bvX5THXOyKI2wNXacF69erVK/AC5V9LSkqSMUahoaF5luU3drOuvnvnp59+KnB70i93RJVGuW/K4eHhBdbExMTI399fK1as0KJFi+Th4aE2bdpo5syZN/S7kPI+X9cTFhaW79jBgwdvaj036/z585Ly7zc8PFxbtmxxGfPz88tzysjb21vp6elF2s71wlJ+IiIiJCnfx+7YsUNZWVmKj4/Xc8895xzPPb3au3fvAtd74cIF+fv7O+eDg4NdlufeHZaWlibpl33z9PTMU3f17/T8+fPKysrS/PnzNX/+/Hy3nXs6L1dpvmsOvx3CDvD/VahQQQ6HI99rZRISElzmc9+srr6oNPcNKT9XX/wZEhIih8OhTz/9NN9bg693u7C7fPjhh3I4HGrTpk2BNZ6enho1apRGjRqln3/+WVu3btXLL7+szp0769SpUzd0J9rNXnx99e8od+zXb6A+Pj55LoyV8r5B3ozc9Z85cybPsh9//FEhISGFXndB27nzzjuLZTvh4eG6++67tWXLFqWnp7uEsEaNGkmSLl686PKY3O3Mnz+/wLsZb/Y/B8HBwcrKytL58+ddfl9X/04rVKggDw8PPfXUUxo2bFi+66pevbrL/G99ET9KJ05jAf+fv7+/mjVrpvfff1+ZmZnO8YsXL2r9+vUutaGhofLx8dGhQ4dcxj/44IMb3l63bt1kjNEPP/ygZs2a5ZkaNGhQtB0qAUuXLtXHH3/s/PC5GxEUFKTevXtr2LBhunDhgvMupqv/d19Uq1atcjnF9v3332v37t0ud19FRkbqm2++cQmp58+f1+7du13WdTO9tWzZUr6+vlqxYoXL+OnTp/XJJ5+offv2hdmdPB588EFJyrOduLg4HT16tNDbGT9+vM6dO6dRo0bd0CnK++67T0FBQfryyy/zfd02a9bM5TTwjXjggQckyfnZTrlWrlzpMu/n56cHHnhA+/fvV8OGDfPd9tVHhwCJIzuAi6lTp6pr167q3LmzXnzxRWVnZ+u1115TuXLldOHCBWdd7rU2S5YsUc2aNXXPPffos88+y/OP87Xcd999evbZZ/X0009r3759atOmjfz9/XXmzBnt2rVLDRo00PPPP3/NdXz88ce6dOmSUlNTJf1yp0ruJwl36dLFeQTl3Xff1aBBg7RkyZIbum4nLS3Nee1DWlqavvvuO73//vtav3692rZt67ybrCDdu3d3fr5RpUqV9P3332vevHmqVq2aateuLUnOMPf6669rwIAB8vLyUt26dVW+fPnr9pefxMREPfroo3rmmWeUnJysSZMmycfHRzExMc6ap556Sm+99ZaefPJJPfPMMzp//rxmzZqV50MKy5cvr2rVqumDDz5Q+/btVbFiRYWEhDhvT/+1oKAgTZw4US+//LL69++vvn376vz585oyZYp8fHw0adKkQu3P1erWratnn31W8+fPV5kyZfTwww/rxIkTmjhxoiIiIlzubroZffv21ZEjRzRt2jQdPHhQAwcOVO3atZWTk6NTp05p+fLlkuT8vZQrV07z58/XgAEDdOHCBfXu3VuVK1fW2bNndfDgQZ09e1ZvvvnmTfXQqVMntWnTRuPGjdOlS5fUrFkz/etf/3Ju+9def/113X///WrdurWef/55RUZGKjU1VceOHdNHH32kTz75pFDPAyznzqujgZKUe9dMXFxcvssLuqNq3bp1pkGDBqZs2bKmatWq5s9//rMZMWKEqVChgktdcnKyGTJkiAkNDTX+/v6me/fu5sSJEwXejVXQnTFLliwxLVq0MP7+/sbX19fUrFnT9O/f3+zbt++6+1itWrUC7zj79V1Ouc9FfnePXa1t27Yu6/H39zc1atQwvXv3Nu+9957Jzs7Ot49f3yE1e/Zs06pVKxMSEuJ8HgcPHmxOnDjh8riYmBgTHh5uypQpYySZ7du3O9fXtWvXAvc5v7uxli9fbkaMGGEqVapkvL29TevWrfN9DmNjY029evWMj4+PqV+/vlmzZk2eu7GMMWbr1q2mcePGxtvb20hybvPqu7Fyvf3226Zhw4ambNmyJjAw0DzyyCPmyJEjLjUDBgww/v7+eXrKfY1cT3Z2tpk5c6apU6eO8fLyMiEhIebJJ580p06dynd917sb69f+93//1/zhD38wd955p/Hy8jJ+fn6mfv365vnnn8/3edy5c6fp2rWrqVixovHy8jJ33HGH6dq1q3nvvfeu20d+z+HPP/9sBg0aZIKCgoyfn5/p2LGj+eqrr/K9K+748eNm0KBB5o477jBeXl6mUqVKplWrVubVV1911uS+Ln7dD25fDmNu4LglcBu7cuWKGjVqpDvuuEObN292dzsAgJvEaSzgKoMHD1bHjh1VpUoVJSQkaNGiRTp69Kjz038BALcWwg5wldTUVI0ZM0Znz56Vl5eXmjRpog0bNqhDhw7ubg0AUAicxgIAAFbj1nMAAGA1wg4AALAaYQcAAFiNC5Ql5eTk6Mcff1T58uX5aHEAAG4RxhilpqYqPDxcZcoUfPyGsKNfvlcm9wvxAADAreXUqVN5vjPu1wg7+r+PQT916lSej40HAAClU0pKiiIiIq77NTOEHf3ft+IGBAQQdgAAuMVc7xIULlAGAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWM3T3Q0AgA1OTm3g7haAUqfqK1+4uwVJHNkBAACWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqbg07WVlZmjBhgqpXry5fX1/VqFFDU6dOVU5OjrPGGKPJkycrPDxcvr6+ateunY4cOeKynoyMDA0fPlwhISHy9/dXjx49dPr06d96dwAAQCnk1rAzc+ZMLVq0SAsWLNDRo0c1a9Ysvfbaa5o/f76zZtasWZozZ44WLFiguLg4hYWFqWPHjkpNTXXWjBw5UuvWrdPq1au1a9cuXbx4Ud26dVN2drY7dgsAAJQinu7c+J49e/TII4+oa9eukqTIyEitWrVK+/btk/TLUZ158+Zp/Pjx6tWrlyQpNjZWoaGhWrlypYYOHark5GS98847Wr58uTp06CBJWrFihSIiIrR161Z17tzZPTsHAABKBbce2bn//vu1bds2ffPNN5KkgwcPateuXerSpYsk6fjx40pISFCnTp2cj/H29lbbtm21e/duSVJ8fLyuXLniUhMeHq6oqChnDQAAuH259cjOf/3Xfyk5OVl33XWXPDw8lJ2drWnTpqlv376SpISEBElSaGioy+NCQ0P1/fffO2vKli2rChUq5KnJffzVMjIylJGR4ZxPSUkptn0CAACli1uP7KxZs0YrVqzQypUr9fnnnys2NlZ/+ctfFBsb61LncDhc5o0xecaudq2aGTNmKDAw0DlFREQUbUcAAECp5dawM3bsWP3xj3/U448/rgYNGuipp57SSy+9pBkzZkiSwsLCJCnPEZrExETn0Z6wsDBlZmYqKSmpwJqrxcTEKDk52TmdOnWquHcNAACUEm4NO5cvX1aZMq4teHh4OG89r169usLCwrRlyxbn8szMTO3cuVOtWrWSJDVt2lReXl4uNWfOnNHhw4edNVfz9vZWQECAywQAAOzk1mt2unfvrmnTpqlq1aq6++67tX//fs2ZM0eDBg2S9Mvpq5EjR2r69OmqXbu2ateurenTp8vPz0/9+vWTJAUGBmrw4MEaPXq0goODVbFiRY0ZM0YNGjRw3p0FAABuX24NO/Pnz9fEiRMVHR2txMREhYeHa+jQoXrllVecNePGjVNaWpqio6OVlJSkFi1aaPPmzSpfvryzZu7cufL09FSfPn2Ulpam9u3ba9myZfLw8HDHbgEAgFLEYYwx7m7C3VJSUhQYGKjk5GROaQEolJNTG7i7BaDUqfrKFyW6/ht9/+a7sQAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1T3c3cDtpOvZdd7cAlDrxr/V3dwsALMeRHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDW3h50ffvhBTz75pIKDg+Xn56dGjRopPj7eudwYo8mTJys8PFy+vr5q166djhw54rKOjIwMDR8+XCEhIfL391ePHj10+vTp33pXAABAKeTWsJOUlKT77rtPXl5e+vjjj/Xll19q9uzZCgoKctbMmjVLc+bM0YIFCxQXF6ewsDB17NhRqampzpqRI0dq3bp1Wr16tXbt2qWLFy+qW7duys7OdsNeAQCA0sTTnRufOXOmIiIitHTpUudYZGSk82djjObNm6fx48erV69ekqTY2FiFhoZq5cqVGjp0qJKTk/XOO+9o+fLl6tChgyRpxYoVioiI0NatW9W5c+ffdJ8AAEDp4tYjOx9++KGaNWumxx57TJUrV1bjxo3117/+1bn8+PHjSkhIUKdOnZxj3t7eatu2rXbv3i1Jio+P15UrV1xqwsPDFRUV5ay5WkZGhlJSUlwmAABgJ7eGne+++05vvvmmateurU2bNum5557TiBEj9O6770qSEhISJEmhoaEujwsNDXUuS0hIUNmyZVWhQoUCa642Y8YMBQYGOqeIiIji3jUAAFBKuDXs5OTkqEmTJpo+fboaN26soUOH6plnntGbb77pUudwOFzmjTF5xq52rZqYmBglJyc7p1OnThVtRwAAQKnl1rBTpUoV1a9f32WsXr16OnnypCQpLCxMkvIcoUlMTHQe7QkLC1NmZqaSkpIKrLmat7e3AgICXCYAAGAnt4ad++67T19//bXL2DfffKNq1apJkqpXr66wsDBt2bLFuTwzM1M7d+5Uq1atJElNmzaVl5eXS82ZM2d0+PBhZw0AALh9ufVurJdeekmtWrXS9OnT1adPH3322WdavHixFi9eLOmX01cjR47U9OnTVbt2bdWuXVvTp0+Xn5+f+vXrJ0kKDAzU4MGDNXr0aAUHB6tixYoaM2aMGjRo4Lw7CwAA3L7cGnaaN2+udevWKSYmRlOnTlX16tU1b948PfHEE86acePGKS0tTdHR0UpKSlKLFi20efNmlS9f3lkzd+5ceXp6qk+fPkpLS1P79u21bNkyeXh4uGO3AABAKeIwxhh3N+FuKSkpCgwMVHJycolev9N07Lsltm7gVhX/Wn93t1AsTk5t4O4WgFKn6itflOj6b/T92+1fFwEAAFCSCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFitUGGnRo0aOn/+fJ7xn3/+WTVq1ChyUwAAAMWlUGHnxIkTys7OzjOekZGhH374ochNAQAAFBfPmyn+8MMPnT9v2rRJgYGBzvns7Gxt27ZNkZGRxdYcAABAUd1U2OnZs6ckyeFwaMCAAS7LvLy8FBkZqdmzZxdbcwAAAEV1U2EnJydHklS9enXFxcUpJCSkRJoCAAAoLjcVdnIdP368uPsAAAAoEYUKO5K0bds2bdu2TYmJic4jPrmWLFlS5MYAAACKQ6HCzpQpUzR16lQ1a9ZMVapUkcPhKO6+AAAAikWhws6iRYu0bNkyPfXUU8XdDwAAQLEq1OfsZGZmqlWrVsXdCwAAQLErVNgZMmSIVq5cWdy9AAAAFLtCncZKT0/X4sWLtXXrVjVs2FBeXl4uy+fMmVMszQEAABRVocLOoUOH1KhRI0nS4cOHXZZxsTIAAChNChV2tm/fXtx9AAAAlIhCXbMDAABwqyjUkZ0HHnjgmqerPvnkk0I3BAAAUJwKFXZyr9fJdeXKFR04cECHDx/O8wWhAAAA7lSosDN37tx8xydPnqyLFy8WqSEAAIDiVKzX7Dz55JN8LxYAAChVijXs7NmzRz4+PsW5SgAAgCIp1GmsXr16ucwbY3TmzBnt27dPEydOLJbGAAAAikOhwk5gYKDLfJkyZVS3bl1NnTpVnTp1KpbGAAAAikOhws7SpUuLuw8AAIASUaiwkys+Pl5Hjx6Vw+FQ/fr11bhx4+LqCwAAoFgUKuwkJibq8ccf144dOxQUFCRjjJKTk/XAAw9o9erVqlSpUnH3CQAAUCiFuhtr+PDhSklJ0ZEjR3ThwgUlJSXp8OHDSklJ0YgRI4q7RwAAgEIr1JGdjRs3auvWrapXr55zrH79+nrjjTe4QBkAAJQqhTqyk5OTIy8vrzzjXl5eysnJKXJTAAAAxaVQYefBBx/Uiy++qB9//NE59sMPP+ill15S+/bti605AACAoipU2FmwYIFSU1MVGRmpmjVrqlatWqpevbpSU1M1f/784u4RAACg0Ap1zU5ERIQ+//xzbdmyRV999ZWMMapfv746dOhQ3P0BAAAUyU0d2fnkk09Uv359paSkSJI6duyo4cOHa8SIEWrevLnuvvtuffrppyXSKAAAQGHcVNiZN2+ennnmGQUEBORZFhgYqKFDh2rOnDnF1hwAAEBR3VTYOXjwoB566KECl3fq1Enx8fFFbgoAAKC43FTY+emnn/K95TyXp6enzp49W+SmAAAAistNhZ077rhDX3zxRYHLDx06pCpVqhS5KQAAgOJyU2GnS5cueuWVV5Senp5nWVpamiZNmqRu3boVW3MAAABFdVO3nk+YMEFr165VnTp19MILL6hu3bpyOBw6evSo3njjDWVnZ2v8+PEl1SsAAMBNu6mwExoaqt27d+v5559XTEyMjDGSJIfDoc6dO2vhwoUKDQ0tkUYBAAAK46Y/QblatWrasGGDzp07p3//+9/au3evzp07pw0bNigyMrLQjcyYMUMOh0MjR450jhljNHnyZIWHh8vX11ft2rXTkSNHXB6XkZGh4cOHKyQkRP7+/urRo4dOnz5d6D4AAIBdCvV1EZJUoUIFNW/eXPfee68qVKhQpCbi4uK0ePFiNWzY0GV81qxZmjNnjhYsWKC4uDiFhYWpY8eOSk1NddaMHDlS69at0+rVq7Vr1y5dvHhR3bp1U3Z2dpF6AgAAdih02CkuFy9e1BNPPKG//vWvLqHJGKN58+Zp/Pjx6tWrl6KiohQbG6vLly9r5cqVkqTk5GS98847mj17tjp06KDGjRtrxYoV+uKLL7R161Z37RIAAChF3B52hg0bpq5du+b5Xq3jx48rISFBnTp1co55e3urbdu22r17tyQpPj5eV65ccakJDw9XVFSUswYAANzeCvVFoMVl9erV+vzzzxUXF5dnWUJCgiTlueA5NDRU33//vbOmbNmyeU6jhYaGOh+fn4yMDGVkZDjnc7/rCwAA2MdtR3ZOnTqlF198UStWrJCPj0+BdQ6Hw2XeGJNn7GrXq5kxY4YCAwOdU0RExM01DwAAbhluCzvx8fFKTExU06ZN5enpKU9PT+3cuVP//d//LU9PT+cRnauP0CQmJjqXhYWFKTMzU0lJSQXW5CcmJkbJycnO6dSpU8W8dwAAoLRwW9hp3769vvjiCx04cMA5NWvWTE888YQOHDigGjVqKCwsTFu2bHE+JjMzUzt37lSrVq0kSU2bNpWXl5dLzZkzZ3T48GFnTX68vb0VEBDgMgEAADu57Zqd8uXLKyoqymXM399fwcHBzvGRI0dq+vTpql27tmrXrq3p06fLz89P/fr1kyQFBgZq8ODBGj16tIKDg1WxYkWNGTNGDRo0yHPBMwAAuD259QLl6xk3bpzS0tIUHR2tpKQktWjRQps3b1b58uWdNXPnzpWnp6f69OmjtLQ0tW/fXsuWLZOHh4cbOwcAAKWFw+R+58NtLCUlRYGBgUpOTi7RU1pNx75bYusGblXxr/V3dwvF4uTUBu5uASh1qr7yRYmu/0bfv93+OTsAAAAlibADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1dwadmbMmKHmzZurfPnyqly5snr27Kmvv/7apcYYo8mTJys8PFy+vr5q166djhw54lKTkZGh4cOHKyQkRP7+/urRo4dOnz79W+4KAAAopdwadnbu3Klhw4Zp79692rJli7KystSpUyddunTJWTNr1izNmTNHCxYsUFxcnMLCwtSxY0elpqY6a0aOHKl169Zp9erV2rVrly5evKhu3bopOzvbHbsFAABKEU93bnzjxo0u80uXLlXlypUVHx+vNm3ayBijefPmafz48erVq5ckKTY2VqGhoVq5cqWGDh2q5ORkvfPOO1q+fLk6dOggSVqxYoUiIiK0detWde7c+TffLwAAUHqUqmt2kpOTJUkVK1aUJB0/flwJCQnq1KmTs8bb21tt27bV7t27JUnx8fG6cuWKS014eLiioqKcNVfLyMhQSkqKywQAAOxUasKOMUajRo3S/fffr6ioKElSQkKCJCk0NNSlNjQ01LksISFBZcuWVYUKFQqsudqMGTMUGBjonCIiIop7dwAAQClRasLOCy+8oEOHDmnVqlV5ljkcDpd5Y0yesatdqyYmJkbJycnO6dSpU4VvHAAAlGqlIuwMHz5cH374obZv364777zTOR4WFiZJeY7QJCYmOo/2hIWFKTMzU0lJSQXWXM3b21sBAQEuEwAAsJNbw44xRi+88ILWrl2rTz75RNWrV3dZXr16dYWFhWnLli3OsczMTO3cuVOtWrWSJDVt2lReXl4uNWfOnNHhw4edNQAA4Pbl1ruxhg0bppUrV+qDDz5Q+fLlnUdwAgMD5evrK4fDoZEjR2r69OmqXbu2ateurenTp8vPz0/9+vVz1g4ePFijR49WcHCwKlasqDFjxqhBgwbOu7MAAMDty61h580335QktWvXzmV86dKlGjhwoCRp3LhxSktLU3R0tJKSktSiRQtt3rxZ5cuXd9bPnTtXnp6e6tOnj9LS0tS+fXstW7ZMHh4ev9WuAACAUsphjDHubsLdUlJSFBgYqOTk5BK9fqfp2HdLbN3ArSr+tf7ubqFYnJzawN0tAKVO1Ve+KNH13+j7d6m4QBkAAKCkEHYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNcIOAACwGmEHAABYjbADAACsRtgBAABWI+wAAACrEXYAAIDVCDsAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2AACA1Qg7AADAaoQdAABgNWvCzsKFC1W9enX5+PioadOm+vTTT93dEgAAKAWsCDtr1qzRyJEjNX78eO3fv1+tW7fWww8/rJMnT7q7NQAA4GZWhJ05c+Zo8ODBGjJkiOrVq6d58+YpIiJCb775prtbAwAAbnbLh53MzEzFx8erU6dOLuOdOnXS7t273dQVAAAoLTzd3UBRnTt3TtnZ2QoNDXUZDw0NVUJCQr6PycjIUEZGhnM+OTlZkpSSklJyjUrKzkgr0fUDt6KS/rv7raSmZ7u7BaDUKem/79z1G2OuWXfLh51cDofDZd4Yk2cs14wZMzRlypQ84xERESXSG4CCBc5/zt0tACgpMwJ/k82kpqYqMLDgbd3yYSckJEQeHh55juIkJibmOdqTKyYmRqNGjXLO5+Tk6MKFCwoODi4wIMEeKSkpioiI0KlTpxQQEODudgAUI/6+by/GGKWmpio8PPyadbd82ClbtqyaNm2qLVu26NFHH3WOb9myRY888ki+j/H29pa3t7fLWFBQUEm2iVIoICCAfwwBS/H3ffu41hGdXLd82JGkUaNG6amnnlKzZs3UsmVLLV68WCdPntRzz3F4HACA250VYecPf/iDzp8/r6lTp+rMmTOKiorShg0bVK1aNXe3BgAA3MyKsCNJ0dHRio6OdncbuAV4e3tr0qRJeU5lArj18feN/DjM9e7XAgAAuIXd8h8qCAAAcC2EHQAAYDXCDgAAsBphB5B04sQJORwOHThwwN2tAHCDyMhIzZs3z91toIQQdnDLGjhwoBwOR76fpxQdHS2Hw6GBAwf+9o0BuKbcv92rp2PHjrm7NViKsINbWkREhFavXq20tP/7ktX09HStWrVKVatWdWNnAK7loYce0pkzZ1ym6tWru7stWIqwg1takyZNVLVqVa1du9Y5tnbtWkVERKhx48bOsY0bN+r+++9XUFCQgoOD1a1bN3377bfXXPeXX36pLl26qFy5cgoNDdVTTz2lc+fOldi+ALcTb29vhYWFuUweHh766KOP1LRpU/n4+KhGjRqaMmWKsrKynI9zOBx666231K1bN/n5+alevXras2ePjh07pnbt2snf318tW7Z0+fv+9ttv9cgjjyg0NFTlypVT8+bNtXXr1mv2l5ycrGeffVaVK1dWQECAHnzwQR08eLDEng+ULMIObnlPP/20li5d6pxfsmSJBg0a5FJz6dIljRo1SnFxcdq2bZvKlCmjRx99VDk5Ofmu88yZM2rbtq0aNWqkffv2aePGjfrpp5/Up0+fEt0X4Ha2adMmPfnkkxoxYoS+/PJLvfXWW1q2bJmmTZvmUvenP/1J/fv314EDB3TXXXepX79+Gjp0qGJiYrRv3z5J0gsvvOCsv3jxorp06aKtW7dq//796ty5s7p3766TJ0/m24cxRl27dlVCQoI2bNig+Ph4NWnSRO3bt9eFCxdK7glAyTHALWrAgAHmkUceMWfPnjXe3t7m+PHj5sSJE8bHx8ecPXvWPPLII2bAgAH5PjYxMdFIMl988YUxxpjjx48bSWb//v3GGGMmTpxoOnXq5PKYU6dOGUnm66+/LsndAqw3YMAA4+HhYfz9/Z1T7969TevWrc306dNdapcvX26qVKninJdkJkyY4Jzfs2ePkWTeeecd59iqVauMj4/PNXuoX7++mT9/vnO+WrVqZu7cucYYY7Zt22YCAgJMenq6y2Nq1qxp3nrrrZveX7ifNV8XgdtXSEiIunbtqtjYWOf/yEJCQlxqvv32W02cOFF79+7VuXPnnEd0Tp48qaioqDzrjI+P1/bt21WuXLk8y7799lvVqVOnZHYGuE088MADevPNN53z/v7+qlWrluLi4lyO5GRnZys9PV2XL1+Wn5+fJKlhw4bO5aGhoZKkBg0auIylp6crJSVFAQEBunTpkqZMmaL169frxx9/VFZWltLS0go8shMfH6+LFy8qODjYZTwtLe26p79ROhF2YIVBgwY5D1u/8cYbeZZ3795dERER+utf/6rw8HDl5OQoKipKmZmZ+a4vJydH3bt318yZM/Msq1KlSvE2D9yGcsPNr+Xk5GjKlCnq1atXnnofHx/nz15eXs6fHQ5HgWO5/6kZO3asNm3apL/85S+qVauWfH191bt372v+/VepUkU7duzIsywoKOjGdhClCmEHVnjooYec/3B17tzZZdn58+d19OhRvfXWW2rdurUkadeuXddcX5MmTfSPf/xDkZGR8vTkzwT4LTRp0kRff/11nhBUVJ9++qkGDhyoRx99VNIv1/CcOHHimn0kJCTI09NTkZGRxdoL3IMLlGEFDw8PHT16VEePHpWHh4fLsgoVKig4OFiLFy/WsWPH9Mknn2jUqFHXXN+wYcN04cIF9e3bV5999pm+++47bd68WYMGDVJ2dnZJ7gpw23rllVf07rvvavLkyTpy5IiOHj2qNWvWaMKECUVab61atbR27VodOHBABw8eVL9+/Qq8OUGSOnTooJYtW6pnz57atGmTTpw4od27d2vChAnOC6BxayHswBoBAQEKCAjIM16mTBmtXr1a8fHxioqK0ksvvaTXXnvtmusKDw/Xv/71L2VnZ6tz586KiorSiy++qMDAQJUpw58NUBI6d+6s9evXa8uWLWrevLl+97vfac6cOapWrVqR1jt37lxVqFBBrVq1Uvfu3dW5c2c1adKkwHqHw6ENGzaoTZs2GjRokOrUqaPHH39cJ06ccF4jhFuLwxhj3N0EAABASeG/qAAAwGqEHQAAYDXCDgAAsBphBwAAWI2wAwAArEbYAQAAViPsAAAAqxF2ANz22rVrp5EjR7q7DQAlhLADoFRISEjQiy++qFq1asnHx0ehoaG6//77tWjRIl2+fNnd7QG4hfENhwDc7rvvvtN9992noKAgTZ8+XQ0aNFBWVpa++eYbLVmyROHh4erRo4e72yxQdna2HA4HXyUClFL8ZQJwu+joaHl6emrfvn3q06eP6tWrpwYNGuj3v/+9/vnPf6p79+6SpOTkZD377LOqXLmyAgIC9OCDD+rgwYPO9UyePFmNGjXS8uXLFRkZqcDAQD3++ONKTU111ly6dEn9+/dXuXLlVKVKFc2ePTtPP5mZmRo3bpzuuOMO+fv7q0WLFtqxY4dz+bJlyxQUFKT169erfv368vb21vfff19yTxCAIiHsAHCr8+fPa/PmzRo2bJj8/f3zrXE4HDLGqGvXrkpISNCGDRsUHx+vJk2aqH379rpw4YKz9ttvv9X777+v9evXa/369dq5c6f+/Oc/O5ePHTtW27dv17p167R582bt2LFD8fHxLtt7+umn9a9//UurV6/WoUOH9Nhjj+mhhx7Sf/7zH2fN5cuXNWPGDL399ts6cuSIKleuXMzPDIBiYwDAjfbu3WskmbVr17qMBwcHG39/f+Pv72/GjRtntm3bZgICAkx6erpLXc2aNc1bb71ljDFm0qRJxs/Pz6SkpDiXjx071rRo0cIYY0xqaqopW7asWb16tXP5+fPnja+vr3nxxReNMcYcO3bMOBwO88MPP7hsp3379iYmJsYYY8zSpUuNJHPgwIHieRIAlCiu2QFQKjgcDpf5zz77TDk5OXriiSeUkZGh+Ph4Xbx4UcHBwS51aWlp+vbbb53zkZGRKl++vHO+SpUqSkxMlPTLUZ/MzEy1bNnSubxixYqqW7euc/7zzz+XMUZ16tRx2U5GRobLtsuWLauGDRsWYY8B/FYIOwDcqlatWnI4HPrqq69cxmvUqCFJ8vX1lSTl5OSoSpUqLtfO5AoKCnL+7OXl5bLM4XAoJydHkmSMuW4/OTk58vDwUHx8vDw8PFyWlStXzvmzr69vnoAGoHQi7ABwq+DgYHXs2FELFizQ8OHDC7xup0mTJkpISJCnp6ciIyMLta1atWrJy8tLe/fuVdWqVSVJSUlJ+uabb9S2bVtJUuPGjZWdna3ExES1bt26UNsBULpwgTIAt1u4cKGysrLUrFkzrVmzRkePHtXXX3+tFStW6KuvvpKHh4c6dOigli1bqmfPntq0aZNOnDih3bt3a8KECdq3b98NbadcuXIaPHiwxo4dq23btunw4cMaOHCgyy3jderU0RNPPKH+/ftr7dq1On78uOLi4jRz5kxt2LChpJ4CACWIIzsA3K5mzZrav3+/pk+frpiYGJ0+fVre3t6qX7++xowZo+joaDkcDm3YsEHjx4/XoEGDdPbsWYWFhalNmzYKDQ294W299tprunjxonr06KHy5ctr9OjRSk5OdqlZunSpXn31VY0ePVo//PCDgoOD1bJlS3Xp0qW4dx3Ab8BhbuQkNgAAwC2K01gAAMBqhB0AAGA1wg4AALAaYQcAAFiNsAMAAKxG2AEAAFYj7AAAAKsRdgAAgNUIOwAAwGqEHQAAYDXCDgAAsBphBwAAWO3/Af87EiopEDM3AAAAAElFTkSuQmCC",
2341
      "text/plain": [
2342
       "<Figure size 640x480 with 1 Axes>"
2343
      ]
2344
     },
2345
     "metadata": {},
2346
     "output_type": "display_data"
2347
    }
2348
   ],
2349
   "source": [
2350
    "#Gender distribution\n",
2351
    "sns.countplot(x='gender', data=smoke1)\n",
2352
    "plt.title('Figure 1: Distribution of Gender')\n",
2353
    "plt.xlabel('Gender')\n",
2354
    "plt.ylabel('Count')\n",
2355
    "plt.show()"
2356
   ]
2357
  },
2358
  {
2359
   "cell_type": "code",
2360
   "execution_count": 40,
2361
   "id": "ea999606",
2362
   "metadata": {
2363
    "scrolled": false
2364
   },
2365
   "outputs": [
2366
    {
2367
     "data": {
2368
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAS0lEQVR4nO3deVRV9f7/8dcR8IAgqKAMxuCc85CWYs4DzqlZpuWQppWpmVMX08Su6VWv09LGXzmkpV67mmXmnKaJN6XUnIcwKQecAidQ4PP7o8X5dgRUEAO3z8daZy32Z3/2Z7/3PofDiz2cYzPGGAEAAFhUgbwuAAAA4F4i7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7OCOzJs3TzabLdPH8OHDdfz4cdlsNs2bNy+vS82RjRs3qk+fPnr44Yfl6empkiVL6oknnlBMTMxdjdu4cWPHfipQoIAKFy6ssmXL6qmnntLnn3+utLS0DMuEhYWpd+/e2VrPtm3bFBUVpT/++CNby928rk2bNslms+nzzz/P1ji3cvXqVUVFRWnTpk0Z5qW/ro4fP55r67sXRo8erZCQELm6uqpIkSK37b9161Z169ZNISEhstvt8vT0VOXKlTVs2DAdPHjw3hecBZvNpqioqL9tfceOHZPdbld0dLSjzRijxYsXq0GDBipRooTc3d310EMPKSIiQh999NHfVttfNW7cWFWqVMmTdd+sR48e6tixY16XYTmueV0A7i9z587Vww8/7NQWFBQkf39/RUdHq0yZMnlU2d157733dP78eb366quqVKmSzp49q6lTp6pu3bpas2aNmjZtmuOxS5curU8//VSSdOXKFcXGxuqLL77QU089pQYNGuirr76Sj4+Po//y5cvl7e2drXVs27ZN48aNU+/eve/oj/HdrCu7rl69qnHjxkn684/KX7Vt21bR0dEKDAy8pzXcjRUrVujtt9/WG2+8odatW8tut9+y/+jRo/X222+rXr16Gj16tMqVK6eUlBTt2bNH8+fP17Rp05SSkiIXF5e/aQvyzvDhw9WiRQvVq1fP0RYZGalJkyapX79+GjFihAoXLqxff/1VGzdu1IoVK/TCCy/kYcV5LyoqSg8//LA2btx4V+87uIkB7sDcuXONJLNjx468LiWDK1eu3PUYZ86cydB26dIl4+/vb5o1a5bjcRs1amQqV66c6bw5c+YYSebpp5/O8fjppkyZYiSZ2NjYO+p/9erVTNu//fZbI8ksXbr0rmtKd/bsWSPJjB07NtfG/DuNHz/eSMr0NXKzzz77zEgyL730kklLS8swPy0tzcyePdukpKTci1JvKzefh+vXr5sbN25kOX///v1Gklm9erWj7erVq8Zut5uePXtmukxqamqu1JZdt/o9zQ1Xr17N9PWQlXbt2pkWLVrcs3oeRJzGQq7I6jTWihUrVK1aNdntdpUuXVozZ85UVFSUbDbbbZeVMh52T1/2xx9/VJcuXVS0aFHH0SRjjN59913VqFFDHh4eKlq0qLp06aJffvnltvWXKFEiQ5uXl5cqVaqkuLi4O9sJ2fT888+rTZs2Wrp0qX799VdH+82nltLS0jR+/HhVqFBBHh4eKlKkiKpVq6aZM2dK+nOfjBgxQpJUqlQpx2mz9NNGYWFhateunZYtW6aaNWvK3d3dcaQlq1NmSUlJGjp0qAICAuTh4aFGjRrpp59+curTuHHjDEdqJKl3794KCwuT9OdzW7x4cUnSuHHjHLWlrzOr01hz5sxR9erV5e7urmLFiqlTp046cOBAhvV4eXnp6NGjatOmjby8vBQcHKxhw4YpOTk5y/3+1/06efJkPfzww7Lb7SpRooR69uyp3377zdEnLCxMo0ePliT5+/vf9jTQ+PHj5efnp+nTpzu9xtPZbDa98sorGY7qrF+/Xs2aNZO3t7cKFSqk+vXra8OGDU590l/7+/btU7du3eTj4yN/f3/16dNHCQkJTn0TExPVr18/+fr6ysvLS61atdLhw4czrfnIkSPq3r27SpQoIbvdrooVK+qdd95x6pN+enPBggUaNmyYSpYsKbvdrqNHj2a5L9577z0FBASoRYsWjrYrV64oOTk5yyN5BQr835+k9PeFKVOmaNKkSQoLC5OHh4caN26sw4cP68aNG/rHP/6hoKAg+fj4qFOnToqPj3ca706e46wsX75chQoV0gsvvKCUlBRJ0s6dO9WhQwcVK1ZM7u7uqlmzpv7zn/84LZf+ml67dq369Omj4sWLq1ChQkpOTtbZs2fVv39/BQcHy263q3jx4qpfv77Wr1/vNEaPHj20fv16HTt27LZ14s4QdpAtqampSklJcXpkZfXq1ercubN8fX21ZMkSTZ48WYsWLdL8+fPvuo7OnTurbNmyWrp0qd5//31J0osvvqghQ4aoefPm+uKLL/Tuu+9q3759Cg8P15kzZ7K9joSEBP3444+qXLmyU3v6m1luXJ/UoUMHGWO0ZcuWLPtMnjxZUVFR6tatm77++mstWbJEffv2dVyf88ILL2jQoEGSpGXLlik6OlrR0dGqVauWY4wff/xRI0aM0ODBg7V69Wo9+eSTt6xr1KhR+uWXX/TRRx/po48+0smTJ9W4ceM7Co5/FRgYqNWrV0uS+vbt66htzJgxWS4zceJE9e3bV5UrV9ayZcs0c+ZM7dmzR/Xq1dORI0ec+t64cUMdOnRQs2bNtGLFCvXp00fTp0/XpEmTblvbyy+/rNdff10tWrTQl19+qX/+859avXq1wsPDde7cOUl//sHr27evpD9fz9HR0VmeZjl58qT279+vFi1ayN3d/Y72jyQtXLhQLVu2lLe3t+bPn6///Oc/KlasmCIiIjIEHkl68sknVb58ef33v//VP/7xD3322Wd67bXXHPONMerYsaMjmCxfvlx169ZV69atM4y1f/9+1alTR3v37tXUqVO1cuVKtW3bVoMHD3YE4r+KjIzUiRMn9P777+urr77K9J+EdF9//bUaNmzoFGD8/PxUtmxZvfvuu5o2bZoOHjwoY8wt988777yj77//Xu+8844++ugjHTx4UO3bt1ffvn119uxZzZkzR5MnT9b69eszPDd38hxnZvr06Xrqqac0atQoffTRR3J1ddW3336r+vXr648//tD777+vFStWqEaNGuratWum7wV9+vSRm5ubFixYoM8//1xubm7q0aOHvvjiC7355ptau3atPvroIzVv3lznz593WrZx48YyxmjVqlW33DfIhjw9roT7RvpprMweN27cMLGxsUaSmTt3rmOZOnXqmODgYJOcnOxou3TpkvH19TV/felltmw63XTYfezYsUaSefPNN536RUdHG0lm6tSpTu1xcXHGw8PDjBw5Mtvb/OyzzxpXV1ezc+dOp/b58+cbFxcXM3/+/NuOcbvD4998842RZCZNmuRoCw0NNb169XJMt2vXztSoUeOW67nVaazQ0FDj4uJiDh06lOm8v64r/TRWrVq1nA67Hz9+3Li5uZkXXnjBadsaNWqUYcxevXqZ0NBQx/StTmOlv67S67548aLx8PAwbdq0cep34sQJY7fbTffu3Z3WI8n85z//cerbpk0bU6FChQzr+qsDBw4YSWbAgAFO7f/73/+MJDNq1ChHW/pr7uzZs7ccc/v27UaS+cc//pFhXkpKirlx44bjkb5vr1y5YooVK2bat2/v1D81NdVUr17dPProoxnqmDx5slPfAQMGGHd3d8eY6a+pmTNnOvV7++23MzwPERER5qGHHjIJCQlOfQcOHGjc3d3NhQsXjDH/97po2LDhLfdBujNnzhhJ5l//+leGeT/88IMJCQlxvH8ULlzYtGvXznzyySdOr7n094Xq1as7nd6aMWOGkWQ6dOjgNO6QIUOMJMe2ZOc5Tv89TU1NNQMHDjQFCxY0CxcudFru4YcfNjVr1sxw6q5du3YmMDDQUWP6azqzU3VeXl5myJAht9x36UqWLGm6du16R31xexzZQbZ88skn2rFjh9PD1TXjde5XrlzRzp071bFjRxUsWNDR7uXlpfbt2991HTcfmVi5cqVsNpuee+45p6NOAQEBql69eqZ3At3KmDFj9Omnn2r69Ol65JFHnOb17NlTKSkp6tmz591uxm3/q5WkRx99VLt379aAAQO0Zs0aJSYmZns91apVU/ny5e+4f/fu3Z1Ow4SGhio8PFzffvttttedHdHR0bp27VqGU2vBwcFq2rRphiMdNpstw+upWrVqTqcFM5O+HTev59FHH1XFihUzPaJyN3x9feXm5uZ4/Pe//5X054XlFy5cUK9evZxet2lpaWrVqpV27NihK1euOI3VoUMHp+lq1aopKSnJcQonfdueffZZp37du3d3mk5KStKGDRvUqVMnFSpUyGn9bdq0UVJSkrZv3+60zO2OCKY7efKkpMxPD9epU0dHjx7V6tWrNWrUKNWrV08bNmxQz549HUc6/6pNmzZOR4cqVqwo6c+L2/8qvf3EiRNO++FOn+OkpCR17NhRn376qdauXeu0/44ePaqDBw862m7eV6dOndKhQ4ecxstsXz366KOaN2+exo8fr+3bt+vGjRsZ+qQrUaKEfv/99yznI3u4GwvZUrFiRdWuXfu2/S5evChjjPz9/TPMy6wtu24+53/mzJks1yf9eUfUnRo3bpzGjx+vt99+WwMHDryrOm8n/Y9yUFBQln0iIyPl6emphQsX6v3335eLi4saNmyoSZMm3dFzIWXcX7cTEBCQadvu3buzNU52pR/Oz6zeoKAgrVu3zqmtUKFCGU4Z2e12JSUl3dV6bheWMhMcHCxJmS67adMmpaSkKCYmRi+99JKjPf30apcuXbIc98KFC/L09HRM+/r6Os1Pvzvs2rVrkv7cNldX1wz9bn5Oz58/r5SUFM2aNUuzZs3KdN03n+q509dRei1Znc5zc3NTRESEIiIiHLV06dJFK1eu1DfffKM2bdo4+hYrVsxp2fR/nrJqT3/us/scx8fHKy4uTs2bN1d4eLjTvPTnafjw4Ro+fHim23Qn+2rJkiUaP368PvroI40ZM0ZeXl7q1KmTJk+enOH5cXd3d+xH3D3CDu6JokWLymazZXqtzOnTp52m098Qb76o9Obz2H9188Wffn5+stls2rJlS6a3Bt/uduF048aNU1RUlKKiojRq1Kg7WuZufPnll7LZbGrYsGGWfVxdXTV06FANHTpUf/zxh9avX69Ro0YpIiJCcXFxKlSo0G3Xk9nFsrdy83OU3vbXP6Du7u4ZLoyVMr7pZ0f6+KdOncow7+TJk/Lz88vx2Fmt56GHHsqV9QQFBaly5cpat26dkpKSnP7Q16hRQ5J0+fJlp2XS1zNr1izVrVs303Gz+8+Br6+vUlJSdP78eafn6+bntGjRonJxcVGPHj30yiuvZDpWqVKlnKbv9HWUvl0XLly445qHDBmiTZs2ae/evU5hJ6ey+xyHhIRo2rRp6tSpkzp37qylS5c6nsP0vpGRkercuXOm66tQoYLTdGb7ys/PTzNmzNCMGTN04sQJffnll/rHP/6h+Ph4x7Vt6S5cuOC40B93j9NYuCc8PT1Vu3ZtffHFF7p+/bqj/fLly1q5cqVTX39/f7m7u2vPnj1O7StWrLjj9bVr107GGP3++++qXbt2hkfVqlVvO8Y///lPRUVFafTo0Ro7duwdrzun5s6dq2+++cbx4XN3okiRIurSpYteeeUVXbhwwXEX083/3d+tRYsWOZ1O+PXXX7Vt2zanu6/CwsJ0+PBhp5B6/vx5bdu2zWms7NRWr149eXh4aOHChU7tv/32mzZu3KhmzZrlZHMySP/8kpvXs2PHDh04cCDH63njjTd07tw5DR069I5OUdavX19FihTR/v37M33d1q5d2+k08J1o0qSJJDk+2yndZ5995jRdqFAhNWnSRD/99JOqVauW6bpvPjp0p0JDQ+Xh4ZHhbqIbN25k+U9M+t12tzrKmR05eY5btmypNWvW6LvvvlO7du0cpxArVKigcuXKaffu3Vk+T4ULF85WfSEhIRo4cKBatGihH3/80WleSkqK4uLiVKlSpWyNiaxxZAf3zFtvvaW2bdsqIiJCr776qlJTUzVlyhR5eXk5/ceXfq3NnDlzVKZMGVWvXl0//PBDhjfnW6lfv7769++v559/Xjt37lTDhg3l6empU6dOaevWrapatapefvnlLJefOnWq3nzzTbVq1Upt27bNcK3CX//r/uSTT9SnTx/NmTPnjq7buXbtmmO8a9eu6ZdfftEXX3yhlStXqlGjRo67ybLSvn17ValSRbVr11bx4sX166+/asaMGQoNDVW5cuUkyRHmZs6cqV69esnNzU0VKlTI9htwuvj4eHXq1En9+vVTQkKCxo4dK3d3d0VGRjr69OjRQx988IGee+459evXT+fPn9fkyZMzfEhh4cKFFRoaqhUrVqhZs2YqVqyY/Pz8Mv2vtUiRIhozZoxGjRqlnj17qlu3bjp//rzGjRsnd3f3XAuhFSpUUP/+/TVr1iwVKFBArVu31vHjxzVmzBgFBwc73d2UHd26ddO+ffv09ttva/fu3erdu7fKlSuntLQ0xcXFacGCBZLkeF68vLw0a9Ys9erVSxcuXFCXLl1UokQJnT17Vrt379bZs2f13nvvZauGli1bqmHDhho5cqSuXLmi2rVr6/vvv3es+69mzpypxx9/XA0aNNDLL7+ssLAwXbp0SUePHtVXX32ljRs35mg/FCxYUPXq1cvwe5SQkKCwsDA99dRTat68uYKDg3X58mVt2rRJM2fOVMWKFbM8cpJdOX2OH3/8cW3YsEGtWrVSy5YttWrVKvn4+OiDDz5Q69atFRERod69e6tkyZK6cOGCDhw4oB9//FFLly69ZT0JCQlq0qSJunfvrocffliFCxfWjh07HHet/tWePXt09epVR3BFLsjDi6NxH7ndhwpmdUfV8uXLTdWqVU3BggVNSEiI+de//mUGDx5sihYt6tQvISHBvPDCC8bf3994enqa9u3bm+PHj2d5N1ZWd8bMmTPHPPbYY8bT09N4eHiYMmXKmJ49e2a4o+pmjRo1yvJus5t/TdL3RWZ3j91uXE9PT1O6dGnTpUsXs3Tp0kw/RO3mO6SmTp1qwsPDjZ+fn2M/9u3b1xw/ftxpucjISBMUFGQKFChgJJlvv/3WMV7btm0zrS+ru7EWLFhgBg8ebIoXL27sdrtp0KBBpvtw/vz5pmLFisbd3d1UqlTJLFmyJMPdWMYYs379elOzZk1jt9uNJMc6b74bK91HH31kqlWrZgoWLGh8fHzME088Yfbt2+fUp1evXsbT0zNDTemvkdtJTU01kyZNMuXLlzdubm7Gz8/PPPfccyYuLi7T8W53N9Zffffdd6Zr167moYceMm5ubqZQoUKmUqVK5uWXX850P27evNm0bdvWFCtWzLi5uZmSJUuatm3bOn24Y1Z1ZLYP//jjD9OnTx9TpEgRU6hQIdOiRQtz8ODBTO+Ki42NNX369DElS5Y0bm5upnjx4iY8PNyMHz/e0ScnHzb58ccfGxcXF3Py5ElHW3Jysvn3v/9tWrdubUJCQozdbjfu7u6mYsWKZuTIkeb8+fNOdUkyU6ZMcRo3q1oye4+60+c4s7sm9+7dawICAkytWrUc+3z37t3m6aefNiVKlDBubm4mICDANG3a1Lz//vu3rMMYY5KSksxLL71kqlWrZry9vY2Hh4epUKGCGTt2bIYPRh0zZozx8/MzSUlJt93PuDM2Y+7gWCuQS27cuKEaNWqoZMmSWrt2bV6XA+AeSUpKUkhIiIYNG6bXX389r8u5b6Smpqps2bLq3r273n777bwuxzK4Zgf3VN++fbV48WJt3rxZS5YsUcuWLXXgwAGNHDkyr0sDcA+lf1L3tGnTMtw+j6wtXLhQly9fdnwqOnIH1+zgnrp06ZKGDx+us2fPys3NTbVq1dKqVavUvHnzvC4NwD3Wv39//fHHH/rll1/u6CYB/PkVF59++mm2vtAXt8dpLAAAYGmcxgIAAJZG2AEAAJZG2AEAAJbGBcr684KwkydPqnDhwtn+WH0AAJA3jDG6dOmSgoKCnL4w9maEHf35PSnpX+IHAADuL3FxcRm+A+2vCDv6v49uj4uLy/BR9wAAIH9KTExUcHDwbb8ah7Cj//t2Wm9vb8IOAAD3mdtdgsIFygAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNJc87qAB8kjIz7J6xKAfCdmSs+8LgGAxXFkBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWFqehp2JEyeqTp06Kly4sEqUKKGOHTvq0KFDTn2MMYqKilJQUJA8PDzUuHFj7du3z6lPcnKyBg0aJD8/P3l6eqpDhw767bff/s5NAQAA+VSehp3NmzfrlVde0fbt27Vu3TqlpKSoZcuWunLliqPP5MmTNW3aNM2ePVs7duxQQECAWrRooUuXLjn6DBkyRMuXL9fixYu1detWXb58We3atVNqampebBYAAMhHbMYYk9dFpDt79qxKlCihzZs3q2HDhjLGKCgoSEOGDNHrr78u6c+jOP7+/po0aZJefPFFJSQkqHjx4lqwYIG6du0qSTp58qSCg4O1atUqRURE3Ha9iYmJ8vHxUUJCgry9ve/Z9j0y4pN7NjZwv4qZ0jOvSwBwn7rTv9/56pqdhIQESVKxYsUkSbGxsTp9+rRatmzp6GO329WoUSNt27ZNkhQTE6MbN2449QkKClKVKlUcfQAAwIPLNa8LSGeM0dChQ/X444+rSpUqkqTTp09Lkvz9/Z36+vv769dff3X0KViwoIoWLZqhT/ryN0tOTlZycrJjOjExMde2AwAA5C/55sjOwIEDtWfPHi1atCjDPJvN5jRtjMnQdrNb9Zk4caJ8fHwcj+Dg4JwXDgAA8rV8EXYGDRqkL7/8Ut9++60eeughR3tAQIAkZThCEx8f7zjaExAQoOvXr+vixYtZ9rlZZGSkEhISHI+4uLjc3BwAAJCP5GnYMcZo4MCBWrZsmTZu3KhSpUo5zS9VqpQCAgK0bt06R9v169e1efNmhYeHS5IeeeQRubm5OfU5deqU9u7d6+hzM7vdLm9vb6cHAACwpjy9ZueVV17RZ599phUrVqhw4cKOIzg+Pj7y8PCQzWbTkCFDNGHCBJUrV07lypXThAkTVKhQIXXv3t3Rt2/fvho2bJh8fX1VrFgxDR8+XFWrVlXz5s3zcvMAAEA+kKdh57333pMkNW7c2Kl97ty56t27tyRp5MiRunbtmgYMGKCLFy/qscce09q1a1W4cGFH/+nTp8vV1VVPP/20rl27pmbNmmnevHlycXH5uzYFAADkU/nqc3byCp+zA+QdPmcHQE7dl5+zAwAAkNsIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNJc87oAALCCE29VzesSgHwn5M2f87oESRzZAQAAFkfYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlkbYAQAAlpanYee7775T+/btFRQUJJvNpi+++MJpfu/evWWz2ZwedevWdeqTnJysQYMGyc/PT56enurQoYN+++23v3ErAABAfpanYefKlSuqXr26Zs+enWWfVq1a6dSpU47HqlWrnOYPGTJEy5cv1+LFi7V161ZdvnxZ7dq1U2pq6r0uHwAA3Adc83LlrVu3VuvWrW/Zx263KyAgINN5CQkJ+vjjj7VgwQI1b95ckrRw4UIFBwdr/fr1ioiIyPWaAQDA/SXfX7OzadMmlShRQuXLl1e/fv0UHx/vmBcTE6MbN26oZcuWjragoCBVqVJF27Zty4tyAQBAPpOnR3Zup3Xr1nrqqacUGhqq2NhYjRkzRk2bNlVMTIzsdrtOnz6tggULqmjRok7L+fv76/Tp01mOm5ycrOTkZMd0YmLiPdsGAACQt/J12Onatavj5ypVqqh27doKDQ3V119/rc6dO2e5nDFGNpsty/kTJ07UuHHjcrVWAACQP+X701h/FRgYqNDQUB05ckSSFBAQoOvXr+vixYtO/eLj4+Xv75/lOJGRkUpISHA84uLi7mndAAAg79xXYef8+fOKi4tTYGCgJOmRRx6Rm5ub1q1b5+hz6tQp7d27V+Hh4VmOY7fb5e3t7fQAAADWlKensS5fvqyjR486pmNjY7Vr1y4VK1ZMxYoVU1RUlJ588kkFBgbq+PHjGjVqlPz8/NSpUydJko+Pj/r27athw4bJ19dXxYoV0/Dhw1W1alXH3VkAAODBlqdhZ+fOnWrSpIljeujQoZKkXr166b333tPPP/+sTz75RH/88YcCAwPVpEkTLVmyRIULF3YsM336dLm6uurpp5/WtWvX1KxZM82bN08uLi5/+/YAAID8J0/DTuPGjWWMyXL+mjVrbjuGu7u7Zs2apVmzZuVmaQAAwCLuq2t2AAAAsouwAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALC1HYad06dI6f/58hvY//vhDpUuXvuuiAAAAckuOws7x48eVmpqaoT05OVm///77XRcFAACQW1yz0/nLL790/LxmzRr5+Pg4plNTU7VhwwaFhYXlWnEAAAB3K1thp2PHjpIkm82mXr16Oc1zc3NTWFiYpk6dmmvFAQAA3K1shZ20tDRJUqlSpbRjxw75+fndk6IAAAByS7bCTrrY2NjcrgMAAOCeyFHYkaQNGzZow4YNio+PdxzxSTdnzpy7LgwAACA35CjsjBs3Tm+99ZZq166twMBA2Wy23K4LAAAgV+Qo7Lz//vuaN2+eevTokdv1AAAA5Kocfc7O9evXFR4entu1AAAA5LochZ0XXnhBn332WW7XAgAAkOtydBorKSlJH374odavX69q1arJzc3Naf60adNypTgAAIC7laOws2fPHtWoUUOStHfvXqd5XKwMAADykxyFnW+//Ta36wAAALgncnTNDgAAwP0iR0d2mjRpcsvTVRs3bsxxQQAAALkpR2En/XqddDdu3NCuXbu0d+/eDF8QCgAAkJdyFHamT5+eaXtUVJQuX758VwUBAADkply9Zue5557je7EAAEC+kqthJzo6Wu7u7rk5JAAAwF3J0Wmszp07O00bY3Tq1Cnt3LlTY8aMyZXCAAAAckOOwo6Pj4/TdIECBVShQgW99dZbatmyZa4UBgAAkBtyFHbmzp2b23UAAADcEzkKO+liYmJ04MAB2Ww2VapUSTVr1sytugAAAHJFjsJOfHy8nnnmGW3atElFihSRMUYJCQlq0qSJFi9erOLFi+d2nQAAADmSo7uxBg0apMTERO3bt08XLlzQxYsXtXfvXiUmJmrw4MG5XSMAAECO5ejIzurVq7V+/XpVrFjR0VapUiW98847XKAMAADylRwd2UlLS5Obm1uGdjc3N6Wlpd11UQAAALklR2GnadOmevXVV3Xy5ElH2++//67XXntNzZo1y7XiAAAA7laOws7s2bN16dIlhYWFqUyZMipbtqxKlSqlS5cuadasWbldIwAAQI7l6Jqd4OBg/fjjj1q3bp0OHjwoY4wqVaqk5s2b53Z9AAAAdyVbR3Y2btyoSpUqKTExUZLUokULDRo0SIMHD1adOnVUuXJlbdmy5Z4UCgAAkBPZCjszZsxQv3795O3tnWGej4+PXnzxRU2bNi3XigMAALhb2Qo7u3fvVqtWrbKc37JlS8XExNx1UQAAALklW2HnzJkzmd5yns7V1VVnz56966IAAAByS7bCTsmSJfXzzz9nOX/Pnj0KDAy866IAAAByS7bCTps2bfTmm28qKSkpw7xr165p7NixateuXa4VBwAAcLeydev56NGjtWzZMpUvX14DBw5UhQoVZLPZdODAAb3zzjtKTU3VG2+8ca9qBQAAyLZsHdnx9/fXtm3bVKVKFUVGRqpTp07q2LGjRo0apSpVquj777+Xv7//HY/33XffqX379goKCpLNZtMXX3zhNN8Yo6ioKAUFBcnDw0ONGzfWvn37nPokJydr0KBB8vPzk6enpzp06KDffvstO5sFAAAsLNufoBwaGqpVq1bp3Llz+t///qft27fr3LlzWrVqlcLCwrI11pUrV1S9enXNnj070/mTJ0/WtGnTNHv2bO3YsUMBAQFq0aKFLl265OgzZMgQLV++XIsXL9bWrVt1+fJltWvXTqmpqdndNAAAYEE5+gRlSSpatKjq1KlzVytv3bq1Wrdunek8Y4xmzJihN954Q507d5YkzZ8/X/7+/vrss8/04osvKiEhQR9//LEWLFjg+PTmhQsXKjg4WOvXr1dERMRd1QcAAO5/OfpurL9DbGysTp8+rZYtWzra7Ha7GjVqpG3btkmSYmJidOPGDac+QUFBqlKliqMPAAB4sOX4yM69dvr0aUnKcA2Qv7+/fv31V0efggULqmjRohn6pC+fmeTkZCUnJzum07/+AgAAWE++PbKTzmazOU0bYzK03ex2fSZOnCgfHx/HIzg4OFdqBQAA+U++DTsBAQGSlOEITXx8vONoT0BAgK5fv66LFy9m2SczkZGRSkhIcDzi4uJyuXoAAJBf5NuwU6pUKQUEBGjdunWOtuvXr2vz5s0KDw+XJD3yyCNyc3Nz6nPq1Cnt3bvX0Sczdrtd3t7eTg8AAGBNeXrNzuXLl3X06FHHdGxsrHbt2qVixYopJCREQ4YM0YQJE1SuXDmVK1dOEyZMUKFChdS9e3dJf37Tet++fTVs2DD5+vqqWLFiGj58uKpWreq4OwsAADzY8jTs7Ny5U02aNHFMDx06VJLUq1cvzZs3TyNHjtS1a9c0YMAAXbx4UY899pjWrl2rwoULO5aZPn26XF1d9fTTT+vatWtq1qyZ5s2bJxcXl799ewAAQP5jM8aYvC4iryUmJsrHx0cJCQn39JTWIyM+uWdjA/ermCk987qEXHHirap5XQKQ74S8mfWXh+eGO/37nW+v2QEAAMgNhB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBp+TrsREVFyWazOT0CAgIc840xioqKUlBQkDw8PNS4cWPt27cvDysGAAD5Tb4OO5JUuXJlnTp1yvH4+eefHfMmT56sadOmafbs2dqxY4cCAgLUokULXbp0KQ8rBgAA+Um+Dzuurq4KCAhwPIoXLy7pz6M6M2bM0BtvvKHOnTurSpUqmj9/vq5evarPPvssj6sGAAD5Rb4PO0eOHFFQUJBKlSqlZ555Rr/88oskKTY2VqdPn1bLli0dfe12uxo1aqRt27blVbkAACCfcc3rAm7lscce0yeffKLy5cvrzJkzGj9+vMLDw7Vv3z6dPn1akuTv7++0jL+/v3799ddbjpucnKzk5GTHdGJiYu4XDwAA8oV8HXZat27t+Llq1aqqV6+eypQpo/nz56tu3bqSJJvN5rSMMSZD280mTpyocePG5X7BAAAg38n3p7H+ytPTU1WrVtWRI0ccd2WlH+FJFx8fn+Foz80iIyOVkJDgeMTFxd2zmgEAQN66r8JOcnKyDhw4oMDAQJUqVUoBAQFat26dY/7169e1efNmhYeH33Icu90ub29vpwcAALCmfH0aa/jw4Wrfvr1CQkIUHx+v8ePHKzExUb169ZLNZtOQIUM0YcIElStXTuXKldOECRNUqFAhde/ePa9LBwAA+US+Dju//fabunXrpnPnzql48eKqW7eutm/frtDQUEnSyJEjde3aNQ0YMEAXL17UY489prVr16pw4cJ5XDkAAMgv8nXYWbx48S3n22w2RUVFKSoq6u8pCAAA3Hfuq2t2AAAAsouwAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALM0yYefdd99VqVKl5O7urkceeURbtmzJ65IAAEA+YImws2TJEg0ZMkRvvPGGfvrpJzVo0ECtW7fWiRMn8ro0AACQxywRdqZNm6a+ffvqhRdeUMWKFTVjxgwFBwfrvffey+vSAABAHrvvw87169cVExOjli1bOrW3bNlS27Zty6OqAABAfuGa1wXcrXPnzik1NVX+/v5O7f7+/jp9+nSmyyQnJys5OdkxnZCQIElKTEy8d4VKSk2+dk/HB+5H9/r37u9yKSk1r0sA8p17/fudPr4x5pb97vuwk85mszlNG2MytKWbOHGixo0bl6E9ODj4ntQGIGs+s17K6xIA3CsTff6W1Vy6dEk+Plmv674PO35+fnJxcclwFCc+Pj7D0Z50kZGRGjp0qGM6LS1NFy5ckK+vb5YBCdaRmJio4OBgxcXFydvbO6/LAZCL+P1+sBhjdOnSJQUFBd2y330fdgoWLKhHHnlE69atU6dOnRzt69at0xNPPJHpMna7XXa73amtSJEi97JM5EPe3t68GQIWxe/3g+NWR3TS3fdhR5KGDh2qHj16qHbt2qpXr54+/PBDnThxQi+9xOFxAAAedJYIO127dtX58+f11ltv6dSpU6pSpYpWrVql0NDQvC4NAADkMUuEHUkaMGCABgwYkNdl4D5gt9s1duzYDKcyAdz/+P1GZmzmdvdrAQAA3Mfu+w8VBAAAuBXCDgAAsDTCDgAAsDTCDnCHwsLCNGPGjLwuA0A2HT9+XDabTbt27crrUpBHCDvIl3r37i2bzZbhcfTo0bwuDcDfIP09ILPPSxswYIBsNpt69+799xeG+xJhB/lWq1atdOrUKadHqVKl8rosAH+T4OBgLV68WNeu/d+XKCclJWnRokUKCQnJw8pwvyHsIN+y2+0KCAhweri4uOirr77SI488Ind3d5UuXVrjxo1TSkqKYzmbzaYPPvhA7dq1U6FChVSxYkVFR0fr6NGjaty4sTw9PVWvXj0dO3bMscyxY8f0xBNPyN/fX15eXqpTp47Wr19/y/oSEhLUv39/lShRQt7e3mratKl27959z/YH8KCpVauWQkJCtGzZMkfbsmXLFBwcrJo1azraVq9erccff1xFihSRr6+v2rVr5/T7nZn9+/erTZs28vLykr+/v3r06KFz587ds21B3iLs4L6yZs0aPffccxo8eLD279+vDz74QPPmzdPbb7/t1O+f//ynevbsqV27dunhhx9W9+7d9eKLLyoyMlI7d+6UJA0cONDR//Lly2rTpo3Wr1+vn376SREREWrfvr1OnDiRaR3GGLVt21anT5/WqlWrFBMTo1q1aqlZs2a6cOHCvdsBwAPm+eef19y5cx3Tc+bMUZ8+fZz6XLlyRUOHDtWOHTu0YcMGFShQQJ06dVJaWlqmY546dUqNGjVSjRo1tHPnTq1evVpnzpzR008/fU+3BXnIAPlQr169jIuLi/H09HQ8unTpYho0aGAmTJjg1HfBggUmMDDQMS3JjB492jEdHR1tJJmPP/7Y0bZo0SLj7u5+yxoqVapkZs2a5ZgODQ0106dPN8YYs2HDBuPt7W2SkpKclilTpoz54IMPsr29AJz16tXLPPHEE+bs2bPGbreb2NhYc/z4cePu7m7Onj1rnnjiCdOrV69Ml42PjzeSzM8//2yMMSY2NtZIMj/99JMxxpgxY8aYli1bOi0TFxdnJJlDhw7dy81CHrHM10XAepo0aaL33nvPMe3p6amyZctqx44dTkdyUlNTlZSUpKtXr6pQoUKSpGrVqjnm+/v7S5KqVq3q1JaUlKTExER5e3vrypUrGjdunFauXKmTJ08qJSVF165dy/LITkxMjC5fvixfX1+n9mvXrt328DmAO+fn56e2bdtq/vz5jiOqfn5+Tn2OHTumMWPGaPv27Tp37pzjiM6JEydUpUqVDGPGxMTo22+/lZeXV4Z5x44dU/ny5e/NxiDPEHaQb6WHm79KS0vTuHHj1Llz5wz93d3dHT+7ubk5frbZbFm2pb8pjhgxQmvWrNG///1vlS1bVh4eHurSpYuuX7+eaW1paWkKDAzUpk2bMswrUqTInW0ggDvSp08fx2nnd955J8P89u3bKzg4WP/v//0/BQUFKS0tTVWqVLnl72/79u01adKkDPMCAwNzt3jkC4Qd3Fdq1aqlQ4cOZQhBd2vLli3q3bu3OnXqJOnPa3iOHz9+yzpOnz4tV1dXhYWF5WotAJy1atXKEVwiIiKc5p0/f14HDhzQBx98oAYNGkiStm7desvxatWqpf/+978KCwuTqyt/Bh8EXKCM+8qbb76pTz75RFFRUdq3b58OHDigJUuWaPTo0Xc1btmyZbVs2TLt2rVLu3fvVvfu3bO8uFGSmjdvrnr16qljx45as2aNjh8/rm3btmn06NGOC6AB5A4XFxcdOHBABw4ckIuLi9O8okWLytfXVx9++KGOHj2qjRs3aujQobcc75VXXtGFCxfUrVs3/fDDD/rll1+0du1a9enTR6mpqfdyU5BHCDu4r0RERGjlypVat26d6tSpo7p162ratGkKDQ29q3GnT5+uokWLKjw8XO3bt1dERIRq1aqVZX+bzaZVq1apYcOG6tOnj8qXL69nnnlGx48fd1wjBCD3eHt7y9vbO0N7gQIFtHjxYsXExKhKlSp67bXXNGXKlFuOFRQUpO+//16pqamKiIhQlSpV9Oqrr8rHx0cFCvBn0YpsxhiT10UAAADcK0RYAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAH+rxo0ba8iQIfds/DFjxqh///73bPzssNls+uKLL/629SUnJyskJEQxMTF/2zqB+wFhB3jAnD59Wq+++qrKli0rd3d3+fv76/HHH9f777+vq1ev5nV5d+XMmTOaOXOmRo0a5WiLj4/Xiy++qJCQENntdgUEBCgiIkLR0dF5WOm9YbfbNXz4cL3++ut5XQqQr/B1r8AD5JdfflH9+vVVpEgRTZgwQVWrVlVKSooOHz6sOXPmKCgoSB06dMjrMm8pNTVVNpst0+8w+vjjj1WvXj2nb6J/8skndePGDc2fP1+lS5fWmTNntGHDBl24cOFvrDp3XL9+XQULFrxln2effVYjRozQgQMHVLFixb+pMiB/48gO8AAZMGCAXF1dtXPnTj399NOqWLGiqlatqieffFJff/212rdv7+ibkJCg/v37q0SJEvL29lbTpk21e/dux/yoqCjVqFFDCxYsUFhYmHx8fPTMM8/o0qVLjj5XrlxRz5495eXlpcDAQE2dOjVDTdevX9fIkSNVsmRJeXp66rHHHtOmTZsc8+fNm6ciRYpo5cqVqlSpkux2u3799ddMt2/x4sVOYe2PP/7Q1q1bNWnSJDVp0kShoaF69NFHFRkZqbZt2zr62Ww2ffDBB2rXrp0KFSqkihUrKjo6WkePHlXjxo3l6empevXq6dixY07re++991SmTBkVLFhQFSpU0IIFC265/9966y35+/tr165dkqRt27apYcOG8vDwUHBwsAYPHqwrV644+oeFhWn8+PHq3bu3fHx81K9fP12/fl0DBw5UYGCg3N3dFRYWpokTJzqW8fX1VXh4uBYtWnTLWoAHigHwQDh37pyx2Wxm4sSJt+2blpZm6tevb9q3b2927NhhDh8+bIYNG2Z8fX3N+fPnjTHGjB071nh5eZnOnTubn3/+2Xz33XcmICDAjBo1yjHOyy+/bB566CGzdu1as2fPHtOuXTvj5eVlXn31VUef7t27m/DwcPPdd9+Zo0ePmilTphi73W4OHz5sjDFm7ty5xs3NzYSHh5vvv//eHDx40Fy+fDlDzRcuXDA2m81s377d0Xbjxg3j5eVlhgwZYpKSkrLcXkmmZMmSZsmSJebQoUOmY8eOJiwszDRt2tSsXr3a7N+/39StW9e0atXKscyyZcuMm5ubeeedd8yhQ4fM1KlTjYuLi9m4caPTuMuXLzdpaWlm8ODBJiQkxLFde/bsMV5eXmb69Onm8OHD5vvvvzc1a9Y0vXv3diwfGhpqvL29zZQpU8yRI0fMkSNHzJQpU0xwcLD57rvvzPHjx82WLVvMZ5995rQ9I0eONI0bN77lcww8SAg7wANi+/btRpJZtmyZU7uvr6/x9PQ0np6eZuTIkcYYYzZs2GC8vb0zBIQyZcqYDz74wBjzZ9gpVKiQSUxMdMwfMWKEeeyxx4wxxly6dMkULFjQLF682DH//PnzxsPDwxF2jh49amw2m/n999+d1tOsWTMTGRlpjPkz7Egyu3btuuX2/fTTT0aSOXHihFP7559/booWLWrc3d1NeHi4iYyMNLt373bqI8mMHj3aMR0dHW0kmY8//tjRtmjRIuPu7u6YDg8PN/369XMa56mnnjJt2rRxGnfp0qXmueeeMw8//LCJi4tzzOvRo4fp37+/0/JbtmwxBQoUMNeuXTPG/Bl2Onbs6NRn0KBBpmnTpiYtLS3LfTFz5kwTFhaW5XzgQcNpLOABY7PZnKZ/+OEH7dq1S5UrV1ZycrIkKSYmRpcvX5avr6+8vLwcj9jYWKdTOWFhYSpcuLBjOjAwUPHx8ZKkY8eO6fr166pXr55jfrFixVShQgXH9I8//ihjjMqXL++0ns2bNzutp2DBgqpWrdott+vatWuSJHd3d6f2J598UidPntSXX36piIgIbdq0SbVq1dK8efOc+v11fH9/f0lS1apVndqSkpKUmJgoSTpw4IDq16/vNEb9+vV14MABp7bXXntN0dHR2rJlix566CFHe0xMjObNm+e03REREUpLS1NsbKyjX+3atZ3G6927t3bt2qUKFSpo8ODBWrt2bYZ94eHhcd9fbA7kJi5QBh4QZcuWlc1m08GDB53aS5cuLenPP5Dp0tLSFBgY6HTtTLoiRYo4fnZzc3OaZ7PZlJaWJkkyxty2prS0NLm4uCgmJkYuLi5O87y8vBw/e3h4ZAhpN/Pz85MkXbx4UcWLF3ea5+7urhYtWqhFixZ688039cILL2js2LHq3bt3ptuSvq7M2tK3769t6YwxGdpatGihRYsWac2aNXr22Wedtv3FF1/U4MGDM2xLSEiI42dPT0+nebVq1VJsbKy++eYbrV+/Xk8//bSaN2+uzz//3NHnwoULGfYB8CAj7AAPCF9fX7Vo0UKzZ8/WoEGDMvwR/atatWrp9OnTcnV1dbqzKTvKli0rNzc3bd++3fHH++LFizp8+LAaNWokSapZs6ZSU1MVHx+vBg0a5Gg96cqUKSNvb2/t379f5cuXv2XfSpUq3fXn31SsWFFbt25Vz549HW3btm3LcAdUhw4d1L59e3Xv3l0uLi565plnJP25j/ft26eyZctme93e3t7q2rWrunbtqi5duqhVq1a6cOGCihUrJknau3evataseRdbB1gLp7GAB8i7776rlJQU1a5dW0uWLNGBAwd06NAhLVy4UAcPHnQcXWnevLnq1aunjh07as2aNTp+/Li2bdum0aNHa+fOnXe0Li8vL/Xt21cjRozQhg0btHfvXvXu3dvplvHy5cvr2WefVc+ePbVs2TLFxsZqx44dmjRpklatWpWtbStQoICaN2+urVu3OtrOnz+vpk2bauHChdqzZ49iY2O1dOlSTZ48WU888US2xr/ZiBEjNG/ePL3//vs6cuSIpk2bpmXLlmn48OEZ+nbq1EkLFizQ888/7zgC8/rrrys6OlqvvPKKdu3apSNHjujLL7/UoEGDbrne6dOna/HixTp48KAOHz6spUuXKiAgwOmI25YtW9SyZcu72j7ASjiyAzxAypQpo59++kkTJkxQZGSkfvvtN9ntdlWqVEnDhw/XgAEDJP15embVqlV644031KdPH509e1YBAQFq2LCh43qWOzFlyhRdvnxZHTp0UOHChTVs2DAlJCQ49Zk7d67Gjx+vYcOG6ffff5evr6/q1aunNm3aZHv7+vfvr759+2ry5MkqUKCAvLy89Nhjj2n69Ok6duyYbty4oeDgYPXr18/pgwdzomPHjpo5c6amTJmiwYMHq1SpUpo7d64aN26caf8uXbooLS1NPXr0UIECBdS5c2dt3rxZb7zxhho0aCBjjMqUKaOuXbvecr1eXl6aNGmSjhw5IhcXF9WpU0erVq1yhMjo6GglJCSoS5cud7V9gJXYzJ2cWAeA+4AxRnXr1tWQIUPUrVu3vC4nTzz11FOqWbPmXYc5wEo4jQXAMmw2mz788EOlpKTkdSl5Ijk5WdWrV9drr72W16UA+QpHdgAAgKVxZAcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFja/wcX/F78wgKGYwAAAABJRU5ErkJggg==",
2369
      "text/plain": [
2370
       "<Figure size 640x480 with 1 Axes>"
2371
      ]
2372
     },
2373
     "metadata": {},
2374
     "output_type": "display_data"
2375
    }
2376
   ],
2377
   "source": [
2378
    "#Smokers gender distribution\n",
2379
    "sns.countplot(x='gender', data=smokers)\n",
2380
    "plt.title('Figure 2: Distribution of Gender (Smokers)')\n",
2381
    "plt.xlabel('Gender (Smokers)')\n",
2382
    "plt.ylabel('Count')\n",
2383
    "plt.show()"
2384
   ]
2385
  },
2386
  {
2387
   "cell_type": "code",
2388
   "execution_count": 41,
2389
   "id": "409cfff7",
2390
   "metadata": {
2391
    "scrolled": false
2392
   },
2393
   "outputs": [
2394
    {
2395
     "data": {
2396
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA60ElEQVR4nO3de1wWZf7/8fctICAiCiiIgWKRaXjKU9q3sETIU5m5tlpJhelmqaSWi1piW7rZ5uGrqduGiHnsoFmrmVrmVuimlHnI7CAWlogpgRqiwvX7wx/z7RZQQfTG8fV8PObxcK65ZuYzN4P3m2tm7tthjDECAACwqWquLgAAAOBSIuwAAABbI+wAAABbI+wAAABbI+wAAABbI+wAAABbI+wAAABbI+wAAABbI+wAAABbI+wApZg/f74cDkep0+jRo7Vv3z45HA7Nnz/f1aVWyLZt29SjRw+FhYXJ29tb/v7+6tixoxYuXHhR2+3cubP1OlWrVk2+vr667rrr9Kc//UlvvfWWioqKSqzTqFEjPfTQQ+XaT1pampKSkvTbb7+Va72z9/Xxxx/L4XDorbfeKtd2zuX3339XUlKSPv744xLLis+rffv2Vdr+LoXx48crLCxM7u7uql279gWtM3LkSDkcDvXs2fPSFgdUgLurCwCqspSUFN1www1ObSEhIQoKCtKmTZt07bXXuqiyi/Pbb78pNDRU/fv3V4MGDXT8+HEtWrRIDz74oPbt26fx48dXeNuNGzfWokWLJEnHjx9XRkaG3nnnHf3pT3/Srbfeqvfee09+fn5W/xUrVqhWrVrl2kdaWpomTpyohx566ILfjCu6r/L6/fffNXHiRElnwt8f9ejRQ5s2bVL9+vUvaQ0XY+XKlXrhhRc0btw4devWTZ6enudd59SpU1ZQXrNmjX7++Wc1aNDgUpcKXDDCDnAOkZGRatu2banLbr755stczRm///67atSocVHb6Ny5c4k34p49eyojI0OvvvrqRYUdb2/vEq/NoEGDlJKSokceeUSDBw/WsmXLrGWtW7eu8L4uVH5+vry9vS/Lvs6lbt26qlu3rktrOJ+dO3dKkoYPH6569epd0DorV67UoUOH1KNHD61atUqpqakaO3bspSwTKBcuYwEVUNZlrJUrV6pFixby9PRU48aNNWPGDCUlJcnhcJx3XUlyOBxKSkqy5ovX/eKLL9S3b1/VqVPHGk0yxmj27Nlq1aqVvL29VadOHfXt21d79+6t8HEFBgbK3f3S/A308MMPq3v37nrzzTf1448/Wu1nX1oqKirS888/ryZNmsjb21u1a9dWixYtNGPGDElnXpOnnnpKkhQeHm5dNiu+bNSoUSP17NlTy5cvV+vWreXl5WWNtJR1yezEiRMaOXKkgoOD5e3traioKH355ZdOfUoLiJL00EMPqVGjRpLO/GyLw8zEiROt2or3WdZlrHnz5qlly5by8vKSv7+/7rnnHu3evbvEfmrWrKnvv/9e3bt3V82aNRUaGqpRo0apoKCgzNf9j6/rlClTdMMNN8jT01P16tXTwIEDtX//fqtPo0aNrKAbFBRU4nwsS3JysqpXr66UlBSFhoYqJSVFpX3H9K5duxQTE6MaNWqobt26evzxx7Vq1Sqnn1+x9evXq0uXLqpVq5Zq1KihW265RR9++OF5awFKQ9gBzqGwsFCnT592msqyZs0a9enTRwEBAVq2bJmmTJmiJUuWKDU19aLr6NOnj6677jq9+eabmjt3riRpyJAhSkhIUHR0tN555x3Nnj1bu3btUqdOnXTw4MEL2m5RUZFOnz6tQ4cOafbs2frggw80ZswYpz7Fb9CVcX/SXXfdJWOMPvnkkzL7TJkyRUlJSerfv79WrVqlZcuWKT4+3ro/Z9CgQRo2bJgkafny5dq0aZM2bdqkm266ydrGF198oaeeekrDhw/XmjVrdO+9956zrrFjx2rv3r167bXX9Nprr+mXX35R586dyx0c69evrzVr1kiS4uPjrdqeeeaZMteZPHmy4uPjdeONN2r58uWaMWOGtm/fro4dO+q7775z6nvq1Cnddddd6tKli1auXKlHHnlE06ZN04svvnje2h577DGNGTNGXbt21bvvvqu//e1vWrNmjTp16qRff/1V0pnLfPHx8ZLOnM+bNm3SoEGDzrnd/fv3a+3atbr77rtVt25dxcXF6fvvv9d//vMfp34HDhxQVFSU9uzZozlz5mjBggU6evSonnjiiRLbXLhwoWJiYlSrVi2lpqbqjTfekL+/v2JjYwk8qBgDoISUlBQjqdTp1KlTJiMjw0gyKSkp1jrt2rUzoaGhpqCgwGo7evSoCQgIMH/8VStt3WKSzIQJE6z5CRMmGEnm2Wefdeq3adMmI8m8/PLLTu2ZmZnG29vbPP300xd0nEOGDLGOq3r16mb27Nkl+qSmpho3NzeTmpp63u1FRUWZG2+8sczl77//vpFkXnzxRautYcOGJi4uzprv2bOnadWq1Tn389JLLxlJJiMjo8Syhg0bGjc3N7Nnz55Sl/1xXxs2bDCSzE033WSKioqs9n379hkPDw8zaNAgp2OLiooqsc24uDjTsGFDa/7QoUMlfo7Fis+r4rpzcnKMt7e36d69u1O/n376yXh6epoBAwY47UeSeeONN5z6du/e3TRp0qTEvv5o9+7dRpIZOnSoU/t///tfI8mMHTvWais+5w4dOnTObRZ77rnnjCSzZs0aY4wxe/fuNQ6Hwzz44INO/Z566injcDjMrl27nNpjY2ONJLNhwwZjjDHHjx83/v7+plevXk79CgsLTcuWLU379u0vqC7gjxjZAc5hwYIF2rJli9NU2mWe48ePa+vWrerdu7eqV69utdesWVO9evW66DrOHpn497//LYfDoQceeMBp1Ck4OFgtW7Ys9Umg0owdO1ZbtmzRqlWr9Mgjj+iJJ57QP/7xD6c+AwcO1OnTpzVw4MCLPg5TyqWNs7Vv315fffWVhg4dqg8++EB5eXnl3k+LFi10/fXXX3D/AQMGOF1qbNiwoTp16qQNGzaUe9/lsWnTJuXn55e4tBYaGqo77rijxCiGw+EocT61aNHC6bJgaYqP4+z9tG/fXk2bNq3waIkxxrp01bVrV0lnLi127txZb7/9ttPPbuPGjYqMjFSzZs2cttG/f3+n+bS0NB05ckRxcXFO53ZRUZHuvPNObdmyRcePH69Qvbh6cYMycA5NmzYt8wblP8rJyZExRkFBQSWWldZWXmc/vXPw4MEy9yedeSLqQoSFhSksLEyS1L17d0lSYmKi4uLiLsmNtMVvyiEhIWX2SUxMlI+PjxYuXKi5c+fKzc1Nt912m1588cUL+llIJV+v8wkODi617auvvirXdsrr8OHDkkqvNyQkROvWrXNqq1Gjhry8vJzaPD09deLEiYvaz/nCUlk++ugjZWRkaOTIkU7Bpl+/ftqwYYOWLFmiIUOGWDWEh4eX2MbZ53DxJdi+ffuWud8jR47Ix8enQjXj6kTYASpBnTp15HA4Sr1XJisry2m++M3q7JtKi9+QSvPHUQfpzI3EDodDn3zySamPBl/I48Klad++vebOnau9e/dekrDz7rvvyuFw6Lbbbiuzj7u7u0aOHKmRI0fqt99+0/r16zV27FjFxsYqMzPzgp5EO/v1Op+zf0bFbQEBAda8l5eXcnNzS/Qrvt+lIoq3f+DAgRLLfvnlFwUGBlZ422Xt55prrqm0/SQnJ0uSpk6dqqlTp5a6vDjsBAQEXNDvR3EtM2fOLPOJx8r4AwJXFy5jAZXAx8dHbdu21TvvvKOTJ09a7ceOHdO///1vp75BQUHy8vLS9u3bndpXrlx5wfvr2bOnjDH6+eef1bZt2xJT8+bNK3QcGzZsULVq1S54ZKg8UlJS9P7776t///7WaNL51K5dW3379tXjjz+uI0eOWE8xFYe5/Pz8SqltyZIlTpfYfvzxR6WlpTk9fdWoUSN9++23TiH18OHDSktLc9pWeWrr2LGjvL29S3yY4/79+/XRRx+pS5cuFTmcEu644w5JKrGfLVu2aPfu3RXaT05OjlasWKFbbrlFGzZsKDHdf//92rJli/Uoe1RUlHbu3Kmvv/7aaTtLly51mr/llltUu3Ztff3116We223btnW6VAxcCEZ2gEry3HPPqUePHoqNjdWIESNUWFiol156STVr1tSRI0esfsX32sybN0/XXnutWrZsqc8//1yLFy++4H3dcsstGjx4sB5++GFt3bpVt912m3x8fHTgwAF9+umnat68uR577LEy1x88eLBq1aql9u3bKygoSL/++qvefPNNLVu2TE899ZTTqM6CBQv0yCOPaN68eRd0305+fr42b95s/Xvv3r1655139O9//1tRUVHW02Rl6dWrl/X5RnXr1tWPP/6o6dOnq2HDhoqIiJAkK8zNmDFDcXFx8vDwUJMmTeTr63ve+kqTnZ2te+65R48++qhyc3M1YcIEeXl5KTEx0erz4IMP6p///KceeOABPfroozp8+LCmTJlS4kMKfX191bBhQ61cuVJdunSRv7+/AgMDrcfT/6h27dp65plnNHbsWA0cOFD9+/fX4cOHNXHiRHl5eWnChAkVOp6zNWnSRIMHD9bMmTNVrVo1devWTfv27dMzzzyj0NBQPfnkk+Xe5qJFi3TixAkNHz681EfyAwICtGjRIiUnJ2vatGlKSEjQvHnz1K1bNz333HMKCgrS4sWL9c0330iSqlU787d3zZo1NXPmTMXFxenIkSPq27ev6tWrp0OHDumrr77SoUOHNGfOnIt6PXAVcuXd0UBVVfzUzJYtW0pdXtYTVStWrDDNmzc31atXN2FhYebvf/+7GT58uKlTp45Tv9zcXDNo0CATFBRkfHx8TK9evcy+ffvKfBqrrCdj5s2bZzp06GB8fHyMt7e3ufbaa83AgQPN1q1bz3l88+bNM7feeqsJDAw07u7upnbt2iYqKsq8/vrrZb4WpT09draoqCinJ9d8fHxM48aNTd++fc2bb75pCgsLS6xz9hNSL7/8sunUqZMJDAy0Xsf4+Hizb98+p/USExNNSEiIqVatmtPTPA0bNjQ9evQotb6ynsZ6/fXXzfDhw03dunWNp6enufXWW0t9DVNTU03Tpk2Nl5eXadasmVm2bFmJp7GMMWb9+vWmdevWxtPT00iy9nn201jFXnvtNdOiRQtTvXp14+fnZ+6+++4STy3FxcUZHx+fEjUVnyPnU1hYaF588UVz/fXXGw8PDxMYGGgeeOABk5mZWer2zvc0VqtWrUy9evWcnj48280332wCAwOtPjt37jTR0dHGy8vL+Pv7m/j4eJOammokma+++spp3Y0bN5oePXoYf39/4+HhYRo0aGB69Ohh3nzzzfMeK3A2hzEX8HgEgAo5deqUWrVqpQYNGmjt2rWuLgeocgYPHqwlS5bo8OHDXJ7CJcNlLKASxcfHq2vXrqpfv76ysrI0d+5c7d692/r0X+Bq9txzzykkJESNGze27md77bXXNH78eIIOLinCDlCJjh49qtGjR+vQoUPy8PDQTTfdpNWrVys6OtrVpQEu5+HhoZdeekn79+/X6dOnFRERoalTp2rEiBGuLg02x2UsAABgazx6DgAAbI2wAwAAbI2wAwAAbI0blCUVFRXpl19+ka+vb7k/Zh4AALiGMUZHjx5VSEiI9cGUpSHs6Mx3w4SGhrq6DAAAUAGZmZklvvftjwg7kvUR85mZmSU++h0AAFRNeXl5Cg0NPe9XxRB29H/fkFyrVi3CDgAAV5jz3YLCDcoAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDWCDsAAMDW3F1dgF20eWqBq0tAFZP+0kBXlwAAECM7AADA5gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1txdXQCAS+en55q7ugRUIWHP7nB1CYBLMLIDAABszaVhJykpSQ6Hw2kKDg62lhtjlJSUpJCQEHl7e6tz587atWuX0zYKCgo0bNgwBQYGysfHR3fddZf2799/uQ8FAABUUS4f2bnxxht14MABa9qx4/+GWadMmaKpU6dq1qxZ2rJli4KDg9W1a1cdPXrU6pOQkKAVK1Zo6dKl+vTTT3Xs2DH17NlThYWFrjgcAABQxbj8nh13d3en0ZxixhhNnz5d48aNU58+fSRJqampCgoK0uLFizVkyBDl5uYqOTlZr7/+uqKjoyVJCxcuVGhoqNavX6/Y2NjLeiwAAKDqcfnIznfffaeQkBCFh4frz3/+s/bu3StJysjIUFZWlmJiYqy+np6eioqKUlpamiQpPT1dp06dcuoTEhKiyMhIq09pCgoKlJeX5zQBAAB7cmnY6dChgxYsWKAPPvhA//rXv5SVlaVOnTrp8OHDysrKkiQFBQU5rRMUFGQty8rKUvXq1VWnTp0y+5Rm8uTJ8vPzs6bQ0NBKPjIAAFBVuDTsdOvWTffee6+aN2+u6OhorVq1StKZy1XFHA6H0zrGmBJtZztfn8TEROXm5lpTZmbmRRwFAACoylx+z84f+fj4qHnz5vruu+/Uu3dvSWdGb+rXr2/1yc7OtkZ7goODdfLkSeXk5DiN7mRnZ6tTp05l7sfT01Oenp6X5iAAAGW6ZeYtri4BVchnwz67LPtx+T07f1RQUKDdu3erfv36Cg8PV3BwsNatW2ctP3nypDZu3GgFmTZt2sjDw8Opz4EDB7Rz585zhh0AAHD1cOnIzujRo9WrVy+FhYUpOztbzz//vPLy8hQXFyeHw6GEhARNmjRJERERioiI0KRJk1SjRg0NGDBAkuTn56f4+HiNGjVKAQEB8vf31+jRo63LYgAAAC4NO/v371f//v3166+/qm7durr55pu1efNmNWzYUJL09NNPKz8/X0OHDlVOTo46dOigtWvXytfX19rGtGnT5O7urn79+ik/P19dunTR/Pnz5ebm5qrDAgAAVYhLw87SpUvPudzhcCgpKUlJSUll9vHy8tLMmTM1c+bMSq4OAADYQZW6ZwcAAKCyEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtEXYAAICtVZmwM3nyZDkcDiUkJFhtxhglJSUpJCRE3t7e6ty5s3bt2uW0XkFBgYYNG6bAwED5+Pjorrvu0v79+y9z9QAAoKqqEmFny5YtevXVV9WiRQun9ilTpmjq1KmaNWuWtmzZouDgYHXt2lVHjx61+iQkJGjFihVaunSpPv30Ux07dkw9e/ZUYWHh5T4MAABQBbk87Bw7dkz333+//vWvf6lOnTpWuzFG06dP17hx49SnTx9FRkYqNTVVv//+uxYvXixJys3NVXJysl5++WVFR0erdevWWrhwoXbs2KH169e76pAAAEAV4vKw8/jjj6tHjx6Kjo52as/IyFBWVpZiYmKsNk9PT0VFRSktLU2SlJ6erlOnTjn1CQkJUWRkpNWnNAUFBcrLy3OaAACAPbm7cudLly7VF198oS1btpRYlpWVJUkKCgpyag8KCtKPP/5o9alevbrTiFBxn+L1SzN58mRNnDjxYssHAABXAJeN7GRmZmrEiBFauHChvLy8yuzncDic5o0xJdrOdr4+iYmJys3NtabMzMzyFQ8AAK4YLgs76enpys7OVps2beTu7i53d3dt3LhR//u//yt3d3drROfsEZrs7GxrWXBwsE6ePKmcnJwy+5TG09NTtWrVcpoAAIA9uSzsdOnSRTt27NC2bdusqW3btrr//vu1bds2NW7cWMHBwVq3bp21zsmTJ7Vx40Z16tRJktSmTRt5eHg49Tlw4IB27txp9QEAAFc3l92z4+vrq8jISKc2Hx8fBQQEWO0JCQmaNGmSIiIiFBERoUmTJqlGjRoaMGCAJMnPz0/x8fEaNWqUAgIC5O/vr9GjR6t58+YlbngGAABXJ5feoHw+Tz/9tPLz8zV06FDl5OSoQ4cOWrt2rXx9fa0+06ZNk7u7u/r166f8/Hx16dJF8+fPl5ubmwsrBwAAVUWVCjsff/yx07zD4VBSUpKSkpLKXMfLy0szZ87UzJkzL21xAADgiuTyz9kBAAC4lAg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1gg7AADA1ioUdho3bqzDhw+XaP/tt9/UuHHjiy4KAACgslQo7Ozbt0+FhYUl2gsKCvTzzz9fdFEAAACVxb08nd99913r3x988IH8/Pys+cLCQn344Ydq1KhRpRUHAABwscoVdnr37i1JcjgciouLc1rm4eGhRo0a6eWXX6604gAAAC5WucJOUVGRJCk8PFxbtmxRYGDgJSkKAACgspQr7BTLyMio7DoAAAAuiQqFHUn68MMP9eGHHyo7O9sa8Sk2b968iy4MAACgMlToaayJEycqJiZGH374oX799Vfl5OQ4TRdqzpw5atGihWrVqqVatWqpY8eOev/9963lxhglJSUpJCRE3t7e6ty5s3bt2uW0jYKCAg0bNkyBgYHy8fHRXXfdpf3791fksAAAgA1VaGRn7ty5mj9/vh588MGL2vk111yjv//977ruuuskSampqbr77rv15Zdf6sYbb9SUKVM0depUzZ8/X9dff72ef/55de3aVXv27JGvr68kKSEhQe+9956WLl2qgIAAjRo1Sj179lR6errc3Nwuqj4AAHDlq9DIzsmTJ9WpU6eL3nmvXr3UvXt3XX/99br++uv1wgsvqGbNmtq8ebOMMZo+fbrGjRunPn36KDIyUqmpqfr999+1ePFiSVJubq6Sk5P18ssvKzo6Wq1bt9bChQu1Y8cOrV+//qLrAwAAV74KhZ1BgwZZgaOyFBYWaunSpTp+/Lg6duyojIwMZWVlKSYmxurj6empqKgopaWlSZLS09N16tQppz4hISGKjIy0+gAAgKtbhS5jnThxQq+++qrWr1+vFi1ayMPDw2n51KlTL3hbO3bsUMeOHXXixAnVrFlTK1asULNmzaywEhQU5NQ/KChIP/74oyQpKytL1atXV506dUr0ycrKKnOfBQUFKigosObz8vIuuF4AAHBlqVDY2b59u1q1aiVJ2rlzp9Myh8NRrm01adJE27Zt02+//aa3335bcXFx2rhxY5nbM8acdx/n6zN58mRNnDixXHUCAIArU4XCzoYNGyqtgOrVq1s3KLdt21ZbtmzRjBkzNGbMGElnRm/q169v9c/OzrZGe4KDg3Xy5Enl5OQ4je5kZ2ef856ixMREjRw50prPy8tTaGhopR0TAACoOip0z86lZIxRQUGBwsPDFRwcrHXr1lnLTp48qY0bN1pBpk2bNvLw8HDqc+DAAe3cufOcYcfT09N63L14AgAA9lShkZ3bb7/9nJeJPvroowvaztixY9WtWzeFhobq6NGjWrp0qT7++GOtWbNGDodDCQkJmjRpkiIiIhQREaFJkyapRo0aGjBggCTJz89P8fHxGjVqlAICAuTv76/Ro0erefPmio6OrsihAQAAm6lQ2Cm+X6fYqVOntG3bNu3cubPEF4Sey8GDB/Xggw/qwIED8vPzU4sWLbRmzRp17dpVkvT0008rPz9fQ4cOVU5Ojjp06KC1a9dan7EjSdOmTZO7u7v69eun/Px8denSRfPnz+czdgAAgCTJYYwxlbWxpKQkHTt2TP/4xz8qa5OXRV5envz8/JSbm1vhS1ptnlpQyVXhSpf+0kBXl6Cfnmvu6hJQhYQ9u8PVJeiWmbe4ugRUIZ8N++yi1r/Q9+9KvWfngQce4HuxAABAlVKpYWfTpk3y8vKqzE0CAABclArds9OnTx+neWOMDhw4oK1bt+qZZ56plMIAAAAqQ4XCjp+fn9N8tWrV1KRJEz333HNOX90AAADgahUKOykpKZVdBwAAwCVRobBTLD09Xbt375bD4VCzZs3UunXryqoLAACgUlQo7GRnZ+vPf/6zPv74Y9WuXVvGGOXm5ur222/X0qVLVbdu3cquEwAAoEIq9DTWsGHDlJeXp127dunIkSPKycnRzp07lZeXp+HDh1d2jQAAABVWoZGdNWvWaP369WratKnV1qxZM73yyivcoAwAAKqUCo3sFBUVycPDo0S7h4eHioqKLrooAACAylKhsHPHHXdoxIgR+uWXX6y2n3/+WU8++aS6dOlSacUBAABcrAqFnVmzZuno0aNq1KiRrr32Wl133XUKDw/X0aNHNXPmzMquEQAAoMIqdM9OaGiovvjiC61bt07ffPONjDFq1qyZoqOjK7s+AACAi1KukZ2PPvpIzZo1U15eniSpa9euGjZsmIYPH6527drpxhtv1CeffHJJCgUAAKiIcoWd6dOn69FHHy31a9T9/Pw0ZMgQTZ06tdKKAwAAuFjlCjtfffWV7rzzzjKXx8TEKD09/aKLAgAAqCzlCjsHDx4s9ZHzYu7u7jp06NBFFwUAAFBZyhV2GjRooB07dpS5fPv27apfv/5FFwUAAFBZyhV2unfvrmeffVYnTpwosSw/P18TJkxQz549K604AACAi1WuR8/Hjx+v5cuX6/rrr9cTTzyhJk2ayOFwaPfu3XrllVdUWFiocePGXapaAQAAyq1cYScoKEhpaWl67LHHlJiYKGOMJMnhcCg2NlazZ89WUFDQJSkUAACgIsr9oYINGzbU6tWrlZOTo++//17GGEVERKhOnTqXoj4AAICLUqFPUJakOnXqqF27dpVZCwAAQKWr0HdjAQAAXCkIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNYIOwAAwNZcGnYmT56sdu3aydfXV/Xq1VPv3r21Z88epz7GGCUlJSkkJETe3t7q3Lmzdu3a5dSnoKBAw4YNU2BgoHx8fHTXXXdp//79l/NQAABAFeXSsLNx40Y9/vjj2rx5s9atW6fTp08rJiZGx48ft/pMmTJFU6dO1axZs7RlyxYFBwera9euOnr0qNUnISFBK1as0NKlS/Xpp5/q2LFj6tmzpwoLC11xWAAAoApxd+XO16xZ4zSfkpKievXqKT09XbfddpuMMZo+fbrGjRunPn36SJJSU1MVFBSkxYsXa8iQIcrNzVVycrJef/11RUdHS5IWLlyo0NBQrV+/XrGxsZf9uAAAQNVRpe7Zyc3NlST5+/tLkjIyMpSVlaWYmBirj6enp6KiopSWliZJSk9P16lTp5z6hISEKDIy0upztoKCAuXl5TlNAADAnqpM2DHGaOTIkfqf//kfRUZGSpKysrIkSUFBQU59g4KCrGVZWVmqXr266tSpU2afs02ePFl+fn7WFBoaWtmHAwAAqogqE3aeeOIJbd++XUuWLCmxzOFwOM0bY0q0ne1cfRITE5Wbm2tNmZmZFS8cAABUaVUi7AwbNkzvvvuuNmzYoGuuucZqDw4OlqQSIzTZ2dnWaE9wcLBOnjypnJycMvuczdPTU7Vq1XKaAACAPbk07Bhj9MQTT2j58uX66KOPFB4e7rQ8PDxcwcHBWrdundV28uRJbdy4UZ06dZIktWnTRh4eHk59Dhw4oJ07d1p9AADA1culT2M9/vjjWrx4sVauXClfX19rBMfPz0/e3t5yOBxKSEjQpEmTFBERoYiICE2aNEk1atTQgAEDrL7x8fEaNWqUAgIC5O/vr9GjR6t58+bW01kAAODq5dKwM2fOHElS586dndpTUlL00EMPSZKefvpp5efna+jQocrJyVGHDh20du1a+fr6Wv2nTZsmd3d39evXT/n5+erSpYvmz58vNze3y3UoAACginJp2DHGnLePw+FQUlKSkpKSyuzj5eWlmTNnaubMmZVYHQAAsIMqcYMyAADApULYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtkbYAQAAtubSsPOf//xHvXr1UkhIiBwOh9555x2n5cYYJSUlKSQkRN7e3urcubN27drl1KegoEDDhg1TYGCgfHx8dNddd2n//v2X8SgAAEBV5tKwc/z4cbVs2VKzZs0qdfmUKVM0depUzZo1S1u2bFFwcLC6du2qo0ePWn0SEhK0YsUKLV26VJ9++qmOHTumnj17qrCw8HIdBgAAqMLcXbnzbt26qVu3bqUuM8Zo+vTpGjdunPr06SNJSk1NVVBQkBYvXqwhQ4YoNzdXycnJev311xUdHS1JWrhwoUJDQ7V+/XrFxsZetmMBAABVU5W9ZycjI0NZWVmKiYmx2jw9PRUVFaW0tDRJUnp6uk6dOuXUJyQkRJGRkVaf0hQUFCgvL89pAgAA9lRlw05WVpYkKSgoyKk9KCjIWpaVlaXq1aurTp06ZfYpzeTJk+Xn52dNoaGhlVw9AACoKqps2CnmcDic5o0xJdrOdr4+iYmJys3NtabMzMxKqRUAAFQ9VTbsBAcHS1KJEZrs7GxrtCc4OFgnT55UTk5OmX1K4+npqVq1ajlNAADAnqps2AkPD1dwcLDWrVtntZ08eVIbN25Up06dJElt2rSRh4eHU58DBw5o586dVh8AAHB1c+nTWMeOHdP3339vzWdkZGjbtm3y9/dXWFiYEhISNGnSJEVERCgiIkKTJk1SjRo1NGDAAEmSn5+f4uPjNWrUKAUEBMjf31+jR49W8+bNraezAADA1c2lYWfr1q26/fbbrfmRI0dKkuLi4jR//nw9/fTTys/P19ChQ5WTk6MOHTpo7dq18vX1tdaZNm2a3N3d1a9fP+Xn56tLly6aP3++3NzcLvvxAACAqselYadz584yxpS53OFwKCkpSUlJSWX28fLy0syZMzVz5sxLUCEAALjSVdl7dgAAACoDYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANiabcLO7NmzFR4eLi8vL7Vp00affPKJq0sCAABVgC3CzrJly5SQkKBx48bpyy+/1K233qpu3brpp59+cnVpAADAxWwRdqZOnar4+HgNGjRITZs21fTp0xUaGqo5c+a4ujQAAOBiV3zYOXnypNLT0xUTE+PUHhMTo7S0NBdVBQAAqgp3VxdwsX799VcVFhYqKCjIqT0oKEhZWVmlrlNQUKCCggJrPjc3V5KUl5dX4ToKC/IrvC7s6WLOp8py9EShq0tAFVIVzsnT+addXQKqkIs9J4vXN8acs98VH3aKORwOp3ljTIm2YpMnT9bEiRNLtIeGhl6S2nB18pv5F1eXADib7OfqCgAnfmMq55w8evSo/PzK3tYVH3YCAwPl5uZWYhQnOzu7xGhPscTERI0cOdKaLyoq0pEjRxQQEFBmQMKFycvLU2hoqDIzM1WrVi1XlwNwTqLK4ZysPMYYHT16VCEhIefsd8WHnerVq6tNmzZat26d7rnnHqt93bp1uvvuu0tdx9PTU56enk5ttWvXvpRlXnVq1arFLzGqFM5JVDWck5XjXCM6xa74sCNJI0eO1IMPPqi2bduqY8eOevXVV/XTTz/pL3/hMgIAAFc7W4Sd++67T4cPH9Zzzz2nAwcOKDIyUqtXr1bDhg1dXRoAAHAxW4QdSRo6dKiGDh3q6jKuep6enpowYUKJy4SAq3BOoqrhnLz8HOZ8z2sBAABcwa74DxUEAAA4F8IOAACwNcIOAACwNcIOgMuic+fOSkhIOGefRo0aafr06efs43A49M4770iS9u3bJ4fDoW3btlVKja7w8ccfy+Fw6LfffnN1KbiMynuu4+IQdq5yxhhFR0crNja2xLLZs2fLz89PP/30kwsqw5XgoYceksPhKPUzrYYOHSqHw6GHHnpIkrR8+XL97W9/u8wVls/gwYPl5uampUuXuroUXMEyMzMVHx+vkJAQVa9eXQ0bNtSIESN0+PBhV5d21SLsXOUcDodSUlL03//+V//85z+t9oyMDI0ZM0YzZsxQWFiYCytEVRcaGqqlS5cqP///vgz3xIkTWrJkidO54+/vL19fX1eUeEF+//13LVu2TE899ZSSk5NdXQ6uUHv37lXbtm317bffasmSJfr+++81d+5cffjhh+rYsaOOHDni6hKvSoQdKDQ0VDNmzNDo0aOVkZEhY4zi4+PVpUsXhYeHq3379vL09FT9+vX117/+VadP/9+3Fpc2FNuqVSslJSVZ8w6HQ6+99pruuece1ahRQxEREXr33Xed1nn33XcVEREhb29v3X777UpNTWVo/wpx0003KSwsTMuXL7fali9frtDQULVu3dpqO/syVnZ2tnr16iVvb2+Fh4dr0aJFJbb93Xff6bbbbpOXl5eaNWumdevWnbeer7/+Wt27d1fNmjUVFBSkBx98UL/++ut513vzzTfVrFkzJSYm6rPPPtO+ffuclp8+fVrDhw9X7dq1FRAQoDFjxiguLk69e/e2+hhjNGXKFDVu3Fje3t5q2bKl3nrrLaftrF69Wtdff711rp+9H1zZHn/8cVWvXl1r165VVFSUwsLC1K1bN61fv14///yzxo0bV+p6FTnXceEIO5AkxcXFqUuXLnr44Yc1a9Ys7dy5UzNmzFD37t3Vrl07ffXVV5ozZ46Sk5P1/PPPl3v7EydOVL9+/bR9+3Z1795d999/v/UXzr59+9S3b1/17t1b27Zt05AhQ8r8DwFV08MPP6yUlBRrft68eXrkkUfOuc5DDz2kffv26aOPPtJbb72l2bNnKzs721peVFSkPn36yM3NTZs3b9bcuXM1ZsyYc27zwIEDioqKUqtWrbR161atWbNGBw8eVL9+/c57DMnJyXrggQfk5+en7t27Ox2PJL344otatGiRUlJS9NlnnykvL6/E/RTjx49XSkqK5syZo127dunJJ5/UAw88oI0bN0o6c3mjT58+6t69u7Zt26ZBgwbpr3/963lrw5XhyJEj+uCDDzR06FB5e3s7LQsODtb999+vZcuW6eyPt6vIuY5yMsD/d/DgQVO3bl1TrVo1s3z5cjN27FjTpEkTU1RUZPV55ZVXTM2aNU1hYaExxpiGDRuaadOmOW2nZcuWZsKECda8JDN+/Hhr/tixY8bhcJj333/fGGPMmDFjTGRkpNM2xo0bZySZnJycyj1IVKq4uDhz9913m0OHDhlPT0+TkZFh9u3bZ7y8vMyhQ4fM3XffbeLi4owxxkRFRZkRI0YYY4zZs2ePkWQ2b95sbWv37t1GknU+ffDBB8bNzc1kZmZafd5//30jyaxYscIYY0xGRoaRZL788ktjjDHPPPOMiYmJcaoxMzPTSDJ79uwp8zi+/fZb4+HhYQ4dOmSMMWbFihUmNDTUOs+NMSYoKMi89NJL1vzp06dNWFiYufvuu40xZ85rLy8vk5aW5rTt+Ph4079/f2OMMYmJiaZp06ZOv1NjxozhXLeJzZs3O52fZ5s6daqRZA4ePOj0f+eFnOu4OIzswFKvXj0NHjxYTZs21T333KPdu3erY8eOcjgcVp9bbrlFx44d0/79+8u17RYtWlj/9vHxka+vr/VX/J49e9SuXTun/u3bt7+II8HlFhgYqB49eig1NVUpKSnq0aOHAgMDy+y/e/duubu7q23btlbbDTfcoNq1azv1CQsL0zXXXGO1dezY8Zx1pKena8OGDapZs6Y13XDDDZKkH374QYsWLXJa9sknn0g6M6oTGxtr1dy9e3cdP35c69evlyTl5ubq4MGDTuelm5ub2rRpY81//fXXOnHihLp27eq0jwULFuiHH36wjunmm292+p063zHBPsz/H9H5489fqti5jvKxzXdjoXK4u7vL3f3MaWGMKfFLefYva7Vq1UoMyZ46darEdj08PJzmHQ6HioqKzrsfXDkeeeQRPfHEE5KkV1555Zx9y/pPv7Q+f3Su/tKZywG9evXSiy++WGJZ/fr1VVRUpA4dOlhtDRo0UGFhoRYsWKCsrCzr3JekwsJCJScnKyYmpsz9/7HG4vN51apVatCggVO/4u9A4ry2t+uuu04Oh0Nff/21071cxb755hvVqVOnxB8CFTnXUT6EHZSpWbNmevvtt53CSFpamnx9fa3/zOvWrasDBw5Y6+Tl5SkjI6Nc+7nhhhu0evVqp7atW7deZPW43O68806dPHlSkkr9KIM/atq0qU6fPq2tW7daoyV79uxxuiG9WbNm+umnn/TLL78oJCREkrRp06Zzbvemm27S22+/rUaNGjkFlz86+4mw9957T0ePHtWXX34pNzc3q/2bb77R/fffr8OHDysgIEBBQUH6/PPPdeutt0o6E4a+/PJLtWrVyqrX09NTP/30k6Kiokrdd7NmzUrc57N58+ZzHhOuHAEBAeratatmz56tJ5980um+naysLC1atEgDBw4sEWQqcq6jfLiMhTINHTpUmZmZGjZsmL755hutXLlSEyZM0MiRI1Wt2plT54477tDrr7+uTz75RDt37lRcXJzTG8aFGDJkiL755huNGTNG3377rd544w3Nnz9fEn/dXEnc3Ny0e/du7d69+7znQJMmTXTnnXfq0Ucf1X//+1+lp6dr0KBBTm8O0dHRatKkiQYOHKivvvpKn3zyyXlvXH/88cd15MgR9e/fX59//rn27t2rtWvX6pFHHlFhYWGp6yQnJ6tHjx5q2bKlIiMjrenee+9V3bp1tXDhQknSsGHDNHnyZK1cuVJ79uzRiBEjlJOTY52jvr6+Gj16tJ588kmlpqbqhx9+0JdffqlXXnlFqampkqS//OUv+uGHHzRy5Ejt2bNHixcvts512MOsWbNUUFCg2NhY/ec//1FmZqbWrFmjrl27qkGDBnrhhRdKrFORcx3lQ9hBmRo0aKDVq1fr888/V8uWLfWXv/xF8fHxGj9+vNUnMTFRt912m3r27Knu3burd+/euvbaa8u1n/DwcL311ltavny5WrRooTlz5li/6MXD/7gy1KpVS7Vq1bqgvikpKQoNDVVUVJT69OmjwYMHq169etbyatWqacWKFSooKFD79u01aNCgUt8o/igkJESfffaZCgsLFRsbq8jISI0YMUJ+fn5WQP+jgwcPatWqVbr33ntLLHM4HOrTp4/1mTtjxoxR//79NXDgQHXs2FE1a9ZUbGysvLy8rHX+9re/6dlnn9XkyZPVtGlTxcbG6r333lN4eLgkKSwsTG+//bbee+89tWzZUnPnztWkSZMu6PXClSEiIkJbt27Vtddeq/vuu0/XXnutBg8erNtvv12bNm2Sv79/iXUqcq6jfByGi8iogl544QXNnTtXmZmZri4FKFVRUZGaNm2qfv36VflPhgaudtyzgyph9uzZateunQICAvTZZ5/ppZdesm52BaqCH3/80fqguIKCAs2aNUsZGRkaMGCAq0sDcB6EHVQJ3333nZ5//nkdOXJEYWFhGjVqlBITE11dFmCpVq2a5s+fr9GjR8sYo8jISK1fv15NmzZ1dWkAzoPLWAAAwNa4QRkAANgaYQcAANgaYQcAANgaYQcAANgaYQcAANgaYQfAFSstLU1ubm668847XV0KgCqMR88BXLEGDRqkmjVr6rXXXtPXX3+tsLAwV5cEoApiZAfAFen48eN644039Nhjj6lnz54lvlDz3XffVUREhLy9vXX77bcrNTVVDofD6ZvV09LSdNttt8nb21uhoaEaPny4jh8/fnkPBMAlR9gBcEVatmyZmjRpoiZNmuiBBx5QSkqKigeq9+3bp759+6p3797atm2bhgwZUuJbpHfs2KHY2Fj16dNH27dv17Jly/Tpp5/yNSWADXEZC8AV6ZZbblG/fv00YsQInT59WvXr19eSJUsUHR2tv/71r1q1apV27Nhh9R8/frxeeOEF5eTkqHbt2ho4cKC8vb31z3/+0+rz6aefKioqSsePH3f6NnMAVzZGdgBccfbs2aPPP/9cf/7znyVJ7u7uuu+++zRv3jxrebt27ZzWad++vdN8enq65s+fr5o1a1pTbGysioqKlJGRcXkOBMBlwReBArjiJCcn6/Tp02rQoIHVZoyRh4eHcnJyZIyRw+FwWufsQeyioiINGTJEw4cPL7F9bnQG7IWwA+CKcvr0aS1YsEAvv/yyYmJinJbde++9WrRokW644QatXr3aadnWrVud5m+66Sbt2rVL11133SWvGYBrcc8OgCvKO++8o/vuu0/Z2dny8/NzWjZu3DitXr1ay5cvV5MmTfTkk08qPj5e27Zt06hRo7R//3799ttv8vPz0/bt23XzzTfr4Ycf1qOPPiofHx/t3r1b69at08yZM110dAAuBe7ZAXBFSU5OVnR0dImgI50Z2dm2bZtycnL01ltvafny5WrRooXmzJljPY3l6ekpSWrRooU2btyo7777Trfeeqtat26tZ555RvXr17+sxwPg0mNkB8BV4YUXXtDcuXOVmZnp6lIAXGbcswPAlmbPnq127dopICBAn332mV566SU+Qwe4ShF2ANjSd999p+eff15HjhxRWFiYRo0apcTERFeXBcAFuIwFAABsjRuUAQCArRF2AACArRF2AACArRF2AACArRF2AACArRF2AACArRF2AACArRF2AACArRF2AACArf0/IK2QHvw/osEAAAAASUVORK5CYII=",
2397
      "text/plain": [
2398
       "<Figure size 640x480 with 1 Axes>"
2399
      ]
2400
     },
2401
     "metadata": {},
2402
     "output_type": "display_data"
2403
    }
2404
   ],
2405
   "source": [
2406
    "#Age distribution (age)\n",
2407
    "sns.countplot(x='age', data=smoke1)\n",
2408
    "plt.title('Figure 3: Distribution of Age')\n",
2409
    "plt.xlabel('Age')\n",
2410
    "plt.ylabel('Count')\n",
2411
    "plt.show()"
2412
   ]
2413
  },
2414
  {
2415
   "cell_type": "code",
2416
   "execution_count": 42,
2417
   "id": "53205350",
2418
   "metadata": {
2419
    "scrolled": false
2420
   },
2421
   "outputs": [
2422
    {
2423
     "data": {
2424
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHUlEQVR4nO3deXwO5/7/8fctiSSCkIQsmkSoPdaiymntIpbW3mpLtEFPKVXV46Q4aLVaDtpfFe1BUHtr6UIptXTBqaWofYtKEVFCrEFy/f7oN/fpLQkS4U6mr+fjMY9H5pprZj5zZ5K8M9fMfduMMUYAAAAWVcDZBQAAANxLhB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB3cczNmzJDNZst0GjRokI4ePSqbzaYZM2Y4u9RcMXXqVNlsNhUuXPiuttOoUSP761SgQAEVKVJEDz74oDp37qzPPvtMaWlpGdYpXbq0evToka39bNiwQSNGjNC5c+eytd7N+1q3bp1sNps+++yzbG3nVi5fvqwRI0Zo3bp1GZaln1dHjx7Ntf3dC0OHDlVISIhcXV1VrFixO1pn4MCBstlsatOmzb0t7g59//33cnd316+//mpvu379uj766CPVqVNHPj4+KlSokEJDQ/XEE09oyZIlTqmzdOnSeeY1e+yxxzRgwABnl4H/4+rsAvDXERsbq4oVKzq0BQUFyd/fXxs3blTZsmWdVFnuOX78uAYNGqSgoCCdP3/+rrdXpkwZzZkzR5J06dIlxcXFaenSpercubMeffRRffnll/L29rb3X7JkiYoWLZqtfWzYsEEjR45Ujx497viPcU73lV2XL1/WyJEjJf0R/v6sdevW2rhxowIDA+9pDXfj888/11tvvaUhQ4YoMjJS7u7ut13n+vXrmj17tiRpxYoVOn78uEqVKnWvS82SMUYDBgxQr169FBoaam/v1q2bFi9erAEDBmjkyJFyd3fXkSNHtGLFCq1cuVLt27d3Ws15wZtvvqnmzZvrxRdfVIUKFZxdDgxwj8XGxhpJZvPmzc4uJYNLly7l6vbatGlj2rZta6KiooyXl9ddbathw4amSpUqmS6bPn26kWS6dOlyV/swxpixY8caSSYuLu6O+l++fDnT9rVr1xpJ5tNPP73rmtKdPn3aSDLDhw/PtW3eT6NGjTKSzKlTp+54nU8//dRIMq1btzaSzFtvvXUPK7y95cuXG0lm37599rYjR44YSeZf//pXpuukpqber/IchIaGmtatW9+z7Wf390V4eLjp1avXPaoG2cEwFpwuq2Gszz//XNWqVZO7u7vKlCmj999/XyNGjJDNZrvtupJks9k0YsQI+3z6utu2bVOnTp1UvHhx+9UkY4wmTZqkGjVqyNPTU8WLF1enTp105MiROz6O2bNna/369Zo0aVK2jj8nnnvuObVq1Uqffvqpw9DCzUNLaWlpGjVqlCpUqCBPT08VK1ZM1apV0/vvvy/pj9fktddekySFhYXZh83Sh43ShwUWL16smjVrysPDw36lJashs6tXr2rgwIEKCAiQp6enGjZsqJ9//tmhT6NGjTJcqZGkHj16qHTp0pL++N6WKFFCkjRy5Eh7ben7zGoYa/r06apevbo8PDzk4+Oj9u3ba+/evRn2U7hwYR06dEitWrVS4cKFFRwcrFdffVUpKSlZvu5/fl3HjBmjihUryt3dXSVLllT37t3122+/2fuULl1aQ4cOlST5+/tnOB+zMm3aNBUsWFCxsbEKDg5WbGysTCaf17x79261aNFChQoVUokSJdS3b18tW7bM4fuXbvXq1WratKmKFi2qQoUKqUGDBvr2229vW4skTZ48WXXq1HG4OnHmzBlJyvKqWoEC//vTkj68OXfuXA0ePFiBgYEqXLiw2rZtq1OnTunChQvq3bu3/Pz85Ofnp+eee04XL1502N7Vq1cVExOjsLAwFSxYUKVKlVLfvn3vaOh10qRJcnV11fDhw7P1etzq98WRI0f01FNPKSgoSO7u7vL391fTpk21fft2h21069ZNc+fO1YULF25bJ+4twg7um9TUVN24ccNhysqKFSvUoUMH+fr6asGCBRozZozmzZunmTNn3nUdHTp00IMPPqhPP/1UU6ZMkSS98MILGjBggJo1a6alS5dq0qRJ2r17t+rXr69Tp07ddpuJiYkaMGCA3nnnHT3wwANZ9kv/A50b9yc9/vjjMsbo+++/z7LPmDFjNGLECHXt2lXLli3TggULFB0dbf8j0bNnT/Xr10+StHjxYm3cuFEbN25UrVq17NvYtm2bXnvtNfXv318rVqxQx44db1nX66+/riNHjmjq1KmaOnWqTpw4oUaNGmUrOEp//CFdsWKFJCk6Otpe27Bhw7JcZ/To0YqOjlaVKlW0ePFivf/++9q5c6ceeeQRHTx40KHv9evX9fjjj6tp06b6/PPP9fzzz2vChAl69913b1vbiy++qMGDB6t58+b64osv9Oabb2rFihWqX7++fv/9d0l/DPNFR0dL+uN83rhxo3r27HnL7f7222/65ptv9MQTT6hEiRKKiorSoUOH9N133zn0O3nypBo2bKj9+/dr8uTJmjVrli5cuKCXXnopwzZnz56tFi1aqGjRopo5c6YWLlwoHx8fRURE3DbwXLt2TatXr1bjxo0d2itVqqRixYpp5MiR+vjjj+/ovqnXX39diYmJmjFjhsaNG6d169apa9eu6tixo7y9vTVv3jz94x//0CeffKLXX3/dvp4xRu3atdO///1vdevWTcuWLdPAgQM1c+ZMNWnSJMtwaozRoEGDNGDAAE2dOtUe0rP7emT2+6JVq1baunWrxowZo1WrVmny5MmqWbNmhvDVqFEjXbp0KdN7znCfOfW6Ev4S0oexMpuuX79u4uLijCQTGxtrX6dOnTomODjYpKSk2NsuXLhgfH19zZ9P28zWTaebhj+GDx+e6aX3jRs3Gklm3LhxDu3x8fHG09PT/OMf/7jtMXbs2NHUr1/fpKWlGWNMlsNYM2fONC4uLmbmzJm33eathrGMMebrr782ksy7775rbwsNDTVRUVH2+TZt2pgaNWrccj+3GsYKDQ01Li4uZv/+/Zku+/O+0oexatWqZX8djDHm6NGjxs3NzfTs2dPh2Bo2bJhhm1FRUSY0NNQ+f6thrPTzKr3upKQk4+npaVq1auXQ79ixY8bd3d08/fTTDvuRZBYuXOjQt1WrVqZChQoZ9vVne/fuNZJMnz59HNr/+9//Gknm9ddft7eln3OnT5++5TbTvfHGG0aSWbFihTHmj+Eim81munXr5tDvtddeMzabzezevduhPSIiwkgya9euNcb8Mezi4+Nj2rZt69AvNTXVVK9e3dStW/eW9aQf0/z58zMsW7ZsmfHz87P/LPv6+prOnTubL774wqFf+nlxcw0DBgwwkkz//v0d2tu1a2d8fHzs8ytWrDCSzJgxYxz6LViwwEgyH3/8sb0tfRjr8uXLpmPHjsbb29usXr3avjw7r0dWvy9+//13I8m89957mb5mf3bt2jVjs9nM4MGDb9sX9xZXdnDfzJo1S5s3b3aYXF0z3iN/6dIlbdmyRe3atVPBggXt7emXvu/WzVcmvvrqK9lsNj377LMOV50CAgJUvXr12/5XtmjRIn355Zf6z3/+4zDElpnu3bvrxo0b6t69+90eRqZDGzerW7euduzYoT59+mjlypVKTk7O9n6qVaum8uXL33H/p59+2uF1CA0NVf369bV27dps7zs7Nm7cqCtXrmQYWgsODlaTJk0y/Ndus9kynE/VqlVzGBbMTPpx3LyfunXrqlKlSnc8PHQzY4x96Kp58+aS/hhabNSokRYtWuTwvVu/fr3Cw8NVuXJlh2107drVYX7Dhg06e/asoqKiHM7ttLQ0tWzZUps3b9alS5eyrOnEiROSpJIlS2ZY1qpVKx07dkxLlizRoEGDVKVKFS1dulSPP/54pleYbn5KqlKlSpL+uNH85vazZ8/ah7LWrFkjKePr3blzZ3l5eWV4vc+cOaMmTZrop59+0g8//KCmTZve1etx8+8LHx8flS1bVmPHjtX48eP1888/Z/pkpCS5ubmpWLFiOn78eKbLcf8QdnDfVKpUSbVr13aYMpOUlCRjjPz9/TMsy6wtu26+z+DUqVP2/bm5uTlMmzZtsg9LZObixYvq27ev+vXrp6CgIJ07d07nzp3TtWvXJEnnzp275R+Tu5H+RzkoKCjLPjExMfr3v/+tTZs2KTIyUr6+vmratKm2bNlyx/vJ7tNOAQEBmbal3+dxr9zqPpKgoKAM+y9UqJA8PDwc2tzd3XX16tVc3c+dWrNmjeLi4tS5c2clJyfbz6UuXbro8uXLmjdvnkMNd/LzkT4E26lTpwzn9rvvvitjjM6ePZtlTVeuXJGkDK9TOk9PT7Vr105jx47V+vXrdejQIVWuXFkffvihdu/e7dDXx8fHYT79H5ms2tO/D2fOnJGrq6v9/q10Npst0/PqwIED+u9//6vIyEiFh4ff9etx8/fZZrPp22+/VUREhMaMGaNatWqpRIkS6t+/f6b35nh4eNhfRzgPj54jzylevLhsNlum98okJCQ4zKf/Er553P5Wf3Buvvri5+cnm81mfy+Rm93qceHff/9dp06d0rhx4zRu3LhMj+WJJ57Q0qVLs9xGTn3xxRey2Wx67LHHsuzj6uqqgQMHauDAgTp37pxWr16t119/XREREYqPj1ehQoVuu5/bXa262c3fo/Q2X19f+7yHh0emj+bfKljeTvr2T548mWHZiRMn5Ofnl+NtZ7Wfm+/Pupv9TJs2TZI0fvx4jR8/PtPlL7zwgr2GO/n5SK/lgw8+UL169TLd763+gUhf/1aB6M9CQkLUu3dvDRgwQLt371aVKlXuaL1b8fX11Y0bN3T69GmHwGOMUUJCgurUqePQ/5FHHlHnzp3t90tNnjzZfsN0Tl6PzM7/0NBQ+/frwIEDWrhwoUaMGKFr167Z7+tJl5SUlGvnHnKOKzvIc7y8vFS7dm0tXbrUfoVE+uMqyldffeXQ19/fXx4eHtq5c6dD++eff37H+2vTpo2MMTp+/HiGK0+1a9dW1apVs1w3ICBAa9euzTBFRETIw8NDa9eu1ahRo+64ljsVGxurr7/+Wl27dlVISMgdrVOsWDF16tRJffv21dmzZ+03laaHudz673PevHkOQ2y//vqrNmzY4PD0VenSpXXgwAGHkHrmzBlt2LDBYVvZqe2RRx6Rp6en/T1q0v32229as2aNw3DG3WjSpIkkZdjP5s2btXfv3hztJykpSUuWLFGDBg0yPZ+eeeYZbd68Wbt27ZIkNWzYULt27dKePXsctjN//nyH+QYNGqhYsWLas2dPpud27dq1HYaKb5Y+1HT48GGH9gsXLmR4Yipd+pNvt7rimB3pr+fNr/eiRYt06dKlTF/vqKgozZ8/X7GxserevbtSU1Ml3f3rkZny5ctr6NChqlq1qrZt2+aw7MSJE7p69WqG4Ubcf1zZQZ70xhtvqHXr1oqIiNDLL7+s1NRUjR07VoULF3b4LzP9Xpvp06erbNmyql69un766SfNnTv3jvfVoEED9e7dW88995y2bNmixx57TF5eXjp58qR++OEHVa1aVS+++GKm63p4eGT6CPWMGTPk4uKSYdmsWbP0/PPPa/r06Xd0386VK1e0adMm+9dHjhzR0qVL9dVXX6lhw4YZ/ou8Wdu2bRUeHq7atWurRIkS+vXXX/Xee+8pNDRU5cqVkyR7mHv//fcVFRUlNzc3VahQQUWKFLltfZlJTExU+/bt1atXL50/f17Dhw+Xh4eHYmJi7H26deumjz76SM8++6x69eqlM2fOaMyYMRnepLBIkSIKDQ3V559/rqZNm8rHx0d+fn72x9P/rFixYho2bJhef/11de/eXV27dtWZM2c0cuRIeXh4ODx6fDcqVKig3r1764MPPlCBAgUUGRmpo0ePatiwYQoODtYrr7yS7W3OmTNHV69eVf/+/TM9n3x9fTVnzhxNmzZNEyZM0IABAzR9+nRFRkbqjTfekL+/v+bOnat9+/ZJ+t+j34ULF9YHH3ygqKgonT17Vp06dVLJkiV1+vRp7dixQ6dPn9bkyZOzrOuBBx5QmTJltGnTJvXv39/evn//fkVEROipp55Sw4YNFRgYqKSkJC1btkwff/yxGjVqpPr162f7dchM8+bNFRERocGDBys5OVkNGjTQzp07NXz4cNWsWVPdunXLdL1OnTqpUKFC6tSpk65cuaJ58+bd9eshSTt37tRLL72kzp07q1y5cipYsKDWrFmjnTt36p///KdD3/Sf3ZufZoMTOO3WaPxl3O5NBbN6omrJkiWmatWqpmDBgiYkJMS88847pn///qZ48eIO/c6fP2969uxp/P39jZeXl2nbtq05evRolk9jZfVkzPTp083DDz9svLy8jKenpylbtqzp3r272bJlS7aPOaunsdJfi8yeHrtZw4YNHZ5c8/LyMmXKlDGdOnUyn376aaZv3HbzE1Ljxo0z9evXN35+fvbXMTo62hw9etRhvZiYGBMUFGQKFCjg8DTPrd6kLaunsT755BPTv39/U6JECePu7m4effTRTF/DmTNnmkqVKhkPDw9TuXJls2DBggxPYxljzOrVq03NmjWNu7u7kWTf581PY6WbOnWqqVatmilYsKDx9vY2TzzxRIanlrL6/qSfI7eTmppq3n33XVO+fHnj5uZm/Pz8zLPPPmvi4+Mz3d7tnsaqUaOGKVmypMPThzerV6+e8fPzs/fZtWuXadasmfHw8DA+Pj4mOjrazJw500gyO3bscFh3/fr1pnXr1sbHx8e4ubmZUqVKmdatW9/RG0AOGzbMFC9e3Fy9etXelpSUZEaNGmWaNGliSpUqZQoWLGi8vLxMjRo1zKhRoxzeeDKrN5vM6vdCZq/ZlStXzODBg01oaKhxc3MzgYGB5sUXXzRJSUkO62Z2vq5du9YULlzYtGzZ0l7XnbweWX3vTp06ZXr06GEqVqxovLy8TOHChU21atXMhAkTzI0bNxz6duvWzVStWvV2LzHuA5sxd/BIB5AHXL9+XTVq1FCpUqX0zTffOLscIM/p3bu35s2bpzNnzmR7OCYrJ06cUFhYmGbNmqUnn3wyV7b5V5CcnKygoCBNmDBBvXr1cnY5f3kMYyHPio6OVvPmzRUYGKiEhARNmTJFe/futb/7L/BX9sYbbygoKEhlypSx3882depUDR06NNeCjvTHvTcDBgzQW2+9pc6dOzu8OzKyNmHCBIWEhOi5555zdikQYQd52IULFzRo0CCdPn1abm5uqlWrlpYvX65mzZo5uzTA6dzc3DR27Fj99ttvunHjhsqVK6fx48fr5ZdfzvV9DR06VIUKFdLx48cVHByc69u3oqJFi2rGjBmZvpcY7j+GsQAAgKVxPRIAAFgaYQcAAFgaYQcAAFgad05JSktL04kTJ1SkSJFsvzU+AABwDmOMLly4oKCgoFs+KUjY0R/vI8ETBgAA5E/x8fEZPqvuzwg7kv1t8ePj4zO8XT0AAMibkpOTFRwcfNuPtyHs6H+falu0aFHCDgAA+cztbkHhBmUAAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBprs4uwCoeem2Ws0tAHrN1bHdnlwAAEFd2AACAxRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApTk17Hz33Xdq27atgoKCZLPZtHTpUoflNpst02ns2LH2Po0aNcqw/KmnnrrPRwIAAPIqp4adS5cuqXr16po4cWKmy0+ePOkwTZ8+XTabTR07dnTo16tXL4d+H3300f0oHwAA5AOuztx5ZGSkIiMjs1weEBDgMP/555+rcePGKlOmjEN7oUKFMvQFAACQ8tE9O6dOndKyZcsUHR2dYdmcOXPk5+enKlWqaNCgQbpw4YITKgQAAHmRU6/sZMfMmTNVpEgRdejQwaH9mWeeUVhYmAICArRr1y7FxMRox44dWrVqVZbbSklJUUpKin0+OTn5ntUNAACcK9+EnenTp+uZZ56Rh4eHQ3uvXr3sX4eHh6tcuXKqXbu2tm3bplq1amW6rdGjR2vkyJH3tF4AAJA35IthrO+//1779+9Xz549b9u3Vq1acnNz08GDB7PsExMTo/Pnz9un+Pj43CwXAADkIfniys60adP00EMPqXr16rftu3v3bl2/fl2BgYFZ9nF3d5e7u3tulggAAPIop4adixcv6tChQ/b5uLg4bd++XT4+PgoJCZH0x/00n376qcaNG5dh/cOHD2vOnDlq1aqV/Pz8tGfPHr366quqWbOmGjRocN+OAwAA5F1ODTtbtmxR48aN7fMDBw6UJEVFRWnGjBmSpPnz58sYo65du2ZYv2DBgvr222/1/vvv6+LFiwoODlbr1q01fPhwubi43JdjAAAAeZvNGGOcXYSzJScny9vbW+fPn1fRokVztI2HXpuVy1Uhv9s6truzSwAAS7vTv9/54gZlAACAnCLsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS3Nq2Pnuu+/Utm1bBQUFyWazaenSpQ7Le/ToIZvN5jDVq1fPoU9KSor69esnPz8/eXl56fHHH9dvv/12H48CAADkZU4NO5cuXVL16tU1ceLELPu0bNlSJ0+etE/Lly93WD5gwAAtWbJE8+fP1w8//KCLFy+qTZs2Sk1NvdflAwCAfMDVmTuPjIxUZGTkLfu4u7srICAg02Xnz5/XtGnT9Mknn6hZs2aSpNmzZys4OFirV69WRERErtcMAADylzx/z866detUsmRJlS9fXr169VJiYqJ92datW3X9+nW1aNHC3hYUFKTw8HBt2LAhy22mpKQoOTnZYQIAANaUp8NOZGSk5syZozVr1mjcuHHavHmzmjRpopSUFElSQkKCChYsqOLFizus5+/vr4SEhCy3O3r0aHl7e9un4ODge3ocAADAeZw6jHU7Tz75pP3r8PBw1a5dW6GhoVq2bJk6dOiQ5XrGGNlstiyXx8TEaODAgfb55ORkAg8AABaVp6/s3CwwMFChoaE6ePCgJCkgIEDXrl1TUlKSQ7/ExET5+/tnuR13d3cVLVrUYQIAANaUr8LOmTNnFB8fr8DAQEnSQw89JDc3N61atcre5+TJk9q1a5fq16/vrDIBAEAe4tRhrIsXL+rQoUP2+bi4OG3fvl0+Pj7y8fHRiBEj1LFjRwUGBuro0aN6/fXX5efnp/bt20uSvL29FR0drVdffVW+vr7y8fHRoEGDVLVqVfvTWQAA4K/NqWFny5Ytaty4sX0+/T6aqKgoTZ48Wb/88otmzZqlc+fOKTAwUI0bN9aCBQtUpEgR+zoTJkyQq6urunTpoitXrqhp06aaMWOGXFxc7vvxAACAvMdmjDHOLsLZkpOT5e3trfPnz+f4/p2HXpuVy1Uhv9s6truzSwAAS7vTv9/56p4dAACA7CLsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS3N1dgEA7p1jb1R1dgnIQ0L+9YuzSwCcgis7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0pwadr777ju1bdtWQUFBstlsWrp0qX3Z9evXNXjwYFWtWlVeXl4KCgpS9+7ddeLECYdtNGrUSDabzWF66qmn7vORAACAvMqpYefSpUuqXr26Jk6cmGHZ5cuXtW3bNg0bNkzbtm3T4sWLdeDAAT3++OMZ+vbq1UsnT560Tx999NH9KB8AAOQDrs7ceWRkpCIjIzNd5u3trVWrVjm0ffDBB6pbt66OHTumkJAQe3uhQoUUEBBwT2sFAAD5U766Z+f8+fOy2WwqVqyYQ/ucOXPk5+enKlWqaNCgQbpw4cItt5OSkqLk5GSHCQAAWJNTr+xkx9WrV/XPf/5TTz/9tIoWLWpvf+aZZxQWFqaAgADt2rVLMTEx2rFjR4arQn82evRojRw58n6UDQAAnCxfhJ3r16/rqaeeUlpamiZNmuSwrFevXvavw8PDVa5cOdWuXVvbtm1TrVq1Mt1eTEyMBg4caJ9PTk5WcHDwvSkeAAA4VZ4PO9evX1eXLl0UFxenNWvWOFzVyUytWrXk5uamgwcPZhl23N3d5e7ufi/KBQAAeUyeDjvpQefgwYNau3atfH19b7vO7t27df36dQUGBt6HCgEAQF7n1LBz8eJFHTp0yD4fFxen7du3y8fHR0FBQerUqZO2bdumr776SqmpqUpISJAk+fj4qGDBgjp8+LDmzJmjVq1ayc/PT3v27NGrr76qmjVrqkGDBs46LAAAkIc4Nexs2bJFjRs3ts+n30cTFRWlESNG6IsvvpAk1ahRw2G9tWvXqlGjRipYsKC+/fZbvf/++7p48aKCg4PVunVrDR8+XC4uLvftOAAAQN7l1LDTqFEjGWOyXH6rZZIUHBys9evX53ZZAADAQvLV++wAAABkF2EHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYWo7CTpkyZXTmzJkM7efOnVOZMmXuuigAAIDckqOwc/ToUaWmpmZoT0lJ0fHjx++6KAAAgNzimp3OX3zxhf3rlStXytvb2z6fmpqqb7/9VqVLl8614gAAAO5WtsJOu3btJEk2m01RUVEOy9zc3FS6dGmNGzcu14oDAAC4W9kKO2lpaZKksLAwbd68WX5+fvekKAAAgNySrbCTLi4uLrfrAAAAuCdyFHYk6dtvv9W3336rxMRE+xWfdNOnT7/rwgAAAHJDjsLOyJEj9cYbb6h27doKDAyUzWbL7boAAAByRY7CzpQpUzRjxgx169Ytt+sBAADIVTl6n51r166pfv36uV0LAABArstR2OnZs6fmzp2b27UAAADkuhwNY129elUff/yxVq9erWrVqsnNzc1h+fjx43OlOAAAgLuVo7Czc+dO1ahRQ5K0a9cuh2XcrAwAAPKSHA1jrV27NstpzZo1d7yd7777Tm3btlVQUJBsNpuWLl3qsNwYoxEjRigoKEienp5q1KiRdu/e7dAnJSVF/fr1k5+fn7y8vPT444/rt99+y8lhAQAAC8pR2Mktly5dUvXq1TVx4sRMl48ZM0bjx4/XxIkTtXnzZgUEBKh58+a6cOGCvc+AAQO0ZMkSzZ8/Xz/88IMuXryoNm3aZPpBpQAA4K8nR8NYjRs3vuVw1Z1e3YmMjFRkZGSmy4wxeu+99zRkyBB16NBBkjRz5kz5+/tr7ty5euGFF3T+/HlNmzZNn3zyiZo1ayZJmj17toKDg7V69WpFRERk88gAAIDV5OjKTo0aNVS9enX7VLlyZV27dk3btm1T1apVc6WwuLg4JSQkqEWLFvY2d3d3NWzYUBs2bJAkbd26VdevX3foExQUpPDwcHufzKSkpCg5OdlhAgAA1pSjKzsTJkzItH3EiBG6ePHiXRWULiEhQZLk7+/v0O7v769ff/3V3qdgwYIqXrx4hj7p62dm9OjRGjlyZK7UCQAA8rZcvWfn2WefzfXPxbp5uMwYc9snvm7XJyYmRufPn7dP8fHxuVIrAADIe3I17GzcuFEeHh65sq2AgABJynCFJjEx0X61JyAgQNeuXVNSUlKWfTLj7u6uokWLOkwAAMCacjSMlX7DcDpjjE6ePKktW7Zo2LBhuVJYWFiYAgICtGrVKtWsWVPSHx9TsX79er377ruSpIceekhubm5atWqVunTpIkk6efKkdu3apTFjxuRKHQAAIH/LUdjx9vZ2mC9QoIAqVKigN954w+Fm4du5ePGiDh06ZJ+Pi4vT9u3b5ePjo5CQEA0YMEBvv/22ypUrp3Llyuntt99WoUKF9PTTT9vriI6O1quvvipfX1/5+Pho0KBBqlq1qv3pLAAA8NeWo7ATGxubKzvfsmWLGjdubJ8fOHCgJCkqKkozZszQP/7xD125ckV9+vRRUlKSHn74YX3zzTcqUqSIfZ0JEybI1dVVXbp00ZUrV9S0aVPNmDFDLi4uuVIjAADI32zGGJPTlbdu3aq9e/fKZrOpcuXK9uGm/CY5OVne3t46f/58ju/feei1WblcFfK7rWO7O7sEHXsjd94KAtYQ8q9fnF0CkKvu9O93jq7sJCYm6qmnntK6detUrFgxGWN0/vx5NW7cWPPnz1eJEiVyXDgAAEBuytHTWP369VNycrJ2796ts2fPKikpSbt27VJycrL69++f2zUCAADkWI6u7KxYsUKrV69WpUqV7G2VK1fWhx9+mK0blAEAAO61HF3ZSUtLk5ubW4Z2Nzc3paWl3XVRAAAAuSVHYadJkyZ6+eWXdeLECXvb8ePH9corr6hp06a5VhwAAMDdylHYmThxoi5cuKDSpUurbNmyevDBBxUWFqYLFy7ogw8+yO0aAQAAcixH9+wEBwdr27ZtWrVqlfbt2ydjjCpXrswb+QEAgDwnW1d21qxZo8qVKys5OVmS1Lx5c/Xr10/9+/dXnTp1VKVKFX3//ff3pFAAAICcyFbYee+999SrV69M37jH29tbL7zwgsaPH59rxQEAANytbIWdHTt2qGXLllkub9GihbZu3XrXRQEAAOSWbIWdU6dOZfrIeTpXV1edPn36rosCAADILdkKO6VKldIvv2T92So7d+5UYGDgXRcFAACQW7IVdlq1aqV//etfunr1aoZlV65c0fDhw9WmTZtcKw4AAOBuZevR86FDh2rx4sUqX768XnrpJVWoUEE2m0179+7Vhx9+qNTUVA0ZMuRe1QoAAJBt2Qo7/v7+2rBhg1588UXFxMTIGCNJstlsioiI0KRJk+Tv739PCgUAAMiJbL+pYGhoqJYvX66kpCQdOnRIxhiVK1dOxYsXvxf1AQAA3JUcvYOyJBUvXlx16tTJzVoAAAByXY4+GwsAACC/IOwAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLI+wAAABLy/Nhp3Tp0rLZbBmmvn37SpJ69OiRYVm9evWcXDUAAMgrXJ1dwO1s3rxZqamp9vldu3apefPm6ty5s72tZcuWio2Ntc8XLFjwvtYIAADyrjwfdkqUKOEw/84776hs2bJq2LChvc3d3V0BAQH3uzQAAJAP5PlhrD+7du2aZs+ereeff142m83evm7dOpUsWVLly5dXr169lJiY6MQqAQBAXpLnr+z82dKlS3Xu3Dn16NHD3hYZGanOnTsrNDRUcXFxGjZsmJo0aaKtW7fK3d090+2kpKQoJSXFPp+cnHyvSwcAAE6Sr8LOtGnTFBkZqaCgIHvbk08+af86PDxctWvXVmhoqJYtW6YOHTpkup3Ro0dr5MiR97xeAADgfPlmGOvXX3/V6tWr1bNnz1v2CwwMVGhoqA4ePJhln5iYGJ0/f94+xcfH53a5AAAgj8g3V3ZiY2NVsmRJtW7d+pb9zpw5o/j4eAUGBmbZx93dPcshLgAAYC354spOWlqaYmNjFRUVJVfX/+WzixcvatCgQdq4caOOHj2qdevWqW3btvLz81P79u2dWDEAAMgr8sWVndWrV+vYsWN6/vnnHdpdXFz0yy+/aNasWTp37pwCAwPVuHFjLViwQEWKFHFStQAAIC/JF2GnRYsWMsZkaPf09NTKlSudUBEAAMgv8sUwFgAAQE4RdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKXli4+LAABYQ4MPGji7BOQhP/b78b7shys7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0vJ02BkxYoRsNpvDFBAQYF9ujNGIESMUFBQkT09PNWrUSLt373ZixQAAIK/J02FHkqpUqaKTJ0/ap19++cW+bMyYMRo/frwmTpyozZs3KyAgQM2bN9eFCxecWDEAAMhL8nzYcXV1VUBAgH0qUaKEpD+u6rz33nsaMmSIOnTooPDwcM2cOVOXL1/W3LlznVw1AADIK/J82Dl48KCCgoIUFhamp556SkeOHJEkxcXFKSEhQS1atLD3dXd3V8OGDbVhw4ZbbjMlJUXJyckOEwAAsKY8HXYefvhhzZo1SytXrtR//vMfJSQkqH79+jpz5owSEhIkSf7+/g7r+Pv725dlZfTo0fL29rZPwcHB9+wYAACAc+XpsBMZGamOHTuqatWqatasmZYtWyZJmjlzpr2PzWZzWMcYk6HtZjExMTp//rx9io+Pz/3iAQBAnpCnw87NvLy8VLVqVR08eND+VNbNV3ESExMzXO25mbu7u4oWLeowAQAAa8pXYSclJUV79+5VYGCgwsLCFBAQoFWrVtmXX7t2TevXr1f9+vWdWCUAAMhLXJ1dwK0MGjRIbdu2VUhIiBITEzVq1CglJycrKipKNptNAwYM0Ntvv61y5cqpXLlyevvtt1WoUCE9/fTTzi4dAADkEXk67Pz222/q2rWrfv/9d5UoUUL16tXTpk2bFBoaKkn6xz/+oStXrqhPnz5KSkrSww8/rG+++UZFihRxcuUAACCvyNNhZ/78+bdcbrPZNGLECI0YMeL+FAQAAPKdfHXPDgAAQHYRdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKURdgAAgKXl6bAzevRo1alTR0WKFFHJkiXVrl077d+/36FPjx49ZLPZHKZ69eo5qWIAAJDX5Omws379evXt21ebNm3SqlWrdOPGDbVo0UKXLl1y6NeyZUudPHnSPi1fvtxJFQMAgLzG1dkF3MqKFSsc5mNjY1WyZElt3bpVjz32mL3d3d1dAQEB97s8AACQD+TpKzs3O3/+vCTJx8fHoX3dunUqWbKkypcvr169eikxMfGW20lJSVFycrLDBAAArCnfhB1jjAYOHKi//e1vCg8Pt7dHRkZqzpw5WrNmjcaNG6fNmzerSZMmSklJyXJbo0ePlre3t30KDg6+H4cAAACcIE8PY/3ZSy+9pJ07d+qHH35waH/yySftX4eHh6t27doKDQ3VsmXL1KFDh0y3FRMTo4EDB9rnk5OTCTwAAFhUvgg7/fr10xdffKHvvvtODzzwwC37BgYGKjQ0VAcPHsyyj7u7u9zd3XO7TAAAkAfl6bBjjFG/fv20ZMkSrVu3TmFhYbdd58yZM4qPj1dgYOB9qBAAAOR1efqenb59+2r27NmaO3euihQpooSEBCUkJOjKlSuSpIsXL2rQoEHauHGjjh49qnXr1qlt27by8/NT+/btnVw9AADIC/L0lZ3JkydLkho1auTQHhsbqx49esjFxUW//PKLZs2apXPnzikwMFCNGzfWggULVKRIESdUDAAA8po8HXaMMbdc7unpqZUrV96nagAAQH6Up4exAAAA7hZhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJplws6kSZMUFhYmDw8PPfTQQ/r++++dXRIAAMgDLBF2FixYoAEDBmjIkCH6+eef9eijjyoyMlLHjh1zdmkAAMDJLBF2xo8fr+joaPXs2VOVKlXSe++9p+DgYE2ePNnZpQEAACfL92Hn2rVr2rp1q1q0aOHQ3qJFC23YsMFJVQEAgLzC1dkF3K3ff/9dqamp8vf3d2j39/dXQkJCpuukpKQoJSXFPn/+/HlJUnJyco7rSE25kuN1YU13cz7llgtXU51dAvKQvHBO3rhyw9klIA+523MyfX1jzC375fuwk85msznMG2MytKUbPXq0Ro4cmaE9ODj4ntSGvybvD/7u7BIAR6O9nV0B4MB7cO6ckxcuXJC3d9bbyvdhx8/PTy4uLhmu4iQmJma42pMuJiZGAwcOtM+npaXp7Nmz8vX1zTIg4c4kJycrODhY8fHxKlq0qLPLATgnkedwTuYeY4wuXLigoKCgW/bL92GnYMGCeuihh7Rq1Sq1b9/e3r5q1So98cQTma7j7u4ud3d3h7ZixYrdyzL/cooWLcoPMfIUzknkNZyTueNWV3TS5fuwI0kDBw5Ut27dVLt2bT3yyCP6+OOPdezYMf397wwjAADwV2eJsPPkk0/qzJkzeuONN3Ty5EmFh4dr+fLlCg0NdXZpAADAySwRdiSpT58+6tOnj7PL+Mtzd3fX8OHDMwwTAs7COYm8hnPy/rOZ2z2vBQAAkI/l+zcVBAAAuBXCDgAAsDTCDgAAsDTCDoD7olGjRhowYMAt+5QuXVrvvffeLfvYbDYtXbpUknT06FHZbDZt3749V2p0hnXr1slms+ncuXPOLgX3UXbPddwdws5fnDFGzZo1U0RERIZlkyZNkre3t44dO+aEypAf9OjRQzabLdP3tOrTp49sNpt69OghSVq8eLHefPPN+1xh9vTu3VsuLi6aP3++s0tBPhYfH6/o6GgFBQWpYMGCCg0N1csvv6wzZ844u7S/LMLOX5zNZlNsbKz++9//6qOPPrK3x8XFafDgwXr//fcVEhLixAqR1wUHB2v+/Pm6cuV/H4Z79epVzZs3z+Hc8fHxUZEiRZxR4h25fPmyFixYoNdee03Tpk1zdjnIp44cOaLatWvrwIEDmjdvng4dOqQpU6bo22+/1SOPPKKzZ886u8S/JMIOFBwcrPfff1+DBg1SXFycjDGKjo5W06ZNFRYWprp168rd3V2BgYH65z//qRs3/vepxZldiq1Ro4ZGjBhhn7fZbJo6darat2+vQoUKqVy5cvriiy8c1vniiy9Urlw5eXp6qnHjxpo5cyaX9vOJWrVqKSQkRIsXL7a3LV68WMHBwapZs6a97eZhrMTERLVt21aenp4KCwvTnDlzMmz74MGDeuyxx+Th4aHKlStr1apVt61nz549atWqlQoXLix/f39169ZNv//++23X+/TTT1W5cmXFxMToxx9/1NGjRx2W37hxQ/3791exYsXk6+urwYMHKyoqSu3atbP3McZozJgxKlOmjDw9PVW9enV99tlnDttZvny5ypcvbz/Xb94P8re+ffuqYMGC+uabb9SwYUOFhIQoMjJSq1ev1vHjxzVkyJBM18vJuY47R9iBJCkqKkpNmzbVc889p4kTJ2rXrl16//331apVK9WpU0c7duzQ5MmTNW3aNI0aNSrb2x85cqS6dOminTt3qlWrVnrmmWfs/+EcPXpUnTp1Urt27bR9+3a98MILWf5CQN703HPPKTY21j4/ffp0Pf/887dcp0ePHjp69KjWrFmjzz77TJMmTVJiYqJ9eVpamjp06CAXFxdt2rRJU6ZM0eDBg2+5zZMnT6phw4aqUaOGtmzZohUrVujUqVPq0qXLbY9h2rRpevbZZ+Xt7a1WrVo5HI8kvfvuu5ozZ45iY2P1448/Kjk5OcP9FEOHDlVsbKwmT56s3bt365VXXtGzzz6r9evXS/pjeKNDhw5q1aqVtm/frp49e+qf//znbWtD/nD27FmtXLlSffr0kaenp8OygIAAPfPMM1qwYIFufnu7nJzryCYD/J9Tp06ZEiVKmAIFCpjFixeb119/3VSoUMGkpaXZ+3z44YemcOHCJjU11RhjTGhoqJkwYYLDdqpXr26GDx9un5dkhg4dap+/ePGisdls5uuvvzbGGDN48GATHh7usI0hQ4YYSSYpKSl3DxK5KioqyjzxxBPm9OnTxt3d3cTFxZmjR48aDw8Pc/r0afPEE0+YqKgoY4wxDRs2NC+//LIxxpj9+/cbSWbTpk32be3du9dIsp9PK1euNC4uLiY+Pt7e5+uvvzaSzJIlS4wxxsTFxRlJ5ueffzbGGDNs2DDTokULhxrj4+ONJLN///4sj+PAgQPGzc3NnD592hhjzJIlS0xwcLD9PDfGGH9/fzN27Fj7/I0bN0xISIh54oknjDF/nNceHh5mw4YNDtuOjo42Xbt2NcYYExMTYypVquTwMzV48GDOdYvYtGmTw/l5s/HjxxtJ5tSpUw6/O+/kXMfd4coO7EqWLKnevXurUqVKat++vfbu3atHHnlENpvN3qdBgwa6ePGifvvtt2xtu1q1avavvby8VKRIEft/8fv371edOnUc+tetW/cujgT3m5+fn1q3bq2ZM2cqNjZWrVu3lp+fX5b99+7dK1dXV9WuXdveVrFiRRUrVsyhT0hIiB544AF72yOPPHLLOrZu3aq1a9eqcOHC9qlixYqSpMOHD2vOnDkOy77//ntJf1zViYiIsNfcqlUrXbp0SatXr5YknT9/XqdOnXI4L11cXPTQQw/Z5/fs2aOrV6+qefPmDvuYNWuWDh8+bD+mevXqOfxM3e6YYB3m/67o/Pn7L+XsXEf2WOazsZA7XF1d5er6x2lhjMnwQ3nzD2uBAgUyXJK9fv16hu26ubk5zNtsNqWlpd12P8g/nn/+eb300kuSpA8//PCWfbP6pZ9Znz+7VX/pj+GAtm3b6t13382wLDAwUGlpaXr44YftbaVKlVJqaqpmzZqlhIQE+7kvSampqZo2bZpatGiR5f7/XGP6+bxs2TKVKlXKoV/6ZyBxXlvbgw8+KJvNpj179jjcy5Vu3759Kl68eIZ/BHJyriN7CDvIUuXKlbVo0SKHMLJhwwYVKVLE/su8RIkSOnnypH2d5ORkxcXFZWs/FStW1PLlyx3atmzZcpfV435r2bKlrl27JkmZvpXBn1WqVEk3btzQli1b7FdL9u/f73BDeuXKlXXs2DGdOHFCQUFBkqSNGzfecru1atXSokWLVLp0aYfg8mc3PxH25Zdf6sKFC/r555/l4uJib9+3b5+eeeYZnTlzRr6+vvL399dPP/2kRx99VNIfYejnn39WjRo17PW6u7vr2LFjatiwYab7rly5cob7fDZt2nTLY0L+4evrq+bNm2vSpEl65ZVXHO7bSUhI0Jw5c9S9e/cMQSYn5zqyh2EsZKlPnz6Kj49Xv379tG/fPn3++ecaPny4Bg4cqAIF/jh1mjRpok8++UTff/+9du3apaioKIc/GHfihRde0L59+zR48GAdOHBACxcu1IwZMyTx301+4uLior1792rv3r23PQcqVKigli1bqlevXvrvf/+rrVu3qmfPng5/HJo1a6YKFSqoe/fu2rFjh77//vvb3rjet29fnT17Vl27dtVPP/2kI0eO6JtvvtHzzz+v1NTUTNeZNm2aWrdurerVqys8PNw+dezYUSVKlNDs2bMlSf369dPo0aP1+eefa//+/Xr55ZeVlJRkP0eLFCmiQYMG6ZVXXtHMmTN1+PBh/fzzz/rwww81c+ZMSdLf//53HT58WAMHDtT+/fs1d+5c+7kOa5g4caJSUlIUERGh7777TvHx8VqxYoWaN2+uUqVK6a233sqwTk7OdWQPYQdZKlWqlJYvX66ffvpJ1atX19///ndFR0dr6NCh9j4xMTF67LHH1KZNG7Vq1Urt2rVT2bJls7WfsLAwffbZZ1q8eLGqVaumyZMn23/Q0y//I38oWrSoihYtekd9Y2NjFRwcrIYNG6pDhw7q3bu3SpYsaV9eoEABLVmyRCkpKapbt6569uyZ6R+KPwsKCtKPP/6o1NRURUREKDw8XC+//LK8vb3tAf3PTp06pWXLlqljx44ZltlsNnXo0MH+njuDBw9W165d1b17dz3yyCMqXLiwIiIi5OHhYV/nzTff1L/+9S+NHj1alSpVUkREhL788kuFhYVJkkJCQrRo0SJ9+eWXql69uqZMmaK33377jl4v5A/lypXTli1bVLZsWT355JMqW7asevfurcaNG2vjxo3y8fHJsE5OznVkj80wiIw86K233tKUKVMUHx/v7FKATKWlpalSpUrq0qVLnn9naOCvjnt2kCdMmjRJderUka+vr3788UeNHTvWfrMrkBf8+uuv9jeKS0lJ0cSJExUXF6enn37a2aUBuA3CDvKEgwcPatSoUTp79qxCQkL06quvKiYmxtllAXYFChTQjBkzNGjQIBljFB4ertWrV6tSpUrOLg3AbTCMBQAALI0blAEAgKURdgAAgKURdgAAgKURdgAAgKURdgDkaY899pjmzp3r7DK0bt062Ww2h4+0uNd++eUXPfDAA7p06dJ92ydgRYQdALe1YcMGubi4qGXLlvd1v1999ZUSEhL01FNP2dt+/vlntWnTRiVLlpSHh4dKly6tJ598Ur///vt9re1+qFq1qurWrasJEyY4uxQgXyPsALit6dOnq1+/fvrhhx907Nix+7bf//f//p+ee+45+0c9JCYmqlmzZvLz89PKlSu1d+9eTZ8+XYGBgbp8+fJ9qyu3XL9+/bZ9nnvuOU2ePDnLz/YCcHuEHQC3dOnSJS1cuFAvvvii2rRpk+kHV37xxRcqV66cPD091bhxY82cOTPDkM+GDRv02GOPydPTU8HBwerfv/8th2d+//13rV69Wo8//rjDNpKTkzV16lTVrFlTYWFhatKkid577z2FhIRI+t9w08qVK1WzZk15enqqSZMmSkxM1Ndff61KlSqpaNGi6tq1q0NASklJUf/+/e1XjP72t79p8+bNWdZ35coVtW7dWvXq1dPZs2cl/fF5X5UqVZKHh4cqVqyoSZMm2fsfPXpUNptNCxcuVKNGjeTh4aHZs2fr119/Vdu2bVW8eHF5eXmpSpUqWr58uX29iIgInTlzRuvXr8/6mwTg1gwA3MK0adNM7dq1jTHGfPnll6Z06dImLS3NvjwuLs64ubmZQYMGmX379pl58+aZUqVKGUkmKSnJGGPMzp07TeHChc2ECRPMgQMHzI8//mhq1qxpevTokeV+lyxZYry8vExqaqq9bePGjUaSWbhwoUMNf7Z27VojydSrV8/88MMPZtu2bebBBx80DRs2NC1atDDbtm0z3333nfH19TXvvPOOfb3+/fuboKAgs3z5crN7924TFRVlihcvbs6cOeOw3aSkJHPu3Dnzt7/9zTRr1sxcvHjRGGPMxx9/bAIDA82iRYvMkSNHzKJFi4yPj4+ZMWOG/XWSZEqXLm3vc/z4cdO6dWvTvHlzs3PnTnP48GHz5ZdfmvXr1zscU926dc2IESPu9FsG4CaEHQC3VL9+ffPee+8ZY4y5fv268fPzM6tWrbIvHzx4sAkPD3dYZ8iQIQ5hp1u3bqZ3794Ofb7//ntToEABc+XKlUz3O2HCBFOmTJkM7a+//rpxdXU1Pj4+pmXLlmbMmDEmISHBvjw9lKxevdreNnr0aCPJHD582N72wgsvmIiICGOMMRcvXjRubm5mzpw59uXXrl0zQUFBZsyYMQ7b3bdvn6levbrp0KGDSUlJsfcPDg42c+fOdaj1zTffNI888ogx5n9hJ/21TFe1atXbBpn27dvfMhgCuDWGsQBkaf/+/frpp5/sNwi7urrqySef1PTp0x361KlTx2G9unXrOsxv3bpVM2bMUOHChe1TRESE0tLSFBcXl+m+r1y5Ig8Pjwztb731lhISEjRlyhRVrlxZU6ZMUcWKFfXLL7849KtWrZr9a39/fxUqVEhlypRxaEtMTJQkHT58WNevX1eDBg3sy93c3FS3bl3t3bvXYbvNmjVTmTJltHDhQhUsWFCSdPr0acXHxys6OtrhGEeNGqXDhw87rF+7dm2H+f79+2vUqFFq0KCBhg8frp07d2Y4Zk9Pz3x5TxKQV/BBoACyNG3aNN24cUOlSpWytxlj5ObmpqSkJBUvXlzGGNlsNof1zE0fuZeWlqYXXnhB/fv3z7CP9Httbubn56ekpKRMl/n6+qpz587q3LmzRo8erZo1a+rf//63Zs6cae/j5uZm/9pmsznMp7elpaU51JvZcdzc1rp1ay1atEh79uxR1apV7ccnSf/5z3/08MMPO/R3cXFxmPfy8nKY79mzpyIiIrRs2TJ98803Gj16tMaNG6d+/frZ+5w9e1Zly5bN9LUAcHtc2QGQqRs3bmjWrFkaN26ctm/fbp927Nih0NBQzZkzR5JUsWLFDDfybtmyxWG+Vq1a2r17tx588MEMU/rVkZvVrFlTCQkJWQaedAULFlTZsmXv6r1o0uv44Ycf7G3Xr1/Xli1bMnyq+TvvvKOoqCg1bdpUe/bskfTHVaJSpUrpyJEjGY4vLCzstvsPDg7W3//+dy1evFivvvqq/vOf/zgs37Vrl2rWrJnj4wP+6riyAyBTX331lZKSkhQdHS1vb2+HZZ06ddK0adP00ksv6YUXXtD48eM1ePBgRUdHa/v27fYnttKvigwePFj16tVT37591atXL3l5eWnv3r1atWqVPvjgg0z3X7NmTZUoUUI//vij2rRpY69p/vz5euqpp1S+fHkZY/Tll19q+fLlio2NzfGxenl56cUXX9Rrr70mHx8fhYSEaMyYMbp8+bKio6Mz9P/3v/+t1NRUNWnSROvWrVPFihU1YsQI9e/fX0WLFlVkZKRSUlK0ZcsWJSUlaeDAgVnue8CAAYqMjFT58uWVlJSkNWvWOASso0eP6vjx42rWrFmOjw/4q+PKDoBMTZs2Tc2aNcsQdCSpY8eO2r59u7Zt26awsDB99tlnWrx4sapVq6bJkydryJAhkiR3d3dJf9w/s379eh08eFCPPvqoatasqWHDhikwMDDL/bu4uOj555+3X0GSpMqVK6tQoUJ69dVXVaNGDdWrV08LFy7U1KlT1a1bt7s63nfeeUcdO3ZUt27dVKtWLR06dEgrV65U8eLFM+0/YcIEdenSRU2aNNGBAwfUs2dPTZ06VTNmzFDVqlXVsGFDzZgx47ZXdlJTU9W3b19VqlRJLVu2VIUKFRweWZ83b55atGih0NDQuzo+4K/MZm4eXAeAu/TWW29pypQpio+Pv6vtnDp1SlWqVNHWrVv/kn/sU1JSVK5cOc2bN8/h5mkA2cMwFoC7NmnSJNWpU0e+vr768ccfNXbsWL300kt3vV1/f39NmzZNx44d+0uGnV9//VVDhgwh6AB3iSs7AO7aK6+8ogULFujs2bMKCQlRt27dFBMTI1dX/p8C4HyEHQAAYGncoAwAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACzt/wNqh/DewS54ugAAAABJRU5ErkJggg==",
2425
      "text/plain": [
2426
       "<Figure size 640x480 with 1 Axes>"
2427
      ]
2428
     },
2429
     "metadata": {},
2430
     "output_type": "display_data"
2431
    }
2432
   ],
2433
   "source": [
2434
    "#Smokers age distribution (age)\n",
2435
    "sns.countplot(x='age', data=smokers)\n",
2436
    "plt.title('Figure 4: Distribution of Age (Smokers)')\n",
2437
    "plt.xlabel('Age (Smokers)')\n",
2438
    "plt.ylabel('Count')\n",
2439
    "plt.show()"
2440
   ]
2441
  },
2442
  {
2443
   "cell_type": "code",
2444
   "execution_count": 43,
2445
   "id": "b0753ff2",
2446
   "metadata": {},
2447
   "outputs": [
2448
    {
2449
     "data": {
2450
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8YUlEQVR4nO3df3yP9R7/8efHNp/NbB+bsVmNjcQ0IiQ6MQ0LIySdVn4UcvJjLb9qSUYnwvGjiOpUiET1jeSU/EiOnU0xIdIPp6WJ4bA2P2ab7fr+0XfXt49tfqz9dD3ut9t1u7ne1+u6rtf1sY89XT8+H5thGIYAAAAsrFpFNwAAAFDRCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCESwjKVLl8pmsxU5jR8/Xj///LNsNpuWLl1a0a2WyBdffFHs8e3YsaPE2w0PDze3U61aNXl5eemmm27S/fffrw8++ED5+fmF1gkODtaQIUOuaT+JiYmKj4/Xb7/9dk3rXbqvgtfhgw8+uKbtXM758+cVHx+vL774otCygp+rn3/+udT2VxaeffZZ1a9fX66urqpVq9Zlaz/77DN169ZNgYGBstvtCgwMVHh4uF588cXyafYSQ4YMUc2aNStk37AO14puAChvS5YsUdOmTZ3GAgMD5e/vr6SkJDVq1KiCOisd06dPV+fOnZ3GwsLC/tQ2GzZsqHfeeUeSdO7cOaWkpGjt2rW6//77ddddd+njjz+Ww+Ew69esWSNvb+9r2kdiYqKmTp2qIUOGXPEX9h+VZF/X6vz585o6daqk3wPiH/Xs2VNJSUmqV69emfbwZ3z00Ud64YUXNGnSJHXv3l12u73Y2ldffVWPP/647rvvPi1cuFC+vr5KTU1VYmKiPvjgAz399NPl2DlQfghEsJywsDC1adOmyGV33HFHOXfzu/Pnz6tGjRqlsq3GjRuX+nF4eHgU2uawYcO0ZMkSPfroo3rssce0evVqc1mrVq1Kdf9FycrKkoeHR7ns63Lq1KmjOnXqVGgPV7J//35JUkxMjOrWrXvZ2hkzZqhjx46FzrANHDiwyLOB14Pc3FzZbDa5uvIr0cq4ZAb8P8VdMvvoo4/UokUL2e12NWzYUC+99JLi4+Nls9muuK4k2Ww2xcfHm/MF6+7evVv9+/eXj4+PeVbKMAwtWrRILVu2lIeHh3x8fNS/f3/99NNPZXHIf9ojjzyiHj166P3339fhw4fN8UsvY+Xn5+vvf/+7mjRpIg8PD9WqVUstWrTQSy+9JOn312TChAmSpJCQEPMSXcElquDgYEVFRenDDz9Uq1at5O7ubp6xKe7y3IULFzR27FgFBATIw8NDnTp10tdff+1UEx4eXuiMj/T7JZrg4GBJv//dFgSeqVOnmr0V7LO4S2ZvvfWWbr31Vrm7u8vX11d9+/bVwYMHC+2nZs2aOnTokHr06KGaNWsqKChI48aNU3Z2drGv+x9f11mzZqlp06ay2+2qW7euBg0apCNHjpg1wcHBevbZZyVJ/v7+hX4eL3Xq1Kliz3ZVq+b8K8Nms2n06NFasmSJ+Xfbpk0b7dixQ4ZhaPbs2QoJCVHNmjV1991369ChQ4W2eTWvU1H+85//yM/PT1FRUTp37pwk6ccff1R0dLTq1q0ru92u0NBQvfLKK07rFVxSXb58ucaNG6cbbrhBdrtdhw4d0vnz5zV+/HiFhISY/bRp00bvvvvuFftB1UcgguXk5eXp4sWLTlNxNmzYoH79+ql27dpavXq1Zs2apXfffVfLli37033069dPN910k95//329+uqrkqQRI0YoNjZWXbp00dq1a7Vo0SIdOHBAHTp00PHjx69qu6NGjZKrq6u8vb0VGRmphISEQjUFv8RL436p3r17yzAMbd++vdiaWbNmKT4+Xg8++KD+9a9/afXq1Ro6dKh5v9CwYcM0ZswYSdKHH36opKQkJSUl6bbbbjO3sXv3bk2YMEExMTHasGGD7rvvvsv29cwzz+inn37SG2+8oTfeeENHjx5VeHj4NYfLevXqacOGDZKkoUOHmr1Nnjy52HVmzJihoUOH6pZbbtGHH36ol156Sfv27VP79u31448/OtXm5uaqd+/eioiI0EcffaRHH31U8+bN08yZM6/Y2+OPP66nnnpKXbt21bp16/T8889rw4YN6tChg/73v/9J+v2S4tChQyX9/vOclJSkYcOGFbvN9u3b6//8n/+j+Ph47d27V3l5eZftYf369XrjjTf04osv6t1339WZM2fUs2dPjRs3Tv/5z3+0cOFCvf766/r222913333yTCMEr1Of/Tee+8pIiJCAwYM0EcffSRPT099++23atu2rfbv3685c+Zo/fr16tmzp2JiYszw/EdxcXH65Zdf9Oqrr+rjjz9W3bp1NXbsWC1evNj8GVu+fLnuv/9+nTp16rKvAa4TBmARS5YsMSQVOeXm5hopKSmGJGPJkiXmOm3btjWCgoKM7Oxsc+zMmTNG7dq1jT++fYpat4AkY8qUKeb8lClTDEnGc88951SXlJRkSDLmzJnjNJ6ammp4eHgYEydOvOzx7d6923jiiSeMNWvWGP/+97+Nt956ywgNDTVcXFyMDRs2ONUuW7bMcHFxMZYtW3bZbRqGYXTq1Mm45ZZbil3+6aefGpKMmTNnmmMNGjQwBg8ebM5HRUUZLVu2vOx+Zs+ebUgyUlJSCi1r0KCB4eLiYnz//fdFLvvjvrZu3WpIMm677TYjPz/fHP/5558NNzc3Y9iwYU7H1qlTp0LbHDx4sNGgQQNz/uTJk4X+HgsU/FwV9J2enm54eHgYPXr0cKr75ZdfDLvdbkRHRzvtR5Lx3nvvOdX26NHDaNKkSaF9/dHBgwcNScbIkSOdxr/88ktDkvHMM8+YYwU/cydPnrzsNg3DMA4dOmSEhYWZ7w0PDw8jIiLCWLhwoZGTk+NUK8kICAgwzp49a46tXbvWkGS0bNnS6fWfP3++IcnYt2+fYRjX/jp5enoahmEYL774ouHi4uL082YYhhEZGWnceOONRkZGhtP46NGjDXd3d+P06dOGYfz/n4+OHTsWOvawsDCjT58+V3yNcH3iDBEs5+2339bOnTudpqLuHTh37px27dqlPn36qHr16uZ4zZo11atXrz/dx6VnONavXy+bzaaHH37Y6exVQECAbr311iKfcPqjVq1aaf78+erTp4/uuusuPfLII0pMTFS9evU0ceJEp9pBgwbp4sWLGjRo0J8+DuMP/+Mvzu233669e/dq5MiR+uyzz5SZmXnN+2nRooVuvvnmq66Pjo52uqzZoEEDdejQQVu3br3mfV+LpKQkZWVlFbqMFxQUpLvvvltbtmxxGrfZbIV+nlq0aOF0CbIoBcdx6X5uv/12hYaGFtrP1WrUqJH27t2rbdu2aerUqerSpYt27typ0aNHq3379rpw4YJTfefOneXp6WnOh4aGSpK6d+/u9PoXjBcc17W+ToZhaMSIEZoyZYpWrlzp9DN94cIFbdmyRX379lWNGjWc3j89evTQhQsXCj1pWdQZxttvv12ffvqpnn76aX3xxRfKysq62pcN1wECESwnNDRUbdq0cZqKkp6eLsMw5O/vX2hZUWPX6tL7NI4fP27uz83NzWnasWOHeQnkWtSqVUtRUVHat29fmf3jXvALLjAwsNiauLg4/eMf/9COHTvUvXt31a5dWxEREdq1a9dV7+dan+IKCAgocqysL38UbL+ofgMDAwvtv0aNGnJ3d3cas9vthYLHn93PtahWrZo6duyo5557TuvWrdPRo0f1wAMPKDk5WW+99ZZTra+vr9N8wX8eihsvOK5r7T8nJ0erV6/WLbfcou7duzstO3XqlC5evKgFCxYUeu/06NFDkgq9f4ra78svv6ynnnpKa9euVefOneXr66s+ffpc9vIdrh/cUg8Uw8fHRzabrch7d9LS0pzmC36hXXoj7OV+Kf3xf8+S5OfnJ5vNpu3btxf5WPTlHpW+nIIzOJfur7SsW7dONptNHTt2LLbG1dVVY8eO1dixY/Xbb79p8+bNeuaZZxQZGanU1NSresLuWvu/9O+oYKx27drmvLu7uzIyMgrVlSR8FijY/rFjxwotO3r0qPz8/Eq87eL2c+ONN5bZfiTJ09NTcXFxWr16tfnE2p91ra+T3W7X1q1bFRkZqS5dumjDhg3y8fGR9Pt71cXFRQMHDtSoUaOK3F9ISIjTfFE/T56enpo6daqmTp2q48ePm2eLevXqpe+++65Ex4mqgzNEQDE8PT3Vpk0brV27Vjk5Oeb42bNntX79eqdaf39/ubu7a9++fU7jH3300VXvLyoqSoZh6Ndffy10BqtNmzZq3rz5NR9Denq61q9fr5YtWxY6C1EalixZok8//VQPPvig6tevf1Xr1KpVS/3799eoUaN0+vRp8+msgsBXWmey3n33XafLeYcPH1ZiYqLTU2XBwcH64YcfnILsqVOnlJiY6LSta+mtffv28vDw0IoVK5zGjxw5os8//1wRERElOZxC7r77bkkqtJ+dO3fq4MGDJd5PUQFFkvnk1+XOBF6LkrxOrVq10rZt23TkyBGFh4frxIkTkn4/y9a5c2d9/fXXatGiRZHvnz8G4avh7++vIUOG6MEHH9T333+v8+fPl/xgUSVwhgi4jGnTpqlnz56KjIzUE088oby8PM2ePVs1a9bU6dOnzbqCe3/eeustNWrUSLfeequ++uorrVy58qr3deedd+qxxx7TI488ol27dqljx47y9PTUsWPHlJCQoObNm+vxxx8vdv3o6GjVr19fbdq0kZ+fn3788UfNmTNHx48fL/Q02dtvv61HH31Ub7311lXdR5SVlWXeg5GVlaWffvpJa9eu1fr169WpUyfzKbni9OrVy/z8pzp16ujw4cOaP3++GjRooMaNG0uSGfheeuklDR48WG5ubmrSpIm8vLyu2F9RTpw4ob59+2r48OHKyMjQlClT5O7urri4OLNm4MCBeu211/Twww9r+PDhOnXqlGbNmlXogx69vLzUoEEDffTRR4qIiJCvr6/8/PzMR/P/qFatWpo8ebKeeeYZDRo0SA8++KBOnTqlqVOnyt3dXVOmTCnR8VyqSZMmeuyxx7RgwQJVq1ZN3bt3188//6zJkycrKChITz75ZIm2e8sttygiIkLdu3dXo0aNdOHCBX355ZeaM2eO/P39zSfW/qySvk6hoaHavn27unTpoo4dO2rz5s268cYb9dJLL+kvf/mL7rrrLj3++OMKDg7WmTNndOjQIX388cf6/PPPr9hTu3btFBUVpRYtWsjHx0cHDx7U8uXL1b59+1L7nDBUYhV4QzdQrgqeBtq5c2eRy4t7UmzNmjVG8+bNjerVqxv169c3XnzxRSMmJsbw8fFxqsvIyDCGDRtm+Pv7G56enkavXr2Mn3/+udinzIp74uett94y2rVrZ3h6ehoeHh5Go0aNjEGDBhm7du267PHNmDHDaNmypeFwOAwXFxejTp06Rt++fY2vvvqq2NeiqKfiLtWpUyenJ/I8PT2Nhg0bGv379zfef/99Iy8vr9A6lz75NWfOHKNDhw6Gn5+f+ToOHTrU+Pnnn53Wi4uLMwIDA41q1aoZkoytW7ea2+vZs2eR/RX3lNny5cuNmJgYo06dOobdbjfuuuuuIl/DZcuWGaGhoYa7u7vRrFkzY/Xq1YWeMjMMw9i8ebPRqlUrw263G5LMfV76lFmBN954w2jRooVRvXp1w+FwGPfee69x4MABp5o/Pj31RwU/I1eSl5dnzJw507j55psNNzc3w8/Pz3j44YeN1NTUIrd3NU+Zvfbaa0a/fv2Mhg0bGjVq1DCqV69uNGrUyPjb3/5WaLuSjFGjRjmNFbyPZs+e7TRe8Pfy/vvvO42X9HU6cuSI0bRpUyM4ONj473//a+770UcfNW644QbDzc3NqFOnjtGhQwfj73//+xX7MAzDePrpp402bdoYPj4+ht1uNxo2bGg8+eSTxv/+978rvm6o+myGcRWPiAAw5ebmqmXLlrrhhhu0cePGim4HAFAKuGQGXMHQoUPVtWtX1atXT2lpaXr11Vd18OBB81OWAQBVH4EIuIIzZ85o/PjxOnnypNzc3HTbbbfpk08+UZcuXSq6NQBAKeGSGQAAsDweuwcAAJZHIAIAAJZHIAIAAJbHTdVXKT8/X0ePHpWXl1eZfQUCAAAoXYZh6MyZMwoMDFS1asWfByIQXaWjR48qKCiootsAAAAlkJqaWuh7//6IQHSVCr4+IDU1tdDH+gMAgMopMzNTQUFBV/waIALRVSq4TObt7U0gAgCgirnS7S4VelP1v//9b/Xq1UuBgYGy2Wxau3atuSw3N1dPPfWUmjdvLk9PTwUGBmrQoEE6evSo0zays7M1ZswY+fn5ydPTU71799aRI0ecatLT0zVw4EA5HA45HA4NHDhQv/32WzkcIQAAqAoqNBCdO3dOt956qxYuXFho2fnz57V7925NnjxZu3fv1ocffqgffvhBvXv3dqqLjY3VmjVrtGrVKiUkJOjs2bOKiopSXl6eWRMdHa09e/Zow4YN2rBhg/bs2aOBAweW+fEBAICqodJ8UrXNZtOaNWvUp0+fYmt27typ22+/XYcPH1b9+vWVkZGhOnXqaPny5XrggQck/f+bnz/55BNFRkbq4MGDatasmXbs2KF27dpJknbs2KH27dvru+++U5MmTa6qv8zMTDkcDmVkZHDJDACAKuJqf39Xqc8hysjIkM1mU61atSRJycnJys3NVbdu3cyawMBAhYWFKTExUZKUlJQkh8NhhiFJuuOOO+RwOMyaomRnZyszM9NpAgAA16cqE4guXLigp59+WtHR0WbCS0tLU/Xq1eXj4+NU6+/vr7S0NLOmbt26hbZXt25ds6YoM2bMMO85cjgcPHIPAMB1rEoEotzcXP31r39Vfn6+Fi1adMV6wzCc7iYv6s7yS2suFRcXp4yMDHNKTU0tWfMAAKDSq/SBKDc3VwMGDFBKSoo2bdrkdP0vICBAOTk5Sk9Pd1rnxIkT8vf3N2uOHz9eaLsnT540a4pit9vNR+x51B4AgOtbpQ5EBWHoxx9/1ObNm1W7dm2n5a1bt5abm5s2bdpkjh07dkz79+9Xhw4dJEnt27dXRkaGvvrqK7Pmyy+/VEZGhlkDAACsrUI/mPHs2bM6dOiQOZ+SkqI9e/bI19dXgYGB6t+/v3bv3q3169crLy/PvOfH19dX1atXl8Ph0NChQzVu3DjVrl1bvr6+Gj9+vJo3b64uXbpIkkJDQ3XPPfdo+PDheu211yRJjz32mKKioq76CTMAAHB9q9DH7r/44gt17ty50PjgwYMVHx+vkJCQItfbunWrwsPDJf1+s/WECRO0cuVKZWVlKSIiQosWLXK6Cfr06dOKiYnRunXrJEm9e/fWwoULzafVrgaP3QMAUPVc7e/vSvM5RJUdgQgAgKrnuvwcIgAAgLJAIAIAAJZHIAIAAJZHIAIAAJZXoY/do7DWE96u6BaASid59qCKbgHAdY4zRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIqNBD9+9//Vq9evRQYGCibzaa1a9c6LTcMQ/Hx8QoMDJSHh4fCw8N14MABp5rs7GyNGTNGfn5+8vT0VO/evXXkyBGnmvT0dA0cOFAOh0MOh0MDBw7Ub7/9VsZHBwAAqooKDUTnzp3TrbfeqoULFxa5fNasWZo7d64WLlyonTt3KiAgQF27dtWZM2fMmtjYWK1Zs0arVq1SQkKCzp49q6ioKOXl5Zk10dHR2rNnjzZs2KANGzZoz549GjhwYJkfHwAAqBpshmEYFd2EJNlsNq1Zs0Z9+vSR9PvZocDAQMXGxuqpp56S9PvZIH9/f82cOVMjRoxQRkaG6tSpo+XLl+uBBx6QJB09elRBQUH65JNPFBkZqYMHD6pZs2basWOH2rVrJ0nasWOH2rdvr++++05NmjS5qv4yMzPlcDiUkZEhb2/v0n8B/p/WE94us20DVVXy7EEV3QKAKupqf39X2nuIUlJSlJaWpm7dupljdrtdnTp1UmJioiQpOTlZubm5TjWBgYEKCwsza5KSkuRwOMwwJEl33HGHHA6HWVOU7OxsZWZmOk0AAOD6VGkDUVpamiTJ39/fadzf399clpaWpurVq8vHx+eyNXXr1i20/bp165o1RZkxY4Z5z5HD4VBQUNCfOh4AAFB5VdpAVMBmsznNG4ZRaOxSl9YUVX+l7cTFxSkjI8OcUlNTr7FzAABQVVTaQBQQECBJhc7inDhxwjxrFBAQoJycHKWnp1+25vjx44W2f/LkyUJnn/7IbrfL29vbaQIAANenShuIQkJCFBAQoE2bNpljOTk52rZtmzp06CBJat26tdzc3Jxqjh07pv3795s17du3V0ZGhr766iuz5ssvv1RGRoZZAwAArM21Ind+9uxZHTp0yJxPSUnRnj175Ovrq/r16ys2NlbTp09X48aN1bhxY02fPl01atRQdHS0JMnhcGjo0KEaN26cateuLV9fX40fP17NmzdXly5dJEmhoaG65557NHz4cL322muSpMcee0xRUVFX/YQZAAC4vlVoINq1a5c6d+5szo8dO1aSNHjwYC1dulQTJ05UVlaWRo4cqfT0dLVr104bN26Ul5eXuc68efPk6uqqAQMGKCsrSxEREVq6dKlcXFzMmnfeeUcxMTHm02i9e/cu9rOPAACA9VSazyGq7PgcIqDi8DlEAEqqyn8OEQAAQHkhEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMur1IHo4sWLevbZZxUSEiIPDw81bNhQ06ZNU35+vlljGIbi4+MVGBgoDw8PhYeH68CBA07byc7O1pgxY+Tn5ydPT0/17t1bR44cKe/DAQAAlVSlDkQzZ87Uq6++qoULF+rgwYOaNWuWZs+erQULFpg1s2bN0ty5c7Vw4ULt3LlTAQEB6tq1q86cOWPWxMbGas2aNVq1apUSEhJ09uxZRUVFKS8vryIOCwAAVDKuFd3A5SQlJenee+9Vz549JUnBwcF69913tWvXLkm/nx2aP3++Jk2apH79+kmSli1bJn9/f61cuVIjRoxQRkaG3nzzTS1fvlxdunSRJK1YsUJBQUHavHmzIiMjK+bgAABApVGpzxD95S9/0ZYtW/TDDz9Ikvbu3auEhAT16NFDkpSSkqK0tDR169bNXMdut6tTp05KTEyUJCUnJys3N9epJjAwUGFhYWZNUbKzs5WZmek0AQCA61OlPkP01FNPKSMjQ02bNpWLi4vy8vL0wgsv6MEHH5QkpaWlSZL8/f2d1vP399fhw4fNmurVq8vHx6dQTcH6RZkxY4amTp1amocDAAAqqUp9hmj16tVasWKFVq5cqd27d2vZsmX6xz/+oWXLljnV2Ww2p3nDMAqNXepKNXFxccrIyDCn1NTUkh8IAACo1Cr1GaIJEybo6aef1l//+ldJUvPmzXX48GHNmDFDgwcPVkBAgKTfzwLVq1fPXO/EiRPmWaOAgADl5OQoPT3d6SzRiRMn1KFDh2L3bbfbZbfby+KwAABAJVOpzxCdP39e1ao5t+ji4mI+dh8SEqKAgABt2rTJXJ6Tk6Nt27aZYad169Zyc3Nzqjl27Jj2799/2UAEAACso1KfIerVq5deeOEF1a9fX7fccou+/vprzZ07V48++qik3y+VxcbGavr06WrcuLEaN26s6dOnq0aNGoqOjpYkORwODR06VOPGjVPt2rXl6+ur8ePHq3nz5uZTZwAAwNoqdSBasGCBJk+erJEjR+rEiRMKDAzUiBEj9Nxzz5k1EydOVFZWlkaOHKn09HS1a9dOGzdulJeXl1kzb948ubq6asCAAcrKylJERISWLl0qFxeXijgsAABQydgMwzAquomqIDMzUw6HQxkZGfL29i6z/bSe8HaZbRuoqpJnD6roFgBUUVf7+7tS30MEAABQHghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8koUiBo2bKhTp04VGv/tt9/UsGHDP90UAABAeSpRIPr555+Vl5dXaDw7O1u//vrrn24KAACgPLleS/G6devMP3/22WdyOBzmfF5enrZs2aLg4OBSaw4AAKA8XFMg6tOnjyTJZrNp8ODBTsvc3NwUHBysOXPmlFpzAAAA5eGaAlF+fr4kKSQkRDt37pSfn1+ZNAUAAFCerikQFUhJSSntPgAAACpMiQKRJG3ZskVbtmzRiRMnzDNHBd56660/3RgAAEB5KVEgmjp1qqZNm6Y2bdqoXr16stlspd0XAABAuSlRIHr11Ve1dOlSDRw4sLT7AQAAKHcl+hyinJwcdejQobR7AQAAqBAlCkTDhg3TypUrS7sXAACAClGiS2YXLlzQ66+/rs2bN6tFixZyc3NzWj537txSaQ4AAKA8lCgQ7du3Ty1btpQk7d+/32kZN1gDAICqpkSBaOvWraXdBwAAQIUp0T1EAAAA15MSnSHq3LnzZS+Nff755yVuCAAAoLyVKBAV3D9UIDc3V3v27NH+/fsLfekrAABAZVeiS2bz5s1zmhYuXKiEhATFxsYWeuLsz/r111/18MMPq3bt2qpRo4Zatmyp5ORkc7lhGIqPj1dgYKA8PDwUHh6uAwcOOG0jOztbY8aMkZ+fnzw9PdW7d28dOXKkVPsEAABVV6neQ/Twww+X6veYpaen684775Sbm5s+/fRTffvtt5ozZ45q1apl1syaNUtz587VwoULtXPnTgUEBKhr1646c+aMWRMbG6s1a9Zo1apVSkhI0NmzZxUVFaW8vLxS6xUAAFRdJf5y16IkJSXJ3d291LY3c+ZMBQUFacmSJeZYcHCw+WfDMDR//nxNmjRJ/fr1kyQtW7ZM/v7+WrlypUaMGKGMjAy9+eabWr58ubp06SJJWrFihYKCgrR582ZFRkaWWr8AAKBqKlEgKggfBQzD0LFjx7Rr1y5Nnjy5VBqTpHXr1ikyMlL333+/tm3bphtuuEEjR47U8OHDJUkpKSlKS0tTt27dzHXsdrs6deqkxMREjRgxQsnJycrNzXWqCQwMVFhYmBITEwlEAACgZIHI4XA4zVerVk1NmjTRtGnTnILHn/XTTz9p8eLFGjt2rJ555hl99dVXiomJkd1u16BBg5SWliZJ8vf3d1rP399fhw8fliSlpaWpevXq8vHxKVRTsH5RsrOzlZ2dbc5nZmaW1mEBAIBKpkSB6I+XsMpSfn6+2rRpo+nTp0uSWrVqpQMHDmjx4sUaNGiQWXfpRwAYhnHFT8y+Us2MGTM0derUP9E9AACoKv7UTdXJyclasWKF3nnnHX399del1ZOpXr16atasmdNYaGiofvnlF0lSQECAJBU603PixAnzrFFAQIBycnKUnp5ebE1R4uLilJGRYU6pqal/+ngAAEDlVKJAdOLECd19991q27atYmJiNHr0aLVu3VoRERE6efJkqTV355136vvvv3ca++GHH9SgQQNJUkhIiAICArRp0yZzeU5OjrZt26YOHTpIklq3bi03NzenmmPHjmn//v1mTVHsdru8vb2dJgAAcH0qUSAaM2aMMjMzdeDAAZ0+fVrp6enav3+/MjMzFRMTU2rNPfnkk9qxY4emT5+uQ4cOaeXKlXr99dc1atQoSb9fKouNjdX06dO1Zs0a7d+/X0OGDFGNGjUUHR0t6ff7nYYOHapx48Zpy5Yt+vrrr/Xwww+refPm5lNnAADA2kp0D9GGDRu0efNmhYaGmmPNmjXTK6+8Uqo3Vbdt21Zr1qxRXFycpk2bppCQEM2fP18PPfSQWTNx4kRlZWVp5MiRSk9PV7t27bRx40Z5eXmZNfPmzZOrq6sGDBigrKwsRUREaOnSpXJxcSm1XgEAQNVlMwzDuNaVvLy8tH379kJf4fH111+rU6dO1+UTWZmZmXI4HMrIyCjTy2etJ7xdZtsGqqrk2YOuXAQARbja398lumR2991364knntDRo0fNsV9//VVPPvmkIiIiSrJJAACAClOiQLRw4UKdOXNGwcHBatSokW666SaFhITozJkzWrBgQWn3CAAAUKZKdA9RUFCQdu/erU2bNum7776TYRhq1qwZNykDAIAq6ZrOEH3++edq1qyZeY9Q165dNWbMGMXExKht27a65ZZbtH379jJpFAAAoKxcUyCaP3++hg8fXuRNSQ6HQyNGjNDcuXNLrTkAAIDycE2BaO/evbrnnnuKXd6tWzclJyf/6aYAAADK0zUFouPHj8vNza3Y5a6urqX6SdUAAADl4ZoC0Q033KBvvvmm2OX79u1TvXr1/nRTAAAA5emaAlGPHj303HPP6cKFC4WWZWVlacqUKYqKiiq15gAAAMrDNT12/+yzz+rDDz/UzTffrNGjR6tJkyay2Ww6ePCgXnnlFeXl5WnSpEll1SsAAECZuKZA5O/vr8TERD3++OOKi4tTwbd+2Gw2RUZGatGiRfL39y+TRgEAAMrKNX8wY4MGDfTJJ58oPT1dhw4dkmEYaty4sXx8fMqiPwAAgDJXok+qliQfHx+1bdu2NHsBAACoECX6LjMAAIDrCYEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYXpUKRDNmzJDNZlNsbKw5ZhiG4uPjFRgYKA8PD4WHh+vAgQNO62VnZ2vMmDHy8/OTp6enevfurSNHjpRz9wAAoLKqMoFo586dev3119WiRQun8VmzZmnu3LlauHChdu7cqYCAAHXt2lVnzpwxa2JjY7VmzRqtWrVKCQkJOnv2rKKiopSXl1fehwEAACqhKhGIzp49q4ceekj//Oc/5ePjY44bhqH58+dr0qRJ6tevn8LCwrRs2TKdP39eK1eulCRlZGTozTff1Jw5c9SlSxe1atVKK1as0DfffKPNmzdX1CEBAIBKpEoEolGjRqlnz57q0qWL03hKSorS0tLUrVs3c8xut6tTp05KTEyUJCUnJys3N9epJjAwUGFhYWZNUbKzs5WZmek0AQCA65NrRTdwJatWrdLu3bu1c+fOQsvS0tIkSf7+/k7j/v7+Onz4sFlTvXp1pzNLBTUF6xdlxowZmjp16p9tHwAAVAGVOhClpqbqiSee0MaNG+Xu7l5snc1mc5o3DKPQ2KWuVBMXF6exY8ea85mZmQoKCrrKzgGgsF+mNa/oFoBKp/5z31R0C5Iq+SWz5ORknThxQq1bt5arq6tcXV21bds2vfzyy3J1dTXPDF16pufEiRPmsoCAAOXk5Cg9Pb3YmqLY7XZ5e3s7TQAA4PpUqQNRRESEvvnmG+3Zs8ec2rRpo4ceekh79uxRw4YNFRAQoE2bNpnr5OTkaNu2berQoYMkqXXr1nJzc3OqOXbsmPbv32/WAAAAa6vUl8y8vLwUFhbmNObp6anatWub47GxsZo+fboaN26sxo0ba/r06apRo4aio6MlSQ6HQ0OHDtW4ceNUu3Zt+fr6avz48WrevHmhm7QBAIA1VepAdDUmTpyorKwsjRw5Uunp6WrXrp02btwoLy8vs2bevHlydXXVgAEDlJWVpYiICC1dulQuLi4V2DkAAKgsbIZhGBXdRFWQmZkph8OhjIyMMr2fqPWEt8ts20BVlTx7UEW3UCq4qRoorKxvqr7a39+V+h4iAACA8kAgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAllepA9GMGTPUtm1beXl5qW7duurTp4++//57pxrDMBQfH6/AwEB5eHgoPDxcBw4ccKrJzs7WmDFj5OfnJ09PT/Xu3VtHjhwpz0MBAACVWKUORNu2bdOoUaO0Y8cObdq0SRcvXlS3bt107tw5s2bWrFmaO3euFi5cqJ07dyogIEBdu3bVmTNnzJrY2FitWbNGq1atUkJCgs6ePauoqCjl5eVVxGEBAIBKxrWiG7icDRs2OM0vWbJEdevWVXJysjp27CjDMDR//nxNmjRJ/fr1kyQtW7ZM/v7+WrlypUaMGKGMjAy9+eabWr58ubp06SJJWrFihYKCgrR582ZFRkaW+3EBAIDKpVKfIbpURkaGJMnX11eSlJKSorS0NHXr1s2ssdvt6tSpkxITEyVJycnJys3NdaoJDAxUWFiYWVOU7OxsZWZmOk0AAOD6VGUCkWEYGjt2rP7yl78oLCxMkpSWliZJ8vf3d6r19/c3l6Wlpal69ery8fEptqYoM2bMkMPhMKegoKDSPBwAAFCJVJlANHr0aO3bt0/vvvtuoWU2m81p3jCMQmOXulJNXFycMjIyzCk1NbVkjQMAgEqvSgSiMWPGaN26ddq6datuvPFGczwgIECSCp3pOXHihHnWKCAgQDk5OUpPTy+2pih2u13e3t5OEwAAuD5V6kBkGIZGjx6tDz/8UJ9//rlCQkKcloeEhCggIECbNm0yx3JycrRt2zZ16NBBktS6dWu5ubk51Rw7dkz79+83awAAgLVV6qfMRo0apZUrV+qjjz6Sl5eXeSbI4XDIw8NDNptNsbGxmj59uho3bqzGjRtr+vTpqlGjhqKjo83aoUOHaty4capdu7Z8fX01fvx4NW/e3HzqDAAAWFulDkSLFy+WJIWHhzuNL1myREOGDJEkTZw4UVlZWRo5cqTS09PVrl07bdy4UV5eXmb9vHnz5OrqqgEDBigrK0sRERFaunSpXFxcyutQAABAJWYzDMOo6CaqgszMTDkcDmVkZJTp/UStJ7xdZtsGqqrk2YMquoVS8cu05hXdAlDp1H/umzLd/tX+/q7U9xABAACUBwIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPEsFokWLFikkJETu7u5q3bq1tm/fXtEtAQCASsAygWj16tWKjY3VpEmT9PXXX+uuu+5S9+7d9csvv1R0awAAoIJZJhDNnTtXQ4cO1bBhwxQaGqr58+crKChIixcvrujWAABABbNEIMrJyVFycrK6devmNN6tWzclJiZWUFcAAKCycK3oBsrD//73P+Xl5cnf399p3N/fX2lpaUWuk52drezsbHM+IyNDkpSZmVl2jUrKy84q0+0DVVFZv+/Ky5kLeRXdAlDplPX7u2D7hmFcts4SgaiAzWZzmjcMo9BYgRkzZmjq1KmFxoOCgsqkNwDFcyz4W0W3AKCszHCUy27OnDkjh6P4fVkiEPn5+cnFxaXQ2aATJ04UOmtUIC4uTmPHjjXn8/Pzdfr0adWuXbvYEIXrR2ZmpoKCgpSamipvb++KbgdAKeL9bS2GYejMmTMKDAy8bJ0lAlH16tXVunVrbdq0SX379jXHN23apHvvvbfIdex2u+x2u9NYrVq1yrJNVELe3t78gwlcp3h/W8flzgwVsEQgkqSxY8dq4MCBatOmjdq3b6/XX39dv/zyi/72N07FAwBgdZYJRA888IBOnTqladOm6dixYwoLC9Mnn3yiBg0aVHRrAACgglkmEEnSyJEjNXLkyIpuA1WA3W7XlClTCl02BVD18f5GUWzGlZ5DAwAAuM5Z4oMZAQAALodABAAALI9ABAAALI9ABFxi6dKlfOYUAFgMgQjXrSFDhshmsxWaDh06VNGtASgFRb2//zgNGTKkoltEFWKpx+5hPffcc4+WLFniNFanTp0K6gZAaTp27Jj559WrV+u5557T999/b455eHg41efm5srNza3c+kPVwhkiXNfsdrsCAgKcppdeeknNmzeXp6engoKCNHLkSJ09e7bYbezdu1edO3eWl5eXvL291bp1a+3atctcnpiYqI4dO8rDw0NBQUGKiYnRuXPnyuPwAEv74/va4XDIZrOZ8xcuXFCtWrX03nvvKTw8XO7u7lqxYoXi4+PVsmVLp+3Mnz9fwcHBTmNLlixRaGio3N3d1bRpUy1atKj8DgwVgkAEy6lWrZpefvll7d+/X8uWLdPnn3+uiRMnFlv/0EMP6cYbb9TOnTuVnJysp59+2vxf5jfffKPIyEj169dP+/bt0+rVq5WQkKDRo0eX1+EAuIynnnpKMTExOnjwoCIjI69qnX/+85+aNGmSXnjhBR08eFDTp0/X5MmTtWzZsjLuFhWJS2a4rq1fv141a9Y057t3767333/fnA8JCdHzzz+vxx9/vNj/Af7yyy+aMGGCmjZtKklq3LixuWz27NmKjo5WbGysuezll19Wp06dtHjxYrm7u5fBUQG4WrGxserXr981rfP8889rzpw55nohISH69ttv9dprr2nw4MFl0SYqAQIRrmudO3fW4sWLzXlPT09t3bpV06dP17fffqvMzExdvHhRFy5c0Llz5+Tp6VloG2PHjtWwYcO0fPlydenSRffff78aNWokSUpOTtahQ4f0zjvvmPWGYSg/P18pKSkKDQ0t+4MEUKw2bdpcU/3JkyeVmpqqoUOHavjw4eb4xYsXr+ob01F1EYhwXfP09NRNN91kzh8+fFg9evTQ3/72Nz3//PPy9fVVQkKChg4dqtzc3CK3ER8fr+joaP3rX//Sp59+qilTpmjVqlXq27ev8vPzNWLECMXExBRar379+mV2XACuzqX/yalWrZou/caqP7738/PzJf1+2axdu3ZOdS4uLmXUJSoDAhEsZdeuXbp48aLmzJmjatV+v4Xuvffeu+J6N998s26++WY9+eSTevDBB7VkyRL17dtXt912mw4cOOAUugBUXnXq1FFaWpoMw5DNZpMk7dmzx1zu7++vG264QT/99JMeeuihCuoSFYFABEtp1KiRLl68qAULFqhXr176z3/+o1dffbXY+qysLE2YMEH9+/dXSEiIjhw5op07d+q+++6T9PsNm3fccYdGjRql4cOHy9PTUwcPHtSmTZu0YMGC8josAFcpPDxcJ0+e1KxZs9S/f39t2LBBn376qby9vc2a+Ph4xcTEyNvbW927d1d2drZ27dql9PR0jR07tgK7R1niKTNYSsuWLTV37lzNnDlTYWFheueddzRjxoxi611cXHTq1CkNGjRIN998swYMGKDu3btr6tSpkqQWLVpo27Zt+vHHH3XXXXepVatWmjx5surVq1dehwTgGoSGhmrRokV65ZVXdOutt+qrr77S+PHjnWqGDRumN954Q0uXLlXz5s3VqVMnLV26VCEhIRXUNcqDzbj0YioAAIDFcIYIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAP7AZrNp7dq1Fd0GgHJGIAJQKZ04cUIjRoxQ/fr1ZbfbFRAQoMjISCUlJVV0awCuQ3yXGYBK6b777lNubq6WLVumhg0b6vjx49qyZYtOnz5d0a1dk5ycHFWvXr2i2wBwBZwhAlDp/Pbbb0pISNDMmTPVuXNnNWjQQLfffrvi4uLUs2dPSb9f2nrttdcUFRWlGjVqKDQ0VElJSTp06JDCw8Pl6emp9u3b67///a/TthcvXqxGjRqpevXqatKkiZYvX37ZXqZNmyZ/f3/zG9ETExPVsWNHeXh4KCgoSDExMTp37pxZHxwcrL///e8aMmSIHA6Hhg8frpycHI0ePVr16tWTu7u7goODL/sdegDKH4EIQKVTs2ZN1axZU2vXrlV2dnaxdc8//7wGDRqkPXv2qGnTpoqOjtaIESMUFxenXbt2SZJGjx5t1q9Zs0ZPPPGExo0bp/3792vEiBF65JFHtHXr1kLbNgxDTzzxhN58800lJCSoZcuW+uabbxQZGal+/fpp3759Wr16tRISEpz2IUmzZ89WWFiYkpOTNXnyZL388stat26d3nvvPX3//fdasWKFgoODS+fFAlA6DACohD744APDx8fHcHd3Nzp06GDExcUZe/fuNZdLMp599llzPikpyZBkvPnmm+bYu+++a7i7u5vzHTp0MIYPH+60n/vvv9/o0aOH03bff/994+GHHzaaNm1qpKammssGDhxoPPbYY07rb9++3ahWrZqRlZVlGIZhNGjQwOjTp49TzZgxY4y7777byM/PL8lLAaAccIYIQKV033336ejRo1q3bp0iIyP1xRdf6LbbbtPSpUvNmhYtWph/9vf3lyQ1b97caezChQvKzMyUJB08eFB33nmn037uvPNOHTx40GnsySefVFJSkrZv364bb7zRHE9OTtbSpUvNM1g1a9ZUZGSk8vPzlZKSYta1adPGaXtDhgzRnj171KRJE8XExGjjxo0lfFUAlBUCEYBKy93dXV27dtVzzz2nxMREDRkyRFOmTDGXu7m5mX+22WzFjuXn5xcaK2AYRqGxrl276tdff9Vnn33mNJ6fn68RI0Zoz5495rR37179+OOPatSokVnn6enptN5tt92mlJQUPf/888rKytKAAQPUv3//a3otAJQtnjIDUGU0a9bsT31GUGhoqBISEjRo0CBzLDExUaGhoU51vXv3Vq9evRQdHS0XFxf99a9/lfR7sDlw4IBuuumma963t7e3HnjgAT3wwAPq37+/7rnnHp0+fVq+vr4lPh4ApYdABKDSOXXqlO6//349+uijatGihby8vLRr1y7NmjVL9957b4m3O2HCBA0YMEC33XabIiIi9PHHH+vDDz/U5s2bC9X27dtXy5cv18CBA+Xq6qr+/fvrqaee0h133KFRo0Zp+PDh8vT01MGDB7Vp0yYtWLCg2P3OmzdP9erVU8uWLVWtWjW9//77CggIUK1atUp8LABKF4EIQKVTs2ZNtWvXTvPmzdN///tf5ebmKigoSMOHD9czzzxT4u326dNHL730kmbPnq2YmBiFhIRoyZIlCg8PL7K+f//+ys/P18CBA1WtWjX169dP27Zt06RJk3TXXXfJMAw1atRIDzzwwBWPZ+bMmfrxxx/l4uKitm3b6pNPPlG1aty1AFQWNsMwjIpuAgAAoCLx3xMAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5/xeQOb2jCm1dIQAAAABJRU5ErkJggg==",
2451
      "text/plain": [
2452
       "<Figure size 640x480 with 1 Axes>"
2453
      ]
2454
     },
2455
     "metadata": {},
2456
     "output_type": "display_data"
2457
    }
2458
   ],
2459
   "source": [
2460
    "#Smokers distribution (smoke)\n",
2461
    "sns.countplot(x='smoke', data=smoke1)\n",
2462
    "plt.title('Figure 5: Distribution of Smokers')\n",
2463
    "plt.xlabel('Smokers')\n",
2464
    "plt.ylabel('Count')\n",
2465
    "plt.show()"
2466
   ]
2467
  },
2468
  {
2469
   "cell_type": "markdown",
2470
   "id": "2db5f01c",
2471
   "metadata": {},
2472
   "source": [
2473
    "```Figure 1``` above shows the distribution plot for gender for all respondents. It can be observed that there are more female than males within the population of the data set. When filtered with smokers in ```Figure 2```, the distribution of age is consistent where there are more female smokers than male smokers within the data set. ```Figure 3``` shows the distribution plot for age for all respondents. The distribution is almost equal however there are more young respondents, then middle-aged, then old respondents. When filtered down with smokers in ```Figure 4```, which shows the age distribution for smokers, there are significant gap changes between ages. ```Figure 5``` shows the distribution of smokers and non-smokers within the data set. It can be observed that a significant portion of the respondents are not smokers.\n",
2474
    "\n",
2475
    "### 5.3 Two-variable <a class=\"anchor\" id=\"5.3\"></a>\n",
2476
    "\n",
2477
    "In this section we will compare the dependent features with our response feature ```smoke```."
2478
   ]
2479
  },
2480
  {
2481
   "cell_type": "code",
2482
   "execution_count": 44,
2483
   "id": "5f25e23f",
2484
   "metadata": {},
2485
   "outputs": [
2486
    {
2487
     "data": {
2488
      "text/plain": [
2489
       "Text(0.5, 0, 'Highest Qualification')"
2490
      ]
2491
     },
2492
     "execution_count": 44,
2493
     "metadata": {},
2494
     "output_type": "execute_result"
2495
    },
2496
    {
2497
     "data": {
2498
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUh0lEQVR4nO3deVgVZf8G8Puww2EH4YABIpsLuPuaWomi4IJraqUmlCbukZpFWuISJuZSuJeKS6aZy2tlKopabgUoLojmAqIFIkosgqzP7w9/zOuRRUXw4Hh/rmuuy3nmmZnvM4cDt7OcoxBCCBARERHJlJamCyAiIiKqTQw7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDsvmMjISCgUigqnKVOmIDk5GQqFApGRkZou9akcOXIEPXv2hIWFBQwNDeHm5obZs2dXe3ve3t7w9PSscFlGRgYUCgVCQ0OltkOHDkGhUODQoUNPtJ9ly5Y998f+WarucQaAY8eOITQ0FP/+++9jrxMREQFXV1fo6elBoVA80brVdebMGYwYMQIuLi4wNDSUfp6DgoIQGxtb6/uvTIMGDRAYGPjM9peZmYnRo0ejfv36UCqVaNq0qdp77nEUFRVh5cqVaNu2LSwtLWFkZAQnJyf07dsXO3bsqJ3CH6FBgwbw9/fXyL5fJDqaLoA0Y+3atWjUqJFam729PWxtbXH8+HG4uLhoqLKnt2nTJrz99tsYPHgw1q9fD2NjY1y5cgX//PPPM6uhVatWOH78OJo0afJE6y1btgzW1tbP9I/Ii+rYsWOYOXMmAgMDYW5u/sj+8fHxmDhxIkaOHImAgADo6OjAxMSkVmtcuXIlxo8fDw8PD7z//vto2rQpFAoFEhMT8f3336Nt27a4fPnyc/1+fVwBAQE4dOgQ5s2bB3d3d5w+fRp79ux5om28/fbb2L59O4KDgzFz5kzo6+vj6tWr2LNnD/bu3Yv+/fvXUvWkaQw7LyhPT0+0adOmwmUvv/zyM67mvry8PBgZGT3VNv7++2+MGjUKQUFBWLZsmdTeuXPnpy3viZiammrsOD6NmngN5CohIQEA8N577+E///lPjWyzquN99OhRjB07Fr169cKPP/4IPT09aVmXLl0wbtw4bN26FYaGhjVSiyaVlJSguLgY+vr6FS6/e/cufvnlF3z44YcYM2YMAMDHxweTJk167H0kJSVhy5Yt+OyzzzBz5kyp3cfHB++99x5KS0ufbhBUp/EyFqmp7DLWf//7XzRr1gz6+vpo2LAhvvrqK4SGhkKhUDxyXQDlLvOUrXvy5EkMHDgQFhYW0v9OhRBYtmwZWrRoAUNDQ1hYWGDgwIG4evXqI+v/9ttvcffuXXz00UfVGn9NqejyytWrV/Hmm2/C3t4e+vr6sLW1hY+PD+Lj4wHcP52dkJCAw4cPS5cWGzRoIK2fkpKCYcOGwcbGBvr6+mjcuDEWLFhQ7pf0jRs3MHDgQJiYmMDc3BxDhw5FTExMudcmMDAQxsbGOHv2LHx9fWFiYgIfHx8AQFRUFPr27YuXXnoJBgYGcHV1RVBQEDIyMtT2VfY6njlzBoMGDYKZmRksLS0xadIkFBcX4+LFi+jevTtMTEzQoEEDhIeHP9bxUygUGD9+PFauXAl3d3fo6+ujSZMm2Lx582Otv2vXLrRv3x5GRkYwMTFBt27dcPz4cbW6P/zwQwCAs7OzdLwruxzm7e2NYcOGAQDatWsHhUKhdvZtzZo1aN68OQwMDGBpaYn+/fsjMTFRbRtVHe+KhIWFQVtbGytXrlQLOg8aNGgQ7O3t1dpiY2PRp08fWFpawsDAAC1btsQPP/yg1qfscvbBgwcxZswYWFtbw8rKCgMGDCh3BrSoqAhTp06FSqWCkZERXnnlFfz5558V1pOWloagoCC89NJL0NPTg7OzM2bOnIni4mKpT9nvifDwcMyZMwfOzs7Q19fHwYMHKz0WWlpaUCgUuHjxYqV9HuX27dsAADs7u0r3Uabs/btp0yZ89NFHsLOzg7GxMXr37o2bN28iJycHo0aNgrW1NaytrfHOO+8gNzdXbXv37t1DSEgInJ2doaenh/r162PcuHGPdelz2bJl0NHRwYwZM6S2/fv3w8fHB6ampjAyMkLHjh1x4MCBahyJF5SgF8ratWsFAHHixAlRVFSkNgkhRFJSkgAg1q5dK63z66+/Ci0tLeHt7S127Nghtm7dKtq1aycaNGggHvwRqmjdMgDEjBkzpPkZM2YIAMLJyUl89NFHIioqSuzcuVMIIcR7770ndHV1xeTJk8WePXvEpk2bRKNGjYStra1IS0urcnxdunQRlpaWYs+ePaJ58+ZCW1tb1KtXTwQFBYmsrKwKj0VF9T6sU6dOomnTpuWOWVFRkUhLSys3voMHDwoA4uDBg1Kbh4eHcHV1FRs2bBCHDx8W27ZtE5MnT5b6nDx5UjRs2FC0bNlSHD9+XBw/flycPHlSCCFEenq6qF+/vqhXr55YsWKF2LNnjxg/frwAIMaMGSPtIzc3V7i6ugpLS0uxdOlSsXfvXvHBBx8IZ2fncmMNCAgQurq6okGDBmLu3LniwIEDYu/evUIIIZYvXy7mzp0rdu3aJQ4fPizWrVsnmjdvLjw8PERhYWG519HDw0PMnj1bREVFialTpwoAYvz48aJRo0bi66+/FlFRUeKdd94RAMS2bdseebwBCAcHB9GkSRPx/fffi127donu3bsLAGLr1q1VHufvvvtOABC+vr5i586dYsuWLaJ169ZCT09P/P7770IIIa5fvy4mTJggAIjt27dLx/vhn5EyCQkJYvr06dIxPH78uLh8+bIQQoiwsDABQLz11lvil19+EevXrxcNGzYUZmZm4q+//nqs4/2w4uJiYWhoKNq3b//IY/Wg6OhooaenJ1599VWxZcsWsWfPHhEYGFjutS/72W/YsKGYMGGC2Lt3r/j222+FhYWF6Ny5s9o2AwIChEKhEB9++KHYt2+fWLhwoahfv74wNTUVAQEBUr/U1FTh4OAgnJycxMqVK8X+/fvF7Nmzhb6+vggMDJT6lf2eqF+/vujcubP48ccfxb59+0RSUlKVYwsICBAARERExBMdkzK5ubnC3NxcqFQqsXLlyir3V/Zz5eTkJAIDA8WePXvEihUrhLGxsejcubPo1q2bmDJliti3b5+YN2+e0NbWFhMmTJDWLy0tFX5+fkJHR0d8+umnYt++feLLL78USqVStGzZUty7d0/q6+TkJHr16iWtN3nyZKGrq6v2em3YsEEoFArRr18/sX37dvHTTz8Jf39/oa2tLfbv31+t4/GiYdh5wZT9kqtoKioqqjCwtG3bVjg4OIiCggKpLScnR1hZWT112Pnss8/U+h0/flwAEAsWLFBrv379ujA0NBRTp06tcnweHh7CwMBAmJiYiLCwMHHw4EERHh4uDA0NRceOHUVpaanUd926dUJbW1usW7euym0KcT/sVHbcyqaqwk5GRoYAIBYvXlzlfpo2bSo6depUrv3jjz8WAMQff/yh1j5mzBihUCjExYsXhRBCLF26VAAQv/76q1q/oKCgCsMOALFmzZoqayotLRVFRUXi2rVrAoD473//Ky0rex0ffr1atGghBYkyRUVFol69emLAgAFV7k+I+z8vhoaGauG2uLhYNGrUSLi6ukptDx/nkpISYW9vL7y8vERJSYnULycnR9jY2IgOHTpIbfPnzxcAHvlHtkzZeycmJkZqy8zMFIaGhqJnz55qfVNSUoS+vr4YMmSI1Pa4x1sIIQXoN998s9yy4uJitbD94M90o0aNRMuWLaX/vJTx9/cXdnZ20jEpG8vYsWPV+oWHhwsAIjU1VQghRGJiogAgPvjgA7V+ZYHywbATFBQkjI2NxbVr19T6fvnllwKASEhIEEL87/eEi4uLWnCuSmpqqmjfvr3w8PAQCoVCrFy58rHWe9gvv/wirK2tpfeslZWVGDRokNi1a5dav7Kfq969e6u1BwcHCwBi4sSJau39+vUTlpaW0vyePXsEABEeHq7Wb8uWLQKAWLVqldRWFnby8vLE66+/LszMzNQCzN27d4WlpWW5WkpKSkTz5s3Ff/7zn2odixcNL2O9oNavX4+YmBi1SUen/C1cd+/eRWxsLPr166d2Kr3slO7Tev3119Xmf/75ZygUCgwbNgzFxcXSpFKp0Lx580c+dVNaWop79+7hk08+QUhICLy9vfHhhx9i7ty5OHr0qNpp3+HDh6O4uBjDhw9/rFpdXFzKHbOYmBjs37//ketaWlrCxcUF8+fPx8KFC3Hq1KknukcgOjoaTZo0KXevSGBgIIQQiI6OBgAcPnwYJiYm6N69u1q/t956q9JtP/waAEB6ejpGjx4NBwcH6OjoQFdXF05OTgBQ7vIMgHJPkzRu3BgKhQI9evSQ2nR0dODq6opr1649YrT3+fj4wNbWVprX1tbGG2+8gcuXL+PGjRsVrnPx4kX8888/ePvtt9UuSxgbG+P111/HiRMnkJeX91j7fxzHjx9Hfn5+uRvKHRwc0KVLlwovM1R0vJ9E69atoaurK00LFiwAAFy+fBkXLlzA0KFDAUDt/dOzZ0+kpqaWuwzUp08ftflmzZoBgPQalV1aKttmmcGDB5f7ffHzzz+jc+fOsLe3V9t32c/A4cOHy+1bV1f3keMtKipCjx49YGNjg4SEBLz33nsYPXo0vv32W6nPkSNHpMtyVenZsydSUlKwY8cOTJkyBU2bNsXOnTvRp08fjB8/vlz/in6uAaBXr17l2u/cuSNdyip7Pz78czFo0CAolcpyPxe3b99Gly5d8Oeff+LIkSNqlzePHTuGO3fuICAgQO24lpaWonv37oiJicHdu3erHDfxBuUXVuPGjSu9QflBmZmZEEKo/dEpU1Hbk3r4+vnNmzcr3R8ANGzYsMrtWVlZ4dKlS/Dz81Nr79GjB4KDg3Hy5El07dq1WrUaGBhUeMwevo+lIgqFAgcOHMCsWbMQHh6OyZMnw9LSEkOHDsXnn3/+yKd6bt++rXb/Tpmy+zXK7ke4ffv2E71WRkZGMDU1VWsrLS2Fr68v/vnnH3z66afw8vKCUqlEaWkpXn75ZeTn55fbjqWlpdq8np4ejIyMYGBgUK49Ozu78oE+QKVSVdp2+/ZtvPTSS+WWV3Vfhr29PUpLS5GZmVljN2E/an9RUVFqbRUd74pYW1vD0NCwwmC4adMm5OXlITU1VS2s3Lx5EwAwZcoUTJkypcLtPvyzamVlpTZfdoNw2WtcNr6HXwsdHZ1y6968eRM//fRTpQHm4X1Xdu/Mw3bu3In4+Hh8++230NbWxooVK6ClpYVRo0ZBW1sb77zzDg4dOgRzc3N06NDhkdszNDREv3790K9fPwD374Xr0aMHli5dijFjxqBp06ZS34p+rqtqv3fvHoyNjXH79m3o6OigXr16av0UCgVUKpV0XMv89ddfyMzMxHvvvVfuIy7KXteBAwdWOqY7d+5AqVQ+augvNIYdqpKFhQUUCoX0hntQWlqa2nzZH7aCggK19off2A968AZn4P4veYVCgd9//73CJzMqe1qjTLNmzXDixIly7UIIAOo3IT5rTk5OWL16NYD7v9x++OEHhIaGorCwECtWrKhyXSsrK6SmppZrL7uZ1NraWupX0c2jD79WZR4+/gBw7tw5nD59GpGRkQgICJDaL1++XGWNNa2imsvaHv5DW6asvbJjpaWlBQsLixqr8VH7K3tdylR0vCuira2NLl26YN++fUhNTVULBmUfZ5CcnKy2Ttm+QkJCMGDAgAq36+Hh8Vj7L1M2vrS0NNSvX19qLy4uLve+tra2RrNmzfD5559XuK2Hb6R+3GNx5coVAJBCokKhwLJly6ClpYWRI0ciKysLCxcuxIcffvjI3w8VcXR0xKhRoxAcHIyEhAS1sFNdVlZWKC4uxq1bt9QCjxACaWlpaNu2rVr/9u3bY9CgQRgxYgQAYPny5dLvqrLXNSIiotInPGviP55yx8tYVCWlUok2bdpg586dKCwslNpzc3Px888/q/W1tbWFgYEBzpw5o9b+3//+97H35+/vDyEE/v77b7Rp06bc5OXlVeX6ZZcIfv31V7X23bt3A9DcY/UPc3d3x/Tp0+Hl5YWTJ09K7fr6+hWeOfHx8cH58+fV+gL3L0cqFArp0fpOnTohJyen3Pgf9ykm4H9/hB7+w7Fy5crH3kZNOHDggFrILikpwZYtW+Di4lLhWR3g/h/z+vXrY9OmTVLABe5fjt22bZv0hBZQ/ixGdbRv3x6GhobYuHGjWvuNGzcQHR1d5dNWjxISEoKSkhKMHj0aRUVFj+zv4eEBNzc3nD59usL3Tps2bZ74c4G8vb0BAN99951a+w8//KD2hBVw/7177tw5uLi4VLjvh8PO4yo707F+/XqpTaFQYOnSpRg5ciQ++OADWFpaYurUqVVuJycnp9wTU2XKLs1Wt8aHlb3uD/9cbNu2DXfv3q3w5yIgIACbN2/G2rVrMXz4cJSUlAAAOnbsCHNzc5w/f77S17Wyp/Xof3hmhx5p1qxZ6NWrF/z8/PD++++jpKQE8+fPh7GxMe7cuSP1K7vXZs2aNXBxcUHz5s3x559/YtOmTY+9r44dO2LUqFF45513EBsbi9deew1KpRKpqak4cuQIvLy8pM/ZqIivry969+6NWbNmSZddYmNjMXPmTPj7++OVV16R+q5fvx7vvvsu1qxZ89j37VTXmTNnMH78eAwaNAhubm7Q09NDdHQ0zpw5g48//ljq5+Xlhc2bN2PLli1o2LAhDAwM4OXlhQ8++ADr169Hr169MGvWLDg5OeGXX37BsmXLMGbMGLi7uwO4/wtz0aJFGDZsGObMmQNXV1f8+uuv2Lt3L4DHO7PVqFEjuLi44OOPP4YQApaWlvjpp5/KXZKpbdbW1ujSpQs+/fRTKJVKLFu2DBcuXKgyuGlpaSE8PBxDhw6Fv78/goKCUFBQgPnz5+Pff//FF198IfUtC85fffUVAgICoKurCw8PjycKBObm5vj000/xySefYPjw4Xjrrbdw+/ZtzJw5EwYGBmqPDj+pjh07YunSpZgwYQJatWqFUaNGoWnTptDS0kJqaiq2bdsGAGqXxVauXIkePXrAz88PgYGBqF+/Pu7cuYPExEScPHkSW7dufaIaGjdujGHDhmHx4sXQ1dVF165dce7cOXz55ZflLsfNmjULUVFR6NChAyZOnAgPDw/cu3cPycnJ2L17N1asWFFpSK1Kr1690LNnT3z++ee4fv06BgwYAD09PZw6dQo7d+6Eg4MDrly5gq+++gqTJ0+udDsXL16En58f3nzzTXTq1Al2dnbIzMzEL7/8glWrVsHb2/uxLoM9jm7dusHPzw8fffQRsrOz0bFjR5w5cwYzZsxAy5Yt8fbbb1e43sCBA2FkZISBAwciPz8f33//PYyNjREREYGAgADcuXMHAwcOhI2NDW7duoXTp0/j1q1bWL58eY3ULWuauzeaNKGiJ0oeVNkTVTt27BBeXl5CT09PODo6ii+++EJMnDhRWFhYqPXLysoSI0eOFLa2tkKpVIrevXuL5OTkSp/GunXrVoV1rFmzRrRr104olUphaGgoXFxcxPDhw0VsbOwjx5iXlyc++ugj4eDgIHR0dISjo6MICQlRe9zzwWPxJI+eV+TWrVuPfBrr5s2bIjAwUDRq1EgolUphbGwsmjVrJhYtWiSKi4ul9ZKTk4Wvr68wMTGRHn0tc+3aNTFkyBBhZWUldHV1hYeHh5g/f77aU0dC3H8SaMCAAcLY2FiYmJiI119/Xezevbvck1QBAQFCqVRWOKbz58+Lbt26CRMTE2FhYSEGDRokUlJSHvt1rGzbVR3HBwEQ48aNE8uWLRMuLi5CV1dXNGrUSHz33Xdq/Sp69FwIIXbu3CnatWsnDAwMhFKpFD4+PuLo0aPl9hMSEiLs7e2FlpZWhdt5UFXvnW+//VY0a9ZM6OnpCTMzM9G3b1/p6aMyVR3vqsTHx4t33nlHODs7C319fWFgYCBcXV3F8OHDxYEDB8r1P336tBg8eLCwsbERurq6QqVSiS5duogVK1Y8ciwVHc+CggIxefJkYWNjIwwMDMTLL78sjh8/LpycnNSexhLi/nth4sSJwtnZWejq6gpLS0vRunVrMW3aNJGbmyuE+N/vmPnz5z/2MSgsLBRffvml8PLyEvr6+kKpVIqXX35ZLFu2TBQVFUkfI/DVV19Vuo3MzEwxZ84c0aVLF1G/fn2hp6cnlEqlaNGihZgzZ47Iy8srdxwe/JiDqo5bRe+D/Px88dFHHwknJyehq6sr7OzsxJgxY0RmZqbaug8+ev7g/o2NjUX37t2lug4fPix69eolLC0tha6urqhfv77o1atXuRqpYgohHjjXS/SYioqK0KJFC9SvXx/79u3TdDn0CGFhYZg+fTpSUlKq9b/rZ02hUGDcuHFYsmSJpkshIhngZSx6LCNGjEC3bt1gZ2eHtLQ0rFixAomJifjqq680XRo9pCwgNGrUCEVFRYiOjsbXX3+NYcOGPRdBh4iopjHs0GPJycnBlClTcOvWLejq6qJVq1bYvXt3tR/jptpjZGSERYsWITk5GQUFBXB0dMRHH32E6dOna7o0IiKN4GUsIiIikjU+ek5ERESyxrBDREREssawQ0RERLLGG5Rx/7uA/vnnH5iYmDz2R5gTERGRZgkhkJOTA3t7+yo/NJVhB/e/w8bBwUHTZRAREVE1XL9+vcqP1mDYAaSPh79+/fpjfSMxERERaV52djYcHBwe+TUvDDv43xcfmpqaMuwQERE9Zx51CwpvUCYiIiJZY9ghIiIiWWPYISIiIlnjPTtERES1oKSkBEVFRZou47mmq6sLbW3tp94Oww4REVENEkIgLS0N//77r6ZLkQVzc3OoVKqn+hw8hh0iIqIaVBZ0bGxsYGRkxA+rrSYhBPLy8pCeng4AsLOzq/a2GHaIiIhqSElJiRR0rKysNF3Oc8/Q0BAAkJ6eDhsbm2pf0uINykRERDWk7B4dIyMjDVciH2XH8mnuf2LYISIiqmG8dFVzauJYMuwQERGRrDHsEBERUTmBgYHo16+fpsuoEQw7REREJGsMO0RERCRrDDtERETPgR9//BFeXl4wNDSElZUVunbtirt370qXm8LCwmBrawtzc3PMnDkTxcXF+PDDD2FpaYmXXnoJa9asUdve2bNn0aVLF2l7o0aNQm5ubqX7j4uLg42NDT7//HMAQFZWFkaNGgUbGxuYmpqiS5cuOH36dK0eg+ri5+wQkeylpKQgIyND02XQU7C2toajo6Omy9CY1NRUvPXWWwgPD0f//v2Rk5OD33//HUIIAEB0dDReeukl/Pbbbzh69ChGjBiB48eP47XXXsMff/yBLVu2YPTo0ejWrRscHByQl5eH7t274+WXX0ZMTAzS09MxcuRIjB8/HpGRkeX2f+jQIfTr1w9z587FmDFjIIRAr169YGlpid27d8PMzAwrV66Ej48P/vrrL1haWj7jI/QIgkRWVpYAILKysjRdChHVsGvXrgkjQ0MBgNNzPBkZGopr165p+sfpkfLz88X58+dFfn5+jW43Li5OABDJycnllgUEBAgnJydRUlIitXl4eIhXX31Vmi8uLhZKpVJ8//33QgghVq1aJSwsLERubq7U55dffhFaWloiLS1N2m7fvn3Fzp07hYmJidi0aZPU98CBA8LU1FTcu3dPrRYXFxexcuXKmhn0/6vqmD7u32+e2SEiWcvIyEBefj6+Hvw63GysNV0OVcOl9AxM/GEbMjIyXtizO82bN4ePjw+8vLzg5+cHX19fDBw4EBYWFgCApk2bQkvrf3em2NrawtPTU5rX1taGlZWV9NULiYmJaN68OZRKpdSnY8eOKC0txcWLF2FrawsA+OOPP/Dzzz9j69at6N+/v9Q3Li4Oubm55T4lOj8/H1euXKn5A/CUGHaI6IXgZmMNr/r2mi6DqFq0tbURFRWFY8eOYd++fYiIiMC0adPwxx9/ALj/7eAPUigUFbaVlpYCuP+9U5V9WN+D7S4uLrCyssKaNWvQq1cv6OnpAQBKS0thZ2eHQ4cOlVvf3Ny8usOsNbxBmYiI6DmgUCjQsWNHzJw5E6dOnYKenh527NhRrW01adIE8fHxuHv3rtR29OhRaGlpwd3dXWqztrZGdHQ0rly5gjfeeEP6yoZWrVohLS0NOjo6cHV1VZusreveGVSGHSIiojrujz/+QFhYGGJjY5GSkoLt27fj1q1baNy4cbW2N3ToUBgYGCAgIADnzp3DwYMHMWHCBLz99tvSJawyNjY2iI6OxoULF/DWW2+huLgYXbt2Rfv27dGvXz/s3bsXycnJOHbsGKZPn47Y2NiaGHKNYtghIiKq40xNTfHbb7+hZ8+ecHd3x/Tp07FgwQL06NGjWtszMjLC3r17cefOHbRt2xYDBw6Ej48PlixZUmF/lUqF6OhonD17FkOHDkVpaSl2796N1157De+++y7c3d3x5ptvIjk5uVxYqgsUQvz/c2svsOzsbJiZmSErKwumpqaaLoeIatDJkyfRunVr/Do+iPfsPKfO/v0PeixZibi4OLRq1UrT5VTp3r17SEpKgrOzMwwMDDRdjixUdUwf9+83z+wQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGs8VvPiYiInoGUlBRkZGQ8k31ZW1vD0dHxmewrMjISwcHB+Pfff5/J/qqDYYeIiKiWpaSkoHGjRsjLz38m+zMyNETihQtPFHgCAwOxbt26cu2XLl2Cq6trTZb3zDHsEBER1bKMjAzk5efj68Gvw83Gulb3dSk9AxN/2IaMjIwnPrvTvXt3rF27Vq2tXr16NVmeRjDsEBERPSNuNtZ1+gtp9fX1oVKp1NoWLlyItWvX4urVq7C0tETv3r0RHh4OY2PjCrdx+vRpBAcHIzY2FgqFAm5ubli5ciXatGkDADh27Bg+/vhjxMTEwNraGv3798fcuXOhVCprbVy8QZmIiIgqpaWlha+//hrnzp3DunXrEB0djalTp1baf+jQoXjppZcQExODuLg4fPzxx9DV1QUAnD17Fn5+fhgwYADOnDmDLVu24MiRIxg/fnytjoFndoiIiAgA8PPPP6udsenRowe2bt0qzTs7O2P27NkYM2YMli1bVuE2UlJS8OGHH6JRo0YAADc3N2nZ/PnzMWTIEAQHB0vLvv76a3Tq1AnLly+HgYFBLYyKYYeIiIj+X+fOnbF8+XJpXqlU4uDBgwgLC8P58+eRnZ2N4uJi3Lt3D3fv3q3w0tOkSZMwcuRIbNiwAV27dsWgQYPg4uICAIiLi8Ply5fx3XffSf2FECgtLUVSUhIaN25cK+PiZSwiIiICcD/cuLq6SlNhYSF69uwJT09PbNu2DXFxcVi6dCkAoKioqMJthIaGIiEhAb169UJ0dDSaNGmCHTt2AABKS0sRFBSE+Ph4aTp9+jQuXbokBaLawDM7REREVKHY2FgUFxdjwYIF0NK6f37khx9+eOR67u7ucHd3xwcffIC33noLa9euRf/+/dGqVSskJCQ880fZeWaHiIiIKuTi4oLi4mJERETg6tWr2LBhA1asWFFp//z8fIwfPx6HDh3CtWvXcPToUcTExEiXpz766CMcP34c48aNQ3x8PC5duoRdu3ZhwoQJtToOntkhIiJ6Ri6l1/4nKNfkPlq0aIGFCxdi3rx5CAkJwWuvvYa5c+di+PDhFfbX1tbG7du3MXz4cNy8eRPW1tYYMGAAZs6cCQBo1qwZDh8+jGnTpuHVV1+FEAIuLi544403aqzmiiiEEKJW9/AcyM7OhpmZGbKysmBqaqrpcoioBp08eRKtW7fGr+OD6vTnm1Dlzv79D3osWYm4uDi0atVK0+VU6d69e0hKSoKzs7Pak0XPwyco11WVHVPg8f9+88wOERFRLXN0dETihQuy/G6s5wHDDhER0TPg6OjIAKIhGr9B+e+//8awYcNgZWUFIyMjtGjRAnFxcdJyIQRCQ0Nhb28PQ0NDeHt7IyEhQW0bBQUFmDBhAqytraFUKtGnTx/cuHHjWQ+FiIiI6iCNhp3MzEx07NgRurq6+PXXX3H+/HksWLAA5ubmUp/w8HAsXLgQS5YsQUxMDFQqFbp164acnBypT3BwMHbs2IHNmzfjyJEjyM3Nhb+/P0pKSjQwKiIiIqpLNHoZa968eXBwcFD7htUGDRpI/xZCYPHixZg2bRoGDBgAAFi3bh1sbW2xadMmBAUFISsrC6tXr5Y+qREANm7cCAcHB+zfvx9+fn7PdExERERUt2j0zM6uXbvQpk0bDBo0CDY2NmjZsiW++eYbaXlSUhLS0tLg6+srtenr66NTp044duwYgPsfPV1UVKTWx97eHp6enlKfhxUUFCA7O1ttIiIiInnSaNi5evUqli9fDjc3N+zduxejR4/GxIkTsX79egBAWloaAMDW1lZtPVtbW2lZWloa9PT0YGFhUWmfh82dOxdmZmbS5ODgUNNDIyIiojpCo2GntLQUrVq1QlhYGFq2bImgoCC89957al9CBgAKhUJtXghRru1hVfUJCQlBVlaWNF2/fv3pBkJERER1lkbDjp2dHZo0aaLW1rhxY6SkpAAAVCoVAJQ7Q5Oeni6d7VGpVCgsLERmZmalfR6mr68PU1NTtYmIiIjkSaM3KHfs2BEXL15Ua/vrr7/g5OQEAHB2doZKpUJUVBRatmwJACgsLMThw4cxb948AEDr1q2hq6uLqKgoDB48GACQmpqKc+fOITw8/BmOhoiIqHIpKSn8UEEN0WjY+eCDD9ChQweEhYVh8ODB+PPPP7Fq1SqsWrUKwP3LV8HBwQgLC4Obmxvc3NwQFhYGIyMjDBkyBABgZmaGESNGYPLkybCysoKlpSWmTJkCLy8v6eksIiIiTUpJSUGjxo2Rn5f3TPZnaGSEC4mJjx14HnVrSEBAACIjI2ugMs3QaNhp27YtduzYgZCQEMyaNQvOzs5YvHgxhg4dKvWZOnUq8vPzMXbsWGRmZqJdu3bYt28fTExMpD6LFi2Cjo4OBg8ejPz8fPj4+CAyMhLa2tqaGBYREZGajIwM5Ofl4fWFX8Pa1a1293X5ErZNmoiMjIzHDjupqanSv7ds2YLPPvtM7cqLoaGhWv+ioiLo6urWTMHPgMa/LsLf3x/+/v6VLlcoFAgNDUVoaGilfQwMDBAREYGIiIhaqJCIiKhmWLu6wd7TS9NllFN2jyxw/4qJQqGQ2pKTk2FnZ4ctW7Zg2bJlOHHiBJYvX45r165h586diI+Pl9ZdvHgxFi9ejOTkZKlt7dq1CA8PR1JSEho0aICJEydi7Nixz2poAOrA10UQERFR3ffRRx9h4sSJSExMfOwP7P3mm28wbdo0fP7550hMTERYWBg+/fRTrFu3rparVafxMztERERU9wUHB0vfZvC4Zs+ejQULFkjrOTs74/z581i5ciUCAgJqo8wKMewQERHRI7Vp0+aJ+t+6dQvXr1/HiBEj8N5770ntxcXFMDMzq+nyqsSwQ0RERI+kVCrV5rW0tCCEUGsrKiqS/l1aWgrg/qWsdu3aqfV71g8QMewQERHRE6tXrx7S0tLUvrHgwZuVbW1tUb9+fVy9elXtKWtNYNghIiKiJ+bt7Y1bt24hPDwcAwcOxJ49e/Drr7+qfStBaGgoJk6cCFNTU/To0QMFBQWIjY1FZmYmJk2a9MxqZdghIiJ6RjIuX5LFPoD7X++0bNkyhIWFYfbs2Xj99dcxZcoU6YOBAWDkyJEwMjLC/PnzMXXqVCiVSnh5eSE4OPiZ1FiGYYeIiKiWWVtbw9DICNsmTXwm+zM0MoK1tXW11g0MDERgYKA036BBg3L35pQZPXo0Ro8erdb2ySefqM0PGTJE+tYDTWHYISIiqmWOjo64kJjI78bSEIYdIiKiZ8DR0ZEBREP4CcpEREQkaww7REREJGsMO0RERDWssht66cnVxLFk2CEiIqohurq6AIC8vDwNVyIfZcey7NhWB29QJiIiqiHa2towNzdHeno6AMDIyEj6dGF6MkII5OXlIT09Hebm5k/1FRMMO0RERDVIpVIBgBR46OmYm5tLx7S6GHaIiIhqkEKhgJ2dHWxsbNS+GJOenK6ubo18aSjDDhERUS3Q1tZ+5t/uTRXjDcpEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrGg07oaGhUCgUapNKpZKWCyEQGhoKe3t7GBoawtvbGwkJCWrbKCgowIQJE2BtbQ2lUok+ffrgxo0bz3ooREREVEdp/MxO06ZNkZqaKk1nz56VloWHh2PhwoVYsmQJYmJioFKp0K1bN+Tk5Eh9goODsWPHDmzevBlHjhxBbm4u/P39UVJSoonhEBERUR2jo/ECdHTUzuaUEUJg8eLFmDZtGgYMGAAAWLduHWxtbbFp0yYEBQUhKysLq1evxoYNG9C1a1cAwMaNG+Hg4ID9+/fDz8/vmY6FiIiI6h6Nh51Lly7B3t4e+vr6aNeuHcLCwtCwYUMkJSUhLS0Nvr6+Ul99fX106tQJx44dQ1BQEOLi4lBUVKTWx97eHp6enjh27FilYaegoAAFBQXSfHZ2dq2NLyUlBRkZGbW2fap91tbWcHR01HQZRERUTRoNO+3atcP69evh7u6OmzdvYs6cOejQoQMSEhKQlpYGALC1tVVbx9bWFteuXQMApKWlQU9PDxYWFuX6lK1fkblz52LmzJk1PJryUlJS0LhRI+Tl59f6vqj2GBkaIvHCBQYeIqLnlEbDTo8ePaR/e3l5oX379nBxccG6devw8ssvAwAUCoXaOkKIcm0Pe1SfkJAQTJo0SZrPzs6Gg4NDdYZQpYyMDOTl5+Prwa/Dzca6xrdPte9SegYm/rANGRkZDDtERM8pjV/GepBSqYSXlxcuXbqEfv36Abh/9sbOzk7qk56eLp3tUalUKCwsRGZmptrZnfT0dHTo0KHS/ejr60NfX792BlEBNxtreNW3f2b7IyIiov/R+NNYDyooKEBiYiLs7Ozg7OwMlUqFqKgoaXlhYSEOHz4sBZnWrVtDV1dXrU9qairOnTtXZdghIiKiF4dGz+xMmTIFvXv3hqOjI9LT0zFnzhxkZ2cjICAACoUCwcHBCAsLg5ubG9zc3BAWFgYjIyMMGTIEAGBmZoYRI0Zg8uTJsLKygqWlJaZMmQIvLy/p6SwiIiJ6sWk07Ny4cQNvvfUWMjIyUK9ePbz88ss4ceIEnJycAABTp05Ffn4+xo4di8zMTLRr1w779u2DiYmJtI1FixZBR0cHgwcPRn5+Pnx8fBAZGQltbW1NDYuIiIjqEI2Gnc2bN1e5XKFQIDQ0FKGhoZX2MTAwQEREBCIiImq4OiIiIpKDOnXPDhEREVFNY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIlmrM2Fn7ty5UCgUCA4OltqEEAgNDYW9vT0MDQ3h7e2NhIQEtfUKCgowYcIEWFtbQ6lUok+fPrhx48Yzrp6IiIjqqjoRdmJiYrBq1So0a9ZMrT08PBwLFy7EkiVLEBMTA5VKhW7duiEnJ0fqExwcjB07dmDz5s04cuQIcnNz4e/vj5KSkmc9DCIiIqqDNB52cnNzMXToUHzzzTewsLCQ2oUQWLx4MaZNm4YBAwbA09MT69atQ15eHjZt2gQAyMrKwurVq7FgwQJ07doVLVu2xMaNG3H27Fns379fU0MiIiKiOkTjYWfcuHHo1asXunbtqtaelJSEtLQ0+Pr6Sm36+vro1KkTjh07BgCIi4tDUVGRWh97e3t4enpKfSpSUFCA7OxstYmIiIjkSUeTO9+8eTNOnjyJmJiYcsvS0tIAALa2tmrttra2uHbtmtRHT09P7YxQWZ+y9Ssyd+5czJw582nLJyIioueAxs7sXL9+He+//z42btwIAwODSvspFAq1eSFEubaHPapPSEgIsrKypOn69etPVjwRERE9NzQWduLi4pCeno7WrVtDR0cHOjo6OHz4ML7++mvo6OhIZ3QePkOTnp4uLVOpVCgsLERmZmalfSqir68PU1NTtYmIiIjkSWNhx8fHB2fPnkV8fLw0tWnTBkOHDkV8fDwaNmwIlUqFqKgoaZ3CwkIcPnwYHTp0AAC0bt0aurq6an1SU1Nx7tw5qQ8RERG92DR2z46JiQk8PT3V2pRKJaysrKT24OBghIWFwc3NDW5ubggLC4ORkRGGDBkCADAzM8OIESMwefJkWFlZwdLSElOmTIGXl1e5G56JiIjoxaTRG5QfZerUqcjPz8fYsWORmZmJdu3aYd++fTAxMZH6LFq0CDo6Ohg8eDDy8/Ph4+ODyMhIaGtra7ByIiIiqivqVNg5dOiQ2rxCoUBoaChCQ0MrXcfAwAARERGIiIio3eKIiIjouaTxz9khIiIiqk0MO0RERCRr1Qo7DRs2xO3bt8u1//vvv2jYsOFTF0VERERUU6oVdpKTkyv8os2CggL8/fffT10UERERUU15ohuUd+3aJf177969MDMzk+ZLSkpw4MABNGjQoMaKIyIiInpaTxR2+vXrB+D+U1IBAQFqy3R1ddGgQQMsWLCgxoojIiIielpPFHZKS0sBAM7OzoiJiYG1tXWtFEVERERUU6r1OTtJSUk1XQcRERFRraj2hwoeOHAABw4cQHp6unTGp8yaNWueujAiIiKimlCtsDNz5kzMmjULbdq0gZ2dHRQKRU3XRURERFQjqhV2VqxYgcjISLz99ts1XQ8RERFRjarW5+wUFhaiQ4cONV0LERERUY2rVtgZOXIkNm3aVNO1EBEREdW4al3GunfvHlatWoX9+/ejWbNm0NXVVVu+cOHCGimOiIiI6GlVK+ycOXMGLVq0AACcO3dObRlvViYiIqK6pFph5+DBgzVdBxEREVGtqNY9O0RERETPi2qd2encuXOVl6uio6OrXRARERFRTapW2Cm7X6dMUVER4uPjce7cuXJfEEpERESkSdUKO4sWLaqwPTQ0FLm5uU9VEBEREVFNqtF7doYNG8bvxSIiIqI6pUbDzvHjx2FgYFCTmyQiIiJ6KtW6jDVgwAC1eSEEUlNTERsbi08//bRGCiMiIiKqCdUKO2ZmZmrzWlpa8PDwwKxZs+Dr61sjhRERERHVhGqFnbVr19Z0HURERES1olphp0xcXBwSExOhUCjQpEkTtGzZsqbqIiIiIqoR1Qo76enpePPNN3Ho0CGYm5tDCIGsrCx07twZmzdvRr169Wq6TiIiIqJqqdbTWBMmTEB2djYSEhJw584dZGZm4ty5c8jOzsbEiRNrukYiIiKiaqvWmZ09e/Zg//79aNy4sdTWpEkTLF26lDcoExERUZ1SrTM7paWl0NXVLdeuq6uL0tLSpy6KiIiIqKZUK+x06dIF77//Pv755x+p7e+//8YHH3wAHx+fGiuOiIiI6GlVK+wsWbIEOTk5aNCgAVxcXODq6gpnZ2fk5OQgIiKipmskIiIiqrZq3bPj4OCAkydPIioqChcuXIAQAk2aNEHXrl1ruj4iIiKip/JEZ3aio6PRpEkTZGdnAwC6deuGCRMmYOLEiWjbti2aNm2K33//vVYKJSIiIqqOJwo7ixcvxnvvvQdTU9Nyy8zMzBAUFISFCxfWWHFERERET+uJws7p06fRvXv3Spf7+voiLi7uqYsiIiIiqilPFHZu3rxZ4SPnZXR0dHDr1q2nLoqIiIiopjxR2Klfvz7Onj1b6fIzZ87Azs7uqYsiIiIiqilPFHZ69uyJzz77DPfu3Su3LD8/HzNmzIC/v3+NFUdERET0tJ7o0fPp06dj+/btcHd3x/jx4+Hh4QGFQoHExEQsXboUJSUlmDZtWm3VSkRERPTEnijs2Nra4tixYxgzZgxCQkIghAAAKBQK+Pn5YdmyZbC1ta2VQomIiIiq44k/VNDJyQm7d+9GZmYmLl++DCEE3NzcYGFhURv1ERERET2Van1dBABYWFigbdu2+M9//lPtoLN8+XI0a9YMpqamMDU1Rfv27fHrr79Ky4UQCA0Nhb29PQwNDeHt7Y2EhAS1bRQUFGDChAmwtraGUqlEnz59cOPGjeoOi4iIiGSm2mGnJrz00kv44osvEBsbi9jYWHTp0gV9+/aVAk14eDgWLlyIJUuWICYmBiqVCt26dUNOTo60jeDgYOzYsQObN2/GkSNHkJubC39/f5SUlGhqWERERFSHaDTs9O7dGz179oS7uzvc3d3x+eefw9jYGCdOnIAQAosXL8a0adMwYMAAeHp6Yt26dcjLy8OmTZsAAFlZWVi9ejUWLFiArl27omXLlti4cSPOnj2L/fv3a3JoREREVEdoNOw8qKSkBJs3b8bdu3fRvn17JCUlIS0tDb6+vlIffX19dOrUCceOHQMAxMXFoaioSK2Pvb09PD09pT4VKSgoQHZ2ttpERERE8qTxsHP27FkYGxtDX18fo0ePxo4dO9CkSROkpaUBQLmnu2xtbaVlaWlp0NPTK3fP0IN9KjJ37lyYmZlJk4ODQw2PioiIiOoKjYcdDw8PxMfH48SJExgzZgwCAgJw/vx5ablCoVDrL4Qo1/awR/UJCQlBVlaWNF2/fv3pBkFERER1lsbDjp6eHlxdXdGmTRvMnTsXzZs3x1dffQWVSgUA5c7QpKenS2d7VCoVCgsLkZmZWWmfiujr60tPgJVNREREJE8aDzsPE0KgoKAAzs7OUKlUiIqKkpYVFhbi8OHD6NChAwCgdevW0NXVVeuTmpqKc+fOSX2IiIjoxfbEHypYkz755BP06NEDDg4OyMnJwebNm3Ho0CHs2bMHCoUCwcHBCAsLg5ubG9zc3BAWFgYjIyMMGTIEAGBmZoYRI0Zg8uTJsLKygqWlJaZMmQIvLy907dpVk0MjIiKiOkKjYefmzZt4++23kZqaCjMzMzRr1gx79uxBt27dAABTp05Ffn4+xo4di8zMTLRr1w779u2DiYmJtI1FixZBR0cHgwcPRn5+Pnx8fBAZGQltbW1NDYuIiIjqEI2GndWrV1e5XKFQIDQ0FKGhoZX2MTAwQEREBCIiImq4OiIiIpKDOnfPDhEREVFNYtghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZ09F0AURERI8jMTFR0yVQNVlbW8PR0VFj+2fYISKiOq2gsBAAMGzYMA1XQtVlaGSEC4mJGgs8DDtERFSnFRcXAwC6TPoQbt5dNFwNPamMy5ewbdJEZGRkMOwQERFVxdzBEfaeXpoug55DvEGZiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZE2jYWfu3Llo27YtTExMYGNjg379+uHixYtqfYQQCA0Nhb29PQwNDeHt7Y2EhAS1PgUFBZgwYQKsra2hVCrRp08f3Lhx41kOhYiIiOoojYadw4cPY9y4cThx4gSioqJQXFwMX19f3L17V+oTHh6OhQsXYsmSJYiJiYFKpUK3bt2Qk5Mj9QkODsaOHTuwefNmHDlyBLm5ufD390dJSYkmhkVERER1iEYfPd+zZ4/a/Nq1a2FjY4O4uDi89tprEEJg8eLFmDZtGgYMGAAAWLduHWxtbbFp0yYEBQUhKysLq1evxoYNG9C1a1cAwMaNG+Hg4ID9+/fDz8/vmY+LiIiI6o46dc9OVlYWAMDS0hIAkJSUhLS0NPj6+kp99PX10alTJxw7dgwAEBcXh6KiIrU+9vb28PT0lPo8rKCgANnZ2WoTERERyVOdCTtCCEyaNAmvvPIKPD09AQBpaWkAAFtbW7W+tra20rK0tDTo6enBwsKi0j4Pmzt3LszMzKTJwcGhpodDREREdUSdCTvjx4/HmTNn8P3335dbplAo1OaFEOXaHlZVn5CQEGRlZUnT9evXq184ERER1Wl1IuxMmDABu3btwsGDB/HSSy9J7SqVCgDKnaFJT0+XzvaoVCoUFhYiMzOz0j4P09fXh6mpqdpERERE8qTRsCOEwPjx47F9+3ZER0fD2dlZbbmzszNUKhWioqKktsLCQhw+fBgdOnQAALRu3Rq6urpqfVJTU3Hu3DmpDxEREb24NPo01rhx47Bp0yb897//hYmJiXQGx8zMDIaGhlAoFAgODkZYWBjc3Nzg5uaGsLAwGBkZYciQIVLfESNGYPLkybCysoKlpSWmTJkCLy8v6eksIiIienFpNOwsX74cAODt7a3WvnbtWgQGBgIApk6divz8fIwdOxaZmZlo164d9u3bBxMTE6n/okWLoKOjg8GDByM/Px8+Pj6IjIyEtrb2sxoKERER1VEaDTtCiEf2USgUCA0NRWhoaKV9DAwMEBERgYiIiBqsjoiIiOSgTtygTERERFRbGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1jT6NBbR8yIxMVHTJVA18bUjIoYdoioUFBYCAIYNG6bhSuhplb2WRPTiYdghqkJxcTEAoMukD+Hm3UXD1VB1XDoUjeiF86XXkohePAw7RI/B3MER9p5emi6DquHWlcuaLoGINIw3KBMREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkaxpNOz89ttv6N27N+zt7aFQKLBz50615UIIhIaGwt7eHoaGhvD29kZCQoJan4KCAkyYMAHW1tZQKpXo06cPbty48QxHQURERHWZRsPO3bt30bx5cyxZsqTC5eHh4Vi4cCGWLFmCmJgYqFQqdOvWDTk5OVKf4OBg7NixA5s3b8aRI0eQm5sLf39/lJSUPKthEBERUR2mo8md9+jRAz169KhwmRACixcvxrRp0zBgwAAAwLp162Bra4tNmzYhKCgIWVlZWL16NTZs2ICuXbsCADZu3AgHBwfs378ffn5+z2wsREREVDfV2Xt2kpKSkJaWBl9fX6lNX18fnTp1wrFjxwAAcXFxKCoqUutjb28PT09PqU9FCgoKkJ2drTYRERGRPNXZsJOWlgYAsLW1VWu3tbWVlqWlpUFPTw8WFhaV9qnI3LlzYWZmJk0ODg41XD0RERHVFXU27JRRKBRq80KIcm0Pe1SfkJAQZGVlSdP169drpFYiIiKqe+ps2FGpVABQ7gxNenq6dLZHpVKhsLAQmZmZlfapiL6+PkxNTdUmIiIikqc6G3acnZ2hUqkQFRUltRUWFuLw4cPo0KEDAKB169bQ1dVV65Oamopz585JfYiIiOjFptGnsXJzc3H58mVpPikpCfHx8bC0tISjoyOCg4MRFhYGNzc3uLm5ISwsDEZGRhgyZAgAwMzMDCNGjMDkyZNhZWUFS0tLTJkyBV5eXtLTWURERPRi02jYiY2NRefOnaX5SZMmAQACAgIQGRmJqVOnIj8/H2PHjkVmZibatWuHffv2wcTERFpn0aJF0NHRweDBg5Gfnw8fHx9ERkZCW1v7mY+HiIiI6h6Nhh1vb28IISpdrlAoEBoaitDQ0Er7GBgYICIiAhEREbVQIRERET3v6uw9O0REREQ1gWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZE02YWfZsmVwdnaGgYEBWrdujd9//13TJREREVEdIIuws2XLFgQHB2PatGk4deoUXn31VfTo0QMpKSmaLo2IiIg0TBZhZ+HChRgxYgRGjhyJxo0bY/HixXBwcMDy5cs1XRoRERFp2HMfdgoLCxEXFwdfX1+1dl9fXxw7dkxDVREREVFdoaPpAp5WRkYGSkpKYGtrq9Zua2uLtLS0CtcpKChAQUGBNJ+VlQUAyM7OrtHacnNzAQBn/k7F3cLCGt02PRvnU+//DGVcvoTkP09ouBqqjozLlwD8/2up89z/ynsh8X34fLt99QqA+38Ta/rvbNn2hBBVdxTPub///lsAEMeOHVNrnzNnjvDw8KhwnRkzZggAnDhx4sSJEycZTNevX68yKzz3/82xtraGtrZ2ubM46enp5c72lAkJCcGkSZOk+dLSUty5cwdWVlZQKBS1Wi89X7Kzs+Hg4IDr16/D1NRU0+UQvZD4PqTKCCGQk5MDe3v7Kvs992FHT08PrVu3RlRUFPr37y+1R0VFoW/fvhWuo6+vD319fbU2c3Pz2iyTnnOmpqb8JUukYXwfUkXMzMwe2ee5DzsAMGnSJLz99tto06YN2rdvj1WrViElJQWjR4/WdGlERESkYbIIO2+88QZu376NWbNmITU1FZ6enti9ezecnJw0XRoRERFpmCzCDgCMHTsWY8eO1XQZJDP6+vqYMWNGucueRPTs8H1IT0shxKOe1yIiIiJ6fj33HypIREREVBWGHSIiIpI1hh0iIiKSNYYdoieUnJwMhUKB+Ph4TZdCRFVo0KABFi9erOkyqA5g2KEXQmBgIBQKRYWfvTR27FgoFAoEBgY++8KIZKLsPfbwdPnyZU2XRsSwQy8OBwcHbN68Gfn5+VLbvXv38P3338PR0VGDlRHJQ/fu3ZGamqo2OTs7a7osIoYdenG0atUKjo6O2L59u9S2fft2ODg4oGXLllLbnj178Morr8Dc3BxWVlbw9/fHlStXqtz2+fPn0bNnTxgbG8PW1hZvv/02MjIyam0sRHWRvr4+VCqV2qStrY2ffvoJrVu3hoGBARo2bIiZM2eiuLhYWk+hUGDlypXw9/eHkZERGjdujOPHj+Py5cvw9vaGUqlE+/bt1d6HV65cQd++fWFrawtjY2O0bdsW+/fvr7K+rKwsjBo1CjY2NjA1NUWXLl1w+vTpWjseVHcw7NAL5Z133sHatWul+TVr1uDdd99V63P37l1MmjQJMTExOHDgALS0tNC/f3+UlpZWuM3U1FR06tQJLVq0QGxsLPbs2YObN29i8ODBtToWoufB3r17MWzYMEycOBHnz5/HypUrERkZic8//1yt3+zZszF8+HDEx8ejUaNGGDJkCIKCghASEoLY2FgAwPjx46X+ubm56NmzJ/bv349Tp07Bz88PvXv3RkpKSoV1CCHQq1cvpKWlYffu3YiLi0OrVq3g4+ODO3fu1N4BoLqhyu9EJ5KJgIAA0bdvX3Hr1i2hr68vkpKSRHJysjAwMBC3bt0Sffv2FQEBARWum56eLgCIs2fPCiGESEpKEgDEqVOnhBBCfPrpp8LX11dtnevXrwsA4uLFi7U5LKI6IyAgQGhrawulUilNAwcOFK+++qoICwtT67thwwZhZ2cnzQMQ06dPl+aPHz8uAIjVq1dLbd9//70wMDCosoYmTZqIiIgIad7JyUksWrRICCHEgQMHhKmpqbh3757aOi4uLmLlypVPPF56vsjm6yKIHoe1tTV69eqFdevWSf/Ts7a2Vutz5coVfPrppzhx4gQyMjKkMzopKSnw9PQst824uDgcPHgQxsbG5ZZduXIF7u7utTMYojqmc+fOWL58uTSvVCrh6uqKmJgYtTM5JSUluHfvHvLy8mBkZAQAaNasmbTc1tYWAODl5aXWdu/ePWRnZ8PU1BR3797FzJkz8fPPP+Off/5BcXEx8vPzKz2zExcXh9zcXFhZWam15+fnP/IyNT3/GHbohfPuu+9Kp8OXLl1abnnv3r3h4OCAb775Bvb29igtLYWnpycKCwsr3F5paSl69+6NefPmlVtmZ2dXs8UT1WFl4eZBpaWlmDlzJgYMGFCuv4GBgfRvXV1d6d8KhaLStrL/fHz44YfYu3cvvvzyS7i6usLQ0BADBw6s8n1qZ2eHQ4cOlVtmbm7+eAOk5xbDDr1wunfvLv1C9PPzU1t2+/ZtJCYmYuXKlXj11VcBAEeOHKlye61atcK2bdvQoEED6OjwLUX0oFatWuHixYvlQtDT+v333xEYGIj+/fsDuH8PT3JycpV1pKWlQUdHBw0aNKjRWqju4w3K9MLR1tZGYmIiEhMToa2trbbMwsICVlZWWLVqFS5fvozo6GhMmjSpyu2NGzcOd+7cwVtvvYU///wTV69exb59+/Duu++ipKSkNodCVOd99tlnWL9+PUJDQ5GQkIDExERs2bIF06dPf6rturq6Yvv27YiPj8fp06cxZMiQSh8iAICuXbuiffv26NevH/bu3Yvk5GQcO3YM06dPl26AJvli2KEXkqmpKUxNTcu1a2lpYfPmzYiLi4Onpyc++OADzJ8/v8pt2dvb4+jRoygpKYGfnx88PT3x/vvvw8zMDFpafIvRi83Pzw8///wzoqKi0LZtW7z88stYuHAhnJycnmq7ixYtgoWFBTp06IDevXvDz88PrVq1qrS/QqHA7t278dprr+Hdd9+Fu7s73nzzTSQnJ0v3CJF8KYQQQtNFEBEREdUW/reTiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh+gFEhkZ+cTfAxQYGIh+/frVSj11WXJyMhQKBeLj4wEAhw4dgkKhwL///iv12blzJ1xdXaGtrY3g4OBqHd/q8Pb2RnBwcK3vh0guGHaIZKCyQPLwH+g33ngDf/3117Mt7hEqChGVKSkpwaJFi9CsWTMYGBjA3NwcPXr0wNGjR2u9zg4dOiA1NRVmZmZSW1BQEAYOHIjr169j9uzZNX58Kzs227dvx+zZs2tsP0Ryx7BD9AIxNDSEjY2NpsuoFiEE3nzzTcyaNQsTJ05EYmIiDh8+DAcHB3h7e2Pnzp21un89PT2oVCrp27dzc3ORnp4OPz8/2Nvbw8TE5JkdX0tLS5iYmNT6fojkgmGH6AVS0WWWOXPmwMbGBiYmJhg5ciQ+/vhjtGjRoty6X375Jezs7GBlZYVx48ahqKhIWlZYWIipU6eifv36UCqVaNeuHQ4dOiQtv3btGnr37g0LCwsolUo0bdoUu3fvRnJyMjp37gzg/pewKhQKBAYGVlj7Dz/8gB9//BHr16/HyJEj4ezsjObNm2PVqlXo06cPRo4cibt37wKo+ExXcHAwvL29pfk9e/bglVdegbm5OaysrODv748rV65UeuwePMty6NAhKWx06dIFCoUChw4dqvD47tq1C23atIGBgQGsra0xYMAAadnGjRvRpk0bmJiYQKVSYciQIUhPTweAKo/Nw5exMjMzMXz4cFhYWMDIyAg9evTApUuXpOVlde3duxeNGzeGsbExunfvjtTU1ErHSyQnDDtEL7DvvvsOn3/+OebNm4e4uDg4Ojpi+fLl5fodPHgQV65cwcGDB7Fu3TpERkYiMjJSWv7OO+/g6NGj2Lx5M86cOYNBgwahe/fu0h/ccePGoaCgAL/99hvOnj2LefPmwdjYGA4ODti2bRsA4OLFi0hNTcVXX31VYa2bNm2Cu7s7evfuXW7Z5MmTcfv2bURFRT322O/evYtJkyYhJiYGBw4cgJaWFvr371/lN2eX6dChAy5evAgA2LZtG1JTU9GhQ4dy/X755RcMGDAAvXr1wqlTp3DgwAG0adNGWl5YWIjZs2fj9OnT2LlzJ5KSkqRA8yTHJjAwELGxsdi1axeOHz8OIQR69uypFkjz8vLw5ZdfYsOGDfjtt9+QkpKCKVOmPPbxInquCSJ67gUEBAhtbW2hVCrVJgMDAwFAZGZmCiGEWLt2rTAzM5PWa9eunRg3bpzatjp27CiaN2+utm0nJydRXFwstQ0aNEi88cYbQgghLl++LBQKhfj777/VtuPj4yNCQkKEEEJ4eXmJ0NDQCms/ePCgWo2VadSokejbt2+Fy+7cuSMAiHnz5kk1P9z3/fffF506dap0++np6QKAOHv2rBBCiKSkJAFAnDp1qsI6MzMzBQBx8OBBaRsPH9/27duLoUOHVjmuB/35558CgMjJyalwn2U6deok3n//fSGEEH/99ZcAII4ePSotz8jIEIaGhuKHH36Q6gIgLl++LPVZunSpsLW1fezaiJ5nPLNDJBOdO3dGfHy82vTtt99Wuc7Fixfxn//8R63t4XkAaNq0KbS1taV5Ozs76XLLyZMnIYSAu7s7jI2Npenw4cPSZaGJEydizpw56NixI2bMmIEzZ8487XArpKen99h9r1y5giFDhqBhw4YwNTWFs7MzACAlJaXG6omPj4ePj0+ly0+dOoW+ffvCyckJJiYm0mW2J6khMTEROjo6aNeundRmZWUFDw8PJCYmSm1GRkZwcXGR5h98DYnkTkfTBRBRzVAqlXB1dVVru3HjxiPXK7vhtowQolwfXV3dcuuUXe4pLS2FtrY24uLi1AIRABgbGwMARo4cCT8/P/zyyy/Yt28f5s6diwULFmDChAmPHtj/c3Nzw/nz5ytcVvZH3d3dHQCgpaVVbhwPXtIBgN69e8PBwQHffPMN7O3tUVpaCk9PTxQWFj52TY9iaGhY6bK7d+/C19cXvr6+2LhxI+rVq4eUlBT4+fk9UQ0VvV5l7Q++thW9hpWtSyQ3PLND9ALz8PDAn3/+qdYWGxv7RNto2bIlSkpKkJ6eDldXV7VJpVJJ/RwcHDB69Ghs374dkydPxjfffAPgf2djSkpKqtzPW2+9hUuXLuGnn34qt2zBggWwt7dHt27dAAD16tUrd/Nt2eflAMDt27eRmJiI6dOnw8fHB40bN0ZmZuYTjftxNGvWDAcOHKhw2YULF5CRkYEvvvgCr776Kho1alTuTMvjHJsmTZqguLgYf/zxh9R2+/Zt/PXXX2jcuHENjILo+cewQ/QCmzBhAlavXo1169bh0qVLmDNnDs6cOVPubE9V3N3dMXToUAwfPhzbt29HUlISYmJiMG/ePOzevRvA/Seh9u7di6SkJJw8eRLR0dHSH2InJycoFAr8/PPPuHXrFnJzcyvcz5tvvol+/fohICAAq1evRnJyMs6cOYOgoCD8/PPP2Lhxo3T2okuXLoiNjcX69etx6dIlzJgxA+fOnZO2ZWFhASsrK6xatQqXL19GdHQ0Jk2aVN3DWKkZM2bg+++/x4wZM5CYmIizZ88iPDwcAODo6Ag9PT1ERETg6tWr2LVrV7nPznmcY+Pm5oa+ffvivffew5EjR3D69GkMGzYM9evXR9++fWt8TETPI4YdohfY0KFDERISgilTpqBVq1bS00AGBgZPtJ21a9di+PDhmDx5Mjw8PNCnTx/88ccfcHBwAHD/zMS4cePQuHFjdO/eHR4eHli2bBkAoH79+pg5cyY+/vhj2NraYvz48RXuQ6FQYOvWrfjkk0+waNEieHh4oHnz5vjxxx9x6tQp6TFtAPDz88Onn36KqVOnom3btsjJycHw4cOl5VpaWti8eTPi4uLg6emJDz74APPnz3/Sw/dI3t7e2Lp1K3bt2oUWLVqgS5cu0hmYevXqITIyElu3bkWTJk3wxRdf4Msvv1Rb/3GPzdq1a9G6dWv4+/ujffv2EEJg9+7d5S5dEb2oFIIXbYnoAd26dYNKpcKGDRs0XcojnTx5El27dsWIESNqJawQkTzwzA7RCywvLw8LFy5EQkICLly4gBkzZmD//v0ICAjQdGmPpVWrVjhw4ACUSmWVHwhIRC82ntkheoHl5+ejd+/eOHnyJAoKCuDh4YHp06erfcovEdHzjmGHiIiIZI2XsYiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNb+DxJzkvIhIteLAAAAAElFTkSuQmCC",
2499
      "text/plain": [
2500
       "<Figure size 640x480 with 1 Axes>"
2501
      ]
2502
     },
2503
     "metadata": {},
2504
     "output_type": "display_data"
2505
    }
2506
   ],
2507
   "source": [
2508
    "#Histogram plot gender & smoke\n",
2509
    "sns.histplot(binwidth=1,\n",
2510
    "            x=\"gender\",\n",
2511
    "            hue=\"smoke\",\n",
2512
    "            data=smoke1,\n",
2513
    "            stat=\"count\",\n",
2514
    "            multiple=\"dodge\",\n",
2515
    "            palette='hls')\n",
2516
    "plt.title('Figure 6: Histogram plot for Gender & Smoke ')\n",
2517
    "plt.xlabel('Highest Qualification')"
2518
   ]
2519
  },
2520
  {
2521
   "cell_type": "code",
2522
   "execution_count": 45,
2523
   "id": "85a0f8f1",
2524
   "metadata": {},
2525
   "outputs": [
2526
    {
2527
     "data": {
2528
      "text/plain": [
2529
       "Text(0.5, 0, 'Highest Qualification')"
2530
      ]
2531
     },
2532
     "execution_count": 45,
2533
     "metadata": {},
2534
     "output_type": "execute_result"
2535
    },
2536
    {
2537
     "data": {
2538
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHACAYAAABEa6kcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABtMUlEQVR4nO3deVxN+f8H8Nct7RKVNipbKoqx0wyliOyyL6NmmDHGMg0GWUaMERnLYJgNMYYw1rFHylgn2WJiMCVGSaSitH5+f/TrfF3dUrl1c+f1fDzug/s5n3M+yz3n3nef8znnyIQQAkRERERqSkPVFSAiIiKqSAx2iIiISK0x2CEiIiK1xmCHiIiI1BqDHSIiIlJrDHaIiIhIrTHYISIiIrXGYIeIiIjUGoMdIiIiUmsMdl4RHBwMmUym8DV16lTExcVBJpMhODhY1VUtF19f32LbJ5PJcO7cuXJt183NDU5OTgqXJScnQyaTISAgQEoLDw+HTCZDeHh4mcpZs2bNW9v3qlDefgaAM2fOICAgAE+fPi31OqtWrUKjRo2gra0NmUxWpnXLqvBYvXDhgsLlvXr1Qr169eTS6tWrB19f33KVV9I+XlEePHiAgIAAXL58uUzrxcTEwNfXFzY2NtDR0UHt2rXRq1cvHD16tGIq+oqAgADIZDK5NDc3N7i5ucmlxcXFoWfPnjA2NoZMJoOfn1+Ff8dmZGQgICBA4TFRuE/FxcVVSNmv8+LFC/j7+6NevXrQ09NDo0aNMG7cuDJtQwiBkJAQdOzYEWZmZtDV1UXdunXRrVs3/PzzzxVU85Kp4th5VTWVll6FbdiwAQ4ODnJpVlZWMDc3x9mzZ9GwYUMV1ezNzJkzB5988kmR9N69e0NHRwdt2rSplHq0bNkSZ8+eRZMmTcq03po1a2BqalruHywqvTNnzmDevHnw9fVFzZo1X5v/8uXLmDRpEsaMGQMfHx9Uq1YNhoaGFV/RMti9ezdq1Kih6mqU2oMHDzBv3jzUq1cP77zzTqnW2bVrF4YPH44GDRpgzpw5sLe3x8OHD7FhwwZ069YNs2fPxldffVWxFVdgzZo1RdI+//xznD9/HuvXr4eFhQUsLS1hYWFRod+xGRkZmDdvHgAUCb569uyJs2fPwtLSskLKfp1p06Zh7dq1WLBgAdq0aYObN2+WOUDx9/fH4sWL8dFHH+GLL76AoaEh7t69i7CwMOzduxdjxoypoNpXbQx2iuHk5ITWrVsrXNa+fftKrk2BjIwM6Ovrv9E2GjZsWORLJCIiAsnJyZg9ezY0NTXfaPulVaNGDZX145tQxmegrq5fvw4A+Oijj9C2bVulbFPZ/d2iRQulbasqunPnDt5//304OzsjPDwcBgYG0rJBgwZh3LhxWLBgAVq2bIn+/ftXat0U/WFz7do1tG3bFv369ZNLV9V3Q+3atVG7dm2VlA0A27Ztw4ABAzB9+nQAgLu7e5lGdjIzM7FixQqMGjUKP/74o9wyX19f5OfnK7W+bxOexiqj4oZY9+7di2bNmkFHRwcNGjTAt99+W2Qot6Th2VdP8xSue/HiRQwcOBC1atWSghQhBNasWYN33nkHenp6qFWrFgYOHIh//vmnXG1at24dZDIZPvzww3KtXx6KTq/8888/GDp0KKysrKCjowNzc3N4eHhIQ/j16tXD9evXERERIZ12e/k0RXx8PEaOHAkzMzPo6OjA0dERS5cuLXKA379/HwMHDoShoSFq1qyJESNGIDIysshn4+vri+rVqyM6Ohqenp4wNDSEh4cHACA0NBR9+/ZF3bp1oauri0aNGmHs2LFITk6WK6vwc7x69SoGDRoEIyMjGBsbY/LkycjNzcXNmzfRvXt3GBoaol69eggKCipV/8lkMkyYMAE//PADGjduDB0dHTRp0gQhISGlWn/fvn3o0KED9PX1YWhoiK5du+Ls2bNy9f7iiy8AAPXr15f6u7jTYW5ubhg5ciQAoF27dpDJZHKjb+vXr0fz5s2hq6sLY2Nj9O/fHzExMXLbKKm/lUXRaazr16/D09MT+vr6qF27NsaPH48DBw4U297IyEh07NgR+vr6aNCgARYtWlRkH0tLS8PUqVNRv359aGtro06dOvDz88Pz58/l8u3YsQPt2rWDkZGRtL3C4zA8PFwaaf3ggw+kz+Dl74lXLV++HBkZGVi1apVcoFNo6dKlqFmzptzIjqJTToDiUzrbtm2Dp6cnLC0toaenB0dHR8yYMaNIuxR5+TRW4fF/+/ZtHDp0SGpbXFxcsd+TN27cwLBhw2Bubg4dHR3Y2Nhg1KhRyMrKAgA8evQIn376KZo0aYLq1avDzMwM7u7u+OOPP6RtxMXFScHMvHnzpHIL94niTmOVZf+9ffs2evTogerVq8Pa2hpTpkyR6vg6mpqauHXrFsr7fO7nz58jKyur2JEpDY3//eQX9vOSJUuwePFi6dSZm5sb/v77b+Tk5GDGjBmwsrKCkZER+vfvj6SkJLnt5efnIygoCA4ODtDR0YGZmRlGjRqF+/fvv7auu3fvhr6+PsaMGYPc3FwAwIULF9CnTx8YGxtDV1cXLVq0wPbt28vVF0XarpStqKG8vDzk5ubKvYpz+PBheHt7w8TEBNu2bUNQUBC2bt2KjRs3vnE9vL290ahRI+zYsQPff/89AGDs2LHw8/NDly5dsGfPHqxZswbXr1+Hi4sLHj58WKbtp6am4rfffoOHhwfq168vt6zwwC/LufNX+yw3Nxd5eXmlWrdHjx6IiopCUFAQQkNDsXbtWrRo0UKa97F79240aNAALVq0wNmzZ3H27Fns3r0bQMEXnYuLC44ePYqvvvoK+/btQ5cuXTB16lRMmDBBKuP58+fo3LkzTpw4gcWLF2P79u0wNzfHkCFDFNYpOzsbffr0gbu7O/bu3SsNf9+5cwcdOnTA2rVrcfToUXz55Zc4f/483nvvPeTk5BTZzuDBg9G8eXPs3LkTH330EZYvX47PP/8c/fr1Q8+ePbF79264u7tj+vTp2LVrV6n6a9++fVi5ciXmz5+P3377Dba2thg2bBh+++23EtfbsmUL+vbtixo1amDr1q1Yt24dUlJS4ObmhlOnTgEAxowZg4kTJwIoOC1S2N8tW7ZUuM01a9Zg9uzZAApOAZ89exZz5swBAAQGBmL06NFo2rQpdu3ahW+//RZXr15Fhw4dcOvWrVL1d0kUHau5ubml+sFISEiAq6srbt68ibVr12LTpk1IT0+X22delpiYiBEjRmDkyJHYt28fvLy84O/vj82bN0t5MjIy4Orqio0bN2LSpEk4dOgQpk+fjuDgYPTp00eq19mzZzFkyBA0aNAAISEhOHDgAL788kvpu6Zly5bYsGEDAGD27NnSZ1DSaYjQ0FCYm5sXOzKir68PT09PXLp0qcgPV2ncunULPXr0wLp163D48GH4+flh+/bt6N27d5m2U3ga28LCAu+++67UtuJ+pK9cuYI2bdrg3LlzmD9/Pg4dOoTAwEBkZWUhOzsbAPDkyRMAwNy5c3HgwAFs2LABDRo0gJubmxS0Wlpa4vDhwwCA0aNHS+UW7quKlGX/zcnJQZ8+feDh4YG9e/fiww8/xPLly7F48eJS9cvHH3+MixcvSn9olJWpqSkaNWqENWvWYNmyZbhx48Zrj4PvvvsOp0+fxnfffYeff/4ZN27cQO/evTF69Gg8evQI69evR1BQEI4dO1Zk3xs3bhymT5+Orl27Yt++ffjqq69w+PBhuLi4FPnD72XLly/HoEGDMHPmTPz888+oVq0aTpw4gXfffRdPnz7F999/j7179+Kdd97BkCFDlDN/S5CcDRs2CAAKXzk5OSI2NlYAEBs2bJDWadOmjbC2thZZWVlSWnp6ujAxMREvd7GidQsBEHPnzpXez507VwAQX375pVy+s2fPCgBi6dKlcun37t0Tenp6Ytq0aWVq79q1awUAsXXr1iLLNm7cKDQ1NcXGjRtfux1XV9di+63w9XL7Tpw4IQCIEydOCCGESE5OFgDEihUrSiynadOmwtXVtUj6jBkzBABx/vx5ufRx48YJmUwmbt68KYQQ4rvvvhMAxKFDh+TyjR07tshn4+PjIwCI9evXl1in/Px8kZOTI+7evSsAiL1790rLCj/HVz+vd955RwAQu3btktJycnJE7dq1hbe3d4nlCVGwv+jp6YnExEQpLTc3Vzg4OIhGjRpJaa/2c15enrCyshLOzs4iLy9Pypeeni7MzMyEi4uLlLZkyRIBQMTGxr62PkL879iJjIyU0lJSUoSenp7o0aOHXN74+Hiho6Mjhg8fLqWVtr9fLa+kl62trdw6tra2wsfHR3r/xRdfCJlMJq5fvy6Xr1u3bnL9JsT/9vFX97EmTZqIbt26Se8DAwOFhoaGXD8IIcRvv/0mAIiDBw8KIYT45ptvBADx9OnTYtsYGRlZ7HeGIrq6uqJ9+/Yl5pk+fbrc51S4j76qsH+L+/wL9/uIiAgBQFy5ckVapmibrq6uRY5dW1tb0bNnT7k0Rd+T7u7uombNmiIpKanEtr0sNzdX5OTkCA8PD9G/f38p/dGjR0W+jwq92uby7L/bt2+Xy9ujRw9hb2//2vqmpaWJPn36CHt7ewFAzJw5s9Rtfdmff/4pbGxspGPA0NBQ9OrVS2zatEnk5+dL+Qr7uXnz5nLfBStWrBAARJ8+feS26+fnJwCI1NRUIYQQMTExAoD49NNP5fKdP3++SP1dXV1F06ZNRV5enpgwYYLQ1tYWmzdvllvPwcFBtGjRQuTk5Mil9+rVS1haWsrVsTw4slOMTZs2ITIyUu5VrVrRKU7Pnz/HhQsX0K9fP2hra0vp1atXL/NfO4oMGDBA7v3+/fshk8kwcuRIub9iLSws0Lx58zJfdbNu3TqYmJgoPH8/atQo5ObmYtSoUaXaVsOGDYv0WWRkJI4dO/badY2NjdGwYUMsWbIEy5Ytw6VLl8p0fjksLAxNmjQpMlfE19cXQgiEhYUBKJifZGhoiO7du8vlGzZsWLHbfvUzAICkpCR88sknsLa2RrVq1aClpQVbW1sAKDK8DRRcGfQyR0dHyGQyeHl5SWnVqlVDo0aNcPfu3de0toCHhwfMzc2l95qamhgyZAhu375d7DDyzZs38eDBA7z//vtyQ9rVq1fHgAEDcO7cOWRkZJSq/NI4e/YsMjMzi5w6sra2hru7O44fP15kHUX9XRJFx2pkZCTee++9164bEREBJyenIvNJitsfLCwsiuxjzZo1k/vM9u/fDycnJ7zzzjtyx2i3bt3kTo0VnqIaPHgwtm/fjn///bcszS438f9/6Ss6dfU6//zzD4YPHw4LCwtoampCS0sLrq6uABTv98qQkZGBiIgIDB48+LXzab7//nu0bNkSurq60nF5/PjxctetrPuvTCYr8r3/6v5RnGHDhuHBgwe4cuUKFixYgIULF+LLL7+Ult+/fx8ymUwa7StOmzZtcPv2bRw+fBgzZ85Ehw4dcPz4cYwaNUpuZLFQjx495L4LHB0dARRM1n5ZYXp8fDwA4MSJEwBQpG/atm0LR0fHIn3z4sUL9OvXD7/++iuOHj2KESNGSMtu376NGzduSGkvHzc9evRAQkICbt68WWK7X4cTlIvh6OhY7ATll6WkpEAIIfejU0hRWlm9Oqz78OHDYssDgAYNGpR621evXsWFCxfw2WefQUdH543qCQC6uroK+6yk4cxCMpkMx48fx/z58xEUFIQpU6bA2NgYI0aMwNdff/3aq3oeP35c5DJjoOAKusLlhf+W5bPS19cvcvVOfn4+PD098eDBA8yZMwfOzs4wMDBAfn4+2rdvj8zMzCLbMTY2lnuvra0NfX196OrqFklPS0srvqEvsbCwKDbt8ePHqFu3bpHlhf2g6HSBlZUV8vPzkZKSorRJwa8rLzQ0VC5NUX+/TnHHqpGREe7du/fa+r16+hYofn8wMTEpkqajoyP3mT98+BC3b9+GlpaWwm0UHg+dOnXCnj17sHLlSmnuSdOmTTFr1qwSg++S2NjYIDY2tsQ8hfNRrK2ty7TtZ8+eoWPHjtDV1cWCBQvQuHFj6Ovr4969e/D29la43ytDSkoK8vLyFO7PL1u2bBmmTJmCTz75BF999RVMTU2hqamJOXPmlDvYKc/+++oxraOjgxcvXpRYTmRkJA4cOIDffvsNOjo6mDVrFjQ0NDBz5kxoampi7ty5CA8Ph6amJrp16/baemtpaaFbt25S3sePH2PgwIHYv38/Dh06hB49ekh5FX03lZRe2JbX9c2rAV5SUhLu3buHLl26wMXFRW5Z4fSLqVOnYurUqQrbVJrfkZIw2HlDtWrVgkwmUzhXJjExUe594UHw6mS1wp1GkVf/+jI1NYVMJsMff/yhMEApS9Cybt06AKgylyLa2tpKdfr777+xfft2BAQEIDs7W5qvVBwTExMkJCQUSX/w4AGAgn4rzPfnn38WyffqZ1VI0V+/165dw5UrVxAcHAwfHx8p/fbt2yXWUdkU1bkwTdGP8svpxfWVhoYGatWqpbQ6vq68ws+lUHlGG96EiYlJqY7dsjA1NYWenh7Wr19f7PJCffv2Rd++fZGVlYVz584hMDAQw4cPR7169dChQ4cyl+3p6YnVq1fj3LlzCuftZGRkIDQ0FE2bNoWZmRkA+e+ll78/Xv1xCQsLw4MHDxAeHi6N5gCo0HspAQU/upqamq+d9Lp582a4ublh7dq1cunp6enlLrus+2953blzBwDkAn1/f39oaGhgxowZyM/Px5YtW/Dhhx9Kf8CVhYmJCfz8/BAeHo5r167JBTvl9XLfvBqIKuobGxsbLFu2DP3794e3tzd27Ngh7XuFef39/eHt7a2wPHt7+zeqL09jvSEDAwO0bt0ae/bskSbKAQV/Be3fv18ur7m5OXR1dXH16lW59L1795a6vF69ekEIgX///RetW7cu8nJ2di7VdrKysrB582a0bdtW5Td7UqRx48aYPXs2nJ2dcfHiRSn91b+iC3l4eOCvv/6SywsUnOKQyWTo3LkzAMDV1RXp6ek4dOiQXL7SXsUE/O8H+dXA8ocffij1NpTh+PHjcj/UeXl52LZtGxo2bFjsX8H29vaoU6cOtmzZIjec/fz5c+zcuVO6Qgv4X/ve5C/2Dh06QE9PT24CL1AwJB8WFqb0q63KytXVFdeuXcNff/0ll16W/eFVvXr1wp07d2BiYqLwGFU0AqmjowNXV1dpIuulS5ekdKD0n4Gfnx/09fUxceJEhVdITZ06FSkpKfDz85PSCuvz6vfS77//LvdeVfu9np4eXF1dsWPHjhL/upfJZEXqdvXqVbmrDIGy9Wll7b+F38GbNm2SS58+fTq+/vprzJ8/H0lJSViyZEmJ28nJySn2j+fC0a3yBEuKuLu7A0CRvomMjERMTIzCvvH09MSRI0dw8uRJ9OrVS9pH7e3tYWdnhytXrig8Zlq3bv3G9+ziyI4SzJ8/Hz179kS3bt3w2WefIS8vD0uWLEH16tWlKwQASHNt1q9fj4YNG6J58+b4888/sWXLllKX9e677+Ljjz/GBx98gAsXLqBTp04wMDBAQkICTp06BWdn51Ldl2HPnj148uRJiaM6mzZtwocffoj169eXet5OeV29ehUTJkzAoEGDYGdnB21tbYSFheHq1auYMWOGlM/Z2RkhISHYtm0bGjRoAF1dXTg7O+Pzzz/Hpk2b0LNnT8yfPx+2trY4cOAA1qxZg3HjxqFx48YAAB8fHyxfvhwjR47EggUL0KhRIxw6dAhHjhwBIH9pZnEcHBzQsGFDzJgxA0IIGBsb4/fffy8ypF3RTE1N4e7ujjlz5sDAwABr1qzBjRs3Svyh1tDQQFBQEEaMGIFevXph7NixyMrKwpIlS/D06VMsWrRIylsYOH/77bfw8fGBlpYW7O3ty/SlU7NmTcyZMwczZ87EqFGjMGzYMDx+/Bjz5s2Drq4u5s6dW/4OUAI/Pz+sX78eXl5emD9/PszNzbFlyxbcuHEDQOn2B0Xb3LlzJzp16oTPP/8czZo1Q35+PuLj43H06FFMmTIF7dq1w5dffon79+/Dw8MDdevWxdOnT/Htt9/KzYNp2LAh9PT08Ouvv8LR0RHVq1eHlZVVsT9YDRs2xKZNmzBixAi0adMGkydPlm4quH79ehw6dAgffPCB3HHfo0cPGBsbY/To0Zg/fz6qVauG4ODgIqcAXVxcUKtWLXzyySeYO3cutLS08Ouvv+LKlStl7qOyWrZsGd577z20a9cOM2bMQKNGjfDw4UPs27cPP/zwAwwNDdGrVy989dVXmDt3rnSF3fz581G/fn25q2kNDQ1ha2uLvXv3wsPDA8bGxjA1NVUYhFbW/uvk5IRx48Zh7dq1SEtLw6hRo2BkZITr16/j559/Rt26dfHvv/9izpw5WLlyZbHbSU1NRb169TBo0CB06dIF1tbWePbsGcLDw/Htt9/C0dGx2JGTsrK3t8fHH3+MVatWQUNDA15eXoiLi8OcOXNgbW2Nzz//XOF67733Ho4fP47u3bvD09MTBw8ehJGREX744Qd4eXmhW7du8PX1RZ06dfDkyRPExMTg4sWL2LFjx5tV+I2mN6shRVeUvKy4K6p2794tnJ2dhba2trCxsRGLFi0SkyZNErVq1ZLLl5qaKsaMGSPMzc2FgYGB6N27t4iLiyv2aqxHjx4prMf69etFu3bthIGBgdDT0xMNGzYUo0aNEhcuXChVO7t27SoMDAxEWlraa/uiNFeCFM62V0TR1Q+vXiX08OFD4evrKxwcHISBgYGoXr26aNasmVi+fLnIzc2V1ouLixOenp7C0NCwyNU2d+/eFcOHDxcmJiZCS0tL2NvbiyVLlhSZxR8fHy+8vb1F9erVhaGhoRgwYIA4ePBgkSupfHx8hIGBgcI2/fXXX6Jr167C0NBQ1KpVSwwaNEjEx8eX+nMsbtsl9ePLAIjx48eLNWvWiIYNGwotLS3h4OAgfv31V7l8r/ZzoT179oh27doJXV1dYWBgIDw8PMTp06eLlOPv7y+srKyEhoaGwu28rKRj5+effxbNmjUT2trawsjISPTt27fIFVAl9XdZyxNCiJ49e772aiwhhLh27Zro0qWL0NXVFcbGxmL06NFi48aNRa4wKu6z8fHxKVLOs2fPxOzZs4W9vb3UZmdnZ/H5559LV9Dt379feHl5iTp16ghtbW1hZmYmevToIf744w+5bW3dulU4ODgILS2tYq8ietW1a9fEqFGjRN26dUW1atUEACGTycS6desU5v/zzz+Fi4uLMDAwEHXq1BFz584VP//8c5Grsc6cOSM6dOgg9PX1Re3atcWYMWPExYsXi3xPKPtqLCEKjrlBgwYJExMT6XvW19dXvHjxQgghRFZWlpg6daqoU6eO0NXVFS1bthR79uxR+PkcO3ZMtGjRQujo6AgA0j5R3BVob7L/Fne126vy8/PFunXrRNu2bYWenp7Q1dUVzZs3F4sWLRLPnz8XS5cuFQDE559/Xuw2srKyxDfffCO8vLyEjY2N0NHREbq6usLR0VFMmzZNPH78WMpb2M9LliyR20bhd8aOHTvk0hUdb3l5eWLx4sWicePGQktLS5iamoqRI0eKe/fuya2r6Ni5du2asLCwEC1btpS+H69cuSIGDx4szMzMhJaWlrCwsBDu7u7i+++/f23/vY5MiHLevYhKlJOTg3feeQd16tSptOfRUPktXLgQs2fPRnx8/GsnQlYFMpkM48ePx+rVq1VdFbX08ccfY+vWrXj8+LHcVZZvq+PHj6NHjx7w9vbGr7/+Wq4RK6K3GU9jKcno0aPRtWtXWFpaIjExEd9//z1iYmLw7bffqrpq9IrCAMHBwQE5OTkICwvDypUrMXLkyLci0CHlmj9/PqysrNCgQQNprt3PP/+M2bNnq0WgAxTMaQsODsaIESNgYGCAn376qdIngxOpEoMdJUlPT8fUqVPx6NEjaGlpoWXLljh48CC6dOmi6qrRK/T19bF8+XLExcUhKysLNjY2mD59unQHYPpv0dLSwpIlS3D//n3k5ubCzs4Oy5Ytw2effabqqinVsGHDyn1JO9HbjqexiIiISK3xxC0RERGpNQY7REREpNYY7BAREZFa4wRlFDzr6MGDBzA0NOQVCkRERG8JIQTS09NhZWVV4i0VGOyg4DkeZX0oHhEREVUN9+7dK/HWIQx2AOn29/fu3SvzE5eJiIhINdLS0mBtbf3ax9gw2MH/HnBXo0YNBjtERERvmddNQeEEZSIiIlJrDHaIiIhIrTHYISIiIrXGOTtEREQVIC8vDzk5OaquxltNS0sLmpqab7wdBjtERERKJIRAYmIinj59quqqqIWaNWvCwsLije6Dx2CHiIhIiQoDHTMzM+jr6/NmteUkhEBGRgaSkpIAAJaWluXeFoMdIiIiJcnLy5MCHRMTE1VX562np6cHAEhKSoKZmVm5T2lxgjIREZGSFM7R0dfXV3FN1EdhX77J/CcGO0RERErGU1fKo4y+ZLBDREREaq3KBDuBgYGQyWTw8/OT0oQQCAgIgJWVFfT09ODm5obr16/LrZeVlYWJEyfC1NQUBgYG6NOnD+7fv1/JtSciIlIvvr6+6Nevn6qroRRVItiJjIzEjz/+iGbNmsmlBwUFYdmyZVi9ejUiIyNhYWGBrl27Ij09Xcrj5+eH3bt3IyQkBKdOncKzZ8/Qq1cv5OXlVXYziIiIqApSebDz7NkzjBgxAj/99BNq1aolpQshsGLFCsyaNQve3t5wcnLCxo0bkZGRgS1btgAAUlNTsW7dOixduhRdunRBixYtsHnzZkRHR+PYsWOqahIRERFVISoPdsaPH4+ePXuiS5cucumxsbFITEyEp6enlKajowNXV1ecOXMGABAVFYWcnBy5PFZWVnBycpLyEBERqYPffvsNzs7O0NPTg4mJCbp06YLnz59Lp5sWLlwIc3Nz1KxZE/PmzUNubi6++OILGBsbo27duli/fr3c9qKjo+Hu7i5t7+OPP8azZ8+KLT8qKgpmZmb4+uuvARQMOHz88ccwMzNDjRo14O7ujitXrlRoH5SXSu+zExISgosXLyIyMrLIssTERACAubm5XLq5uTnu3r0r5dHW1pYbESrMU7i+IllZWcjKypLep6WllbsNrxMfH4/k5OQK274ipqamsLGxqdQyiYio4iQkJGDYsGEICgpC//79kZ6ejj/++ANCCABAWFgY6tati5MnT+L06dMYPXo0zp49i06dOuH8+fPYtm0bPvnkE3Tt2hXW1tbIyMhA9+7d0b59e0RGRiIpKQljxozBhAkTEBwcXKT88PBw9OvXD4GBgRg3bhyEEOjZsyeMjY1x8OBBGBkZ4YcffoCHhwf+/vtvGBsbV3IPlUxlwc69e/fw2Wef4ejRo9DV1S0236uXnAkhXnsZ2uvyBAYGYt68eWWrcDnEx8fD0cEBGZmZFV7Wy/T19BBz4wYDHiIiNZGQkIDc3Fx4e3vD1tYWAODs7CwtNzY2xsqVK6GhoQF7e3sEBQUhIyMDM2fOBAD4+/tj0aJFOH36NIYOHYpff/0VmZmZ2LRpEwwMDAAAq1evRu/evbF48WK5gYa9e/fi/fffxw8//IBhw4YBAE6cOIHo6GgkJSVBR0cHAPDNN99gz549+O233/Dxxx9XSr+UlsqCnaioKCQlJaFVq1ZSWl5eHk6ePInVq1fj5s2bAApGb16+RXRSUpL0IVhYWCA7OxspKSlyoztJSUlwcXEptmx/f39MnjxZep+WlgZra2ulta1QcnIyMjIzsXLwANiZmSp9+4rcSkrGpO07kZyczGCHiEhNNG/eHB4eHnB2dka3bt3g6emJgQMHSr99TZs2hYbG/2ammJubw8nJSXqvqakJExMT6dELMTExaN68uRToAMC7776L/Px83Lx5U/qdPX/+PPbv348dO3agf//+Ut6oqCg8e/asyF2iMzMzcefOHeV3wBtSWbDj4eGB6OhoubQPPvgADg4OmD59Oho0aAALCwuEhoaiRYsWAIDs7GxERERg8eLFAIBWrVpBS0sLoaGhGDx4MICC6PfatWsICgoqtmwdHR0pEq0MdmamcK5jVWnlERGRetHU1ERoaCjOnDmDo0ePYtWqVZg1axbOnz8PoODp4C+TyWQK0/Lz8wGUfAbk5fSGDRvCxMQE69evR8+ePaGtrQ0AyM/Ph6WlJcLDw4usX7NmzfI2s8KoLNgxNDSUizoBwMDAACYmJlK6n58fFi5cCDs7O9jZ2WHhwoXQ19fH8OHDAQBGRkYYPXo0pkyZAhMTExgbG2Pq1KlwdnYuMuGZiIjobSaTyfDuu+/i3XffxZdffglbW1vs3r27XNtq0qQJNm7ciOfPn0ujO6dPn4aGhgYaN24s5TM1NcWuXbvg5uaGIUOGYPv27dDS0kLLli2RmJiIatWqoV69espoXoVS+dVYJZk2bRr8/Pzw6aefonXr1vj3339x9OhRGBoaSnmWL1+Ofv36YfDgwXj33Xehr6+P33//vdwPCyMiIqpqzp8/j4ULF+LChQuIj4/Hrl278OjRIzg6OpZreyNGjICuri58fHxw7do1nDhxAhMnTsT7779f5MIgMzMzhIWF4caNGxg2bBhyc3PRpUsXdOjQAf369cORI0cQFxeHM2fOYPbs2bhw4YIymqxUVSrYCQ8Px4oVK6T3MpkMAQEBSEhIwIsXLxAREVFkNEhXVxerVq3C48ePkZGRgd9//71C5t8QERGpSo0aNXDy5En06NEDjRs3xuzZs7F06VJ4eXmVa3v6+vo4cuQInjx5gjZt2mDgwIHw8PDA6tWrFea3sLBAWFgYoqOjMWLECOTn5+PgwYPo1KkTPvzwQzRu3BhDhw5FXFxckWCpKpCJwuvW/sPS0tJgZGSE1NRU1KhRQ2nbvXjxIlq1aoVDE8ZW2pyd6H8fwGv1D4iKikLLli0rpUwiIirw4sULxMbGon79+iVeaUylV1Kflvb3u0qN7BAREREpG4MdIiIiUmsMdoiIiEitMdghIiIitcZgh4iIiNQagx0iIiJSawx2iIiISK0x2CEiIiK1xmCHiIiI1JrKHgRKRET0XxIfH4/k5ORKKcvU1BQ2NjaVUlZwcDD8/Pzw9OnTSimvPBjsEBERVbD4+Hg4OjggIzOzUsrT19NDzI0bZQp4fH19sXHjxiLpt27dQqNGjZRZvUrHYIeIiKiCJScnIyMzEysHD4CdmWmFlnUrKRmTtu9EcnJymUd3unfvjg0bNsil1a5dW5nVUwkGO0RERJXEzsy00h4MXR46OjqwsLCQS1u2bBk2bNiAf/75B8bGxujduzeCgoJQvXp1hdu4cuUK/Pz8cOHCBchkMtjZ2eGHH35A69atAQBnzpzBjBkzEBkZCVNTU/Tv3x+BgYEwMDCosHZxgjIREREVS0NDAytXrsS1a9ewceNGhIWFYdq0acXmHzFiBOrWrYvIyEhERUVhxowZ0NLSAgBER0ejW7du8Pb2xtWrV7Ft2zacOnUKEyZMqNA2cGSHiIiIAAD79++XG7Hx8vLCjh07pPf169fHV199hXHjxmHNmjUKtxEfH48vvvgCDg4OAAA7Oztp2ZIlSzB8+HD4+flJy1auXAlXV1esXbsWurq6FdAqBjtERET0/zp37oy1a9dK7w0MDHDixAksXLgQf/31F9LS0pCbm4sXL17g+fPnCk89TZ48GWPGjMEvv/yCLl26YNCgQWjYsCEAICoqCrdv38avv/4q5RdCID8/H7GxsXB0dKyQdvE0FhEREQEoCG4aNWokvbKzs9GjRw84OTlh586diIqKwnfffQcAyMnJUbiNgIAAXL9+HT179kRYWBiaNGmC3bt3AwDy8/MxduxYXL58WXpduXIFt27dkgKiisCRHSIiIlLowoULyM3NxdKlS6GhUTA+sn379teu17hxYzRu3Biff/45hg0bhg0bNqB///5o2bIlrl+/XumXsnNkh4iIiBRq2LAhcnNzsWrVKvzzzz/45Zdf8P333xebPzMzExMmTEB4eDju3r2L06dPIzIyUjo9NX36dJw9exbjx4/H5cuXcevWLezbtw8TJ06s0HZwZIeIiKiS3Eqq+DsoK7OMd955B8uWLcPixYvh7++PTp06ITAwEKNGjVKYX1NTE48fP8aoUaPw8OFDmJqawtvbG/PmzQMANGvWDBEREZg1axY6duwIIQQaNmyIIUOGKK3OisiEEKJCS3gLpKWlwcjICKmpqahRo4bStnvx4kW0atUKhyaMrbT7KkT/+wBeq39AVFQUWrZsWSllEhFRgRcvXiA2Nhb169eXu7LobbiDclVVXJ8Cpf/95sgOERFRBbOxsUHMjRtq+WystwGDHSIiokpgY2PDAERFOEGZiIiI1BqDHSIiIlJrDHaIiIhIrTHYISIiIrXGYIeIiIjUGoMdIiIiUmsMdoiIiEit8T47RERElSA+Pp43FVQRBjtEREQVLD4+Hg6OjsjMyKiU8vT09XEjJqbUAY9MJitxuY+PD4KDg5VQM9VQabCzdu1arF27FnFxcQCApk2b4ssvv4SXlxcAwNfXFxs3bpRbp127djh37pz0PisrC1OnTsXWrVuRmZkJDw8PrFmzBnXr1q20dhAREZUkOTkZmRkZGLBsJUwb2VVsWbdvYefkSUhOTi51sJOQkCD9f9u2bfjyyy9x8+ZNKU1PT08uf05ODrS0tJRT4Uqg0mCnbt26WLRoERo1agQA2LhxI/r27YtLly6hadOmAIDu3btjw4YN0jra2tpy2/Dz88Pvv/+OkJAQmJiYYMqUKejVqxeioqKgqalZeY0hIiJ6DdNGdrByclZ1NYqwsLCQ/m9kZASZTCalxcXFwdLSEtu2bcOaNWtw7tw5rF27Fnfv3sWePXtw+fJlad0VK1ZgxYoV0iAGAGzYsAFBQUGIjY1FvXr1MGnSJHz66aeV1TQAKg52evfuLff+66+/xtq1a3Hu3Dkp2NHR0ZH7EF6WmpqKdevW4ZdffkGXLl0AAJs3b4a1tTWOHTuGbt26VWwDiIiI/iOmT5+OpUuXYsOGDdDR0cGPP/742nV++uknzJ07F6tXr0aLFi1w6dIlfPTRRzAwMICPj08l1LpAlbkaKy8vDyEhIXj+/Dk6dOggpYeHh8PMzAyNGzfGRx99hKSkJGlZVFQUcnJy4OnpKaVZWVnByckJZ86cqdT6ExERqTM/Pz94e3ujfv36sLKyKtU6X331FZYuXSqt5+3tjc8//xw//PBDBddWnsonKEdHR6NDhw548eIFqlevjt27d6NJkyYAAC8vLwwaNAi2traIjY3FnDlz4O7ujqioKOjo6CAxMRHa2tqoVauW3DbNzc2RmJhYbJlZWVnIysqS3qelpVVM44iIiNRE69aty5T/0aNHuHfvHkaPHo2PPvpISs/NzYWRkZGyq1cilQc79vb2uHz5Mp4+fYqdO3fCx8cHERERaNKkCYYMGSLlc3JyQuvWrWFra4sDBw7A29u72G0KIUqcWR4YGIh58+YptR1ERETqzMDAQO69hoYGhBByaTk5OdL/8/PzARScymrXrp1cvsqeU6vy01ja2tpo1KgRWrdujcDAQDRv3hzffvutwryWlpawtbXFrVu3ABRMqMrOzkZKSopcvqSkJJibmxdbpr+/P1JTU6XXvXv3lNcgIiKi/4DatWsjMTFRLuB5ebKyubk56tSpg3/++QeNGjWSe9WvX79S66rykZ1XCSHkTjG97PHjx7h37x4sLS0BAK1atYKWlhZCQ0MxePBgAAWXz127dg1BQUHFlqGjowMdHR3lV56IiOg/ws3NDY8ePUJQUBAGDhyIw4cP49ChQ6hRo4aUJyAgAJMmTUKNGjXg5eWFrKwsXLhwASkpKZg8eXKl1VWlwc7MmTPh5eUFa2trpKenIyQkBOHh4Th8+DCePXuGgIAADBgwAJaWloiLi8PMmTNhamqK/v37Ayi4PG706NGYMmUKTExMYGxsjKlTp8LZ2Vm6OouIiKiqSL59Sy3KAABHR0esWbMGCxcuxFdffYUBAwZg6tSpcldpjRkzBvr6+liyZAmmTZsGAwMDODs7w8/Pr1LqWEilwc7Dhw/x/vvvIyEhAUZGRmjWrBkOHz6Mrl27IjMzE9HR0di0aROePn0KS0tLdO7cGdu2bYOhoaG0jeXLl6NatWoYPHiwdFPB4OBg3mOHiIiqDFNTU+jp62Pn5EmVUp6evj5MTU3Lta6vry98fX2l9/Xq1SsyN6fQJ598gk8++UQubebMmXLvhw8fjuHDh5erLsqi0mBn3bp1xS7T09PDkSNHXrsNXV1drFq1CqtWrVJm1YiIiJTGxsYGN2Ji+GwsFalyc3aIiIjUkY2NDQMQFVH51VhEREREFYnBDhEREak1BjtERERKVtyEXio7ZfQlgx0iIiIl0dLSAgBkZGSouCbqo7AvC/u2PDhBmYiISEk0NTVRs2ZN6aHV+vr6JT6+iIonhEBGRgaSkpJQs2bNN7qlDIMdIiIiJbKwsAAAKeChN1OzZk2pT8uLwQ4REZESyWQyWFpawszMTO7BmFR2WlpaSrlJMIMdIiKiCqCpqcm7+VcRnKBMREREao3BDhEREak1BjtERESk1hjsEBERkVpjsENERERqjcEOERERqTUGO0RERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1hjsEBERkVpjsENERERqjcEOERERqTUGO0RERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaU2mws3btWjRr1gw1atRAjRo10KFDBxw6dEhaLoRAQEAArKysoKenBzc3N1y/fl1uG1lZWZg4cSJMTU1hYGCAPn364P79+5XdFCIiIqqiVBrs1K1bF4sWLcKFCxdw4cIFuLu7o2/fvlJAExQUhGXLlmH16tWIjIyEhYUFunbtivT0dGkbfn5+2L17N0JCQnDq1Ck8e/YMvXr1Ql5enqqaRURERFWISoOd3r17o0ePHmjcuDEaN26Mr7/+GtWrV8e5c+cghMCKFSswa9YseHt7w8nJCRs3bkRGRga2bNkCAEhNTcW6deuwdOlSdOnSBS1atMDmzZsRHR2NY8eOqbJpREREVEVUmTk7eXl5CAkJwfPnz9GhQwfExsYiMTERnp6eUh4dHR24urrizJkzAICoqCjk5OTI5bGysoKTk5OUh4iIiP7bqqm6AtHR0ejQoQNevHiB6tWrY/fu3WjSpIkUrJibm8vlNzc3x927dwEAiYmJ0NbWRq1atYrkSUxMLLbMrKwsZGVlSe/T0tKU1RwiIiKqYlQ+smNvb4/Lly/j3LlzGDduHHx8fPDXX39Jy2UymVx+IUSRtFe9Lk9gYCCMjIykl7W19Zs1goiIiKoslQc72traaNSoEVq3bo3AwEA0b94c3377LSwsLACgyAhNUlKSNNpjYWGB7OxspKSkFJtHEX9/f6Smpkqve/fuKblVREREVFWoPNh5lRACWVlZqF+/PiwsLBAaGioty87ORkREBFxcXAAArVq1gpaWllyehIQEXLt2TcqjiI6OjnS5e+GLiIiI1JNK5+zMnDkTXl5esLa2Rnp6OkJCQhAeHo7Dhw9DJpPBz88PCxcuhJ2dHezs7LBw4ULo6+tj+PDhAAAjIyOMHj0aU6ZMgYmJCYyNjTF16lQ4OzujS5cuqmwaERERVREqDXYePnyI999/HwkJCTAyMkKzZs1w+PBhdO3aFQAwbdo0ZGZm4tNPP0VKSgratWuHo0ePwtDQUNrG8uXLUa1aNQwePBiZmZnw8PBAcHAwNDU1VdUsIiIiqkJkQgih6kqoWlpaGoyMjJCamqrUU1oXL15Eq1atcGjCWDjXsVLadksS/e8DeK3+AVFRUWjZsmWllElERKQKpf39rnJzdoiIiIiUicEOERERqTUGO0RERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1hjsEBERkVpjsENERERqjcEOERERqTUGO0RERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1hjsEBERkVpjsENERERqjcEOERERqTUGO0RERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaY7BDREREak2lwU5gYCDatGkDQ0NDmJmZoV+/frh586ZcHl9fX8hkMrlX+/bt5fJkZWVh4sSJMDU1hYGBAfr06YP79+9XZlOIiIioilJpsBMREYHx48fj3LlzCA0NRW5uLjw9PfH8+XO5fN27d0dCQoL0OnjwoNxyPz8/7N69GyEhITh16hSePXuGXr16IS8vrzKbQ0RERFVQNVUWfvjwYbn3GzZsgJmZGaKiotCpUycpXUdHBxYWFgq3kZqainXr1uGXX35Bly5dAACbN2+GtbU1jh07hm7dulVcA4iIiKjKq1JzdlJTUwEAxsbGcunh4eEwMzND48aN8dFHHyEpKUlaFhUVhZycHHh6ekppVlZWcHJywpkzZyqn4kRERFRlqXRk52VCCEyePBnvvfcenJycpHQvLy8MGjQItra2iI2NxZw5c+Du7o6oqCjo6OggMTER2traqFWrltz2zM3NkZiYqLCsrKwsZGVlSe/T0tIqplFERESkclUm2JkwYQKuXr2KU6dOyaUPGTJE+r+TkxNat24NW1tbHDhwAN7e3sVuTwgBmUymcFlgYCDmzZunnIoTERFRlVYlTmNNnDgR+/btw4kTJ1C3bt0S81paWsLW1ha3bt0CAFhYWCA7OxspKSly+ZKSkmBubq5wG/7+/khNTZVe9+7dU05DiIiIqMpRabAjhMCECROwa9cuhIWFoX79+q9d5/Hjx7h37x4sLS0BAK1atYKWlhZCQ0OlPAkJCbh27RpcXFwUbkNHRwc1atSQexEREZF6UulprPHjx2PLli3Yu3cvDA0NpTk2RkZG0NPTw7NnzxAQEIABAwbA0tIScXFxmDlzJkxNTdG/f38p7+jRozFlyhSYmJjA2NgYU6dOhbOzs3R1FhEREf13qTTYWbt2LQDAzc1NLn3Dhg3w9fWFpqYmoqOjsWnTJjx9+hSWlpbo3Lkztm3bBkNDQyn/8uXLUa1aNQwePBiZmZnw8PBAcHAwNDU1K7M5REREVAWpNNgRQpS4XE9PD0eOHHntdnR1dbFq1SqsWrVKWVUjIiIiNVElJigTERERVRQGO0RERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1hjsEBERkVorV7DToEEDPH78uEj606dP0aBBgzeuFBEREZGylCvYiYuLQ15eXpH0rKws/Pvvv29cKSIiIiJlKdNTz/ft2yf9/8iRIzAyMpLe5+Xl4fjx46hXr57SKkdERET0psoU7PTr1w8AIJPJ4OPjI7dMS0sL9erVw9KlS5VWOSIiIqI3VaZgJz8/HwBQv359REZGwtTUtEIqRURERKQsZQp2CsXGxiq7HkREREQVolzBDgAcP34cx48fR1JSkjTiU2j9+vVvXDEiIiIiZShXsDNv3jzMnz8frVu3hqWlJWQymbLrRURERKQU5Qp2vv/+ewQHB+P9999Xdn2IiIiIlKpc99nJzs6Gi4uLsutCREREpHTlCnbGjBmDLVu2KLsuREREREpXrtNYL168wI8//ohjx46hWbNm0NLSklu+bNkypVSOiIiI6E2VK9i5evUq3nnnHQDAtWvX5JZxsjIRERFVJeUKdk6cOKHsehARERUrPj4eycnJlVaeqakpbGxsKq08qljlvs8OERFRZYiPj4ejgwMyMjMrrUx9PT3E3LjBgEdNlCvY6dy5c4mnq8LCwspdISIiopclJycjIzMTKwcPgJ1ZxT+m6FZSMiZt34nk5GQGO2qiXMFO4XydQjk5Obh8+TKuXbtW5AGhREREymBnZgrnOlaqrga9hcoV7CxfvlxhekBAAJ49e/ZGFSIiIiJSpnLdZ6c4I0eO5HOxiIiIqEpRarBz9uxZ6OrqKnOTRERERG+kXKexvL295d4LIZCQkIALFy5gzpw5SqkYERERkTKUK9gxMjKSe6+hoQF7e3vMnz8fnp6eSqkYERERkTKUK9jZsGGDUgoPDAzErl27cOPGDejp6cHFxQWLFy+Gvb29lEcIgXnz5uHHH39ESkoK2rVrh++++w5NmzaV8mRlZWHq1KnYunUrMjMz4eHhgTVr1qBu3bpKqScRERG9vd5ozk5UVBQ2b96MX3/9FZcuXSrz+hERERg/fjzOnTuH0NBQ5ObmwtPTE8+fP5fyBAUFYdmyZVi9ejUiIyNhYWGBrl27Ij09Xcrj5+eH3bt3IyQkBKdOncKzZ8/Qq1cv5OXlvUnziIiISA2Ua2QnKSkJQ4cORXh4OGrWrAkhBFJTU9G5c2eEhISgdu3apdrO4cOH5d5v2LABZmZmiIqKQqdOnSCEwIoVKzBr1ixpntDGjRthbm6OLVu2YOzYsUhNTcW6devwyy+/oEuXLgCAzZs3w9raGseOHUO3bt3K00QiIiJSE+Ua2Zk4cSLS0tJw/fp1PHnyBCkpKbh27RrS0tIwadKkclcmNTUVAGBsbAwAiI2NRWJiotw8IB0dHbi6uuLMmTMACkaXcnJy5PJYWVnByclJykNERET/XeUa2Tl8+DCOHTsGR0dHKa1Jkyb47rvvyj1BWQiByZMn47333oOTkxMAIDExEQBgbm4ul9fc3Bx3796V8mhra6NWrVpF8hSu/6qsrCxkZWVJ79PS0spVZyIiIqr6yjWyk5+fDy0trSLpWlpayM/PL1dFJkyYgKtXr2Lr1q1Flr36HC4hRInP5npdnsDAQBgZGUkva2vrctWZiIiIqr5yBTvu7u747LPP8ODBAynt33//xeeffw4PD48yb2/ixInYt28fTpw4IXcFlYWFBQAUGaFJSkqSRnssLCyQnZ2NlJSUYvO8yt/fH6mpqdLr3r17Za4zERERvR3KFeysXr0a6enpqFevHho2bIhGjRqhfv36SE9Px6pVq0q9HSEEJkyYgF27diEsLAz169eXW16/fn1YWFggNDRUSsvOzkZERARcXFwAAK1atYKWlpZcnoSEBFy7dk3K8yodHR3UqFFD7kVERETqqVxzdqytrXHx4kWEhobixo0bEEKgSZMm0tVQpTV+/Hhs2bIFe/fuhaGhoTSCY2RkBD09PchkMvj5+WHhwoWws7ODnZ0dFi5cCH19fQwfPlzKO3r0aEyZMgUmJiYwNjbG1KlT4ezsXOb6EBERkfopU7ATFhaGCRMm4Ny5c6hRowa6du2Krl27Aii4kqpp06b4/vvv0bFjx1Jtb+3atQAANzc3ufQNGzbA19cXADBt2jRkZmbi008/lW4qePToURgaGkr5ly9fjmrVqmHw4MHSTQWDg4OhqalZluYRERGRGipTsLNixQp89NFHCk/7GBkZYezYsVi2bFmpgx0hxGvzyGQyBAQEICAgoNg8urq6WLVqVZlOoREREdF/Q5nm7Fy5cgXdu3cvdrmnpyeioqLeuFJEREREylKmYOfhw4cKLzkvVK1aNTx69OiNK0VERESkLGUKdurUqYPo6Ohil1+9ehWWlpZvXCkiIiIiZSlTsNOjRw98+eWXePHiRZFlmZmZmDt3Lnr16qW0yhERERG9qTJNUJ49ezZ27dqFxo0bY8KECbC3t4dMJkNMTAy+++475OXlYdasWRVVVyIiIqIyK1OwY25ujjNnzmDcuHHw9/eXrqaSyWTo1q0b1qxZU+xdi4mIiIhUocw3FbS1tcXBgweRkpKC27dvQwgBOzu7Ig/iJFIX8fHxSE5OrrTyTE1NYWNjU2nlERGpu3LdQRkAatWqhTZt2iizLkRVTnx8PBwdHJCRmVlpZerr6SHmxg0GPERESlLuYIfovyA5ORkZmZlYOXgA7MxMK7y8W0nJmLR9J5KTkxnsEBEpCYMdolKwMzOFcx0rVVeDiIjKoVxPPSciIiJ6WzDYISIiIrXGYIeIiIjUGoMdIiIiUmsMdoiIiEitMdghIiIitcZgh4iIiNQagx0iIiJSawx2iIiISK0x2CEiIiK1xmCHiIiI1BqDHSIiIlJrDHaIiIhIrTHYISIiIrXGYIeIiIjUGoMdIiIiUmsMdoiIiEitMdghIiIitcZgh4iIiNQagx0iIiJSawx2iIiISK0x2CEiIiK1xmCHiIiI1JpKg52TJ0+id+/esLKygkwmw549e+SW+/r6QiaTyb3at28vlycrKwsTJ06EqakpDAwM0KdPH9y/f78SW0FERERVmUqDnefPn6N58+ZYvXp1sXm6d++OhIQE6XXw4EG55X5+fti9ezdCQkJw6tQpPHv2DL169UJeXl5FV5+IiIjeAtVUWbiXlxe8vLxKzKOjowMLCwuFy1JTU7Fu3Tr88ssv6NKlCwBg8+bNsLa2xrFjx9CtWzel15mIiIjeLlV+zk54eDjMzMzQuHFjfPTRR0hKSpKWRUVFIScnB56enlKalZUVnJyccObMGVVUl4iIiKoYlY7svI6XlxcGDRoEW1tbxMbGYs6cOXB3d0dUVBR0dHSQmJgIbW1t1KpVS249c3NzJCYmFrvdrKwsZGVlSe/T0tIqrA1ERESkWlU62BkyZIj0fycnJ7Ru3Rq2trY4cOAAvL29i11PCAGZTFbs8sDAQMybN0+pdSUiIqKqqcqfxnqZpaUlbG1tcevWLQCAhYUFsrOzkZKSIpcvKSkJ5ubmxW7H398fqamp0uvevXsVWm8iIiJSnbcq2Hn8+DHu3bsHS0tLAECrVq2gpaWF0NBQKU9CQgKuXbsGFxeXYrejo6ODGjVqyL2IiIhIPan0NNazZ89w+/Zt6X1sbCwuX74MY2NjGBsbIyAgAAMGDIClpSXi4uIwc+ZMmJqaon///gAAIyMjjB49GlOmTIGJiQmMjY0xdepUODs7S1dnERER0X+bSoOdCxcuoHPnztL7yZMnAwB8fHywdu1aREdHY9OmTXj69CksLS3RuXNnbNu2DYaGhtI6y5cvR7Vq1TB48GBkZmbCw8MDwcHB0NTUrPT2EBERUdWj0mDHzc0NQohilx85cuS129DV1cWqVauwatUqZVaNiIiI1MRbNWeHiIiIqKwY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1hjsEBERkVpjsENERERqjcEOERERqTUGO0RERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaY7BDREREao3BDhEREam1aqquAFWMmJiYSivL1NQUNjY2lVYeERFRWTDYUTNZ2dkAgJEjR1ZamXr6+rgRE8OAh4iIqiQGO2omNzcXAOA++QvYublXeHnJt29h5+RJSE5OZrBDRERVEoMdNVXT2gZWTs6qrgYREZHKcYIyERERqTUGO0RERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1hjsEBERkVpjsENERERqjcEOERERqTWVBjsnT55E7969YWVlBZlMhj179sgtF0IgICAAVlZW0NPTg5ubG65fvy6XJysrCxMnToSpqSkMDAzQp08f3L9/vxJbQURERFWZSoOd58+fo3nz5li9erXC5UFBQVi2bBlWr16NyMhIWFhYoGvXrkhPT5fy+Pn5Yffu3QgJCcGpU6fw7Nkz9OrVC3l5eZXVDCIiIqrCqqmycC8vL3h5eSlcJoTAihUrMGvWLHh7ewMANm7cCHNzc2zZsgVjx45Famoq1q1bh19++QVdunQBAGzevBnW1tY4duwYunXrVmltISIioqqpys7ZiY2NRWJiIjw9PaU0HR0duLq64syZMwCAqKgo5OTkyOWxsrKCk5OTlIeIiIj+21Q6slOSxMREAIC5ublcurm5Oe7evSvl0dbWRq1atYrkKVxfkaysLGRlZUnv09LSlFVtIiIiqmKqbLBTSCaTyb0XQhRJe9Xr8gQGBmLevHlKqR9RRYiJianU8kxNTWFjY1OpZRIRVZYqG+xYWFgAKBi9sbS0lNKTkpKk0R4LCwtkZ2cjJSVFbnQnKSkJLi4uxW7b398fkydPlt6npaXB2tpa2U0gKrOs7GwAwMiRIyu1XD19fdyIiWHAQ0RqqcoGO/Xr14eFhQVCQ0PRokULAEB2djYiIiKwePFiAECrVq2gpaWF0NBQDB48GACQkJCAa9euISgoqNht6+joQEdHp+IbQVRGubm5AAD3yV/Azs29UspMvn0LOydPQnJyMoMdIhWJj49HcnJypZX3XxvNVWmw8+zZM9y+fVt6Hxsbi8uXL8PY2Bg2Njbw8/PDwoULYWdnBzs7OyxcuBD6+voYPnw4AMDIyAijR4/GlClTYGJiAmNjY0ydOhXOzs7S1VlEb6Oa1jawcnJWdTWIqBLEx8fD0cEBGZmZlVamvp4eYm7c+M8EPCoNdi5cuIDOnTtL7wtPLfn4+CA4OBjTpk1DZmYmPv30U6SkpKBdu3Y4evQoDA0NpXWWL1+OatWqYfDgwcjMzISHhweCg4OhqalZ6e0hIiIqq+TkZGRkZmLl4AGwMzOt8PJuJSVj0vad/6nRXJUGO25ubhBCFLtcJpMhICAAAQEBxebR1dXFqlWrsGrVqgqoIRERUeWwMzOFcx0rVVdDLVXZ++wQERERKQODHSIiIlJrDHaIiIhIrVXZS8+JiKh0eNkyUckY7BARvcV42TLR6zHYISJ6i/GyZaLXY7BDRKQGeNkyUfE4QZmIiIjUGoMdIiIiUmsMdoiIiEitMdghIiIitcZgh4iIiNQagx0iIiJSawx2iIiISK0x2CEiIiK1xmCHiIiI1BqDHSIiIlJrDHaIiIhIrfHZWESk9uLj45GcnFxp5ZmamvIhmURVCIMdIlJr8fHxcHRwQEZmZqWVqa+nh5gbNxjwEFURDHaISK0lJycjIzMTKwcPgJ2ZaYWXdyspGZO270RycjKDHaIqgsEOEf0n2JmZwrmOlaqrQUQqwAnKREREpNYY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1hjsEBERkVrjpeekFDExMZVWFu9OS0REZcFgh95I+qMkyACMHDmy0srk3WmJiKgsGOzQG3mRlgYBIKhPDzjbWFd4ebw7LRERlRWDHVKKBqYmvDstERFVSZygTERERGqtSgc7AQEBkMlkci8LCwtpuRACAQEBsLKygp6eHtzc3HD9+nUV1piIiIiqmiod7ABA06ZNkZCQIL2io6OlZUFBQVi2bBlWr16NyMhIWFhYoGvXrkhPT1dhjYmIiKgqqfJzdqpVqyY3mlNICIEVK1Zg1qxZ8Pb2BgBs3LgR5ubm2LJlC8aOHVvZVSV6q/H2AUSkrqp8sHPr1i1YWVlBR0cH7dq1w8KFC9GgQQPExsYiMTERnp6eUl4dHR24urrizJkzDHaISom3DyAidVelg5127dph06ZNaNy4MR4+fIgFCxbAxcUF169fR2JiIgDA3Nxcbh1zc3PcvXu3xO1mZWUhKytLep+Wlqb8yhO9JXj7ACJSd1U62PHy8pL+7+zsjA4dOqBhw4bYuHEj2rdvDwCQyWRy6wghiqS9KjAwEPPmzVN+hYneYrx9ABGpqyo/QfllBgYGcHZ2xq1bt6R5PIUjPIWSkpKKjPa8yt/fH6mpqdLr3r17FVZnIiIiUq23KtjJyspCTEwMLC0tUb9+fVhYWCA0NFRanp2djYiICLi4uJS4HR0dHdSoUUPuRUREROqpSp/Gmjp1Knr37g0bGxskJSVhwYIFSEtLg4+PD2QyGfz8/LBw4ULY2dnBzs4OCxcuhL6+PoYPH67qqhMREVEVUaWDnfv372PYsGFITk5G7dq10b59e5w7dw62trYAgGnTpiEzMxOffvopUlJS0K5dOxw9ehSGhoYqrjkRERFVFVU62AkJCSlxuUwmQ0BAAAICAiqnQkRERPTWeavm7BARERGVFYMdIiIiUmsMdoiIiEitVek5O0TFqaznOFXm86KIqGrh94z6YLBDb5Ws7GwAlfscp5fLJSL1x+8Z9cNgh94qubm5AAD3yV/Azs29wsu7FR6GsGVLpHKJSP3xe0b9MNiht1JNaxtYOTlXeDmP7tyu8DKIqGri94z64ARlIiIiUmsMdoiIiEitMdghIiIitcY5O0REVGaVebk0L82mN8Vgh4iISk1Vl2W/XDZRWTHYISKiUqvsy7IBXppNb47BDhERlVllXZYN8NLsilKZpwdNTU1hY2NTaeW9isEOERHRf4gqTkXq6evjRkyMygIeBjtERET/IZV9KjL59i3snDwJycnJDHaIiIio8lTmqUhV4312iIiISK1xZIeIVKKyJkfyHi1ExGCHiCqVqu7TUtn3aGEwR1R1MNghokpV2ZMjK/seLf+VYI7obcJgh4hUorImR1b2PVrUPZgjehsx2CEiqgDqGswRvY14NRYRERGpNQY7REREpNYY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1hjsEBERkVpjsENERERqjcEOERERqTUGO0RERKTW1CbYWbNmDerXrw9dXV20atUKf/zxh6qrRERERFWAWgQ727Ztg5+fH2bNmoVLly6hY8eO8PLyQnx8vKqrRkRERCqmFsHOsmXLMHr0aIwZMwaOjo5YsWIFrK2tsXbtWlVXjYiIiFTsrQ92srOzERUVBU9PT7l0T09PnDlzRkW1IiIioqqimqor8KaSk5ORl5cHc3NzuXRzc3MkJiYqXCcrKwtZWVnS+9TUVABAWlqaUuv27NkzAMDVfxPwPDtbqdsuzl8JBW1Ovn0LcX+eq/Dykm/f+l+51Sp+d2L7lE/d28j2KRf3UeVT9/Y9/ucOgILfRGX/zhZuTwhRckbxlvv3338FAHHmzBm59AULFgh7e3uF68ydO1cA4Isvvvjiiy++1OB17969EmOFt35kx9TUFJqamkVGcZKSkoqM9hTy9/fH5MmTpff5+fl48uQJTExMIJPJKrS+FS0tLQ3W1ta4d+8eatSooerqKB3b9/ZT9zayfW8/dW+jOrVPCIH09HRYWVmVmO+tD3a0tbXRqlUrhIaGon///lJ6aGgo+vbtq3AdHR0d6OjoyKXVrFmzIqtZ6WrUqPHW78QlYfvefureRrbv7afubVSX9hkZGb02z1sf7ADA5MmT8f7776N169bo0KEDfvzxR8THx+OTTz5RddWIiIhIxdQi2BkyZAgeP36M+fPnIyEhAU5OTjh48CBsbW1VXTUiIiJSMbUIdgDg008/xaeffqrqaqicjo4O5s6dW+Q0nbpg+95+6t5Gtu/tp+5tVPf2KSIT4nXXaxERERG9vd76mwoSERERlYTBDhEREak1BjtERESk1hjsKFFcXBxkMhnOnz8PADh8+DACAgJKtW50dDS6du0KV1dX9OzZE/fu3Stz+a1btwYALFq0CLGxsRBCoHfv3ujYsSMuXrxYpgejPn36FNu3b5fejx07tsz1KXT69Gl4eHjAzc0NnTp1ws6dO/HixQtMnDgRbm5uaN++PWbPng0AWL58Odq3b493330XH3/8MQAgICAAzs7OcHNzg5ubG06dOgUAiImJwRdffIH8/HzMmzcPrq6ucHFxwYcffggA2Lp1K9q3b4+OHTuiV69eAIDg4GDY2dlJ2/rtt9/K3QYASm/H7NmzpXasXLmySD3Cw8MxderUcn0OigQEBGD//v0l5gkPD4erqys6deqEoUOHIiUlBQEBAWjatKl0i/ahQ4ciLi4OAPDHH3/A3d0dnTp1gru7O65duybXzpf7wdXVFQ8ePMD8+fPh5uaGevXqScu2bdsGNzc3dOzYUeqzZ8+eFft5K5uLiwsWLlyocFlhXZSl8NhVRFH/A8CePXuQlJQEoGC/Xr16dbnKTk9Px4gRI3D16lV06tQJrq6uaN++fYnfQSXVF4B0nHh4eKB3797SPlDZ4uLiULt2bbi7u8PV1RXTpk1DZmZmpZU9cOBA6f3LvwclfZ++ul5Z9enTB6mpqejduzfc3NzQtm1b/P7778Xm9/X1LfHzKTxe3d3d4ebmhr1795a7biqljEc2UIHY2FjRpEkT4e3tLYQQ4tChQ2Lu3LmvXS87O1u0bdtW3L17VwghREREhHjvvffKXH6rVq3k3j948ED06dOnzNsRoqAtAwYMKNe6L0tOThYdOnQQycnJQoiCtp4+fVrMnDlTfP/991K+Y8eOibS0NNGuXTuRn58vhBDiyZMnQoiCx3v8/vvvRba9bNkycfz4cfHjjz+KGTNmyG1LCCGaN28usrKy5La1YcMGsWrVKqW0QQih9HZMmzZNKqN79+4iNDRULu+JEyfElClTylT/khRXp0KPHz8Wbdu2ldqwadMmMWLECDF37lzRtGlTsXfvXiGEEEOGDBGxsbFSXz1+/FgIIURSUpK4evWqXDtfLnPTpk1iwYIFxdbH1dVVpKeny9WpuM9bmeLj48XQoUOFu7u7wuWK6vUmXj12CxXX/0II4ePjI6Kjo4UQ5duv8/LyhBBC7Nq1S6xbt04MHDhQXLt2TQghREZGhsjMzCxzfQu93D9XrlwRjo6OJW6vNPUsj5e/x/Lz88Xs2bOlY6yi6/Hqd2hpfw/K+92bl5cnkpOTha+vr1i9erVYvXq1EKKg3SkpKcWu9/J+pMjLx2RycrJo2bKldEyXx5t8nm+CIztK5ujoiNzcXNy4cUMufcuWLWjXrh3atWuHw4cPyy07e/YsXFxcYGNjAwDo1KkThBCIj4+X+8v7+++/R3BwMPLz8+Hp6QlXV1d07dq1yIPVCiP1zz77DGfOnMGgQYPkRgQOHjyIDh06wNXVFVu2bMHDhw/h4eGBTp06YeDAgcjLy8PatWsREREBNzc33Lx5U/pL7t69e3B3d0fHjh0xbtw4AAV/VXp7e6Nnz55o06YNHjx4INXlwIEDGDZsGExMTAAAWlpacHFxQWhoqDTiAQAeHh7Q0NDA48ePcfnyZQghUKtWrRL7+tSpU3jvvfcQEhICf39/uW0BBaMu58+fR15e3mu3VZLi2gCgwtqhpaWFKVOmYOvWra+t3+HDh9GxY0e4uLhg69atyM7OxrvvvistHzZsGO7cuYMLFy6gc+fO6NixI7755ptStX3//v0YPny41Ib3338fZ8+eRV5eHj777DMsX75cLn9hXxkbGwMAateuDWdnZ7l2viw9PR2Ghoalqkuh4j5vZfrtt98wcuRINGzYELdv335t/hcvXmDkyJFwd3dHnz59kJaWhiVLlkijozdv3sSoUaMghMDEiRPRuXNndO3aFffv35fbzuzZs+Hi4oJOnTrh3Llzxfb/nTt3cPjwYXzwwQdSX4SFhRU5BoODg6V9IywsDEDBqMuUKVPg5eUFADhy5Ai6desGfX19nDhxAs+fP4eenh50dXXlvjdu3LgBX19fAAWP2Jk0aRI6dOiAxYsXl9g3zZo1Q+vWrREZGamwn4CCW4e4urpi+vTpcHNzK1LP4tZbuHChNOoVHR1dYj1kMhlmz56NvXv3KjwW4uPj8e6776JHjx4YPnw4goODERcXh44dO2LQoEH45ptvFK6XnJyMfv36wd3dHSNHjkReXl6J9QD+NzKmqEwAePDgAQYMGIBmzZrh2LFjAKCw7ICAAPj4+MDLywvXr1/H0aNH0bVrV+jr6+PPP//Ew4cPIZPJpCcEvDwi1759e+n/a9euRZcuXTB48OAS629iYoLx48djz549xfb/xo0b0bp1a/j4+EjH/qv1VLTeq99jysZgpwJ88cUXWLJkifQ+Ly8PixYtwsmTJxEaGopZs2bJ5U9ISEDdunXl0qytreWChpdpaGhg7969iIiIQO/evbFt2zaF+YKCguDq6oodO3ZIafn5+fD390doaCgiIiIwdOhQ1KpVC0eOHMHJkydhY2ODsLAwjBs3Dq6urggPD4e9vb20/qJFizBt2jT88ccfyM7ORkREBICCx20cOHAAH3/8sdypoYSEBOmZJYcPH4abmxv69OkDIUSR55AZGBhg7dq1mDVrFho1aoSff/5ZWubv7y+dyrh9+zYyMzOhpaUFbW1tpKWlKbzl+a+//ooVK1agUaNG+Oqrr6T0b7/9tsippJIU1wYASm1Henq63GNLStoHCuXn52P+/Pk4fvw4Tp06he+//x6amppwcHBAdHQ0MjMzkZiYiIYNG2L69OnYtWsX/vjjD5w+fRoPHz4sVdtf3TfNzMyQnJwMS0tLNGzYEH/88YfCvnrZy+0s7IfC00SDBg0qsQ5eXl5wc3OTTkUW93kr0/Hjx+Hp6Ylhw4bJHT/F+fnnn+Hu7o6wsDD4+Pjgxx9/xJAhQ6RgZ9u2bRgyZAgOHDiAWrVq4cSJE1i0aBEWLVokt53C4/DkyZNo27Ztsf1fvXp1dO/eHRs2bEBgYCCAosdgcnIytm7dipMnT+LYsWP4+uuvpW306NEDR44cAVDwmdWpUwdLlizB9evX0bx5cwwdOhQZGRnFtjclJQXjx4/HmTNncPjw4dfuS1ZWVnjw4IHCfoqMjMTTp08RERGBrl27yq1XWE9F60VHR+PmzZuIiIjA9u3b8eWXX77mUyq4v0xWVpbCY2Hx4sWYO3cuDh48CA2N//00PnjwAL/++iumTZumcL1FixZh0qRJCAsLQ4sWLbB7925p3cI/GN3c3DBt2rQi9SmuzMePH2Pbtm3YuXMn1qxZAwDFHr82NjY4dOgQnJ2dERoaCk9PT7z//vuwt7dHt27d4OLiglu3bpXYL82bN8exY8dgZ2cnBTLFKfwsFfV/bm4uli9fjjNnzmD58uW4e/eutF5hPQEUWU/R91hpgsayUJubClYl7733Hr788kv8+++/AIBHjx7B1tZWeiaXtrY2cnNzUa1aQfdbWlpK83wK3b9/H1ZWVnI/pOL/50c8f/4cY8eORXx8PJ4+fYoBAwaUum6PHj2CtbU1qlevDqAgcHry5Ak++eQTpKSkICEhAc2bN4ednZ3C9e/cuYM2bdoAANq0aYPbt29DU1MTLVq0AFDwA/1yW6ysrKR+6N69O7p3747WrVtDU1NTYaDQpUsXdOnSBenp6dIcBQAIDAyUfuwA4NChQ3B1dQVQ8FwURT+ArVq1ws6dO5GdnY2ePXvi5s2bAIDPPvsMEyZMKHWfFdeGwv5TVjsMDQ2RmpoqPeelcB8oSXJyMm7dugVPT0/p/aNHjzBkyBBs27YNzZs3l8qLjo6Wnh+XkpJSqnlhL7e90KNHj2BqagqgILD/4osvoK+vX2x+4H/zTgoV9sP+/fsxe/ZsrFu3rtg6HDp0SNpfgeI/b2W5f/8+rl69it69eyM/Px/Pnz+XG0lS5K+//kJkZCQ2bdqEnJwcdOzYETY2NkhJScGzZ89w7Ngx+Pv7Y/ny5di9ezdOnjwJIQSsra3ltrNgwQKMHTsW1apVw7x5817b/y979Rj8559/8Ndff6Fz587SeoUKj+GYmBg4ODgAKAiiCuf1zZ07F7/88ou0DPjf9w8AVK9eXfoj6J133kFcXFyxD14GCgKGnj17IiIiokg/3blzB61atZKr16v1VNS/MTExOHPmjDQSpKmpWWz5hbKzs6Gjo6PwWCiuHs2bN5eCdEXr/fXXXzh//jzmz5+PzMxMvP/++9K6rq6u0h9/hw8fxrlz5+TqU1yZTk5OqFatGqytraU5WsUdv4XrCSHw5MkTad+YOXMmZs6ciRMnTuDLL78sMlry8udZWIe2bdsWOSvxqgcPHsDKykph/ycnJ8Pa2hra2towNjZGw4YNpfVe3ucUrafoe8zCwqLEupQFR3YqiJ+fH1asWAGgYCj/7t27yMrKQlpaGrKzs6VABwA6dOiAU6dOSUPap06dgpaWFmxsbFCrVi1pp46KigJQcNBYWVnh5MmTGDNmjNxO+zq1a9fG/fv38fz5cwAFIwO//vorPD09ERERgV69ekEIAS0tLYWRdaNGjRAZGQkAiIyMlIIiRUEZUPCXWUhICJKTkwEAubm5AICuXbvixx9/lPKdOHECL168kNpavXp16OrqFtuOI0eOoHv37gAKJscW/nVbuC0A0l8z2traqFmzJvLz80vVR68qrg3KbsewYcOkUwK5ublYtmwZhg8fXmLdTE1N4ejoiNDQUISHh+Py5cuwsLCAu7s7Tpw4gR07dmDw4MEACr609+7di/DwcFy8eFH6gitJz549sXXrVjx9+hRAwenYDh06SD8s9vb20NLSkiY49uzZEyEhIXjy5AmAgi+t6OhouXa+rGbNmlLe0iru81aW3377Dd9++y0OHz6Mo0ePwsHB4bWnshwcHDBp0iSEh4fj9OnT0khinz59EBgYKPWTg4MDBg8ejPDwcERERGDDhg1y2+nUqRPWrVsHV1dX/PjjjyX2/6vH6KvHYIMGDdCsWTOcOHFC2jcKFY4iHD58WDqd9fJf/2ZmZsjPz1f4/QMAz549w61btyCEwNWrV1GvXr1i++batWuIiopCmzZtFPZTw4YNcenSpSJlvFxPRes5ODhIo8/h4eFFpgcosnDhQvTr10/hsVBcPV4ecVG0noODAxYuXIjw8HCcP3++TBdzFFemou/T4o7fwvpdvnwZ77zzDgDg7t27yM7OBvC/zxIoON2al5eHu3fvSt9nAKQ6XLhwAY0aNSq2vk+ePMHatWvRv39/hf1f+PuSnZ2Np0+f4p9//inSj4rWK+57TJk4slNBevfujRkzZgAoiFxnzJiBTp06ASj46+1lWlpa+Omnn+Dj44P09HQ8f/5cOk87cOBA9OnTB/v374eenh6AgnOtX3/9NXr06AFLS8sifx2WRENDA19//TXc3d2hr6+Pjz76CB4eHnj//fdx5MgR6Ovro1mzZrC0tERmZiYGDhyIoKAgaf3p06fDx8cHX3/9NZycnNCpUye5HfpVJiYmCAoKkn5wNTQ04Ofnh4EDB+KLL76Am5sbsrOz4eHhgdatW8PX1xdZWVnIy8vD8OHDpb/o/f39pfPUM2bMQGxsLOrXrw8A+PDDD/HVV1+hU6dOyM/Ph4ODAzp37oypU6fi0aNH0NDQQMeOHeHo6Ijz58/j22+/lf7a8vX1leYhlLUNQMEcC2W2Y86cOXB1dUVOTg6GDh2qcD7Kjh07pB+uUaNGYdasWejSpQs0NDRQu3ZtbN++HdWqVYOzszNu3rwp7R+LFi2Ct7c38vPzoa2t/drhagAwNjZGYGAg+vbtCyEELC0t8f333+Pbb7+V8kybNk06/29sbIzFixdLc7+0tLSwcuVKuXa+3A8vXrzAqlWrSqyDl5eXFFyFhIQU+3kry86dO+WuOPHw8MCOHTuKjO707t1bqtf+/fvx8ccfS8HLlClT0LNnTwwaNAj16tWThu979+6NsLAwqb4jR47E6NGjpW3269cPmZmZyMrKws8//1xs/xf2i5+fH7p166bwh8HU1BRDhw6Fq6srNDU14ezsXOQKvzNnzkijnCEhIfj999+hr6+PmjVrYvPmzTAwMMCLFy/g4eEhN9pbq1YtrFixAlFRUejfv7/CUZ0ePXpAS0sL+vr62LZtG3R1dfHxxx8r7CcDAwO4urqiZcuW0NLSKrKt4tazs7ODq6srNDQ00LVrV8ycObPIuhEREXB3d0deXh7atm2L+fPn46+//ipyLHzxxRcYPnw4li5dCgMDA4X1UHQMzZo1Cx999BHmzp0LoGD6wOuuVitUmjJLKvtlhw8flv6guHr1KgYPHiz9ZhReqTdixAi0b98erVq1kubVAQWB1tatW2FiYqLwCuLCUcm8vDzMnj0bTk5OAKCw/ydNmgQXFxc4ODgofD5ls2bNFK6n6HtMqSp1OjS9VkZGhnBzcxNHjhxRdVWqrBcvXojdu3eruhpvTF3a8Tr/lXa+jbZu3arqKgghCq4+FEKI0NBQ8cknn6ikDjk5OdL/R4wYIc6dO/dWlbl9+3aVXen0ssLPsvBKwqqCz8YiIiKV+vDDD3Hnzh3k5eVh06ZNaNCgQaXX4c6dO/D19UVubi6aN28ujaCpW5kVbeXKldi1axfS09OxYMEC6TSpqjHYISIiIrXGCcpERESk1hjsEBERkVpjsENERERqjcEOERERqTUGO0T/IcHBwXKPpCgNX19f9OvXr0LqU5XFxcVBJpNJ9zQKDw+HTCaTbvAHFDx5vFGjRtDU1ISfn1+5+rc83NzcpHs9EdHrMdghUgPFBSSv/kAPGTIEf//9d+VW7jUUBRHFycvLw/Lly9GsWTPo6uqiZs2a8PLywunTpyu8ni4uLkhISJAe5wEAY8eOxcCBA3Hv3j189dVXSu/f4vpm165dcs97I6KSMdgh+g/R09ODmZmZqqtRLkIIDB06FPPnz8ekSZMQExODiIgIWFtbw83NrVR3hH4T2trasLCwkG7l/+zZMyQlJaFbt26wsrKCoaFhpfWvsbFxmZ8WT/RfxmCH6D9E0WmWBQsWwMzMDIaGhhgzZgxmzJghPWPnZd988w0sLS1hYmKC8ePHIycnR1qWnZ2NadOmoU6dOjAwMEC7du0QHh4uLb979y569+6NWrVqwcDAAE2bNsXBgwcRFxcnPTqhVq1akMlkxT6+Y/v27fjtt9+wadMmjBkzBvXr10fz5s3x448/ok+fPhgzZoz0zDdFI11+fn7SwweBgtvrv/fee6hZsyZMTEzQq1cv3Llzp9i+e3mUJTw8XAo23N3dIZPJEB4errB/9+3bh9atW0NXVxempqbw9vaWlm3evBmtW7eGoaEhLCwsMHz4cCQlJQFAiX3z6mmslJQUjBo1CrVq1YK+vj68vLzknnVVWK8jR47A0dFRemp6QkJCse0lUicMdoj+w3799Vd8/fXXWLx4MaKiomBjYyM9+fplJ06cwJ07d3DixAls3LgRwcHBCA4OlpZ/8MEHOH36NEJCQnD16lUMGjQI3bt3l35wx48fj6ysLJw8eRLR0dFYvHgxqlevDmtra+zcuRMAcPPmTSQkJMg9d+tlW7ZsQePGjdG7d+8iy6ZMmYLHjx8jNDS01G1//vw5Jk+ejMjISBw/fhwaGhro379/qR4Y6+Ligps3bwIoeJZWQkICXFxciuQ7cOAAvL290bNnT1y6dAnHjx+Xe25SdnY2vvrqK1y5cgV79uxBbGysFNCUpW98fX1x4cIF7Nu3D2fPnoUQAj169JALSDMyMvDNN9/gl19+wcmTJxEfH4+pU6eWur+I3mqqfFYFESmHj4+P0NTUFAYGBnIvXV1dAUCkpKQIIYTYsGGDMDIyktZr166dGD9+vNy23n33XdG8eXO5bdva2orc3FwpbdCgQWLIkCFCCCFu374tZDKZ+Pfff+W24+HhIfz9/YUQQjg7O4uAgACFdT9x4oRcHYvj4OAg+vbtq3DZkydPBACxePFiqc6v5v3ss8+Eq6trsdtPSkoSAER0dLQQQojY2FgBQFy6dElhPVNSUgQAceLECWkbr/Zvhw4dxIgRI0ps18v+/PNPAUCkp6crLLOQq6ur+Oyzz4QQQvz9998CgDh9+rS0PDk5Wejp6Ynt27dL9QIgbt++LeX57rvvhLm5eanrRvQ248gOkZro3LkzLl++LPf6+eefS1zn5s2baNu2rVzaq+8BoGnTptITvgHA0tJSOt1y8eJFCCHQuHFjVK9eXXpFRERIp4UmTZqEBQsW4N1338XcuXNx9erVN22uQtra2qXOe+fOHQwfPhwNGjRAjRo1pKeyx8fHK60+ly9fVvjk+kKXLl1C3759YWtrC0NDQ+k0W1nqEBMTg2rVqqFdu3ZSmomJCezt7RETEyOl6evro2HDhtL7lz9DInVXTdUVICLlMDAwQKNGjeTS7t+//9r1CifcFhIKHpenpaVVZJ3C0z35+fnQ1NREVFSUXEAEANWrVwcAjBkzBt26dcOBAwdw9OhRBAYGYunSpZg4ceLrG/b/7Ozs8NdffylcVvij3rhxYwCAhoZGkXa8fEoHAHr37g1ra2v89NNPsLKyQn5+PpycnJCdnV3qOr2Onp5escueP38OT09PeHp6YvPmzahduzbi4+PRrVu3MtVB0edVmP7yZ6voMyxuXSJ1w5Edov8we3t7/Pnnn3JpFy5cKNM2WrRogby8PCQlJaFRo0ZyLwsLCymftbU1PvnkE+zatQtTpkzBTz/9BOB/ozF5eXklljNs2DDcunULv//+e5FlS5cuhZWVFbp27QoAqF27dpHJt4X3ywGAx48fIyYmBrNnz4aHhwccHR2RkpJSpnaXRrNmzXD8+HGFy27cuIHk5GQsWrQIHTt2hIODQ5GRltL0TZMmTZCbm4vz589LaY8fP8bff/8NR0dHJbSC6O3HYIfoP2zixIlYt24dNm7ciFu3bmHBggW4evVqkdGekjRu3BgjRozAqFGjsGvXLsTGxiIyMhKLFy/GwYMHARRcCXXkyBHExsbi4sWLCAsLk36IbW1tIZPJsH//fjx69AjPnj1TWM7QoUPRr18/+Pj4YN26dYiLi8PVq1cxduxY7N+/H5s3b5ZGL9zd3XHhwgVs2rQJt27dwty5c3Ht2jVpW7Vq1YKJiQl+/PFH3L59G2FhYZg8eXJ5u7FYc+fOxdatWzF37lzExMQgOjoaQUFBAAAbGxtoa2tj1apV+Oeff7Bv374i984pTd/Y2dmhb9+++Oijj3Dq1ClcuXIFI0eORJ06ddC3b1+lt4nobcRgh+g/bMSIEfD398fUqVPRsmVL6WogXV3dMm1nw4YNGDVqFKZMmQJ7e3v06dMH58+fh7W1NYCCkYnx48fD0dER3bt3h729PdasWQMAqFOnDubNm4cZM2bA3NwcEyZMUFiGTCbDjh07MHPmTCxfvhz29vZo3rw5fvvtN1y6dEm6TBsAunXrhjlz5mDatGlo06YN0tPTMWrUKGm5hoYGQkJCEBUVBScnJ3z++edYsmRJWbvvtdzc3LBjxw7s27cP77zzDtzd3aURmNq1ayM4OBg7duxAkyZNsGjRInzzzTdy65e2bzZs2IBWrVqhV69e6NChA4QQOHjwYJFTV0T/VTLBk7ZE9JKuXbvCwsICv/zyi6qr8loXL15Ely5dMHr06AoJVohIPXBkh+g/LCMjA8uWLcP169dx48YNzJ07F8eOHYOPj4+qq1YqLVu2xPHjx2FgYFDiDQGJ6L+NIztE/2GZmZno3bs3Ll68iKysLNjb22P27Nlyd/klInrbMdghIiIitcbTWERERKTWGOwQERGRWmOwQ0RERGqNwQ4RERGpNQY7REREpNYY7BAREZFaY7BDREREao3BDhEREak1BjtERESk1v4P1A2vhNBHM4EAAAAASUVORK5CYII=",
2539
      "text/plain": [
2540
       "<Figure size 640x480 with 1 Axes>"
2541
      ]
2542
     },
2543
     "metadata": {},
2544
     "output_type": "display_data"
2545
    }
2546
   ],
2547
   "source": [
2548
    "#Histogram plot highest qualification & smoke\n",
2549
    "sns.histplot(binwidth=1,\n",
2550
    "            x=\"highest_qualification\",\n",
2551
    "            hue=\"smoke\",\n",
2552
    "            data=smoke1,\n",
2553
    "            stat=\"count\",\n",
2554
    "            multiple=\"dodge\",\n",
2555
    "            palette=\"hls\")\n",
2556
    "plt.tick_params(axis='x', which='major', labelsize=6)\n",
2557
    "plt.title('Figure 7: Histogram plot for Highest Qualification & Smoke ')\n",
2558
    "plt.xlabel('Highest Qualification')"
2559
   ]
2560
  },
2561
  {
2562
   "cell_type": "code",
2563
   "execution_count": 46,
2564
   "id": "364499d8",
2565
   "metadata": {},
2566
   "outputs": [
2567
    {
2568
     "data": {
2569
      "text/plain": [
2570
       "Text(0.5, 0, 'Ethnicity')"
2571
      ]
2572
     },
2573
     "execution_count": 46,
2574
     "metadata": {},
2575
     "output_type": "execute_result"
2576
    },
2577
    {
2578
     "data": {
2579
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWOElEQVR4nO3dd1gU1/4/8PfSYaUICAsKgjQbdq9Rk4Biwd6wxAbGXoM9Xk1Ec4MJxpKo2KKChWhyLfEaG4qa2BGDlZhoVDRCECUURer5/eGP+brSEVhw3q/n2SeZs2dmPnPYhbdnZnYVQggBIiIiIhnT0nQBRERERJrGQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdAJGMhISFQKBQFPmbNmoV79+5BoVAgJCRE06WW2a+//oq+ffvC1tYWRkZGqF+/PhYvXoznz5+XeZuenp5o3Lhxgc8lJiZCoVAgICBAajt58iQUCgVOnjxZqv0EBwdX67GvbGUdZwA4e/YsAgIC8M8//5R4nVWrVsHZ2Rl6enpQKBSlWre0inqvvn7MgYGB2LdvX6HbuHTpUrnVVdYxz6vl3r17UltYWBhWrlxZbrW9KikpCRMmTEDt2rWhVCrRqFEjtfdoSWRlZWH9+vVo3bo1zM3NYWRkhLp166JPnz7Yu3dvhdRdHAcHB/Ts2VMj+34b6Wi6ANK8LVu2oH79+mpttra2sLa2xrlz5+Dk5KShyt7MzZs30a5dO7i5uWHlypWwtLTEzz//jMWLFyMqKgo//vhjpdTRokULnDt3Dg0bNizVesHBwbC0tISfn1/FFEaSs2fPYtGiRfDz84OZmVmx/aOjozFt2jSMGTMGvr6+0NHRgbGxcYXXWdB7FYDaayswMBA+Pj7o27dvhddT1td2jx49cO7cOdjY2EhtYWFhuH79Ovz9/cu5SsDX1xcnT57El19+CVdXV1y5cgWHDx8u1TZGjBiBPXv2wN/fH4sWLYK+vj7+/PNPHD58GEeOHEG/fv3KvW6qXAxEhMaNG6NVq1YFPvfOO+9UcjUvPX/+HEZGRm+0jbCwMLx48QK7d++WQl3Hjh0RFxeHDRs2ICkpCTVr1iyPcotkYmKisXF8E+XxM3hb3bhxAwAwduxY/Otf/yqXbZZkvIt6r2pCWV/btWrVQq1atSqgovyePXuGn376CbNnz8bEiRMBAF5eXpgxY0aJt3H37l3s2rULn376KRYtWiS1e3l5YezYscjNzS33uqny8ZQZFaqwU2Y//vgjmjRpAn19fdSrVw9ff/01AgICoFAoil0XQL5TSnnrXr58GT4+PqhZs6YUYIQQCA4ORrNmzWBoaIiaNWvCx8cHf/75Z7H16+rqAgBMTU3V2s3MzKClpQU9Pb0SjsSbKei0wp9//okhQ4bA1tYW+vr6sLa2hpeXF6KjowG8nAq/ceMGTp06JZ0WcXBwkNaPjY3F8OHDYWVlBX19fTRo0ADLli3L94v54cOH8PHxgbGxMczMzDBs2DBERkbm+9n4+fmhRo0auHbtGrp06QJjY2N4eXkBAMLDw9GnTx/UqVMHBgYGcHZ2xvjx45GYmKi2r7yf49WrVzFw4ECYmprC3NwcM2bMQHZ2Nm7dugVvb28YGxvDwcEBQUFBJRo/hUKBKVOmYP369XB1dYW+vj4aNmyInTt3lmj9/fv3o23btjAyMoKxsTE6d+6Mc+fOqdU9e/ZsAICjo2OBp6Fe5enpieHDhwMA2rRpA4VCoTaLt3nzZjRt2hQGBgYwNzdHv379EBMTo7aNosb7TSgUCjx79gyhoaHScXh6eqr1SU1NxcSJE2FpaQkLCwv0798fjx49UuuTdyrm8OHDaNGiBQwNDVG/fn1s3rxZrV9hp8wuXLiAXr16wcLCAgYGBnByclKb+Xn9lJmnpyd++ukn3L9/X+1UoBACLi4u6Nq1a75jTUtLg6mpKSZPnlzkmGhpaUGhUODWrVtFD14Rnjx5AgBqM1qv7yNP3piEhYVh7ty5sLGxQY0aNdCrVy/8/fffSE1Nxbhx42BpaQlLS0uMGjUKaWlpatt78eIF5s2bB0dHR+jp6aF27dqYPHlyiU7LBgcHQ0dHBwsXLpTajh07Bi8vL5iYmMDIyAjt27fH8ePHyzASbzlBsrVlyxYBQJw/f15kZWWpPYQQ4u7duwKA2LJli7TOoUOHhJaWlvD09BR79+4VP/zwg2jTpo1wcHAQr76cClo3DwCxcOFCaXnhwoUCgKhbt66YO3euCA8PF/v27RNCCDF27Fihq6srZs6cKQ4fPizCwsJE/fr1hbW1tYiPjy/y+O7evSvMzMyEj4+PuHPnjkhJSRH/+9//hKmpqZg6dWqBY1FQva/z8PAQjRo1yjdmWVlZIj4+Pt/xnThxQgAQJ06ckNrc3NyEs7Oz2LZtmzh16pTYvXu3mDlzptTn8uXLol69eqJ58+bi3Llz4ty5c+Ly5ctCCCESEhJE7dq1Ra1atcS6devE4cOHxZQpUwQAMXHiRGkfaWlpwtnZWZibm4s1a9aII0eOiOnTpwtHR8d8x+rr6yt0dXWFg4ODWLJkiTh+/Lg4cuSIEEKItWvXiiVLloj9+/eLU6dOidDQUNG0aVPh5uYmMjMz8/0c3dzcxGeffSbCw8PFnDlzBAAxZcoUUb9+ffHNN9+I8PBwMWrUKAFA7N69u9jxBiDs7OxEw4YNxXfffSf2798vvL29BQDxww8/FDnOO3bsEABEly5dxL59+8SuXbtEy5YthZ6envjll1+EEEI8ePBATJ06VQAQe/bskcY7OTm5wHpu3LghFixYII3huXPnxO3bt4UQQgQGBgoA4oMPPhA//fST2Lp1q6hXr54wNTUVv//+e4nGuyBFvVezs7OlfufOnROGhoaie/fu0nHcuHFDbRv16tUTU6dOFUeOHBHffvutqFmzpujQoYPa/urWrSvq1KkjGjZsKLZu3SqOHDkiBg4cKACIU6dOFTnmhw8fFrq6uqJJkyYiJCREREREiM2bN4shQ4bkO567d+9KY9q+fXuhUqmkus+dOyeEEOLrr78WCoVCbfyEEGLNmjUCgHR8RfH19RUAxKpVq4rtW5C0tDRhZmYmVCqVWL9+vVR3QfLGpG7dusLPz08cPnxYrFu3TtSoUUN06NBBdO7cWcyaNUscPXpUfPnll0JbW1vt91Fubq7o2rWr0NHREZ988ok4evSo+Oqrr4RSqRTNmzcXL168kPrWrVtX9OjRQ1pv5syZQldXV+29vW3bNqFQKETfvn3Fnj17xP/+9z/Rs2dPoa2tLY4dO1am8XhbMRDJWN4vpYIeWVlZBYaa1q1bCzs7O5GRkSG1paamCgsLizcORJ9++qlav3PnzgkAYtmyZWrtDx48EIaGhmLOnDnFHmNMTIyoX7++2rFNmzZN5ObmqvULDQ0V2traIjQ0tNhtenh4FDpueY+iAlFiYqIAIFauXFnkfho1aiQ8PDzytX/88ccCgLhw4YJa+8SJE4VCoRC3bt0SQvzfH4xDhw6p9Rs/fnyBgQiA2Lx5c5E15ebmiqysLHH//n0BQPz444/Sc3k/x9d/Xs2aNZPCRp6srCxRq1Yt0b9//yL3J8TL14uhoaFaAM7Ozhb169cXzs7OUtvr45yTkyNsbW2Fu7u7yMnJkfqlpqYKKysr0a5dO6lt6dKlan+gi5P33omMjJTakpKSpDDyqtjYWKGvry+GDh0qtZV0vF/fX0EPbW1ttb5KpVL4+voWuo1JkyaptQcFBQkAIi4uTmqrW7euMDAwEPfv35fa0tPThbm5uRg/frzUVlAgcnJyEk5OTiI9Pb3Y43l1vHv06CHq1q2br29KSoowNjYWH330kVp7w4YN8wW5gsTFxYm2bdsKNzc3oVAoxPr164tdpyA//fSTsLS0lMbdwsJCDBw4UOzfv1+tX96Y9OrVS63d399f+v3zqr59+wpzc3Np+fDhwwKACAoKUuu3a9cuAUBs2LBBassLRM+fPxcDBgwQpqamaiHn2bNnwtzcPF8tOTk5omnTpuJf//pXmcbibcVTZoStW7ciMjJS7aGjk//ysmfPnuHSpUvo27ev2ummvOngNzVgwAC15QMHDkChUGD48OHIzs6WHiqVCk2bNi32zpZ79+5J0/b//e9/cerUKQQFBSEkJARjxoxR6zty5EhkZ2dj5MiRJarVyckp35hFRkbi2LFjxa5rbm4OJycnLF26FMuXL8evv/5aqmsQIiIi0LBhw3zXrvj5+UEIgYiICADAqVOnYGxsDG9vb7V+H3zwQaHbfv1nAAAJCQmYMGEC7OzsoKOjA11dXdStWxcA8p0KApDvrpcGDRpAoVCgW7duUpuOjg6cnZ1x//79Yo72JS8vL1hbW0vL2traGDx4MG7fvo2HDx8WuM6tW7fw6NEjjBgxQu2URo0aNTBgwACcP3/+je42fN25c+eQnp6e7yJ4Ozs7dOzYscBTFAWNd1EKeq9euHChVNvo3bu32nKTJk0AIN/PolmzZrC3t5eWDQwM4OrqWuTP7Pfff8edO3cwevRoGBgYlKquwhgbG2PUqFEICQnBs2fPALx8D9y8eRNTpkwpct2srCx069YNVlZWuHHjBsaOHYsJEybg22+/lfqcPn0aCoUCJ06cKHJb3bt3R2xsLPbu3YtZs2ahUaNG2LdvH3r37l1gHQW9D4CXF5S/3v706VPptFne+/f119HAgQOhVCrzvY6ePHmCjh074uLFizh9+rTaqdezZ8/i6dOn8PX1VfsdmpubC29vb0RGRkpjSryomvDyDVmSCzWTkpIghFD7w5SnoLbSev38/N9//13o/gCgXr16RW7v448/RkpKCqKjo6FUKgEA77//PiwtLfHhhx9i5MiR8PDwKFOtBgYGBY7Z69fVFEShUOD48eNYvHgxgoKCMHPmTJibm2PYsGH4/PPPi71b6cmTJ2rXE+WxtbWVns/7b2l+VkZGRjAxMVFry83NRZcuXfDo0SN88skncHd3h1KpRG5uLt555x2kp6fn2465ubnasp6eHoyMjPL9gdTT00NKSkrhB/oKlUpVaNuTJ09Qp06dfM8Xdd2Hra0tcnNzkZSUVG4Xjhe3v/DwcLW2gsa7OCV9rxbFwsJCbVlfXx8A8v0sX++X17egn3mex48fA0CBP483MXXqVKxevRo7duzAuHHjsHr1atSpUwd9+vQpcr19+/YhOjoa3377LbS1tbFu3TpoaWlh3Lhx0NbWxqhRo3Dy5EmYmZmhXbt2xdZhaGiIvn37SnfwxcbGolu3blizZg0mTpyIRo0aSX0Leh8U1f7ixQvUqFEDT548gY6OTr6LzhUKBVQqlfQ6y/P7778jKSkJY8eOzfdxIH///TcAwMfHp9Bjevr0qfT7Ue4YiKjEatasCYVCIb3JXhUfH6+2nPfHLyMjQ6399Tfzq169KBsALC0toVAo8Msvv0i/tF9VUNuroqOj0bBhw3xv9tatWwMArl+/XuZA9Kbq1q2LTZs2AXj5C+37779HQEAAMjMzsW7duiLXtbCwQFxcXL72vAtjLS0tpX4XL17M1+/1n1We18cfeDlGV65cQUhICHx9faX227dvF1ljeSuo5ry2gv5wv9pe2FhpaWmV612Gxe0v7+eSp6Dxru7y/ogXNmtXVs7OzlLw6NatG/bv349FixZBW1u7yPXu3LkDAFLwVCgUCA4OhpaWFsaMGYPk5GQsX74cs2fPLvb3SUHs7e0xbtw4+Pv748aNG2qBqKwsLCyQnZ2Nx48fq4UiIQTi4+Ol31952rZti4EDB2L06NEAgLVr10ozonmvuVWrVhV6N2B5/GP2bcFTZlRiSqUSrVq1wr59+5CZmSm1p6Wl4cCBA2p9ra2tYWBggKtXr6q1l+azf3r27AkhBP766y+0atUq38Pd3b3I9W1tbXHjxo18d3Dk3WFU3v+KLStXV1csWLAA7u7uuHz5stRe2L/Gvby8cPPmTbW+wMvTKQqFAh06dAAAeHh4IDU1FYcOHVLrV9K7s4D/+6P9+h+L9evXl3gb5eH48eNqQTwnJwe7du2Ck5NToT9HNzc31K5dG2FhYRBCSO3Pnj3D7t27pTvPgMJnSUqjbdu2MDQ0xPbt29XaHz58iIiIiHK5i6wkipvFqUiurq5wcnLC5s2b8/1jqDjF1f3RRx/h6tWr8PX1hba2NsaOHVvsNvNmTLZu3Sq1KRQKrFmzBmPGjMH06dNhbm6OOXPmFLmd1NTUfL9H8uSdNs6boX1Tea+T119Hu3fvxrNnzwp8Hfn6+mLnzp3YsmULRo4ciZycHABA+/btYWZmhps3bxb4O7RVq1aVdrdtdcAZIiqVxYsXo0ePHujatSs++ugj5OTkYOnSpahRowaePn0q9cu79mfz5s1wcnJC06ZNcfHiRYSFhZV4X+3bt8e4ceMwatQoXLp0Ce+//z6USiXi4uJw+vRpuLu7S58rUhB/f3/07dsXnTt3xvTp02FpaYnz589jyZIlaNiwodo1LVu3bsWHH36IzZs3l/g6orK6evUqpkyZgoEDB8LFxQV6enqIiIjA1atX8fHHH0v93N3dsXPnTuzatQv16tWDgYEB3N3dMX36dGzduhU9evTA4sWLUbduXfz0008IDg7GxIkT4erqCuDlL8kVK1Zg+PDh+M9//gNnZ2ccOnQIR44cAaB+q3Bh6tevDycnJ3z88ccQQsDc3Bz/+9//8p3+qWiWlpbo2LEjPvnkEyiVSgQHB+O3334rMtxpaWkhKCgIw4YNQ8+ePTF+/HhkZGRg6dKl+Oeff/DFF19IffPC9ddffw1fX1/o6urCzc2tVB+2aGZmhk8++QT//ve/MXLkSHzwwQd48uQJFi1aBAMDA7XboMvq+vXryM7Oztfu5OQkzSa4u7vj5MmT+N///gcbGxsYGxvDzc3tjfddUmvWrEGvXr3wzjvvYPr06bC3t0dsbCyOHDmCHTt2FLqeu7s79uzZg7Vr16Jly5bQ0tJSOz3YuXNnNGzYECdOnJA+cqI4PXr0QPfu3fH555/jwYMH6N+/P/T09PDrr79i3759sLOzw507d/D1119j5syZhW7n1q1b6Nq1K4YMGQIPDw/Y2NggKSkJP/30EzZs2ABPT88SnXIric6dO6Nr166YO3cuUlJS0L59e1y9ehULFy5E8+bNMWLEiALX8/HxgZGREXx8fJCeno7vvvsONWrUwKpVq+Dr64unT5/Cx8cHVlZWePz4Ma5cuYLHjx9j7dq15VL3W0GDF3SThhV0p8yrCrtTbO/evcLd3V3o6ekJe3t78cUXX4hp06aJmjVrqvVLTk4WY8aMEdbW1kKpVIpevXqJe/fuFXqX2ePHjwusY/PmzaJNmzZCqVQKQ0ND4eTkJEaOHCkuXbpU7DFGRESILl26CJVKJQwNDYWrq6uYOXOmSExMLHAsSnPbfUEeP35c7F1mf//9t/Dz8xP169cXSqVS1KhRQzRp0kSsWLFC7Rbqe/fuiS5dughjY2PpNt489+/fF0OHDhUWFhZCV1dXuLm5iaVLl6rdTSXEyzuc+vfvL2rUqCGMjY3FgAEDxMGDB/PdIebr6yuUSmWBx3Tz5k3RuXNnYWxsLGrWrCkGDhwoYmNjS/xzLGzbRY3jqwCIyZMni+DgYOHk5CR0dXVF/fr1xY4dO9T6FXTHkxBC7Nu3T7Rp00YYGBgIpVIpvLy8xJkzZ/LtZ968ecLW1lZoaWkVuJ1XFfXe+fbbb0WTJk2Enp6eMDU1FX369Ml3a3hR413U/gp7bNy4UeobHR0t2rdvL4yMjAQA6U7FwmouaNxevZ37VR4eHmp3PhY25ufOnRPdunUTpqamQl9fXzg5OYnp06fnO55X7zJ7+vSp8PHxEWZmZkKhUIiC/jwFBARIHz9QUpmZmeKrr74S7u7uQl9fXyiVSvHOO++I4OBgkZWVJX3kwtdff13oNpKSksR//vMf0bFjR1G7dm2hp6cnlEqlaNasmfjPf/4jnj9/nm9MXv1IiFeP+fXxL+h9k56eLubOnSvq1q0rdHV1hY2NjZg4caJISkpSW7egn9OJEydEjRo1hLe3t1TXqVOnRI8ePYS5ubnQ1dUVtWvXFj169MhXo9wphHhlLpmoDLKystCsWTPUrl0bR48e1XQ5VIzAwEAsWLAAsbGxVea0YVEUCgUmT56M1atXa7oU0rBWrVpBoVAgMjJS06XQW4inzKjURo8ejc6dO8PGxgbx8fFYt24dYmJi8PXXX2u6NHpNXoioX78+srKyEBERgW+++QbDhw+vFmGIKCUlBdevX8eBAwcQFRWlsS9SpbcfAxGVWmpqKmbNmoXHjx9DV1cXLVq0wMGDB9GpUydNl0avMTIywooVK3Dv3j1kZGTA3t4ec+fOxYIFCzRdGlGJXL58GR06dICFhQUWLlxYKV9aS/LEU2ZEREQke7ztnoiIiGSPgYiIiIhkj4GIiIiIZI8XVZdQbm4uHj16BGNj47fyI/eJiIjeRkIIpKamwtbWtsgPpGUgKqFHjx7Bzs5O02UQERFRGTx48KDIjxthICqhvI/wf/DgQam/oZqIiIg0IyUlBXZ2dsV+FQ8DUQnlnSYzMTFhICIiIqpmirvchRdVExERkewxEBEREZHsMRARERGR7PEaonKWk5ODrKwsTZdRrenq6kJbW1vTZRARkYwwEJUTIQTi4+Pxzz//aLqUt4KZmRlUKhU/84mIiCoFA1E5yQtDVlZWMDIy4h/yMhJC4Pnz50hISAAA2NjYaLgiIiKSAwaicpCTkyOFIQsLC02XU+0ZGhoCABISEmBlZcXTZ0REVOF4UXU5yLtmyMjISMOVvD3yxpLXYxERUWVgICpHPE1WfjiWRERUmRiIiIiISPYYiEji5+eHvn37aroMIiKiSsdARERERLLHQERERESyx0BUhf33v/+Fu7s7DA0NYWFhgU6dOuHZs2fSqa3AwEBYW1vDzMwMixYtQnZ2NmbPng1zc3PUqVMHmzdvVtvetWvX0LFjR2l748aNQ1paWqH7j4qKgpWVFT7//HMAQHJyMsaNGwcrKyuYmJigY8eOuHLlSoWOARERUWXg5xBVUXFxcfjggw8QFBSEfv36ITU1Fb/88guEEACAiIgI1KlTBz///DPOnDmD0aNH49y5c3j//fdx4cIF7Nq1CxMmTEDnzp1hZ2eH58+fw9vbG++88w4iIyORkJCAMWPGYMqUKQgJCcm3/5MnT6Jv375YsmQJJk6cCCEEevToAXNzcxw8eBCmpqZYv349vLy88Pvvv8Pc3LySR4iIqHLExsYiMTFR02WUiqWlJezt7TVdRvUiqESSk5MFAJGcnJzvufT0dHHz5k2Rnp5ebvuLiooSAMS9e/fyPefr6yvq1q0rcnJypDY3Nzfx3nvvScvZ2dlCqVSK7777TgghxIYNG0TNmjVFWlqa1Oenn34SWlpaIj4+Xtpunz59xL59+4SxsbEICwuT+h4/flyYmJiIFy9eqNXi5OQk1q9fXz4H/YqKGFMiotK6f/++MDI0FACq1cPI0FDcv39f08NXJRT19/tVnCGqopo2bQovLy+4u7uja9eu6NKlC3x8fFCzZk0AQKNGjaCl9X9nPK2trdG4cWNpWVtbGxYWFtJXYMTExKBp06ZQKpVSn/bt2yM3Nxe3bt2CtbU1AODChQs4cOAAfvjhB/Tr10/qGxUVhbS0tHyfxJ2eno47d+6U/wAQEVUBiYmJeJ6ejm8GDYCLlaWmyymRPxISMe373UhMTOQsUSkwEFVR2traCA8Px9mzZ3H06FGsWrUK8+fPx4ULFwC8/Eb4VykUigLbcnNzAbz8jrDCPuzw1XYnJydYWFhg8+bN6NGjB/T09AAAubm5sLGxwcmTJ/Otb2ZmVtbDJCKqFlysLOFe21bTZVAF4kXVVZhCoUD79u2xaNEi/Prrr9DT08PevXvLtK2GDRsiOjoaz549k9rOnDkDLS0tuLq6Sm2WlpaIiIjAnTt3MHjwYOmrM1q0aIH4+Hjo6OjA2dlZ7WFpWT3+1URERFQYBqIq6sKFCwgMDMSlS5cQGxuLPXv24PHjx2jQoEGZtjds2DAYGBjA19cX169fx4kTJzB16lSMGDFCOl2Wx8rKChEREfjtt9/wwQcfIDs7G506dULbtm3Rt29fHDlyBPfu3cPZs2exYMECXLp0qTwOmYiISGMYiKooExMT/Pzzz+jevTtcXV2xYMECLFu2DN26dSvT9oyMjHDkyBE8ffoUrVu3ho+PD7y8vLB69eoC+6tUKkRERODatWsYNmwYcnNzcfDgQbz//vv48MMP4erqiiFDhuDevXv5AhUREVF1oxDi/9/HTUVKSUmBqakpkpOTYWJiovbcixcvcPfuXTg6OsLAwEBDFb5dOKZEVBVcvnwZLVu2xKEp46vNNUTX/nqEbqvXIyoqCi1atNB0ORpX1N/vV3GGiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI/fdl+BYmNjkZiYWGn7s7S0hL29faXsKyQkBP7+/vjnn38qZX9EREQViYGogsTGxqJB/fp4np5eafs0MjREzG+/lSoU+fn5ITQ0NF/7H3/8AWdn5/Isj4iIqMpiIKogiYmJeJ6ejm8GDYCLlWWF7++PhERM+343EhMTSz1L5O3tjS1btqi11apVqzzLIyIiqtIYiCqYi5Vllf9CQH19fahUKrW25cuXY8uWLfjzzz9hbm6OXr16ISgoCDVq1ChwG1euXIG/vz8uXboEhUIBFxcXrF+/Hq1atQIAnD17Fh9//DEiIyNhaWmJfv36YcmSJVAqlRV+fERERMXhRdVUIC0tLXzzzTe4fv06QkNDERERgTlz5hTaf9iwYahTpw4iIyMRFRWFjz/+GLq6ugCAa9euoWvXrujfvz+uXr2KXbt24fTp05gyZUplHQ4REVGROENEOHDggNrMT7du3fDDDz9Iy46Ojvjss88wceJEBAcHF7iN2NhYzJ49G/Xr1wcAuLi4SM8tXboUQ4cOhb+/v/TcN998Aw8PD6xduxYGBgYVcFREREQlx0BE6NChA9auXSstK5VKnDhxAoGBgbh58yZSUlKQnZ2NFy9e4NmzZwWe5poxYwbGjBmDbdu2oVOnThg4cCCcnJwAAFFRUbh9+zZ27Ngh9RdCIDc3F3fv3kWDBg0q/iCJiIiKoNFTZj///DN69eoFW1tbKBQK7Nu3T+15IQQCAgJga2sLQ0NDeHp64saNG2p9MjIyMHXqVFhaWkKpVKJ37954+PChWp+kpCSMGDECpqamMDU1xYgRI3i7+CuUSiWcnZ2lR2ZmJrp3747GjRtj9+7diIqKwpo1awAAWVlZBW4jICAAN27cQI8ePRAREYGGDRti7969AIDc3FyMHz8e0dHR0uPKlSv4448/pNBERESkSRoNRM+ePUPTpk2xevXqAp8PCgrC8uXLsXr1akRGRkKlUqFz585ITU2V+vj7+2Pv3r3YuXMnTp8+jbS0NPTs2RM5OTlSn6FDhyI6OhqHDx/G4cOHER0djREjRlT48VVXly5dQnZ2NpYtW4Z33nkHrq6uePToUbHrubq6Yvr06Th69Cj69+8v3bnWokUL3LhxQy105T309PQq+nCIiIiKpdFTZt26dUO3bt0KfE4IgZUrV2L+/Pno378/ACA0NBTW1tYICwvD+PHjkZycjE2bNkmnaQBg+/btsLOzw7Fjx9C1a1fExMTg8OHDOH/+PNq0aQMA2LhxI9q2bYtbt27Bzc2tcg62GnFyckJ2djZWrVqFXr164cyZM1i3bl2h/dPT0zF79mz4+PjA0dERDx8+RGRkJAYMGAAAmDt3Lt555x1MnjwZY8eOhVKpRExMDMLDw7Fq1arKOiwiIqJCVdlriO7evYv4+Hh06dJFatPX14eHhwfOnj2L8ePHIyoqCllZWWp9bG1t0bhxY5w9exZdu3bFuXPnYGpqKoUhAHjnnXdgamqKs2fPVngg+iOhcj6pujz306xZMyxfvhxffvkl5s2bh/fffx9LlizByJEjC+yvra2NJ0+eYOTIkfj7779haWmJ/v37Y9GiRQCAJk2a4NSpU5g/fz7ee+89CCHg5OSEwYMHl1vNREREb6LKBqL4+HgAgLW1tVq7tbU17t+/L/XR09NDzZo18/XJWz8+Ph5WVlb5tm9lZSX1KUhGRgYyMjKk5ZSUlFLVb2lpCSNDQ0z7fnep1nsTRoaGsLQs3YdAhoSEFNg+ffp0TJ8+Xa3t1dOMfn5+8PPzAwDo6enhu+++K3I/rVu3xtGjR0tVGxERUWWpsoEoj0KhUFsWQuRre93rfQrqX9x2lixZIs1wlIW9vT1ifvvtrf0uMyIiordJlQ1EeZ+cHB8fDxsbG6k9ISFBmjVSqVTIzMxEUlKS2ixRQkIC2rVrJ/X5+++/823/8ePH+WafXjVv3jzMmDFDWk5JSYGdnV2pjsHe3p4BhYiIqBqosp9U7ejoCJVKhfDwcKktMzMTp06dksJOy5Ytoaurq9YnLi4O169fl/q0bdsWycnJuHjxotTnwoULSE5OlvoURF9fHyYmJmoPIiIiejtpdIYoLS0Nt2/flpbv3r2L6OhomJubw97eHv7+/ggMDISLiwtcXFwQGBgIIyMjDB06FABgamqK0aNHY+bMmbCwsIC5uTlmzZoFd3d36a6zBg0awNvbG2PHjsX69esBAOPGjUPPnj15hxkREREB0HAgunTpEjp06CAt552i8vX1RUhICObMmYP09HRMmjQJSUlJaNOmDY4ePQpjY2NpnRUrVkBHRweDBg1Ceno6vLy8EBISAm1tbanPjh07MG3aNOlutN69exf62UdEREQkPxoNRJ6enhBCFPq8QqFAQEAAAgICCu1jYGCAVatWFfl5Nubm5ti+ffublEpERERvsSp7DRERERFRZWEgIiIiItljICIiIiLZq7KfQ/Q2iI2N5QczEhERVQMMRBUkNjYW9Rs0QPrz55W2T0MjI/wWE1OiUFTcp33n3elHREQkBwxEFSQxMRHpz59jwPJvYOnsUvH7u/0Hds+YhsTExBIFori4OOn/d+3ahU8//RS3bt2S2gwNDdX6Z2VlQVdXt/wKJiIiqkIYiCqYpbMLbBu7a7qMfPK+GgV4+QGXCoVCart37x5sbGywa9cuBAcH4/z581i7di3u37+Pffv2ITo6Wlp35cqVWLlyJe7duye1bdmyBUFBQbh79y4cHBwwbdo0TJo0qbIOjYiIqNR4UTUVau7cuZg2bRpiYmLQtWvXEq2zceNGzJ8/H59//jliYmIQGBiITz75BKGhoRVcLRERUdlxhogK5e/vj/79+5dqnc8++wzLli2T1nN0dMTNmzexfv16+Pr6VkSZREREb4yBiArVqlWrUvV//PgxHjx4gNGjR2Ps2LFSe3Z2NkxNTcu7PCIionLDQESFUiqVastaWlr5vmolKytL+v/c3FwAL0+btWnTRq3fq98tR0REVNUwEFGJ1apVC/Hx8RBCSLftv3qBtbW1NWrXro0///wTw4YN01CVREREpcdARCXm6emJx48fIygoCD4+Pjh8+DAOHToEExMTqU9AQACmTZsGExMTdOvWDRkZGbh06RKSkpIwY8YMDVZPRERUOAaiCpZ4+4+3Zj8NGjRAcHAwAgMD8dlnn2HAgAGYNWsWNmzYIPUZM2YMjIyMsHTpUsyZMwdKpRLu7u7w9/ev8PqIiIjKioGoglhaWsLQyAi7Z0yrtH0aGhnB0tKy1Ov5+fnBz89PWnZwcMh3rVCeCRMmYMKECWpt//73v9WWhw4diqFDh5a6DiIiIk1hIKog9vb2+C0mht9lRkREVA0wEFUge3t7BhQiIqJqgJ9UTURERLLHQERERESyx0BUjgq7EJlKj2NJRESViYGoHOjq6gIAnj9/ruFK3h55Y5k3tkRERBWJF1WXA21tbZiZmSEhIQEAYGRkJH2SM5WOEALPnz9HQkICzMzM+JUfRERUKRiIyolKpQIAKRTRmzEzM5PGlIiIqKIxEJUThUIBGxsbWFlZqX3hKZWerq4uZ4aIiKhSMRCVM21tbf4xJyIiqmZ4UTURERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyR4DEREREckeAxERERHJHgMRERERyV6VDkTZ2dlYsGABHB0dYWhoiHr16mHx4sXIzc2V+gghEBAQAFtbWxgaGsLT0xM3btxQ205GRgamTp0KS0tLKJVK9O7dGw8fPqzswyEiIqIqqkoHoi+//BLr1q3D6tWrERMTg6CgICxduhSrVq2S+gQFBWH58uVYvXo1IiMjoVKp0LlzZ6Smpkp9/P39sXfvXuzcuROnT59GWloaevbsiZycHE0cFhEREVUxOpouoCjnzp1Dnz590KNHDwCAg4MDvvvuO1y6dAnAy9mhlStXYv78+ejfvz8AIDQ0FNbW1ggLC8P48eORnJyMTZs2Ydu2bejUqRMAYPv27bCzs8OxY8fQtWtXzRwcERERVRlVeobo3XffxfHjx/H7778DAK5cuYLTp0+je/fuAIC7d+8iPj4eXbp0kdbR19eHh4cHzp49CwCIiopCVlaWWh9bW1s0btxY6lOQjIwMpKSkqD2IiIjo7VSlZ4jmzp2L5ORk1K9fH9ra2sjJycHnn3+ODz74AAAQHx8PALC2tlZbz9raGvfv35f66OnpoWbNmvn65K1fkCVLlmDRokXleThERERURVXpGaJdu3Zh+/btCAsLw+XLlxEaGoqvvvoKoaGhav0UCoXashAiX9vriuszb948JCcnS48HDx6U/UCIiIioSqvSM0SzZ8/Gxx9/jCFDhgAA3N3dcf/+fSxZsgS+vr5QqVQAXs4C2djYSOslJCRIs0YqlQqZmZlISkpSmyVKSEhAu3btCt23vr4+9PX1K+KwiIiIqIqp0jNEz58/h5aWeona2trSbfeOjo5QqVQIDw+Xns/MzMSpU6eksNOyZUvo6uqq9YmLi8P169eLDEREREQkH1V6hqhXr174/PPPYW9vj0aNGuHXX3/F8uXL8eGHHwJ4earM398fgYGBcHFxgYuLCwIDA2FkZIShQ4cCAExNTTF69GjMnDkTFhYWMDc3x6xZs+Du7i7ddUZERETyVqUD0apVq/DJJ59g0qRJSEhIgK2tLcaPH49PP/1U6jNnzhykp6dj0qRJSEpKQps2bXD06FEYGxtLfVasWAEdHR0MGjQI6enp8PLyQkhICLS1tTVxWERERFTFKIQQQtNFVAcpKSkwNTVFcnIyTExMNF0OERFVgsuXL6Nly5Y4NGU83GvbarqcErn21yN0W70eUVFRaNGihabL0biS/v2u0tcQEREREVUGBiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSPQYiIiIikj0GIiIiIpI9BiIiIiKSvTIFonr16uHJkyf52v/55x/Uq1fvjYsiIiIiqkxlCkT37t1DTk5OvvaMjAz89ddfb1wUERERUWXSKU3n/fv3S/9/5MgRmJqaSss5OTk4fvw4HBwcyq04IiIiospQqkDUt29fAIBCoYCvr6/ac7q6unBwcMCyZcvKrTgiIiKiylCqU2a5ubnIzc2Fvb09EhISpOXc3FxkZGTg1q1b6NmzZ7kW+Ndff2H48OGwsLCAkZERmjVrhqioKOl5IQQCAgJga2sLQ0NDeHp64saNG2rbyMjIwNSpU2FpaQmlUonevXvj4cOH5VonERERVV9luobo7t27sLS0LO9a8klKSkL79u2hq6uLQ4cO4ebNm1i2bBnMzMykPkFBQVi+fDlWr16NyMhIqFQqdO7cGampqVIff39/7N27Fzt37sTp06eRlpaGnj17FngdFBEREclPqU6Zver48eM4fvy4NFP0qs2bN79xYQDw5Zdfws7ODlu2bJHaXr1GSQiBlStXYv78+ejfvz8AIDQ0FNbW1ggLC8P48eORnJyMTZs2Ydu2bejUqRMAYPv27bCzs8OxY8fQtWvXcqmViIiIqq8yzRAtWrQIXbp0wfHjx5GYmIikpCS1R3nZv38/WrVqhYEDB8LKygrNmzfHxo0bpefv3r2L+Ph4dOnSRWrT19eHh4cHzp49CwCIiopCVlaWWh9bW1s0btxY6lOQjIwMpKSkqD2IiIjo7VSmGaJ169YhJCQEI0aMKO961Pz5559Yu3YtZsyYgX//+9+4ePEipk2bBn19fYwcORLx8fEAAGtra7X1rK2tcf/+fQBAfHw89PT0ULNmzXx98tYvyJIlS7Bo0aJyPiIiIiKqiso0Q5SZmYl27dqVdy355ObmokWLFggMDETz5s0xfvx4jB07FmvXrlXrp1Ao1JaFEPnaXldcn3nz5iE5OVl6PHjwoOwHQkRERFVamQLRmDFjEBYWVt615GNjY4OGDRuqtTVo0ACxsbEAAJVKBQD5ZnoSEhKkWSOVSoXMzMx8p/Je7VMQfX19mJiYqD2IiIjo7VSmU2YvXrzAhg0bcOzYMTRp0gS6urpqzy9fvrxcimvfvj1u3bql1vb777+jbt26AABHR0eoVCqEh4ejefPmAF7OXp06dQpffvklAKBly5bQ1dVFeHg4Bg0aBACIi4vD9evXERQUVC51EhERUfVWpkB09epVNGvWDABw/fp1teeKO1VVGtOnT0e7du0QGBiIQYMG4eLFi9iwYQM2bNgg7cvf3x+BgYFwcXGBi4sLAgMDYWRkhKFDhwIATE1NMXr0aMycORMWFhYwNzfHrFmz4O7uLt11RkRERPJWpkB04sSJ8q6jQK1bt8bevXsxb948LF68GI6Ojli5ciWGDRsm9ZkzZw7S09MxadIkJCUloU2bNjh69CiMjY2lPitWrICOjg4GDRqE9PR0eHl5ISQkBNra2pVyHERERFS1KYQQQtNFVAcpKSkwNTVFcnIyryciIpKJy5cvo2XLljg0ZTzca9tqupwSufbXI3RbvR5RUVFo0aKFpsvRuJL+/S7TDFGHDh2KPDUWERFRls0SERERaUSZAlHe9UN5srKyEB0djevXr+f70lciIiKiqq5MgWjFihUFtgcEBCAtLe2NCiIiIiKqbGX6HKLCDB8+vNy+x4yIiIiospRrIDp37hwMDAzKc5NEREREFa5Mp8zyvlk+jxACcXFxuHTpEj755JNyKYyIiIiospQpEJmamqota2lpwc3NDYsXL1b7VnkiIiKi6qBMgWjLli3lXQcRERGRxpQpEOWJiopCTEwMFAoFGjZsKH2fGBEREVF1UqZAlJCQgCFDhuDkyZMwMzODEALJycno0KEDdu7ciVq1apV3nUREREQVpkx3mU2dOhUpKSm4ceMGnj59iqSkJFy/fh0pKSmYNm1aeddIREREVKHKNEN0+PBhHDt2DA0aNJDaGjZsiDVr1vCiaiIiIqp2yjRDlJubC11d3Xzturq6yM3NfeOiiIiIiCpTmQJRx44d8dFHH+HRo0dS219//YXp06fDy8ur3IojIiIiqgxlCkSrV69GamoqHBwc4OTkBGdnZzg6OiI1NRWrVq0q7xqJiIiIKlSZriGys7PD5cuXER4ejt9++w1CCDRs2BCdOnUq7/qIiIiIKlypZogiIiLQsGFDpKSkAAA6d+6MqVOnYtq0aWjdujUaNWqEX375pUIKJSIiIqoopQpEK1euxNixY2FiYpLvOVNTU4wfPx7Lly8vt+KIiIiIKkOpAtGVK1fg7e1d6PNdunRBVFTUGxdFREREVJlKFYj+/vvvAm+3z6Ojo4PHjx+/cVFERERElalUgah27dq4du1aoc9fvXoVNjY2b1wUERERUWUqVSDq3r07Pv30U7x48SLfc+np6Vi4cCF69uxZbsURERERVYZS3Xa/YMEC7NmzB66urpgyZQrc3NygUCgQExODNWvWICcnB/Pnz6+oWomIiIgqRKkCkbW1Nc6ePYuJEydi3rx5EEIAABQKBbp27Yrg4GBYW1tXSKFEREREFaXUH8xYt25dHDx4EElJSbh9+zaEEHBxcUHNmjUroj4iIiKiClemT6oGgJo1a6J169blWQsRERGRRpTpu8yIiIiI3iYMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHvVKhAtWbIECoUC/v7+UpsQAgEBAbC1tYWhoSE8PT1x48YNtfUyMjIwdepUWFpaQqlUonfv3nj48GElV09ERERVVbUJRJGRkdiwYQOaNGmi1h4UFITly5dj9erViIyMhEqlQufOnZGamir18ff3x969e7Fz506cPn0aaWlp6NmzJ3Jycir7MIiIiKgKqhaBKC0tDcOGDcPGjRtRs2ZNqV0IgZUrV2L+/Pno378/GjdujNDQUDx//hxhYWEAgOTkZGzatAnLli1Dp06d0Lx5c2zfvh3Xrl3DsWPHNHVIREREVIVUi0A0efJk9OjRA506dVJrv3v3LuLj49GlSxepTV9fHx4eHjh79iwAICoqCllZWWp9bG1t0bhxY6lPQTIyMpCSkqL2ICIioreTjqYLKM7OnTtx+fJlREZG5nsuPj4eAGBtba3Wbm1tjfv370t99PT01GaW8vrkrV+QJUuWYNGiRW9aPhEREVUDVXqG6MGDB/joo4+wfft2GBgYFNpPoVCoLQsh8rW9rrg+8+bNQ3JysvR48OBB6YonIiKiaqNKB6KoqCgkJCSgZcuW0NHRgY6ODk6dOoVvvvkGOjo60szQ6zM9CQkJ0nMqlQqZmZlISkoqtE9B9PX1YWJiovYgIiKit1OVDkReXl64du0aoqOjpUerVq0wbNgwREdHo169elCpVAgPD5fWyczMxKlTp9CuXTsAQMuWLaGrq6vWJy4uDtevX5f6EBERkbxV6WuIjI2N0bhxY7U2pVIJCwsLqd3f3x+BgYFwcXGBi4sLAgMDYWRkhKFDhwIATE1NMXr0aMycORMWFhYwNzfHrFmz4O7unu8ibSIiIpKnKh2ISmLOnDlIT0/HpEmTkJSUhDZt2uDo0aMwNjaW+qxYsQI6OjoYNGgQ0tPT4eXlhZCQEGhra2uwciIiIqoqql0gOnnypNqyQqFAQEAAAgICCl3HwMAAq1atwqpVqyq2OCIiIqqWqvQ1RERERESVodrNEBEREVHxYmJiNF1CqVhaWsLe3l5j+2cgIiIieotkZGYCAIYPH67hSkrH0MgIv8XEaCwUMRARERG9RbKzswEAHWfMhotnRw1XUzKJt//A7hnTkJiYyEBERERE5cfMzh62jd01XUa1wYuqiYiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPaqdCBasmQJWrduDWNjY1hZWaFv3764deuWWh8hBAICAmBrawtDQ0N4enrixo0ban0yMjIwdepUWFpaQqlUonfv3nj48GFlHgoRERFVYVU6EJ06dQqTJ0/G+fPnER4ejuzsbHTp0gXPnj2T+gQFBWH58uVYvXo1IiMjoVKp0LlzZ6Smpkp9/P39sXfvXuzcuROnT59GWloaevbsiZycHE0cFhEREVUxOpouoCiHDx9WW96yZQusrKwQFRWF999/H0IIrFy5EvPnz0f//v0BAKGhobC2tkZYWBjGjx+P5ORkbNq0Cdu2bUOnTp0AANu3b4ednR2OHTuGrl27VvpxERERUdVSpWeIXpecnAwAMDc3BwDcvXsX8fHx6NKli9RHX18fHh4eOHv2LAAgKioKWVlZan1sbW3RuHFjqU9BMjIykJKSovYgIiKit1O1CURCCMyYMQPvvvsuGjduDACIj48HAFhbW6v1tba2lp6Lj4+Hnp4eatasWWifgixZsgSmpqbSw87OrjwPh4iIiKqQahOIpkyZgqtXr+K7777L95xCoVBbFkLka3tdcX3mzZuH5ORk6fHgwYOyFU5ERERVXrUIRFOnTsX+/ftx4sQJ1KlTR2pXqVQAkG+mJyEhQZo1UqlUyMzMRFJSUqF9CqKvrw8TExO1BxEREb2dqnQgEkJgypQp2LNnDyIiIuDo6Kj2vKOjI1QqFcLDw6W2zMxMnDp1Cu3atQMAtGzZErq6ump94uLicP36dakPERERyVuVvsts8uTJCAsLw48//ghjY2NpJsjU1BSGhoZQKBTw9/dHYGAgXFxc4OLigsDAQBgZGWHo0KFS39GjR2PmzJmwsLCAubk5Zs2aBXd3d+muMyIiIpK3Kh2I1q5dCwDw9PRUa9+yZQv8/PwAAHPmzEF6ejomTZqEpKQktGnTBkePHoWxsbHUf8WKFdDR0cGgQYOQnp4OLy8vhISEQFtbu7IOhYiIiKqwKh2IhBDF9lEoFAgICEBAQEChfQwMDLBq1SqsWrWqHKsjIiKit0WVvoaIiIiIqDIwEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHs6Wi6AAJiY2ORmJio6TJKxdLSEvb29poug4iIqFwwEGlYbGwsGtSvj+fp6ZoupVSMDA0R89tvDEVERPRWYCDSsMTERDxPT8c3gwbAxcpS0+WUyB8JiZj2/W4kJiZWu0DE2TgiIioIA1EV4WJlCffatpou463G2TgiIioMAxHJBmfjiIioMAxEJDucjat4PDVJRNWNrAJRcHAwli5diri4ODRq1AgrV67Ee++9p+myiN4qPDVJRNWRbALRrl274O/vj+DgYLRv3x7r169Ht27dcPPmTf4CLKOYmBhNl1Aq1a3eV1Wn2mNiYnhqspJwJo6o/MgmEC1fvhyjR4/GmDFjAAArV67EkSNHsHbtWixZskTD1VUvGZmZAIDhw4druJKyyau/OqjOY21vZlLtTk1Wp+AZFxeHgT4+SH/xQtOllIqhgQF++O9/YWNjo+lSSqQ6vSbozcgiEGVmZiIqKgoff/yxWnuXLl1w9uxZDVVVfWVnZwMAOs6YDRfPjhqupuT+OBmBiOVLpfqrg+o41tVxnKtz8FzWrxcaVpPgefOvR5i593/o2bOnpkspter0DykqG1kEosTEROTk5MDa2lqt3draGvHx8QWuk5GRgYyMDGk5OTkZAJCSklKutaWlpQEArv4Vh2fV5A13M+7lmGVnZCDz+TMNV1Ny2f//53kzLh7QqR4v/eo41tVynB88BAA06eeD2k2aaLiakvnr6lVc3ftfPHvxotr87nj2/2ezquM4X33wENUl4uf93ki8/QfuXTyv4WpK5smfdwC8/JtY3n9n87YnhCi6o5CBv/76SwAQZ8+eVWv/z3/+I9zc3ApcZ+HChQIAH3zwwQcffPDxFjwePHhQZFaoHv98e0OWlpbQ1tbONxuUkJCQb9Yoz7x58zBjxgxpOTc3F0+fPoWFhQUUCkWF1lvVpaSkwM7ODg8ePICJiYmmy3mrcawrB8e5cnCcKwfHWZ0QAqmpqbC1LfrUsiwCkZ6eHlq2bInw8HD069dPag8PD0efPn0KXEdfXx/6+vpqbWZmZhVZZrVjYmLCN1sl4VhXDo5z5eA4Vw6O8/8xNTUtto8sAhEAzJgxAyNGjECrVq3Qtm1bbNiwAbGxsZgwYYKmSyMiIiINk00gGjx4MJ48eYLFixcjLi4OjRs3xsGDB1G3bl1Nl0ZEREQaJptABACTJk3CpEmTNF1Gtaevr4+FCxfmO6VI5Y9jXTk4zpWD41w5OM5loxCiuPvQiIiIiN5uWpougIiIiEjTGIiIiIhI9hiIiIiISPYYiKhU7t27B4VCgejoaE2XUu1VxFgqFArs27ev3LZXXRR33CdPnoRCocA///xTaTXJlaenJ/z9/St0HwEBAWjWrFmF7qO64Gu//DAQydjZs2ehra0Nb2/vEq9jZ2cnfWwBFc3Pzw8KhUJ6WFhYwNvbG1evXtV0adVOfHw8pk6dinr16kFfXx92dnbo1asXjh8/XqL127Vrh7i4uBJ9OBvll/daLuhz2yZNmgSFQgE/Pz8AwJ49e/DZZ59VcoXV37p162BsbKz2pchpaWnQ1dXFe++9p9b3l19+gUKhwO+//17sdl9/7YeEhPBDhgvBQCRjmzdvxtSpU3H69GnExsaWaB1tbW2oVCroVJMv7dQ0b29vxMXFIS4uDsePH4eOjk61/KZvTbp37x5atmyJiIgIBAUF4dq1azh8+DA6dOiAyZMnl2gbenp6UKlUsv/anTdhZ2eHnTt3Ij09XWp78eIFvvvuO9jb20tt5ubmMDY21kSJ1VqHDh2QlpaGS5cuSW2//PILVCoVIiMj8fz5c6n95MmTsLW1haura7Hb5Wu/5BiIZOrZs2f4/vvvMXHiRPTs2RMhISHSc0lJSRg2bBhq1aoFQ0NDuLi4YMuWLQDyn+bJycnB6NGj4ejoCENDQ7i5ueHrr79W25efnx/69u2Lr776CjY2NrCwsMDkyZORlZVVWYerMfr6+lCpVFCpVGjWrBnmzp2LBw8e4PHjx/n6lmQsgZdBtlGjRtDX14eNjQ2mTJlS6P4XL14Ma2vran2KM28G4uLFi/Dx8YGrqysaNWqEGTNm4Pz5//sm78TERPTr1w9GRkZwcXHB/v37pedeP22Q96/kI0eOoEGDBqhRo4YUXl+1ZcsWNGjQAAYGBqhfvz6Cg4Ol5zIzMzFlyhTY2NjAwMAADg4OWLJkifR8cnIyxo0bBysrK5iYmKBjx464cuVKBY1SxWvRogXs7e2xZ88eqW3Pnj2ws7ND8+bNpbZXT5n99ttvMDIyQlhYmNo6BgYGuHbtGoCSjdMXX3wBa2trGBsbY/To0Xjx4kUFHqlmuLm5wdbWFidPnpTaTp48iT59+sDJyQlnz55Va+/QoYO0XNLX/smTJzFq1CgkJydLM9cBAQEAXr6e58yZg9q1a0OpVKJNmzZqtcgBA5FM7dq1C25ubnBzc8Pw4cOxZcsW5H0k1SeffIKbN2/i0KFDiImJwdq1a2FpaVngdnJzc1GnTh18//33uHnzJj799FP8+9//xvfff6/W78SJE7hz5w5OnDiB0NBQhISEqIUwOUhLS8OOHTvg7OwMCwuLfM+XZCzXrl2LyZMnY9y4cbh27Rr2798PZ2fnfNsSQuCjjz7Cpk2bcPr06Wp7vcXTp09x+PBhTJ48GUqlMt/zr079L1q0CIMGDcLVq1fRvXt3DBs2DE+fPi1028+fP8dXX32Fbdu24eeff0ZsbCxmzZolPb9x40bMnz8fn3/+OWJiYhAYGIhPPvkEoaGhAIBvvvkG+/fvx/fff49bt25h+/btcHBwAPBy/Hv06IH4+HgcPHgQUVFRaNGiBby8vIqsqaobNWqU9I8j4GU4//DDDwvtX79+fXz11VeYNGkS7t+/j0ePHmHs2LH44osv4O7uXqJx+v7777Fw4UJ8/vnnuHTpEmxsbNSC6dvE09MTJ06ckJZPnDgBT09PeHh4SO2ZmZk4d+6cWiAq6Wu/Xbt2WLlyJUxMTKSZ67zX/KhRo3DmzBns3LkTV69excCBA+Ht7Y0//vijgo+6ChEkS+3atRMrV64UQgiRlZUlLC0tRXh4uBBCiF69eolRo0YVuN7du3cFAPHrr78Wuu1JkyaJAQMGSMu+vr6ibt26Ijs7W2obOHCgGDx4cDkcSdXl6+srtLW1hVKpFEqlUgAQNjY2IioqSghRtrG0tbUV8+fPL7Q/APHDDz+I4cOHi/r164sHDx6U2/FowoULFwQAsWfPniL7ARALFiyQltPS0oRCoRCHDh0SQghx4sQJAUAkJSUJIYTYsmWLACBu374trbNmzRphbW0tLdvZ2YmwsDC1/Xz22Weibdu2Qgghpk6dKjp27Chyc3Pz1XP8+HFhYmIiXrx4odbu5OQk1q9fX4Ijr1p8fX1Fnz59xOPHj4W+vr64e/euuHfvnjAwMBCPHz8Wffr0Eb6+vkIIITw8PMRHH32ktn6PHj3Ee++9J7y8vETnzp2lMSvJOLVt21ZMmDBB7fk2bdqIpk2bVsixatKGDRuEUqkUWVlZIiUlRejo6Ii///5b7Ny5U7Rr104IIcSpU6cEAHHnzh0hRNle+6ampmr7vX37tlAoFOKvv/5Sa/fy8hLz5s2roKOtenghiAzdunULFy9elKa+dXR0MHjwYGzevBmdOnXCxIkTMWDAAFy+fBldunRB37590a5du0K3t27dOnz77be4f/8+0tPTkZmZmW9GolGjRtDW1paWbWxspCnzt1mHDh2wdu1aAC9nO4KDg9GtWzdcvHixwP5FjWVCQgIePXoELy+vIvc5ffp06Ovr4/z584XO7FUX4v/PWpbk+ocmTZpI/69UKmFsbIyEhIRC+xsZGcHJyUlatrGxkfo/fvwYDx48wOjRozF27FipT3Z2tnRxqp+fHzp37gw3Nzd4e3ujZ8+e6NKlCwAgKioKaWlp+WYC09PTcefOnWKPpaqytLREjx49EBoaKs3ulOQ1tnnzZri6ukJLSwvXr1+Xfp4lGaeYmJh8F3O3bdtWbSblbdGhQwc8e/YMkZGRSEpKgqurK6ysrODh4YERI0bg2bNnOHnyJOzt7VGvXj1pvdK+9l93+fJlCCHyXZOUkZFR4Gz224qBSIY2bdqE7Oxs1K5dW2oTQkBXVxdJSUno1q0b7t+/j59++gnHjh2Dl5cXJk+ejK+++irftr7//ntMnz4dy5YtQ9u2bWFsbIylS5fiwoULav10dXXVlhUKBXJzcyvmAKsQpVKpdkqrZcuWMDU1xcaNGzFmzBi1vsWNpaGhYYn22blzZ3z33Xc4cuQIhg0bVn4HowEuLi5QKBSIiYlB3759i+xb2tdYQf3zAljeehs3bkSbNm3U+uUF+xYtWuDu3bs4dOgQjh07hkGDBqFTp07473//i9zcXNjY2BR4DUZ1v8Pnww8/lK5bW7NmTYnWuXLlCp49ewYtLS3Ex8fD1tYWAN7qcSoLZ2dn1KlTBydOnEBSUhI8PDwAACqVCo6Ojjhz5gxOnDiBjh07qq33pr9fc3Nzoa2tjaioKLV/uAJAjRo1yng01Q8DkcxkZ2dj69atWLZsmfSv2TwDBgzAjh07MGXKFNSqVQt+fn7w8/PDe++9h9mzZxcYiH755Re0a9dO7Utzq/O/gCuaQqGAlpaW2p06eYobS2NjYzg4OOD48eNq1w+8rnfv3ujVqxeGDh0KbW1tDBkypHwPohKZm5uja9euWLNmDaZNm5bvOqJ//vmnQv5wWltbo3bt2vjzzz+LDJUmJiYYPHgwBg8eDB8fH3h7e+Pp06do0aIF4uPjoaOjI11X9Lbw9vZGZmYmAKBr167F9n/69Cn8/Pwwf/58xMfHY9iwYbh8+TIMDQ1LNE4NGjTA+fPnMXLkSKnt1Yvp3zYdOnTAyZMnkZSUhNmzZ0vtHh4eOHLkCM6fP49Ro0aVeft6enrIyclRa2vevDlycnKQkJCQ7xZ/OWEgkpkDBw4gKSkJo0ePzveZLD4+Pti0aRMSEhLQsmVLNGrUCBkZGThw4AAaNGhQ4PacnZ2xdetWHDlyBI6Ojti2bRsiIyPh6OhYGYdT5WVkZCA+Ph7Ay7v3Vq9ejbS0NPTq1Stf35KMZUBAACZMmAArKyt069YNqampOHPmDKZOnaq2rX79+mHbtm0YMWIEdHR04OPjU7EHWoGCg4PRrl07/Otf/8LixYvRpEkTZGdnIzw8HGvXrkVMTEyF7DcgIADTpk2DiYkJunXrhoyMDFy6dAlJSUmYMWMGVqxYARsbGzRr1gxaWlr44YcfoFKpYGZmhk6dOqFt27bo27cvvvzyS7i5ueHRo0c4ePAg+vbti1atWlVIzZVBW1tbGvPXZxMKMmHCBNjZ2WHBggXIzMxEixYtMGvWLKxZs6ZE4/TRRx/B19cXrVq1wrvvvosdO3bgxo0baqeM3iZ5HyeRlZUlzRABLwPRxIkT8eLFiyL/QVQcBwcHpKWl4fjx42jatCmMjIzg6uqKYcOGYeTIkVi2bBmaN2+OxMREREREwN3dHd27dy+PQ6vyeJeZzGzatAmdOnUq8APqBgwYgOjoaOjo6GDevHlo0qQJ3n//fWhra2Pnzp0Fbm/ChAno378/Bg8ejDZt2uDJkydqMxxyd/jwYdjY2MDGxgZt2rRBZGQkfvjhB3h6eubrW5Kx9PX1xcqVKxEcHIxGjRqhZ8+ehd4F4uPjg9DQUIwYMULtVunqxtHREZcvX0aHDh0wc+ZMNG7cGJ07d8bx48el67MqwpgxY/Dtt98iJCQE7u7u8PDwQEhIiBRQa9SogS+//BKtWrVC69atce/ePRw8eBBaWlpQKBQ4ePAg3n//fXz44YdwdXXFkCFDcO/ePVhbW1dYzZXFxMQEJiYmxfbbunUrDh48iG3btkFHRwdGRkbYsWMHvv32Wxw8eLBE4zR48GB8+umnmDt3Llq2bIn79+9j4sSJFX2IGtOhQwekp6fD2dlZ7bXi4eGB1NRUODk5wc7Orszbb9euHSZMmIDBgwejVq1aCAoKAvDyIyZGjhyJmTNnws3NDb1798aFCxfeaF/VjULknTQnIiIikinOEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRAR0VshICAg35cKl4VCocC+ffsqdZ9EpHkMRERU5fj5+UGhUOR7eHt7AyhdaCmtuLg4dOvWrUR9Z82ahePHj0vLfn5+xX4JLRFVTfwuMyKqkry9vbFlyxa1Nn19/Qrfr0qlKnHfGjVqyOrbwIneZpwhIqIqSV9fHyqVSu1Rs2ZN6VvR+/XrB4VCke9b0rdt2wYHBweYmppiyJAhSE1NlZ7z9PTEtGnTMGfOHJibm0OlUiEgIEBt/ddnnx4+fIghQ4bA3NwcSqUSrVq1woULFwConzILCAhAaGgofvzxR2lG6+TJk+jYsSOmTJmito8nT55AX18fERER5TJWRPTmGIiIqFqJjIwE8PLLKOPi4qRlALhz5w727duHAwcO4MCBAzh16hS++OILtfVDQ0OhVCpx4cIFBAUFYfHixQgPDy9wX2lpafDw8MCjR4+wf/9+XLlyBXPmzEFubm6+vrNmzcKgQYPg7e2NuLg4xMXFoV27dhgzZgzCwsKQkZEh9d2xYwdsbW3f6FvLiah8MRARUZV04MAB6ZRU3uOzzz5DrVq1AABmZmZQqVTSMgDk5uYiJCQEjRs3xnvvvYcRI0aoXeMDAE2aNMHChQvh4uKCkSNHolWrVvn65AkLC8Pjx4+xb98+vPvuu3B2dsagQYPQtm3bfH1r1KgBQ0NDtZktPT09DBgwAAqFAj/++KPUd8uWLdJ1UkRUNfAaIiKqkjp06IC1a9eqtZmbmxe5joODA4yNjaVlGxsbJCQkqPVp0qSJ2nJBffJER0ejefPmxe63KPr6+hg+fDg2b96MQYMGITo6GleuXKmwi8KJqGwYiIioSlIqlXB2di7VOrq6umrLCoUi3+mtkvTJY2hoWKr9F2bMmDFo1qwZHj58iM2bN8PLywt169Ytl20TUfngKTMiqnZ0dXWRk5NT4ftp0qQJoqOj8fTp0xL119PTK7Aud3d3tGrVChs3bkRYWBg+/PDD8i6ViN4QAxERVUkZGRmIj49XeyQmJgJ4eWrs+PHjiI+PR1JSUoXV8MEHH0ClUqFv3744c+YM/vzzT+zevRvnzp0rsL+DgwOuXr2KW7duITExEVlZWdJzY8aMwRdffIGcnBz069evwmomorJhICKiKunw4cOwsbFRe7z77rsAgGXLliE8PBx2dnZo3rx5hdWgp6eHo0ePwsrKCt27d4e7uzu++OILaGtrF9h/7NixcHNzQ6tWrVCrVi2cOXNGeu6DDz6Ajo4Ohg4dCgMDgwqrmYjKRiGEEJougojobffgwQM4ODggMjISLVq00HQ5RPQaBiIiogqUlZWFuLg4fPzxx7h//77arBERVR08ZUZEVIHOnDmDunXrIioqCuvWrdN0OURUCM4QERERkexxhoiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGTv/wGfmae+XgX1bQAAAABJRU5ErkJggg==",
2580
      "text/plain": [
2581
       "<Figure size 640x480 with 1 Axes>"
2582
      ]
2583
     },
2584
     "metadata": {},
2585
     "output_type": "display_data"
2586
    }
2587
   ],
2588
   "source": [
2589
    "#Histogram plot ethnicity & smoke\n",
2590
    "sns.histplot(binwidth=1,\n",
2591
    "            x=\"ethnicity\",\n",
2592
    "            hue=\"smoke\",\n",
2593
    "            data=smoke1,\n",
2594
    "            stat=\"count\",\n",
2595
    "            multiple=\"dodge\",\n",
2596
    "            palette=\"hls\")\n",
2597
    "plt.title('Figure 8: Histogram plot for Ethnicity & Smoke ')\n",
2598
    "plt.xlabel('Ethnicity')"
2599
   ]
2600
  },
2601
  {
2602
   "cell_type": "code",
2603
   "execution_count": 47,
2604
   "id": "39ec45af",
2605
   "metadata": {
2606
    "scrolled": false
2607
   },
2608
   "outputs": [
2609
    {
2610
     "data": {
2611
      "text/plain": [
2612
       "Text(0.5, 0, 'Gross Income (£)')"
2613
      ]
2614
     },
2615
     "execution_count": 47,
2616
     "metadata": {},
2617
     "output_type": "execute_result"
2618
    },
2619
    {
2620
     "data": {
2621
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG9CAYAAADz17cDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABajUlEQVR4nO3deVwVVeMG8Oey7yBc2ZRNWURBzTWt3AX3XcydcsENI7dCM9EME9fc7U3FJZfMNCtTUcQyNBVfdzQ3BBVEXEAUWc/vD3/M64ULIgIXx+f7+cyn5syZOefMXOBxZu6MQgghQERERCRTWpruABEREVF5YtghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2KkkwsPDoVAo1E6TJk1CXFwcFAoFwsPDNd3VUjt+/Dh8fX1hamoKExMTtG7dGn///fdrbbNVq1bw8vJSuywlJQUKhQIhISFSWVRUFBQKBaKiol6pnRUrVrzR+76ilXY/A0B0dDRCQkLw6NGjEq+zdOlSuLq6Qk9PDwqF4pXWLa2zZ89i2LBhqFmzJgwNDWFoaAg3NzcEBATg5MmT5d5+Wcn/3TJ//nxNd6VSePbsGYKDg+Hs7AxDQ0O4urpi9OjRr7QNIQS2bt2KDz74ANbW1jAwMED16tXh6+uL77//vpx6Xrzifle+DXQ03QFStW7dOtSqVUulzN7eHjY2Njh69Chq1qypoZ69nhMnTqBFixZo0qQJNm7cCCEEwsLC0LZtWxw6dAjNmjWrkH40aNAAR48eRe3atV9pvRUrVkCpVMLf3798OkaS6OhozJw5E/7+/rCwsHhp/dOnT2P8+PEYPnw4hg4dCh0dHZiampZrH1evXo1x48bBw8MDn3zyCerUqQOFQoHY2Fhs2bIFjRs3xtWrV9/Yn9e32ZQpU7By5UrMnj0bjRs3xuXLl185oAQHB2Pu3LkYMWIEJk+eDFNTU9y8eRORkZH45ZdfMHz48HLqPRWFYaeS8fLyQqNGjdQue/fddyu4N889ffoURkZGr7WN6dOnw8LCAnv37pW21a5dO9SoUQOTJk167TM8JWVmZqax/fg6yuIYyNWFCxcAACNGjECTJk3KZJvF7e+///4bY8aMQefOnfHTTz9BT09PWtamTRuMHTsW27dvh6GhYanbIM3Ztm0bevfujc8++wzA82P6Kmd2MjIysHjxYgwZMgTfffedyjJ/f3/k5eWVaX+pZHgZ6w1R1GWsX375BXXr1oW+vj5q1KiBb7/9FiEhIVAoFC9dF0Chyzz56546dQp9+vRBlSpVpH+dCiGwYsUK1K9fH4aGhqhSpQr69OmD69evv7T/f//9N1q1aqXyy93U1BQtWrRAdHQ0EhMTX22HlJK6yyvXr1/Hhx9+CHt7e+jr68PGxgZt27bF6dOnAQDOzs64cOECDh8+LF1adHZ2ltaPj4/HoEGDYG1tDX19fXh6emLBggWFfqndunULffr0gampKSwsLDBw4ECcOHGi0LHx9/eHiYkJzp07Bx8fH5iamqJt27YAgIiICHTv3h3Vq1eHgYEBXF1dERAQgJSUFJW28o/j2bNn0bdvX5ibm8PS0hITJkxATk4OLl++jA4dOsDU1BTOzs4ICwsr0f5TKBQYN24cVq9eDXd3d+jr66N27drYunVridbfvXs3mjVrBiMjI5iamqJ9+/Y4evSoSr8nT54MAHBxcZH2d1GXw1q1aoVBgwYBAJo2bQqFQqFy9m3t2rWoV68eDAwMYGlpiZ49eyI2NlZlG8Xtb3VCQ0Ohra2N1atXqwSdF/Xt2xf29vYlauPBgwcYM2YMqlWrBj09PdSoUQPTpk1DZmamyja3b9+Opk2bwtzcHEZGRqhRowY+/vhjaXleXh5mz54NDw8PGBoawsLCAnXr1sW3335b5FiKkn9Z/dChQxg9ejSUSiWsrKzQq1cv3Llzp1D9zZs3o1mzZjAxMYGJiQnq16+PNWvWqNR5lWNx6dIl+Pr6wtjYGHZ2dvjmm28AAMeOHcP7778PY2NjuLu7Y/369YX6kpSUhICAAFSvXh16enpwcXHBzJkzkZOTU6Kxa2tr48qVKyjtO7KfPHmCzMxM2NnZqV2upfW/P7v5v5vnzZuHuXPnSpfOWrVqhX///RfZ2dn4/PPPYW9vD3Nzc/Ts2RPJyckq28vLy0NYWBhq1aoFfX19WFtbY8iQIbh169ZL+7pz504YGRlh+PDh0v45efIkunXrBktLSxgYGOCdd97Bjz/+WKp9UakIqhTWrVsnAIhjx46J7OxslUkIIW7cuCEAiHXr1knr/PHHH0JLS0u0atVK7Ny5U2zfvl00bdpUODs7ixcPrbp18wEQM2bMkOZnzJghAAgnJyfx2WefiYiICLFr1y4hhBAjRowQurq6YuLEiWLv3r1i8+bNolatWsLGxkYkJSUVOz49PT0xZMiQQuX9+/cXAMS+ffsK7Qt1/S2oZcuWok6dOoX2WXZ2tkhKSio0vkOHDgkA4tChQ1KZh4eHcHV1FRs3bhSHDx8WO3bsEBMnTpTqnDp1StSoUUO888474ujRo+Lo0aPi1KlTQgghkpOTRbVq1UTVqlXFqlWrxN69e8W4ceMEADF69GipjfT0dOHq6iosLS3F8uXLxb59+8Snn34qXFxcCo116NChQldXVzg7O4s5c+aIgwcPSvtn5cqVYs6cOWL37t3i8OHDYv369aJevXrCw8NDZGVlSdvIP44eHh7iq6++EhEREWLKlCkCgBg3bpyoVauWWLJkiYiIiBAfffSRACB27Njx0v0NQDg4OIjatWuLLVu2iN27d4sOHToIAGL79u3F7ucffvhBABA+Pj5i165dYtu2baJhw4ZCT09P/PXXX0IIIRISEkRgYKAAIH7++Wdpf6empqrtz4ULF8QXX3wh7cOjR4+Kq1evCiGECA0NFQBE//79xe+//y42bNggatSoIczNzcW///5bov1dUE5OjjA0NBTNmjV76b56UVFtZGRkiLp16wpjY2Mxf/58sX//fjF9+nSho6MjOnXqJK0fHR0tFAqF+PDDD8WePXtEZGSkWLdunRg8eLBUZ86cOUJbW1vMmDFDHDx4UOzdu1csXrxYhISEFNu3/N8P8+bNk8ryfwZr1KghAgMDxb59+8T3338vqlSpIlq3bq2y/vTp0wUA0atXL7F9+3axf/9+sXDhQjF9+nSpzqscCz09PeHp6Sm+/fZblc9ncHCwcHd3F2vWrBH79u0TXbp0EQDEyZMnpfUTExOFg4ODcHJyEqtXrxYHDhwQX331ldDX1xf+/v4lOlb5PzsTJ04sUX11XF1dhampqViwYIGIjY0VeXl5auvl73snJyfRtWtX8dtvv4lNmzYJGxsb4e7uLgYPHiw+/vhj8ccff4hVq1YJExMT0bVrV5VtjBw5Uvq53rt3r1i1apWoWrWqcHBwEPfu3ZPq5f+uzLdw4UKhra0tvvrqK6ksMjJS6OnpiQ8++EBs27ZN7N27V/j7+5f493FlxrBTSeT/clE3ZWdnqw0sjRs3Fg4ODiIzM1Mqe/z4sbCysnrtsPPll1+q1Dt69KgAIBYsWKBSnpCQIAwNDcWUKVOKHV/9+vWFu7u7yM3Nlcqys7NFjRo1BACxefNmqXz9+vVCW1tbrF+/vthtCvH8B7io/ZY/FRd2UlJSBACxePHiYtupU6eOaNmyZaHyzz//XAAQ//zzj0r56NGjhUKhEJcvXxZCCLF8+XIBQPzxxx8q9QICAtSGHQBi7dq1xfYpLy9PZGdni5s3bwoA4pdffpGW5R/Hgserfv36UpDIl52dLapWrSp69epVbHtCPP+8GBoaqoTbnJwcUatWLeHq6iqVFdzPubm5wt7eXnh7e6t8Bh4/fiysra1F8+bNpbJ58+YJAOLGjRsv7Y8Q//vZOXHihFT28OFDYWhoqBIYhBAiPj5e6OvriwEDBkhlJd3fQggpQH/44YeFluXk5KiE7Rf/wBXVxqpVqwQA8eOPP6qUz507VwAQ+/fvF0IIMX/+fAFAPHr0qMi+denSRdSvX/+lYyiouLAzZswYlbphYWECgEhMTBRCCHH9+nWhra0tBg4cWOT2S3MsXgze+Z9PANI/MoQQ4v79+0JbW1tMmDBBKgsICBAmJibi5s2bKm3l778LFy4Uuy/S0tJEt27dhIeHhwAgpk6dWmz9ohw/flw4OjpKv4NMTU1Fly5dxIYNG1Q+F/n7vl69eio/F4sXLxYARLdu3VS2GxQUJABI4T82Nlbtcfrnn38K9T8/7OTm5opx48YJPT09sWnTJpX1atWqJd555x3pH9n5unTpIuzs7FT6+KbhZaxKZsOGDThx4oTKpKNT+NaqJ0+e4OTJk+jRo4fKqXQTExN07dr1tfvRu3dvlfnffvsNCoUCgwYNQk5OjjTZ2tqiXr16L/3WTWBgIP7991+MGzcOt2/fRkJCAkaNGoWbN28CUD21O2TIEOTk5GDIkCEl6mvNmjUL7bMTJ07gwIEDL13X0tISNWvWxLx587Bw4UL897//faVr6pGRkahdu3ahe0X8/f0hhEBkZCQA4PDhwzA1NUWHDh1U6vXv37/IbRc8BgCQnJyMUaNGwcHBATo6OtDV1YWTkxMAFLokAABdunRRmff09IRCoUDHjh2lMh0dHbi6ukrH4mXatm0LGxsbaV5bWxv9+vXD1atXizx1fvnyZdy5cweDBw9WOdYmJibo3bs3jh07hqdPn5ao/ZI4evQoMjIyCt1Q7uDggDZt2uDgwYOF1lG3v19Fw4YNoaurK00LFix4aRuRkZEwNjZGnz59VMrz+53fz8aNGwMA/Pz88OOPP+L27duFtt2kSROcOXMGY8aMwb59+5CWlvZa4wGAbt26qczXrVsXAKTPSkREBHJzczF27Ngit/Gqx0KhUKBTp07SfP7n087ODu+8845UbmlpCWtra5XP7W+//YbWrVvD3t5e5fdU/uf98OHDxY63f//+uHPnDs6cOYPZs2cjNDQUX375pbT81q1bUCgUWLduXbHbyb9Bfe/evZg6dSqaNWuGgwcPYsiQIejWrVuhS2SdOnVS+bnw9PQEAHTu3FmlXn55fHw8AODQoUMAUGjfNmnSBJ6enoX27bNnz9CjRw/88MMP2L9/PwYOHCgtu3r1Ki5duiSVvbj/OnXqhMTERFy+fLnYcVdmvEG5kvH09CzyBuUXPXz4EEIIlT86+dSVvaqC15vv3r1bZHsAUKNGjWK39/HHH+PevXuYPXs2Vq5cCQBo1qwZJk2ahLlz56JatWql7quBgYHafVbwPhZ1FAoFDh48iFmzZiEsLAwTJ06EpaUlBg4ciK+//vql3+q5f/++yv07+fLv17h//77031c5VkZGRjAzM1Mpy8vLg4+PD+7cuYPp06fD29sbxsbGyMvLw7vvvouMjIxC27G0tFSZ19PTg5GREQwMDAqVl/SPo62tbZFl9+/fR/Xq1Qstz98P6u5jsLe3R15eHh4+fFhmN+y+rL2IiAiVMnX7Wx2lUglDQ0O1wXDz5s14+vQpEhMTC4WEotq4f/8+bG1tVe6xAwBra2vo6OhI42jRogV27dqFJUuWYMiQIcjMzESdOnUwbdo0KTAHBwfD2NgYmzZtwqpVq6CtrY0WLVpg7ty5Jfqdoo6VlZXKvL6+PgBIn7V79+4BgNpj/uIYgVc7Fuo+nwU/y/nlz549k+bv3r2LX3/9Fbq6umr7UtzvhBMnTuD333/HTz/9BH19fUybNg1aWlqYOnUqtLW1MWPGDERFRUFbWxu+vr5Fbiefrq4ufH19pbr3799Hnz598Ntvv+GPP/5QCXTqfk6LK88f88v2bcHPaXJyMhISEtCuXTs0b95cZdndu3cBAJMmTcKkSZPUjqkkv1MrK4adN1SVKlWgUCikD+iLkpKSVObzf3EUvOEx/wdFnYK/fJVKJRQKBf766y/pF96L1JUV9NlnnyEoKAhXrlyBqakpnJycEBAQAGNjYzRs2PCl65cXJycn6WbKf//9Fz/++CNCQkKQlZWFVatWFbuulZWV2pur82/iVCqVUr3jx48XqlfwWOUruP8B4Pz58zhz5gzCw8MxdOhQqfzq1avF9rGsqetzflnBP4758suL2ldaWlqoUqVKmfXxZe3lH5d86va3Otra2mjTpg3279+PxMRElT8y+Y8ziIuLU7uuujasrKzwzz//QAihsjw5ORk5OTkq/ezevTu6d++OzMxMHDt2DHPmzMGAAQPg7OyMZs2aQUdHBxMmTMCECRPw6NEjHDhwAFOnToWvry8SEhLK5ZtfVatWBfD8jIeDg4PaOq96LF6HUqlE3bp18fXXX6td/uJN4wVdu3YNAFQCaXBwMLS0tPD5558jLy8Pmzdvxscff1zsdopiZWWFoKAgREVF4fz58yphp7Re3LcFA6e6fevo6IiFCxeiZ8+e6NWrF7Zv3y79fcivGxwcjF69eqltz8PD47X7rCm8jPWGMjY2RqNGjbBr1y5kZWVJ5enp6fjtt99U6trY2MDAwABnz55VKf/ll19K3F6XLl0ghMDt27fRqFGjQpO3t3eJtqOvrw8vLy84OTkhPj4e27Ztw4gRI176Nd2K4u7uji+++ALe3t44deqUVK6vr6/2zEnbtm1x8eJFlbrA88uRCoUCrVu3BgC0bNkSjx8/xh9//KFSr6TfYgL+98eyYLBcvXp1ibdRFg4ePKgSsnNzc7Ft2zbUrFmzyH/he3h4oFq1ati8ebPKKfwnT55gx44d0je0gMJnD0qjWbNmMDQ0xKZNm1TKb926hcjIyGK/bfUywcHByM3NxahRo5CdnV3q7QDPPz/p6enYtWuXSvmGDRuk5QXp6+ujZcuWmDt3LgDgv//9b6E6FhYW6NOnD8aOHYsHDx4UGcBel4+PD7S1taWzteqU57EoqEuXLjh//jxq1qyp9vdUcSEl/4F7+fs+32effYavv/4as2bNQnJyMubNm1dsH7Kzs4v8h2T+pebShCV12rRpAwCF9u2JEycQGxurdt/6+Phg3759+PPPP9GlSxc8efIEwPOfUTc3N5w5c0btvmvUqFG5P7+qPPHMzhts1qxZ6Ny5M3x9ffHJJ58gNzcX8+bNg4mJCR48eCDVy7/XZu3atahZsybq1auH48ePY/PmzSVu67333sPIkSPx0Ucf4eTJk2jRogWMjY2RmJiII0eOwNvbu9hnUZw/fx47duxAo0aNoK+vjzNnzuCbb76Bm5sbvvrqK5W6GzZswMcff4y1a9eW+L6d0jp79izGjRuHvn37ws3NDXp6eoiMjMTZs2fx+eefS/W8vb2xdetWbNu2DTVq1ICBgQG8vb3x6aefYsOGDejcuTNmzZoFJycn/P7771ixYgVGjx4Nd3d3AMDQoUOxaNEiDBo0CLNnz4arqyv++OMP7Nu3D4DqPUtFqVWrFmrWrInPP/8cQghYWlri119/LXQZoLwplUq0adMG06dPh7GxMVasWIFLly4VG9y0tLQQFhaGgQMHokuXLggICEBmZibmzZuHR48eSV8tBiAF52+//RZDhw6Frq4uPDw8XukXrYWFBaZPn46pU6diyJAh6N+/P+7fv4+ZM2fCwMAAM2bMKPX433vvPSxfvhyBgYFo0KABRo4ciTp16kBLSwuJiYnYsWMHAJTostiQIUOwfPlyDB06FHFxcfD29saRI0cQGhqKTp06oV27dgCAL7/8Erdu3ULbtm1RvXp1PHr0CN9++y10dXXRsmVLAEDXrl2l53RVrVoVN2/exOLFi+Hk5AQ3N7dSj7c4zs7OmDp1Kr766itkZGSgf//+MDc3x8WLF5GSkoKZM2eW67EoaNasWYiIiEDz5s0xfvx4eHh44NmzZ4iLi8OePXuwatWqIgO5l5cXRo8ejZUrVyItLQ1DhgyBubk5Lly4gO+//x7Vq1fH7du3MX36dCxZsqTIPqSmpsLZ2Rl9+/ZFu3bt4ODggPT0dERFReHbb7+Fp6dnkWdOXpWHhwdGjhyJpUuXQktLCx07dkRcXBymT58OBwcHfPrpp2rXe//993Hw4EF06NABPj4+2LNnD8zNzbF69Wp07NgRvr6+8Pf3R7Vq1fDgwQPExsbi1KlT2L59e5n0WyM0d280vUjdN0peVNQ3qnbu3Cm8vb2Fnp6ecHR0FN98840YP368qFKlikq91NRUMXz4cGFjYyOMjY1F165dRVxcXJHfxnrxK4svWrt2rWjatKkwNjYWhoaGombNmmLIkCEqX/9U5/Lly6JFixbC0tJS6OnpCVdXV/HFF1+I9PT0IvfFq3z1XJ179+699NtYd+/eFf7+/qJWrVrC2NhYmJiYiLp164pFixaJnJwcab24uDjh4+MjTE1Npa+K5rt586YYMGCAsLKyErq6usLDw0PMmzev0DcX4uPjRa9evYSJiYkwNTUVvXv3Fnv27Cn0TaqhQ4cKY2NjtWO6ePGiaN++vTA1NRVVqlQRffv2FfHx8SU+jkVtu7j9+CIAYuzYsWLFihWiZs2aQldXV9SqVUv88MMPKvXUffVcCCF27dolmjZtKgwMDISxsbFo27at+Pvvvwu1ExwcLOzt7YWWlpba7byouJ+d77//XtStW1fo6ekJc3Nz0b1790LfyClufxfn9OnT4qOPPhIuLi5CX19fGBgYCFdXVzFkyBBx8ODBErdx//59MWrUKGFnZyd0dHSEk5OTCA4OFs+ePZPq/Pbbb6Jjx46iWrVqQk9PT1hbW4tOnTpJX9kXQogFCxaI5s2bC6VSKf0+GDZsmIiLiyt2HMV9G6vgPi3quG7YsEE0btxYGBgYCBMTE/HOO+8U+vl9nWNR1OfTyclJdO7cWaXs3r17Yvz48cLFxUXo6uoKS0tL0bBhQzFt2jS1v29elJeXJ9asWSOaNGkiDA0NhYGBgahXr5745ptvxJMnT8SCBQsEAPHpp58WuY3MzEwxf/580bFjR+Ho6Ch9Njw9PcWUKVPE/fv3pbrq9r0Q/9vPLz7OQQj1xyU3N1fMnTtXuLu7C11dXaFUKsWgQYNEQkLCS/fh+fPnha2trWjQoIH0u+LMmTPCz89PWFtbC11dXWFrayvatGkjVq1aVey+q+wUQpTyyUlUKWVnZ6N+/fqoVq0a9u/fr+nu0EuEhobiiy++QHx8fLE3eVYWCoUCY8eOxbJlyzTdFSKiEuNlrDfcsGHD0L59e9jZ2SEpKQmrVq1CbGxsqZ6aSuUrPyDUqlUL2dnZiIyMxJIlSzBo0KA3IugQEb2pGHbecI8fP8akSZNw79496OrqokGDBtizZ490rZ8qDyMjIyxatAhxcXHIzMyEo6MjPvvsM3zxxRea7hoRkazxMhYRERHJGr96TkRERLLGsENERESyxrBDREREsqbRG5RXrlyJlStXSk/3rFOnDr788kvppW1CCMycORPfffcdHj58iKZNm2L58uWoU6eOtI3MzExMmjQJW7ZsQUZGBtq2bYsVK1a80rdb8vLycOfOHZiampb4sfFERESkWUIIPH78GPb29sU/nFWTD/nZvXu3+P3338Xly5fF5cuXxdSpU4Wurq44f/68EEKIb775RpiamoodO3aIc+fOiX79+gk7OzuRlpYmbWPUqFGiWrVqIiIiQpw6dUq0bt1a1KtXT+WBcC+TkJAgAHDixIkTJ06c3sCp4EMUC6p038aytLTEvHnzpJetBQUF4bPPPgPw/CyOjY0N5s6di4CAAKSmpqJq1arYuHEj+vXrB+D5y88cHBywZ8+eEr2ZFnj+eG8LCwskJCSU6BHvREREpHlpaWlwcHDAo0ePYG5uXmS9SvOcndzcXGzfvh1PnjxBs2bNcOPGDSQlJcHHx0eqk/8CvOjoaAQEBCAmJgbZ2dkqdezt7eHl5YXo6Ogiw05mZqbKG8AfP34M4Pm7bBh2iIiI3iwvuwVF4zconzt3DiYmJtDX18eoUaOwc+dO1K5dG0lJSQCev7H7RTY2NtKypKQk6OnpoUqVKkXWUWfOnDkwNzeXJgcHhzIeFREREVUWGg87Hh4eOH36NI4dO4bRo0dj6NChuHjxorS8YFoTQrw0wb2sTnBwMFJTU6UpISHh9QZBRERElZbGw46enh5cXV3RqFEjzJkzB/Xq1cO3334LW1tbACh0hiY5OVk622Nra4usrCw8fPiwyDrq6OvrS5eseOmKiIhI3irNPTv5hBDIzMyEi4sLbG1tERERgXfeeQcAkJWVhcOHD2Pu3LkAgIYNG0JXVxcRERHw8/MDACQmJuL8+fMICwvT2BiIiIhyc3ORnZ2t6W680XR1daGtrf3a29Fo2Jk6dSo6duwIBwcHPH78GFu3bkVUVBT27t0LhUKBoKAghIaGws3NDW5ubggNDYWRkREGDBgAADA3N8ewYcMwceJEWFlZwdLSEpMmTYK3tzdfhElERBohhEBSUhIePXqk6a7IgoWFBWxtbV/rOXgaDTt3797F4MGDkZiYCHNzc9StWxd79+5F+/btAQBTpkxBRkYGxowZIz1UcP/+/TA1NZW2sWjRIujo6MDPz096qGB4eHiZJEEiIqJXlR90rK2tYWRkxIfVlpIQAk+fPkVycjIAwM7OrtTbqnTP2dGEtLQ0mJubIzU1lffvEBFRqeXm5uLff/+FtbU1rKysNN0dWbh//z6Sk5Ph7u5e6ERGSf9+a/wGZSIiIrnIv0fHyMhIwz2Rj/x9+Tr3PzHsEBERlTFeuio7ZbEvGXaIiIhI1hh2iIiIqBB/f3/06NFD090oEww7REREJGsMO0RERCRrDDtERERvgJ9++gne3t4wNDSElZUV2rVrhydPnkiXm0JDQ2FjYwMLCwvMnDkTOTk5mDx5MiwtLVG9enWsXbtWZXvnzp1DmzZtpO2NHDkS6enpRbYfExMDa2trfP311wCA1NRUjBw5EtbW1jAzM0ObNm1w5syZct0HpVXpXhdBVNnEx8cjJSWlwtpTKpVwdHSssPaIqPJLTExE//79ERYWhp49e+Lx48f466+/kP+ovMjISFSvXh1//vkn/v77bwwbNgxHjx5FixYt8M8//2Dbtm0YNWoU2rdvDwcHBzx9+hQdOnTAu+++ixMnTiA5ORnDhw/HuHHjEB4eXqj9qKgo9OjRA3PmzMHo0aMhhEDnzp1haWmJPXv2wNzcHKtXr0bbtm3x77//wtLSsoL30EsIEqmpqQKASE1N1XRXqJK5efOmMDI0FAAqbDIyNBQ3b97U9NCJqBQyMjLExYsXRUZGRpluNyYmRgAQcXFxhZYNHTpUODk5idzcXKnMw8NDfPDBB9J8Tk6OMDY2Flu2bBFCCPHdd9+JKlWqiPT0dKnO77//LrS0tERSUpK03e7du4tdu3YJU1NTsXnzZqnuwYMHhZmZmXj27JlKX2rWrClWr15dNoP+f8Xt05L+/eaZHaJipKSk4GlGBpb49YabtbLc27uSnILxP+5ASkoKz+4QkaRevXpo27YtvL294evrCx8fH/Tp0wdVqlQBANSpUwdaWv+7M8XGxgZeXl7SvLa2NqysrKRXL8TGxqJevXowNjaW6rz33nvIy8vD5cuXYWNjAwD4559/8Ntvv2H79u3o2bOnVDcmJgbp6emFnhKdkZGBa9eulf0OeE0MO0Ql4GathHc1e013g4jeUtra2oiIiEB0dDT279+PpUuXYtq0afjnn38APH87+IsUCoXasry8PADP3ztV1MP6XiyvWbMmrKyssHbtWnTu3Bl6enoAgLy8PNjZ2SEqKqrQ+hYWFqUdZrnhDcpERERvAIVCgffeew8zZ87Ef//7X+jp6WHnzp2l2lbt2rVx+vRpPHnyRCr7+++/oaWlBXd3d6lMqVQiMjIS165dQ79+/aRXNjRo0ABJSUnQ0dGBq6uryqRUlv9Z8FfFsENERFTJ/fPPPwgNDcXJkycRHx+Pn3/+Gffu3YOnp2eptjdw4EAYGBhg6NChOH/+PA4dOoTAwEAMHjxYuoSVz9raGpGRkbh06RL69++PnJwctGvXDs2aNUOPHj2wb98+xMXFITo6Gl988QVOnjxZFkMuUww7RERElZyZmRn+/PNPdOrUCe7u7vjiiy+wYMECdOzYsVTbMzIywr59+/DgwQM0btwYffr0Qdu2bbFs2TK19W1tbREZGYlz585h4MCByMvLw549e9CiRQt8/PHHcHd3x4cffoi4uLhCYakyUAjx/99be4uV9BXx9PY5deoUGjZsiD/GBVTIPTvnbt9Bx2WrERMTgwYNGpR7e0RUtp49e4YbN27AxcUFBgYGmu6OLBS3T0v695tndoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNb41nMiIqIKEB8fj5SUlAppS6lUwtHRsULaCg8PR1BQEB49elQh7ZUGww4REVE5i4+Ph2etWniakVEh7RkZGiL20qVXCjz+/v5Yv359ofIrV67A1dW1LLtX4Rh2iIiIyllKSgqeZmRgiV9vuFkry7WtK8kpGP/jDqSkpLzy2Z0OHTpg3bp1KmVVq1Yty+5pBMMOERFRBXGzVlbIS4VLS19fH7a2tiplCxcuxLp163D9+nVYWlqia9euCAsLg4mJidptnDlzBkFBQTh58iQUCgXc3NywevVqNGrUCAAQHR2Nzz//HCdOnIBSqUTPnj0xZ84cGBsbl9u4eIMyERERFUlLSwtLlizB+fPnsX79ekRGRmLKlClF1h84cCCqV6+OEydOICYmBp9//jl0dXUBAOfOnYOvry969eqFs2fPYtu2bThy5AjGjRtXrmPgmR0iIiICAPz2228qZ2w6duyI7du3S/MuLi746quvMHr0aKxYsULtNuLj4zF58mTUqlULAODm5iYtmzdvHgYMGICgoCBp2ZIlS9CyZUusXLkSBgYG5TAqhh0iIiL6f61bt8bKlSuleWNjYxw6dAihoaG4ePEi0tLSkJOTg2fPnuHJkydqLz1NmDABw4cPx8aNG9GuXTv07dsXNWvWBADExMTg6tWr+OGHH6T6Qgjk5eXhxo0b8PT0LJdx8TIWERERAXgeblxdXaUpKysLnTp1gpeXF3bs2IGYmBgsX74cAJCdna12GyEhIbhw4QI6d+6MyMhI1K5dGzt37gQA5OXlISAgAKdPn5amM2fO4MqVK1IgKg88s0NERERqnTx5Ejk5OViwYAG0tJ6fH/nxxx9fup67uzvc3d3x6aefon///li3bh169uyJBg0a4MKFCxX+VXae2SEiIiK1atasiZycHCxduhTXr1/Hxo0bsWrVqiLrZ2RkYNy4cYiKisLNmzfx999/48SJE9Llqc8++wxHjx7F2LFjcfr0aVy5cgW7d+9GYGBguY6DZ3aIiIgqyJXk8n+Cclm2Ub9+fSxcuBBz585FcHAwWrRogTlz5mDIkCFq62tra+P+/fsYMmQI7t69C6VSiV69emHmzJkAgLp16+Lw4cOYNm0aPvjgAwghULNmTfTr16/M+qyOQgghyrWFN0BaWhrMzc2RmpoKMzMzTXeHKpFTp06hYcOG+GNcQIU8G+Pc7TvouGw1YmJi0KBBg3Jvj4jK1rNnz3Djxg24uLiofLPoTXiCcmVV1D4FSv73m2d2iIiIypmjoyNiL12S5bux3gQMO0RERBXA0dGRAURDeIMyERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRqfs0NERFQB4uPj+VBBDWHYISIiKmfx8fGo5emJjKdPK6Q9QyMjXIqNLXHgUSgUxS4fOnQowsPDy6BnmsGwQ0REVM5SUlKQ8fQpei9cAqWrW/m2dfUKdkwYj5SUlBKHncTEROn/t23bhi+//BKXL1+WygwNDVXqZ2dnQ1dXt2w6XAEYdoiIiCqI0tUN9l7emu5GIba2ttL/m5ubQ6FQSGVxcXGws7PDtm3bsGLFChw7dgwrV67EzZs3sWvXLpw+fVpad/HixVi8eDHi4uKksnXr1iEsLAw3btyAs7Mzxo8fjzFjxlTU0ADwBmUiIiIqgc8++wzjx49HbGwsfH19S7TOf/7zH0ybNg1ff/01YmNjERoaiunTp2P9+vXl3FtVGg07c+bMQePGjWFqagpra2v06NFD5bQZAPj7+0OhUKhM7777rkqdzMxMBAYGQqlUwtjYGN26dcOtW7cqcihERESyFhQUhF69esHFxQX29vYlWuerr77CggULpPV69eqFTz/9FKtXry7n3qrSaNg5fPgwxo4di2PHjiEiIgI5OTnw8fHBkydPVOp16NABiYmJ0rRnzx6V5UFBQdi5cye2bt2KI0eOID09HV26dEFubm5FDoeIiEi2GjVq9Er17927h4SEBAwbNgwmJibSNHv2bFy7dq2ceqmeRu/Z2bt3r8r8unXrYG1tjZiYGLRo0UIq19fXV7me+KLU1FSsWbMGGzduRLt27QAAmzZtgoODAw4cOFDiU21ERERUNGNjY5V5LS0tCCFUyrKzs6X/z8vLA/D8UlbTpk1V6mlra5dTL9WrVPfspKamAgAsLS1VyqOiomBtbQ13d3eMGDECycnJ0rKYmBhkZ2fDx8dHKrO3t4eXlxeio6PVtpOZmYm0tDSViYiIiEquatWqSEpKUgk8L96sbGNjg2rVquH69etwdXVVmVxcXCq0r5Xm21hCCEyYMAHvv/8+vLy8pPKOHTuib9++cHJywo0bNzB9+nS0adMGMTEx0NfXR1JSEvT09FClShWV7dnY2CApKUltW3PmzMHMmTPLdTxERERy1qpVK9y7dw9hYWHo06cP9u7diz/++ANmZmZSnZCQEIwfPx5mZmbo2LEjMjMzcfLkSTx8+BATJkyosL5WmrAzbtw4nD17FkeOHFEp79evn/T/Xl5eaNSoEZycnPD777+jV69eRW5PCFHkQ5KCg4NVdnJaWhocHBxecwRERETFS7l6RRZtAICnpydWrFiB0NBQfPXVV+jduzcmTZqE7777TqozfPhwGBkZYd68eZgyZQqMjY3h7e2NoKCgCuljvkoRdgIDA7F79278+eefqF69erF17ezs4OTkhCtXnh9MW1tbZGVl4eHDhypnd5KTk9G8eXO129DX14e+vn7ZDYCIiKgYSqUShkZG2DFhfIW0Z2hkBKVSWap1/f394e/vL807OzsXujcn36hRozBq1CiVsqlTp6rMDxgwAAMGDChVX8qKRsOOEAKBgYHYuXMnoqKiSnQN7/79+0hISICdnR0AoGHDhtDV1UVERAT8/PwAPH8S5Pnz5xEWFlau/SciIioJR0dHXIqN5buxNESjYWfs2LHYvHkzfvnlF5iamkr32Jibm8PQ0BDp6ekICQlB7969YWdnh7i4OEydOhVKpRI9e/aU6g4bNgwTJ06ElZUVLC0tMWnSJHh7e0vfziIiItI0R0dHBhAN0WjYWblyJYDnNzm9aN26dfD394e2tjbOnTuHDRs24NGjR7Czs0Pr1q2xbds2mJqaSvUXLVoEHR0d+Pn5ISMjA23btkV4eHiFf7WNiIiIKh+NX8YqjqGhIfbt2/fS7RgYGGDp0qVYunRpWXWNiIiIZKJSPWeHiIhIDl72j3kqubLYlww7REREZURXVxcA8PTpUw33RD7y92X+vi2NSvHVcyIiIjnQ1taGhYWF9KR/IyOjIp/5RsUTQuDp06dITk6GhYXFa92Hy7BDRERUhvLf5fjiq42o9CwsLIp8P2ZJMewQERGVIYVCATs7O1hbW6u8GJNena6ubpl8s5phh4iIqBxoa2vzESiVBG9QJiIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZ02jYmTNnDho3bgxTU1NYW1ujR48euHz5skodIQRCQkJgb28PQ0NDtGrVChcuXFCpk5mZicDAQCiVShgbG6Nbt264detWRQ6FiIiIKimNhp3Dhw9j7NixOHbsGCIiIpCTkwMfHx88efJEqhMWFoaFCxdi2bJlOHHiBGxtbdG+fXs8fvxYqhMUFISdO3di69atOHLkCNLT09GlSxfk5uZqYlhERERUiehosvG9e/eqzK9btw7W1taIiYlBixYtIITA4sWLMW3aNPTq1QsAsH79etjY2GDz5s0ICAhAamoq1qxZg40bN6Jdu3YAgE2bNsHBwQEHDhyAr69vhY+LiIiIKo9Kdc9OamoqAMDS0hIAcOPGDSQlJcHHx0eqo6+vj5YtWyI6OhoAEBMTg+zsbJU69vb28PLykuoUlJmZibS0NJWJiIiI5KnShB0hBCZMmID3338fXl5eAICkpCQAgI2NjUpdGxsbaVlSUhL09PRQpUqVIusUNGfOHJibm0uTg4NDWQ+HiIiIKolKE3bGjRuHs2fPYsuWLYWWKRQKlXkhRKGygoqrExwcjNTUVGlKSEgofceJiIioUqsUYScwMBC7d+/GoUOHUL16danc1tYWAAqdoUlOTpbO9tja2iIrKwsPHz4ssk5B+vr6MDMzU5mIiIhInjQadoQQGDduHH7++WdERkbCxcVFZbmLiwtsbW0REREhlWVlZeHw4cNo3rw5AKBhw4bQ1dVVqZOYmIjz589LdYiIiOjtpdFvY40dOxabN2/GL7/8AlNTU+kMjrm5OQwNDaFQKBAUFITQ0FC4ubnBzc0NoaGhMDIywoABA6S6w4YNw8SJE2FlZQVLS0tMmjQJ3t7e0reziIiI6O2l0bCzcuVKAECrVq1UytetWwd/f38AwJQpU5CRkYExY8bg4cOHaNq0Kfbv3w9TU1Op/qJFi6CjowM/Pz9kZGSgbdu2CA8Ph7a2dkUNhYiIiCopjYYdIcRL6ygUCoSEhCAkJKTIOgYGBli6dCmWLl1ahr0jIiIiOagUNygTERERlReGHSIiIpI1jV7GInmIj49HSkpKhbWnVCrh6OhYYe0REdGbjWGHXkt8fDw8a9XC04yMCmvTyNAQsZcuMfAQEVGJMOzQa0lJScHTjAws8esNN2tlubd3JTkF43/cgZSUFIYdIiIqEYYdKhNu1kp4V7PXdDeIiIgK4Q3KREREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRr/DYWEfHBkEQkaww7RG85PhiSiOSOYYfoLccHQxKR3DHsEBEAPhiSiOSLNygTERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkayVKuzUqFED9+/fL1T+6NEj1KhR47U7RURERFRWShV24uLikJubW6g8MzMTt2/ffu1OEREREZUVnVepvHv3bun/9+3bB3Nzc2k+NzcXBw8ehLOzc5l1joiIiOh1vVLY6dGjBwBAoVBg6NChKst0dXXh7OyMBQsWlFnniIiIiF7XK4WdvLw8AICLiwtOnDgBpVJZLp0iIiIiKiuvFHby3bhxo6z7QURERFQuShV2AODgwYM4ePAgkpOTpTM++dauXfvaHSMiIiIqC6UKOzNnzsSsWbPQqFEj2NnZQaFQlHW/iIiIiMpEqcLOqlWrEB4ejsGDB5d1f4iIiIjKVKmes5OVlYXmzZuXdV+IiIiIylypws7w4cOxefPmsu4LERERUZkr1WWsZ8+e4bvvvsOBAwdQt25d6OrqqixfuHBhmXSOiIiI6HWVKuycPXsW9evXBwCcP39eZRlvViYiIqLKpFRh59ChQ2XdDyIiIqJyUap7doiIiIjeFKUKO61bt0abNm2KnErqzz//RNeuXWFvbw+FQoFdu3apLPf394dCoVCZ3n33XZU6mZmZCAwMhFKphLGxMbp164Zbt26VZlhEREQkQ6UKO/Xr10e9evWkqXbt2sjKysKpU6fg7e1d4u08efIE9erVw7Jly4qs06FDByQmJkrTnj17VJYHBQVh586d2Lp1K44cOYL09HR06dIFubm5pRkaERERyUyp7tlZtGiR2vKQkBCkp6eXeDsdO3ZEx44di62jr68PW1tbtctSU1OxZs0abNy4Ee3atQMAbNq0CQ4ODjhw4AB8fX1L3BciIiKSpzK9Z2fQoEFl/l6sqKgoWFtbw93dHSNGjEBycrK0LCYmBtnZ2fDx8ZHK7O3t4eXlhejo6CK3mZmZibS0NJWJiIiI5KlMw87Ro0dhYGBQZtvr2LEjfvjhB0RGRmLBggU4ceIE2rRpg8zMTABAUlIS9PT0UKVKFZX1bGxskJSUVOR258yZA3Nzc2lycHAosz4TERFR5VKqy1i9evVSmRdCIDExESdPnsT06dPLpGMA0K9fP+n/vby80KhRIzg5OeH3338v1IeC/SnueT/BwcGYMGGCNJ+WlsbAQ0REJFOlCjvm5uYq81paWvDw8MCsWbNULimVNTs7Ozg5OeHKlSsAAFtbW2RlZeHhw4cqZ3eSk5OLfXeXvr4+9PX1y62fREREVHmUKuysW7eurPtRIvfv30dCQgLs7OwAAA0bNoSuri4iIiLg5+cHAEhMTMT58+cRFhamkT4SERFR5VKqsJMvJiYGsbGxUCgUqF27Nt55551XWj89PR1Xr16V5m/cuIHTp0/D0tISlpaWCAkJQe/evWFnZ4e4uDhMnToVSqUSPXv2BPD8DNOwYcMwceJEWFlZwdLSEpMmTYK3t7f07SwiIiJ6u5Uq7CQnJ+PDDz9EVFQULCwsIIRAamoqWrduja1bt6Jq1aol2s7JkyfRunVraT7/PpqhQ4di5cqVOHfuHDZs2IBHjx7Bzs4OrVu3xrZt22Bqaiqts2jRIujo6MDPzw8ZGRlo27YtwsPDoa2tXZqhERERkcyUKuwEBgYiLS0NFy5cgKenJwDg4sWLGDp0KMaPH48tW7aUaDutWrWCEKLI5fv27XvpNgwMDLB06VIsXbq0ZJ0nIiKit0qpws7evXtx4MABKegAQO3atbF8+fJyvUGZiIiI6FWVKuzk5eVBV1e3ULmuri7y8vJeu1NERGUpPj4eKSkpFdaeUqmEo6NjhbVHRMUrVdhp06YNPvnkE2zZsgX29vYAgNu3b+PTTz9F27Zty7SDRESvIz4+Hp61auFpRkaFtWlkaIjYS5cYeIgqiVKFnWXLlqF79+5wdnaGg4MDFAoF4uPj4e3tjU2bNpV1H4mISi0lJQVPMzKwxK833KyV5d7eleQUjP9xB1JSUhh2iCqJUoUdBwcHnDp1ChEREbh06RKEEKhduza/7k1ElZabtRLe1ew13Q0i0oBXejdWZGQkateuLb04s3379ggMDMT48ePRuHFj1KlTB3/99Ve5dJSIiIioNF4p7CxevBgjRoyAmZlZoWXm5uYICAjAwoULy6xzRERERK/rlcLOmTNn0KFDhyKX+/j4ICYm5rU7RURERFRWXins3L17V+1XzvPp6Ojg3r17r90pIiIiorLySmGnWrVqOHfuXJHLz549K72kk4iIiKgyeKWw06lTJ3z55Zd49uxZoWUZGRmYMWMGunTpUmadIyIiInpdr/TV8y+++AI///wz3N3dMW7cOHh4eEChUCA2NhbLly9Hbm4upk2bVl59JSIiInplrxR2bGxsEB0djdGjRyM4OFh6iadCoYCvry9WrFgBGxubcukoERERUWm88kMFnZycsGfPHjx8+BBXr16FEAJubm6oUqVKefSPiIiI6LWU6gnKAFClShU0bty4LPtCREREVOZe6QZlIiIiojcNww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyRrDDhEREckaww4RERHJGsMOERERyZqOpjtARESvJz4+HikpKRXWnlKphKOjY4W1R/S6GHaIiN5g8fHx8KxVC08zMiqsTSNDQ8ReusTAQ28Mhh0iojdYSkoKnmZkYIlfb7hZK8u9vSvJKRj/4w6kpKQw7NAbg2GHiEgG3KyV8K5mr+luEFVKvEGZiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjU9QJqqEYmNjZdkWEZEmMOwQVSKZWVkAgEGDBmmsbSIiuWHYIapEcnJyAABtJkyGW6s2FdLmlahIRC6cJ7VNRCQ3DDtElZCFgyPsvbwrpK17165WSDtERJqi0RuU//zzT3Tt2hX29vZQKBTYtWuXynIhBEJCQmBvbw9DQ0O0atUKFy5cUKmTmZmJwMBAKJVKGBsbo1u3brh161YFjoKIiIgqM42GnSdPnqBevXpYtmyZ2uVhYWFYuHAhli1bhhMnTsDW1hbt27fH48ePpTpBQUHYuXMntm7diiNHjiA9PR1dunRBbm5uRQ2DiIiIKjGNXsbq2LEjOnbsqHaZEAKLFy/GtGnT0KtXLwDA+vXrYWNjg82bNyMgIACpqalYs2YNNm7ciHbt2gEANm3aBAcHBxw4cAC+vr4VNhYiIiKqnCrtc3Zu3LiBpKQk+Pj4SGX6+vpo2bIloqOjAQAxMTHIzs5WqWNvbw8vLy+pDhEREb3dKu0NyklJSQAAGxsblXIbGxvcvHlTqqOnp4cqVaoUqpO/vjqZmZnIzMyU5tPS0sqq20RERFTJVNozO/kUCoXKvBCiUFlBL6szZ84cmJubS5ODg0OZ9JWIiIgqn0obdmxtbQGg0Bma5ORk6WyPra0tsrKy8PDhwyLrqBMcHIzU1FRpSkhIKOPeExERUWVRaS9jubi4wNbWFhEREXjnnXcAAFlZWTh8+DDmzp0LAGjYsCF0dXUREREBPz8/AEBiYiLOnz+PsLCwIretr68PfX398h8EgPj4eKSkpFRIW/mUSiUcHR0rtE0iIqLKSqNhJz09HVev/u+BZjdu3MDp06dhaWkJR0dHBAUFITQ0FG5ubnBzc0NoaCiMjIwwYMAAAIC5uTmGDRuGiRMnwsrKCpaWlpg0aRK8vb2lb2dpUnx8PDxr1cLTjIwKbdfI0BCxly4x8BAREUHDYefkyZNo3bq1ND9hwgQAwNChQxEeHo4pU6YgIyMDY8aMwcOHD9G0aVPs378fpqam0jqLFi2Cjo4O/Pz8kJGRgbZt2yI8PBza2toVPp6CUlJS8DQjA0v8esPNWlkhbV5JTsH4H3cgJSWFYYeIiAgaDjutWrWCEKLI5QqFAiEhIQgJCSmyjoGBAZYuXYqlS5eWQw/Lhpu1Et7V7DXdDSIiordSpb1BmYiIiKgsMOwQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsafSt50T09oqNjZVVO0RUeTHsEFGFyszKAgAMGjRII+0S0duHYYeIKlROTg4AoM2EyXBr1abc27sSFYnIhfOkdono7cOwQ0QaYeHgCHsv73Jv5961q+XeBhFVbrxBmYiIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSNz9khIiLSsPj4eKSkpFRYe0qlEo6OjhXWnqYx7BAREWlQfHw8PGvVwtOMjApr08jQELGXLr01gYdhh4iISINSUlLwNCMDS/x6w81aWe7tXUlOwfgfdyAlJYVhh4iIiCqOm7US3tXsNd0NWeINykRERCRrPLNDRESVHm/gpdfBsENERJUab+Cl18WwQ0RElRpv4KXXxbBDRERvBN7AS6XFG5SJiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNb4bSx6I8XGxsqqHSIiKj8MO/RGyczKAgAMGjRII+0SEdGbh2GH3ig5OTkAgDYTJsOtVZtyb+9KVCQiF86T2iUiojcPww69kSwcHGHv5V3u7dy7drXc2yAiovLFG5SJiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYqddgJCQmBQqFQmWxtbaXlQgiEhITA3t4ehoaGaNWqFS5cuKDBHhMREVFlU6nDDgDUqVMHiYmJ0nTu3DlpWVhYGBYuXIhly5bhxIkTsLW1Rfv27fH48WMN9piIiIgqk0ofdnR0dGBraytNVatWBfD8rM7ixYsxbdo09OrVC15eXli/fj2ePn2KzZs3a7jXREREVFlU+rBz5coV2Nvbw8XFBR9++CGuX78OALhx4waSkpLg4+Mj1dXX10fLli0RHR2tqe4SERFRJVOpXwTatGlTbNiwAe7u7rh79y5mz56N5s2b48KFC0hKSgIA2NjYqKxjY2ODmzdvFrvdzMxMZGZmSvNpaWll33kiIiKqFCp12OnYsaP0/97e3mjWrBlq1qyJ9evX49133wUAKBQKlXWEEIXKCpozZw5mzpxZ9h0mIiKiSqfSX8Z6kbGxMby9vXHlyhXpW1n5Z3jyJScnFzrbU1BwcDBSU1OlKSEhodz6TERERJr1RoWdzMxMxMbGws7ODi4uLrC1tUVERIS0PCsrC4cPH0bz5s2L3Y6+vj7MzMxUJiIiIpKnSn0Za9KkSejatSscHR2RnJyM2bNnIy0tDUOHDoVCoUBQUBBCQ0Ph5uYGNzc3hIaGwsjICAMGDNB014mIiKiSqNRh59atW+jfvz9SUlJQtWpVvPvuuzh27BicnJwAAFOmTEFGRgbGjBmDhw8fomnTpti/fz9MTU013HMiIiKqLCp12Nm6dWuxyxUKBUJCQhASElIxHSIiKqHY2FhZtUP0JqvUYYeI6E2TmZUFABg0aJBG2iWiwhh2iIjKUE5ODgCgzYTJcGvVptzbuxIViciF86R2iagwhh0ionJg4eAIey/vcm/n3rWr5d4G0ZvujfrqOREREdGrYtghIiIiWWPYISIiIllj2CEiIiJZ4w3KRET0yiry+T58lhC9LoYdIiIqMU09R+jFtoleFcMOERGVWEU/Rwjgs4To9THsyBQfVU9E5aminiME8FlC9PoYdmSGj6onIiJSxbAjM3xUPRERkSqGHZnio+qJiIie43N2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1nQ03QEiIiKqeLGxsRXWllKphKOjY4W1VxDDDhER0VskMysLADBo0KAKa9PQyAiXYmM1FngYdoiIiN4iOTk5AIA2EybDrVWbcm8v5eoV7JgwHikpKQw7REREVHEsHBxh7+Wt6W5UCN6gTERERLLGsENERESyxrBDREREssawQ0RERLLGG5SJiIjUqKjn0FTk827eVgw7REREL9DEc2hebJfKHsMOERHRCyr6OTRXoiIRuXCe1C6VPYYdIiIiNSrqOTT3rl0t9zbedrxBmYiIiGSNYYeIiIhkjWGHiIiIZE02YWfFihVwcXGBgYEBGjZsiL/++kvTXSIiIqJKQBZhZ9u2bQgKCsK0adPw3//+Fx988AE6duyI+Ph4TXeNiIiINEwWYWfhwoUYNmwYhg8fDk9PTyxevBgODg5YuXKlprtGREREGvbGh52srCzExMTAx8dHpdzHxwfR0dEa6hURERFVFm/8c3ZSUlKQm5sLGxsblXIbGxskJSWpXSczMxOZmZnSfGpqKgAgLS2tTPuWnp4OADh7OxFPKujJmBcTn4855eoVxB0/Vu7tpVy98r92dcr/48TxlT25j5HjK1v8jJY9uY/v/vVrAJ7/TSzrv7P52xNCFF9RvOFu374tAIjo6GiV8tmzZwsPDw+168yYMUMA4MSJEydOnDjJYEpISCg2K7zxZ3aUSiW0tbULncVJTk4udLYnX3BwMCZMmCDN5+Xl4cGDB7CysoJCoSjX/pa3tLQ0ODg4ICEhAWZmZpruTpnj+N58ch8jx/fmk/sY5TQ+IQQeP34Me3v7Yuu98WFHT08PDRs2REREBHr27CmVR0REoHv37mrX0dfXh76+vkqZhYVFeXazwpmZmb3xH+LicHxvPrmPkeN788l9jHIZn7m5+UvrvPFhBwAmTJiAwYMHo1GjRmjWrBm+++47xMfHY9SoUZruGhEREWmYLMJOv379cP/+fcyaNQuJiYnw8vLCnj174OTkpOmuERERkYbJIuwAwJgxYzBmzBhNd0Pj9PX1MWPGjEKX6eSC43vzyX2MHN+bT+5jlPv41FEI8bLvaxERERG9ud74hwoSERERFYdhh4iIiGSNYYeIiIhkjWGnEggJCZEeiviyr8sXt/zF269+/fVXjBgxAt26dUNycrJU/vDhQ3zyyScIDAxEQkICrl+/jqFDh8Lf3x+pqamF5kurrNsPDw/HsWPFP9a8Tp06GDVqFKKioqSy1NRUfPTRR+jbty+2bdsGAPj0008REBCAX3/9Ve18ccLDw9GrVy+MGjVK5ZUjBcdbluMKCAhA3759pfni+vvhhx9i69atpRrn8ePH0blzZ2n94j4LcXFxcHZ2VluvLMeq7pgCwNKlSxEYGIgdO3aUeKwFx1fUsSyvz2hJPosAkJOTg/79+2P48OH47rvvSjy+l30G8x07dgz9+vVDnz59cPPmzXIbn7pxvM7xUzfGgmMp72OYl5eHgIAA+Pn5ITw8XO1YXvQ6P48vWrduHUaMGAHg+c/eN99889J1XmbNmjUYPnw4BgwYACEEYmJiMG7cOEyaNKlQ3R07dqB3794AgF9++QWjRo3CxIkT1c5XVrL5Npbc+Pj4wMfHB7du3cLixYsxZcoUaGtr4+zZswCARYsW4ebNm9DT00NYWBgaN26MHj164LPPPoOOjg66du2Krl274pdffsHJkyfRqVMnAMB//vMfGBoaIi8vD5aWlpg7dy7mz5+P69evY+fOnbh+/brKvL+/f6n6X9btnzx5EkeOHIGBgQF+/PFHPH36FM7OzggKCpLaNDIywrNnz1CtWjWpzNzcHOvWrQMAjBw5Eo0bN4a9vT0mT56MUaNGoU6dOirzXbt2LXZcWlpa0NPTg7m5OfT09Ioc77Fjx8psXKtXr5ZC7vXr14vs786dO9GgQQO19UoyziZNmmDy5MlS8A4PDy/ys7BmzRq0b99ebb2yGmtRxzQxMRH79++Hu7s77O3tSzzWguMr6liW12f0ZZ/F/H5mZGTAwcEB33zzDQICAtCuXbsSje9ln8H8fp45cwZTp07F9evXcf78efzzzz/lMr5OnTqpjGPkyJGvdfzUjTEhIUFlLPmPGymvY6ilpYXVq1cjOzsbQUFB8PX1VRnLi1735/FFMTExsLS0xJMnTwA8f2jugwcPYG9vj5EjR2LMmDHQ1tbG4MGDceDAAXz66ad48uQJfvjhB7Rq1QpbtmxBWloaQkJCpH+kDBs2DMOGDcP48eORlZWF77//HmZmZrC2tlZp+/Hjx/j3339RtWpVAMAff/yBVatWYe7cuYiLiys0n7/9yoZndiopW1tbTJo0CVlZWXj06BGEEJgzZw5sbW3x+PFj7N69GxYWFkhMTERmZibc3d0xbdo06LzwErns7Gz8+uuvaN26tVR27do19O/fH71798bmzZuRkpKCqlWrwt7eHomJiYXmX0dZtt+oUSMMHz4czs7OyMnJweLFi3HhwgWV9o4fP47Fixdj4cKFhfryn//8B3379kVSUhLs7OwAPP/FVXD+ZQYPHoytW7fCw8MDBw8eLHK8ZTmuFxXV3ydPnuDs2bNo0qSJ2nqvOk4ARfZ59+7d8PHxgba2ttp6ZTVWQP0xjYuLg6urK+bPn481a9aUeqxFHcvy/IwCRX8W8xkbG+P27dto27YtOnXq9ErjK+4zmK9NmzYYP348Fi9ejObNm5fb+AqOo6yO34tjLDiWijiGMTEx8PHxQZs2bQqNJV9Z/jzevXsXlpaW8PX1xe7duwEADRs2RFhYGC5cuICIiAj07dsX//nPf7BlyxZ069YNv/76K37++Wf07NkT33//PSwtLaFUKqV/LOcbPnw47t27B11dXZw/fx6zZ89GTk4Orly5ItVZunSpyj9A8vubv+8KzldWDDuVgLm5Oe7fvw/g+Sls4Pm/aIHnp00BSP/y1NfXhxACtWvXRkhICDZu3Ah9fX2YmpqqbDMvLw8TJ07E559/DkNDQ6nc1tYW5ubmMDc3R3p6OpRKJe7du4c7d+7Azs6u0HxplXX7L/5CyH9/WcH3mCkUCpiamkr7MN+vv/6K7OxstG/fHra2ttIPpBCi0PzL5LepVCqlt9qrG29ZjutFRfX31KlTuHnzJpYtW4YNGza89jjzx6iuzzExMdixYweio6OxefPmchtr/vKCxzT/M6RQKKCtrV3qsRZ1LMvzM1rcZzHfuXPn0LBhQxw6dAgHDhwo8fhe9hnMt3LlSvz8889YuXJlmR+/F8dXcBwF929pjl/BMRYcS0Ucw/wx/frrr4XGkq8sfx63bduGixcvYsuWLVLYebFvQggoFAqprEmTJjh58iQuXbqEWrVqQQiBadOmYf78+ejWrZvKtr///ns0atQIFy9eRI0aNaCrqyvts3wXLlzAzJkzER0djePHj0v9zd93BecrK17GqgT8/PwQHBwMMzMz1K9fv9ByCwsL6OjoYOHChbh+/TrMzMxga2uLCRMmICcnB0uWLCm0zooVK3Dq1CnMnz8fQ4cOhbGxMR49eoSPPvoIISEh0pmiZ8+eYfLkyQCAxYsX48GDByrzpVXW7Xt5eWH+/PmYOHEitLS0MHHiRNSqVUtafv36dcyePRvPnj2Trm0vW7YM/fr1w5gxY9C5c2csXLgQEyZMQGJiIkaPHo1OnTqhRo0aKvMvEx4ejn/++Qepqan4/vvvcfbsWTx69Ahnz55VGa+/v3+ZjAsApk2bhr/++ku6N6Bgf5ctW4Zx48bhgw8+QFRUFJKSkgqNqyTj/Pfff7Fw4UJkZGTA1dW10Bjyxzpz5kwAz+8fGzBgAK5fv14uY+3cubPaYzpu3Dikp6cjMDAQH3zwQYnHWnB8+ZdwCh7L8vqM3rt3r9jPYv74PvroI4SGhmLUqFFwdHQs8fgK/swVdfx8fX0RFBSErKwsTJkyBVWqVCmX8QUEBKiM43WPn7oxFhxLeR/DpKQkfP3118jOzsb7778PFxcXlbG8OMbX/XnMd+zYMfz0008AgE8++QQPHz7EyZMnMXnyZNSuXRs+Pj4YO3Ysdu3ahQ8//BDA87ODBgYGAJ5fUgwICICpqan0WiUAmD9/Pm7evInMzEyMHz8effv2xahRo6ClpYWAgABs2rQJXbp0wQ8//ADg+c97kyZNcOfOHYwePRrGxsZwdnaGr6+vynylVew70Uk2wsPDxe3bt9+a9jMyMsTixYvLvR1N79eKGqcQ8h8rx1e+KuKz+jaMsaLMmTNH010oU3yCMhEREcka79khIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiqiTWrFkDHx+fV1qnT58+ap8aTkT/w7BD9JZLSkrCJ598AldXVxgYGMDGxgbvv/8+Vq1ahadPn2q6e5KoqCgoFAo8evRI010pF5mZmfjyyy8xffr0Qss2btwIT09PGBoawsnJCStWrJCWffnll/j666+RlpZWkd0leqPwCcpEb7Hr16/jvffeg4WFBUJDQ+Ht7Y2cnBz8+++/WLt2Lezt7Qs9Yj5fdnY2dHV1K7jH8rVjxw6YmJhIT+LNd+3aNXz00Uf4+uuv4efnhwcPHqgEm7p168LZ2Rk//PADRo8eXdHdJnoj8MwO0VtszJgx0NHRwcmTJ+Hn5wdPT094e3ujd+/e+P3331XexqxQKLBq1Sp0794dxsbGmD17NoDn71qqWbMm9PT04OHhgY0bN6q0ERISAkdHR+jr68Pe3h7jx4+Xlq1YsQJubm7SGaU+ffqUuO/h4eGwsLDAvn374OnpCRMTE3To0KHQywjXrl2LOnXqQF9fH3Z2dhg3bpy0LD4+Ht27d4eJiQnMzMzg5+eHu3fvqvS9fv36WLt2LRwdHWFiYoLRo0cjNzcXYWFhsLW1hbW1Nb7++muVNlNTUzFy5EhYW1vDzMwMbdq0wZkzZ4odz9atW9UGy1OnTkFLSwuTJ0+Gi4sLGjZsqPJyXQDo1q0btmzZUuJ9R/S2Ydghekvdv38f+/fvx9ixY2FsbKy2TsGXIM6YMQPdu3fHuXPn8PHHH2Pnzp345JNPMHHiRJw/fx4BAQH46KOPcOjQIQDATz/9hEWLFmH16tW4cuUKdu3aBW9vbwDAyZMnMX78eMyaNQuXL1/G3r170aJFi1caw9OnTzF//nxs3LgRf/75J+Lj4zFp0iRp+cqVKzF27FiMHDkS586dw+7du+Hq6grg+QsYe/TogQcPHuDw4cOIiIjAtWvX0K9fP5U2rl27hj/++AN79+7Fli1bsHbtWnTu3Bm3bt3C4cOHMXfuXHzxxRc4duyYtN3OnTsjKSkJe/bsQUxMDBo0aIC2bdviwYMHRY7lr7/+kt5b9KInT57AyMio2LdjN2nSBMePH0dmZuYr7T+it4Zm31ZBRJpy7NgxAUD8/PPPKuVWVlbC2NhYGBsbiylTpkjlAERQUJBK3ebNm4sRI0aolPXt21d06tRJCCHEggULhLu7u8jKyirU/o4dO4SZmZlIS0srUX8PHTokAIiHDx8KIYRYt26dACCuXr0q1Vm+fLmwsbGR5u3t7cW0adPUbm///v1CW1tbxMfHS2UXLlwQAMTx48eFEELMmDFDGBkZqfTR19dXODs7i9zcXKnMw8NDepfQwYMHhZmZmXj27JlKezVr1hSrV69W25eHDx8KAOLPP/9UKe/QoYPQ19cXAKRjEhAQUGj9M2fOCAAiLi5O7faJ3nY8s0P0lit49ub48eM4ffo06tSpU+hMQcEzD7GxsXjvvfdUyt577z3ExsYCAPr27YuMjAzUqFEDI0aMwM6dO5GTkwMAaN++PZycnFCjRg0MHjwYP/zwwyvfEG1kZISaNWtK83Z2dkhOTgYAJCcn486dO2jbtq3adWNjY+Hg4AAHBweprHbt2rCwsJD6DwDOzs4wNTWV5m1sbFC7dm2VMy02NjZSuzExMUhPT4eVlRVMTEyk6caNG7h27ZravmRkZACA9KbqfN9//z1mzZoFU1NTnD59GqdPn8asWbMKrW9oaAgAleqGcqLKhDcoE72lXF1doVAocOnSJZXyGjVqAPjfH9AXqbvcVTAsCSGkMgcHB1y+fBkRERE4cOAAxowZg3nz5uHw4cMwNTXFqVOnEBUVhf379+PLL79ESEgITpw4AQsLixKNoeAN0gqFAuL/322srv9F9bO4cnVtqCvLy8sDAOTl5cHOzg5RUVGFtl3UuKysrKBQKPDw4UOV8mrVqsHa2hpaWlrS5Td18i+PVa1atcg6RG8zntkhektZWVmhffv2WLZsGZ48eVKqbXh6euLIkSMqZdHR0fD09JTmDQ0N0a1bNyxZsgRRUVE4evQozp07BwDQ0dFBu3btEBYWhrNnzyIuLg6RkZGlH9QLTE1N4ezsjIMHD6pdXrt2bcTHxyMhIUEqu3jxIlJTU1X6/6oaNGiApKQk6OjowNXVVWVSKpVq19HT00Pt2rVx8eLFUrV5/vx5VK9evcjtE73teGaH6C22YsUKvPfee2jUqBFCQkJQt25daGlp4cSJE7h06RIaNmxY7PqTJ0+Gn5+fdAPur7/+ip9//hkHDhwA8PwbU7m5uWjatCmMjIywceNG6Vkxv/32G65fv44WLVqgSpUq2LNnD/Ly8uDh4VFm4wsJCcGoUaNgbW2Njh074vHjx/j7778RGBiIdu3aoW7duhg4cCAWL16MnJwcjBkzBi1btlR7o3BJtWvXDs2aNUOPHj0wd+5ceHh44M6dO9izZw969OhR5LZ9fX1x5MgRBAUFSWVJSUlITU2FEAJJSUlSuZ6eHiwtLaX5v/7665UfRkj0VtHoHUNEpHF37twR48aNEy4uLkJXV1eYmJiIJk2aiHnz5oknT55I9QCInTt3Flp/xYoVokaNGkJXV1e4u7uLDRs2SMt27twpmjZtKszMzISxsbF49913xYEDB4QQQvz111+iZcuWokqVKsLQ0FDUrVtXbNu2rch+qrtB2dzcXKXOzp07RcFfa6tWrRIeHh5CV1dX2NnZicDAQGnZzZs3Rbdu3YSxsbEwNTUVffv2FUlJSdLyGTNmiHr16qlsb+jQoaJ79+4qZS1bthSffPKJNJ+WliYCAwOFvb290NXVFQ4ODmLgwIEqN0MXFBsbKwwNDcWjR4+kMgBqp5YtW0p1MjIyhJmZmTh69GiR2yZ62ymE+P8L3EREpFF+fn545513EBwcXOJ1li9fjl9++QX79+8vx54Rvdl4zw4RUSUxb948mJiYvNI6urq6WLp0aTn1iEgeeGaHiIiIZI1ndoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNb+D8gAj2OLHXohAAAAAElFTkSuQmCC",
2622
      "text/plain": [
2623
       "<Figure size 640x480 with 1 Axes>"
2624
      ]
2625
     },
2626
     "metadata": {},
2627
     "output_type": "display_data"
2628
    }
2629
   ],
2630
   "source": [
2631
    "#Histogram plot gross income & smoke\n",
2632
    "sns.histplot(binwidth=1,\n",
2633
    "            x=\"gross_income\",\n",
2634
    "            hue=\"smoke\",\n",
2635
    "            data=smoke1,\n",
2636
    "            stat=\"count\",\n",
2637
    "            multiple=\"dodge\",\n",
2638
    "            palette=\"hls\")\n",
2639
    "plt.tick_params(axis='x', which='major', labelsize=4.5)\n",
2640
    "plt.title('Figure 9: Histogram plot for Gross Income & Smoke ')\n",
2641
    "plt.xlabel('Gross Income (£)')"
2642
   ]
2643
  },
2644
  {
2645
   "cell_type": "code",
2646
   "execution_count": 48,
2647
   "id": "0fa61559",
2648
   "metadata": {
2649
    "scrolled": false
2650
   },
2651
   "outputs": [
2652
    {
2653
     "data": {
2654
      "text/plain": [
2655
       "(0.0, 175.0)"
2656
      ]
2657
     },
2658
     "execution_count": 48,
2659
     "metadata": {},
2660
     "output_type": "execute_result"
2661
    },
2662
    {
2663
     "data": {
2664
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd5gV1fl+Z27bvbssS+9SREVpdiyJgIBYY4nxF40VE3vs0ZhEARtqjCWaqLETGzEiUSyICkQFFDT2jiAgUpftu7fMnN8fM2fmnCn3ztyyd+5y3ufZB/buLWfmnjnznfd7v/eTCCEEAgICAgICAgICWSGXegACAgICAgICAuUCETgJCAgICAgICHiECJwEBAQEBAQEBDxCBE4CAgICAgICAh4hAicBAQEBAQEBAY8QgZOAgICAgICAgEeIwElAQEBAQEBAwCNE4CQgICAgICAg4BEicBIQEBAQEBAQ8IiSBk6PPfYYJEly/LnyyiuxZs0aSJKExx57rJTDzBlNTU246qqrcNhhh6FXr16QJAkzZsxwff4HH3yAyZMno7q6GrW1tTjhhBPw3Xff5fz59PzdfvvtGZ83ZMgQnHnmmTl/Tq6g46M/siyjR48eOPLII7Fs2TLuudnOnRs2bNiAGTNm4MMPP/T8mjfeeAP77rsvqqqqIEkS5s2b5/tz/WLTpk34wx/+gD333BM1NTWIRqMYOHAgTjjhBLzwwgtQFKXoY3DCmWeeiSFDhpTks4sJv/Ppk08+gSRJiEQi+PHHH4s3sBJh6dKlmDFjBurr6z2/ZsGCBTjssMPQv39/xGIx9O/fHxMmTMAtt9xSvIFmwJlnnonq6uqifsbixYshSRIWL15c1M/xgttvvx2SJOHdd9/lHldVFd27d4ckSfjqq6+4vyWTScTjcZxwwglFGVO+30Gp7kV+EQjG6dFHH8WyZcu4n4svvhj9+vXDsmXLcNRRR5V6iDlh27Zt+Mc//oFEIoHjjjsu43O//PJLTJgwAclkEv/617/wyCOP4Ouvv8ZPf/pTbNmypajjfP7553HttdcW9TMy4be//S2WLVuGt956C7NmzcJHH32EiRMn4n//+1/e771hwwbMnDnTc+BECMFJJ52ESCSCF154AcuWLcP48ePzHkcmLF++HKNHj8aDDz6In/3sZ3jmmWfw+uuv45ZbbkEkEsEJJ5xQtpuHzoKHHnoIAJBOpzF79uwSj6bwWLp0KWbOnOk5cLr//vtx+OGHo6amBvfeey8WLFiAW2+9Fbvvvjv+/e9/F3ewAgCAiRMnAgAWLVrEPf7RRx9h+/btqKqqsv3t3XffRVtbm/FagdwQLvUAAGDUqFHYd999Hf92wAEHdPBoNLS2tiIej+f1HoMHD8b27dshSRK2bt1qLL5OuO666xCLxTB//nzU1NQAAPbZZx/ssssuuP3223HrrbfmNZZM2GuvvYr23l6w0047Gd/zwQcfjOHDh2PSpEn4+9//jgcffLBDx7JhwwbU1dXh+OOPx6RJkwrynm1tbaioqIAkSba/1dfX47jjjkN1dTXeeecd9OvXj/v7qaeeio8//hjbtm0ryFhKjba2NlRWVpZ6GL6QSCTw5JNPYuzYsdi6dSseeeQRXH311aUeVkkxa9YsHHLIIbYg6bTTToOqqiUa1Y6FvfbaC7W1tVi8eDF+//vfG48vXrwY/fv3x/jx47Fo0SKcd9553N8AiMApTwSCcXKDW6ruP//5D8aMGYNYLIZhw4bh7rvvxowZM7gbU6Y0n5Wmp6/94IMPcOKJJ6Jbt27YeeedAWgMxN///nfsueeeqKysRLdu3XDiiSd6SqHRFFQ2pNNpzJ8/Hz//+c+NoAnQAq+JEyfi+eefz/oe+cBKj1I6+umnn8Yf//hH9O/fHzU1NZg8ebKN+gWA119/HZMmTUJNTQ3i8TgOPvhgvPHGGzmPhwZR33//fcbnffrppzj22GPRrVs3VFRUYM8998Tjjz/OHcd+++0HADjrrLOM78MtRTNjxgwMHDgQAHD11VdDkiQuTfX2229j0qRJ6NKlC+LxOA466CC89NJL3HvQ9PNrr72GadOmoVevXojH40gkEo6f+eCDD2LTpk247bbbbEETxZgxY2wL3caNG3Huuedi4MCBiEajGDp0KGbOnIl0Om08h03V3nHHHRg6dCiqq6tx4IEHYvny5bbPeeyxx7DbbrshFoth9913d2VWkskkbrzxRowYMQKxWAy9evXCWWedZWNGhwwZgqOPPhpz587FXnvthYqKCsycOdPxPQFg4cKFOPbYYzFw4EBUVFRg+PDhOPfcc7F161buefR6/eyzz3DyySeja9eu6NOnD6ZNm4aGhgbuuY2NjfjNb36DHj16oLq6Gocffji+/vpr1zE4Yd68edi2bRt+/etf44wzzsDXX3+Nt99+2/Y8erzz58/HXnvthcrKSuy+++6YP38+AO387r777qiqqsL++++PlStX2t7jhRdewIEHHoh4PI4uXbpgypQptrS1W/rUugYC2hp00UUX4Z///Cd23313xONxjB071hgTfd3vfvc7AMDQoUON6yRTOmrbtm2u81WW+dsKHcOjjz6K3XbbDZWVldh3332xfPlyEELw5z//2Zibhx56KL799lvbez7yyCMYO3YsKioq0L17dxx//PH44osvXMdH8c4776Bnz544+uij0dLSAgD45ptvcMopp6B3797GXP/b3/5me+2XX36Jww8/HPF4HD179sR5552HpqamrJ9J4We9WLRoEc4//3z07NkTPXr0wAknnIANGzZkfH9ZlnHIIYfgnXfe4a77xYsXY8KECRg/frztO1y8eDF69eqFkSNHAvB+LQPAnDlzcOCBB6KqqgrV1dWYOnWqp6yA03eQSqVw1VVXoW/fvojH4/jJT36C9957z/baLVu24IILLsAee+yB6upq9O7dG4ceeijeeust4zmEEOyyyy6YOnWq7fXNzc3o2rUrLrzwQgBaGvPGG2805mFtbS3GjBmDu+++O+txcCAlxKOPPkoAkOXLl5NUKsX9EELI6tWrCQDy6KOPGq955ZVXiCzLZMKECeT5558nzz77LBk3bhwZMmQIYQ/H6bUUAMj06dON36dPn04AkMGDB5Orr76aLFy4kMybN48QQshvfvMbEolEyBVXXEFeffVV8tRTT5ERI0aQPn36kI0bN3o+1i1bttg+l+LLL78kAMjf/vY329+uvPJKIkkSaWtrMx4bP3488fLV0XPw5z//OePzBg8eTM444wzj90WLFhEAZMiQIeRXv/oVeemll8jTTz9NdtppJ7LLLruQdDptPPef//wnkSSJHHfccWTu3LnkxRdfJEcffTQJhULk9ddfz2l8H330EQFATjnlFOMx67n78ssvSZcuXcjOO+9MZs+eTV566SVy8sknEwDk1ltvJYQQ0tDQYMyxP/3pT2TZsmVk2bJlZN26dY7jWbduHZk7dy4BQH7729+SZcuWkQ8++IAQQsjixYtJJBIh++yzD5kzZw6ZN28eOeyww4gkSeSZZ54x3oN+3oABA8g555xDXnnlFfLvf/+bO2cspkyZQkKhEGlpacl4rlj8+OOPZNCgQWTw4MHkgQceIK+//jq54YYbSCwWI2eeeabt/A4ZMoQcfvjhZN68eWTevHlk9OjRpFu3bqS+vt427mOPPZa8+OKL5IknniDDhw83PodCURRy+OGHk6qqKjJz5kyycOFC8tBDD5EBAwaQPfbYg7S2thrPHTx4MOnXrx8ZNmwYeeSRR8iiRYvIe++953pc9913H5k1axZ54YUXyJIlS8jjjz9Oxo4dS3bbbTeSTCaN59HrdbfddiPXXXcdWbhwIbnjjjtILBYjZ511lvE8VVXJxIkTSSwWIzfddBN57bXXyPTp08mwYcNcr0UnTJkyhcRiMVJXV0e+/fZbIkkSd57Z4x04cCAZNWoUefrpp8nLL79Mxo0bRyKRCLnuuuvIwQcfTObOnUuef/55suuuu5I+ffpw5+vJJ58kAMhhhx1G5s2bR+bMmUP22WcfEo1GyVtvvWU874wzzuC+E+t5YUG///3335/861//Ii+//DKZMGECCYfDZNWqVYQQbd7/9re/JQDI3LlzjeukoaHB9ZxMnjyZhMNhMn36dPLhhx+6zm86hsGDB5ODDjqIO/7u3buTyy67jBx77LFk/vz55MknnyR9+vQhY8aMIaqqGq+/+eabCQBy8sknk5deeonMnj2bDBs2jHTt2pV8/fXX3Hmpqqoyfp8zZw6JxWLk/PPPN8b32Wefka5du5LRo0eT2bNnk9dee41cccUVRJZlMmPGDOO1GzduJL179yYDBgwgjz76KHn55ZfJr371K7LTTjsRAGTRokWux0uI//Vi2LBh5Le//S1ZsGABeeihh0i3bt3IxIkTM34GIYTceeedBABZunQpIUS7Pmtra8kDDzxAvvjiCwKAfPbZZ4QQQhKJBKmsrCS/+MUvjOd6vZZvuukmIkkSmTZtGpk/fz6ZO3cuOfDAA0lVVZXx/l6/A/o8SZLI7373O/Laa6+RO+64gwwYMIDU1NRw96Ivv/ySnH/++eSZZ54hixcvJvPnzydnn302kWWZ+w7uvvtuIkkSNx8IIeRvf/sbdw5mzZpFQqEQmT59OnnjjTfIq6++Su666y7uu/eCQAROTj+pVMox+Nlvv/3IoEGDSCKRMB5ramoiPXr0yDtwuu6667jnLVu2jAAgf/nLX7jH161bRyorK8lVV13l+VgzBU7vvPMOAUCefvpp29/oorFhwwbjsUMPPZSEQqGsn5lv4HTkkUdyz/vXv/5FAJBly5YRQghpaWkh3bt3J8cccwz3PEVRyNixY8n+++/vaXy33norSaVSpL29nbz//vtkv/32IwDISy+9ZDzXeu5++ctfklgsRtauXcu95xFHHEHi8bgRFKxYscJ1HmQak/WcHXDAAaR3796kqanJeCydTpNRo0aRgQMHGgs9ndOnn366p88bMWIE6du3r+1xRVG4jYSiKMbfzj33XFJdXU2+//577jW33347t0jQYxk9ejS3aL333nvcfFMUhfTv35/svffe3A1rzZo1JBKJcDfpp59+mgAgzz33HPfZ9Dz//e9/Nx4bPHgwCYVC5KuvvvJ0LlioqkpSqRT5/vvvCQDyn//8x/gbvV5vu+027jUXXHABqaioMI7hlVdeIQDI3XffzT3vpptu8hw4rVmzhsiyTH75y18aj40fP55UVVWRxsZG7rmDBw8mlZWVZP369cZjH374IQFA+vXrxwXH8+bNIwDICy+8QAgxv4PRo0dz33VTUxPp3bs3Oeigg4zH/AZOffr04ca6ceNGIssymTVrlvHYn//8ZwKArF69Ous5IYSQb7/9lowaNcpYrysrK8mkSZPIvffeywW5dAx9+/Ylzc3NtuPfc889uTl31113EQDk448/JoQQsn37dlJZWWlbi9auXUtisRi3uWJv2rfccgsJhULGJopi6tSpZODAgbag8KKLLiIVFRWkrq6OEELI1VdfTSRJIh9++CH3vClTpngKnPyuFxdccAH3+ttuu40AID/++GPGz6Hz6+abbyaEEPL+++8TAOTLL78khBDSp08fcu+99xJCCFmyZAl3jXq9lteuXUvC4TD57W9/yz2vqamJ9O3bl5x00knGY16+AxrQXXbZZdzjdOPA3ousSKfTJJVKkUmTJpHjjz/eeLyxsZF06dKFXHLJJdzz99hjDy4APfroo8mee+7p+v5eEYhU3ezZs7FixQruJxy2y69aWlqwcuVKHHfccYhGo8bj1dXVOOaYY/Iex89//nPu9/nz50OSJJx66qlIp9PGT9++fTF27NiCV1ZkSuuxf3vjjTc4arZY+NnPfsb9PmbMGABmCm3p0qWoq6vDGWecwZ0fVVVx+OGHY8WKFQY1mwlXX301IpEIKioqsM8++2Dt2rV44IEHcOSRR7q+5s0338SkSZMwaNAg7vEzzzwTra2ttvRGPmhpacG7776LE088kasYCYVCOO2007B+/XpbCtM6l/zi8ssvRyQSMX7Y72L+/PmYOHEi+vfvz533I444AgCwZMkS7r2OOuoohEIh43fr9/jVV19hw4YNOOWUU7h5NnjwYBx00EHce82fPx+1tbU45phjuM/ec8890bdvX9s1MWbMGOy6666ejnnz5s0477zzMGjQIITDYUQiEQwePBgAHNMyTvOzvb0dmzdvBmCKZn/1q19xzzvllFM8jQfQCldUVcW0adOMx6ZNm4aWlhbMmTPH9vw999wTAwYMMH7ffffdAQATJkzgNJP0cet3cNppp3Gprurqavz85z/H8uXL0dra6nncLCZOnIguXboYv/fp0we9e/fOmgrPhJ133hkfffQRlixZgpkzZ2Ly5MlYsWIFLrroIhx44IFob2+3jaGqqsr4nR7/EUccwc0563lZtmwZ2trabJVWgwYNwqGHHmqTBBBCcO6552L69Ol46qmncNVVVxl/a29vxxtvvIHjjz8e8Xicm79HHnkk2tvbjRT2okWLMHLkSIwdO5Z7fy9zJ5f1Itta64YxY8agR48exnW3ePFi9O3bF7vtthsA4JBDDjGuA6u+yeu1vGDBAqTTaZx++unc8yoqKhzTgZm+A8D9ujzppJMc7/v3338/9t57b1RUVBjrwhtvvMGtCV26dMFZZ52Fxx57zLjnvPnmm/j8889x0UUXGc/bf//98dFHH+GCCy7AggUL0NjYmPH8uiEQ4vDdd9/dVRzOYvv27SCEoE+fPra/OT3mF9ac/aZNm1w/DwCGDRuW92cCQI8ePQDAUQBcV1cHSZJQW1tbkM/yAzouilgsBkAT+ALa+QGAE0880fU96urquAXTCZdccglOPfVUyLKM2tpaQ2eRCW4ai/79+xt/LxTovPPzeW76Dyt22mknfPPNN7ZihCuuuAKnnnoqAPuiumnTJrz44ouIRCKO72nVBGX7HunY+/bta3uvvn37Ys2aNdxn19fXcxuXTJ/t9TyoqorDDjsMGzZswLXXXovRo0ejqqoKqqrigAMOMMbq97jC4bDteU7H6Tamxx57DP3798c+++xjVJxNnjwZVVVVePjhh/HrX/+ae0337t253+l5cnucBhj0O3CbY6qqYvv27TkVrFiPH9DOldM59QOqsTnkkEMAaAHD2WefjTlz5uCRRx7BBRdcYDy3WOdl4cKF3GPJZBJz5szByJEjjY0ExbZt25BOp3HPPffgnnvucTwmOn+3bduGoUOH2v7uZe7ksl5km8tukCQJ48ePx4IFC5BKpbBo0SKuCnj8+PGYMWMGCCFYtGgR+vbtixEjRgDwfi3TdZ7qRa2watoyfQeA+3rjdK3ecccduOKKK3DeeefhhhtuQM+ePREKhXDttdfaNlO//e1vce+99+LJJ5/EOeecg3vvvRcDBw7EscceazznmmuuQVVVFZ544gncf//9CIVCOOSQQ3Drrbd6ikGMsXp+ZgDQrVs3SJJkfJEsNm7cyP1eUVEBADZRbqYbqvVm3bNnT0iShLfeesuYyCycHssFO++8MyorK/HJJ5/Y/vbJJ59g+PDhxvEECT179gQA3HPPPa7Vj14C2oEDB/qatIC20Dj56VBBJR1bIdCtWzfIsuzr87wUBQDAlClT8Nprr+Hll1/mAtBBgwYZbJp1YevZsyfGjBmDm266yfE96eLsFXSxsl5DTo9R8eqrr77q+F4sswF4Pw+ffvopPvroIzz22GM444wzjMedhMJe0aNHD6TTaWzbto1bkJ2O0wmvv/66seN3Cj6WL1+Ozz//HHvssUfOY2THCsB1jsmyjG7dugHQ1janYgNr0NrRqKqqwjXXXIM5c+bg008/Lch7Zjsv1usuFoth0aJFmDp1KiZPnoxXX33VOG/dunUzWB8qFraCBks9evTwdD04IZf1Ih9MnDgRc+fOxbvvvmtYulCMHz8eW7duxfvvv4/ly5fj+OOPN/7m9VqmY/33v/9tMMCZkOk7APj1hmVn6bXK4oknnsCECRNw3333cY87ifSHDx+OI444An/7299wxBFH4IUXXsDMmTM5tj0cDuPyyy/H5Zdfjvr6erz++uv4wx/+gKlTp2LdunWeNyaBSNV5RVVVFfbdd1/MmzcPyWTSeLy5uZmrEgG0G3ZFRQU+/vhj7vH//Oc/nj/v6KOPBiEEP/zwA/bdd1/bz+jRo/M7IB3hcBjHHHMM5s6dy02ItWvXYtGiRUUzK8sXBx98MGpra/H55587np99993XdTeTLyZNmoQ333zTVnkye/ZsxONxI5DzunPLhKqqKowbNw5z587l3kdVVTzxxBMYOHCg53SUFb/+9a/Rp08fXHXVVZ6NFY8++mh8+umn2HnnnR3Pud/AabfddkO/fv3w9NNPgxBiPP79999j6dKlts/etm0bFEVx/GyaIvALGmBZNyMPPPBATu8HmCmJJ598knv8qaee8vT6hx9+GLIsY968eVi0aBH3889//hOAVu1VCOy2224YMGAAnnrqKe47aGlpwXPPPWdU2gFa9d7mzZu5DWQymcSCBQty/ny/14nbXKUsgN856IYDDzwQlZWVeOKJJ7jH169fb6Trrdhrr72wZMkSrF+/HhMmTDBSt/F43PCHGzNmjOP8pTf1iRMn4rPPPsNHH33EvbeXuVPM9cIJdJ7feeedaGhowIQJE4y/jRw5Ej169MCsWbPQ3t7OVed6vZanTp2KcDiMVatWua7zVrh9BwCM8Vmvy3/96182CYokSbY14eOPP3aVYlxyySX4+OOPccYZZyAUCuE3v/mN63mrra3FiSeeiAsvvBB1dXUcs54NZcU4AcD111+Po446ClOnTsUll1wCRVHw5z//GdXV1airqzOeR7VJjzzyCHbeeWeMHTsW7733nudFE9ACg3POOQdnnXUWVq5ciUMOOQRVVVX48ccf8fbbb2P06NE4//zzM77HK6+8gpaWFiMg+vzzzw3vkyOPPNJYDGfOnIn99tsPRx99NH7/+9+jvb0d1113HXr27IkrrriCe89JkyZhyZIlnnVOn3zyiaMp3X777edpB+GG6upq3HPPPTjjjDNQV1eHE088Eb1798aWLVvw0UcfYcuWLbadQqEwffp0Q+tz3XXXoXv37njyySfx0ksv4bbbbkPXrl0BmGzek08+id133x3V1dXo37+/74V91qxZmDJlCiZOnIgrr7wS0WgUf//73/Hpp5/i6aef9sysWFFbW4t58+bhmGOOwdixY3H++efjgAMOQHV1NbZt24b//ve/2LhxI6c1uv7667Fw4UIcdNBBuPjii7Hbbruhvb0da9aswcsvv4z777/fsFXwAlmWccMNN+DXv/41jj/+ePzmN79BfX09ZsyYYaPTf/nLX+LJJ5/EkUceiUsuuQT7778/IpEI1q9fj0WLFuHYY4/ldrVeMWLECOy88874/e9/D0IIunfvjhdffNGWivGDww47DIcccgiuuuoqtLS0YN9998U777xjBD2ZsG3bNvznP//B1KlTOaqfxZ133onZs2dj1qxZrmlTr5BlGbfddht+9atf4eijj8a5556LRCKBP//5z6ivr+fcuP/v//4P1113HX75y1/id7/7Hdrb2/HXv/41L3d5ugm8++67ccYZZyASiWC33XazMYgUI0eOxKRJk3DEEUdg5513Rnt7O95991385S9/QZ8+fXD22WfnPBYWtbW1uPbaa/GHP/wBp59+Ok4++WRs27YNM2fOREVFBaZPn+74ut133x1vvfUWJk+ejEMOOQSvv/46Bg4ciLvvvhs/+clP8NOf/hTnn38+hgwZgqamJnz77bd48cUX8eabbwIALr30UjzyyCM46qijcOONN6JPnz548skn8eWXX3oad7HWCyeMHDkSvXv3xvPPP49evXoZOjFAuw8ecsghhqUNGzh5vZaHDBmC66+/Hn/84x/x3Xff4fDDD0e3bt2wadMmvPfee6iqqnK0GXH7DnbffXeceuqpuOuuuxCJRDB58mR8+umnuP322zk7HkAL7m644QZMnz4d48ePx1dffYXrr78eQ4cOdbz/TZkyBXvssQcWLVqEU089Fb179+b+fswxxxi+kb169cL333+Pu+66C4MHD8Yuu+zi/aTnLS/PA7SiYMWKFY5/d6uMe/7558no0aNJNBolO+20E7nlllvIxRdfTLp168Y9r6Ghgfz6178mffr0IVVVVeSYY44ha9asca2q27Jli+M4HnnkETJu3DhSVVVFKisryc4770xOP/10snLlyqzHOHjwYNfKQWsFy8qVK8mkSZNIPB4nNTU15LjjjiPffvut7T392hG4/dDz6lZV9+yzzzq+n/X7WLJkCTnqqKNI9+7dSSQSIQMGDCBHHXWU7fVu48tW9UeIvaqOEEI++eQTcswxx5CuXbuSaDRKxo4d61g99/TTT5MRI0aQSCSStZoq05jeeustcuihhxrz4IADDiAvvvgi95xsc9oNGzduJNdccw0ZM2YMqaqqIpFIhPTv358cc8wxZPbs2YZFB8WWLVvIxRdfTIYOHUoikQjp3r072Weffcgf//hHo3op07E4nYeHHnqI7LLLLiQajZJdd92VPPLII44VXKlUitx+++1k7NixpKKiglRXV5MRI0aQc889l3zzzTfG8wYPHkyOOuooz+fg888/J1OmTCFdunQh3bp1I7/4xS/I2rVrPV+v9Nyz11V9fT2ZNm0aqa2tJfF4nEyZMsWw/8g0D2h1F7UlccL999/PVSW5HS8AcuGFF3KPuX038+bNI+PGjSMVFRWkqqqKTJo0ibzzzju293z55ZfJnnvuSSorK8mwYcPIvffe61pVZ/1sOlZr9dI111xD+vfvT2RZzlo59sADD5ATTjiBDBs2jMTjcRKNRsnOO+9MzjvvPJvdh5/jd1t7HnroITJmzBgSjUZJ165dybHHHsuVwRNiL4UnhJD169eTESNGkCFDhhj2C6tXrybTpk0jAwYMIJFIhPTq1YscdNBB5MYbb+ReS+djRUUF6d69Ozn77LPJf/7zH09VdYTkt17Q8+Dlcwgh5KSTTiIAyIknnmj7G53LAwYMsP3N67VMiDY3J06cSGpqakgsFiODBw8mJ554Imc74/U7SCQS5IorriC9e/cmFRUV5IADDiDLli2zzctEIkGuvPJKMmDAAFJRUUH23ntvMm/ePNfKUkIImTFjBgE0myMr/vKXv5CDDjqI9OzZ04gfzj77bLJmzRrXc+sEiRCGFy5TpFIpo5rltddeK/VwBAQEBAQEBEqAfffdF5IkYcWKFUX7jLJL1QHA2WefjSlTpqBfv37YuHEj7r//fnzxxRf+3T8FBAQEBAQEyhqNjY349NNPMX/+fLz//vtF77ZRloFTU1MTrrzySmzZsgWRSAR77703Xn75ZUyePLnUQxMQEBAQEBDoQHzwwQeYOHEievTogenTp+O4444r6ud1ilSdgICAgICAgEBHoKzsCAQEBAQEBAQESgkROAkICAgICAgIeIQInAQEBAQEBAQEPKIsxeF+oKoqNmzYgC5duhTUdExAQEBAQECgeCCEoKmpCf3797f1xCslOn3gtGHDBqPnl4CAgICAgEB5Yd26db66IRQbnT5woi0D1q1bZ7NzFxAQEBAQEAgmGhsbMWjQINfWP6VCpw+caHqupqZGBE4CAgICAgJlhqDJbIKTNBQQEBAQEBAQCDhE4CQgICAgICAg4BEicBIQEBAQEBAQ8IhOr3ESEBAQEBBwgqIoSKVSpR7GDotIJIJQKFTqYfiGCJwEBAQEBHYoEEKwceNG1NfXl3ooOzxqa2vRt2/fwAnAM0EETgICAgICOxRo0NS7d2/E4/Gyuml3FhBC0Nrais2bNwMA+vXrV+IReYcInAQEBAQEdhgoimIETT169Cj1cHZoVFZWAgA2b96M3r17l03aTojDBQQEBAR2GFBNUzweL/FIBADzeygnrZkInAQEBAQEdjiI9FwwUI7fgwicBAQEBAQEBAQ8QgROAgICAgICOxjWrFkDSZLw4YcflnooZQcROAkICAgICJQBzjzzTEiShPPOO8/2twsuuACSJOHMM8/s+IHtYBCBk4CAQCBACEFbUin1MAQEAo1BgwbhmWeeQVtbm/FYe3s7nn76aey0004lHNmOAxE4CQgIBALXz/8ce17/Gr7b0lzqoQgIBBZ77703dtppJ8ydO9d4bO7cuRg0aBD22msv47FXX30VP/nJT1BbW4sePXrg6KOPxqpVqzK+9+eff44jjzwS1dXV6NOnD0477TRs3bq1aMdSrhCBk4CAQCDwwdp6JNIqvtrYVOqhCOxAIISgNZkuyQ8hJKcxn3XWWXj00UeN3x955BFMmzaNe05LSwsuv/xyrFixAm+88QZkWcbxxx8PVVUd3/PHH3/E+PHjseeee2LlypV49dVXsWnTJpx00kk5jbEzQxhgCggIBAKKvqArOd5MBARyQVtKwR7XLSjJZ39+/VTEo/5vw6eddhquueYaQ+D9zjvv4JlnnsHixYuN5/z85z/nXvPwww+jd+/e+PzzzzFq1Cjbe953333Ye++9cfPNNxuPPfLIIxg0aBC+/vpr7Lrrrr7H2VkhAicBAYFAIK1oAZOiisBJQCATevbsiaOOOgqPP/44CCE46qij0LNnT+45q1atwrXXXovly5dj69atBtO0du1ax8Dp/fffx6JFi1BdXW3726pVq0TgxEAETgICAoFAStEWdlUwTgIdiMpICJ9fP7Vkn50rpk2bhosuuggA8Le//c3292OOOQaDBg3Cgw8+iP79+0NVVYwaNQrJZNLx/VRVxTHHHINbb73V9rdy6iPXERCBk4CAQCCQVinjVOKBCOxQkCQpp3RZqXH44YcbQdDUqXzgt23bNnzxxRd44IEH8NOf/hQA8Pbbb2d8v7333hvPPfcchgwZgnC4/M5HR0KIwwUEBAIBmqpTRapOQCArQqEQvvjiC3zxxRe25rjdunVDjx498I9//APffvst3nzzTVx++eUZ3+/CCy9EXV0dTj75ZLz33nv47rvv8Nprr2HatGlQFGETwkIETgICAoFAWojDBQR8oaamBjU1NbbHZVnGM888g/fffx+jRo3CZZddhj//+c8Z36t///545513oCgKpk6dilGjRuGSSy5B165dIcsiVGAh+DgBAYFAQIjDBQQy47HHHsv493nz5hn/nzx5Mj7//HPu76z9wZAhQ2x2CLvssgvnDyXgDBFGCggIBAJUHJ6rt42AgIBAR0AETgICAoGAogrGSUBAIPgQgZOAgEAgkKKBk4ibBAQEAgwROAkICAQCaerjJBgnAQGBAEMETgICAiWHqhLQeElU1QkICAQZInASEBAoOdIMyyQ0TgICAkGGCJwEBARKjjTTsV2k6gQEBIIMETgJCAiUHClGES5SdQICAkGGCJwEBARKjrQiGCcBAYHygAicBAQESg5W1yQYJwGB8sGQIUNw1113lXoYHQoROAkICJQcKU4cXsKBCAgEGGeeeSYkSbL9fPvtt6Ue2g4F0atOQECg5OBSdYJxEhBwxeGHH45HH32Ue6xXr14lGs2OCcE4CQgIlBycOFxonAQEXBGLxdC3b1/uJxQK4cUXX8Q+++yDiooKDBs2DDNnzkQ6nTZeJ0kSHnjgARx99NGIx+PYfffdsWzZMnz77beYMGECqqqqcOCBB2LVqlXGa1atWoVjjz0Wffr0QXV1Nfbbbz+8/vrrGcfX0NCAc845B71790ZNTQ0OPfRQfPTRR0U7H6WACJwEBARKDkX4OAmUCoQAyZbS/BSIXV2wYAFOPfVUXHzxxfj888/xwAMP4LHHHsNNN93EPe+GG27A6aefjg8//BAjRozAKaecgnPPPRfXXHMNVq5cCQC46KKLjOc3NzfjyCOPxOuvv47//e9/mDp1Ko455hisXbvW5VQSHHXUUdi4cSNefvllvP/++9h7770xadIk1NXVFeRYgwCRqhMQECg5UiJVJ1AqpFqBm/uX5rP/sAGIVvl6yfz581FdXW38fsQRR2DTpk34/e9/jzPOOAMAMGzYMNxwww246qqrMH36dOO5Z511Fk466SQAwNVXX40DDzwQ1157LaZOnQoAuOSSS3DWWWcZzx87dizGjh1r/H7jjTfi+eefxwsvvMAFWBSLFi3CJ598gs2bNyMWiwEAbr/9dsybNw///ve/cc455/g61qBCBE4CAgIlh3AOFxDwhokTJ+K+++4zfq+qqsLw4cOxYsUKjmFSFAXt7e1obW1FPB4HAIwZM8b4e58+fQAAo0eP5h5rb29HY2Mjampq0NLSgpkzZ2L+/PnYsGED0uk02traXBmn999/H83NzejRowf3eFtbG5cCLHeIwElAQKDkEOJwgZIhEteYn1J9tk/QQImFqqqYOXMmTjjhBNvzKyoqzI+LRIz/S5Lk+piqO/n/7ne/w4IFC3D77bdj+PDhqKysxIknnohkMuk4NlVV0a9fPyxevNj2t9raWm8HWAYQgZOAgEDJIRgngZJBknyny4KGvffeG1999ZUtoMoXb731Fs4880wcf/zxADTN05o1azKOY+PGjQiHwxgyZEhBxxIklFQcPmPGDJsfRd++fY2/E0IwY8YM9O/fH5WVlZgwYQI+++yzEo5YQECgGEgrwsdJQCBXXHfddZg9ezZmzJiBzz77DF988QXmzJmDP/3pT3m97/DhwzF37lx8+OGH+Oijj3DKKacYbJQTJk+ejAMPPBDHHXccFixYgDVr1mDp0qX405/+ZIjPOwNKXlU3cuRI/Pjjj8bPJ598Yvzttttuwx133IF7770XK1asQN++fTFlyhQ0NTWVcMQCAgKFRkoVqToBgVwxdepUzJ8/HwsXLsR+++2HAw44AHfccQcGDx6c1/veeeed6NatGw466CAcc8wxmDp1Kvbee2/X50uShJdffhmHHHIIpk2bhl133RW//OUvsWbNGkNT1RkgEVK6VWrGjBmYN28ePvzwQ9vfCCHo378/Lr30Ulx99dUAgEQigT59+uDWW2/Fueee6+kzGhsb0bVrVzQ0NKCmpqaQwxcQECgQFn6+Cb+Zre1Ifza2P/568l4lHpFAZ0V7eztWr16NoUOHcvofgdIg0/cR1Pt3yRmnb775Bv3798fQoUPxy1/+Et999x0AYPXq1di4cSMOO+ww47mxWAzjx4/H0qVLXd8vkUigsbGR+9nR8b+12/Hw26tF81SBwEJhGCfRq06go1HfmkRDq7PgWUDAipIGTuPGjcPs2bOxYMECPPjgg9i4cSMOOuggbNu2DRs3bgQAG73Xp08f429OmDVrFrp27Wr8DBo0qKjHUA6Y8cJnuGH+5/hofX2phyIg4AjWOVwE+AIdCVUlWLe9DWu3t4k0sYAnlDRwOuKII/Dzn/8co0ePxuTJk/HSSy8BAB5//HHjObQ8koIQYnuMxTXXXIOGhgbjZ926dcUZfBmhsV2z3W9OpLM8U0CgNEizjJMInAQ6ECohIMZPqUcjUA4oeaqORVVVFUaPHo1vvvnGqK6zskubN2/OKDKLxWKoqanhfnZ0JNPaTUnckASCCo5xEncvgQ4EyfCbgIATAhU4JRIJfPHFF+jXrx+GDh2Kvn37YuHChcbfk8kklixZgoMOOqiEoyw/0HYW4oYkEFSIXnUCHQ1aF8XWR4klsuNRwvq0nFHSwOnKK6/EkiVLsHr1arz77rs48cQT0djYiDPOOAOSJOHSSy/FzTffjOeffx6ffvopzjzzTMTjcZxyyimlHHbZwQichD+OQEDBOocr5beOCpQRqFN2a2srABEslRr0e2AdzIOOkjqHr1+/HieffDK2bt2KXr164YADDsDy5csN74mrrroKbW1tuOCCC7B9+3aMGzcOr732Grp06VLKYZcdaBpEVCsJBBVCHC7QUQiFQqitrcXmzZu13yMxkLRWUdfW3o5IKFCJmE4LQghaW1uxefNm1NbWIhQKlXpInlHSwOmZZ57J+HdJkjBjxgzMmDGjYwbUSZE0GCdxQxIIJoQ4XKAjQTW0mzdvRjKtYnNTAgAQaqlASHYvPhIoPGpra7mOIeUA0atuBwBNgwjGSSCo4HrViXkqUGRIkoR+/fqhd+/e+HjtNsx44QMAwNPnHIDeXYQpZkchEomUFdNEIQKnTg5FJaD3JLGTFwgq2F515SgWFShPhEIhpKUwfmhSAAByOCrcxAWyQiRzOzlSjOhW3I8EggpOHC4CfIEORCot1kgBfxCBUydHUtyQBMoAKS5VV8KBCOxwEGukgF+IwKmTg91NCe2IQFDB3rBEEYNAR4Kt6BRrpIAXiMCpk0OUeQuUA1Ji1y9QIvByBjH3BLJDBE6dHNwNSSwKAgFFWrRcESgR+KC9hAMRKBuIwKmTg83fC8ZJIKgQPk4CpUIyLeaegD+IwKmTg91NiTVBIKhIC52JQIkgGkwL+IUInDo5UmnRPFUg+EgLcbhAicBvLsXcE8gOETh1ciTFoiBQBhBaPIFSQRQmCPiFCJw6OcSiIFAO4MThQqAr0IEQm0sBvxCBUyeH2MkLlAO4XnUiwBfoQLByBjH1BLxABE6dHClRVSdQBuCq6kSAL9CBEKy8gF+IwKmTIyl2UwJlgLQwahUoEcTmUsAvRODUySF2UwLlAJFSFigVksKyRcAnRODUySFKbQXKAYrQOAmUCCJoF/ALETh1cnDGguKGJBBQpISPk0CJINLEAn4hAqdOjqTYTQmUAdJingqUCMKOQMAvRODUySGEjwLlAOHjJFAqpAQrL+ATInDq5BC96gTKAcKOQKBUSKUF4yTgDyJw6uQQuymBcoAwwBQoFfjK4xIORKBsIAKnTo6k2E0JlAHYVB0g0soCHYfOrHEinex4ggIROHVyCB8ngXJAyrLVF+k6gY5CZ7VsaUmkMf7Pi/H75z4u9VA6HcKlHoBAcdFZFwWBzgVrUK+oBJFQiQYjsEOhs8oZVm1pxtq6ViTSSqmH0ukgGKdOjs66KAh0LlgZJxHkC3QUOmsBDdUNWtPgAvlDBE6dHKKdgEA5IO3AOAkIdAQ4HWgnmnf0WKybEoH8IQKnTo5UJ10UBDoX7OLwEg1EYIdDZ225Qjcf1k2JQP4QgVMnR2ddFAQ6F9KqEIcLlAasnKEzpYjpNSQCp8JDBE6dHELjJBB0qCqxpZHFXBXoKHTW7gp0L5IWqbqCQwROnRyd2aNEoHMg5ZCXE3NVoKPQWS1bKOOkks4VEAYBInDq5OB3UyUciICAC5yqfkTgJNBRYMXhnakAjQ2WnDYnArlDBE6dHELjJBB0sBoMWdL+7Uw7f4Fgg5UzdCanbUW0MSoaRODUyZFKs13nxcUjEDywGoxoWFuSxAZZoKPQ2VN1AB8cCuQPETh1cqRE13mBgIMyTiFZQljWliQxVwU6AoQQvsF0J5p37EZZCMQLCxE4dXJ01t2UQOcBvXGFZUmk6gQ6FFYmphPFTVwQKCwJCgsROHVycKm6zrQqCHQa0N1wWJYQ0iMnMVcFOgK25tKdKMBgj0UEToWFCJw6OURVnUDQQXf94ZBsBE6d6QYmEFx05sCJ3XyIVF1hIQKnTo6kqKoTCDioa3gkJEGWROAk0HFIWgKKzlVVZ/5fiMMLi3CpByBQXHRWV1yBzgPq4xSWZehxk0jVCXQIrAFFZ9pcqsKOoGgQgVMnB9dypRMtCgKdB2xVHYVY6AU6AmwTdIBnacodvB1BJzqwAEAETp0c7MIgGCeBIILqLyIhyehZJxgngY6ANaDoTPNOiMOLB6Fx6uQQGieBoMNZHF7KEQnsKLBqnDrT5lKIw4sHETh1coiqOoGgQxE+TgIlQmfWOAnGqXgQqbpODEUlYK+XzkRDC3QeUHf7cEiCSoSPk0DHwZaq60QBBhc4iaq6gkIwTp0YndmjRKDzgK2qE3YEAh0Jqzi8M007dvOREumGgkIETp0Y1vx9Z6KhBToPWHG4oXESc1WgA9CZ18i0YJyKBhE4dWLYdlOdaTsl0Glg9qozxeFirgp0BKwap84073gfJ8E4FRIicOrE6MzCR4HOgzSjcRKpOoGOROe2IzD/L5zDCwsROHVi2IWPJRqIgEAGGHYEosmvQAfDrgMt0UCKAHajnBaLf0ERmMBp1qxZkCQJl156qfEYIQQzZsxA//79UVlZiQkTJuCzzz4r3SDLDDaPEnEzEggg0qyPkyR8nAQ6DkmbOLzzrJFsqk4wToVFIAKnFStW4B//+AfGjBnDPX7bbbfhjjvuwL333osVK1agb9++mDJlCpqamko00vKCVRAo0h8CQYTCNvnVVySRVhboCFj9jTrTGsleQ53puIKAkgdOzc3N+NWvfoUHH3wQ3bp1Mx4nhOCuu+7CH//4R5xwwgkYNWoUHn/8cbS2tuKpp54q4YjLB505fy/QeUB3wyEhDhfoYHTmNVLlquoEhVtIlDxwuvDCC3HUUUdh8uTJ3OOrV6/Gxo0bcdhhhxmPxWIxjB8/HkuXLu3oYWZEU3sK/1qxDttbkp6ev+Czjfj0hwbfn7NiTR3++/UWz8+3ldoW6Gb0/vd1WOJjHAICmUD1FxG5PMThhBD858Mf8O3m4jLf6+pa8dz7633f9Opbk5izYi2a2lNFGll++GxDA1799MdSDwNA/qm6L35sxMufBONYrFAKnKpLKSr+/f56rN/emvd7lTtKGjg988wz+OCDDzBr1izb3zZu3AgA6NOnD/d4nz59jL85IZFIoLGxkfspNuasWIernvsYD739Xdbnbqhvw7n/fB8XPfWBr88ghGDaYytw9uMr0JxIe3oNtSOQCtzG4uzHV+Lsx1agMaALs0B5wexVVx4+Tp9taMQlz3yIq5/7pKifc/38z3HFsx/hnVXbfL3uobdW4+rnPsETy9cWaWT54ZJnPsR5T3yAdXWlvwHbKo99rpGXzfkQFzz5Ab7b0lzIYRUEhRaH//frLbjy2Y9w88tf5P1e5Y6SBU7r1q3DJZdcgieeeAIVFRWuz5PoXV8HIcT2GItZs2aha9euxs+gQYMKNmY3bG/VmKZtzdkZJ/rcOo/sFIVKgKb2NFIKQavXwElfFGJh7WsuxL2IEIL61hTSKkFzu7dxCAhkgtGrjhGHBzlVR69drwxzrqjX1wr6r1fQNWZtAAITJ5jHVfqNF03V0VuK32lHz/X2AByLFVyqrgDX07aW3O5dnRElC5zef/99bN68Gfvssw/C4TDC4TCWLFmCv/71rwiHwwbTZGWXNm/ebGOhWFxzzTVoaGgwftatW1fU4wDMSZlIZ4/qqWDbL3XK7hi8XgR0UaiIhAAUZhcv+h8JFBo0FRWWJchlwDjRa9GaCi/852jnwO91RtNNW5oSBR9TIUCPKwjfsbFGhrU10m/ATr+bIKaWOcapQKk67d/gHWtHo2RNfidNmoRPPuGp7rPOOgsjRozA1VdfjWHDhqFv375YuHAh9tprLwBAMpnEkiVLcOutt7q+bywWQywWK+rYrVAUGjgpWZ9LF12rKDHrZ3AusN4mLl3YKeNUiIubDdpE/yOBQiDFOoeXAeOUMjY/xZ3/9Hr1e93Sm+SW5mAGTkqAgg1jjYzIaEspvoM5OgeC6JPETs9CiMOp9KPY874cULLAqUuXLhg1ahT3WFVVFXr06GE8fumll+Lmm2/GLrvsgl122QU333wz4vE4TjnllFIM2RUG45TKPqHooptWCVSVGDtsr58BeF9wrIxTISpGBOMkUGg49qoLwE3VDbmyxrl+jt80C735bw044xSECrZUWhuDxjilfKfq0jkGtx0BzsepAOOj890qqN8RUbLAyQuuuuoqtLW14YILLsD27dsxbtw4vPbaa+jSpUuph8ZB8ZGqUyyMTUwOefsMZpH2narTaehCM05B3GUJlB+MXnUhNlVXyhFlhsEaF/kGYjJO/j6H3jC3NCeyakJLgVyZtGLA3FxqrLzvVF2O6dSOQKF9nJKKYJwoAhU4LV68mPtdkiTMmDEDM2bMKMl4vMLUOGVP1bGTLqUQxDx+A7lcBMZuii4KJLu4Pus4BOMkUGCkWR8nKtINwE3VDXS8xdc40TSQX8ZJ+zeZVtHYnkbXykihh5YX6HEF4TtOGXKG3DaXaSW376gjwDuHFyBVJzROBkru49QZQHeEfsThgL8da34aJ5PVypcd50XqYuchkD84H6cyEocHVePEMlRBE4irKjHSYUH4jpMWxsnPmLhjCeBaWDxxePCOtaPhm3FKJBJ47733sGbNGrS2tqJXr17Ya6+9MHTo0GKMryzgR+PEBht+JmA+GqdYxIyPFUIgozCMk9h5CBQCpo8TIw4PwE3VDXS8KtGuh5BHnaJfGGkg34GT+fwtTQkM711d0HHlg6C1ATEsW3QdKPEx71I5VDp3JLjsQAECu44qiigHeA6cli5dinvuuQfz5s1DMplEbW0tKisrUVdXh0QigWHDhuGcc87BeeedFzgNUrGh+EjVsReYH6qf1zh5e51VHA5oY414k1U5gt25BGHhEyh/0HnEisODkMZxg2JJgYQ86hRz/Rz/jJP5/60Bq6xjjyUIwTFl/XOpPA66bEEtMONEReFCHO4xVXfsscfixBNPxIABA7BgwQI0NTVh27ZtWL9+PVpbW/HNN9/gT3/6E9544w3suuuuWLhwYbHHHSjQYMjLhOJSdT4mMxsseWecqMbJXNjzXaysNw0BgXxB51GITdUFeGqx876YOqdchcdBTtXxzHkJB6LD7nXn57X+C3Y6EjzjVMhUXfCOtaPhiXE67LDD8OyzzyIajTr+fdiwYRg2bBjOOOMMfPbZZ9iwYUNBBxl0mD5OXuwIckvV5aRxStOqOiZVl+cFlA74Lkug/JB2SNUFQf/iBs7LrIi771yr6tjLMmheTkrAGOukJXDyk6pjvZECqXFihlRYcXjwjrWj4SlwuvDCCz2/4ciRIzFy5MicB1SO8OUczqbq/IjDc6mqc0jV5btWFTpvLiDAisPLIVWX5jY/xRtnrhVb7LkLHuNknrtApOryMAlOF5jRKTQKnapjPQiDaHPRkfBdVbdu3TqsX7/e+P29997DpZdein/84x8FHVg5wayq86dx8iUOz8PHKcYwTvnekHJp/SIgkAmmj5NsNqQOwE3VDblew36Rs3N4gFN1uTDnxYS1n2fOgVMA2fdCB3bJDtowlAN8B06nnHIKFi1aBEDrIzdlyhS89957+MMf/oDrr7++4AMsB9BJmVJI1guP3a36mczcguPxpmJWjPBVdfkg6IJIgfKDkaqTpbJoucLO+w7ROPlmnMz/B00czh5LkBgnM1Xn/bW5ruUdBb7Jb+FargAiXec7cPr000+x//77AwD+9a9/YdSoUVi6dCmeeuopPPbYY4UeX1mADSaypd9y9XHiRJUeAxY6uaOhEOQCGQt21G5bYMcBnUfhMmm5wpWhF3HzkHNVHXP3DzLjFISNl1lA49/HKcXptYK3Fhb6XIu134TvwCmVShlNdF9//XX87Gc/AwCMGDECP/74Y2FHVyZgJ1S2dB276PqyI8iBdqWTOxJmbkiFZJwCfHMTKB8YqTpZLg8DTKX4NxBCCMM45d4QfFtLMlBBaDoH5ryYsDqH+9lYBl22wJ7fQorDgeK75gcdvgOnkSNH4v7778dbb72FhQsX4vDDDwcAbNiwAT169Cj4AMsBChc4ZZ5QSgnsCKIhGbJUmJ18LlorAYFMoPMoEiqXVF3xbyDs4fv3ceJ1RNtbk4UaVt5gmZkgfMfWXnV+gjluLQwAe2aFapkH+SLJpeqCd7wdCd+B06233ooHHngAEyZMwMknn4yxY8cCAF544QUjhbejgWOcsriHp3KkO9lNp9eLmy7qESZwyneTx9O/O/auQ6AwoPMoVDYtV4pvR5DOIx1ovUkGSecUOMaJWrboGic/uqugV9VxjFMBfZyA4je4Djp8t1yZMGECtm7disbGRnTr1s14/JxzzkE8Hi/o4MoF7C4qW6qOL2X2o3Hy7xlCJ3ckJBdMO5LPgi4g4AQ6jyKsj1OA1+VcTWz9IJ/qM+vNf0tTAiP6FmRYeYM9d0FgnJKWqjo/WdGg+zipBd7kpjogRV0u8M04zZgxA+vXr+eCJgAYMmQIevfuXbCBlRPYxSBbqi5nH6cchH6GxikkGeLwQmqcUgFcLATKD3QehWUJIX1FCsJN1Q3svC/WDSSXKloKNvUJBEsgrubgR1dM2JzDfYwp8M7hRWryCwiNk+/A6cUXX8TOO++MSZMm4amnnkJ7e3sxxlVW8KNxyr3liv8y3hS7ky+QsSC3oAvGSaAAoHMqHCqTVF0H2BHkU4RBr/HeXSoABCtw4lN1JRyIDps43FeqLtjsOzs1C2FHIHycTPgOnN5//3188MEHGDNmDC677DL069cP559/PlasWFGM8ZUF+MApS6oux91qLgspq3EqRlVdIfLmAgKmj5NcFuLwjujXmIv9iPF8/Rrv21ULnIKkceKa/AbgO7aKw3PVOAWBPbNCzSP4dkKu7cI6I3wHTgAwZswY3Hnnnfjhhx/wyCOP4IcffsDBBx+M0aNH4+6770ZDQ0OhxxlosMFINsYp1zxxLhcpn6orlMZJiMMFCgtHH6cAM04dcQPJh3GigWjfmgAyTqz3UYm/Y0II4xzuP1XHVxgHby0seKouXfyiiHJBToEThaqqSCaTSCQSIISge/fuuO+++zBo0CDMmTOnUGMMPDiNU5aqulxLmXmhn8/AKVykqroA7rIEyg+mJqdwthnFBF9VV5xx8hslfzcpypr0oYFTQBmnUn/H7CbWZJy8v54XhwdvvqoFZkaFxslEToHT+++/j4suugj9+vXDZZddhr322gtffPEFlixZgi+//BLTp0/HxRdfXOixBhZ+UnVKjotuThon/f2jBa2qK+wuRkCAtSMwtHhlwjgVTeOUh/CYXuN9u2pGxYFinALk48R+j4YdgR9xeMDXwlwaw2eC0DiZ8B04jRkzBgcccABWr16Nhx9+GOvWrcMtt9yC4cOHG885/fTTsWXLloIONMjgncOL4+Ok5OBSm2I0TrL+TeevcWLHsWPvOgQKA4NxYp3DA7iDp+gYjVPubIZqaJwqAQQrcMqnWrDQYL87o8mvjzHlsiZ3JAo9T4XGyYRvH6df/OIXmDZtGgYMGOD6nF69ekHdgW6qvI+T91RdsTVOSUbjVCjRLd+vKHiLhUD5wRCHM/M0yOtyR7RcyUvjRBknPVW3vTWFlKIiEspLmVEQcMx5iYMNuj7KEoxz05nsCAovDi/+vC8X+A6crr322mKMo6zBO4dn6VWXYylzLtoAnnEqzE5eOIcLFBqGj1OI8XEKcqpOLX7KIp+KLfr87lVRhGQJikqwrTlpVNmVEsFinGjAbkoZ/AyJE7oHkCgopDhcUYmFwQru9dkR8B04AcD69evxwgsvYO3atUgm+T5Id9xxR0EGVk7w1asuRzuCXHrEGb3qwowjc56LFb9Y7NgXj0D+UFVi3KzCcpmIw9nNT5Gqiwrh4xQJSehZHcWmxgS2NCUCETjxAWEJBwKzMozr5Sl8nBxhvVcJxskn3njjDfzsZz/D0KFD8dVXX2HUqFFYs2YNCCHYe++9izHGwMOPxinXihzecdd/y5ViVNUF0sepeQvwz+OBvX4FHHB+qUfjGX98/hOs2daC2dPGGbvfHQEse8PaEQSZceLT1R3g4+TzpkdfG5Il9OoS0wKn5nYAXQs5xJzANfktOePE2LVQDWjOdgTBm6/s+VWJFlDLOa4tInDi4Tvpfc011+CKK67Ap59+ioqKCjz33HNYt24dxo8fj1/84hfFGGPg4aeqjhPY+VgQc2komeQWhh3Ex2ndu8CmT4BPni31SHzh2ZXr8c632/DD9rZSD6VDwd58InLhqj+LiVx1in6g5MFm0BtmSJZQUxEBADS1pws3uDwQJMaaMwiWzICCeAzo0mUkDgfya5FlTc0Vi2ktF/gOnL744gucccYZAIBwOIy2tjZUV1fj+uuvx6233lrwAQYdhPC53+w+TrnliXNx3KUXs2ZHoL9PAavqApnnVtP8v2UAVSXGIr6j+aOw10O4gEatxURHFEjkE2DQ54ckCeEcRM/FRJB8nLjm0gwT411DGmyNk/U+kU860bpJDuTa34HwHThVVVUhkdDKW/v3749Vq1YZf9u6dWvhRlYmsF5k2W58fKqueBonVszH7qgKWVUXxMXCDJwyM39BQnIHLvNld+3hMvRx6pAmvz6uWUKIYeIYkiWE9fMZFEYkFz+6YoF+d9GwDIlhnLxuLrk1OYCBhPU48pkD1vvajrZOWeFb43TAAQfgnXfewR577IGjjjoKV1xxBT755BPMnTsXBxxwQDHGGGhYJ2NWxinnXnX+fF3Y946Ei1RVF5DFmAMNmJRUacfhA+yc2dEWJFaPI0nlwTh1dK86P9cZOzbWUDQo5zNIjBNn1yKzqTpvrw+6j5N1TPlIK6wM0462TlnhO3C644470NzcDACYMWMGmpubMWfOHAwfPhx33nlnwQcYdFgv/qxNfnO0I/BbnswFTkwKJN9dXkcIY/MC0c9/GaXq2DkTyHNaRBh96vQbl9mrrmRDyopUjul2P8g1wGBZBlkwThmRYlN1Ug6puoBvIm2pujzGaF2XdjRJgRW+A6dhw4YZ/4/H4/j73/9e0AGVG2yMU9YmvzkyTj7t81NW0a0ROHn+SOdxBLzNgJmqKyPGiZkzySL1PgsqWJ0JANPHKYA3IgqWNS7WDYRnnPz0tDT/z6Y+lYDc6Pwy58UEW3XMxE0+UnXssQTj/LKwHkc+mzKrGLxYPRrLBaW3ki1z2BmnbD5OOYrDfWqc2J28LOdWbuuEoJfglqPGiZ0zOxrjxKbqAJRFqo4r8Ciaj1NuAQYbZMlSsBmnUo/J0DhZxOFeg/ZUgDVOhBBbyjGfa0rYEfDwxDh169aNE89lQl1dXV4DKjdYd4N+nMOL2XIlyeymABRMdBv4XnWqSNWVE+gcioT4VF2p0ziZkKtO0d9n5BZgsJekpnEKWFUds/6VmlU0NE5hiUvVeR1WkPWeTt93PmlloXHi4Slwuuuuu4z/b9u2DTfeeCOmTp2KAw88EACwbNkyLFiwYIdsx+KXceJofh+7Vb+aB9bcDSjcTj5dLqm6chKH78iME217od/gQwXS4hUTuVqK+AF3vfthppnzFpLMFjZBubFzG8ASD4nVOHGpOs92L8FJO1rBzoNoWEYyrea10RUaJx6eAifq2wQAP//5z3H99dfjoosuMh67+OKLce+99+L111/HZZddVvhRBhjW4CF7k9+OYZzYdisAClZd0xEVRXmhHFN1XFVdsBbgYsNIKdMAP2BVYFYQQrhrsWgapxxT4vTmKEnauQwc45SDH12xwPby1Co6dYdtj0E73+Q3WGshO5wYDZzyWFvsdgTBmE+lgm+N04IFC3D44YfbHp86dSpef/31ggyqnOC7qi5XjZPPFJmpcdK+4kK1XMmn+WiHwEjVlRPjtOOm6ugcslbVBXFqAfYgJmg+TnRpoMxdkDVOpV4/WI0T4D9NzInDAxZIsIxTTN8851VVZxOH71jrlBW+A6cePXrg+eeftz0+b9489OjRoyCDKif49nHKtapOdf6/G9j8PYCcmlg6j6P4aYq8UIbO4Ttyqo7tUA8EXxxua2MRsKo6en3LVnuHgDAinOi9xOlYUweam5yB2wQHbL6yxxALhwAIH6dCwrcdwcyZM3H22Wdj8eLFhsZp+fLlePXVV/HQQw8VfIBBh1+NUyrHVBdfZeOBcbKJw+lrC6hxCshizKEsxeFseXuwFuBig84hm49TwG5EFLbqoiKVZSuWBq2EEE8FOqqFwQsa48SevtKn6kyNE2AGTl6XtSD13bNC5QIn7fjyE4db5n3Ajrej4TtwOvPMM7H77rvjr3/9K+bOnQtCCPbYYw+88847GDduXDHGGGhYg4dkVgPM3MThfqtsDI1TMavqgniTpwETUbUVUA6+4wZbibmjUeA2H6eAi8Otc75oqTrL+yoqMXRgmWDYO+jnMRSiPk7BOJ9BYpxMfV2OqTpuLQzWdWsVhwP5bXRtGqcdbJ2ywnfgBADjxo3Dk08+aXu8ra0NlZWVeQ+qnOCHcVJVwmk3cm3y66+qrrApkCCX4ALgmSY1DcjR0o3FI3bkVJ3Nx6lAzGixYO0w3xEGmPR3PeOSEfS8yQFlnIKpcaKpOu1xrwFdqgwYJ1ky7wGFdA7f0dYpK3xvxy+88ELHx1taWnDEEUfkPaByA52MVVFtVUukVRCXCy8fYalvHyeLHUExquqCtssCYAmcykMgvkMHTi7zNKiMU0dpnKyf4/W6pectZKQ+A1xVV2qNk3VzSeeex3PF6T0Dcn4pFGYe0LmQT4aAMkz0PrejrVNW+A6cXnvtNfzpT3/iHmtubsbhhx8ORSmfEvBCgV48lVGTvHPbhVqp0rRKXIMst8+x/t8NboxTIavqgrZYANBSdBRlonNiq+p2NI0TnUNWH6eg3OitsKfqijNOJ8bJ0+sUPnASjJM7qD4tErbMPc+MU4B9nAzGSTI2JYUQh9P73I62TlnhO1X32muv4Sc/+Ql69OiByy67DE1NTZg6dSrC4TBeeeWVYowx0KALVTxq8uiJtGpUMrBwWmRTCkE0nF274DdFZtDQYUuqroBVdcFnnMojkE8KxqlsfJzs4vCAMk6SlWkOxrzifZxKOBA4bC4Nxsnb661BoFcBf0fAsKWQJWNTks9Gl5IBccE4AcghcBo6dCgWLFiACRMmQJZlPPPMM4jFYnjppZdQVVVVjDEGGnShqowwgVNKBSrsz3W2wVeN4CYT/FLc1oqRglXVsS0TiEZr0wUnEGADpzJxD+dSdTuY6DJtME58SXhA4yZ7ur1Id3874+Ttc+j1XRaMU4lTdfScWjVOufg4Ad4F/B0BhQmg6ZjyCZ5TInDikFPJ0ahRozB//nz88Y9/RDwexyuvvLJDBk0As/CHJKPs080E04mh8ToB0z6r2awtV0I+8/dusAZeQVmQDVjF4WUA3jl8x1qQ0hYfJ5Gq02C9yfn1FgrJhb3uC4VcmxcXA8m0ZXOZh4+T0++lBFskQIPnfOYqnfdVMY1r2dE2eFZ4Ypz22msvRwoyFothw4YNOPjgg43HPvjgg8KNrgygMD40sbCMRFp1rayjVGk0LCOtqFCJ96oc3xoni49ToVJ1dp2Wimhu8XdxUJbi8B1X42Rt8mtU1QVUHE7HWxkJoS2lQFEJFJUYAUrhPsdyU/Y4L6zi8MAxThxjHYyqOluqzjPjFNzAiZ0HdFOSlzjcwjjtaOuUFZ4Cp+OOO67IwyhfsGLMWCQEtKdd3cONCiJZggQtyPK6C/BrPOnq41Rgxilw7uGsrqlMNE47clWd4RwuF3aeFgspRtPYpvtvpRQVIdmDV4APWH2XvLIgpihY+z0UCm5VXanHZARO4dx8nKxp2qB4ZQEu4vAC+DhV6eLwHW2dssJT4DR9+vRij6NsYfbakrOn6oy0ngxZIlrg5JHy5DVO2Z9vK7UtkHbEuqsq9eJnAxc4lUmqbgcOnBSrc3iBmNFigW5+KqMhoEV7LKWoqIgUNnDKNQ2kqnwgGjjGKYCBU9TWcsXb6+2MU3CuXVPrZs6FgjBOMaFxAnLUONXX1+Ohhx7CNddcg7q6OgBaiu6HH34o6ODKAaymwAyc3BgnUwhLBXteJ6Dim3Giu6ni9aoDAlhZV47i8NSO2+TX7FXHV9URAs9WHR0JOv/ZQKkYrGuuVXV0PbL3qgvGuQyWjxOvcfIrDs/1O+oIsNWVZvCchzhc14MJxkmD76q6jz/+GJMnT0bXrl2xZs0a/OY3v0H37t3x/PPP4/vvv8fs2bOLMc7AwmCcQpJhQeDWSsW0+JdAiDaZc9I4+RKH81V1+aZA7FVFwVksAJSnOJztVVek3mdBhZs4HAhWlRKFoVMMyQjJEhSVFOUmknNVnaFt0X4PHuMUHHG4vZ+nvzRxkPu3sQG0uUkvJOMULPuFjoZvxunyyy/HmWeeiW+++QYVFWbN/RFHHIH//ve/BR1cOYBjnCJZGCeGRqcXay4aJy+skVXjVCh/nOAzTuWYqttxGSdDHC7zjBMQzHQd63ROtSN+ek56Ra5VdfSmXxY+TiX+el3bUnnuVWdhnAKkcVKZ+1IhxOFWjRMQQH1rB8J34LRixQqce+65tscHDBiAjRs3+nqv++67D2PGjEFNTQ1qampw4IEHciaahBDMmDED/fv3R2VlJSZMmIDPPvvM75CLCmtVHeCucVKYCqKo0bG6OFV1SetuqmhVdQG7eMqccQqSTqIjYG48+F0/UHqDRCekGIbM3Px0BOPk72ZuVtXlf9MsJAKpcbLKGXJknIJ07SpMAB0pQPBsrapjH9sR4TtwqqioQGNjo+3xr776Cr169fL1XgMHDsQtt9yClStXYuXKlTj00ENx7LHHGsHRbbfdhjvuuAP33nsvVqxYgb59+2LKlCloamryO+yigdc46f3qXKrqUkwFHt2tehWHcz5OPpzDbeLwfBknqyAyIAuygXIMnFgfpx0uVWfxG5OCzTixBpNRn6xxLp/j9rsbVEvgFGSNU6nHZNU4hRh9nRcEWeNErx1ZloxNST6pRDrHqY+T9pgInDzj2GOPxfXXX49UShPeSpKEtWvX4ve//z1+/vOf+3qvY445BkceeSR23XVX7LrrrrjppptQXV2N5cuXgxCCu+66C3/84x9xwgknYNSoUXj88cfR2tqKp556yu+wiwa2qi7qURweYXarnjVObCduPxqnMJ8CKXRVXeAuHsKwfWUiDmfngNf50FlgF4ebfwvSjYiC9Z3qUMbJY3Bm3DCl4Ps4lfr7tW8utcc9C/E7yAw1FxgtVwrWq057bUVEBt3bBOl4Oxq+A6fbb78dW7ZsQe/evdHW1obx48dj+PDh6NKlC2666aacB6IoCp555hm0tLTgwAMPxOrVq7Fx40YcdthhxnNisRjGjx+PpUuX5vw5XrGhvg1LV23N+jzOxylLqo76foS5RVd7fXtKwZtfbkJr0pklYXffrjvxdAL4egGQaLb7OGVK1RECfPsG0LzF9TiNz/aZQmhsT+HNLzd1XIBVlj5O2TVOybSKN7/chKZ2b8Hgh+vq8e3m5oKMr5hIG6luuzg8iF5OrO8U3ZQUI9hVFIIeaMBP5Y8hQeWuu09/aMDXm5xZd7ZYBQBCoQAzToExwLT0SfTp4xQuEqv33uo6rKtrzem1LONUCHE4lX5EQ6HMG4b6dcCat3P+nHKB78CppqYGb7/9Np577jnccsstuOiii/Dyyy9jyZIlObVd+eSTT1BdXY1YLIbzzjsPzz//PPbYYw9DL9WnTx/u+X369MmopUokEmhsbOR+csHFT/8Ppzz4Lr5xWaAoTMaJSdW5ME6KEWTJDM2vPXfOinWY9thKPLDku4yfA2QIVj6YDTx1EvDO3cZibvjjZKqq+34p8MQJwPxLXY7ShN3HKfNN4y8LvsK0x1bixY82ZH3vgqAcncM9tFyZ9+EPmPbYStz9+jdZ3297SxIn3b8Mpz/8bsHGWCyw1w/Aa5xKfWN1Qpq5rowbSBHE4WmV4PrIo/hn9BYcIH9hBJhtSQW/uH8Z/u+BZY52DazxIR0nfb8ggJUclDowtlXVSTRVl31cWlNf7f+0T2khNU7r6lpx0gPLcMGTuXXiMFO25qYkn8CODTKt9y4O/54GPHYUsPXbnD+rHODbjoDi0EMPxUEHHYRYLJZXSeJuu+2GDz/8EPX19XjuuedwxhlnYMmSJcbfre+drQRy1qxZmDlzZs7jodhQ36b929COXfp0cX0eq3GiDrSuzuFMBRHdrdLJ94P+eZub2jN+DpDhAmjUg5OmDUaQFvZSVdf0I//6DGBvdGmVZN3F/FCvHc93W1qyvndBUI4aJ84A0/l8mvOxLev7rdveiqSiYnNTojADLCJSlnkqSRIkSSNBS31jdQLbm7K4GicVAySN8e6N7cZ119ieQltKQVtKQUohhrDZfJ1F42QInoORAg4S45Q0xOHWNTL7a9kgKRYJoSmRLijjtLFRWzc3NTrfD7KBFYcXxMeJykzCsqnPdTpRTTqp0bwJ6Dk8588LOnwzTqqq4oYbbsCAAQNQXV2N1atXAwCuvfZaPPzww74HEI1GMXz4cOy7776YNWsWxo4di7vvvht9+/YFABu7tHnzZhsLxeKaa65BQ0OD8bNu3TrfYwKAlqSWPmlNZL75Kkz6LWuqjtFzGBon/abZon+O2yKsWLQBjrsiJan/m2JSIB4cmWlKi74+A+j7UgPAbNoLmnrc0lE38bIMnJhedS7sRas+H1sS2dOP9Fyn3eZJgGBNlwDBdg83GKcOqKqrgvY9RqW0EbAls1RgUuNDK4MXHMYpOBona+WxoXHyMO/YdS8WLnwATceW69ziU3X5j8+4ThkrHUfPOcryl8namyt8B0433ngjHnvsMdx2222IRqPG46NHj8ZDDz2U94AIIUgkEhg6dCj69u2LhQsXGn9LJpNYsmQJDjroINfXx2Ixw96A/uQCesOnAZQbHKvqXH2czAvVqnGiN0Y3AZ914XNcc9L67iSdsJUlZ6yqo5M9nX13Yzon00qNzBc2PX9bmksQOCnBv3gJIZ5artDA2k0Dx4INUkt9c8oGtmCColCeY8UAva4iTGVsUTROKkFc0q7HCBTjXLDzw+lGaBgf0lRdgDVOpWYUDcbJVlXnL3Cia2EhzzHdTOUa7KhMZqAQ4vAks8HJuGFQdozAyXeqbvbs2fjHP/6BSZMm4bzzzjMeHzNmDL788ktf7/WHP/wBRxxxBAYNGoSmpiY888wzWLx4MV599VVIkoRLL70UN998M3bZZRfssssuuPnmmxGPx3HKKaf4HbYvJJnmu9luVL561TFCcnqx0mAqK+Pk4CRsayxKAx8lZTzf3vnb4c3pJE9nD27owkyDxGwVfpSx29phgRNzMZfBxas58LK/5884sec6rRKEC9tGraBg3fQpQkaQX5IhZUSK0SkWn3GigZPJOKUszLMVdjuCAPs4lVwcrhfQ0FSdDx8ndsNI18JCapyo3CPXoJytriyEzo1tiJwxVUfX3DIpzMkVvgOnH374AcOH23OXqqoaFgVesWnTJpx22mn48ccf0bVrV4wZMwavvvoqpkyZAgC46qqr0NbWhgsuuADbt2/HuHHj8Nprr6FLF3fNUSHABkvZblROzuFu6RbeOZx3HaY3RrdF2LrIOF7cNPBRElyQBgChTDS04o1xUhlBJD3WbIsFPa7SpOqCLw63BtlugXOujFNQUjRuMBkck3EyvIcCmKrLx8TWD1SVIM4ETvRz2c9yYhAMcbhhgBksxknlGKfSjUNRiXFOjO4KPgInxYHRKSzjpJ2cXFkiVusWKoBzOPWXi2az0jECp+BvWvOB78Bp5MiReOuttzB48GDu8WeffRZ77bWXr/fKpomSJAkzZszAjBkz/A4zL7DpOe+Mk4dUnSPdSfTPpIyT/bWEENtF6Rw4sak6a1VdplSdN8aJvQlXhM2eRZlAj2trcwKqSriWGkVBmWmcrHPFbYdpME5ZUscAnxYNXEscC5wYJ79+Oh0JJ51iUfxslCSikvZda6k6+vlMqs7h/KSZ9QgIuMaphIExu7mlAbCxRnpqaaUarymEhsgKuqFSiXYdhHyum0aTX9l0Ds+HEcskM+EgUnXOmD59Ok477TT88MMPUFUVc+fOxVdffYXZs2dj/vz5xRhjh4MVhGdlnJx8nLI4h4dDslGBRy/ANqpxcljgnG4gmRmnlF3jlGnnaQROmRkn9rUVPhmnlELQ0JZCt6poxufnDS5wCj5dbA2cUorqWDlKA/hsxQpAmTFOlqo6wN8NrKPB+k5lTFnkibBiVk/yjBMTeDjcuIwbpmRlnIIRQAfFOZzdoNi6K3gYFqvNK4Y7u1X3aJNlZAE9PFlietXlMT5TSG9WjzvacAhxuDOOOeYYzJkzBy+//DIkScJ1112HL774Ai+++KKRYit3tDK7+raUx6o6T73qzN2g1QsjE+PkNOEdLwJD45SwaZwM3UimVJ2SzMifsztEL1V1KUXldnYdIhBng6UycA5PpPi5QojzAkznZGtKySpe3dpsVkcGRdviBqNfGKtxCnLgpJjXcDF9nCIqEzhJrMaJZZycUnXav3JgGSd+zKUSiLPrkmGA6YPpTDPV1IUo97eC3XznonPimvzS8eVVVWfeT6JuGwZVBYj+WBlsWvOBZ8bpT3/6k+HdNHXqVEydOrWY4yopWnLSOMmIRTKn6linWWtFTmvCvYoikwiUHwzDOFk0Thl3U1ywkQDkSsfxsztcGiRmWpBbLWmlrU0J7JrBE6sgKNNUXVU0ZKThUopd0E3nJCFAe0pFZdR9B8ozTsFgGtyQMjYTTFWdz2arHQnTx0kuqo9TVDEdozXGSfuMJKdxcmec6M2yEOaHhYRNckAIZBQ5fe8AM2CXDXbXT8DO6lWLwzgx3QRyCMw5cXgBmFGzIXIGjVOZrb35wDPj9PTTT2Py5Mmora3F+PHjMXPmTLz11ltIJrN7/5QbWhM5aJwYQ7xsveo4D5g0r3Fy0qT4ZpzSCY7dArKl6hhmJkO6jr0Jm4yT+8VoPXcdwjixverKQBxOd75s80ynHSY7J1syzMm2pIJmJp0XdMYp7aBxMvV4JRlSRjjpFIthRxBlGKco0sb3mMpiXUGfZzBOoaAxTh60mh0Ao4VI2G6D4YUFc2IeC3mteTHFzQRTHG4Gz7nOAVUlZhFHJo0Tu96KwEnDqlWrsG7dOjz44IMYPnw4Zs+ejfHjx6Nbt26YPHkybrrppg7pIdcRyIVxkiWzqs7djsDZC0NRCdqN8tPM7BJlerJV1VF2yyxL1t/L0QCTmeQZBOJspYYXQaT13HVIZV2ZapyydR1n52RrhjlptX0Iyg3TDY4+TgE2wGQZMqv7fyERU60aJ5qqy6wRUlw1TqU/l2xVrvFYib5jq2s4wBqvZn89W9RQjHSoF2+3TODE4XkGz2xKOKOPkyICJ0cMGDAAp512Gh5++GGsWrUK33//Pe677z7stNNOuO2223DIIYcUa5wditacq+qytVyxT+aUonKfkYlxkiQw/k+ZNE4phgnzUGqreGWc7JUamRZkG+PUIYETyzgF/+KlQXYsbO9fSMEG1kBmxsnaZiX4qTq++hNAUVIfhQLLkNGdfDECp6hFHO6kcXJ0Drf5OJnnstQu8l4LXzoCrNiZgk5BT4wTw8AUQ4DPah9zYTTZnoVGYJfjPGWD9UhINtr82DVOzNpLgr9pzQc596pbtWoVFi9ejDfffBOLFy+GoiiYOHFiIcdWMrSwVXUFdQ63051JReUCtUyLS1iWMqfcKFuUTiDt0nohY1UdAKTdU6/sOOj7ZXIOtzFOHSIOZ53Dg5+qo0F2LBJCJCQhqdgpf2sAmimYtwanwU/VlVtVHVPgUYRWGxQxizic3pTZm2gm53B6DtmAVCWmn1sp4KzVLMFA4Mw4yT7mHZuqCyLjpHCb9PxSiSlOSO81VScCJwDA6tWrsWjRIixatAiLFy9GQ0MDDj74YIwfPx4XXXQR9ttvP4TDOcdhgQLHOGUp/zas7T31qmPF4ebkYz/PyTwzzaTdMlLvjDhcgZs4PFvg5I1xCnu4GEvDOJWXQJEukLGwrJ9TxbbDtIrsM6WPrcFp0FN1rEiXIsg+TrxOkTexLSSixLwOo26MUyY7AsuGCXDpNtCBcGLISpWOTRmMk1OqzntVXSECEyewcyrl1BMuC1hbirCHTW4msJ5VIVmk6gAfgdPOO++MnXbaCRdccAEuvvhi7L333giFAtzLIQ9wGqesjJM5qSoMjZMHcTjjhcEyXI6Li2peBObuxuEzWOdwiRfdZqyq41J1mTRO9qrAzOJw7dzRbvcicLKDTdW5LUjWwCkT47TVxjgFPFXHGEpSZDRrLTFMI8AsPbvyRAVhU3VMr7osTX7ZFA3AVyuWOhD17EfXAbD2qQOy9PO0wMnHqViMUy6pOkN7y2xycz3XbJ867V8XGw4hDrfjF7/4BRKJBGbNmoUbbrgBd911Fz744IOS582LgTbWxylL4OToHJ5F46T5OLEaJ6b0NAv9nrHiyNA4JU0thu9UnRfGSfZUqUFv8P1qKgB0QL86QkwfEaAsLl6TcQqZc8Kyw2xJWFN1nYdxYgMRikCLwxmbj44LnJx71TkxHNZqWp5xCo7GqdTpWPqdxRxSdV6+zhSndSuCxom1I8jHx0nK38cpZSngcPdxKi99aT7wHDjNmTMHP/74I5YtW4YjjjgC7733Ho488kh069YNRx99NP785z9jxYoVxRxrh4FNhSQtJo5WcD5O4czlyaywlNU4sQyX00VipgNld8ZJSXOCPEmfuDTAKURVHZvXD3uo1KDncacecQDAtpZkcRkQa169DC5eKgKNRUwWMmuqLlPgVK4aJ6dedQEM+gxjWbm4Pk4VTKrO1ccpE+PkoHHK1pC72OA0kiX26ko6peoyrZEWsPMgmBon7V9Zzt/HyZpON+9dluNVdhyNk2/n8BEjRuD888/HnDlzsHHjRixduhR77rknbrzxRhx44IHFGGOHw5oKycQ6OTFOikoyVsdFLJ3V2fJypxsdpy1yu6lYmCJZTRqvAbJU1XlknBSHcWS6GOl5HNQtDllP19W1FtH3yxoolYM4nNE4uTEY1iq6TLo7W+AU9Kq6TD5OgWSc2M0Pb2JbSFQyjFNUYnycsojDrXYEsiyBdu8JCuPEMuelCpwSTj5OmXSgFqSYYymKj1Mqz8DJ0LqZgU6u3z8NMuk1am0XZmAHStXlpObetGkTFi9ejMWLF2PRokX4+uuvEYvF8NOf/rTQ4ysJrDv6lmQaXeMRx+dyveoi5kWYSKtcpRBgXXTN3Wo2xsmpms12EViYIi1wihqTPeNC5dOOIBzyJg6n57FLRQTdq2LY2pzAlqYEenepcH1NXrBerGWw62FTda4ap4R3xommQ2VJ07MFnnFiKk0pzCC/JEPKCDedYqFRaWOcVO7zgcwdBdhANCxLSCn2RuEdDYVZK/0EKcWANf0E+HOsZ7MHxWGc2IKhHMThjqm6/Bgneq4ibpvmMtOX5gPPgdOzzz5rVNR99dVXCIfD2H///XHSSSdh4sSJOOiggxCLxYo51g6DdUefSYzr1H8O0G6IVbEMzw2bk7mVE4cTW5NXZ41TNsYpZbwG8FNV580AM+JhsaDHVRULoVcXM3AqGmyBUzkwTqyPk/OC5JVxIoQY57dXlxg2NSYCzTipqnkz51MmwU3VpbkCieJonAghqAQfODn2qsvAassSz+ClFFLyucAW0kjGY6VN1XEGmAbTmf31rDi8OBqnwjBOsix50qNmAg0yrak6e1WdCJxs+NWvfoV9990Xxx9/PCZOnIiDDz4YlZXOPc3KHTbGKUP5N7sYyHq1WUohjpYEKXa3yuSJrZ+XUogRWAHmBakFTi4XgSVwikALGiKyh87fnsXh5k0j5KGqjh5XPBpGz+oogCJX1pWhxoku4LEIMycsO0xroOTGODUl0saC27drpR44BS/4oGDLo7lUXYnZiExIKfaNUqE1TopKUAUvGid3xoklu7Ubp1ryQNQqXAdKVznpZIPhJ0XMGrcWW+OUS8DLMU7GWp1r4GRhnMLO65TwcXLA9u3bUVVVVcyxBAZWhimTUzPbqw7QUi4pJe1YWee2W7VqqNKqiigjP2PTge4aJz4giUIbc8iSqnNcqDzbEZhC+IiPqjrKOAHA1uYiapysbrVlEDgZqbpQJo2TNzsCGpR2iYXRRW/hEuRUHTu2CNvkV/9vqW/0TmAZskjIHswUAmmVoFIyr0N3Hyd3XyQr40Tft5RgC2mg+8yVqnLSiXGip8zLvGPX/XzL/Z3AOofn4uPEt8fKz8fJsCMIW+wIdmAfJ0/i8JaWFl9BU0tLS84DCgIow0Sr5DL1BuMXAzAmmA6Bk8IuuubkswZm1h2swriAuzqHW5giGjiZZcn8e3HwaUfAVtVlFoebjBMNnDo0VacE/+LlnMNdRJc0sKZzy40B3cqk6YJys8wENnAKO9gRBJNxsovDC10pamWcwpyPk3lOMjX/ZlmdoPSr4zoglLqqzolx8iMOZ6pBzUKZ4jBOObVcYXvV6fcmQnJj+KxmocKOwGPgNHz4cNx8883YsGGD63MIIVi4cCGOOOII/PWvfy3YAEuBNj2QoTd7T4yTTBknd/dwNq1n0Pxp1RaYOfUq015nXqTZxOERyjj5rqrLwDgxnde97LLoccWjIfSq1gOnYno52TROwb94/Wic6Hx0ZZz0c9uzOla0m3ohwaXqyqVXHavzK1LLlbRKEGdTdZIP53BmfBR0s1Vq9tGzH10HwLAjCNvnnTcDTLs4PEgaJ3YehJhNSS6sk7WAw5VxElV1PBYvXow//elPmDlzJvbcc0/su+++6N+/PyoqKrB9+3Z8/vnnWLZsGSKRCK655hqcc845xR530aCqBK06TdqrSwzrt7dltCOw9oaKRdz71ZmMk2RcsElLVR37POtnsPn07IwTr3HKuChw/d0y+DixjJOHXRY9rng0xDBO7oxW3ihLcbjdjsDqj0IDUDof3QwwWWE4nR/lwDiFZYkrhig1G5EJaUbvQYmJQovDFZWgiknVsVV1XK86Dz5OQJAYJzPYoPvKkqXqDMbJ7H4h+Wq5oq/lmTazeSBfA0w2ZcumwdMKQcxnLX1uPk4icMJuu+2GZ599FuvXr8ezzz6L//73v1i6dCna2trQs2dP7LXXXnjwwQdx5JFHQpY9kViBRXtaMRZEypJkKv92ZZwcNE4p47kWHyebONzCOLFMj+xycSu8digqpSHBXEAzujH71jgxJa4ZdjD0uKpiYeOi61hxePAFio52BGlnxqlndRbGiQmcKPsUaMbJIjqlCLKPE7t5IIyJbWE/Q+UYpyicfZy8OIcDrMapxFV1jFaTfrWlCuZSToyTDxsM41iKoHFSVcJtSHNhNOkxsBonIDfW0TQLtfg4ZWy5Evy1Nx/4ij0HDhyIyy67DJdddlmxxlNyUP2IJAHdq7RKsEyGg2z6DcicqmN3XFFW45Swapz4CenMOFkmrYPGiV08M1fVefVxsovbM/o4JUzGKVqp+WAVVRxezqm6SPZedUbq2E3jZKTqoqjXjUaDzDg5mV8C5eHjpH1X2gALzTipioo4WMaJ0TixLVccvlsncXhgGCdGq0kDp1IFxzTYjTk4h3tpI2a0CpLzb2niNjbj9xx8wlSHTS6QW/AsWq7YUd70UBFAd/PxSAhVOqeZkXGytIyg7uFOk51tL5GJcbIuiCzTE3K7SG1VdSlO55A5Vcd8vlfGKeSDcWLE4Q1tKcegsiCw7nLKwTmcisPDsmFBYdM4JfwzTq62FQGCk/klkKWQocRgN0omQ1jYcSrJVsgSU3Hop6rOQeMUlEIBVqtJh1fqlit8VZ33AJO1lik0o2fNVuSbqpOk/CwTDGY4bNE4Wd9rB0rVicDJArqbj8fCqIpqQVAmA0y7xsm9qs6pIsfqHA7Ygy52p+a15UoEaS63nfFm5Nc53MMuixDzuOKxELpWRoxjLhrrVJaMkz1VZ9M4WRknN41Tsxk4lYU43NKImsKPSLejkWJ0ilG31hN5Qk3wVckRSQHRNwVJzt/HQRxO7IET3dSVmnFyYs5L9R0nHdLEBpvvhXFybPJbmGOxbizzE4drv3tpkeUGN41T5lRd8NfefLBDBk5bmxP41UPL8cJH9ipBw3soGkKcMk4Z7AjsPk6ZqupYcbh56hvbUo7PAwCseBj7v3MOKpDgWhXYLm4HH6eQQ4l3XlV1XHWfy65DR3tKNej4qmgYkiQZjEnRdE5laIDJVtUZDr9uVXX6+UumVccFkJ7XntUdY0ew/Ltt+OU/luHbzU05vT5tSQHgw6eB2ceiWtXer9Q3eieYGiJWzF/owKnZ9hjRNzfs905SbcCTvwDee9B4jNURURRyLty3eBXOmb0yp4DcqeWKU5Cyob4Npzy4HAs/3+T+Zu/8FXj6lJxZZUfncH1MXohO3prFG7v78fp6/N8Dy/DRuvqMz7NuunPSOBGCCNI47OPLgXfu9t9P75XfA/M1SY4ZZPrxcercGqcdMnB659uteOfbbXh86Rrb31i361wYp6gHH6cwYyAJAPWt/MXPTcjl96Hv5rewl/wt55+UtapOSjkKRLNW1fn0cXJbQNlzVqlXGtbGNc1YfbEa/ZYz4xSRDaGqm48TZZwAOFbWNegBeLd4tCiNR62Y+8F6LP+uDq9+ujGn16cZzR8AYPnfge8WY0TbhwCCKQ5POTANBW+5ktQCpybEjcckI3Ayz0m/ps+Ab14D3n3AeMxgnFiNk7Fm5D/O+xZ/i9c+34QvN/oPlj1VBwP479dbsHTVNjzz3lr3N1v+d+Crl4BNn/oeB+BcmODqkecAU+8pe9Y4vfjRBry7us5xw87CuunOycdJJRgjrcKQrYuBZX9npBUerqlUO/DufcDKR4C2eiMVbWicXNYpoXHKgLVr1zqK5wghWLs2w0QPEGgO2Yn5YPurxaMeNE6WKhZKZzpqnDh9BCvY096jS4X2edyE1BfRSp1xMrQrNo2TXRzOeblkqqrzyDgZ9C/TpNhtkaE39spIyFiQKiLu56YgKMfAydA4hVxbeFCNU208Yswzp2De6CkVLk6JtBX0e2x3qCD19noL49S8GQBQSdoABJNxSjOMU7RIPk6kXUvVNaHafFBN6p/FnGtaSctcs052BK66SJ9oTylobNfmXXOGghk3OGk1nYJjGii0pTKwFqk2/d/c7E2cGCdDd+UpVWdmD7xqnOh1Yi0GcnseRS5NpFVC0Etq0H5JNnuqgjbA3kvSCXvLFbdWQyJV546hQ4diy5Yttsfr6uowdOjQggyq2EgoGQInlnGKaUxJW0bGia+q88I4RXRBIbMpBKDdGNnnAQCSrQCACiS5CgnbguOQqgvL9t2U470oD42T2267hWm3QpHJVb0gsDmHB18cblT3hJ1TP4QQY05Wx8KIGywof1NRVL5hrpdegvmCpmlzFfuzVZpQVaBFW1cqaOAUMMaJEMKl5tnNQ0GDvKQWODVLcaiS9n3Tpt1cqo7Ob8UeOBXDOXwrY16bydvODSzDmKlykt6Q2zMFTnS9y7BeZQJ73VHQNdxLVR0rDvd6ful14ubDZj6vAOJwlaCXVK/9kmxBWPIRPLPrpmIGTlGLONzGhAlxuDsIIZxZHUVzczMqKioKMqhig+422lKKLfpvZUwbDcbJi8ZJpjSmO6vC0vySJNmqibrqJfvGhUIIwzglEZZlY8HJ3uQ37dw4NY9UHdtsOBv1a4jso6bjBa04LFrgZOtVF/w8O+1JFWUCJ3aHmVRU4xxXRs1Kz0xu85GQ5KmXYL6gQVmu3yencWqrM76/GNFuikETh7PnMiLLHGtcyHQdTdW1SxUgsrYmwCFVJzkxTrSaqggaJ7aoI1M3BTewGslMqbq0wTi5nFNCzHUqA0OeCdb0E+DPeFVhgn6v55deJ5mkH9rz7E3f/UJRgZ6UcQJBVcgeeLu/mDmn6aR3jRN7HymDtTcfePZxuvzyywFoJZvXXnst4nEz/64oCt59913sueeeBR9gMcAGNVuaEsbNCOA1TvFcNE66E61TXtpgBGiQFZI5yrhCDyyMCyWdMG4mFVISqYxVdZntCIzGqXmk6njGKbOGhg1AKTIJ5wsCerHKYe2Yyso5PMRUWppzhw2Q4pGQcT5tbvPsTb0IJdJOoN+9k9mrF3A+Ts2mENhgnAJWEGjtrcdeXylFRUUk5PQy35CMwKlSC5yUdkfGybhuGfNbw/iQ83HSrrt8NWMsQ5+pf6cbOI1Thr5w9HkJN8ZJSYE2Cc6VcaJZh6hj4JT99SnmWLzqCRNGqs4f45SLxkklBL1Qb/xeIycARLyxjqyZMsM40XlkrFO2qjoRONnwv//9D4DGOH3yySeIRqPG36LRKMaOHYsrr7yy8CMsArjAqTmBIT3NBsZ+NE6qSowKDGuqzpFxYjRCALgda1U0ZG+cmzTLkiuQRBvTdyibxiki8QaYbMWIjTX06hyumDvGbD5OdHFgg1KjHU2ON9qsoBduuEJj6gJOF6cZNknzcbJrB2iAFAvLCIdkk3GyNoZm5pvWRLqwpnxOyD9Vx2wkmMApFtBUHdvihPVxAgqsc9Kv+wTDOEkOgZOkOmmc7BYPhdI4sYFTfoyTZG7kHBmnLKk6iwYnF5jO4XbLFi8BpmlHIPtgnGiqLgvjlMHHadWWZvz1jW/w20OHY3jvLu7jUxmNE4BqPXDyNE/TTOCUTiCV1tYca6rO9l47UKrOc+C0aNEiAMBZZ52Fu+++GzU1NUUbVLGRVMwL0qpzanHQOLk5h7MXipfAyehzJfOUJ/08Y+dCF+ikWZYc0zVOIVc7AjrZJQBEF4fbd1OAtlhxbs05ME7ZdlmZGadiB06xsgic2J0k6xzOPs62rQHM82ndtdLFlQpvO8IAk958cv0+ecZps/F4haoFToFL1TFznbJ6IVmCopKCpuqklKZrbJcqQUJa4EQZJ25dUfT5TRRthy+HitqrjmOcctI42avqnBknvejAbV6xa1SeGicnxslb4GSKw83zm3kO0OskU7GR9jz3NPyzK9fjPx9uQG1lBDOPHeX6HiqrcQJQLbUDqPbGQLOpOiWJlMIzTew6xW3ChTjcHY8++mhZB00Av/iwgkfA4uOkM06tKcVxEWcXImuvOmvgpKrEEGaHLdUJgMZw2SJ5lnGSklw1imvLlZi2C4khxTFa7ELKBV2E8NqgjBone1WMuzjcdA2nKH6qjmGcAPPGElCwO8toyLnlCtu2RvvXmXGy6xCKLw6ni3DugROjM2ECpygNnALGONHjlSRzo0TPc0ErRVM64yRXGoyTbFTVMedEtTPFdI0pho8Tu1ZmqwxzgsIE95n0RFnF4QVgnJyr6vzYEdj1Wp41TlnOnXUusd85ve5/qG/L+B6KStBTajR+r5Zo70qf4vB0wmYWygab3DErIlXnipaWFtxyyy144403sHnzZqiWG/h3331XsMEVC1aNEwvOOVxnnAjRmv+yQmeAT1OZGifnigN2glG2h71o49GwvVKNS9WlLM11XTROsRog0YiIxY6A/T93P7LuDLwyTlkYjTbGNZyi6OJwerGGdb+jgO966HmgJnpOGqc2SwDqzjjx+rmOsCOgn5lzqo4N9thUnRrMVF3aco4B7WbSnnI2JM0VshE4VQAhTRLhpHGSVb76CYg7tlwplI9TIRmnTCwYHWd7SnEuRioA42R1wwb8NZc2etUxTX6zapz06yQ742SuC2kLm0mDyQ31mY9bUVVO41RFAycv60HayjhZ7AiYxsgpRTUJAE7jFOy1N1/4Dpx+/etfY8mSJTjttNPQr18/xwq7oIMNaqyBE8s4VYRDkCQt0GhJ2AMndh0yfJxcGCc2yApbdquAzjiFLRcgk6qrQFKjuEMu1XF0AamoARrtTX5DllSd+YtFQJ1u1w7Y4Xs1qupCfqrqmMCJtqMpmsaJBk6V+u/BFoezruGAuYizvc+M1LEegFa5ME7WflKhDjDApHM6V7bFFNjyjFMs4Kk6NiiJhjJvIHIBTdXxjFMKqkq4z5E4xkljpIzASWI3TYUZ45Z8GScHlsYpSKEBuUq0/0fD1sCJCRqUAjJOhklw9tcbdgSydzuCpOeqOu15VbEwGtpSXOBE/7ahITPjVKk0ISaZn1MlaefMEwOtWDRO1B/OIVOSShOAyp13oFSd78DplVdewUsvvYSDDz64GOPpECQyME6Gj1MsDFmWEI+E0JJU9Mke457ryDi56HhYutWsTrBonDIwTpoBpmwsiO6Mk5aqi0gWA0wmKcvt5G0TnGjBVDgKK3JxDi9Nqk7/noiqrYLswQcIpmu4FhQ5a5wsqboYraqzuAunzR0wYOroimtHQBmnXO0InKvqaKouaFV1KcaHiML4zgrIooZ0xikpxw3GSSJpTpwOODFOzk1+g6hxcrVVAb+utqUULrgBYCmXzzFwsqS2AbjrRx3Azl2vFaz0OkkpBMm0aj8u43mmb1tDW4rbSFHGqb41hZZEmiu+YVGj1HG/x6GdJ7cWWRxcquoo08RuyLnMirLjME6+7yjdunVD9+7dizGWDkMmjZOxw4/QGxXd4dsXCnaRosyba6qO+d1knNjAKWRQvkaQpe88AU3jlLGhpKFx0vRnUaT4BpbMDpTbyTtNcBf626lXnUqcmQFWZE+RSThfEFg1ToDd2ylAMF3DKQXupHHizyMNRK0GhFY6vSPsCOhn5sogcj5OLaapblTV5l/QNE6swSiFW5ucfCDr131SrgQYcbjdqZkt6tAZJ+rjxDFOhdc4ZWNNnGCsH6HMTX5ZltTRkqAQ4vAMzuFemE7FYROZ1QCTuU4yGYjS5zl1kmA3KT9mYJ1q0tu5330xTtz5tafqJEliuhww78cxTsFddwsB34HTDTfcgOuuuw6tra3ZnxxQZNI4UeEe3dln8nKyejgBbHBgd3YGtIuTUsJRK+NkpFfsVXVU4+RKu1sYJ7eWK+xYtF8c0lkuuzgnxgmAbScM8LYOFMXXOFkYJyDQ7uHWVJ2jjxOTOgYYxilhTdU50+lFtSPIU+OUYkvnGcYpomhrS9Barph+NnbGqZB2BKG0xjilQpUG4xQiaZtvjkyYOWBhnNjrsxCMU0sizW0es+l0nGCsl5KUsS8cu7Y5tvPJUxxOCHGuqvOhceKdw73NAfY6yWTnQNfHan3TnnTQOAGZdU5dVSvjpAdOOTFODhsGJ7sToXFyx1/+8hesWrUKffr0wZAhQxCJRLi/f/DBBwUbXLHAaZyaE5wAsdUmxnV3D3dqb+DGqhh6DofdqvZ5IWNcTqm6GJIISZLpNZJJ4wS7xomtquNeSie4HAakkLYAuzFOjMaDFcg6LX5OjFOHGWCyjFOAL2A6R2hA6dSrji1WAFiNU+kZp3ydw2kKIhZSgdZtxuPRgIvDuevdzUU5D8hp7fhTMhs4JW2fEXKoqjM3aIX1cXLTgvoB23nATIvZn8eyIu1Oa0WejJPC+O+xjFOmMdmGQMXhWYTuLNjrJNP5M1J1WRinDRkq67oq9dzvlYQyTj4DJ4ZxinL3LhlIKpZUndA4ueK4444rwjA6FmxQk1IIGtpSqI1rC5S1x1pVroyTS6ou4rBbBbQbI9FZBCMP7WhHkI1xMgMndlx0nIpK+B0VXXzliLZIKwn/jJPDxdhail51NC0XKY/AydQ4WXpAOSywBuPk4hyetOgQOtYAM8dUnX7zqbUs8pRxCpw43NA48VV1QG7uzm4Ip7XjT4XiQFjbmIbUtO0zJHZu6zc71WFN8uozlAlbrLYt+TqHZ0jVpTjGySlwyo9xYs8jLw6H65hsQ2AYJ78aJyCze7iVcWLXV5aByxQ41VoYp0qDcfIpDlcSjH7SPu8dneyt/++E8B04TZ8+vRjj6FBY2aCtzQkjcGq1aEroTt+ZcbJT9zEXsShL7VJwPk7RkLHTMCh5h6o6rxqniJTmPgvQdlQKLA1J2TYl4RiQgDvjxPaqY47ZKW/e6sQ4dZRzeChqfyyAoN833cnZnONhP4+uveosi1u4I3vVZWrGmgH0muiq1msPROJAqhUhkkYE6cCl6sybJbv50b+zQorDFTNwkgzGya5xChEHxonYWbFCVNVt1RmnykhI6/GZC+NEGWu2ya+TASaXmnJK1eXHOLFi61x71bGbZi8ap7Sicn/PmKqzapyYucWy9RsaMqXq6rUxhSoRUtoMxikn53AHIb0j06oIjVOnhnXntllfFJJp1fhblSHG9cI4mafRLVXnmNazME42byRLy5VQKIM2wKZxSnGfBcC5zQGd7KEwYxyZnXGSpMzNLemNvapDe9XRtGNE+2EfCyCsjJNTabuVAXVjnKw6BKM1T0f0qsuzqs7QY3QbYvwtjvbgperYFjE6iqFxooxTOmym6sJI29YUXuOU5MbIN/nVn5JH4EQZp8E9tB6l+TNO7mNSisw4JfTOEZLk3JrGT8sVzTncnAPE5bXWayTT+WOr6gD+fpXwyDh1UzVxeKJmJwBs/0cvjJPVx0mf92F23jsURexAjJPvwEmWZYRCIdefcgBdgKgMgObv2UqHSotTs5MY0lHz4KZxYkuvdVh71dnoT86OwCvj5CwOB+DcWJMNNqio2mUxMqtispss0ht7ZSlarsiyxqABwRaHG1V1vB0Bu8OkC2ylRXPnpnEyxOFZmjAXAlTcnVZJTg7ldN7UpPXAqWYAENLmYBXaA5eqY9vaUEQdKiHzRVihgVMVJN0WJII02ixBBBc4UefwIvk40TWSBk4tybRrkOAGRx+nDM7hAGzHDCBvxolNPbE+hH5arrAeZOz673aKrWueF3F4VcxJ48SKw90Dp+5ED5y6DAFgBk6eAnybj5ODxsnIrAhxuCc8//zz3O+pVAr/+9//8Pjjj2PmzJkFG1gxQS+c3l1i2NSYMBYFOpmjIbPhaqZ+dU6eKa4aJ9bsT4fVxyljk18pCVly8QxRVVOrpIvDIxZxOOBCRRsaJ4ZxclmM0hbWLBKSkUirGVN1XJPfjnIOl8Nm4BTgC9hWVecwd1rcNE4JF42TPocKVYKeCewinFRUW2o4++v1lAQNnKr7ANEqoC2BuNTuSaTbkWD7k1EUXOOkpBDW26soYTNVF4ViK2HnUnUKn6pjrcsKUVVH18ghPbSG6CrRruOKiPfNspOPk2OqjlnbisE40Xkbs8xXX6k65noLMfMhraoIyfZzYmXZM/lgWTVOKtHGFJIlnnFqaHd2VgfQTU/VJbsOAQDE/IjD2VSdg3M4+3/3VF1w191CwHfgdOyxx9oeO/HEEzFy5EjMmTMHZ599dkEGVkzQiTmgthKbGhPY2qxNFDqZWZbEbYcPMAuBQ+7XGhykHfLEYS5wCpmpGodedbFMjBNLreoap5iUst3IzHJb5kFqWhYKe2ecZP7m7LSLsfZYAxjn8KKn6sLa8bCPBRBGqi6jHYGzxsl6E01bUnXF7lVHCK+VS6RUxO2eqRlBj7PaCJx66YFTXSAZJ/N6N68rW5ukfMFc8+lQnGOcrEFEiGOcklCZajF2g1aICkvq4TSoe9x4rDWp+AqcWOG6V8bJUQ9ZIMbJakBJx+SFSOM0TmwfUJc5az2OTIETtbKhGidAm18hOcRVGSbTKra1JNGzmjdmhqqgFg3a62oGAzDd+H2Lw9MJm7ku4Ow5x/k4EcW1A0VnQME0TuPGjcPrr79eqLcrKujucEA3bRGguylrBRPAakoyG2BSuLdccXiupeUKDcCSTowTkgiFZGeNE7t4UOdwB8bJMYfPBhu+GSfnHVpaUU262cmOoNgtV8qGceJTdTRwpjtMwAxArVWe1lSJreVKkRkna7CcC4tIg73qlG5FQBknAHEpETxxOFMcQWHcQArFourXfIqEIIWjkGngJJmpugp9AxK2+Dix7A2bqisk49SnpsL4fL9tV7wyTpzGydGOgGWckva/Z4ETgwIwWjBPGidzo8IGqW6pMCsjmanRr8k4mVY/SV1cbvi16fPOMV3XWocwVKhEQlrXOMXUwvo4RbNpnIBOLRAvSODU1taGe+65BwMHDizE2xUdNKjpX6sFClT4aPXMAbIZYNqr6thUHXtjszIC1v9rqTp3xikqKYhIqrOuiO7ApJBx43HSOGVO1XnROPE3DlMUaVkUmJ1xxzb5pUFgqDzE4fp5stoRAOY5tTJOcYa+Z8+jTeNUZANM6841Fzd4qhOJJynj1NsMnIIoDndI1Tl5b+UF3TW8FTGtI4HuHM4yTpU6yyOzrvjpJHdds6m6UAGsKWjg1KtLzNVLLBs4HycjmLM/j6+qK7zGKeHCOEm+qupMzWoujFMmA1H6XNbKJZVWOaZ+qJ4ydTTB1M1k69AFhPr6qbpurgDO4YC59ifZOaVYA6fgrr35wneqrlu3blxOlRCCpqYmxONxPPHEEwUdXLFAF/mBtVoz2EyMU1VGOwJ7VV1MF8gTogU3RvrFqc8Vc+FWRcP2KJ6xIwCAKEkiJEe5zwZgLh7hCqNFg1NVnWMlC8c40cDJhXGyNDl1a/RLBc1hWeIEhTEXNq5gcGKcrBdzgGBP1ZnnKqlo+hGrH1YlkxppSaSNVIlV45StCXO+sDNOOVRZ6WOOOzBOVUigJWCMk+kcbq8uKpjGSb/mW1ChVa8aGieTcYpHw9jemkIIFsaJOV/sGPNlnAghhpyhV5cY4rEQtrVkFjg7wdHHKUOTX6A4zuFO5fWAydJli9cJMZmfsKxlAWgzeLdUmF3jlN0AsyISQiQkIaVonycz52JIzzi+2tTkzDjpgdMW0hWV0WoApqmsX3E4SSfMalKnVB27llubqovAycRdd93F/S7LMnr16oVx48ahW7duhRpXUWGm6rTAiebvndyuvbRccWKcAC1AsO78XcXhsZDJ4DjYEQBAlCQAWUvFKU6MUzhmVCVFYPdxcqwayUHjFDYYJ2cdDduYlg2yWTsCN1FjXqAXqhTSWCf2sQDCmqpjFya6IFmd7EOyZHjptCYV9DCezzOaJjNZnCDV+p3nwiLSRbwyoQdOVb0BfaGPS+1oDBjjpDjdQArtHK5f862kQtuQhZiqOosGM2KpqmMZOo5xyrOqrrHNNN/sWR01GSeflgRsVW4mIXZ2cXihNE68PivkMcBk/8yuhSmFuDNO1qo6DwaYsbCMSEhGSlGQUlQQmOvvIF1m4hg46X0ft5Ba7EQDJyU3jZPKnGt2o++YqrNWMAd47c0XvgOnM844oxjj6DAoqjm5B9Rqk29bs7Zbc+qvVpXBjkCxMDCAPXCqitHPdUjrcXYEYWNiph00TgAQJe1QM2mcwhVG8BOVFIQl/iJ2TtWxdgTeNE50ITZSi1bGySEABcwAQbWwcQUDJw6nqboA2xFYGCdJkrgdpqoS5lyyLKjdhNBKp9MgXClaqq4AjJOqIoYkoukm7QEmVVeF9sBpnFKq/XovVuDUggqNNWRSdQ0pfi6EJeacK0lOaF1IjdOWZm09qKkIIxYOuXqJZYNXHyd2bmW3I8jBOdw1VaePKUvAzn7XlNkNy1qA45YO9cc4mRsqbX5pgZOiap9VEQmhv54t2eDU6FdnnLaiKwbHtOspTJIIezWVtTBOFE52BLzGyfJddWKNk+/ACQDq6+vx8MMP44svvoAkSdhjjz0wbdo0dO3atdDjKzjYNFHfmgpIknYjr2tJOjNOGewInBgnmr9XVMLR96ZzuH3RlSRN8EnbsaQUVZt0af6iiJAk0k67R45xMgWFUYmfuCY9zjzI2RFkZpwoU2VnnPiLscXSKJmCankAbXGwijPzBhs4lYU4nNc4AeB2mOxNg2dBwwCS3K7V0DhZxOFODZgLAWu6NRfBf0pR0UvSqn8QigEVXTmNkxc/nY4E3dCwTK7p41SgseqpOo1xkkzGiROH68UEsDBObODkYOyYK/u4mdE3AYx7vc/AiS2mcfSU05H2larLwTnc0AO6FM9kCS7YtdfO8BZC42SuC2alLQGBudEyAidHjdNmAFqqTtIZJwCII+FtnjLrPxs4OelzOY3TDpSq833nWrlyJXbeeWfceeedqKurw9atW3HHHXdg55139t3gd9asWdhvv/3QpUsX9O7dG8cddxy++uor7jmEEMyYMQP9+/dHZWUlJkyYgM8++8zvsA2wC35lNIQeVdrCtKUpkZFxchJCOlXVAWZkzn6W0RTSYfJVRcOQJMlYkFMK4dimJonmqRPOu0dO42SWpkbBT2RHXYHhHO6BcbIwbMauw7IgW9NLxniYY8+1TUdGULGsHCqTwIlP1QG8LxDd0dPAmsIpfZxUeEaz+OLw/KvqUgpBT71sGtV9tAPVF/qqIFbVUXE4xzjpGqcCV9W1IKZ9l6zGKalrwijjxGmcTHG4LIFLg+fNOFkCJ9NLzN81zFXVZRgTmwZ2XCfYjZ2a8s1sJBVnxilTMOc2PnpuQ0aFsZvGyX9VHU3VAVqwR4MvjXHS1urMGqdayJGosRZWIuFNHG6xIwC0OZWVad2BUnW+A6fLLrsMP/vZz7BmzRrMnTsXzz//PFavXo2jjz4al156qa/3WrJkCS688EIsX74cCxcuRDqdxmGHHYaWFjNouO2223DHHXfg3nvvxYoVK9C3b19MmTIFTU1NfocOwLTbB7RFj3pgbG1OGNVglRHzhk+DKCdaOu0g+AbMC5KverKzUzQ1Z2gW2LyxXl0DKYQWPXCKkKSLHQHLOJlmOlFYnIYpFc2l6phgw6fGya3regujceI+nxGLF6WyrtzE4Sn7As4uSGbbmjB3I3S6cVlTdawdgV+HZy+wa5xyE4f3kuq1X6p7af9GtPR5HO0oYreYnODk42QEqIUaLNU4gTJOGoMchsKIw0PGY+bgTI2TU3NvIPfAyRSGazdruiGyeollA1dVlyFI4Zr8ZrMjAHyn65ya1gLeq+rSDsxeVsZJPw66xrtVJBJCHFJ1WrBH9V4s47SlOWEP2hnGKSRLZvpbaufOrSu4VF1SHzd/rqJhB32rYJzcsXLlSlx99dUIh83gIhwO46qrrsLKlSt9vderr76KM888EyNHjsTYsWPx6KOPYu3atXj//fcBaJPorrvuwh//+EeccMIJGDVqFB5//HG0trbiqaee8jt0AHx+W5IkYxflxjhVemKcrJPKzjg5PZdSxVVG4MSwBJRxilajXdJ1S1kZpxggy1CgvV9M4ieuIxXN2RFQxsmtVx1vRxBx2WUZN/yYPRNc1LYr5ZqqcxJdpolrAGqYYKYYjZMuDo8aFXrZS6TzQUF8nFRipuqq+2j/Mot88OwI7DpFs01OoVJ1VBzOM06sHUEsHIIsWVJ1TFWdbCm6yLfCkjJOPau1sVTmqnGyVKIBXnrVOaXqLOuTz3SdwTjZfJwcpAwOYFtt0WArnKXFEb0+utFm8i7njpV3cKm6tOmNF4tomZJoWAYhwKZGy/HrgdNWdNUCVFpwgXZvmsc07+ME2M+Vc6rOco8kRcgqBAS+NU41NTVYu3YtRowYwT2+bt06dOnSJa/BNDRoi2j37t0BAKtXr8bGjRtx2GGHGc+JxWIYP348li5dinPPPdf3Z9Bghtrt99IZp+XfbcPW+kYcIn+E3Rs3AV99B3QdhKqaXY3XpRQVke2rgMruQFUPR40TwKTqmIuAcw7f+i1Q2c2YfPFoGFBV1G7/FGGktdQXtSKIViGR1ht9koRxcfdNrwWat2g7dZZxApCWIggRBRFLqs7RdI4GFiHWx8l5IaILWmViM1DXyDW3ZOF2wwe0xaApwTMUq7e2oDoWNoJYKxJpBV9vbMbI/jVc81Ib9GPZ2JxCLymshY/ZxOFNm4ANTIp5wL5AdS98ubERA7vFUR2RgY0fAb1HAmHGGru9EWhYB/QZyb3dmq0tqMpwLPxxMam65s1Aoolru6LqN2NrAJqZcaJ2BOZCl1YJwvavwhn6ONBj54xPszIsbhqntdtaURGR0bumwva3lELQC/XaL9W9tX/1wKkSzqm6L35sxA/btfRENCxj3LDuXKozZygpYOMnQL+xaEkRvLemzrjJDOlZheG9q83+ZCFJe27DegzfvhE/lTdiw7YueP3zTehSEca+Q7rbWB+KdXWtiIZl9HE4HwAsjJNsSdWZNh9hWbYwTkkbI0zfr1vjVwDcK76ywZqqMzVO5ud/ubER6+u07yUSljFuaHdUyATY+DHQdwwQCnPSBnMDaP+8lKJgpLQG35L+XFVdW1LBqi3NGJluB3d2c2ScsqXqCCH4cF09tumMWzwWwv5DuiPd3oyR0mqsCg0zX2thnL7d3ISe1THU6oFSIqUiBAUTol9hm7wNXdsjwPouwIB9OHdtdgNipuoIYpv+h2jzZkySv0U/tSck9UD071qBNdta8UN9G+foTpo3QYKeqmMZJyTszGiyBdj6DdBvLKOOt6fqImHnwOmbTU14/XMtNTgxnQR3JRZCHN74Y/7vUQT4Dpz+7//+D2effTZuv/12HHTQQZAkCW+//TZ+97vf4eSTT855IIQQXH755fjJT36CUaNGAQA2btwIAOjTpw/33D59+uD77793fJ9EIoFEwryQGhsbub9b89u9arTF4Nn312N6+HGcFV0AfArtB0D8/BXGa9vqfkDkvgOA3nsA573lusNz8iuiwUUtaQT+fhjQew9UHPwvAEB1RRj432yMfOkSnBs6CS8oJzOMUxUSrXrgpGqBUw804KGWS4DZuwEXLGUCJ20xTksRxEg7vyOFS1UdzUvLIQ+Mk/a6EfN/DqQaUN3rCf1xbxon7dzoJpj6jXZ7SxJT7/wvduoRx+uXj3f83DsWfo0HlnyHe0/ZC0eP6e/4HABG4HTv4tU4taYNI4DsF+8jhwHb15i/99wVnx7/Oo6+520cPrIv7h/zLfD8OcAhvwMO/ZP5vOfPBb56GTjvHaCvNl8b2lKYetd/MaC2Em9eOSHz58JixPfI4UDjBtRWPoLvoQVCVsNDCqPSM2HXOFnFqoBPpuHRI4H6tcCVXwGV7vYiXnycWhJpHH73f9G9Koq3rz7U9ve0oqKnjXHSNU4O4vBvNzfhiLvf4h4755Bh+MORu2c9rKx4+y5g0Y3Az+7BNV+NxgsfbTD+FA3JWHrNocbmp29iLXD/KQCAqQCmRoGH1h2BX88+DQBw689H4//228n2Ea3JNI68+y3EYyEsv2aSsx2HETjFEGNSdREoRtoqEpYRDkmISC6MExs4zb8cEz5+BvtK1yGt9kAuoAbBdJNp7Ze4ZmsLjrj7Lc7/6PQDB+P6nm8AC68Djrwd2P83nn2cDlT+h3/EbsHs9BTMS11mPH7dfz7Fs++vx+d9WhBnX+CTcXJqWguYFg70PL71zVac/sh73HOuPXoPnLThVrwUexrnkD8BOFI7JoZ9/6G+DYfd+V/stVM3PHf+QQC06+P00GuY3vJPIApAAfDQLcBpzwM7m9cGuwGhPVMPlj/FngtmAQAejgJoAPAe0L92b6zZ1srrnJQUpLY6AMBWQhkn6sbfbheHv3IV8L8ngFOeBXbVCQqmhZekB1FWcoBqLl/5dCNe+VS7T6+KpcBFtPmy/aoKPHZkfu9RJPgOnG6//XZIkoTTTz8d6bR2YiKRCM4//3zccsstOQ/koosuwscff4y3337b9jfrApPJA2jWrFkZmw1bdxu/2GcgPt/QiKb2NEY1bAeSQLrrYITb6oBkEyLbvoQkhUAIoG75RpsM9VrQ5so4OQRONLjooW7V3mP79zh4eE8cNbofjt9rALBhAQBghLwWc7lUXRztekY1rLYjJEsYKG1BBGlgyxd69R2TqgOQkswSZhaOvZgMXZA3xkmCimjLDwCAPupmANW2i9HwcYo5ME6WVN2PDe1IKiq+3dysMXoOlXbr6jS91/fbWh3HZT2WNEJooURTpotXVcygqfdIYPNnwPbvjc9bW9dqfNeo+45/7bZV5uN64LSpsR2JtIp127OMU0cbNbeMSPr7E/TGdgC1SCkq6lq0RatHNd8ELhaxO7Db7QiYVJ1XgXg6AWz7Rvt/8+YsgVN2H6dtzUm0JhW0JtuQdmgCzFXVWRinuGS3I1irfy/xaAjdq6JYv70Na7PNCa+oM7/PNds0JmFYryr8sL0NibSK1VtbjPH0S+pzIVaDdKwW4ca1GBlvQC8Sw5amhDFOKzbUt6EpkUZTIo2UQgydCAf9ptVOoohbq+r0DUk0JCMsS4hYnMNVJ42Tflw7SZvxfa4aJyvjZJEvfL2pCYRoTWl7VEfx/bZWrNnWCsirtTfYpBXzmD5OUkYfp37QUk0DpS1oYwKJVVs0Fl5JFUbjZGWcrD539HvsWhlBdSyMH+rb8NXGRoTrtePaVV5rvJbVe36/tQUqAb7fZmp1E2kVO0nacW0k3VCBJGqlFn7TBn5jr9mTyBgmaaxLItIVdckQ+kl1wPbV6FOjBWWUEdTewDRNbkRcZ5zMzch2dpNLCPDNQu3/dJ0DYG3yC9izB8ftOQAfr29AU7tewEJUhLZq5y1FQohISv6BU6rF8KQKGnxrnKLRKO6++25s374dH374If73v/+hrq4Od955J2Kx7OkJJ/z2t7/FCy+8gEWLFnFtW/r27QvAZJ4oNm/ebGOhKK655ho0NDQYP+vWreP+br1ohvfugn+ePQ7zLjwY+w3UPS8O/SMw9BAAgNSy2bgZqU0aJQn9wlX0SR5yEYcnGSE6DbIMFkhJomtlBH/71d6YvEcfg/npJTVoNyUjVVeNBPTFU9E0Tl0kfYdBVKB1m51x0uNha1Wdo66AsyPIzjixLFZ3Um9/PzCtaxxSdaZwXnsOm+unlLgVdBeWtTeWHjgpkJEi+mdbKz1YsD5ZJz+tPz9pNNlMpBWTtrZ4ahm/M4/T8WUywmNBz1N1KA3o5nZdZO3cpxXCaEv46ypmOYf0MwFzF83ePD1bEujaCAA8Xe8Aq5bDKXBihb2tDtVRKYWY4vAqPnCqckjVJfXU5e79anDxpF30zy2QjoJeb8kW43u8+fjRGDWgKwDt5kTPcU16u/bcYRMQnng1AODAwV1wwt4DtDG5pC03Mzc4R9EzYMzXFMK8HQGjcYqEtBsql6pTEs4bOX1+RiQld41TMz8P6YaInif69wOGdcc1R2jsX2sibW7A9HnlxDg5XScySRnHzFbV0Zu0rFjWJ+vvWUB1OfZedbzGiZ7vCbv1wm8PHQ5AD1L0c9qbVoSCr1xs1MfJptKTaRUxfT1+Mj0J/1XHaH+wrLUJRgCujVFCF2gB3Lreh+Kf6SnaE1NtnD7X/CBtbAkSRhphbVws48Rq8bavMSrwkGJZK/Pal/Rza/Xk26WPed+cd+HBeP68ccbf2vX7Vd6Bk3XNDRByNtKJx+MYPXo0xowZg3g8nv0FDiCE4KKLLsLcuXPx5ptvYujQodzfhw4dir59+2LhwoXGY8lkEkuWLMFBBx3k+J6xWAw1NTXcDwsjcHLyEKI32XDU3AE3bzGfS28sSgIgJLvGiWWc6I1NVsz3YKFfQL1Qz9sRRKuMiRjSGSd6IRljsjBOaYNxstgR0BS2mx1BKDvjxAZO3fTAyd053CFVR1uE6OeG9TOhDu5W0Jty1t5Y+oWaJiEkicw95gh6jqWQ0RwZIEilUubnugZOzfy/lvF5KU+n56laMs83DZySimrTllBQ3yf2Bm02+dW+ZEkydSSeLQlamMApS/NUazDmFDix43NymU6rKqNx4lN1Tj5OrKi34EUGTCDMppp7MVW3lDXuotSZY6ZVrEoyay/GrczGwNX3Sp9vZuBEWyiZPk6RkIyQLPGMcjrpLB3Q52cUKddS+UxQVIJt+nXZ24Vx2tpktmMxq5AV82aszyu2qs5NHK6oxHBEj0ppTuNEA6eQapmbBWac6Jjo91gRDhnX4NbmJCS94tlIM4Pp26kSNLVr60dbSuHeKyZpjyelCBJE99uzrLX2bgIyavSNcpscN4OSVJsh1t/SbA+cWqFtgkOyZFSqVqGdbw20drn5f3YcXOCk/b/KIXvAgdGStoOaD+e5qQlw4OQ7Vdfe3o577rkHixYtwubNm6FaLkY/Xk4XXnghnnrqKfznP/9Bly5dDGapa9euqKyshCRJuPTSS3HzzTdjl112wS677IKbb74Z8Xgcp5xyit+hAwASLh4eAMxgJhQ1F/LmTYbgVqLROQCk2zmxIwsnOwIaXMSoKSVRtVL5EC2b13d1UoP2XDZw0in5sJrUAieJDZw22RinlP61ht18nHK0I0grKsdi1araztsuDqc3HodUncWOgPUz4XZODCirkJ1x0v6uIISk6iNwilZzNg5p/fi1wEk/XkvfwEyMEx1zpcPxszAMVyXzuKv0ICqlqDZtCYXTDdqpxDokS0irxHupPMc4Zb4Z2Rkn+yLJsiqOdh5pFT0lXYNoSdVVOaTq2BtewRtGG99nM2fgyu7q6TyvTrGBk36TUFKOTCALdn47thIBjJtWkrIFbMsVJnCKhGRELIwT/ZpDDoxTFKmcPL3qWpJQiaYb7q573lmdw6mzeK/qmLFZak2mzcBJXzfNjaZsCLGtlZMpRTWOK4I02pnvt1n/XkIKs96l2/1X1bkGTub/VZVwRpTsPJDD2jntSYN+8BonGuABWvBUHQsjkVYMxkmVY0ioNHCyME6WbgLRkGxslNvkKrTT7zzdzgRz9lRdix44yYzGqRIJPsW+jgmcUsw9hQmctCCVOG6COTDMfqJgjFNz9ueUCL4Dp2nTpmHhwoU48cQTsf/+++fVb+y+++4DAEyYMIF7/NFHH8WZZ54JALjqqqvQ1taGCy64ANu3b8e4cePw2muv5VzB53bRADAnTCjGME5mqk7iduRmubQXjVPKmqoDtJsTDZz0HX5XqRVSOsFV1bVBWxhCSruWqnNlnGjgpDNOlnJQybGqzsmOwJ1xijPjr1W0wMkmDjduPE6ME39zYRkn98DJK+NkpuqSRNaEihkDJ/McG0EjADWpsz5p1VzY2N1POmmeN+ZxdnzZbuhpRTXmRxwmTV4F7fNSmRgnhxu02YiT9xhKpFXvN0xuY5AtcMpeVZeNcYqorWbQaAROjI+TZdhc4BSxX2N5Qf8eiZVxYm6YlAGrNpoS97YwTplZMHZ+u86PDKk6aoAZpeJwq3O4k8ZJP66Y13YbFtCbco+qqKFRM6rq9O+UnacG45RgOh80bwYIYTaaZsNxq0t3WiWI6qJ3Nj2pqMQMnCjjVNEVaG73zThZ9YAU7HlTGD+likiIC1LkKu2c9mACJ1bj1MxsoFoTaS1wSpmpOkQqkEjo88YtVRehqToZ1Trj1CrF0U70tTnVhl7V2nrtlKprJTFzXIapbDsfOLGME6sbs7DNESgeGCdm00gi2ddeL+hMjNNLL72El19+GQcffHDeH+7FmE+SJMyYMQMzZszI+/OALKk6OmFCESZw2mRcYHIrEzil2pledRYfJwc7ArpoRCV+saO7AXaHX6tuB0m2agUK0Wq0Ec3sM6QmEJJlU+Okj89qR5B0TdU5aZyc7AgyaJyY8dfoKQurdqIlY1Udn2ZiNU5bXFJ1ybT9uY6gqTrISKgyEELmi5fusqJx0/cJgGIwTi4aJ3Yn5BI4Zbuhs5qfCmJ+nzRtl0oT46blpnHiqzbt89q3f48PjZPVSM9R45TKzDh1U7cDMqBGqiDT64BxDlcVPtii2jONccrM7viG/p2SRLNxviqjPOPUtVK7rqrYwEmiWrqkLQ1thR/GKU1CfK86idc4RSUVMtuLUklyqTAAXOFIVErlFDg56ewok9qq+4ixgVM8wjJO+s043Q4kGpnOA7KzNQq0QgYaEEagoD2lNQQ3giYokCnrUtFVX/9yY5xiVsaJCZxUQjjDyR5609G0qkJOa+tGd7LdeD6rcaKpOsBcCxNphq0PxZBANsZJT9WFTcapRapCu952hWWcHAMng3EC08aIabnSWgds+dJ8Hdvey8I2R5HiTKEdoa+zKmQkaVjRiQMn3xqnAQMG5O3XVEpkZpyYAISm6lo2G6m6UOtW87npdl9VdcYux9ImwXw/8/890QCSYBgnPR8uK+0ISRK6gA2cnBgnPVVH+JufY1WdYUcQ9sQ4sak6I3DyVVXHp1hafTBOmfo7AeBSdb7E4dEqLReh7+6VpJmqI06BE0trp9jAiU/VZQLdrYdlCRHFPN+V8KJx8paqM92Mc0jVZdnFp6y96hyOlx2fk8s0TfWqVBgOmBsJaE2tWdCNSCxUjFSd9p2qCfP7jEdDXGcBGixWJmmqrrdLqs5N4+SFcWI1TrJrqi4mW4KgdMLwRDIa/DJzNop0TuJwpzloaJz0OUy1Wz2rY8Y135ZSQNL8OsX6TLmJw1OqygROaahEkwLQYIQreKnoahy7H1g9zyhYbZiqgmOcomEZtfEIokhD1pn8GtJksNy8xolhnPQ1IZFWDI0TIpUeNE6MOFyXZjSh0lHjtL01ZTJJtGUPqTBb7zCNs4170nrTZkd7P2eNE6Cd86yMk77OKggZBswicGLwl7/8BVdffbWrj1LQYSy+joET3RFE+VQddcpuY0ojPWicHMXhbONd9oJnovxeUj1ULnDSxeHpNoRCllRdy2Y740Ro4GTxcXKsqqMap8xNfokuhmdTjV306iKbODzhgXGiVXWJ7IwTpa+zMk6E2hHISNOpnUmgyFQuAjADp7Q2DwgB1LQT4+T8f7aKxtHxmAFrEiox7xHXGafWZBrbW/VKS9dUnZMdgTkXs7kZ28Cm6rJV1XkQh2dinAghqFXrtf+zgVO4EkQ3g4mqlsCJ0zjZBfJ5waJZi+rmg+yuPq2okKCiMkkZJ6s43LvGybVXo74GmRonUxyuMOnYipDl9WyvOtkpcMqRcXLQ2bEaJ0IIn6rTr3lCAJLkA6c0s166+TilGcaJrjVtKcUIRmJs4BTTC398Mk4JB3YWYAJOaExYu6XCrVd1DHGYnxWCCrRom2k3jVMrwzjRscuRTIwT/5maxkk7j80wC4WQbke3eNQ4j0ZFMm0STVv2AGbBBZuqW7tM+5cypjTIVdKa/pZBFOnsGidduqBIIW9rrxd0psBp3333RXt7O4YNG4YuXbqge/fu3E/QkZFxopM4FDXLo9Pt6BpqhwwVkfZtzHPdGSenVIrR5NeVcTIvoJ5SAwi9qUeq0KoHQiHDjsAqDndjnDxU1TnZETgIg+maywdO2s7bmrahi4WbczjAWAz40ThlayrKME5pgy72yDgBxk1QZXZfaiphvk+aX5y494CVccqSqmPb0jDvUamzLD82aP+GZQm1eoqIIpMdAevwa3Uzzgo/jJNVHO6kcWLOgfW7U1TTioBUM4GTLEPVq4BiTAoT4K/dikgBU3WqajKH+ndBCxvYaqqUQtAVLQjRDUlVL+eqOpdgbosvxinEVdWxQvBoSEaFbHl9OsExOuyxAJRx8h9kWj2cAFPj1J5S0dhuMmE9q2OoiMiGATVhWYzmTUYqMSy7+zilFNVYY6jBZ8IpcJIjhh4u11Sd1Q2bVVyobM+4iDkXqmD5LH2zwWqcGtlUXYIeAxs4VTKBk4VxSvGfGQnJxnrfoFainZiMkyxLZmUdXTuZJtEGg8YwTmbg9K7278D99PfTx+GwYYpKKcdCHw56T1BVCu8QjJNvjdPJJ5+MH374ATfffDP69OmTlzi8FMhsR6BPmnBMuyijXYBkE3pLDegGBRIrtk61Q1F1AZ7Vx8mx5Yp+Y7MIOm2fDaAXGkAS5k29XY0Csp6qcxKHR7uY4waQ1C9KW+DkVFXH2hFkYJycAr94uh5hB9FpxpYrtlSd+X5bs6bqvPs4Kcaux0tVHR84aek57RwSViiZbAbC3V31Ti0+UnXcOWLewwic6rV/e1RHbW1mnNgWJ40TZZ88dUQHLIyTT3G4U1VdBsaJ61PHMk4ASKQKSLUgZmGcWKYgGipgqo5JvUp6AEV32PTGlFRU1LUkzDFX1OpNtZlUXcTOBFKwZf1Ado1TyqGqjiISllAhOTBOxGJHwMyrfBmnng6MEwDDgLQqGjICqqpoWNMkpa2Mk3adcYyT5VQpqp1xak+paE5o65SR7gpXZPWdc4Obc3iIS9XZGaee1TFskSyfpW82eI2TE+OkIAbdhTtaYazR2VN1psapiVRwqTpAC+Y2NSb0ysauRsq5lcQYxkkvuJB0jVM6YbaZGjZBq64zGCfm+PT7XxRpx0IfDnTTKoWRLljg1Imq6pYuXYply5Zh7NixxRhP0WFtucLBqKrTJ3V1b6CuCT2levSUrDu8dqRVjSr25hzuEDixk5S5+HtJ9cYFgGgVWqwaJ6s4vGaAPm4aODkzTtaqurSiIqSmtcQI13LFvoMzxe3me0og6I4mrlKDEGJWJWVs8kstBhjGydXHiab1PDJOJOTt4mWr6gCGcTIDJ5XdgSVbgLg1cGIYJ2Z8WRkn6hpuYZyoUHxDg7kwWuGk73GqFPLNOLEuvVl8nAxD15CMpKI6Hi/HOFk0TinF9HCSuvBmtpRxqsjAOGUKUnyDOf9yqgUAMTQdsXAIXSsjaGhL4ceGdgyxtohhGaeQOwu2vTXJVQn6rqqTFEhQQaClEA0/OIp0wtgQhZwYJ6lwGqdYWPORUlSC7+tabH+PR0N64GRlnIYA0Jv8uojD06pqME303/a0A+MUjmXtdOCGbD5OgLbesRoneoxrrYxTCw2cTI0TW1VnME6Mj1MoWuE5VReRCar1z9yuMhonPdChAa3JODGpOsmSqqM+Tj9+pJ2zeA+z1ya1jjCue0kLuJJNiMED46Qz+6oUhurgoZdSVK4psicEmHHynaobMWIE2trasj8xoEh4StXpF6S+OPYg9eZO03guq3GyVNVl0qBYTOsMsIyT1GBcAGqkyigtldLtCIUkVLPi8LbtZgBg0ThZjeLMJpbajfunty3Csm90V3a25YqaNqhXY6hOdgr6WFkNTSKtGufFmXGy+DgxTERTe9q2E1dUYqSFqKbCFUxVnRE4KV4YJ6px0lkm5rvgGSe7d1Oqrcn4P8c4ZdM4se7qXOCkLZK0/5TVwwlwTtWZ4nBzYaJBlCeNU6KZ3+FlYZzod0IDjKwaJ4sHV1ohhoFgqEtf7m8kogWyFWqGwEk/B4pKvDNqbmCOWwJBBZKcpoOyTpubEvamxEbglJlxsqahs/o4kbB2M6abOJjpuohTqk5JmJ0M3DROOfg4OQVOkiQZ1zZtg8QyUtqGiUBmGacWUxweCmUQh3MaJ+1421OK4cZNWZtiME58VR3sGqcuMUODaICm6qjGSVG5qjonjVMkll0cTu8hVWg3qifruVSd6Z0FMOaqRqquwjwerqpOBaE2BIMOMMwxbam6UNS4D3pinPR1ljhonJraUzhw1ps4/4kPMr+HFZ0pcLrllltwxRVXYPHixdi2bRsaGxu5n6DDTNVZbuqqYoiLjQBCXxx7oN5cMCkyVdXp7+2UqrO2STCfwDNOVDCsRuKGE6uU1nycaliNEwA0rNfHrS0kCRo4WcThbKpu9dYW/NjQjm2N+nuFGB8n69gAY9G1B071nHaCZRYyOYebbVT4G4j1BsOydirJwjBwGicvjJN+YdLFwylVyf6fMUk0/tzu7ByetaqOMk5RZ8aJLoSOjJPDDdrQODnaEXgILFiPMiAr40RvPpRVdBI7Z2Wc9MBJtjBORuCUiXEKm9dv3qyTZYGuQjtXRUS/A1aXZTJO1CU5lVHjZJ3X7oyTNi+sjBNgbrqiIRkx2Sz/Nl6q3/TMwMmcm7Ecq+poJaB1HlIROO3Hxv69MhJCBAokVmRsq6rTHnYWh+uVakyqjgYjPOOUW+CUSefKitZtjFO1k8aJT9WlLak6upliW66Eo3FXxsm0StA+s0pP06WlMJpSIZNxUhKAqtotCQwfJ1YcbprKEgIQvXcg+u8FRCr1cdBUHSNXCWufFfXDOMl2jdPqrS3Y2pzAG19usvW4zIjOlKo7/PDDAQCTJk3iHqeNdxUlSzqlxHC9aNiUDJuqg+Y308vKMHI+Tt5TdVz6zIVx6okGIKVNPiVcZTixSko7ZMnUOBFJ1hanRr2Tu37jT4AGTvzNj62qo+XhEg2u2Ko6gPeYYsbPpuoAPXBidrKUWaiIyLbzAjDCecXOOAFaum5Qd7OFjzUAaU0qxkJmgx4gpCEjTe0IfInD7ek5ln0yBcRm4CpzdgTeU3U0YKyMhjhLg5iFZbF6OAFwvEE7p+p8ME7NlsDJo8aJ3kCTDgtiJsYpxQUhvbi/ESNV52xHQLvGUyTSKqpya5OpvzEfOMWldi7o79XF3FDYmhJ7rKrzyzilENZ9nOyBUzgkIaZLB9LhOKJp/Qaj34Sd7Qj8a5ySadWs7LTMQyvjxIvHQ6gAv/aQ5k1cVZ2bODzN2BGEoEKGinZWHC4xgRM9Nz4Dp0Tafq1QyBKg6OOyaZy6xAy7EAMWcXgirXLrAE3fs87hkVil6a5tY5z4z6wi2nfYLlchoRAzcNJfaw+cTOdw2SFVBwDYqjfy7rkLENHnto1xMltwRaV01i4Iho+TFGYYJ30ToF+3KYVgXV0rhvWqzvxeFAFmnHwHTosWLSrGODoMtPFu5sCJZ5y6kXr0lCzPz8A40XSJU1Vd2JPGqQFySjdcC8cNelZKtSFMUgjri4daMwihhu9BG8TSHZiZqnOuqlMJMarZwtRQTQ5rOic5rE14ywVNFzirKLUXGvAjs/i1ZjC/BBzsCCxMhFUgbg1AWhJpo/WDDbkyThY7Aj6gTdmfz1zQIcUMdPiWK5kDJ1qJZGWcopbAyVnjxJ9DVTX7JnKpOj8aJ2vglK2qTrWk6rJV1VkChXRaQT/aJLXawjhFMzNOVGMTCUlIKST/yrqUJXBCgkszs0GDa+CkphELmTdPK6x9GLNV1SUp4yRr4YMMlUvV0TRWOlTJBE7aaw3lQJ5VddtatDGHZckw/6Sgfk1G4MSJx8O2wImdX5l8nNKMOBww/auaHTVOmX3n3JDKoHPVgg3irHGqjhktkazHFdFPekMbv+YaqbqU6eMUrah01zgZVXU0cKLtVqrRnlI8BE6mc7gRFzJVdQCBtI0GTrsy70U1ToxchWOcvLVcIXLExjixc33VlhbvgVOqNftzSgTfgdP48eNd//bhhx/mM5YOgZtrLHezNBgnbUHvqmxHL8kScafb7U69OhztCGiqjk2fufg4xaUEoJswKmGzsaOUbkcoaWpqlG7D9MBJh76QtOuBk2wJnNhdHvVPMgI56pwdrtB2LZbFiC66FTIfiPSUGrCWYRtaMphfAoz+y3AO1xaW3l1i2NyUsAnErTfkjG1XjMCJrarL5OPkXFXHBdFWcTjAUchhNaktGqEIzzi5MQo62H5oaDZvcBFPgROvK2Ib7jrbEXi4YbIVdUB2Hyf9O6+uiHBjYcGeg1YL46S0bjc9zap4xsnUZLj7OAHaeUgp6fy9nBxSdZzGqYt5s7I1JWY0SDHZ1LNY4Z1xMsXhRqWWFIZMkqYxZEg2Pistx4zNDknTQEefA0xAGJVSUIkWZFurNN3AuoZbX0PPz8ZG7TvqaWGcYpJl/rRsMcTtIVli9JYOveqYzRltu2JP1VVk7XTghkwFQqxJMPVi4zRO+pzcRGrRR6o3Aieqcapr4Y+bMuoknaD1JohVxE2Nk+IcUNNrvFLVvsM2OY5EWtU4ODmire2pNvTU264YgTmjcQpZ7AhCEsFAaQukRCMgyUD3YUCTnq2wMk5hXuPkteWKk8aJtS75bkszgD7WVzsjwIyTb42TFQ0NDfj73/+OvffeG/vss08hxlRUuNoRsA1+6YQzAqc6c8EMmRRrVudwJqCguxyu8a6Lczg3LCZwQrpdm/QAmkkFlCrLBKSpOlWb5LLqkqpzYpzoDcBlMXJlnCypurasjBN/06eB1pAe2sVt14Lwn5fRkoAJnFKGONy/j5PEfC8SFzg186+zvI8vHyf2PLFl44olcHJK1Vk0TuzCxNsRmALqrPDLONGGt4Y4PLPGyeb6rgdq9ajmU8QAENF2pDG3VJ0RONmvs5xgS9UlOE2HJ8YJZgNvJ8E63RBEQ/x3ZwNN1ZGwycrQFkqSqXGK6uJwVQqbDLn+nbkZYAL2KrZMcNM3AfYG3q6Mk25SKalp1EKb52FZdjbjhbbBjFoYp0RKZarqWA1OjoxT2qwItYKt9qNzmjJO3auiqNbtCNYQvaBBn8f0HlDfyq83LUlFC1aZAClWmYFxsqTqKlWdcZLiRiBHwrouKdXmzjix4nCq4QQwWlqt/ad2Jy1NR98r3aZFi6w4nGGcvDb5dWKckhzj5EO3FGCNU86B05tvvolTTz0V/fr1wz333IMjjzwSK1euLOTYigLX3Qbb4JdC3wl3SdeZC2bXQdq/KaaqznIBOmmcjOdmYZzawC9SqVAFl6qDHjg1IY50nPe/sTFONgNMczdFb/KOjBPgwDhp44/RXnWyduH3khq4VBBlUtxy4nbncO3fwT20izubiDajJYFKncM92v67OIeDC5wyp+rY31t82BFwjBPzfhGFp6d7ZkjV0Rs02/7EyY7AalbpCMo40UXWo3M4DZCzVdVZtWySHqhtR639zWMm48RWURoVRyFqFVAg93AnxompImIDh55Ul0W9p1jGSXL//um8HtBNu1E5Mk7MjUtjnPTv2eg9qTNOYQkxUN+ckHGDIwrVONmPiwYjfnRObi1/AHsDb74lC6NxinUBKjVjZLqG8s7h/PsqtlSdwtsRSMVlnGisoajETJvpzwvJEnpEtM//XtU3re31QDphHE99q4VxSqSRVExhOIGEeCyDAaYlI1Kh6polqcpYM4mxRpuBU1MirW1aqR0B6+Mkh4wAabSsB040TUc1TkTVgh8mVafK2ryKSR5SdZRxku0+Tux98LstPlikzsI4rV+/HjfeeCOGDRuGk08+Gd26dUMqlcJzzz2HG2+8EXvttVexxlkwuIrD2Qa/FDrjVJ3ejt50wazdSX++h6o6tuqJPld1YJwYm/vNMtt+ogIKQmijjJOaAtq0cTSRSqQrLSkOyjgZTuPu4nB6kzdocSNwcl6MVINx0he1rpp3VC84V9W5Mk4MW5JMq8YiNqSndrO0a0FyYZxYjZN/cTgbLElq5lQdfVxViaFbchq3FTzjZC4QYaUNEszzmSlVB2g3AcpmyhKfNvZlgEk9nOjGIGuvOqpx0sXhadVmFZHJOZxW8dXJtbb3lphUHXtjtaXqIu5sly9Yvs842nnGSf8OZKjoDj1VTlN1cshoW8E2wLYGTnReD9QDJ8fAWlVA9YpJ6hwOQNGvzSiTqqPXrSKZIl4YVXWy7bgo4+Snss5M1dk1hTbGifVxijGMU7jCOFe0GCCbczgbOEX15saNRq86/W95ME5OfR0pWO0VXZvYYpTuUW0cP6IH0pK+xrVsMd5ruyVwaklqjFmUSTHGK8KMONxN46R9ZoWeqmuR4uacCZuC7i6xsBFkbW1OGLogzscJMNa4UZRx6rGL/l6V5nNSrZwhsiJTxsmLONzsQKFYfJzYSjp/jFMnCJyOPPJI7LHHHvj8889xzz33YMOGDbjnnnuKObaiIOGaqmMoYAqdcQpBQTdJ/8KNwCnB+Dg5p+oSnB2BrodyYpwYGndriG94mrZWUug3uCbEkbIFThUghBiMk2QVh+uHrKjEYABCtlRdZsbJ0KXoN9ieFh+nTK7hAF8RxjZ+3am7R8YpU+BEe9URxscpF40Tc944nZh+IyI2xqmZC5oAPmh2Au8cbr4f9RECtF1nFwf/FK6iLKUaQbn1RmD0qvOUqtMZp1o9cMrm46QHy9XM+KzfVSbncFmfx/WyQ5smnQGskhLcjdWucSqQCaaVcZKcGaceaERIIiCSDFT1NF+gz5sQSTkWhgDmvB6YiXFiNjqsxkm1ME7RkGxchwrCBuNkVNU5icOlAjNOlo1RDya4qoqGUEk1TpFKI63ZEw2QJG0DF/YhDtecw518nIqncWKvZ1YPWxvSPr+ZVKAlrM/d5k3G67ZbUnWtSYVr8CuFtX5+nI8Tx6ryqbqYLvxvQtycU4yFgCRJpglmc8LZxwkw1rgx8nfa7z1p4BQD9N6QSLeDbXSf1uddpZx29j1kQf3ysjBO21tTNh2YKzpDqu61117Dr3/9a8ycORNHHXUUQlYfpDJBVjsClnEKRw2aGdBp8Zr+2i/ptuwaJwdxeIhNn9FJmnYPnFRCTFoXAJo0w8pmUolkBbN4A9pkV4nhHG7VOLGCTMo42VN1dDHiX6sYqTp9/F0Hav9IrVyQxfVgcwCbqqM302hIRv9aLWCzicNtgZMXcXjIW8uVlCVw0o9dVs0xyA6ME0nYGSdrYOCvVx3/flUwb1hOTrsh5saTSJupOlsLCT+ME9U4GYxTNnE4zzjRsbDIxDiFW7XPq5e72d5bipnl06x4mLUjAFij2XwZJ2tVHc84dY9HIUkmY6JU9NCYJgq27UrYzoKxZf0Du8X1vzt8J5bAyWScLKm6kGzondKMxkmy+Tg5aJx8BE6Gl5iDzo4VC3etjHAsaGXUyjhpa1ovqcGYt25NflOKyjF3pjicr6ojodwYJ0JIxrZb9HpjixnYwKkmpF2brahAS6SH9mDzZkbjpB03rfxtSaQ580uEK1AVCxmWMSAqt0ZZU3VRRVsb6lWTGZIsFgKGzqmxjfdx4hgn7Zqq/f/23jvOsqu6El43vly5ozpLrQxKLYQCiCjAgEhjkxFj+IxsE0T2GPjAzGcEDGbABoTBgAMwwuMRDOAAAoOQEKAshCRQVktqtTpVfPGm749z9gk3vFD1uruq++7fr39VXS/de9+556yz9tprG3xMUKrOMCQQ85pK5sWFx4FT1e5j/ghVjRPNvex1cQ3iA/2wTlF0ZDBO1157Lebn57Fjxw6cc845+NznPoe9e/f2fuEyi8zdRtw1nEJpQFq3xxW0386sqhO96pTJk9JZZpqPE02YhokZWwFDbhV+GCGCKcETZwbmUUYnhXEKwggeMU6xVJ2h0ONNjzROZEfQH+MkNE6VVQj5a6q82S8wAOPkh4I9KhcsrOLVIXvn27quJV5Vl6VxCkOR7gxgimuQKQ5Xb8xYqs4UE1mkM4Tcvynq6DokdOqJ4+rpHK4xTvr7kTtxmocThQpAhYdTbEz3bUcQRZJx4oC4p48TH89l1xK1FHEAE2ec1O/VarK5Y9ZKAidTKZ/ui3FassYpBlyNtsao2JaJyYorNDpBObZhEcCpk8qCqWX9a0a4DjGVcZJj1YclDEwF42SQHYEBl/s4BYb0XzNI4yRSdYo/GAddg1gSSMapmHhM97mKm2MqGienpKXqaK7MStUlNU4+Gp1AMk584xZYhUUxTuq9kAacCGzQBs02DdjK86omO696VETdTTJO9Par+TURjJNio1BylVQdoM218ao6spqY9uV3YMRMK+n6H5iZBaV66yjo65LiyQdAMk6APucr4nCPrzkVq4+NCc2ZVnfGCegzXRd0lt7r7iBG38Dp3HPPxZe//GU8/vjjeMtb3oIrr7wSxxxzDMIwxNVXX435+fneb7IMoifjFK/wUYDTvD0hc8JeU1oMZLRc0ZzDwz4YJ6vAPoPCKYuJRdxonBmYi0poFyeVTzUAy+GMEwGA9Ca/gcY4kcbJ0s8/UVXHr5uiMWgXpXieolufOkDXONExVFxblHy3vFCrwOpb46Q0YPb7afKr3piJqjpuVIfYhCFSdewnacnQWUhhnLpPNqL60I70ik5AuBOnpUgopL5H6sScWLNpq99UXWtWjn+Riu7lHC7Tg1kARgUPcdd3p7kPADCXApwMEocbLa0KLG4lktazb1FBAINf/1LMxwlgIHaK+06F8aKMNBNM5Vrsm++I9yg5XY6ZfwdsXCkCar5BERon2xTgwoeVKGqQ4vCkxmmgVJ1o8JvUOGX5XAFc42RkMU5SaA1kOYcrGif4mGl0JONN52G6i2Kc1EW8W6qOfMfiZrt0bzZRQNPlAHphbyJNvnaUHVu9zVKNGuPkWiIrwI5fzrUiVcfnSddj3+GBoCCOzxQMkT5PzM3OAGAC9BbcTODkuyO6BYjKOCmpOlpHyvG+iGmhaqPiwCnBOPXBJC1jtglYRFVduVzGH/7hH+K6667DHXfcgXe/+934+Mc/jtWrV+Piiy8+GMc41BCTb5bGSU3VAZo536w1oQGLLI1TNx8nS13I44yT5WLBUcAQ1zgBKnCSjJNnVeXkYRcAw0AQRKIUP844qR4lsqou0M9blDbHGCdquUKMk1WAx1OFNX9aPE9Ui/WqqvMCAbJKroWya4v0iKpz6jtVp1zXABY8mpiygJN6Yzo6cCJWUOsrqLyG2uHspYowr5E4rp5VddRyRe22zsdaSUnVZYW6QKe1W2H/T9/VJ4LSdMVRVgUF9O0cbltGZol9nFVRr5HDGad5exLxMHmqrgLZuBbItiNYeqqOM378+sdbrgDsu6BUXViNAyeZqktLH7LO9ew91PGfCH6/0o6dQEbE0+iqxkkCJ1sCfmGAmZaq8wFE/bnI03F30TipxR/rKwD+6WXALz7PH7MkUFAYpynMijmIhmoc1HthqG1YHPgCwFmmgSKJ3DXg1D/jpAqV4xsNQDrRNPn9Gff7Izf7OopoFihV90RiDVjDWbqmF/AGv9IfqezaLItAGy+VcfL09cnmjNNeryiPR/SX0/sELsxzRtQuI4KZqnECgEZtqzxRIMY4SQBE4K5s9cH88HnWMFOcw309M9MX4yQ2M0tpCXDwYkk+TieccAI++clP4tFHH8X/+l//a1jHdFBjIDsCIAmcFJrUzwBOaRonumE1wXaccbLjwKmayTjNR2UEESQjxgGdF4Zip4C4j5NCjycZp7jGKd05XDBOliOq+kYCyTj16+PUCWSqjgBTwpME6c7hqaEAJL8fjZNojFwELH6sfAGy+XVzEUvzEXDi2qh90SgAIGgtJI6rX41T1eTnajpAaQwAhDtxmraEIi1Vl9A4CTuCHowMpekqq9Pd01NCgjUjs7qt23fnthjjNO8kxeEEnEpZ4nCLquqGJQ7nY4HfS/GWKwD7LoQlSdw/TWOckoySWp1W7Mo4SfNLAAnGSdM4kXO4Ig43wnjLFaU1kBHBRtA349RU0mPpdgQSWJ6Ge4D7/xP41d+yx1SNk1MS7MYqY0ZogTJbrsR9nAxfXL9qwUaZG/B6hivnqh4gXw0aQ6YBLQVHIRinji7SpqCWSI2ogHaBGKcnEjrXNZxx8oII9bavMU6ubcKxjFQvJ1qfaGzbHsvkzHKNU9GxpIWArzNOdQU4AQrzCGjAqV7bpp+0pnGS2Q8SsJcWzTgF2jlt5ZXT9w/COCkeVMsplmyACQCWZeGlL30pvvvd7w7j7Q5qZNsR0ICJMU4KpTlrjqUyTkk7gi4+TipwEoyTHKwNdSFxK0KT0Db45/Iy7nnwNB75yfBdQxBKMbnhxxkneSyCcRJ2BHGNkz4Z+XHgZBfgl9m1GVOAEzEpvXycvEA2w6RFKhU4dWEttFCq5wKYiTx7IuL6JqA/xikMYfCd3l4OnDqNuSTj1MU5PIoiyTiRO7ZbFswXuROneThRqAs07eiSjBNP1fViGQg4Vdf0vRgJQ1fTTGVYgS6MUxig0GZjppECnAzBOKWn6tx4qm5YPk78XqqglQD+KuMUxXrracDJkYCWQmVu6PFuVXUEnOwU4ESWEyQO96CIw/n9TtqoeLrDHaDRL9knFB1Tq5ykUK/PWod/Tpst8lqvOs2OQGWc+LklgFOY0DjR9asVbZRMzjjBzdzkdYt21vzPI65xiqfqbO6zVkcRLQGc9iQ2z2tHpCZputHRHc/B5rw0LyfpHcVZRw6c5qMS/7upyUUAucFq1hlw8i32eFaqbq4aA07C3kBN1blo836fJXMAxslyEowTAaeT1o0AAHYeaPSsOk6dn5dRDAU4raTI1jgpPZDUUBinaWNc1zj1YpxSnMONVI2TpHFbrp6qIw1Ah4BTYz8AVlXnh5E8Pn7cfhjBowa3scVPq6rrxBgnqz/GSVTVWS4CAk6hTNVJjVP3liuA9Dyh5xJwUr2c+mecMoBTMDhwIh2amwBOC6wEmAswiXHqNOcHStW1/VCISEsCOFVjPaV6ME7KAi00TrY+DtWO7V2DPJyqqxMu1Fmh9sZLE0RHSnd50vUIHVhjPwyECCIDDXss+eaqj1Mo3+/gpep4tSTfJJXRSrQMWlWTGiezGmec1Kq6FI0TVafVCih202UpfeoAJbVOGifDF2CYijp8w5LicM6UmobBix/0lMggjX73KO1W0io71VT8lEWO+gv8MRslSkErqboJzIvmxKpDt3YJfA+moQi44YuKxFrREcDJM5xFicPTmmGrIVN1bEzF1wnLl8CpTVXN9T0J9mq87IjXHqh39B57YCx7mpdT3I6AWmzNgTe+7sI4tRvsuT5nnMwUHycAmKts1k9aZFHUVJ2LFmecisZgwCmI9E0rrbkbx0uouBaCMMLOAz1YJxq7RzLjtJKid8uVbHH4fmM8xjjRrjsdOHlBJHZUtNCYapVX3MfJKgBOATMRH+SKxqlj6ALNeZTYe1djjFMgxeHxijK1qk72qoun6rozTmI3aLkI+UIzrgAnqXHqbkcAANPcz4OeK/xIUlJ1tSJ7TtwvSQR1544MRIMwTo4KnGhnT+agKYyTsovfD7aD8psLgsGj4+wGnFTwR9Q/3IoEDMZwNE592xFojFNKv76U8JUFKC09pf5Opdmi8pB/3gGMwLJjDC8grkPB8BHwcahuQg6WjxP5olWMdgbjxICTUVtcqm5VtRfjxEFBlJ2qo3nLjui5UhxuqnYEflsrmACIcervWnXTNwF68YcwBQ06gM+E9UWVYSlPIDIsmEaESWtOP7fY4USxcafqnWpFGyV+T3aMmDi8z1YyIhWWxTjx4yKQrzFOYSDY5kZUFBpP1Y5AHqsjJAjT9Y7ueA4moJdeTsn5rmBbQBTB7BDjVJbHrTJEkBssr8nAhm+VtXMBILsjAJgpb9FPOiNV1+Stu/oCTnzsGl2q6lzbFA1+e6brcsZpeUU7046gtzh8P8YG0jgB8kYlAGSkOYcrjJNrmdgbjfE3khqnJHAqpzJOXhhKYXQM/KiVLAnGSaTqshinZFVdwKuLxqIZ8bxezuG2ZYrjOBBnnFKBE3s/1RclNUISy/L0lNj1ZNgRpN2Y/NxJ25RknOpiJ1SPCljg9HnQnheaMTrObiyIEMU7FizqAO5WpPEjZ5xW95uqy9hFO/1W1ZE4vLqqb8aJwJptmZL90pzTk8BJME4cOO2NxlIFuiqYjdrse9KqoYTGKenQv6igKkm+EJbRQtHRryXTOM0AAKyRbsApO1U31YtxCmMaJ2qRxB2cHfgiDUeAwoOdYJws09DTdNSs1eifcRJ96jJYT5VxqoVz8oH2AiqKxsm3ioBpwSuylOxUNCuPEUnGKfTjwEnegyNFWzA3HTVVB/QE+hTkeJ/FOBFL00zTOHlSM1ZHER5n3NFZkBsgHtWiLTaEBxodvccewCvrUlJ1BJwcE/AaMDj4XQBP1TmWzhBBNqGmdk2+nZ2q8yMTM8UN+klniMObITv+Ql+ME3udaak+TnyMBipwIp1TD4G4mJ+XJ+PUowHNkRWa+dki7Aj2YzRd4xSb/FU2qxOEKDqW2OlpwCmFcbItA/uiUWzHY1zjxD7DM/TjmouYxqlVmEARwKxnYRS8VQB9rXROd/wLcPPf4xXTdZzjNtDYdRb+T+fF7NgTdgTdGSdbEYejyhaaSQU41RVvpqwo2CYanQDTdXYtaIJZVwrwV84X8Oie5wF4MgDGqJxp3IPL/J/gffgvaHRq6W+qmF+yn73E4WmpupgIV5iDOmxi8BoAN79soIg62LWK2nXBOI2XXTy8v9FVdyP0TQUL8Piio6TqUn2cZh4B/v19zDoAwLv3h3gQr0LHD0V64YXN7wL/8V3geR8DDFnOTmNv10wTl//7b/Ffz9+CMzdJG4B9u3diCgw4FPplnPh7OiZL1T3HvBkn//J/Acd9EShUBYgyDG6QiA5O+sV7gBsOiNTgvmgkYeUBALBdeJEFxwiE2WjHZ20rLne+jMI/fQ4wDLxmxsdNxgvQ9rd0PdaewcdC051CDUDVaMv01I1/B/zmKpze8VHm5oFWba3+epGq81MF63sX0hmnKIr0NJiicTINWR0XKeNSpuqSVXVk1moZhlL8UGIsYtBGAV6yii0I8edX3YHzj5vCS884Rh7zAIxTJZiRD3TmUaqNCzsCz3BhA/CKq+A29wrwmSUOj+LASVm0a0UHRYOAky3nKoAt+vG5OyU6QXoKjiIuDtcYJy62D8hXz6mwVJLXQMXbr71PrWiLDeF03cPGrhondq39IJSSCNsE2jPs8yJDzDVpjFPZtZlwnr+PZ2Wn6nZGq0VnCQC4/v59cB5r4mx6P8WOoBlySwSaBxsHgO+/U6b2nTLw3L8A1pwi5lnTcrIZJ8vEscQ47dEZp1/cvx/f+NXD+PCLT2FjTqTqqliOcVQBJ7XZaSHufC7AS4xxKk+iU5hEu9XA48akNmgDgxinmI+TApw8zgjQ/GCmMk5ysNqmid9FG3Au7gLGt4gbKQ6ciHG6pbUO5wG4sz6K88CYLXFD0vv/+C+AmZ04BsAxJoB9v8VIcAH2YVQAp8Cw2XAX+XN9ByWr6mhHUoBVYi7qq6P9bHdhWtIRu0tTSAJOZL1PlPax9ZtxhnUd7j6wH8DbAbAF6HX2j/D09nV4obUBP+xsSH9TwThZ2s/MlivxBr+AWIBE2TdNGKVxLsqPgAarBqtHRTQiDpw6C4JxGi874rizgp5bUtutKKm6EbONjRMlXWB/xz8Dv/s38d8zALzY2oy2/wwBnF41+1Xgly3gKX8ETGxN2BH8668fx/du3wXbNDTgdGDfE5gCcNesizMWwzjZFt5mfxsbHnkAeOCVwEkvFudftC2UXQvnmndi06Pf097jnmhD5s6/bpQwhgVEvKl1Jwhxjnk3XmFdB+xkz9kC4BLbwi/9Z3c91q7hd8RuecGdwGrIqkYAwI/+AmiTwgTYhzFMlWPeU2mpOgU40zifrLqCcQojthnRGLeAQIGlA0rh4xSI60XGrB1IjZOWqlPHlSEXwDhQufGhA/jfNz+KXz64XwdOwsMpHYyMlhzWJ80xUejMygfaC3DHTZQI4BguSgA6pSlUpiF0YiobEoaRAIlhTF4QT9UR49SGK6870LfOicZlL8YptaqOzxmeWQRgYN1YGShPAbM7UfJmtPepFW2UiHGqd3Cs2mMPwEgpKQ6fafJ0l8Hnhmk29hnbxI6rqDJOnpyjJyouKrPsfby0VN34FgDAbdFxWlPwr173EJ51wMfZNhIGmHWSABB4vecHwF3f0S/Y5HHACz4utKSG7SY2rTRXuLaJ1Vw0/8gB3fT3y9c+gP/87R6cvnEMb37aNsnuLVPG6ahK1aXpJEQEEhBoYVq49Xn/Bxd3/j/UA907JKuqzjQN2bMqCDHblJNBOuMkB6trm/iE/yr8w0lfBk58kWSczBhwikoIwgj3F5+El7Y/is+U3sreSnEOh99mu6SZRwAAPznpo2hEnCo22E1HwKnu83OgNEnMzZpSjQ6J220XY+u2oh05cA0fjT2seSRNOFk+ToBMM5E4nCYYajXihCp1HaDM/14zmtnO4YprOKAApyzn8C7icDfOOBVHIPo58bSWyjgZnYbGONFxZ4Vm2aABJwbiXn7qOP75LefqL+KtdnDSxcDxzwcAjBgNnqqLYMNHgXvM0ARPgJ4mrnme5qRqRgq63vOBkv4IvaQARQlRVcfF4WsMrnPjTahJw1NwTFQKNtZQk+z1ZwC//w/4/imfxqf8P0hP1QGYB7sWfp29b8cPMU5amjWnAjv+EABQRntpVXWe3PkucPNZ8tFCpw5w4IaXfxm7n/e38P7rD4E4S9YjVSdsNzjQoEjonBTGSV30IrLJgOwZRoyTpnFKS9W5FS0FHa+w3DPXFj9VZ/dejFPRsfDdt12Ab//J+TCaCtvCx16Fi7hb/B4hs9zJiH2fajsQLV3XJVVXK9pi49aGwxDGgCaYYhHPAk6iV12KxolfU7dcw1V/ch6etn0K4BWg4t7jMaJqnBodxceJHe/WqWpC40TGkMeMldgcycfePCR4YD5OeqoO4FYNBgEn9rjGOG17Jj6z5Qr8v94bNXuSpudLkXqs5Uoj4O7ltFnmhUnYdB7wpD9gv/NKSpGqs5MaJxWskvwg3lrriTl27EL7tMxTdUcXcOrmGquwPvEIRzfhwWgdG3C2ZGRE414zOfmrlgQEnGpFWzelTPg4FWCbBpoo4qHyKYBpZjJOC9yOYLbl47boOOEs64ehTNVFAbD/XgARUBrH/eteJHLlZbThWgZsXuWyQPiCgESslDlIpOpcVEoFPAyWtph/9C7eyqW7czggK8LiVXVFXvZqR/IasT5PHGChne0cnsk4DV5VRyafwuzTLsrncX1OHQU0QGXgdaEZGxcap96pOtZuhZgvyTiNWh2sGy3pLyId0ubzgbUsjVlBU2ichK0BIECvExOH00JNiwKFy/1/FkJH38V3SdcJIG2aKNoGJsEBBp/s44wTMQ1Ycypwyktx79jT0EIhkeamqJscODUkcBqlPlsT24CN5wBgTV+XJA5XjPbmjap4TwS+vOZ2CXjS72Ptua/Cus0nJN8jraqOH1PHl+L9smtrDEbiuAk4Rba+GaNUneGL71QwTpHCOGnASRlXyoYgzjiRlqnty0a66t+7FShsnapg40SZpXDESfHKOlMBOADaBQZKJ6gyUZl+1WNKisPlMVULjljEqeJr0Mq6TKkGDxqO6YwTGyumW8WZm8ZZmpXfs6QvAmSlKUkQdDsCdrzHrqokGCfS/VA6i9LyJAwHOJCzk4xTtWCLOaBjEuOknJhhYHftVCygrAGnthfKJvKxVN2Cz+ZQsVluzbCfa04GNuzgr+H3T0AaJzfTOdy1TFk5HWvmTuNNaJ9Eqi4Xhx/2oJvGMo0k2MlyDgfg2oqRIKWyINNuccaJvSYJnEZLjs6ApDiHx713hDhcYZw6cOHBhh/K96ZF0Q8jKQ4HgCfuZD8nt8M0TcE4ldDGiLJGzieAky7eE1V1dBNxZm6XzZrCdp74nVbx1p1x4sAppnGiShxHAU4dpUFmBS20vDBd4EpVdXxIS7o4i3FSFhaKWKrOUfVcAjixxbQZFcS1tL2GcBomIXTHD7UdvBoqAyEBXFXurtLaDQgB92qxy60aLbQ9ZoBZhZJa5ZNZ3I6APrceY+0KfMKdCxx949DFy0lonGwDY8aC6KOGFgEnnXEibQsVM/iiIjV9CmqYTMsWNmb4+4UYBb8upTGxgSkY3tLsCJSd7UKgnLtX1695Skm+CM3HSResNxSgz/r6GYq7eBw4SXG4ZSUZJzVVJxkn6eNkqXYEatEBMU6Gl6iqUwsx0n7vBpxENBTGiQPnMmdYmhE7dmpPMk6Mk5qqU++TGHByE4wTe7xFoGNgximjqpqHSNW10zROKZst/rsbyPuvVnRgGIamcYr7OG1bVU1onO7fs8Af4+/Pr+VcgnFKnnO1aAv/N89ij8fXOBo7HYV1bPshWhHZIjQ1O4KFQK/gJDYZxbHkBptLIixbisOjmHO4a0vgNN/2BfMehpGw7HggZ5yWX3Trip3pHA454Lwg0gSJNk9xpDJOyuSoA6fujBPtKOkGp4nOV4BTw2SDNowiBTjJ6j1RrQFI4DR1PCzTQJPvLspGGyOuPG7JOPHdToJx4gudCiYA7CtuAgBE++4RFgemkV3uC+ju4YDUOLkGAScJdli7Ak8cM6AvRiKUqrqKK1uuRFkaJ3VhocjSOFmFFMapiAZPQ9hBQ9E4STQa79FEQc8tJzROdO1TKk5UywCl+o5SdZouhzNOVgyE0y46fv2KHKjO+7bOOHVxDxcaJ9PUigOIuqfxSIxTAjgpzuNp0bTYOUZ8su4ECuNUHBP3YXHJjJPUus37pvRA69T1a94tujT5bSh+QDSPFO0MSwLFx0nbjCl2BOkaJ0rVsfskkarrwjilgaUoijQLha7hNbVqM7qeJQ5wGpwZavGKxQluXaKmkbRjSmicdOBEc0MzPDiME6XqGpyVTdM4abpI/rsTqsCJtyrhG8JOEHZlnNptdv0e2FfnjxHjxIBTHSrjZKYyTpWCLdo3dcyUVB1UQ1zVNiQQawK8lmJH4GLeY/eCFWecSmMpwIlSdVLjFAY64+RYJmoFW1x7YpmmlV6E+xbamG14uR3BcoquFRXKgImHROohf5wNSGrNkbZrVk0w5wg4FW2dAUk4h7vCSM2LMU4qcGpy4OQHEjhRFZNWVQcAT/yG/ZzaDtM00OTppTJaqKmME62RGak6UVUX6RPAfHUre9nMAyJdVXHtVNM8ijioKvO0XoEv4AV0xM3d9gKNcQKkRkgLDpCCyMJIyUEQDbGqTmOc2GKqapycsCnAyERFgtasBV22mlEYJ6ecee3Z5xL7sUb0k6uiIVJ1OuPEU3Uxxomum8o4dbwARa7pmfO5bkQwKF0YJ6WxMLEI7KRn+bkrjJNry3Yl3HVbFZenRctm52jwyboTZ5z4rrsAb2kaJ2UcNLxA3B86cFqd/loKsvLQUnU6SFUZWNGiJn7cGRonFdDTps9UU3UxxklP1VV1jVMcOClaE/p9vu2LsZslDhehpukAkaojTQ8BJ2KcxtIYJ+UydKuqGyk6go2mUvlB+9URcMoC7FbMjqAn48QNGlXGiZzWK+p3HvNxGiu7MPjvM7Nss5FI1fFNSB0ybV+wkwaY7DMtwTjJVF0MONn6phzgjBNUxklWly/4nHGi1l08dcgYp9gmjwNey7aFFUwUkDhcemcZhiFtZ/h4i+ud7t+3kBtgLqfoarcvnMOzgZMXhJog0abeUCk3YZrGaaIUTw/GncML+mdBLnqBApxaHDgFocI4+ZSqCwEYMl23WwInyzBEeqmIjgac5tp8Qu2lcYql6tqjxwIAagsPSPPLLlYEADSBLCAnGAcEnDzRnbytpOpGeF+3eipwkoxTtWDL888Uh6ek6sQCQ4yTpK3FRLHASnHrURFNKhEOm+LcR0qOyOpkLeiCcSpY+gKXBZw6DYAb4aG6ShxL1WiJXnVVIwmc4nYEaYxTo9UUOrcDnt6zr9ti5IUS+IyFM/IBvkvWGKeChVXgz4ml6rKqm9o2Mxc1+WStaZwSjNMwUnUV1NuBAMPoLOiO6t1CSdUJppmffz2lypQ8olrx41ZSdepmzFCAEy1+Fvf3YRqn/hinQg/GiXQn9LNWsDNbJ4lQ03SAGM/EYtYDBpwaLtM4jXHrgkxxeNg9VSeAExXAZDQlz4rMXqU86LKnapzSWGr+u61onATjpOg8C+pcwqNUYqBgZn4ebT8QlWbHxlJ1lGEAujBOri2KaIhxsmKbVze2KQfiGie1qs7BHAdOpJ0TqbpujJMlGScCThKssr/HW2vtm9e/8wf21tNB6jKKowo4da2oyHIOV54vyjgdAk7EOKWl6qTWYZa3DJiIv3VKrzoh6OULi2ScZIqwZXHGKYww25Qln0Eou5/7Bt8F8/J5lqqDWOzLRhtVhZiaFcApPV2UYJwoPTF5HACg4h1Ae4HtJrtZEQAyVUdBlLbFb9qi4aHRkhUZJA6nhripJpjEOMFCwTFh2ew9jShIdxVWtUUUSkqjWrClbsdy5c6nLqvqCmW+uCNCwOn2asFOraxSQ2ecVAPMDOBUJ5FyESiMCI1TBS20vRCdTHE413sR48TBqAo8G3X5Pc/EgVMXcbgw3TQNjCq9CqU4XGecpgwuHufASX19WnQcfm25l40GnBIapyExTh1fbCwWn6rTDS7raYxTVo+9LMbJlkULMlXHy/1DUzJO/G/Mxymlqs5IMk77UhinReubAMGSkBZpgafU6jZrJVWJFgCvJVJigJ6qM2IbnaIpr1GtYIn5pyEYp8Wm6tIBYdyOQGec0lJ1SXF4rcjOWWOc1N59PMpl9tr5hToe3t9AGDGwKq4734Q0DAkeNMYpkapjc0CLUnWZGic9VadpnBTn8DmeqhPAiVJ1XTROpu0gMkgmEfNxstOB094FHfTev3chB07LKegLTNXfZDX5hUpx8hucGKeIM059isPHi7EnpfSqczJSdYGVZJzCKBJpQIBpJmhi9NV0nWkD41tgGIaoBCujjZrLK/YiS5Sq98048QlrdHwSuyPua7PvHvbePRinOHAlEaWhpIbqLTYRtf1A0NwVoXHqxjhZcCwTttrKIy1d1y1VZ3DgJLxXXPk8vlDUowKqVcWMk78fq5zq4g4NCVzKGXYECY1TXKTMU3UVg1fV+VGMceJGjaZOzVP6oaO4jbeov1VkYo5wUo/FKAgjgUVty8SICpxijFPBtlA126jR8XH2pleqzufAye5IHyeRqjtIGiedcYqJw7uFAJopqTrBLvbDOHGNU2SlV9WlaJzakXQOT0/VVaRzOHyhVQRYunV/XYJjuZBJp/OekQWc+Nw473ONk1VjxwqIjYDaySB+DSjUBrM1RwH8QTxVN5g4PDNVF5vLNXY8VRzO7lnqYQf0YJyU4otalb12oVHHA3ulMFzIHPgmpGmqwElhnBSvvWrBVlJ16YyTEycAwOaotsY4seOMLBezHfZ6UQmuMU4xLSwBXtMR7buimMYpDpz2xYA6xf17FuSGMk/VHf7oKgzMavILHalHkRSI082QxjgVlNeQsdlY/K2DDmNDVOfw2GIngJPGOPFSbUXjBDBGQdoXKMBhfCtgObAMQ1S5lNBGheyeYElvH6piCD1NHOwHEUyEMHlzUVosVlULeCBcx67D9H0AsvvUiWsTS9WJdIAy+bUaHDh5MlVHE0OqJYFSVedaJhynkHhMiy52BA58XsHD39N09F0mGOM0USuizhkKw+Nl2K6V2uhVjabqddVPqi7OfLikcZKpuu52BHpVHfudHUOryT6riQIWOgrDBmQyTqpGwrEM1LwUxknxcRrl6ZkWCuI6+j0WML/AGijb3Fm944cYURknTeM0nFRdo+MLwf9gjJNaVaeLw4VLfF+Mk1JVp8wpRprGiadG2pEpPt9OTdVVJWMV83E6UO9oZKwATv0Kw4GkxomPZ4eDuHkOcPwI2Isx9hwOSGlh75txsuX3XF8i45TZqy4GNooqM5VW6UWpOgU4jXDGqaywVXGNEwCM1Ni90GzUhX+R0DcBQlPU1FJ1qgFmrKqObyzbRhbj1I/Giaf7IlsAXYPWqVTGaYE9Rtpd0wa4uXSccaLPj/ckpZ8nrmXz2gP76ulSimUURxdw6iYOVwTa8XAUvYEfRlqaAOifcRpNvjVvjJlknETKjRgkS95wHZvdXHHvFcY4cW2UCpymjhfHKcThRgtVYpxgYb7FB77qm6GYAwZhKDU/gLhOU7UC7o+Yg7g7cz977x66iPikJVJ7yuRHC7qqcSpxcJBqgsmpYh8mXNuE7SjgLRU4ZTuHuwI4sc9lwEm/gRsoYLIivZzIRLLi2srimb6ga1owFcDR7iro6NosVRgOKKm6prAj0IAT12LYsV51qqieQFSHX+cWXCwQeO6xGKnpHscyUdaAE6+qU3yciJE6YIyJsn6hkcpI1YUcOBUU4JTFOHWWpHGSO9t6J0A9UoETaZwWkarzdF1ZOUXjlBgfHKj6ceBkq4wT+zuJw9uh9HGyuP7HVIGTU1YYJ71X3Z6El06H/xwgVdfk3z0J5NsLQODB5Ma689wLKAhD7IvYd0rjmaZVDTiFceAkW/dUuFA8iAw0ybB3QMZJrfBKi3hRi844pSzm/Pc0xqlSUFN1SeA0McJY1U6rgfu4FcGxq5X5iG9CSJoBxAwwg7ZQ1lcUH6eWSXYE+rmpzecB2eJFpOo8KQ5vRrKXnkHtpmgjVRqTc1UUsnkioEIaGwY1jBfO4TpYTWic+Lg7ZyvTwT28v44oT9Utn+huR5AU71FQqg7QvZyokWXXqjoNOFHfFWVR99sxjZOehyZqPUxJ1c00dEag5YXS/0kDTkyHZJoyVVdCRzBOASxl0VRaGSjMhx9GetNbPlmvUoBTee4BAINrnEpOknFqi1SdLyadYtSbcQpgwbVM2CrjlCYQ7+EcXi06IlUXIAmc6lERExVXtF2hSavkWj1TdY0ezuHa8QESOFVW8efy9IARAZ0mOkEoU2GAFIfH9HINhZkh0TIBp2bkSu0YjbWMqjq1nNk2DZQ7++SD5ONEqTrHRNVni+teWjiV98hK1YXFMfZ6nwMnr40qWS6UxsUCZBoRAj+jAKCfUAB0s+OL+wOdBck40XXPii6pOrqm2iLaB+OkGoMaSqrNEYyTWlXHGadIYcA1jZNiR6BQTASQCKQlGKdBUnVjzM8NnQVNezPrc8YpjOT3z68rzZtqqs6Mi8O5zrDq2jB5MU4bLtpCNjEg49TDxyn+50Iq45S0I0hN1SnzYFqqbnSEvdaOOrjuPnYPbZtS5hm+CWkrwIkZYMZ69EGvqiPGKb4u0f/pGtBP3Y6AA6fA0quzaQ4yLJ0dB9h1oc2p6cCwYqm6uDg8XlXHx9uTNoyh6JjwgghRXlW3fKJrVV0X53B1d+L5yVRdN+fwtmpHQMBJvfGCju4cHnN7FlV1KYyTqk8AGOMkxORpjJNhiIWepepID2XpbThSUkZBFANOHPxNVV08ELFUXYUDp0EYp7JrSUpZmfzaLTb5Br4Hk/cELERtmAgz7AhkVZ1jmXAcVeOU8vy0HLqSEinZBgp8t+tnpOqmqq5I7ZSNNlyLsV3iu8/UOCmC4fgCRzt3DTjFU3UVRNwSwwwWmI+TakdAqTpinGI+ToBkn7wWm6CaKEj2kipLM3yc1KocyzRQais6F26iR/qdgm2Kx5/QgFP31hfgwKnos8XDoFJoACiOaouH0SfbkBrxqjpinOZ2SeA4QFVdHDQ3uzBOmRonWFr/S8k4BXD4vWNwkNQKTYVxShOHVyXjZOiMEy1Yx/H00L6FNsJwAA8nQAFOm9nP9pwATmFkYM6TBQp744wTv+21Sr8Y41TgLFOtaIv5oQ1HpmcHZZx6OYcPrHFKMk7VAheHa4xTUhxuceaoAE9cc41xok2IJf+mMU6ABE5WKK4VMU5JHyc9VUfAPS1V1wgt3Q+QgFNpjNF/puJg3lmQ35slNU4J5/AeGqc1IwVsm6rCQAiTKhhz5/DDH901TtnicDWd0FHarkjGqb9UXc1RxOWmkp5Se9XFxeH8Z2gngdOBGHBq+1IcrjFOk9vZ25tQUnVtlJ0s4JQUKQdBpDX4pZRLwbawx2WT5ljrUVgIurZbAfTJSNNDKZNfp9Vk3eNjO8kyWumMUySr6lzbRNGx4AsvpxgjEYYyDaml6tg1M40IBQsoEXAy7CTjhCKqBVsApwpaQhQvUnUZ2hvZCDmmcQLSdU5xkbJhIOATitWpw/ND3QAzYUfAKi7VlkN0DX1eDdiCi3onYBq+HoyTKrA1wgBuZ1p/QmtOTMpFx0KpzXbTTwSj0glf6XWXFmZpjF2OqA34bQGcmmaFT9pyUTcDtuAvKrI0TtOs9yIKo/pClRZqqi6hcUr2buzJOMVarpgcyDqGL6oQSePUCqWPE1X5mgnGSTJWqsaJdvwnrmPaEj+MMNP0FHF4mrYgFgI4MSNctBeEaLkNB/WO3ABKjRPbCKSJw80gDpzY9asVHTE/tOHIyrABGSdvwFRdusZJBU5s42X2YJxk+yYFjPLfaQNuGsDmSWUjRw2ubTlHFR2LjX/aYPF7vWrJtaDFfZ+yU3UcOPkx4KSIw5uhHWOc+OaNb2jYGypzlRCH66m6KIoS1eyrFI1TFEVivK2qFXDs6qowT2Uvyhmnwx5dadqsJr9gN5MENBI4FQyPge8+gVOVgJPl6otTCuMkxOF8UlFTdV4GcGLtSPjrTJVx2i7OQziHo42KxYFTZGGupUxYKYu3H0bSjC6WzvSr69CMXNjwsdHY0wfjJB9Xd2Uqw9FpNzR9E0UZ7a4apyAyJXDK6lenOh2n+DgBQNnyJXBKSdU1ogJc2xIVLGW0RIoy7h4dDyEYtnwAxELyCSKtso7sCBStTehwx2K/njTA5N8b7TDVHoLi+Ak4taTGKQgjdsw9GCdfcQ1HYx8MRAgig4m/AaA9qzFOTotphfZFo/Jze1TVWeVRhBG/r5ozMLmxJhVGwDAQ0QbG6GS6tPcMRbdS7yhVdQc4cOrFNgHpqTpP98xSxeGCcUo4h2eIw/m4VKvqDCEOlz5OtmDAoS/ywscpnXFaN1rCWJnNF/sW2sJXZ1U1XgacEgScxrewn50FIVpuwRXnzxinMfacWFWd+tWZkX6/uxrj1OHn7EjQOWzGqavGKTtVZyp6UKFxSk3VKdeUgBPXym6cKOupQc44deKME5AQiJPHnRfJrglZdgSez8YApZPT7AgagQnND1AAJ8kaa+uESNXZIlWHKNTuS2JLCZC3PLY2Us/SqWoB26Yqil7T6L1pOUxxdAGnflJ1KRonIEZzKhqnLHErfUaj44sUSc2mijRHX5wUxiku6KWJLkxJ1SWBUyCZKmKcylNAmYnuVAPMElooEXCC2TtVp2qcYiahUyMlPMjTdduMx3szTnZvxslrt1KBU8XIYJyExoml6krdgJM4r9iNqZrTmZL69pHOOLm2iQ7vRF4xWgIw9qtxqpnKLplShqmMU9LBOuSMk+PXkz5OMcbJC8JEmxXSOAU8rdfk42K+5fdmnEKFLeLHtg+jWCC/mRjjZDUYcNqLMXHuwgAz4/4pug7myTG5NQOL+zmRMSY7ANqxdxbvHq4sho22L64DDrC082DAKcXHKcWOIHN8KD5OaYyTC1+m6viYbgXSx4nakVimiXTncF8T9qtaJmIBnphrDSYO502YMU6pOsk4teCK8/eDKCkON3QNHiCZNJImkM6QASfJOAlh/WJ9nDI1ToMyTux3HTjxqrpUcbjKOOmSD62iTtG++q60PSHXebXZPCCtWuooiu84y46gk2Cc+FoRheIzqcGvqM5WU3Xi3JVNHs2xlgPTIlG5r6X16ZqXXVu4q/929zyiiF338bKLY1dXUSb23K127xF5GCMHThRdnMMBiZbVfnUFdFL1TYAcJKrBHGmKujFObswWn26C0JYLvJ8BnFQ7gsDk58HZJkCvqisZHZQs/hmwZVUdkMk4ab3blFhVK+J+DpyONXYNpHFSd+Lq5Oe3G9zDST/HbMZJ+jgVbBNFx5TAKYgDJ2VRUW9MRbRfNANR0eMZaYwTA06+XeHH1ZKtY3oYYIqqOgI7TpnR70Dy2kdRqp9QRD2yAsY4VTRxOPtdrdCM68IISIUdsiNw5bEJUJ8lDleod35s+6JRLBDQac9pjJPBn7M3GhXn3svHqeRYmI34tWjOwO7wVi624p1lS43Iot3DVY2TyjgRK9kXcOKLS+in9KpLsSPIZJxkrzorLVWnMU5SHB6aujg8YYApih48zcdJBUgEku59YkHMOZPVQVJ1W9hPry40ds1IZZzChDhcpOpUxokDp9BmGwlHS9UpGid/cYyTSBtlME7xdbpfjZPRkSz2SIJxilI1TvFUnSYM52wTADHHANmME7mG11EUm+Bkk990jZPwcVKizqsWxQa871SdFIcj9DV5gApWabzdtYud52TFhWUaOHZVRZzLcq2oA44m4HTjV3Diw9/EG63/wDNnrgJu+DIwv1s+3sU5HIi1XREaJy+zuzsNcNrVVQu2bJaYYJxUHydd0EtAKFKAk8d3IAsxB+2WF0qgRak6BTixqjouZkYbJcXHaaHN8tEA0jVOqh1BTAe2qlrAA7yy7lhjV++qOsXfRN2Jq5Nf0Gmhk5qq68U4WXAso3uqLqvU1TCEqL5kBkJf4WUxTpaBgE/wFaMtFkc6v04K4yTSYVCAU8pELK59e05el4qyiHMTTDdowAsi1FJSdaLQIIzQ6ARw4eEF5q8wigXBBEQd9joC1AttlXHik30UAb/9N2D6YXY9giTjtDcawzw1I23Pa4wTBHBKMk5ZGqeSa2EWxGDNwOFGmG1HMk6UwlqSCWZC4xS7/3tZEQCpPk6dhMapH8ZJqarTgJNM1bn8ehmhtC7wOOAXwCmeqhPO4RmMU7UgvHXufpxd5/Gyk6kDEtFpSBNGYpwA0a2gzXVzQFzjpDNOgVZVxwE9Z2DTGSdXAU46O/qT3+3Bg/tiPmhKdC0QQoqPU5pzuCpY5nOl4TeExx0xTkXHZB26ELAKWPV4AW0DDqRbEcCtwbbVwgJ+PASc+PV3QwbcGlFRyC7i4nBNbgK5sWvDkWlxHvMBt5Hoyjh1T9UZUSDuA9s0tNThFAfld/HxRkBq61RFzIvBMq2oA4DuK9yRFD/6MC4sGLjQAbCL/3vwZ8Ar/4k97st0WVqka5y6ME4x4DRacnSvKI1xSvo4EZ1KACqyC+x1QQcdZwxAzLEXVFXHS00tPuhWnSge11N1bdiCcTIRRiyFVCnYMm2k7KI0xilWeThVc/HbkAGn481H8dggVXVOBuPUaWam6ro7h0uNE/VMSojDu3iEBIYDO/JQMH2RqvNgJZ7bRAGubcLjgLaEtpKqy9Y4qSmzYtRMHgf9TowHeQkVRnShJAGnsMEZpzQfJ5kKaXQCvMT6Of6H8yV8zX8e6p0z+XN5WiVSGadY+uOxm4ErXw1sOBt4849k+x3TVEDRKKhoFK05tP0pdpixdJ4ATj2q6uKMk8P9nDwFONHiwdquLJJx4ikWzyrBC1qoK0azABadqusEIcIwQiPFjiBb48RTdZGtVdWZjiIOJ8aJSr1hIzAkI2UghIVIApoE45SWqnPFwnX3bn0h6xrENlkuUJ5kpepRIHr8teAKpjMIlVSd1wDaC4rGSQFOETFOFX7M7DwnKq4ETlF6qu6+PfP4r1+7EcetruJH77ow9ZB7+TglqupUgNWFcQLY5qmOEkb4jtQwDDa/dZRNTQrjRFrK7VpFHa8iLdS0YxXHQ+/DGSdivBooCE1tssmvXngk5ycDLbiS6QGwQNWQpgsE6M44eQrjZNkwCTiFvgBpcaAqxhsHTgTcy66NTdUI8ICWsTz1TcDRBJxOfDHumm3h/r0LOG20hU0Lt7GSY4pAgpe0SNc4eT1TdTQ5jZQcIOCNWi1XX5zSetXFfJxsywJe/FmgNQdvbhxZwIkWtevWvBZnnHg8cNqrxeOmKSsoykYbLVNvzzLf8hlwytA4ZYnDV1UL+Fa0DQBwivEQ5uwURkgJVQCptWdRGKfQa2mu4eL5aOFAKuPErxcsuJYF34mksDEhDk9xAKZDMBwUABSNQAhTO5GtCUJ9MI8T17LQccmMsiVYhW7O4QQcLNOQHdVTel+Ja5+ibwIAk5tglsI62l66czixl0EQoeUFWAfmp7TOOIDb+XEYHGQR41Tv+Enn8LnH2M/HbmbjT3X9plQdRlENO4zDbkuNU9WQJc57o1HBFoqquiyNk2PhCYVxcgk4uYo4VdE4tZaocWKT9LSsqqPoi3GiqjpPWyA6QTgg49Rd4+QgkIuoYJwseIa8H134cCNloY5X1fH5oeUFmOMpnVXVoljI7tnNWJWBgFN5UrYCas0IsN+KXNQ9xmT7YYQGiuiYJbhhE1h4IrWqjlj5kN+b40XgTRdsxaufsgl48CYADCxKcTjNoy08Ms3O+749C9gz18LqkaS4naxhSMAdj7igWjA8fkduwLSCkiJgmEAU4iPP34J2cbX2XZcLNoKOMoepcycHPxOFEG8/7zicuWlcPkbGouVJbXORxTgRG9aIiuIck6k6nQ1VNxstOBI4GSYW+CFTGrh/xsmBRfdDFIgxHgeqpKm794nkeDt3YxF4ADDyVN0yiJddgX/e8lG8zXs7frHpzexvqgC3i3M4oA66PjVOxDgtEONkK6jc0RcnhXGyFV0KIGls0zCA018DPPVSbTeqRtuXBpj7K8cDz/+YEIbTe0gDzLbQOJG+RuicUlJ1jHGi448Bp1oBD0drsDcaQcHwsWrurtTji18bIGaWqTBOkdfS+tSJ5/dgnAKYcGwDRdtCIOwIYs9Pq47hEfAGlUUzEOZ7DDjJm5g1Sjbg2qa4uctGS7AKcmFMHqfQN7kWDK/LDpauvTBh1IGTUaR+dS3U215SHB5FUhzOGScSXVbREEyI4VOqjn2n860Uxokb8SEKgUdvVFJ1ppaqmyMPpJbUONU83tvPqKANV+jTelXVFWOMExlhBq4qDlc1TksDTgSYqEpSROy6p4bGOMnzaXshmp1BGCc21juwhXkpAFhqVR29f0BsqK31pXThwyFAbphsrkpxDicPONcyMVKyxUJGgLYvDydlcQcgWFDJODmsU4cXis+tu/y5C3tSfZzIET2iqtHIx4dedDLWj5UyUnWkcWprfTtvejhmkcFDeOqVkrYzgPSWohDfp1rlqt6vhiHmkVecOo7XnLNJe33FtcTmL7JcaZcOSEAbeXjXRSfooI1E9+VxnXEizZVgnAg4sXFcR0FonHr5OKlSgpaqc7IKYn4IaWz30jgpPk4kDjej3oyTGG8KcPqDJzMAWa6OYrnG0QOcIL8kuikF8xAGbFEAegInTeNkeD2r6ogWZak6JR3Yg3GSzuHJ1hTxtWaclxKrjFPacVmmboBZ4H2gIq6HmhP96lIYpyBSmt7GxeEFAAZuCk8AAEwcuDXtkojQUnUZjFPkU1VdUhxeb6cxTkqqzorZEcSdw7uk6kjjVDACkSZoxzROtMi6timYH41xinn5qJHpGk4Rb56Z0WjWKsp+dUF7QZiEAmDpkqAjxmwQRmh0fLGjrBotwYSYAZWOc8apHSQZp7ayaDzyK8WOwNBSdXMRaZxmJePEXcPnLAbghX9Uj151JdfCHPi1aM0II8ygkGScmMZpEam6MFSAE3uvIG64N4g4PGBVtnTrtf1AXOeSMwjjZGlaG4NSdZrGiTyfLM3s1oUngRMVP1BVniF9nNSKOsMwEg19pwbpU0ebMxq73G6AFuN6x5fu9Q4BJ4VxUoCTLVgdaj+k3LuaODxpgKn27bzpoXTgNNsDOKnX3TINCVoodW4Vkl5/QtqQ1FaVXVsWuNgxBqybsF1h89TOFaLKT4jDdeDUgMo46W+Z1DgpwClSgZMrugxENBfQ95LKOC3IAhzTkhqnMMisYoyPLw2oL/N2K8DRBpxooMSBgVo9lOIcDqj54XAgxokiAZxSGSfZckX0qOMTnbYDjTFOazglrWqcrJQFyTRkVZ1thCgQNWtSqi5GRceq6gqiqi4pDgeAm0LmUD6y9+bEZ6tRSGOc1GbHAOBn2BGgB+MUMQPMklpV1684HIAHAk6+YNg6ka0JQgVwskwBYJiPU1zj1IVxivepo4hf+xQPJwAw+e6+giYMzgiRmzi9XtoRsKo60kFV0BLaE4sDJ4NPxKkap868fN+dvxSLoGub4vj2YgzzBJwUxqncYQvAgsN2kbST9VSdVEqoGqewOY1SQMBpTD5J0TilCfF7ht8E+WgthHwRSwCnwVJ1hmFowGhRGqdYqs5WgJNjmbypqqwi9SNo7YJIKCzGkiWrt2h+IOBEIt04wzRQqq7EgVOBgBMTh/sme49GW1b7NjXGKSkOp1RdRN+D2mha0zhRw3U5VmcbKuN0IHG4URT1BE4q69NT30SR1Zwb7HunOcyIry0EnEIvyYqrwIl0bYay0YiDLmKcoiLm21mMU0zjpKS3tco62xXjNooTCRrjpGzyRJNfB5atiMN7ME4UGnBf5g1+gaMUOBnxga4u2Jni8HSNUybjZKUBJ7WqLo1xcjWWIOSOz4DOIMU/k3L5zT4Yp6Zyg1ClEk388wnGKVZVR2mzWOXhRMWFYQA3c8aptPsmvcY4FlpVHQnJ46XvfhttL0gAp5KRxTgpTX4tEocTcIozTikNfnmQLsqFLxg2YTLIx0ZdYZzsEmecjLaoEHT70DhpjJPTBThlaJwMDpyqRkuIzEO3pjkKq2zOQtsX1SoVoymYH5sDJ6dYEc9L+DipjNOjN8H32PVkjBOl6kal75JSVVfiwImYBlFl1YtxcmRVXdiYRinkx1DMYpwWAZwUP6/5kAN4bbI2gMpU7/eJMXTEODa9QOzcB62q0+0IqCouYL5XCgvjwWbXUmmr4vgx4KT4QNH8EO9HF1/IBtY4AQrjxFJ1Phfa1zuS6WoW+HPre1LF4RZP1RkEwjIYpyjSrWHijNOdu+YS3mWNjpwfs1N1WcApe87oBpzKrp1ufgnom/T4/KdcW1pLirYlnc0TjBPXOCkavSxxeCdWVQckU3V0nxrxKvNeGic1VYcQnsf+Hl8PE+MtZ5yWb4hdKd2UfotRjOLmNPQGvErIarfBNE4UOuOkaJz8liJML2jl2V4o7QW0KpvYZ67hg1Bt8pumg7IMAz5s1hgUgMmZBKJWhb1BPF0E7hwuGCcdXNqWicmKizujLWhGLszWNLD/3pSrwkJjnMiOIEZXG36bMU5xjRNnnCJllwogZkfAgJMngFOWxiklVceBU8EIFOCkL6p1XplYsE04pTTGKdsAM7NPHUVcX7aQzjiRnqSKptA3RW5Fpjg6DU0/NNfyxfOqaAmtkR2yvxU5ANR9nDr6sQCAV0fpwN0AgJLpi+qfWXNcsSOQjFOxxdiHZoEBkLhzeFZ1U8E2BeMUNWdQ5oxTpO54l6pxUna2jQ47HrFgAwwQpLRgSkQcOPHxPdv0QMN0EMapE+lNftWG1a4ZaCyMB4sDCAmObJGq0xknVeMUN7mcqLiavmdRwCmmcSITy0bHF5/b4uMgSxxO7ufi2NMYJ84Kt/1AZ5wU4BSEEW57ZEY7XHrcNo1Mrzl1PtetCLoxTklNKIXKOCWyGSooiafrUhgnzVNKiMNjjJNip5Hl4+T3TNU5EnTGjzlN49Sel1IXhXECgA5vwK2mG4EeQL0TA/7LMI4u4MQHjKXuGry67hqe4VQq7epVO4LePk4UmRondZdiuaIxK8AWl34YJzVVR0ArzZGZTo3SdbTomYJxyk7VdXMOB1jO2oON26Nj2R92/jLxHIp4k192svqOywgYi+CmVNX5YZRssRER40S96kxpRzCAxon6M7mGD5ufbyskXQFnZUK+ENkmCmUmVmbO4b0NMEWfuoKdTkn3yTgR+K8YTVa5Bq7dI/bKa2jjZK7poczdhStoot5m18Ql4FRm75fOOCmpOgCjPBU7hRn2B8tF265pqTpinFzep65TIuDEBfe9etWZBprUaqI5g0rEr5W641UZp4y+gF1DM7/k6Q210rIffROgpeoACZzJoNYwdAdqYVnQN+Mk77ei4WsMqgebpU4VcOQEtPDw62fLxxKME9/pW6aBSWXXP5jGKQac+LxC3Q7qbTkvtYsEnJRUHb8MURTBJsaJjl0DTpJxAvjCn8I40aWL65zUNF28Jx1FNuOUXYnbk3GizV+ccbJsZuGgnJsIEt6XJsTao7mYx8XhnvRxSjsXQLI+YaT7yQHQMhGwC8LnLZFeTHMOb87Iv5kWTFtuNoidjjNOk5VuwClP1S2rEGZcbkEyS526xvhkRZo4fBDGaSSeqqPFSV2U7IKWuvACWY2iskzxz1wzIhmnbhonep2gc7k7rZlI1fHJwctinJLXiQb+LeC+Ud2Ak5aqS2eczLCNVkqqjnQ6CfdwMs7jPk4FR/ZsytQ4pXTelqk6T7SwaBJw4jcyCYldy0SxwhaLQX2cShrjpAD5uIdWhjicXlNFSzJOhary3enAaV5hnCwjQthpIAwj1kQXQLmqAKc440SputGNAIDx/bcAACaiGfb3ymoUHAtznHGKFMbJ4e1W/OIqdv5UVRd2Z5wA2V7FaE6jErHrYaoTt+bjtBjGiV9jpywAXbnoCiarf+CUzjhNc+BUdizt/u1P4ySvi6EwvK4RaE74PizG3vHvrAAPdiDPSz0+15DMj9A41dLB0pJSdTyoMXmjIzVO7RTGSXQ7UOYYwfxFgWSM+RzhG7wiyw9TGaezNjM9Xbyyrpe+CdCr6vpnnLoBJ0tu/tLWlyyBuCK8J7amO+NEqbpujJN8vReE2mZDT9VJxslU2E4YJqC0fxHjizyn+GttBTh5HDjF73PXNkV/RNcyhds6O5fsquflEocVOP3sZz/Di1/8Yqxfvx6GYeA73/mO9ngURfjIRz6C9evXo1Qq4RnPeAbuvPPORX+eUPg7llw0VeCUkk2r8gAAamRJREFUoW8CYqWcYqfrZe6YXUungpOME/8sFThZBW2we0GUqllSfy+7Fqp80LX93honAMIEk9xpLTsOnJKpukCzI0hOPLRzvcs6if3hkf4Yp0oG4+RGHuZbvgROHOhWOWvSiC868ao6zY6gf3E4MU6O4YvdbysGnOqR1DiVq5xxUluu8Ak3TeNUFxqnPlJ1YSjSHlmpugqassFvoaYBL0sDTp50KgeA9jxafiA6kVf5edTTGCcShx/3HADA5IFbAUQSOFVXo2BbWIiot9ycSFHZTQb8gvIqfv7M1yeNSY1Hh5td2o0nxN/MLMZpSam6qmIToVRQ9iMMB+S8EfpAGIoFbpqLlcux3o19VdWp18W0hLMzA07Swwkw2D0vNE4+LC+W6khjnBZ0xgmQYIn6hvUMsbhz/6FCbKGzk6m6jmCc9ooKNkrVqZszs6DcE7Th5Ocd8OudxTg9+yT2vd3y8LSmn6LHR7oAJ/W6969xyk7VddU4AclCDIoMjZN8Xaw1UMxWA0i6oKvgpROEeqournHiGxzTUY65OKrbKdD4UoGT6cBW1oeAb77SnNpp7FFlpzy4XOPUNer1Ok477TR87nOfS338k5/8JD796U/jc5/7HG688UasXbsWz33uczE/P5/6/F7RJoW/ZeoC6B4NfoGYxol2ukuqqosxTqYNmCYMw9DKRgWDpFL3yu+jJUfcUC0v6KpxIuo2kaqzyY6gR1UdGWCm7JxEryv3ZAAGa5JKbEksdDsCvqjEGsoWjA6mGx1Jc/PKHWqM24gLxPmuNOCpupK7iJYrgNB/OfBFhU+ScVKBExMrFw1P9CLsmqrrKAt0r6q65rQ89soq/Y2IcVJSdYYKnLw6DMMQwGSu5cnmmQAMr456O0CJA1EJnILkZE6M09anA6aDcnsPNhj7FOC0Bq5tKuJwOZGavMIq4iCk0ZGNqIFsHycA6KieTQAWoiIcVxl7S+1Vp1x/qjKsFBSX+EFTdQAQegIYUdf3SkxP08vHKV5VB0N2qXfgiVQd/c0PQkXjpDBOtKArFXfxqjqVWaKFjPqG9YwejBMV0dQVUbZX4uN44QlhoUHgxg8j0ZvOLCrMBs2bnF0JeLWernHqiDL8s7dMoFqwsdD28bvdcq3oj3FSgNOgjBOBGCVUH6e+Gaco0q4tjYVUxslLVtWJc8nQOAFMcqJrnJRrYhfEPKXq6zR9EyC/79aM/JtpaxonStXFpSuAHHtxK4yVkKo7rM7hL3jBC/CCF7wg9bEoivCZz3wGH/jAB/Dyl78cAPAP//APWLNmDb75zW/iLW95y8CfpzX5FQtUQwKmDNdwIJ6q4+LgNB+nMASe+A3Gpg/gNOM+PB5NYg/Gk1V1dINSTyIl/WVbBjoB0zj1YpxGS46glNUmv2nVSjQZinw2B07EOD023cRtj8ygWo9wHBBjnMK+UnVRcQQYPRnYcydL1518ceK5qnN4FuNUgIcD9Q6maNIpTwL1PYJxuu2RGTTrc9g8amN0co3GODFxuIkDmcBJFQX7aHshxivsmgjGKfJFhU8zIODEBdQoMnsc00BFMWmb2n8z4K7G1Cz77je2RoDgKYDl4IG9C5hr+Xh4P5tcKwULmE7ZxYpd3Azw4E/Z76WJJMsnGCeZqjMLNYCEwTwNZZmMkZhv+VpLBdNbQL3to8oZp0K5CmCGa5ziPk588amsAtadBjx2Ey42f47N1EqiuhoF28RernEyOnWYCFmhP7crMGprADyGelt6+gDZVXUAEKgNfQHMoqJvSBTGaR9n9/wgxN2Pz2sl7gBgtWdwrPUEyoqfEvZwo1be4Bcgxol/H/2YXwL6houbYJoIUdp3B04zHscWswI8KkFg0WUpT3XhemhfHZuCDkxQyxX9ungGYy5cBGIeCfhY9QKFcYIP249tgFTGKUgXh6u/95Wmiy3uAKTGiQdZXNy/Z0GASI8Yp9DDiMHGv2CcglDoKC110aR5k88RIQEnLwQqCuPEnzdRcXHGpjFce+8+3PTwAZy8nl37ruaXzRlg//1YX9+JJxuP4LfRphjj1EWwLAoyUlJ1hS4aJ0CCKVXL1VmQ/y9PwrEZ65zKOCVSdWpVnf5RtJHywwheEGmbjXYiVcftSlzlmFW2F0hWXxsmYJpwHAtBZMAyIvgkDk/ZIInxFtfTrYBU3bJtufLggw9i9+7duOiii8TfCoUCLrzwQlx//fWZwKndbqPdlgvE3Nyc+L3DB4oOnOoQTba6ME4uzzMzcTibEIroJAR4+PFfAD//DI4H8H8LgB+ZeEbnfyYZJxIF0qKkgDYCRl4oNU7qRKr+PlJylG7roViU0naMRN02KVXHgRP5xPzqwQN46ed/jinM4qYivzZhCJgmPL9Hqo7fBGXXBjadw4DTI79KBU6OxUwCw0hhnGI5/gI8TNc70gCTT84kcH7vv/waV7vvBcwZNN5zN8rEOHEfp6Kt2BEkxOESOL3kcz/HE3Mt/PLPn42ya4sKOgcerIh9doMYJ56KaERFuBZjB8ulEjqRBdcIsOVfXwUAOAvsu8ccgKuuwb+feDn++Bu3aIegM05qDzo+WTT2A//yh+z3tJQRf17B8DHOFyCjWAM8fm589+tYJtp+iIVmBxVD3heVqIX99Q5WcTBVLFcggFPCx4m/Z6EGbHoq8NhNeJ/zzwARSxw4iao68Go/O4TBRftObRWAx7DQ9jXGqZvGqVBwMReVMWKwc5mLKvpilqJxev//uQP/55ZHtfcpoo3rC29D2UimUgAIAA3wYoXFpuoAIPBQsE18zP47vOqBn+KdBQDzAP5OPmVqdBNMfAx+aMIPQlx33z688Ws34v5CBzA44xS7Lr4oWvDEePb5HBKEkQaOLI/PKTSuRBovQBgEqLd9sTCm6Zr6EoZ7DckSZwAny2Xfz99f/5DytyJjLlozGA9nAFTEHOcpJrumW2QsfOgnGKfIVlJ1dO2jAO1OG4CN0ZKDHZsncO29+3Dzw9N4w7lbAHRhnPwO8PlzgIXdeCWAVxaAnwVPwj85n5HPSWvwS5Fi30JRLVhyDuuXcaIUqF0E3LLIQKQzTnzz0qaWK/IzEmsT2P3mhwHTOGWk6kJLOrPbWqpuTH+zOIg0pWbJhwULPnyf2xF0TdXF1l1xrfMmvwPH7t27AQBr1uiT15o1a/Dwww9nvu7yyy/HX/zFX6Q+pplxqXlpXo6fxqRQpDJO8JjIV43HbwcA+KVJBI1ZFAwf24xdXByu2BGQOJ2Ak/LZ0nU8hNZQlYeVwTi1FMYpTTtC95HYlXC2a+14DWdtHscTcy20vBD1BToW1iy0ZRTxwL4F2asuZQJ42vZVeMqWCfyXszYA7lOBm76aKRA3DAN/eP5WPDHfxvrRdHFkAR5L1QnGiaXqJl0Pm4plFMIGtrceAwDsfOwBbFIMAaVzeIbGaWYnAKBZWoN79zwOANg108Jxq6sCONmRD5OnRJoBf5/TXoXm3gfxw4fPglvgpnSmiZvXvxrb9/4Ik1UXBtiEfmC+gXXGAeDh63F7lSGMWsHGaNnBaMnBRSevAX4zw95XnZDGtgAnvwTYxd3XDQs454+SF1ERaa4ymAjWLFSBtp42IA2e19In9arRwN65Fs7gkzpV1dVTGScFOJ3xeuz79Q/RnJ9GpWBhYmIVcMrLMPFwHR04CEwXVthBDQ1ss/nYHtmA1WPseB+dbgrnYqC7xolMMAk4zaKC9ap2MMU5/NePzrBrUisIkHVs+AQm2gvwIxPG6DH6psIqAKe/Fgu3k1GlDZz1RnZ/HvfszGPTwrREvzJq9Hui+QgAYG80AthluTjMPgZrdieONx7Fb6NNaPshbt05AxMhLJ662rJmnI0PJYxCDWjPY1MlFKk6wTiFEkC48FHYx3WgE7zCVWXSQ0+k6cquJe1AAFx08hr82x2Ps75wvUI0+C3IBS7GEJy+bT2On6kKkLaqVsB5x04CpXGgNYNatAAVOGnicDIJVoETZ30Ci4GGth8ASu/CClqYRRUjRRvH8Ya5j/H+dUAX4HTgAWBhN2BYWHAmUe3swcnmwzpIJx1PUU8fa+edwjg9/fhVaE/YDDz3q3GKMXk0t77y7I3K65R5M/BFP8nHMSGekrZ5diwDTS9F46TYEfiQ18cpdGOcYowQ31A7lsk3rb5I1aVtkC4+fT1u3jmNl52xQX8gq5J4GcWyBU4U8bLRKIoyS0kB4L/9t/+Gd73rXeL/c3Nz2LiRDTjN/l1lnOjG7yNVp2qciuig4sSAEx/008/9LB78zn/HU4zfYcL22OupGsZyIdSzqYwTdw8PItGOQB13iVSd0DiFYjef6uMkquqIcWLAqVQo4P/88XkAgEcONPD0T/4YYWQwDUKnjl/vbcMLIoyUIma0nMI4TVRc/POl57L/TD+V/Xz8NjbZpZTwfvBFJ+t/iKfqDA/TDU/S3HwSqaCFn73vmWyy+2v2UHtur9A4sao6A0XFOTwIhNoJqO8X39E+dxMABpzIiqHN2SUbnkjVNQg4HfccPFR5Cu7/7LWYUibVc9/yee3Y79s1i1f+9Q/xm+KbgYUnsDDLdD6XPuNY/Okzj5NPjKc6ACa+/IN/TFyvRFg2OoYLN+pgLXj1UKEmd6Ki0S+vXGrXobLxFbRwYF62aimV1Ko6fm/4bTZOVWFsbQ2+fsY38Jkf3YvXnLEJH3vZkwAA68fuAAC0rCoq4QHUjCa2W48DAYCp47B1qgLDYIvXE3MtcWzd7uUiN8HcCJaqmI0q2KKl6pI+TiR6/vqbzsEJazm4/N1/AP8LuDvahPmLf4zzjkuaWi786iZ2XQo2cMZr2b9BwnL5IsYa/ZIQ/+3e2zC2/dm44nVnsef940uBB36CHebv8NtgE1pegF0zTZkGB/C//+TpCaH16PgUsHsX7M4cwMEj9VVkVXXsnq4aTRT2sM0bNvH7UNmUGUFHCsNjKbmNE2UxD/SMeINfIHHMx61fhR9eeGHytRx81MDGKKXqvECVAzjSzJU2Pnwc+jabT9oe13bZRcBvoWY0EbhjsC1TnBudK9AFOO27h/1cdxq+s/kv8bpfvACjqKOoAacZfuxjyfPpUlW3brSEN+xYB/wE6RmNbowT3yyuHS3KuZVCaBmbwMzDQNBBaBWwK5JjO21Tom7KqXilVrDR9OWxebyFT9ExYQ3EOHG23jLFpjXg7Gga4/TkDWP49p+cr/+xPS9B6sgxQHsRRR+HIJatHcHatWsBSOaJYs+ePQkWSo1CoYCRkRHtHwUBp0I8VdejwS8ggZOvME6WEaEafwkf9GZ1SnhqTLp6VYjm45TCOFH5aSdIN8BUfx8tOYL1avdgnITGiehcnkZRTT83jJewqlaS4KqzINoXrKsaiWNNjbFNQG0dm/B23dL9uRQJxqmDA3WVceLgolNniznvwA4A/vzeWFWdpfWq8zoKKCNjztGN2NOWoJfMP9tcHG77cqe6EKiGbum9l7Rjty0soIw9YNVGzvT9AGILVeBL/xMVOA0QbZNNnmsNPtG6NcXHiU3iBMLJXZyiarQwOydF3NUqAxltP5S9z4IOXww4yOcLozCvVMbY+jEGYhoGO6YaGthm7GIPTh2PkmvhGP6ce55gYz6rIpWi5CqNfsGAU6rGyeig7YXo+CFmeCWbdq3nWOpuVzSF+/emp+vIx6lWWOReMtbol1LK9aiouYZjE1sAn2Kxxbrth9g125Qeaep7qUGO6c0ZJVXHvifmHM5ec6Z5L4ygzcbU5HGJ9zOCNvbFPJwWFWmgP5aqg5PCsABAgc3JZW4xQQSkH0ZwDWVzqfQABCCASUDASRgaSyBGoIi+fzpXoA/gNHU8PM5gOUYgClEAyHs1zroAXYETOzE+ty2ScUoNRwFc++8DAHhj2xAqS3pWqg4APF9qnEbLjpaqo6KDWtHRyYT4udsFKTkBFMbJEDKJIMPHKTNmGXOG4liySnMZxbIFTlu3bsXatWtx9dVXi791Oh1cc801OO+8PndFsUgXhy8oou0uGifNjkB2UB9z0nsM2ZVJ4eI64cSBk+IcLhgnBTgpjFMvA0yWquMaJz8QGqe0RUlW1cXOUwFOhmFgx5Zxmc7rNHAzN5JbVTISx5oahiF3uzt/0f25FDRxCI8sD7NNLwmciLonOheAv7BPdw63DRRsEz4HQSRQBADs48Bp8jiRsgCkFUOLt95wAjkJCsYJyOy9pAZR/A9E6wEAlfkHAcQW89YMBCApjWe+V7doW2wMrzZm+AcrPk6KOByAEJBTVNAU+j8fFiplOaaFpstvy/FpmGKX64XULkVeg/Vj7Hub55YENaOBreDAaXI7AGDbKjYR/pZXOjkZ5rEUJccUbVeAFHG4IxmnThBif519n7ZpYExdHGcJOE3i/r3pi9uCaky6mFBMMAuOKa53HUXNNRybzgEA7DB/B4Cl1x+faWmMU6pbOS1arRlZls8XLV/ROJ1n8jTdxqdKJsg0EXKQZYWeYGH60jJlRbzBL6B7/ADaPKlFHDgp4nAbfD5V58gYcAoFcOLPVRiskRhwqncCYTWRaUfAgQemjkNol0Rl7ZipVMl1ZZyy7QjYiRFw6lfj1AdwomvrNQTwCyeO056SnqqjzIlM1Y2WdODUiQg42fomOX7uhqGn6/g64tr9MU6pwe9V8oxbrnFYgdPCwgJuu+023HbbbQCYIPy2227Dzp07YRgGLrvsMnzsYx/Dt7/9bfzmN7/BG9/4RpTLZbzmNa9Z1OfpGidllzCoHYFyA1RtZcLrNHjjUMCuScZpzOY3vgrQ6D3IZFL5bFuxxvdTxOFZdgSsUoIDp24+TojdwLGJesfmCSEyDNsLwkhuioBTP20oNhJw+lXv5wJy4uCTKgEmKQ5XJuhOXQNOUX0/opiPk2EYiPiNHHhKxYqyu1Rp/PmWhyiK0OKTpqWYf9Y9eS018J0RBJzuC9cBACZbTJOn7fBp4SmOSY3dgNHhjFON2xHAreoUPmTVWjkGnKpGC/PzDDh5ZhGOZYpzalAVYdBW0nQ1sRAT46QKmNePsol8OmBjvoYGNoV89zjFgNOxq9g9d8/uPhknJ4VxspKMU4E7h8vGtQW9FFsDThmMU0oz3oFCY5wscb0bccbpmB2AYWE99mEd9qPlhXhMTdWZSsWtGrRoNWeEximkVF0Yimasa7neTWxceIT8njWCdqoVwcARdw0HkgxBFuNUJODEgZBqR4A0xonPm1y3F3JWNcE4GQ2Mltg1qbiW2FBSBWE/jJNlGgKsj0TKWFkS46RvCrUQZrPK/am4hmcGXVuvJTaD5qrjtafE7QgA3Y9QA06Kxqkd9ck4AboMw4xrnIDAH5RxYtpAjB7T3/MPUxxWjdNNN92EZz7zmeL/pE265JJL8Pd///d43/veh2aziT/5kz/B9PQ0zjnnHPzwhz9ErVbLesvMCHkJJpCicerHOVzJDcMw4BkunKiDEUsBTjTgTQdueVQAlFGLgFNKVR2FyjipuwLu9WJ1ZZzke9ECkNWrDgCaUewGNvVjURmnx/bsw2zTQMmxUHP4RNUrVQeInTUeuUFU5nUNmlyKI0B9j9A2CY2TW2GfS4u54hFlNPcjLLHEHPk4qecVqIyT2F1ux95ZnXHygkjYEVg+7YYNtIJBgRP73PvC9YAFrPPZwq0tVGJX2WVy7BGeXdH/UKgpnjJsEheMk1JRB7Cqt4cWGIDxzAJKAKoFGwf8DhqUmvQ7knFSFsW0Br2UqtvvFwETGDcWsC5k+jECTsQ4kbdOt4o6ACi6VoJx0uwLYhon6YYd2wAJ4DSFBzIYJ7pvqotlnEy5yJdMU3ieNVDQfZwKVWDtk4DHb8MO83fYPddkrYXUFFVaaIwTZ1c5i+QFESKrAG2ZjAMn0wXQgBl2hgScUsZvXCycBhQAyTiFlKojxikOnBTGSdHaRW4FUNvsCMapCZuDIsMwsKpWwCMHmti30MbmyUq6HUEUAfv4nDC5HeasgbmoglXGHEagjJW+NE5JHyd2Yv0wTgOm6ohx8psCODlrTtSeEjfABPQiJ7p+oyVHsyOgzWOt0INxAnSdE98A2qah6UuBQs97XYRgnDZ0f95hjsPKOD3jGc9AFEWJf3//938PgA3+j3zkI3j88cfRarVwzTXX4NRTT13UZ6m9zTTGyevXOVwBTgA8gz23YimpOtW0zDIF+BhJAKcYko99Nu3kb9k5gwf21WGZhqgSAZJVdWr1xwJPOaVW1fGnJRgnU9+BnbxuBE2DHfv1dzO25LSNozD7uE4i1jyJ6W3as8Deu3s/nyYXruUg6wPZH6+oT1AK42S2phEGsqpO3KT8vKgkFoCyu9wudqIAa4LbCUJ4fLdl+mzS7MDRqk/a/WicHErVMcZpGx6DYTABvYh+JsceQSJZ+cFJcThdixJ04FRBE406AzDUxZ7YloVUxkmOvw4xTgoYXjPCvK1mQ/b5JxsPs7SLUwFqLGVJjNOu2ZZ2bFlRcizMKYxT3azqYnJV4+QH0psonoLiuold0SQem2kKs0s1FgTjtNRUXQcVUzKcDRSTlbcc1Jxl3iOA3JqKqb9PPFTGid+HoSIOj5R7MrIKzG9LiYgvgMMHTsr4TRhgZqTqYoyTsCMIpY9TIlXnt2Qj2QTjxDbSjHGS14/Gwd75NqIokoxTWbnGC3vYHGWYwMQ2mIZknKrEOIWhFCynsS6iC0VWqq4b40QapwFTdSrjtJ8Yp+1a8+K0VJ0qDqdN4EhRT9WRXKFWtHWw141tAyTjZJuia0PYxY4gNXh1YA6clkkkgZNSQtpHqk7TOAHo8H5JNUthM5QBbxgG2gabOMi0UVDOppNkbZQBSp/19z9n2piLT1svGvkCSR8n0zTEwKQFIC0NQjuQXqk62zJhF9n1ufU+tgM4e8uEwsz1AZwsG9iwg/3epW+dCME4MeAkU3VKelP9zqgVCQCnPY2IA6cQ0nmdcu5k+w+/Axxg1xRTx8c0Th48PxSMk8lpdw+2ZhTXj8aJPv/+kAGGLcZurCpZOlAYCnCKMU5aqk63I4hrnKpGC60mr1Li5d3VAhsHCz4/ziiUKYoUxkkdY65tYnWtILycTjdpF3+sYBuPXaUvrH2l6hTGqWnGxcfpjJMGCMJATMb1IisqeWCfvsBFUSQYp2GIw6vcob0TsX6JCTC2kXRO9+DBfWycra9Z+vvEQ2WcyI6AL1SBkqoDgHD9mQl2gx63Qi8bYA4SWRWhKnjqwTiVQg6coizGSUnVKWkww42Lw9mcUUNTB041CZyannSs1xgn2kiNbQacIizTEGBdAKfOvARtA1bVsRMblHFK0Y8lXsdBadCWc+Hkdm2sdROHd3wp6xgt66m6pgqc1PHYTd8FSI2TJSuaw1zjtLLDU1iD7FRdHxonnzer5F4XZTVVFxvwbb4gUWPa1F51FCrjxBeaOc4eveXCbfpTY4wTAFE6Sw7IqQaY/G/qTQJAE4dTlCpsMrK5E/VZm8eV4+9zwqV0wSN96JxijFNC46QxTgsa41TozAiNU2TYMrfPJ16Rqpt+iFUSulWgti4hDu8EoagoMfjusQNb6zknU3XZWhjTZOBtFybhm0W4RoBTKjP6k4YAnAIntsMvVBPtHyhlq7ZbARjjZAfsb9SMtcoZp3k/BeApE6Sf4U6/fqwkgNNxSkUdxepaQUuFdfNwArgdgcI4Nay4+Fj6qbW9DOA0v5t956aN0VVsFxtP1zW9ANTSbBjicNGImjPO5QzG6STjYTy+hy1666o9gJPGOOkaJy+IeCqORcSBmRoEnAzFxynR6mKQyBq/aQ2r40GMU8juMZGq8z3hZZVI1SmmiK7DrjXdiyJVF2OcSPy+d6Ej2CbLNPTUKVXZ8nSypTBO5YCnqWnzYBfTdVt0z4WebIytRqDMYfFYrDg8zubV1gOFqnZ/Zfk4AaRxkqm6luLdRMUwTOM0AONkSTuCgMThxDj12CSJII3TyPLWOB01wEktIzcMIx04DZCqo5xwxUxjnBhw6phscAthrtpypQvjpO7En3nCKpy4Vjddi2ucAIh0QJBimElhZjFOKcBpZHSMnR9aMAzgzM3jclLoRxwODFZZF2OcbCOEhUBpV1DQvzNF41TyZwTjpFUI8hs5JOBEu8vJ4wDD0IDTQstHx5fAiSZqxjilAKceaaaCbSKCiQNFtnM6xX1Cf0Kzj11ljwjjwEllnChVF6+q47v9itESDX5Dvnsl0DDnpQAnpdTcExon/RqsHy1hjlfVkT+UCpwMw8C2VXKi7SdVpzJOrQRwkn5qbT9IbVwrqP+R9di6mp17XCBOLK1hpICcfkNZ5Km1TZ0Dp4obu79G1mOPtYbZmexjRqc9U3WaxomN50gRh+vA6amIR8QfN4N2po/TQNHkIvT4+BXMpJGtGeVjqRjq4vBQLeKIp+qUXnGUChdMcIodAaAzTqowXEv3UpUtH6eGAQHWCdh11TfxYxKRlq7ry45AOfd+GKc4cOLATwdOKS9TNU6KOLyprAlUVdsf45SSqlPsCKJwAMYpDIE5vuHKU3XLIxIpFrWEtA8mRROHQzZFLJtpjBPbKXi86qkYpTFO8XSZmqqTX8ulFx6bOJZUxilmxNmNcVL7GQFIBU4T46xEvmy0cMKaGkaKivN5LzsCig1nM+3AzE5g7vHuz40xTgBjErTO4hmMU8WfFTeoBpz470QXy93l8YiiSNM4zbdZSXtHACeucYpsdIJQTO7UtietaaUaNLk/ZrEJYLul+5GJsdKtcqZHhHEDui7icME4cTfeGpqiwS9iwGmhA4CkxnScCnBKq6oDmCXBAmIsw5ReIq2m63ql6ooxH6eWk8442UYI3/Owb56NT41JETvYDUKcHmecqBN8xbW7GnJ2DWWRL3HPLKqqLadU6t1fZFrNY5u/AaACpyzGiVtWqFV1phSHq8DJ3JTNOLXaTZGymkqY0A0QBKjj45fmVbuYXh0IiNRaMdDtCAI1XZWVqnMroviinWCcmprVgAacGlkVddKeBIBWVVf0WdVp14o6QN8Ip6XrhMapDzuCtB6AaWFaujaVAz+1KjQtVedmACdV41T30xgnQwBU/Q1VxklW1fkxxqkvcXh9L1tjDJP5AC7jOGqAkxcHTmJnXpdov0uqLq5xanLgVIS6U9AHvMdTdYWQl4urwCk+QarO4fyzztg0hqdsTS6stBiWHFlBVoyljtKapxKWakZx0Jbc5bol2UT27C38GPowCtWiUAPWcDH/wz/v/lyaXJSbswDFANMuyEl57jGtKWYlqiPy2OsNS2Wc2HlF9N5id7kd821fY5LmOePUoS7hbck4ARJ496NxApTKOu7ltCl6VH/CEFJ1keKb0zIKbDLNEIdXSBxeXcv/35Rjl7+G9D31jtJ1vsFcz6+6cxaf/iHzHiKvMCcGztePlYSPkwiFcQKkQFw9tqyIM05tKzZxq7tuv5XOOClVOgTa4ozTkq0IAG2RL4Hd7+TjlmCcADxYZo7rZxnsmq4uU3q5n6o6Ak5cwxdGCDhw+l24AWY5xReMf58BN4NlRSWLPN9uizsB7CwrAkAAnTjjFKisixlnnChVJ/sVihR6GuO0/368/Jrn4xLrB9i70M72cFKsCAAOnDhYL1CqrhfjBHTXOQ1igNmeF8C456ZKHf+pjFM3jZMUh8ftCBb8lKq64mh6ZXSGj1MQa7DeF+NE92pt3aItWg5VHDXA6SHelX417UYX6RxOFUUCOBkq46RPJlvWMTFqOS4Ot5yujNO52yZRdi2893knpO6AN02UsWaE933iUXT0rzLtpjEMAzs2j2NibEx/IIVxoutTNTp46Rls8ZepugF2qsc+i/286Wvdn0cTh1sRZn1JxomDXS7wDpwqwoidp9VkC7yhnMt0gbE9a/Zcy/1OZEWdmqYDyI5ASdXxMUH/p0l6kFQdAPymzcbA2s4j+hOGAJzUSavNHbvj4nDBOFGqrsaOp2K0BHCiLvaCcWoHcjzy49zdsvH9Oxhr2MlgnNaNlrRGvwBkvzQe2xTGqbcBpoVd0RQeDNfghvAEWE5cF6jcQ34rXeNETsSjGwRoe2BvXSzWgDQ/XbQVAaAt8sWIHQcxTmmAbG+JXZeNBtM49fRIo0W7syC+24iqRoMQ3prT0I4cfC88P3XOoKo6qlZdEtuksvRZwCnL/BIQQKcYcI0TZ5wiPr/4sNgirTqHU6m/qwCnuAGmqnG670coNXbhvfa30J7bn+7h5DVF30qZqpOMU8Hrk3ECuvarG4hxonnBKae2qkp9LSCAU09xuCgikgUvcY3TgmCcbMYYV1YB21Ja59Bxig9UW67ExOH9ME5zK8OKADjMPk6HMm7dyXLyZ27muzF1oA+iceILZyN0AJOVQouILYZ/9JxTgb8DbO4J1C/j9Mbzt+L1525JBT8AUHZtXPf+Z2lap0IsVZemcQKAf37LuQgPrAU+p/yxC3B61ekTwGZinAZM1QHAU/4I+MXngYevAx69SVbaxUOpPAmtAkyfiWwdI5CfSWB3mgEnv7wG9c4TmMACnCZbgEylCezd4xdi1xNfwPr2PuDXVyq0fBpw8rjGSb+OlLpjk7TTl4+T+vgt9UnABSaaD+tPGAJwMpRKt5ZZxiigi8OjSDCPokCBU+BVSI0TVSlJ4OSx8diWx7kQFTFd5wtbio8TABwzVsJ8JCfS2cI6jMYm/0FSdSXXhAcbz+l8CiEMnB6/5qaJyHJhBB0E7QYW+GfrwIkm42OwcaIM2zTQ9ALsnmsJ76klezgBugEmpeo441RKYZwCly32VW5eOlHswTgpKWzU2SaBgJMXRmitPQvntL8Cw3LxnrTX8/mF/KKGYkVgl5KLO82r/TBOQR1AJFquhJw19g2b3XXimsZSdU4sVcfBWhVNFAgY8WOsGi1c1Pg+ZpuM+R4pKt/FgQcAROzaVqYAMHE4VdU5BJz6Ypxow9KNcUoDTjHGKc1YNCvUazyZBE7dxOE05oGkj9O8p6TqiqPAu+5OXyOAjFSdIcThpD11BmGcVgBwOmoYp1t3zgAAzt5CwEl1Du8NnGwlVdfxQzS5349gRICEbkUsbEQz96lxAtIHvRoOidx59KNxAljFF1kNyCen7HLTqOdBfJwoRo8BnvwH7Peffyb7eYrXScSvTY2nPOjvYlLmjFNUXY3piE2aJmeIVMbJcYv4iv8C9p+ffoJPgAYweazQN1H/NPJx6sT2EtQPjCbpdr+pOv593M/dwwudA3J8AINNkBlhKJ3a21aMcQIArykAtPBxqjLGqWB4qBmcleKTPlXV1TXGiR3nAkqYaXoIwkhqnGLgfP1YEfOQTMNseXPimDdPloX0Jc5YxYPGdAALEXeEj0fEd90Ovw+LjqkDIOFEvBGOZWLzJDtXNV1HfeoWXVEHaKk6Ss03hDg8yThF5D2EBlzbQI1uwSzGybJlSxMOCsgZ3w9CBGEED3b2vGHJCkQAWFXrAmx6RTfQT3NeH4yTiQAltEWT35DPwwGxH2mpOo1xYvcigdCaodgR0DECeL3573jiwAyADCuCqeOFHssyIRgnpzMI49QtVTcA4yRcw/tow0TX2CmLKrRaL+Bk6rY1pgFUizbacAR7P8c7JdQIZFpOtl5NS9Wxa+tast1VFHBNaD+MEwGnZV5RBxxFwOnux9lNsIPYExroUZDaLy4eqqiu0fGFmM6NFOYiXikVv5n6rKpbTBRjC3maxkk+GNslpjJOKf2XFgOcAOD8d7Cfd39fsj7xUHdl/FqMGMokpDJO/AYza2swDV0wbNjyXIqOhSuDZ7FqrHlerTG2CXBKgnGiKq+OH7LKOugLF3Wgp0m6X8aJJooGitgV8fFAruWBL3exS6iqMxTBNrVf0XQPXgNW3MeptlY8PGUwUz+ryK6BZJx8yYDyBagelRBFwFzTU3rV6WNsouKibcmJdL66NXHMRcfCxnF2rHGNVDxKsc1A6jXnCw+lHaeqBT1VFTPUSxOIL9n8EtAWeZdbeNRJHJ7COEVk9GoE2DJiwgyVuSEraOHmFaUiVRfKnpZZwMkgxon7JC3Nw4kq6lIW934YJ7ci3HhraIpjJy2ibygLNhCrqqsmUnVUkDCi9KpTgdMqYw7rH/o2gDhwko7hFIYhNU5Wh5teHkyNE40bwTgNwETTNZ48TuiPeqfq2N8oPV2wLb5BMYTFzpyaqusVWlUdu19VO4KQj+vBGKfl7eEEHEXAyQsirK4VsGGcLyzqF06Ap8ukJcs4I9Q7Adpc42QRmEgTTNJnBB3GavXp47SY6JdxApACnPpgnKKoL6PQ1Fh1AnDC7wGIgOv/Ov054r0LYoIZgaLlMC3lO+OMx8gawTiJUzF14FRHCTeufoV8AtcCEHDaMinHwYF6RziHUwSCcWKTdN8aJ0VzRkaYYodLpdwwuk/GPcIqKW7evOEvTEtO0J26ACeiqq44ioCD9lWYAQDYBa5nI3F421eqhBhwXuDsyYFGRzBOcXG3YRiojsoJv15LAidAgtXeqTp9TKdWMipNoYFYCqrTkPck38WmCcSXbH4J6MBJYZwcy0gFfKZbETv8bbWwv00JjRVueCg1TpHQCWXe9nGNU7wtzSDRlXHiLGiWhxPA2AvF7VsAJ76xpHsuM1UXE4fPcbf6Kppw6Pw5U3q3ye73507/M0yEGYyTBE6WCpzas2zeG0jjlGZHsAiNU1/AqZw4/t6pOmKcuE+eY4pNNzV/n+sQ49SH7Uxaqs6WGiffG0DjlKfqlmfs2DIud6OmJalOSpt0syNQ+sc12r7MCfOmvvAacvDToHeUQdVZkNUSljt0xim+O8/SOAFguxOVSjeTqYQEcAp9EGDpyzk8HsQ63X4lMP9E8nFlV2ZQqo6nksTkEiu/N2trMGfqlVamLW92Esz/bPwV8npzESil6taOFkUqZX+9I8XhPMideWDGSXn8QRBw4mybKOUeW1L1iK2k6jy1/YoiECcDTFFV55SF/9OUwVhYp5gCnGLfcZ2n4KbrHVFZmgZ8JsdG4PN2C63RpJUGIMFLP1V1aqRdc4PvuklrmOrh5NaERkgViFNQm6JhpeocXmZfRyGVbQKAgutggV/TLdVAb8eUFbRwk1O0RYyTtMvITH/aBJyGwTj1k6rrkQpU3L7DmDg8TGWc1FSdrnGaDhXvMHoen9P/deSVmI6q2IDdeL55gw6cYuaXgG5HYIQem9cF46TozOIxrKq6QYATvZ9SuVpVChHSetW5Ajj54v+2ZcKxDJFFIVKgP8YpmapTfZxEk9+BGKc8VbesQqTpKEjQRwxAt1Qdpzj9IGSMEzIoVktJKdmKCJx6HQE8VRebIJfMOPWuqtNCTen0o3FSyv/7dg5XY9NTgfVnsPe570fJx5VdmckXwxpnnAhIJXphVdegbumTmamAQBL//sdDPsJzLmV/3PZMAJJxmqq6Ymd1IA04EeNEVXUcNPT0cVJKvZ9wOfUcB05LqagDYJdU4KSASkUgTuk0wTi5FUQuASc2Jp1Yqm5eZZx4UNrpQL0jnMPTwPn6sTLujLZgLiqhOXlK6nGfu42dt9p/MS3iLGrartXoxjipO1i+iGyaYPf8o9MN8TSqMBpKqi70RDFIIyqm6psANn7meIppU9lT0vjdGCc+1gk4KT5O9J2kpWcAwOAbCtdIuU6DRrfxS/Yja07u/h5KJRwxTiGfAwIzDpwyGCfOAs90THS4pgbtOe0Y/ZENuDJg9/xzrFskcPLbwBN3sd9Xy2M1TQN1FAX4R3NGMk6LSdUFvijJ78s5fJC5YQ2/v7ZcIP6kpeq6GGDSZoGY8aJt4bfhJoSmi4ejNXAso+ccByDdOdyUPk7UQ7Snj5PfBurc1DhP1S2v2LEllpOnL52AU5+pOqZxohswPuAndCFd/DMANjkahr44LVXjFFtkumqc1OMC+tM4xc3pFhNbeUlrmpO4yjhx4DQiGKeYhQRFdQ1ajg6cLIVxetGT12G87OCRA018f/VbgHf/Djj+IgDQ3JOrfGe1f6GNdgw4hYJxiqXqBmCcZso8ZSVSdUsXhgOAU5bAybdSGKdOQwBooXFyqyJNMgGm7UtN1cXGI4m+Zxqe4hyeHGPrxkp4ZedDeFr7s7Ay9FvPOXkNfvnfno13PHt76uMU8Ym7X42TiBTqf5KX4U83ZFGHrKobho9TB7ZgnIooZ4CxgmNhgXterSt2+kvVEeNECzG1FNI0TukvJYApGKeDBZy2Po3dZ8/5i+7voXgvEeOEbqk6T7EjEM7hbBzOtnzB3qE1p8kmCrVV+HnIwNzZxu8kcHr8dmY5Up4CJraJw2K3i2Sd0JqRjNNiUnWBMm/206uuH9dwiuf+d+Bdv9WAU78+TsQ40Qav4Fh4i/cu/OB5/4k9GEet6PRnBpuyjpimgYhDCwv9GQYLdtgp9yeMP8xx1ACnomPipHUxAz0a7CKF1m+qLkCbDMM8Ak4ZiyF9Bt18gJwQ1BtpMSyOEnE7gt6Mk+q/0Y1xIisFfo0Mc/HppW696xTGiRgm0jhlAqfKKrQd/SYzFPBbdm1cct4WAMDf/uwBRLyiDJCM06pqUVDSaam6KCtVN4DGqTXCgdP0g+w6ZrkuDxhusSx2xr7afoXYRK8hxq3wcXIrotpTtEVxyG+IgFOQWMDrfJFXNU5paaFjxopooYBZVLVrEI+1o8WeE7NhGFq6LhU4Of0wTpL6HytzHUfLE7YKC0OuqjN96RyexTgVbVOA0dWFTn+puhjjEVnEOIUCfKSlZwDJ2pLGaUmpOlH5lTF+a2uzq7AoFLdvAn10DcIEcIq1XKFUHWeBZ5uetMFoz2vefJXx1bg1PA5BZGCjuRcTIb/3aPO26anasdL1I0sCtGaXxjhpG84udgTBIoCTaQIjusO2Bpy6iMMlcOKMk8OsPx7rsPPoK00HpKbqACA02HdkI709UyLUirrFuvcfwjhqgNNpG8aSX158Ie6LcQpRT2WcMgZ8gnEypKZIXZz67f+WEfFUXVeNE6D7r6QBIQJWQZst9oO6hqcFNR/ddw9Q368/puoASBxOVXW0K3OSjJNX1IGTZevncsm5W1ByLNy5aw7X3cf8b8Iwwv4FrompFUSqbv9CUhxOrSwEcBrQORwArNFj2LGHPms0PKRUXcGxRT8031YmMGUSt00DDny45IflVmAWY61LHLIjIOdwH1FC48Q+R9U4pTFOlB4FkizoYkIViLtWyvtRqs6Q36eIFMZpjDMOUQRhijhsHyeLe/nUUUwI3CkKjiUW+ymn3V+qLsZ40CbBV1J1VgbTbCrAyTBYBeSiY5DFPSsUOwbycRLicFqAUzVOsqqO7sXZpieNV9tzSrFPAWMjY6ijhN9GmwAAU9O3scd28s1brCEyNQifM5R5m2QW3RgntROFGgScTDt9nl1Kqi4leonD3XiqTgAnNk5pQ9k/cFLXEQU4cfaJGKeeGqcVJAwHjiLgdMbGseQf48CpDzuCKGKeP1Lj1GPAOzEdleqJYQ8xVWcPyjj1maoDYl5XSzjO8gQwdQL7Pc46qZUnfTFOBlCZQljUJ28zBkDHKy5eeTbLmX/xmvsBADNNTyw0k1VXTBJpGieaDNoemwDai0jVTY2UgEkulN5373AWHv4ZlKLQ+tap4nDLQInYJoABp0IcOPGqJD7pRhEQGOnASdU4pe0i141K4NSXRqJH9GScummchBOx1EzYlinSNdMNNqaHA5zkIm9w4NREIbXdCkCME/uexszWYFV14jPZc1VxeCbj5HAfJ8PHZMXt6aHVNYYB/AuScRKpOj7HRGaccYprnIhxYvfknMo4tWa141s1wsbHjSGbd2p7bmID/JFfsucQC86DNGILBp//Zh9jljXAIhmnLsJwYGni8JToN1VX71AKjV1L2ngTcOr7XsiQfEQxxqk3cNJtQ5Z7HDXA6fTNKXnTuNi4a5NfOQhnGx1RedATOCV0VCrLlPH7IiK+u7cHEYenpepsV/5ddVdfTEWdGtSAlCYugFsdpDFOXarqypNssYqBD1XjRPGmC7bCMg38/L79uOPRWTE5jJcdOJYp3IQP1DspGqcY4zRgyxWAL+ZU+bLvnuExTrYpRNuhJg4n4NSEY5qioi4wWeNUIwM4FR1TlLN7hryOzcgVVTLTDaWqLmWMrR+TC8Sie6EpoTKpbhqbEtM4pfapixnqEdtyoM7A1vxQqurkIm/wxbMeFbpqnKivX8Ff6C9VF9d+kAGmonEys4xvFcZpailpOmA447coNU7CjiDkBpgJ4BRL1cU1Tk1PGq+253TgxIH0zSG7/9xdNzA/tcZ+NnbWnaYdFt3WdZOvDdMPyWNR58x4ZLVc6WZFAOiMUxguWf+oi8OzgROFKg4HpPazLysCIHMDHhk649RTcyuManPgtKzitA0ppaSLSNUBTCA7Q+LBOW6s2KtbOOXJ1c8YIuNUcuXxmUb2BCqPS9U4ZSxwA/bz6ys28h3eTgU4BR6k1YHKONXl3wAd6FZXs0Ov6BOMnUKHb5wo48VPZlqAL/7s/kRPM5okOmqvOgorAzj16RwuPoeA0/57s/VwA4ZhGHiYWx3Uq1vkA0rawDINUVEXkGVBAjiVxfuJa6FchwXFDXy64WX6OAFMV7ZtVQWuZWLNyBIXaMRSdYNonKIok/4fL8sqSmBYzuHJRb6BbI3TxvGSnl7qq6puTPuvyTcxqo9T1obJdKQdwZKE4d0a/A4Sijicjt3g1yDqM1XnhxH8INRTda05jdElkHgTZ5yM3XfIqt71Zybm3bWjJRgGEBXG2B8IOBXHumtvlso4AcD9/8nS+XaJidYXESNFG5MVF2NlJ2HnASQBDF1Lus8GTtVZtjw3ZW2L+Jpic4lATx8nus4roKIOOIp61aUi6AFSdeqENNP0cHt4HPvPnrt5yWqWOLxfxml4qbqe+iZA3ylkAUa3ykTtnQWlkmepjBMHTrtuZcJ6pygnF6B/xokDJ6cyjiAyYHGhs+Wkn8tbLjwW37ltF/79jsdx/GoGHGhSVY0PM1N1VFXXt8ZJSdVVC4DJx8u+e4GQU/9LTNUBwIfMP8X/bO/CqyeU0n8lVedYhqioCwk4xZlWZSc9XnYw2/TQimzQVmMhkpN+Lx8nALjyj56KhZYvhNhLiX5TdUWjg1rBlsxr4wAfVwYwsl57yXiZKusoVce+j2Gl6mjxrKOY6eO0bVUV/+W8k4AbvscWeyvGsqRFXGOjiMODnnYEknFakjC8PS/ngqWMX0UcTmlGAk5hn6k6gN2Ps00Pc5ECQhsFcXxURfk4JrHbWIW10V7gl1ewx2NpOoC1YPrhZU/HxltvAH4JuaB30zfx42IHtEjGCQB+ejn7ecZrF83s25aJ777tAkRRlLqxid9DoqqO/yR/u5F+GSeAnbvf0jIXlKqzEMKxjN4VetRVQfGkWs5x1DBOqRF3t+0yaRmGIVDzTMPDPoxiurgRQAQ8euPiUnUa4zS8VF1PfRMQY5x6NHDs1BfvGh6PiW2s23bQAR6/jf1N9YjqpnFySgD4ufEKuWqpgBlIIGBlVPydtG4EzzhhFcII+NLPmNaJdt5VZXflx5r80vl2YoxTbx+ng5+qAwDfruGuaIuexnJVxskUDX4j+j4LceAkx8I4T2M1A3lN6grjtL+HjxMArK4VRWuTpYY6rlN3rYrGSReGc+q/ujqxaNE5EnCiCqNqv7vstBCtMyQ70oiKqHSxOFg1xcA/2rN6O6asiDNOQuPUu+WKdA5fIuNEY9cpd09d9QphgNlIVNUlNU5Kqs4pa4t/22PASbCi7XmN0XUsU6Rmf+dyv6YZ3nA7BTgBwPY1NRRr/N5UGadukWVHQJvCrI2x5UDMaY/dxKqWz31r98/qEceMlbBhPN25PZGqU6rqAHZ/AwMwToBcJ9S5l68pNoLebFN7QdoRTB3X/+cexji6gVNC49QdFBDNOcercZ4YO509sPMXXarquqTq1JtpyXYE8qvsqW8CetsRAOmpuqVqnAxDTlhUEqxOLoYhFsOyIRv/itfS9eSMU7Vga21XrC7H95anM4E2CSNp562zkQZ8Iwlukxqn7vodNw6cJrg4vDktF/UhACea+LQJkdhErwnHMjQrAvYzm3Ga4GxMI5DnV0dRLMhUicY+8+CXDeuMU3ZVXREdTPWoqKOghXS63kHHD8V3Ws1gh/oKmjva86C0czfGCYBsT9KaG8zHiQf1n/PDSNoRZN371KvO8JYInIaTZk4zwDTCjFSd35JzhFuFZRpijmv7PFUXKT5OsY0J3ecPlZ6kH8OGs7OPj641F/ofNMbJMPTHTnkZMJHeqmgYkalx4vcZ6fQHA058PknVOIW9heHENlVWrQgPJ+CoB079p+oA2ahwpskmuenJM9kDO3+1SMYp4/dFhLoz79UDDIAOnLJ8mYQDdV3ZES9dtyJ1Tryyzo8BpPj3oP6fjokzTrWigwNKo187RRxO8dRtEzhNqa6UGqd000tALk5x5/B+7QgKtslSgW4ZGN3EP4BSHQcJOLkyVWebhmy3QhNcXOOktN8hNqauAKeFqIR1o0mNRk9vliFEcQAfp9R2KynAiVJ1B+qeqKgD0JUd6hm0yCtGt0243d+TWua0+wROsZYf0o4gFLqzQ8Y4LTXNzMdgFc2kxomuAf2kTScg7n/VPTxhRxAHTvx8HxtVhOCrTup+DnGGqSfjtEiNE6DPb9Sa6iBFUuOkV9VRVAsDpuoAfQNOGicEvecJ6qigNFte7nHUaJxSYwBxOCAXihnuOjy/agd74LGbsnUr3dzJh8g4qRonqx+N06CpOiPFe2qxIYwwf8kqScTkQhNmHDgpkw4dd4UxTiNFGzORZFDsDI0TwNKtf3zhNlz69VsAKBqnNODEv05TiMMX5xw+VS3I/P7UccDsTn4wZvfeV32Gm8o4Kak6yxTicLNAqToJnALD1tKbJJxeUIETShgvu5hrephrSaDRF0BfYgyicUpN1aWITScq0o5ANQJcUom+WOTZfd5EERHMVIGuCJVxirmBp3+Gw8AvTwdRX0Y/iHoaYArGaalVdcNKMxfSGKeMVB3NnYYlQEbBsVDvBPjQ/70T8y0f86YiDqdrwI9xiuuc6qPHs89tz8nq3qyIM0z9Mk5eHfjnS+Tfifnstim3iwBmWTuoWJXfsCOeNqN7Km5nMxDjRPONMo9E5CKOkMkIfnI5axFz8sXJ16f0DFzucZQzTv3bEQBy0M3wdEU4eRyrovNb0n180YzTUluuHIRUHS3sjf2ScVpqqg4A1j6ZfWZzmjED8V1ZfHemXjMqLZ9kufBa0cEBJVXn9CiBf+7Ja0WPNPoZF0KqjJPlsM+mBbZf4LSa+8dsW6WAc1X4WBzLrmYcINbwz9FAgyoONw2UOeNkkrZJGfeBpetUiHGa9+T51SPmrh43TXT6AehLDN0As7vGaeuUcq0zrAgA6R5+oN4RFXVLEoYDiUXes9hxqYagiRCM03x/jBOgMR+lInvvR6cbooVMZjUtn9sK8LF5Ml3/0lf0cg3vN/i5jyhNfk21CTqQZPHcqgBFq/l4/9k9rG+f7/A5oD0r04k87bN1io33DRM1YOvT2WPHPqvH8Y11/3/i+aPyvrrrO/LfYzexv9XWZbwQkhW94J3dP2MI4STE4XqqjmIg4ETHzzezAGAoGqeTjIeBaz4O/Nt70l9PrahWiDAcyBkn/f89Ji3aYdPiWS44jD353b/xJxSTgnP6jLRyfo1xWhogUReY/sThPQwwAdnDaf99LP8MDIdxsl2Wapt7FFjYo+inCvpP8XwFSL30CmDPXcAxLE1aK9qYVlN1XRgngF2bb7z5HNzzxLxI2yUZJ3mO1Qq7To/PthBFkUzV9WAnztw0hq++cYfe5kfdUQ0hTQcAH3/Fk3D343M4c9OY/KMQh7NedaRxssgxXBGHU4NfCtI4zSnAaQEl1Io2xisuHtrPBPt9WV4MIdQJPVWQz8fGWceUUDtbYZe6GOpNKOLw+jCE4YBSVcdbfVRH8Xev2CEaGqdGISVVl7WJoSiNCWPPLatHcfyaAPc8sYB//AUTPGdumvg9tb5mopghHO4rhsw4FQwPBr9mQuMUrzCk+UGZs6543Vm47t69ZGKC890S8D3oejF+jG9+2lacsLaKpx+/CvA+C5z1RuC453Q/vkEZJ7sAXPI94LGbk4+ZNnDii7Jf+1++ymxtNp/X/TOGEElxOLu/4g73ffs4AcBzPwqc+EJg+/Pk30ypcVpnciC7sIc1PY5LQ/atPMYpB04UffRgiw+6SsFilv0EnMqTSa+PbunAYTJOCtPSl2hXY5wymA8ayPvuZZ4nwHCAE8DE3XOPso7YAjBlME7q/8c2sn88akVbY5y6aZwo1owUBVMDJNmGSFm8xmvs+9s10xSgCejNOBmGgWeduEb/4+TwgdO60ZLm1g1AEYezXnVUVWemiMMNJ51xmvXkGGKMkyN0NEB6n7qDEf32qltVjAB119xFHC7sCOodLHArgiyH774jdl9YxRqec/KajCfzoJSp35LamF6tlxTmw7QLeMvT1+Hd//t23P34HHt5JuPEjq9o+OmP9xtDA07yni36HIwLxinDmkGZS7dOVXSGcQ9nrdtz8lryY6wUbDz/VM74uFPA9uf2Pr5BGSeAbeb4hm6gGN/C/h2CiANr2ozENyUjg2wkKlMMOKmhaJxWGbxlDSKgsY/1MqQIQ8WKYOUAp6M8Vad6GfUGLnHgVHZtYNO5yh9S6OturNYQGaeB7QgIOJl2trGbWkIvUnVDEIcDQtyNhSeSlSfdxOHxt1EYpyAy4DqDL4Dx3VWkLF5jNQYynphroeVJ4LSodiIqFT0k4JQaSpNflXESY1EVh8cYUmJjZtpyTCygKBgn8bJDwDYBurFrN42T5gUWeMD84+z3LozTXMvHDLckGFqqThxsJf15ahQUNrK+L/194qEyH5aNi09fj/WKcD/LxynR2mOxMSxxuGnB5273xZBrtiI2xxjE+MaZcLcLU0ZjujmdYJwWFYWa1HUCvRmnFRIJHycnK1U3AOOUEgYnISwjxGQ0Ix9YeEJ/4uwj7N61XGBs85I+81BGDpwo+gAu8ZYPZdcC1p8uAVBa3r+b5QFNZpa75I7Q6kLelwEmTULdUgNqCf08d0gfGuPEU38Le3prnLpUpBRsC/MmW4B8WIuq9HJtU7t+kZKqG6uWYZkGvCDCY9NN+ZrFMC61tXI8lA9i2a2SqnMsAxUjlurQgFOMceLi8JmOmqoro1awxWNAUitxsKLUp48TPAU4zT8OIGL3ZYoD82jJEbfbo/w7XVJFHZBkivoBTpYt2UECJD01TkpBgclaBv3hBbJ8PTNVp3oiLSWG1GcRAHyH3QuFgDFEgnGysxinLt5gxRH9/3apO9DqFYahX+t+GKcVEFmpujhwWmrqWtU4TWJGPrCwR38iCcMnjh2K5vNQRQ6cKPoQPacyTnZB0rNpO5xuqTohglw6i2OahthNDMQ4dUsNqCX0T9zJnz8s4DQcxgkAOu4YACCA1dszJCO0HZZyjpZbxBouRH14P5vgbdNYnL7HMCQdfVAZJ1nhY5tmknGyi3I3nQBOnHHqJFN1KuPUFzgfQvS0I0hjnESa7hgg5Tgt0xCNfh+dZmmiJbVbAZIbkH6AE6BbEgADpeponL76KZvE+WSOyyzGKYqAG74MPHJjf8c7LB8nSEF3KWT3lZUQhw/A4rlVJregGAKw04DTEcI4ZbVcUYuLTAOZrYL6DqFxCjAeSouOBOMk9E0rw/iS4igHTsoOpg9AkKpxAoDN57OfsdYO7DNiN7s6wQqgMBwwUhSl6X0s6iT27lUSTwP6oAGnpTFOAFAvsPeaQxmFRWpvtJx+rC0OVUY9yIHTYsEZAFaSCwAjB7GZZVGWuY+5oWi5Isa7YUiBeCxVR2xMB3KcUqpuQmmhcijML4H+e9WlAqeUijoKOpdHDjDGaaAqorQYhB1RoxBjSgZM1QEM9L3hXJbmGCtlAC/anEWBtE4BWNeDf3sP8H//pPexNqelk3a1h36rjwhcBpwSqbp4VR1FN+BkGDqTOgzgpF7rI4RxirO2hRQ7gmrB7t0ipUdQqs5GiLFwRj4QZ5xWYEUdkIvD5e/9ACdl4jYMZbCd9za2A3vSf0n5jC6puiEyTgDbnc+1/P4Yp7GNwCu+0rsb9dTxrPkkaUaGpnHipasLe5bMOLXK6/DWmbdhTzSG9y6acVKBk6P9vn7MBB6exkP7hgCcnvHnwJonAae/evHv0Stq61iKqrEPZ9oPYd+UBUxDH+9uDWjNJhgn2zIxWnLQaSktV6ISakVH8206FB5OwACpOg04ZXs4UYxXXGBfXTJOSxaHL5FxEu/Tvx2B+ty3PWs71o2WcOEJq9Jfp27O/LZMYx14gP3cf5/sHZkVN/4d4DeBNacCq07sfpx9RECME0/VWRETrhv2IhgngLVxaXEh8jAYXfVaD8FzbTlE0jk8mapbqr4JAAxOEFgIMKoxTnHgRIxTDpxWTthFRu9GYV+AQNU4lR1L0uKlMeDcjB1boh/eQWSc+ODvO42SBvTiMRmjUIfFOJHnx8ITS2acakUb3w+ZSH9R2iPEJgtbB7frxthtQqX4i/0MACx99NRLF//6foLa2vz2+zAf/RVWF3gllbrwZDBOAEvXtZvyetQ546SyP4fCwwno345A0zh1sSKgoJTkYzOkcRoy45RyXVMj7uLeK1WnsiAKe+3aJl5zzqYux6fMb0EbIKdtAplRyEDUmpPTX+81gV9+kf1+/juWrMkEgJAzTqWINE4cOGWm6nqweMURgAq4hgGc6Fqbdv9AeJlHlo+TWoSxZPYVgGFLxmk0OCAfyErVrSDXcOBoT9Wpvc96TVjQ0Xq534m2WyNhmsyGxDjR7rwvxqnfiO8EhmlHAAyFcaop7QEW2wZEraoyYo7ux/BU3VAYp0MVoh/gL5XO8srCQwt2CsMwXnbQUfZU8+TjpIjDDxXjtGSNU0aQe7jHLRaGX1V3kFJ1GuM0ADOgPtdXBOJ0rQAp1E2L277JSslHNwGnvLz/z+0SgcvOvUwaJ0rV2YtI1QGxVN0QGafi2FCA4nKILI1TQUnVxQ2BFxMm1zjVjAaKYUM+oDJOrTlgYTf7Pdc4rbAQnZ0HsyPoWzxnmlKsC6Q7hw+NcWLHN9RFLe6tMaRjFRoJry4Fp4tknNQKkMWLwxXgpDFODtZzn6Q98+0lfcYhDbLJeORXvPEs9CojN5txmqi4msaJUnXjmsZpufg48VRj6EntThcPJwr1XIBhME7DStUNwDgNApwMQ85xgSIQJ3YOkHqTeIQBcP3fsN/Pe2tPv7t+I+RjsBQx1s9ecqpOuZZLdTYH5LU+QoThQJIpTquqW7IZLKTGaY0xrT9QV4ATAfXqmhWXCl0BK8BBDlFdNpg4vDSIJkLTUqX0qhsS41QQqbohAqfauoFF9H1FoSoBJaUL6L0HZZyUG31R/krQU3VGIlWnA7clpeoOVax9MgOczQNAnbWlSE/VJVuCjJddjXGiVJ1axn/IDDB7tlxRxgaxTnMEnHponJRYunP4InycgKUxTr1cxuMhKusyGKd996W/7q7/C0w/yMDIGa8b7DO7RBhnnMDbxmQxTk6Pa6qC0GEzTkdImKahrQ9uSlXdMFJ1Jv/u1oCAE/9MNVW3QvVNQA6clBLtPnycbDngBirXzBKh040e1zksMooiVTfEr1UtoQeGBvIASC+nGdYuQjJOgwKnpafq1MnCjAGnY2L9xhYLzg5p2C5wzA79byoApoUlZac3UXGxELENRSMqoA0HtaIthOPAoTPApGrHopPRhFdlI70Wo/9JINxHVR1Fdck+TotM1cWvfy/gVJkCYLDnDcI4AYoerC7/pgGnDMbp5r9nP5/yR0PV+kR83itzjRMxTibd76alm1AOwjgNo6qO5AT08wgJdY5M61U3HODE3sMxOAtMa0hrVuoRV2CrFYqjWxwOKBqnwVJ1fWuc1M8A9Inx2GcBT3s3cMILk69ZRJAdwVAZJ4AJ93bdyn4fVqoOYBTt9EPAzE7+3rHWKxQ9UnUjQ07VmSpQs12MFhyUXQuNTrCkzzjksekc4OHr5P/Vhefct7FF+8mvSrxsrOxiH0bxD2N/ghv3WLBMU6TMJsouZhreIdM4TVYL+OhLThGALRGmxZiX0GOME6UCimNaT754xBmnJVfVmRbYrpq3pVk049QDDJUngBf+FXv/QQ0Dxzax63PgQWDdaWwR68zLx/ffx3ydVD1P4AGP3MB+P+Vlg31er+DnXomYBkYCp1jlsc+NZ3td02EzTie9mIHJYZ/3YQ7HMsD71Kc6hw+jqs6yYmNzcjub64MOG4NjmyRQX2HCcCAHTorGaTBx+OIZJ+VznBLw7P+3//fpEYJxGvaiplKpw0rVAXInRwwBASTTltWOwECpusX6C6mCSMPRJ27DMLB+rIT79jC/mRUDnDY+VfmPwdyUKaaOY805U4KE03/XeS4eCZsYK0tfFyrjP1QaJwB4w7lbuj/BLgIdDpxERV12mg6Q50ixZI2TwVmglIa0XSNRVdfH/XX2mwY7Noqp7cBjN8mdPrFNhRGgs8BMOBee0HuJ7f41Ay7FsaGnVEICTuCMUzxVB8SAUw8WrzBk4FSoAc/5yNLfZ5mFOn8JjZM95FRdvGdobQ2rpJ57FFjYy4CT6FGXp+pWXohU3YCM06I1TkMEHrGgPPXQ0yhqxcNQgVPMRI++A8PQWaaedgR6WfZiQp0sLHUs8PNdp/QDWxEaJwDYeDaEtsCtpLpopwUJp3fNMEpdvTZUWTd0VnMpoZpgCg+n7v5kY4lU3RD2kOq90XeqbkCN01JCNO3mO30CTuObZZPZeLpu56/Yz01P7Xv89B0c6FRjjJPlqPefsgAPxDgNIVV3hEZaqs62THFPD4NxSgCn6hqlkvoJVnAggNPKqqgDcuCkpOoG61U3UG+rLMZpyFE6GBon4OAxTpWYdkADS4X031NCXfQWC2qqGnDi52iYIh2i6pxWDONUGgdWn8R+H0CbQk1wg5ClnVS7BwJVh5Jx6hmql1MfVgRAisZpCLvsgRZ5ikFTdUsJuo/3xxin0Y0yXUJsFMXOX7CfG88Z+uEYRca2VcCAk4OMVB3Foa6qO0IjDTgBcv2oDWETYcXHcXW13mZr5mGWtrOLPdnh5RjLaPY7TCFSdYNV1S1PxukgVNUBwMQ2COZiWM7hQFJ0mcUy9WGACbA03WJbBdAuyzYNGE6y2nG9BpxWTjNK4ec0AHCKszEq40SgalkCJ78FzPU2vwSAkZID9TYZPuPUpwGmypKYzsH1C1LBURTptg1TKcApipidBSDH0RAjIsYpBpwsLVWugtE+U3VOeWkNfo/wIDmDa5vafElV2cNI1VlxxqmyWhYD1ffKCs7J41ZUc1+KZTT7HaYoKjdbj1BdV8vDqKobcpBOo+AM+Wt1SozOp9+HFVmpOvV3wxQNI7OCFvp4h+9Bgnp8lRwrtcnoikzVAdLPaYDKzYlKHDjJSXCyyh4b+hhbSgjg1JQ9FXvsYi3TEOPGMo3hVEouJlWnsiQHM00HABNbWZVaZwGY350OnFQTzOkHGTtgucD6M4d+OAavKCyjjajTgC2Ak7JRGgSMlsbZz8rUMA/ziAva9MTHPFWWjpWXznpaca+v6hqdcRLC8JWXpgNycThw2quZ2v/M1/d8qsrkLB44HTwq/qWnH4P79y7gVWd3ab2w2HjOXwD3XT1cyj4BnFJYJrvYcxe+ZbKMN12wFVsmF7/L3DxZxpsv2IpNk2XA4P27lO9qRabqAFYZdNprgBNe0PdLyK8p4gVi6g704tOOwZ275vD6p24e9pEuPmihvf8nTMxsFYCtT+/5svGygwP1DiquteSmpgAWl6pT7QiGZCyZGXaBaZkO3M8WLmLnRo6RDcpVjRPpm9ad3r2H3WKjNIE90RhWGzMIHrsVLgdOtqP3ihTR65oecxZw1htl0/U8UkMCJ30Ne+dzj8cvHziA0zaMLfkzTKdHqi7gZX0rUBgO5MAJmDwWeMXf9fVUdcEcqArnYBhIpsSmyTI++6ozDs6bn/JS9m+YQdQtRRrj1Edq0DAMfOhFGT22+gzDMPBBeo8b+U2vfFdqqm5F+DhROCXgZVcM9BLLNDBWcjDdYJObCpzWjhYP3hhbbBDIvvEr7Ofpr+nLe4fpterDSdMBcpE37f7vc5UJPNiME8CYJQJOajPkiW3s95lHWF86pyT1TZuGr28CAMsycVN4PH7PugHRzl8pqboMcXgvA0zLBl782YNwpEdWUKouPo+95PRj8JLTu2sD+w07VeOktNmibhEr0MMJyFN1A4WucVp+jNOKi67i8Iz2K4ciSNukiFTXqqm6lQScFhlqS5JhaB4OaqipOsMEzntbXy8jL6ehCMMBeW+7lf61SnZB6SBwiIATAOz9HTC3i/0+uoGlt4pjACJg//3s70LfdO5BORTLNHBzyBgH4+GfwzIYxakDJ+omUDz4jNxREoJxOojpdsuW35XnVBkQryjAiZjNHDgd+aH7OA2h5crRHk5RT1UsknEaeqRonIqOhSmu71lRGqdFhmoQOYzy5IMa6hg56WLGIvcRVFm3ZA8nChov/eqbKEhneSjmBhKIP/xzIPSZ5qm2Vu8QsP9exgjs/S37/0GoqAMA0zBwY3gCAMB65Bfi73bMRw3AUB3Lj/ZwUxr7DjssJVXnFXlmgRin2UdkG6gVaH4J5MBpoFDNFcsD2REcmlTdigxV56T5Jw23j99AYSVTdYBM1+WM0zILtWDh/Hf0/TLBOA0dOA24yJNA/JAwTlxTsucu9nNkvaxqosceuAa4/Ur2++RxB01sbZkG7oo2oxEVYChtYFJTdTlwGloQAXAw5zFHqarzSgSc+FwfspQsauu7uvsv5zjyV4AhhjsUxikHTlpkAafDyTjZ6amT9aNsgV5RGqdFhuqsvewZJwJOW58OHNN/9Red49A1ToMu8sXDAJwoVNsGYpxu/hrwg//Gfj8INgQUlmnAh43bQ50hNKw0xmllLrDLMbI0TsMMS5E5BGUOnNTG7sCKTdMBuTh8oNBSdYMwTqrVQZ6q06OiCMSXi8Zp8/nAtmcAT/oD7c+vOWcTDjQ6eM7Ja9JfdwSFnqpb5tPE6a9llbHP//hAL3veKWvxo7v34A92DMmAjxb5XiLmeBQOYaquMsnK9pu8a70KnE55GXD394EmF+66FWDHItu79BEjRRvHrqrgxunjcS4YA+ZHJmzV1ydP1Q09suwIhhm2onEKy8ocX10FTHN2MQdOR0eoPk6lgRinPFWXGRrjlAacDgPjVBoD3vB/E39++vGr8PTjVyWffwSGlqobFiNzsGLTU4FLvjfwyzZPVvDPbxmi8Hmxi/yhZJwAxjqR8HtEqaIa3wL8Pz8+NMcAVsn6lqcfi3/99gnibx5sfVEiMNmHz14e/YWbYUcwzFB1apFa4UqN3YEVa0UArJBU3Re+8AVs3boVxWIRZ511Fq699trDchyqxmnxTX5z4KSFelOlpuoOA+OUh9aSZNmn6pZLLDZVdyg1ToAuyO3hsH6w4yVnrMcjlVMQRmxu9Y0YSM9TdUOPQ1FV5yji8KiibI7V+X6Fml8CKwA4fetb38Jll12GD3zgA7j11lvxtKc9DS94wQuwc+fOQ34s7lBaruSLkBYq46QKwQ8n45THykrVLZdYsjj8EM0NaorkMPcJK9gWXnnBqfhdxI7DiydBcnH40MOxD77GyVEYJ6OmAifl95xxOnjx6U9/Gm9605vw5je/GSeddBI+85nPYOPGjbjiisFM/YYRhNQdyxisIiFnnLKDdiCmrfu05IzTYQ1dHJ4Dp75iyXYEhzBVR3GYGSeAaQdvN04EAPgJ4JRrnIYdWc7hwwxV42TVFJaJvJycsp4mXmGxrIFTp9PBzTffjIsuukj7+0UXXYTrr78+9TXtdhtzc3Pav2EFDbjSoD3R1InUzBknLQg4xW0HcsbpsAb1cTOMAStIj+YQ7MiAehxinHr0ZBxaaIzT4V+8akUH5eNYm5TsVF0OnIYV7iEQh6uMk1lbKx+g+X7yWMBc1vCjayzrI9+3bx+CIMCaNXoV05o1a7B79+7U11x++eUYHR0V/zZuHB4VfezqCp68YRQvP3PAXZrtAqe8nFVq9dEK4qiKVScBG54CPPn39b8f92wmVj3h9w7LYR3tsXmijKdsncDLzjgGpjmEPm5HQxz/AjZmt1/U86laHPssYHwr6yt4KGJiG7DtmcCJL+Ju4Yc/zn/Bq/GgtRWPrX++/sD2i9g1Pf75qa/LY/B4xgmrsWmijGedePDWomKpjFsrT8Ovi2djdLWyXm57Bht/Z/TuDbucw4giauW5/GLXrl045phjcP311+Pcc2X1y1/+5V/in/7pn/Db3/428Zp2u412uy3+Pzc3h40bN2J2dhYjIyOJ5+eRRx555JFHHssv5ubmMDo6uuzW72XNwU9NTcGyrAS7tGfPngQLRVEoFFAo5OmdPPLII4888shj+LGsU3Wu6+Kss87C1Vdfrf396quvxnnnnXeYjiqPPPLII4888jhaY1kzTgDwrne9C69//euxY8cOnHvuufjSl76EnTt34tJLLz3ch5ZHHnnkkUceeRxlseyB0ytf+Urs378fH/3oR/H444/j1FNPxb/9279h8+bNh/vQ8sgjjzzyyCOPoyyWtTh8GLFcxWV55JFHHnnkkUd2LNf1e1lrnPLII4888sgjjzyWU+TAKY888sgjjzzyyKPPyIFTHnnkkUceeeSRR5+RA6c88sgjjzzyyCOPPiMHTnnkkUceeeSRRx59Rg6c8sgjjzzyyCOPPPqMHDjlkUceeeSRRx559Bk5cMojjzzyyCOPPPLoM3LglEceeeSRRx555NFnLPuWK0sNMkafm5s7zEeSRx555JFHHnn0G7RuL7cGJ0c8cNq/fz8AYOPGjYf5SPLII4888sgjj0Fjfn4eo6Ojh/swRBzxwGliYgIAsHPnzmV14YcZc3Nz2LhxIx555JFl1c9nWHGknx+Qn+OREEf6+QH5OR4psVLOMYoizM/PY/369Yf7ULQ44oGTaTIZ1+jo6LIeIMOIkZGRI/ocj/TzA/JzPBLiSD8/ID/HIyVWwjkuR8IjF4fnkUceeeSRRx559Bk5cMojjzzyyCOPPPLoM4544FQoFPDhD38YhULhcB/KQYsj/RyP9PMD8nM8EuJIPz8gP8cjJY6GczyYYUTLrc4vjzzyyCOPPPLIY5nGEc845ZFHHnnkkUceeQwrcuCURx555JFHHnnk0WfkwCmPPPLII4888sijz8iBUx555JFHHnnkkUefcUQDpy984QvYunUrisUizjrrLFx77bWH+5AWHZdffjnOPvts1Go1rF69Gi996Uvxu9/9TntOFEX4yEc+gvXr16NUKuEZz3gG7rzzzsN0xEuLyy+/HIZh4LLLLhN/OxLO77HHHsPrXvc6TE5Oolwu4/TTT8fNN98sHl/p5+j7Pj74wQ9i69atKJVK2LZtGz760Y8iDEPxnJV2jj/72c/w4he/GOvXr4dhGPjOd76jPd7P+bTbbbztbW/D1NQUKpUKLr74Yjz66KOH8Cyyo9v5eZ6H97///XjSk56ESqWC9evX4w1veAN27dqlvcdyPj+g93eoxlve8hYYhoHPfOYz2t+PhHO8++67cfHFF2N0dBS1Wg1PfepTsXPnTvH4cj/H5RJHLHD61re+hcsuuwwf+MAHcOutt+JpT3saXvCCF2iDZCXFNddcgz/90z/FL3/5S1x99dXwfR8XXXQR6vW6eM4nP/lJfPrTn8bnPvc53HjjjVi7di2e+9znYn5+/jAe+eBx44034ktf+hKe/OQna39f6ec3PT2N888/H47j4N///d9x11134a/+6q8wNjYmnrPSz/ETn/gEvvjFL+Jzn/sc7r77bnzyk5/E//gf/wN/8zd/I56z0s6xXq/jtNNOw+c+97nUx/s5n8suuwzf/va3ceWVV+K6667DwsICXvSiFyEIgkN1GpnR7fwajQZuueUWfOhDH8Itt9yCq666Cvfccw8uvvhi7XnL+fyA3t8hxXe+8x386le/Sm3xsdLP8f7778cFF1yAE088ET/96U9x++2340Mf+hCKxaJ4znI/x2UT0REaT3nKU6JLL71U+9uJJ54Y/dmf/dlhOqLhxp49eyIA0TXXXBNFURSFYRitXbs2+vjHPy6e02q1otHR0eiLX/zi4TrMgWN+fj7avn17dPXVV0cXXnhh9I53vCOKoiPj/N7//vdHF1xwQebjR8I5vvCFL4z+8A//UPvby1/+8uh1r3tdFEUr/xwBRN/+9rfF//s5n5mZmchxnOjKK68Uz3nsscci0zSj//iP/zhkx95PxM8vLW644YYIQPTwww9HUbSyzi+Kss/x0UcfjY455pjoN7/5TbR58+bof/7P/ykeOxLO8ZWvfKW4D9NipZ3j4YwjknHqdDq4+eabcdFFF2l/v+iii3D99dcfpqMabszOzgKQTYwffPBB7N69WzvnQqGACy+8cEWd85/+6Z/ihS98IZ7znOdofz8Szu+73/0uduzYgd///d/H6tWrccYZZ+DLX/6yePxIOMcLLrgAP/7xj3HPPfcAAG6//XZcd911+L3f+z0AR8Y5qtHP+dx8883wPE97zvr163HqqaeuyHOenZ2FYRiCKT0Szi8MQ7z+9a/He9/7XpxyyimJx1f6OYZhiH/913/F8ccfj+c973lYvXo1zjnnHC2dt9LP8VDGEQmc9u3bhyAIsGbNGu3va9aswe7duw/TUQ0voijCu971LlxwwQU49dRTAUCc10o+5yuvvBK33HILLr/88sRjR8L5PfDAA7jiiiuwfft2/OAHP8Cll16Kt7/97fjHf/xHAEfGOb7//e/Hq1/9apx44olwHAdnnHEGLrvsMrz61a8GcGScoxr9nM/u3bvhui7Gx8czn7NSotVq4c/+7M/wmte8RjSHPRLO7xOf+ARs28bb3/721MdX+jnu2bMHCwsL+PjHP47nP//5+OEPf4iXvexlePnLX45rrrkGwMo/x0MZ9uE+gIMZhmFo/4+iKPG3lRhvfetb8etf/xrXXXdd4rGVes6PPPII3vGOd+CHP/yhlnOPx0o9P4Dt+nbs2IGPfexjAIAzzjgDd955J6644gq84Q1vEM9byef4rW99C1//+tfxzW9+E6eccgpuu+02XHbZZVi/fj0uueQS8byVfI5psZjzWWnn7HkeXvWqVyEMQ3zhC1/o+fyVcn4333wzPvvZz+KWW24Z+HhXyjlSccZLXvISvPOd7wQAnH766bj++uvxxS9+ERdeeGHma1fKOR7KOCIZp6mpKViWlUDJe/bsSewMV1q87W1vw3e/+1385Cc/wYYNG8Tf165dCwAr9pxvvvlm7NmzB2eddRZs24Zt27jmmmvw13/917BtW5zDSj0/AFi3bh1OPvlk7W8nnXSSKFhY6d8hALz3ve/Fn/3Zn+FVr3oVnvSkJ+H1r3893vnOdwoW8Ug4RzX6OZ+1a9ei0+lgeno68znLPTzPwx/8wR/gwQcfxNVXXy3YJmDln9+1116LPXv2YNOmTWLuefjhh/Hud78bW7ZsAbDyz3Fqagq2bfecf1byOR7KOCKBk+u6OOuss3D11Vdrf7/66qtx3nnnHaajWlpEUYS3vvWtuOqqq/Cf//mf2Lp1q/b41q1bsXbtWu2cO50OrrnmmhVxzs9+9rNxxx134LbbbhP/duzYgde+9rW47bbbsG3bthV9fgBw/vnnJywk7rnnHmzevBnAyv8OAVaFZZr6tGJZltjxHgnnqEY/53PWWWfBcRztOY8//jh+85vfrIhzJtB077334kc/+hEmJye1x1f6+b3+9a/Hr3/9a23uWb9+Pd773vfiBz/4AYCVf46u6+Lss8/uOv+s9HM8pHF4NOkHP6688srIcZzoK1/5SnTXXXdFl112WVSpVKKHHnrocB/aouKP//iPo9HR0einP/1p9Pjjj4t/jUZDPOfjH/94NDo6Gl111VXRHXfcEb361a+O1q1bF83NzR3GI198qFV1UbTyz++GG26IbNuO/vIv/zK69957o2984xtRuVyOvv71r4vnrPRzvOSSS6Jjjjkm+v73vx89+OCD0VVXXRVNTU1F73vf+8RzVto5zs/PR7feemt06623RgCiT3/609Gtt94qqsr6OZ9LL7002rBhQ/SjH/0ouuWWW6JnPetZ0WmnnRb5vn+4TktEt/PzPC+6+OKLow0bNkS33XabNve0223xHsv5/KKo93cYj3hVXRSt/HO86qqrIsdxoi996UvRvffeG/3N3/xNZFlWdO2114r3WO7nuFziiAVOURRFn//856PNmzdHrutGZ555pijdX4kBIPXf1772NfGcMAyjD3/4w9HatWujQqEQPf3pT4/uuOOOw3fQS4w4cDoSzu973/tedOqpp0aFQiE68cQToy996Uva4yv9HOfm5qJ3vOMd0aZNm6JisRht27Yt+sAHPqAtsivtHH/yk5+k3nuXXHJJFEX9nU+z2Yze+ta3RhMTE1GpVIpe9KIXRTt37jwMZ5OMbuf34IMPZs49P/nJT8R7LOfzi6Le32E80oDTkXCOX/nKV6LjjjsuKhaL0WmnnRZ95zvf0d5juZ/jcgkjiqLo4HJaeeSRRx555JFHHkdGHJEapzzyyCOPPPLII4+DETlwyiOPPPLII4888ugzcuCURx555JFHHnnk0WfkwCmPPPLII4888sijz8iBUx555JFHHnnkkUefkQOnPPLII4888sgjjz4jB0555JFHHnnkkUcefUYOnPLII48VHx/5yEdw+umnL+k9HnroIRiGgdtuu20ox5RHHnkcmZEDpzzyyOOQxhvf+EYYhgHDMOA4DrZt24b3vOc9qNfri37P97znPfjxj388xKPMI4888kgP+3AfQB555HH0xfOf/3x87Wtfg+d5uPbaa/HmN78Z9XodV1xxxUDvE0URgiBAtVpFtVo9SEebRx555CEjZ5zyyCOPQx6FQgFr167Fxo0b8ZrXvAavfe1r8Z3vfAdRFOGTn/wktm3bhlKphNNOOw3/8i//Il7305/+FIZh4Ac/+AF27NiBQqGAa6+9NpGqC8MQH/3oR7FhwwYUCgWcfvrp+I//+A/tGG644QacccYZKBaL2LFjB2699dZDdfp55JHHCo6cccojjzwOe5RKJXiehw9+8IO46qqrcMUVV2D79u342c9+hte97nVYtWoVLrzwQvH8973vffjUpz6Fbdu2YWxsDNdcc432fp/97GfxV3/1V/jbv/1bnHHGGfjqV7+Kiy++GHfeeSe2b9+Oer2OF73oRXjWs56Fr3/963jwwQfxjne841Cfdh555LECIwdOeeSRx2GNG264Ad/85jfxzGc+E5/+9Kfxn//5nzj33HMBANu2bcN1112Hv/3bv9WA00c/+lE897nPzXzPT33qU3j/+9+PV73qVQCAT3ziE/jJT36Cz3zmM/j85z+Pb3zjGwiCAF/96ldRLpdxyimn4NFHH8Uf//EfH9yTzSOPPFZ85MApjzzyOOTx/e9/H9VqFb7vw/M8vOQlL8F73vMe/Mu//EsCEHU6HZxxxhna33bs2JH53nNzc9i1axfOP/987e/nn38+br/9dgDA3XffjdNOOw3lclk8TmAtjzzyyKNb5MApjzzyOOTxzGc+E1dccQUcx8H69evhOA5+9atfAQD+9V//Fcccc4z2/EKhoP2/Uqn0/AzDMLT/R1Ek/hZF0VIOP4888jiKIwdOeeSRxyGPSqWC4447TvvbySefjEKhgJ07d2ppuUFjZGQE69evx3XXXYenP/3p4u/XX389nvKUp4jP+qd/+ic0m02USiUAwC9/+ctFf2YeeeRx9EQOnPLII49lEbVaDe95z3vwzne+E2EY4oILLsDc3Byuv/56VKtVXHLJJX2/13vf+158+MMfxrHHHovTTz8dX/va13DbbbfhG9/4BgDgNa95DT7wgQ/gTW96Ez74wQ/ioYcewqc+9amDdWp55JHHERQ5cMojjzyWTfz3//7fsXr1alx++eV44IEHMDY2hjPPPBN//ud/PtD7vP3tb8fc3Bze/e53Y8+ePTj55JPx3e9+F9u3bwcAVKtVfO9738Oll16KM844AyeffDI+8YlP4BWveMXBOK088sjjCAojypP9eeSRRx555JFHHn1FboCZRx555JFHHnnk0WfkwCmPPPLII4888sijz8iBUx555JFHHnnkkUefkQOnPPLII4888sgjjz4jB0555JFHHnnkkUcefUYOnPLII4888sgjjzz6jBw45ZFHHnnkkUceefQZOXDKI4888sgjjzzy6DNy4JRHHnnkkUceeeTRZ+TAKY888sgjjzzyyKPPyIFTHnnkkUceeeSRR5+RA6c88sgjjzzyyCOPPuP/B4dOil+GdHVOAAAAAElFTkSuQmCC",
2665
      "text/plain": [
2666
       "<Figure size 640x480 with 1 Axes>"
2667
      ]
2668
     },
2669
     "metadata": {},
2670
     "output_type": "display_data"
2671
    }
2672
   ],
2673
   "source": [
2674
    "#Line plot gender vs amt_weekdays\n",
2675
    "gender=smokers[['gender','amt_weekdays']]\n",
2676
    "gender_male=gender.loc[(gender['gender']==\"Male\")]\n",
2677
    "gender_male=gender_male[['amt_weekdays']]\n",
2678
    "gender_male.columns=[\"Male\"]\n",
2679
    "gender_female=gender.loc[(gender['gender']==\"Female\")]\n",
2680
    "gender_female=gender_female[['amt_weekdays']]\n",
2681
    "gender_female.columns=[\"Female\"]\n",
2682
    "gender_male=gender_male.reset_index(drop=True)\n",
2683
    "gender_female=gender_female.reset_index(drop=True)\n",
2684
    "genders=pd.concat([gender_male, gender_female],axis=1)\n",
2685
    "lines=genders.plot.line()\n",
2686
    "lines.set_xlabel(\"Period\")\n",
2687
    "lines.set_ylabel(\"Amount (Weekdays)\")\n",
2688
    "lines.set_title(\"Figure 10: Line Plot for Gender and Amount Smoked on Weekdays\")\n",
2689
    "lines.set_xlim([0,175])"
2690
   ]
2691
  },
2692
  {
2693
   "cell_type": "code",
2694
   "execution_count": 49,
2695
   "id": "8ca09c71",
2696
   "metadata": {},
2697
   "outputs": [
2698
    {
2699
     "data": {
2700
      "text/plain": [
2701
       "(0.0, 175.0)"
2702
      ]
2703
     },
2704
     "execution_count": 49,
2705
     "metadata": {},
2706
     "output_type": "execute_result"
2707
    },
2708
    {
2709
     "data": {
2710
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAHFCAYAAAAExnZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdaZgU1dk9Vb3OygzLzLBvIqisiiJoBATEBeLuFzXuJi4xxhijMUYFF1A0iolfjBo3ErdPg8YFBTRAVFDBPYqoyCoM6wyz9lJV9/tRdW/dqq7qru7p7ukZ7nmeeWB6erlddevWe8973vNKhBACAQEBAQEBAQGBlJDbewACAgICAgICAh0FInASEBAQEBAQEPAIETgJCAgICAgICHiECJwEBAQEBAQEBDxCBE4CAgICAgICAh4hAicBAQEBAQEBAY8QgZOAgICAgICAgEeIwElAQEBAQEBAwCNE4CQgICAgICAg4BHtGjg9+eSTkCTJ8ee6667Dxo0bIUkSnnzyyfYcZsZobGzE9ddfj+OOOw49evSAJEmYNWuW43PfffddXHrppTjssMMQCoUgSRI2btzYps+nx+/ee+9N+rwBAwbgwgsvbNNnZQI6PvojyzK6deuGE088EatWrbI8N9mxS4Zt27Zh1qxZ+PTTTz2/5u2338bYsWNRUlICSZLw8ssvp/256WLHjh34/e9/j9GjR6O8vBzBYBB9+vTBaaedhldeeQWqquZ8DE648MILMWDAgHb57Fwi3fn0xRdfQJIkBAIBbN++PXcDayesXLkSs2bNQn19vefXLF68GMcddxx69eqFUCiEXr16YdKkSbjrrrtyN9AkuPDCC1FaWprTz1i+fDkkScLy5ctz+jlecO+990KSJHzwwQeWxzVNQ9euXSFJEtatW2f5WywWQ3FxMU477bScjCkf5yAdTJo0CZMmTcr6+xYE4/TEE09g1apVlp+rr74aPXv2xKpVq3DSSSe19xAzwp49e/DII48gGo3ilFNOSfrct99+G2+99Rb69euHCRMm5GeABl566SXcfPPNef1MHr/85S+xatUqvPPOO5g7dy4+++wzTJ48GZ988kmb33vbtm2YPXu258CJEIKzzjoLgUAAr7zyClatWoWJEye2eRzJ8P7772PEiBF49NFH8eMf/xjPPfcc3nrrLdx1110IBAI47bTTOuzmobPgb3/7GwBAURQsWLCgnUeTfaxcuRKzZ8/2HDj99a9/xfHHH4/y8nI8+OCDWLx4Me6++24cdNBBePHFF3M7WAEAwOTJkwEAy5Ytszz+2Wefoa6uDiUlJQl/++CDD9Da2speK5AZ/O09AAAYPnw4xo4d6/i3I488Ms+j0dHS0oLi4uI2vUf//v1RV1cHSZKwe/dutvg64eabb8att94KQN9J5HNHM2bMmLx9lhP69evHzvNRRx2FAw44AFOmTMFf/vIXPProo3kdy7Zt27B3716ceuqpmDJlSlbes7W1FeFwGJIkJfytvr4ep5xyCkpLS/Hee++hZ8+elr//9Kc/xeeff449e/ZkZSztjdbWVhQVFbX3MNJCNBrF008/jVGjRmH37t14/PHHccMNN7T3sNoVc+fOxTHHHJMQJJ133nnQNK2dRrV/YcyYMaioqMDy5cvxu9/9jj2+fPly9OrVCxMnTsSyZctw+eWXW/4GQARObURBME5ucEvV/etf/8LIkSMRCoUwaNAgPPDAA5g1a5blxpQszWen6elrP/74Y5xxxhmorKzE4MGDAegMxF/+8heMHj0aRUVFqKysxBlnnIHvv/8+5fhpCsoLZLn9ToU9VUfp6GeffRY33XQTevXqhfLyckydOjWB+gWAt956C1OmTEF5eTmKi4tx1FFH4e233854PDSI2rRpU9Ln/fe//8XJJ5+MyspKhMNhjB49Gk899ZTlexx++OEAgIsuuoidD7cUzaxZs9CnTx8AwA033ABJkixpqnfffRdTpkxBWVkZiouLMWHCBLz++uuW96Dp5yVLluDiiy9Gjx49UFxcjGg06viZjz76KHbs2IF58+YlBE0UI0eOTFjoamtrcdlll6FPnz4IBoMYOHAgZs+eDUVR2HP4VO19992HgQMHorS0FOPHj8f777+f8DlPPvkkhg4dilAohIMOOsiVWYnFYrjjjjswbNgwhEIh9OjRAxdddBF27dpled6AAQMwY8YMLFy4EGPGjEE4HMbs2bMd3xMAli5dipNPPhl9+vRBOBzGAQccgMsuuwy7d++2PI9er19++SXOPvtsdOnSBdXV1bj44ouxb98+y3MbGhrws5/9DN26dUNpaSmOP/54fPPNN65jcMLLL7+MPXv24NJLL8UFF1yAb775Bu+++27C8+j3fe211zBmzBgUFRXhoIMOwmuvvQZAP74HHXQQSkpKcMQRR2DNmjUJ7/HKK69g/PjxKC4uRllZGaZNm5aQtnZLn9rXQEBfg6666ir8/e9/x0EHHYTi4mKMGjWKjYm+7re//S0AYODAgew6SbZ527Nnj+t8ta9ldAxPPPEEhg4diqKiIowdOxbvv/8+CCG455572Nw89thj8d133yW85+OPP45Ro0YhHA6ja9euOPXUU7F27VrX8VG899576N69O2bMmIHm5mYAwLfffotzzjkHVVVVbK7/7//+b8Jrv/76axx//PEoLi5G9+7dcfnll6OxsTHlZ1Kks14sW7YMV1xxBbp3745u3brhtNNOw7Zt25K+vyzLOOaYY/Dee+9Zrvvly5dj0qRJmDhxYsI5XL58OXr06IFDDjkEgPdrGQCef/55jB8/HiUlJSgtLcX06dM9ZQUyPQfp3IcIIZg3bx769++PcDiMQw89FG+88UbCWDRNwx133MHmYUVFBUaOHIkHHngg5fewf2C74YknniAAyPvvv0/i8bjlhxBCNmzYQACQJ554gr3mjTfeILIsk0mTJpGXXnqJvPDCC2TcuHFkwIABhP86Tq+lAEBuvfVW9vutt95KAJD+/fuTG264gSxdupS8/PLLhBBCfvazn5FAIEB+85vfkDfffJM888wzZNiwYaS6uprU1tZ6/q67du1K+Fw33HPPPQQA2bBhg+PfJ06cSLycOnoM7rnnnqTP69+/P7ngggvY78uWLSMAyIABA8i5555LXn/9dfLss8+Sfv36kSFDhhBFUdhz//73vxNJksgpp5xCFi5cSF599VUyY8YM4vP5yFtvvZXR+D777DMCgJxzzjnsMfux+/rrr0lZWRkZPHgwWbBgAXn99dfJ2WefTQCQu+++mxBCyL59+9gc+8Mf/kBWrVpFVq1aRbZs2eI4ni1btpCFCxcSAOSXv/wlWbVqFfn4448JIYQsX76cBAIBcthhh5Hnn3+evPzyy+S4444jkiSR5557jr0H/bzevXuTn//85+SNN94gL774ouWY8Zg2bRrx+Xykubk56bHisX37dtK3b1/Sv39/8vDDD5O33nqL3H777SQUCpELL7ww4fgOGDCAHH/88eTll18mL7/8MhkxYgSprKwk9fX1CeM++eSTyauvvkr+8Y9/kAMOOIB9DoWqquT4448nJSUlZPbs2WTp0qXkb3/7G+nduzc5+OCDSUtLC3tu//79Sc+ePcmgQYPI448/TpYtW0Y+/PBD1+/10EMPkblz55JXXnmFrFixgjz11FNk1KhRZOjQoSQWi7Hn0et16NCh5JZbbiFLly4l9913HwmFQuSiiy5iz9M0jUyePJmEQiFy5513kiVLlpBbb72VDBo0yPO1SIh+jkKhENm7dy/57rvviCRJluPMf98+ffqQ4cOHk2effZYsWrSIjBs3jgQCAXLLLbeQo446iixcuJC89NJL5MADDyTV1dWW4/X0008TAOS4444jL7/8Mnn++efJYYcdRoLBIHnnnXfY8y644ALLObEfFx70/B9xxBHk//7v/8iiRYvIpEmTiN/vJ+vXryeE6PP+l7/8JQFAFi5cyK6Tffv2uR6TqVOnEr/fT2699Vby6aefus5vOob+/fuTCRMmWL5/165dya9//Wty8sknk9dee408/fTTpLq6mowcOZJomsZeP2fOHAKAnH322eT1118nCxYsIIMGDSJdunQh33zzjeW4lJSUsN+ff/55EgqFyBVXXMHG9+WXX5IuXbqQESNGkAULFpAlS5aQ3/zmN0SWZTJr1iz22traWlJVVUV69+5NnnjiCbJo0SJy7rnnkn79+hEAZNmyZa7fl5D014tBgwaRX/7yl2Tx4sXkb3/7G6msrCSTJ09O+hmEEHL//fcTAGTlypWEEP36rKioIA8//DBZu3YtAUC+/PJLQggh0WiUFBUVkTPPPJM91+u1fOeddxJJksjFF19MXnvtNbJw4UIyfvx4UlJSwt4/2+cgnfsQnfuXXHIJeeONN8gjjzxCevfuTWpqasjEiRPZ8+bOnUt8Ph+59dZbydtvv03efPNNMn/+fMvnekFBBE5OP/F43DH4Ofzww0nfvn1JNBpljzU2NpJu3bq1OXC65ZZbLM9btWoVAUD++Mc/Wh7fsmULKSoqItdff73n75rNwOnYY48lPp8v5fu0NXA68cQTLc/7v//7PwKArFq1ihBCSHNzM+natSuZOXOm5XmqqpJRo0aRI444wtP47r77bhKPx0kkEiEfffQROfzwwwkA8vrrr7Pn2o/dT37yExIKhcjmzZst73nCCSeQ4uJiFhSsXr3adR4kG5P9mB155JGkqqqKNDY2sscURSHDhw8nffr0YQs9ndPnn3++p88bNmwYqampSXhcVVXLRkJVVfa3yy67jJSWlpJNmzZZXnPvvfdaFkr6XUaMGGFZZD788EMCgDz77LPss3r16kUOPfRQyw1r48aNJBAIWG7Szz77LAFA/vnPf1o+mx7nv/zlL+yx/v37E5/PR9atW+fpWPDQNI3E43GyadMmAoD861//Yn+j1+u8efMsr7nyyitJOBxm3+GNN94gAMgDDzxged6dd97p+VrcuHEjkWWZ/OQnP2GPTZw4kZSUlJCGhgbLc/v370+KiorI1q1b2WOffvopAUB69uxpCY5ffvllAoC88sorhBDzHIwYMcJyrhsbG0lVVRWZMGECeyzdwKm6utoy1traWiLLMpk7dy57LNWaY8d3331Hhg8fztbroqIiMmXKFPLggw9aglw6hpqaGtLU1JTw/UePHm2Zc/PnzycAyOeff04IIaSuro4UFRUlrEWbN28moVDIsrnib9p33XUX8fl8bBNFMX36dNKnT5+EoPCqq64i4XCY7N27lxBCyA033EAkSSKffvqp5XnTpk3zFDilu15ceeWVltfPmzePACDbt29P+jl0fs2ZM4cQQshHH31EAJCvv/6aEEJIdXU1efDBBwkhhKxYscJyjXq9ljdv3kz8fj/55S9/aXleY2MjqampIWeddRZ7LJvnwOt9qK6ujoTDYXLqqadanvfee+8RAJbAacaMGWT06NGux9MrCiJVt2DBAqxevdry4/cnyq+am5uxZs0anHLKKQgGg+zx0tJSzJw5s83jOP300y2/v/baa5AkCT/96U+hKAr7qampwahRo9qtsuLtt9+2ULO5wo9//GPL7yNHjgRgptBWrlyJvXv34oILLrAcH03TcPzxx2P16tWMmk2GG264AYFAAOFwGIcddhg2b96Mhx9+GCeeeKLra/79739jypQp6Nu3r+XxCy+8EC0tLQnpjbagubkZH3zwAc444wxLxYjP58N5552HrVu3JlDH9rmULq699loEAgH2w5+L1157DZMnT0avXr0sx/2EE04AAKxYscLyXieddBJ8Ph/73X4e161bh23btuGcc86xpHr69++fUKjw2muvoaKiAjNnzrR89ujRo1FTU5NwTYwcORIHHnigp++8c+dOXH755ejbty/8fj8CgQD69+8PAI5pGaf5GYlEsHPnTgCmaPbcc8+1PO+cc87xNB5AL1zRNA0XX3wxe+ziiy9Gc3Mznn/++YTnjx49Gr1792a/H3TQQQD06h5eM0kft5+D8847z5LqKi0txemnn473338fLS0tnsfNY/LkySgrK2O/V1dXo6qqKmUqPBkGDx6Mzz77DCtWrMDs2bMxdepUrF69GldddRXGjx+PSCSSMIaSkhL2O/3+J5xwgmXO2Y/LqlWr0NramlD127dvXxx77LEJkgBCCC677DLceuuteOaZZ3D99dezv0UiEbz99ts49dRTUVxcbJm/J554IiKRCEthL1u2DIcccghGjRpleX8vcyeT9SLVWuuGkSNHolu3buy6W758OWpqajB06FAAwDHHHMOuA7u+yeu1vHjxYiiKgvPPP9/yvHA47JgOzNY58HpsVq1ahUgkknCdT5gwga0fFEcccQQ+++wzXHnllVi8eDEaGhqSHl83FIQ4/KCDDnIVh/Ooq6sDIQTV1dUJf3N6LF3Yc/Y7duxw/TwAGDRoUJs/s5DRrVs3y++hUAiALvAF9OMDAGeccYbre+zdu9eyYDrhV7/6FX76059ClmVUVFQwnUUyuGksevXqxf6eLdB5l87nuek/7OjXrx++/fbbhGKE3/zmN/jpT38KIHHh2LFjB1599VUEAgHH97RrglKdRzr2mpqahPeqqamx2GLs2LED9fX1lo1Lss/2ehw0TcNxxx2Hbdu24eabb8aIESNQUlICTdNw5JFHsrGm+738fn/C85y+p9uYnnzySfTq1QuHHXYYqzibOnUqSkpK8Nhjj+HSSy+1vKZr166W3+lxcnucBhj0HLjNMU3TUFdXl1HBiv37A/qxcjqm6YBqbI455hgAesBwySWX4Pnnn8fjjz+OK6+8kj03V8dl6dKllsdisRief/55HHLIIWwjQbFnzx4oioI///nP+POf/+z4nej83bNnDwYOHJjwdy9zJ5P1ItVcdoMkSZg4cSIWL16MeDyOZcuWWaqAJ06ciFmzZoEQgmXLlqGmpgbDhg0D4P1apus81YvaYde0ZescULR1/eJx4403oqSkBP/4xz/w17/+FT6fD8cccwzuvvtuTzEIRUEETl5RWVkJSZLYieRRW1tr+T0cDgNAgig32Q3VfrPu3r07JEnCO++8w04WD6fH9id0794dAPDnP//ZtfrRS0Dbp0+ftCYtoF9MTn46VFBJx5YNVFZWQpbltD7Pa1HAtGnTsGTJEixatMgSgPbt25exafaFrXv37hg5ciTuvPNOx/eki7NX0IXJfg05PUbFq2+++abje/HMBuD9OPz3v//FZ599hieffBIXXHABe9xJKOwV3bp1g6Io2LNnj2XxdfqeTnjrrbfYrtYp+Hj//ffx1Vdf4eCDD854jPxYAbjOMVmWUVlZCUBf25yKDew3nHyjpKQEN954I55//nn897//zcp7pjou9usuFAph2bJlmD59OqZOnYo333yTHbfKykrG+vziF79w/DwaLHXr1s3T9eCETNaLtmDy5MlYuHAhPvjgA2bpQjFx4kTs3r0bH330Ed5//32ceuqp7G9er2U61hdffDGBwXFCts6BV6Rav/hCCr/fj2uvvRbXXnst6uvr8dZbb+H3v/89pk+fji1btnjemHSowKmkpARjx47Fyy+/jHvvvZfdUJqamixVIoB+ww6Hw/j8888tj//rX//y/HkzZszAXXfdhR9++AFnnXVW279AJ8NRRx2FiooKfPXVV7jqqqvy+tlTpkzBSy+9hG3btlkChQULFqC4uJgFcl53bslQUlKCcePGYeHChbj33ntZOb2mafjHP/6BPn36eE5H2XHppZfi3nvvxfXXX4+jjjrKE0MzY8YMLFq0CIMHD2YLUlswdOhQ9OzZE88++yyuvfZaFuxs2rQJK1eutBzfGTNm4LnnnoOqqhg3blybP5uCfqZ9M/Lwww9n/J6TJ0/GvHnz8PTTT+Pqq69mjz/zzDOeXv/YY49BlmUsXLgQXbp0sfxt69atOO+88/D444+nNJj1gqFDh6J379545plncN1117Hj0dzcjH/+85+s0g7Qq/d27tyJHTt2sI1JLBbD4sWLM/78dK+T7du3O85VmlJNN3h3w/jx41FUVIR//OMfOPPMM9njW7duxb///W9HtnvMmDFYsWIFpk6dikmTJmHp0qWoqqpCcXEx84cbOXKkK9MCmHPns88+s6TrvMydXK4XbmMFgPvvvx/79u2zGD4ecsgh6NatG+bOnYtIJGKpzvV6LU+fPh1+vx/r16/3LEHIxjnwiiOPPBLhcBhPP/20ZXwrV67Epk2bXA18KyoqcMYZZ+CHH37ANddcg40bN3reBHWowAkAbrvtNpx00kmYPn06fvWrX0FVVdxzzz0oLS3F3r172fOoNunxxx/H4MGDMWrUKHz44YeeF01ADwx+/vOf46KLLsKaNWtwzDHHoKSkBNu3b8e7776LESNG4Iorrkj6Hm+88Qaam5tZGetXX33FvE9OPPFEthju2rWLaVO++OIL9toePXqgR48eFvp1ypQpWLFihWed0xdffOFoSnf44Yd72kG4obS0FH/+859xwQUXYO/evTjjjDNQVVWFXbt24bPPPsOuXbvw0EMPZfz+yXDrrbcyrc8tt9yCrl274umnn8brr7+OefPmsRvd4MGDUVRUhKeffhoHHXQQSktL0atXr7QX9rlz52LatGmYPHkyrrvuOgSDQfzlL3/Bf//7Xzz77LOemRU7Kioq8PLLL2PmzJkYNWoUrrjiChx55JEoLS3Fnj178J///Ae1tbUWrdFtt92GpUuXYsKECbj66qsxdOhQRCIRbNy4EYsWLcJf//pXZqvgBbIs4/bbb8ell16KU089FT/72c9QX1+PWbNmJVDdP/nJT/D000/jxBNPxK9+9SscccQRCAQC2Lp1K5YtW4aTTz7Zsqv1imHDhmHw4MH43e9+B0IIunbtildffTUhFZMOjjvuOBxzzDG4/vrr0dzcjLFjx+K9997D3//+95Sv3bNnD/71r39h+vTpOPnkkx2fc//992PBggWYO3eua9rUK2RZxrx583DuuedixowZuOyyyxCNRnHPPfegvr7e4sb9P//zP7jlllvwk5/8BL/97W8RiUTwpz/9qU3u8iNGjAAAPPDAA7jgggsQCAQwdOjQBAaR4pBDDsGUKVNwwgknYPDgwYhEIvjggw/wxz/+EdXV1bjkkksyHguPiooK3Hzzzfj973+P888/H2effTb27NmD2bNnIxwOM+87Ow466CC88847mDp1Ko455hi89dZb6NOnDx544AEcffTR+NGPfoQrrrgCAwYMQGNjI7777ju8+uqr+Pe//w0AuOaaa/D444/jpJNOwh133IHq6mo8/fTT+Prrrz2NO1frhRMOOeQQVFVV4aWXXkKPHj2YTgzQ74PHHHMMXnrpJQBW/yav1/KAAQNw22234aabbsL333+P448/HpWVldixYwc+/PBDlJSUONqMtPUceEVlZSWuu+463HHHHbj00ktx5plnYsuWLY7r18yZM5lvZI8ePbBp0ybMnz8f/fv3x5AhQ7x/aJvl5W0ArShYvXq149/dKuNeeuklMmLECBIMBkm/fv3IXXfdRa6++mpSWVlped6+ffvIpZdeSqqrq0lJSQmZOXMm2bhxo2tV3a5duxzH8fjjj5Nx48aRkpISUlRURAYPHkzOP/98smbNmpTfsX///q6Vg3wFC60gcPrhqwIISd+OwO2HHle3qroXXnjB8f3s52PFihXkpJNOIl27diWBQID07t2bnHTSSQmvdxtfqqo/QhKr6ggh5IsvviAzZ84kXbp0IcFgkIwaNcqxeu7ZZ58lw4YNI4FAIGU1VbIxvfPOO+TYY49l8+DII48kr776quU5qea0G2pra8mNN95IRo4cSUpKSkggECC9evUiM2fOJAsWLGAWHRS7du0iV199NRk4cCAJBAKka9eu5LDDDiM33XQTq15K9l2cjsPf/vY3MmTIEBIMBsmBBx5IHn/8cccKrng8Tu69914yatQoEg6HSWlpKRk2bBi57LLLyLfffsue179/f3LSSSd5PgZfffUVmTZtGikrKyOVlZXkzDPPJJs3b/Z8vdJjz19X9fX15OKLLyYVFRWkuLiYTJs2jXz99dcp5wGt7qK2JE7461//aqlKcvu+AMgvfvELy2Nu5+bll18m48aNI+FwmJSUlJApU6aQ9957L+E9Fy1aREaPHk2KiorIoEGDyIMPPuhaVWf/bDpW/ponhJAbb7yR9OrVi8iynLJy7OGHHyannXYaGTRoECkuLibBYJAMHjyYXH755Ql2H+l8f7e1529/+xsZOXIkCQaDpEuXLuTkk0+2lMETklgKTwghW7duJcOGDSMDBgxg9gsbNmwgF198MenduzcJBAKkR48eZMKECeSOO+6wvJbOx3A4TLp27UouueQS8q9//ctTVR0hbVsv6HHw8jmEEHLWWWcRAOSMM85I+Budy7179074m9drmRB9bk6ePJmUl5eTUChE+vfvT8444wyL7Uw2z0E69yFN08jcuXNJ3759STAYJCNHjiSvvvoqmThxouX++cc//pFMmDCBdO/encUPl1xyCdm4cWPqg8xBIoQQ72FWYSIej7NqliVLlrT3cAQEBAQEBAQ6KTpcqg4ALrnkEkybNg09e/ZEbW0t/vrXv2Lt2rXpu38KCAgICAgICKSBDhk4NTY24rrrrsOuXbsQCARw6KGHYtGiRZg6dWp7D01AQEBAQECgE6NTpOoEBAQEBAQEBPKBgnAOFxAQEBAQEBDoCBCBk4CAgICAgICAR4jASUBAQEBAQEDAIzqkODwdaJqGbdu2oaysLKumYwICAgICAgK5AyEEjY2N6NWrV0JPvPZEpw+ctm3bxnp+CQgICAgICHQsbNmyJa1uCLlGpw+caMuALVu2oLy8vJ1HIyAgICAgIOAFDQ0N6Nu3r2vrn/ZCpw+caHquvLxcBE4CAgICAgIdDIUmsymcpKGAgICAgICAQIFDBE4CAgICAgICAh4hAicBAQEBAQEBAY/o9BonAQEBAQEBJ6iqing83t7D2G8RCATg8/naexhpQwROAgICAgL7FQghqK2tRX19fXsPZb9HRUUFampqCk4AngwicBIQEBAQ2K9Ag6aqqioUFxd3qJt2ZwEhBC0tLdi5cycAoGfPnu08Iu8QgZOAgICAwH4DVVVZ0NStW7f2Hs5+jaKiIgDAzp07UVVV1WHSdkIcLiAgICCw34BqmoqLi9t5JAKAeR46ktZMBE4CAgICAvsdRHquMNARz4MInAQEBAQEBAQEPKLdA6cffvgBP/3pT9GtWzcUFxdj9OjR+Oijj9jfCSGYNWsWevXqhaKiIkyaNAlffvllO45YQEBAQECgY2Pjxo2QJAmffvppew+lw6FdA6e6ujocddRRCAQCeOONN/DVV1/hj3/8IyoqKthz5s2bh/vuuw8PPvggVq9ejZqaGkybNg2NjY3tN3ABAQEBAYE848ILL4QkSbj88ssT/nbllVdCkiRceOGF+R/YfoZ2DZzuvvtu9O3bF0888QSOOOIIDBgwAFOmTMHgwYMB6GzT/PnzcdNNN+G0007D8OHD8dRTT6GlpQXPPPNMew5dQEBAIOdojantPQSBAkPfvn3x3HPPobW1lT0WiUTw7LPPol+/fu04sv0H7Ro4vfLKKxg7dizOPPNMVFVVYcyYMXj00UfZ3zds2IDa2locd9xx7LFQKISJEydi5cqVju8ZjUbR0NBg+REQEBDoaJi7aC1G3bYE3+wQ7LqAiUMPPRT9+vXDwoUL2WMLFy5E3759MWbMGPbYm2++iaOPPhoVFRXo1q0bZsyYgfXr1yd976+++gonnngiSktLUV1djfPOOw+7d+/O2XfpqGjXwOn777/HQw89hCFDhmDx4sW4/PLLcfXVV2PBggUAdJMyAKiurra8rrq6mv3Njrlz56JLly7sp2/fvrn9EgICAgI5wCeb6xFTNKzdLjZ/uQQhBC0xpV1+CCEZjfmiiy7CE088wX5//PHHcfHFF1ue09zcjGuvvRarV6/G22+/DVmWceqpp0LTNMf33L59OyZOnIjRo0djzZo1ePPNN7Fjxw6cddZZGY2xM6NdDTA1TcPYsWMxZ84cAMCYMWPw5Zdf4qGHHsL555/PnmcvVySEuJYw3njjjbj22mvZ7w0NDSJ4EhAQ6HBQjZuqluHNVcAbWuMqDr5lcbt89le3TUdxMP3b8HnnnYcbb7yRCbzfe+89PPfcc1i+fDl7zumnn255zWOPPYaqqip89dVXGD58eMJ7PvTQQzj00EPZ/RjQA7K+ffvim2++wYEHHpj2ODsr2jVw6tmzJw4++GDLYwcddBD++c9/AgBqamoA6MwTb8e+c+fOBBaKIhQKIRQK5WjEAgICAvkBDZhUZ4JAYD9G9+7dcdJJJ+Gpp54CIQQnnXQSunfvbnnO+vXrcfPNN+P999/H7t27GdO0efNmx8Dpo48+wrJly1BaWprwt/Xr14vAiUO7Bk5HHXUU1q1bZ3nsm2++Qf/+/QEAAwcORE1NDZYuXcpyt7FYDCtWrMDdd9+d9/EKCAgI5AuaRiz/CuQGRQEfvrptert9dqa4+OKLcdVVVwEA/vd//zfh7zNnzkTfvn3x6KOPolevXtA0DcOHD0csFnN8P03TMHPmTMd7a0fqI5cPtGvg9Otf/xoTJkzAnDlzcNZZZ+HDDz/EI488gkceeQSAnqK75pprMGfOHAwZMgRDhgzBnDlzUFxcjHPOOac9hy4gICCQU9BUnSICp5xCkqSM0mXtjeOPP54FQdOnWwO/PXv2YO3atXj44Yfxox/9CADw7rvvJn2/Qw89FP/85z8xYMAA+P0d73jkE+0qDj/88MPx0ksv4dlnn8Xw4cNx++23Y/78+Tj33HPZc66//npcc801uPLKKzF27Fj88MMPWLJkCcrKytpx5AICAgK5BU3RqULjJOAAn8+HtWvXYu3atQnNcSsrK9GtWzc88sgj+O677/Dvf//bov11wi9+8Qvs3bsXZ599Nj788EN8//33WLJkCS6++GKoqrDF4NHuYeWMGTMwY8YM179LkoRZs2Zh1qxZ+RuUgICAQDtDpOoEUqG8vNzxcVmW8dxzz+Hqq6/G8OHDMXToUPzpT3/CpEmTXN+rV69eeO+993DDDTdg+vTpiEaj6N+/P44//njIcrs3GSkotHvgJCAgICCQCJWJw0XgJKDjySefTPr3l19+mf1/6tSp+Oqrryx/5+0PBgwYkGCHMGTIEIs/lIAzRBgpICAgUICgTJMInAQECgsicBIQEBAoQDDGSWicBAQKCiJwEhAQEChAaCJVJyBQkBCBk4CAgEABgnbGEOJwAYHCggicBAQEBAoQlGkSPk4CAoUFETgJCAgIFCBErzoBgcKECJwEBAQEChCiqk5AoDAhAicBAQGBAoSoqhMQKEyIwElAQECgAEGZJlUVgZOAQCFBBE4CAgICBQiWqhOMk0ABY8CAAZg/f357DyOvEIGTgICAQAGCSpuEHYEAxYUXXghJkhJ+vvvuu/Ye2n4F0atOQEBAoAAhNE4CTjj++OPxxBNPWB7r0aNHO41m/4RgnAQEBAQKEGZVXTsPRKCgEAqFUFNTY/nx+Xx49dVXcdhhhyEcDmPQoEGYPXs2FEVhr5MkCQ8//DBmzJiB4uJiHHTQQVi1ahW+++47TJo0CSUlJRg/fjzWr1/PXrN+/XqcfPLJqK6uRmlpKQ4//HC89dZbSce3b98+/PznP0dVVRXKy8tx7LHH4rPPPsvZ8WgPiMBJQEBAoADBGCdNRE45BSFArLl9frLEJi5evBg//elPcfXVV+Orr77Cww8/jCeffBJ33nmn5Xm33347zj//fHz66acYNmwYzjnnHFx22WW48cYbsWbNGgDAVVddxZ7f1NSEE088EW+99RY++eQTTJ8+HTNnzsTmzZtdDiXBSSedhNraWixatAgfffQRDj30UEyZMgV79+7NynctBIhUnYCAgECBgRDC7qmCccox4i3AnF7t89m/3wYES9J6yWuvvYbS0lL2+wknnIAdO3bgd7/7HS644AIAwKBBg3D77bfj+uuvx6233sqee9FFF+Gss84CANxwww0YP348br75ZkyfPh0A8Ktf/QoXXXQRe/6oUaMwatQo9vsdd9yBl156Ca+88oolwKJYtmwZvvjiC+zcuROhUAgAcO+99+Lll1/Giy++iJ///OdpfddChQicBAQEBAoMvOmlcA4X4DF58mQ89NBD7PeSkhIccMABWL16tYVhUlUVkUgELS0tKC4uBgCMHDmS/b26uhoAMGLECMtjkUgEDQ0NKC8vR3NzM2bPno3XXnsN27Ztg6IoaG1tdWWcPvroIzQ1NaFbt26Wx1tbWy0pwI4OETgJCAgIFBh4QbhwDs8xAsU689Nen50maKDEQ9M0zJ49G6eddlrC88PhsPlxgQD7vyRJro9pRnr4t7/9LRYvXox7770XBxxwAIqKinDGGWcgFos5jk3TNPTs2RPLly9P+FtFRYW3L9gBIAInAQEBgQIDL2sSgVOOIUlpp8sKDYceeijWrVuXEFC1Fe+88w4uvPBCnHrqqQB0zdPGjRuTjqO2thZ+vx8DBgzI6lgKCSJwEhAQECgwaIJxEkgDt9xyC2bMmIG+ffvizDPPhCzL+Pzzz/HFF1/gjjvuyPh9DzjgACxcuBAzZ86EJEm4+eabGRvlhKlTp2L8+PE45ZRTcPfdd2Po0KHYtm0bFi1ahFNOOQVjx47NeCyFBFFVJyAgIFBgsKTqhMZJIAWmT5+O1157DUuXLsXhhx+OI488Evfddx/69+/fpve9//77UVlZiQkTJmDmzJmYPn06Dj30UNfnS5KERYsW4ZhjjsHFF1+MAw88ED/5yU+wceNGpqnqDJAI6dxXZUNDA7p06YJ9+/ahvLy8vYcjICAgkBL1LTGMvm0pAGDKsCo8duHh7TyizoNIJIINGzZg4MCBFv2PQPsg2fko1Pu3YJwEBAQECgx8ek4RqToBgYKCCJwEBAQECgx8ek7YEQgIFBZE4CQgICBQYBBVdQIChQsROAkICAgUGISPk4BA4UIETgICAgIFBk0TgVOu0cnrojoMOuJ5EIGTgICAQIFBE3YEOQN1ym5paWnnkQgA5nngHcwLHcIAU0BAQKDAYOlVJxinrMLn86GiogI7d+4EABQXF7NWIwL5AyEELS0t2LlzJyoqKuDz+dp7SJ4hAicBAQGBAoNgnHKLmpoaAGDBk0D7oaKigp2PjgIROAkICAgUGFTN+f8C2YEkSejZsyeqqqoQj8fbezj7LQKBQIdimihE4CQgICBQYFAt4nAROeUKPp+vQ964BdoXQhwuICAgUGAQTX4FBAoXInASEBAQKDBYxOEibhIQKCiIwElAQECgwCAMMAUEChcicBIQEBAoMBAROAkIFCxE4CQgICBQYFBFrzoBgYKFCJwEBAQECgyWqjrh4yQgUFAQgZOAgIBAgYGvqhPO4QIChQUROAkICAgUGHjGSRGBk4BAQUEETgICAgIFBlUwTgICBQsROAkICAgUGDShcRIQKFiIwElAQECgwGBtuSICJwGBQoIInAQEBAQKDKLlioBA4UIETgICAgIFBj5WEqk6AYHCQrsGTrNmzYIkSZafmpoa9ndCCGbNmoVevXqhqKgIkyZNwpdfftmOIxYQEBDIPXiWiRCrk7iAgED7ot0Zp0MOOQTbt29nP1988QX727x583DffffhwQcfxOrVq1FTU4Np06ahsbGxHUcsICAgkFtotkBJpOsEBAoH7R44+f1+1NTUsJ8ePXoA0HdY8+fPx0033YTTTjsNw4cPx1NPPYWWlhY888wz7TzqjgVCCCJxtb2HISAg4BH2QEmk63KLuKohzve5ERBIgnYPnL799lv06tULAwcOxE9+8hN8//33AIANGzagtrYWxx13HHtuKBTCxIkTsXLlStf3i0ajaGhosPzs7/jti5/jsNuXonZfpL2HIiAg4AEJgZNgnHIGTSM48YF3MONP7wrPLAFPaNfAady4cViwYAEWL16MRx99FLW1tZgwYQL27NmD2tpaAEB1dbXlNdXV1exvTpg7dy66dOnCfvr27ZvT79AR8MnmOjTHVHy3s6m9hyIgIOABIlWXPzTFFHy7swnrdjQioghmXiA12jVwOuGEE3D66adjxIgRmDp1Kl5//XUAwFNPPcWeI0mS5TWEkITHeNx4443Yt28f+9myZUtuBt+BQFs2CLpfQKBjwJ410kQWKWdQVGH9IJAe2j1Vx6OkpAQjRozAt99+y6rr7OzSzp07E1goHqFQCOXl5Zaf/R10YRA0tIBAx4B9kyM2PbmDwkWlIkAV8IKCCpyi0SjWrl2Lnj17YuDAgaipqcHSpUvZ32OxGFasWIEJEya04yg7HmLG9lXspgQEOgbs9gOKuKPnDKpobyOQJvzt+eHXXXcdZs6ciX79+mHnzp2444470NDQgAsuuACSJOGaa67BnDlzMGTIEAwZMgRz5sxBcXExzjnnnPYcdoeDYgROdt2EgIBAYcK+yRFxU+7Ap+rEGingBe0aOG3duhVnn302du/ejR49euDII4/E+++/j/79+wMArr/+erS2tuLKK69EXV0dxo0bhyVLlqCsrKw9h93hwFJ1YlEQEOgQEHYE+YPCHWshZxDwgnYNnJ577rmkf5ckCbNmzcKsWbPyM6BOirhGU3XtPBABAQFPsG9yxA09d1A5Ok8EqAJeUFAaJ4HcgDJOYlEQEOgYsG9yFBE45Qz8sRU6UAEvEIFTJwchhC0MYtcqINAxIHyc8geLxkmw8gIeIAKnTo648CgREOhwSBCHC7Y4Z1BEVZ1AmhCBUyeHIvL3AgIdDqLlSv5g0TiJ4yzgASJw6uSIq6JiRECgo8Hu4yRu6LlDXNgRCKQJETh1ciiqYJwEBDoaEpzDReCUM6hCHC6QJkTg1MkhPEoEBDoe7FV1YtOTO4iqOoF0IQKnTo6YIvL3AgIdDcLHKX/gWXmRqhPwAhE4dXJYK0bacSACAgKeIcTh+YNgnATShQicOjksuymxKAgIdAiIwCl/4I+tYJwEvEAETp0cFh8nsSgICHQIJBhgims3Z4jzBTTCAFPAA0Tg1MmhCI8SAYEOB8E45Q+iqk4gXYjAqZMjLlJ1AgIdDvZLVaSQcgdFpOoE0oQInDo5RKpOQKDjwb7JUURlR86giLZUAmlCBE6dHIpwDhcQ6HCwb3IEE5I7qKItlUCaEIFTJ0dcLAoCAh0O9k2OEC3nDsIkWCBdiMCpk8PCOIk1QUCgQyCh5YrY9OQMYo0USBcicOrkED5OAgIdD4lVdYJyyhWEAaZAuhCBUydHTBV2BAICHQ0JPk4ibsoZ+KBUaMkEvEAETp0ciqiqExDocLBvcgRbnDvEO3FVXSSuirmTA4jAqZODN8AUF5CAQMeA/VIVm57cobO2XNnXEseRc9/G5f/4qL2H0ukgAqdODuHjJCDQ8ZBYVSeu3Vyhs2qcNu5pRn1LHJ9uqW/voXQ6iMCpk0MRfZgEBDocEqrqOtENvdCgdFIdKM02KJ3oOxUKRODUyREXBpgCAh0Ooldd/tBZW65QfWtc7JizDhE4dXIIA0wBgY4HegOXJOvvAtmHtclvOw4ky6DfSwRO2YcInDo5RMsVAYGOB3rTC/hky+8C2YfSSTeXcWPOiD6H2YcInDo5LPn7TrQoCAh0ZtB7ecgInIROJXforJtLldM4EbH2ZxUicOrkiHfSihEBgc4MuskJ+PUlujPd0AsNaiddI/mAUATe2YUInDo54opwxRUQ6Gig12rAp4ucBFucO8Q7qTicDwJFui67EIFTJ0dn9SgREOjM0GwaJ8E45Q58y5XOtEbyAWFc9DrMKkTg1MkRFz5OAgIdDpRhCgqNU87RWdtS8QEhn3kQaDtE4NTJYRE+dqJFQUCgM4NuclhVnbh2cwZLy5VOFKAKjVPuIAKnTo54J6WhBQQ6M1iqzi9ZfhfIPuKd1MeJD5aEl1N2IQKnTg7BOAkIdDywqjrm49Seo+ncUDupj5MixOE5gwicOjn4nYYInAQEOgYowxRkgZOInHIFPqjoTH5HKrf2K2L+ZBUicOrk4HvViVSdgEDHABOH+4XGKdforJXH/PeKKZ3nexUC/Jm+cMuWLdi4cSNaWlrQo0cPHHLIIQiFQtkcm0AWwO80xKZDQKBjILHlSnuOpnPDEjh1ogDVkqoTi39WkVbgtGnTJvz1r3/Fs88+iy1btlhozWAwiB/96Ef4+c9/jtNPPx2yLMisQkBnLbUVEOjMoJcqNcAU4vDcQbVsLjvPcVYt4vDO870KAZ6jm1/96lcYMWIEvv32W9x222348ssvsW/fPsRiMdTW1mLRokU4+uijcfPNN2PkyJFYvXp1Lsct4BFWHydx8QgIdAQkME5i05MzWDaXnYiY4dd+pTN9sQKAZ8YpGAxi/fr16NGjR8LfqqqqcOyxx+LYY4/FrbfeikWLFmHTpk04/PDDszpYgfQhxOECAh0PdgNMsenJHZT9oeWKmD9ZhefA6Z577vH8pieeeGJGgxHIPjqr8FFAoDPD3nJFXLu5Q6dt8it8nHKGjIRIra2taGlpYb9v2rQJ8+fPx+LFi7M2MIHsQFTVCQh0PDAfJ79o8ptrWOQMneg48+k5oXHKLjIKnE4++WQsWLAAAFBfX49x48bhj3/8I0455RQ89NBDWR2gQNugiFSdgECHg13j1JlEy4WGTttyxWKAKRinbCKjwOnjjz/Gj370IwDAiy++iOrqamzatAkLFizAn/70p6wOUKBtEKk6AYGOB2aA6RdNfnONzrpGWqrqOtH3KgRkFDi1tLSgrKwMALBkyRKcdtppkGUZRx55JDZt2pTVAQq0DVZxeDsOREBAwDPs4vDOxIQUGpROmqrj03OCccouMgqcDjjgALz88svYsmULFi9ejOOOOw4AsHPnTpSXl2c0kLlz50KSJFxzzTXsMUIIZs2ahV69eqGoqAiTJk3Cl19+mdH7768QdgQCAh0P9FIVdgS5h9JJU3W8P5XoVZddZBQ43XLLLbjuuuswYMAAjBs3DuPHjwegs09jxoxJ+/1Wr16NRx55BCNHjrQ8Pm/ePNx333148MEHsXr1atTU1GDatGlobGzMZNj7JRQhDhcQ6HAQVXX5g6WqrhMdZktVnXAOzyoyCpzOOOMMbN68GWvWrMGbb77JHp8yZQruv//+tN6rqakJ5557Lh599FFUVlayxwkhmD9/Pm666SacdtppGD58OJ566im0tLTgmWeeyWTYOUVrTPX83EhczWhno6gaYkp6F0AufJxUjSCqeP++WUGsJfVzDLTG1E7VrFMgC1CigKpk7e0i8dzOMVZVZziHpxs4pbMeZRupPlvTCCLx9hufHfzmMt11mZA0v0sa61hbwX+veJr3DTe057wqJGTcF6WmpgZjxoyxtFY54ogjMGzYsLTe5xe/+AVOOukkTJ061fL4hg0bUFtby9KAABAKhTBx4kSsXLnS9f2i0SgaGhosP7nGki9rMXzWYvzfmi0pn9sUVXDUXf/GxU+l76x+2kMrMfW+FWl5cuRC+Hj6Qysx5Y8r0g7iMsaqvwB39QU2/CflUzfubsaY25dg9qtf5WFgAh0Cahx4cCzw+HGpn+sBtfsiOOz2pbjuhc+z8n52EEJYyxXW5DeNa/eFNVtwyK1v4o0vtudieEnx8eY6jJy9GH9++1vX5/z87x/hyLlvY19rPI8jcwffxy3dNfLKpz/GuDlvo645lvrJX7wIzO2j/5sHZNsA86ttDRg1ewnmvfl1m9+ro8OzAeZpp53m+U0XLlzo6XnPPfccPv74Y8f2LLW1tQCA6upqy+O0gs8Nc+fOxezZsz2PNRv4fOs+qBrBJ5vrcdbYvkmfu3lPC/Y0x/DJ5vq0PkPTCD7fug8AsLc5hurysKfXWXZTWdghaxrBp1vqAQB7mqPo2aWoze+ZEj+sATQF2P4ZMPCYpE/9urYRkbiGT4wxCgigeRdQv1n/IQSQpDa93drtDWiOqfhkS12WBmgFf8NjdgRpXLufba2HRoAPNuzFCSN6Zn18yfDlD/sQVwnWbHI/Nms27UV9Sxxb9ragS+8ueRxdIjSNWIpm0tWSfbK5Hvta4/h+dzMOKwkmf/K2TwCiAj98BIw4I4PRpgc+IMyGj9OX2/Yhpmr4eHNu5n1HgmfGqUuXLuynvLwcb7/9NtasWcP+/tFHH+Htt99Gly7eLoQtW7bgV7/6Ff7xj38gHHYPAiTbIkcISXiMx4033oh9+/axny1bUrNAbQXNH0c9ULZ0Mqfr5MrvGLwyPYQQxLIsDo+3h+BQU6z/JnuqsfCJKhIBBn7eeJhDqdAU1d8jV27M/M07E40THdaOhkhWx+UFMWNNaI66H2f6t0LQbdmZmHRTdWmt56rBsKke2KksQMlyVR0NviJxsbZ6ZpyeeOIJ9v8bbrgBZ511Fv7617/C5/MBAFRVxZVXXum5qu6jjz7Czp07cdhhh7HHVFXFf/7zHzz44INYt24dAJ156tnT3DXt3LkzgYXiEQqFEAqFvH6trEA1JlTUQ0BDJ1+6aS5+kYl5vAjsC1M2Fip+3Hmz8ddU679JQL9jISzKAgUCft6occAXaNPb0Rt/rlLVvI43k1Qdvfm3S+BkHJMml8ApqqhsDSwEb6qENTJNximt9ZwG7Uo0rc/IFFZxeDbWfv068nKf6+zISOP0+OOP47rrrmNBEwD4fD5ce+21ePzxxz29x5QpU/DFF1/g008/ZT9jx47Fueeei08//RSDBg1CTU0Nli5dyl4Ti8WwYsUKTJgwIZNh5wx0gnoRCdJgQ9FIWrubuJZ+wJKwm8rCOsVTvnmz8c8gcCqERVmgQGAJnNq+2zcZp9zMMf7mHfSl33JFYYFTfm7QPOja1BxzDpyao+a5KITNjWKrNkt3SPT7elqTaeCk5kfbZTHAzCLj5CWz0tnhmXHioSgK1q5di6FDh1oeX7t2LTSPZY9lZWUYPny45bGSkhJ069aNPX7NNddgzpw5GDJkCIYMGYI5c+aguLgY55xzTibDzhnoBI14qDTj6dOYqiEs+5I8m/sM/nUeI377xZINjVP7ME7eU3WCcRJIQJZTdfTmnzPGyTFVl/7rdzZGUkobsg16TPgAiQefwiuEa9QuN0g7VZcW42QcEzVfjBMvq2j7XKWZjkKqiGwvZBQ4XXTRRbj44ovx3Xff4cgjjwQAvP/++7jrrrtw0UUXZW1w119/PVpbW3HllVeirq4O48aNw5IlS5hreaFAYRonD6k6G3MUDngLnDLpdG1fFLKiceI+O2+sDlGt/yYB3ZmLbuACDHywlIXdPmVTvKbM0wV/886kVx29zuMqQV1LHF1TiZazCHrduaXqmgotcGqjnIGu557mgkY1TvlhnJQsZwdocChSdRkGTvfeey9qampw//33Y/t2veS1Z8+euP766/Gb3/wm48EsX77c8rskSZg1axZmzZqV8XvmA3SCps04pTEB+Qva68TNBePEf3beBNiCcRJoCyyMU9tvWk2cxikXjI5TVV06qTr+uTsaInkNnOj6EFM0xFWNjZ/CwjgVgNdaWzROqmbaRhS6xsmekswEgnEykVHgJMsyrr/+elx//fXMJynTViudASxV54Fx4oONdHYBmZSW2gWB2WachMZJoEPALg5vI/ibv6IRZlKZLfA3b38GBpg8O7WjIYKDeuZvbebXh+aogopia9BmZZzan7lI2FymoztNdy1kGqf8VNVZfJyysFZTE82IYJwyN8CkKC8v36+DJsAMULy4afPBTDqMUyZMlZ0R0gja7HbMf3Y2djGekEbgJOwIBBLAp3izonEy3yMXKWF6WflkCbKUfuDEbxp25lkgzq8PTuk6XvtUCP3T2sI4pS2fUPMbOGV7k0sZJ1Uj+/36mlHgtGPHDpx33nno1asX/H4/fD6f5Wd/A905eWGceOv7dDQSmWicnC6WthIx1oux8FJ1SgGVOgsUCCwap+xV1QG5EYjTm7dPkuCT28445RNWxilxo8MHndlqAdUWtMXHybKWp5OqawfGKTtVdeZ77O+sU0apugsvvBCbN2/GzTffjJ49e+a1aqMQoaRRpqlkYCsAZHYR0M8K+mV2YasaYYtxJoi1S6oufQNMoXESYMi2OJwLCHIhEKc3b1kG/Ma1mk6QYdE4NeY3cOKPhxPj1GRLc7Y32sI48YU+3sTh7Ziqy0J2gNe3RuMqSkMZhQ+dAhl983fffRfvvPMORo8eneXhdEwwH6c0DDCBNFN13MT3Kg6nAV2IC5zausuzpOryrnHyLg4vhDSAQIEg23YEsRwzTprJONFUXTpBhtquqTrzs53cwwvNjsC+CU0nDk5bPkELE5Q8peqy3HKFf4/9nXHKKFXXt29f0X2eA13UYoqWkupVMkx1ZcI40V1QyG+mT9u6WPEXT940TsyOwIP4nonD9+8LW4BDDsXhuWBd6eZGls1UXSZ2BACwozG/gZNdHG5HU6ywAif7GNI5ztZy/3R8nPLEOGW75QoXLO3vlXUZBU7z58/H7373O2zcuDHLw+mYUNOgbDPpOZfp63jGiaKtJcBWA8wCTNUZx0kj6ZvZCXRS8IFTFuwILKm6HOy8aeDkkyXQav50y+QpduZZ45RaHF5YqboEH6dMU3UFqHGy2hFkTxwOePMs7MzIKFX3P//zP2hpacHgwYNRXFyMQMDa+2nv3r1ZGVxHgYXCjKtJTS35yZeWODzd3Q3MXUY4YAZObQ0mCl0czi98ikYQbIOeS6CTIIsaJ0KIJVWXi2uAvqUuDs+gVx13DexsjELTCOQ8XQepGCc+6CyEjU1C5XHGdgRequry3OQ3w026G6zi8P2bccoocJo/f36Wh9GxwS9qqSrrMjXAVNLd3cC0PghmMVVn1TgVnh0B//0KIRUgUADIYuDUElPBkxK5cFGm81aSJPgysCOwXwN7mmPoUZafxuf8ZrA5lni9diZxuL19VkowA8w8BU5Z7vIQFak6howCpwsuuCDb4+jQ4CdlKi+nTA0w+Qs85vF19LOCnEFfm1N17WqA6V0cDtBgc/+zxxCwIYvO4XYWJSc+TixVp1fWAZkHToBuSZC3wCmNVF0h2hGkc5z5c8+L4l2Rb42TxQAzu4zT/t52JWMDzPXr1+MPf/gDzj77bOzcuRMA8Oabb+LLL7/M2uA6CvhJmYpxshhgqt6j9kxoVzrR/T6ZE5l6/khHtI8BJk3Vee9VB4jKOgEDWRSH24OBXFfV+dpoRwDozX7zBX5j1eIUOMUKywDTvoalJQ7X0mWcaKouP4J9/l6TzV51gDfrnc6MjAKnFStWYMSIEfjggw+wcOFCNDU1AQA+//xz3HrrrVkdYEeAminj5GWXQj8jA40TvVgCPo7yb+Mur11arpA0GCdL1V/7L8wCBYAsOofbTR1zonFyqKpLj3HS/w0aRSE78mhJwB+PphQGmIWQSqfBGz1WaYnDLWt5Gqk6onnaBLYV2fZxiqdBEHR2ZBQ4/e53v8Mdd9yBpUuXIhg0exFNnjwZq1atytrgOgqUNDROfLARzdA53HNVnXGxBHwyo/zbKshsHx8nuuCkxzgVwsIsUADIonN4Phgneo36ZHPDk067JPr6nl3CAPLrHs4fj5Q+TgWQqqNrRIg2U07jdMYz1TgBOW/0SwjJeq86C+O0n4vDMwqcvvjiC5x66qkJj/fo0QN79uxp86A6GqypuuQTKu1dCv2MDBzH6YXtlzMTmTq/Z3tU1XlnnDQtfWZOoJMji+JwezCQE+dwYwrzqTrA+7VL14qacho45ZNx4gwwY4nXa1OBMU5mAY1+K0wnJZq2J5+avQA+FexsezbmqbV6fP9eWzMKnCoqKrB9+/aExz/55BP07t27zYPqaLCKw9OoqsvQADNdHye/T2blyG3d5fEsWbwANU78uSiEhVmgAKBlMVUXy5/GSZYli42A12uXTvveFUUA8uvllEwcTggpuFQd9eCjXnfpicO9r/sAst4zMRns3yMbjFNUME4MGQVO55xzDm644QbU1tZCkiRomob33nsP1113Hc4///xsj7HgYbUjSME4aRkyThkEXHQXFPCZO9e2Or7zuqz8t1xJfbFqNh8nAYFsMk72YCCXzuE+SWK96gDvhR10PepZYTBO7SQOt7NzkbhmaTJeCNenXeOUFuOUbhYgj4GT/dgKjVN2kVHgdOedd6Jfv37o3bs3mpqacPDBB+OYY47BhAkT8Ic//CHbYyx42A0wkyGfjBOrqpNlLlXn+SMdwVcC5s/HKQ0DzCwLIgU6AXJoRxDLwc7bwjhJ6TNOLHDqojNO+UrVEUJsGifrsbEHnWoBXJ+KPVWXYcuVtJzDgZxrnOxrc7ar6oSPUwYIBAJ4+umncfvtt+Pjjz+GpmkYM2YMhgwZgtbWVhQVFWV7nAUNNY0GvEq6HbXZ69LX7tDXBPhUXVs1ThzjFM/HjpGQtKrqLG0GCqDcWaAAYLEjaFuqzl4plgvGiVXVSbBqnDx+Fr3GexmM056mKBRVg9+XsfuMJ9hZDnugZA86C0GCSMdM+3lmXFWXNuPU9tY/yZDAOAkfp6wioyvpF7/4BQBg0KBBOOOMM3DWWWdhyJAhaG5uxgknnJDVAXYEKOmk6rLhHJ5myxXejqCtpnOxDMXtGYNv7Ouhqk4TGicBO7KYIsmLONyhqg5Ig3EynldVFoZPlqARYE9z7k0X7etZc1SxSAMKkXFSqUkwY5y8vzbttdwyD3PLONnXvrZucjWNpHWf6+zIKHBasmRJQkquubkZxx9/PNQ0TB07C6w+TqnsCDKrSrP0qvPo/8Sq6nyZ+cE4gb9R5EWjYEmzeLEjAMKIAiAFoaHwClUj+73gEoQAsZbsv28Wm/wmpupyKA6XdHE4jZ28XrsaxzT3KNUdw/NhSWBfzxSNWNbDQmacgr70fZysGicPr8sj42Q/F22tMLZvENLVOEXiakH0JswWMg6cnnjiCdx///0AgMbGRkybNg2SJOHNN9/M6gA7AvigJpWjaqa96izBmedUnalxkjPosu4Efsx5Kfe3BE6p0yxdI1vwSegy3OpfkD8NVhZw9qPvY+K85fv3Tu7N3wHzBgK7v8vu++ZAHE4zaLmxIzAZJwBps8Uqez1QXa4HTrX7ch840bWBI8kswZK9IrEQGCeWqgvkuKpO06zseY41TvbvQUjbNs32eZ7OJq8hEsf4uW/j539fk/HnFxoy0jgNHDgQixcvxqRJkyDLMp577jmEQiG8/vrrKCkpyfYYCx78ziOSFuOUzu6GZ5wydw5va9TPjz8vGqI0S8l7RtajSIphjPwtWjrQDufjTXVQNILt+yIY2H3/u4YAAFs+AJQIUPs50P2A7L1vmsF3MtBAoKI4iL3NsZykq3kfJ0AXiUPzzqDyjFVZOAAAaM1DQE5vrkGfDFmS0BpX0RxV0a1U/7tdH1YIjLBqY5wAfY3kbSDckJaPk33e5amqzidL7DvGVQ0+ObPenfZ5ng7jtHlPC+pa4vh4c31Gn12IyFgtOHz4cLz22mu46aabUFxcjDfeeGO/DJo0jVhKbFMyThlUxwHW3Vn6dgTZE4fnvVddmqk6yXh+AGpBLMxeoKgaG+t+zTjFDVZEyTI7wmvj2mqAafRaqyjWA5JcME5mVZ3+e7qbHpW7aVLWKh/tkejaEPTLKAnpe3Je12RP1RVCk9+4TeMEeGfl01rL8xw40TlQFDADpbash21hnOgx7kxrm2fGacyYMZCkxCg8FAph27ZtOOqoo9hjH3/8cXZG1wFgn4ypInF+l5LzqjrOALPD9qqzME4eAieiL1B+qB3GjsBqLNcxxpwTKDkKnCxVddkRh3ctDuJ7NOckXZ2Qqktz08MHTn722tzPK7oeBH0ySkM+7G6ypufsgVMhVL0yxokPnDSCgAdiJi3Zgl1bl+PAiY4nHJDRZGQF2yJdsOtqo2kwTvQYd6a1zXPgdMopp+RwGB0X9sUskiISj2VaVZfB61ivOm7n2db1s9A1TrKxQAWgFMTC7AX8Tqwz7crSBg2Y4tkOnHKTqgOAWBqNur2CT7UBXODk2TmcC5x8+mvzwb6mYpwSquoKgHGy2xEA3pkwfmOmaCR5is++6cuTxinokyFJRt1FG9brmK3oK9V9jgc9xqpGEFc1BHJsi5EPeA6cbr311lyOo8PCzmqkisTT7m/EPid9xinOMU5ylhgnPvDLS2DCp1k82BGYgZPaYewIIsJYTke8Vf9Xac3u+2ZVHK6fn64leUjV2QOndBknSYLfyPfl41qNcdIAGjg1O6Tq/LIERSMFcX3S9ThkY5y8vdb6vJiqIeymIUpI1eXHx8nvkxGQZcRUrU1zwL5BSIdx4j83Elc7ReCU8Teor6/H3/72N9x4443Yu3cvAD1F98MPP2RtcB0B9smYKhLPhsbJK+Xp1HKlreJw3ik5L73q0mQLWKpOUvNj0JkF8Lq4zkRnpw26C8/2bjwHzuGVBuOUG3G4NVUnp9GgmxBTcylzTHO+GadSh8CJBp1digJ5G1Mq2J3DAe+svF2qkHRDaw+UcuzjxGQaPOvYlsDJbkeQFuPU+aQIGVXVff7555g6dSq6dOmCjRs34mc/+xm6du2Kl156CZs2bcKCBQuyPc6CRaLGKZUBZv4YJ4VV1cmsfLrNzuH5ZpzS1DjJGtU4KQVR7uwFvC5uv2WcCDGZpnguGafMU3WqRlh1WmWJkarLCeOk/2syTubnexkjhT/vGqdExomvpKNBVHlRAHuaYwXh6+NUVeddHG49pkk3wnlnnPSx8Dq3tmx07fecdNapdHq5dhRkxDhde+21uPDCC/Htt98iHA6zx0844QT85z//ydrgOgLsi1nKliuWXnXeFw7VEjh5ex3rVeczu6x3PB+nzMThAagdR+PE7d7SocA7FXiWKevicO6YtkGUywudK42qulxcA7wPEwCWbvOiveGvb5ljG/JdVVca0lNWTqm68gJinOLc5pLC6+Yy0WQyyevsgVOeNE5+n8zYtLal6sxADEiPObL2cu0c61tGgdPq1atx2WWXJTzeu3dv1NbWtnlQHQmJkXiKwIm3FUirpNOcfKpHfQDrVcc1+c2mj1NhisP5qrr2X5i9gA+W9lv3cD5YynrglJ1UHa/RKQ3pN/9cpB74liuAaUvgZT7zMaJPkuCT0zd2zBSstN8noSTolKozAqew3xhr+1+flInz+yTGynsVh9sDpfQYpxz7OPGpOmMOtGW9psxqmXHuMmWcOsv6llHgFA6H0dDQkPD4unXr0KNHjzYPqiMhkXFKUVVnYWzSYZzsu5vUF0GuGaf8t1xJHTj5CFdVVwALsxfwjFNn2ZGlDT5YymVVXRtSdTQIKAn52S4+l3YELFWXxqaH35jxaZq8aJw4TyRHHyeDsStEjZNfTr8tlb28P2nath0NME3WsQ2Bk7HulxuGqpG4ZulDmHwsvBShc6xvGQVOJ598Mm677TbE4/pNSpIkbN68Gb/73e9w+umnZ3WAhQ77xZ+yqi5DcXjC53h4raOPUzZ71eVF48QtOETVtTBJIHOpOjUfjFgWEBUapw7BOFG9TmnIj4BxM8plrzqTcfJ+7VoYJ4swOPfXAj0WAZ+zOLzZJg4vjKo6h8pjr6k6rXAZJ8akyRJLQ7YlUI3bGCfAu77Pwjh1kvUto8Dp3nvvxa5du1BVVYXW1lZMnDgRBxxwAMrKynDnnXdme4wFDbtAMNWNz9KsN43FLKHbdRqMk8XHKasGmHkITIiW/HcbfIT2EiNQ28Au5BM8S9lZqk7SRjyXgVN2nMNNxsmXF8aJbnb8abDF/HN0O4LsbJi8gG+54iQOb7JpnAohcFIdGCfPPk7pNNK1r0U5N8CkASEnDs8C40QDYsA7e2Tp5dpJ1reMqurKy8vx7rvv4t///jc+/vhjaJqGQw89FFOnTs32+AoedtYl1cSIWzROmTNOXl5Ld0TWliuePzJxDKpmaS+T91Qd/T1JvyUqDtefmtvKlWxBGGDC6t2U7ao63v+rTYwTl6ozdvG5YZz0f+k1K7NUnZfXWsXhVOOUj2uVWjME/DJKkojDC4px4qrPzGbKHl/r4OPkigRxeH5arvhlGX5f28XhNOgqDfmZoaa+4QukfC0/9zrL+pZR4ERx7LHHYsKECQiFQo7tWPYH8LS6qpGkE0PViCXTlE4ps5qOZ4gBhdM4+dIUPjohLd+SbMEpcELI9ek+LnAiOS75zRZEyxXYqupy6OOUBcap1KJxyv7N39Q46b+bXkyp54Y9zRfIZ6qOmknyqTpD16RpBC1Gnz+qkymElkgq21xKaffztK/fST292lHjFPR5nz9u4Csmw34fWuOq5wrgTDwICx0Zpeo0TcPtt9+O3r17o7S0FBs2bAAA3HzzzXjssceyOsBCB52MdKFQNOK6SNkDjZiamcAO8LbT5X2csmGAaf/MvNsROP1ug9/COOW25DdbEIwTrCxTgTqHs1Rd0M90I7m4EdiDn3RSSKpLn7u8ME7cemMXh/NWDoxxan/CiY3ZJ8sZpOps2YakjFN+e9XRe1DAJzHGqS3tgWLcuQ0F9PfzulZZ7Qg6x/qWUeB0xx134Mknn8S8efMQDAbZ4yNGjMDf/va3rA2uI4BePHzu120xtQcahKRRwWFP1XnROHECwWy0XLF/Zt7F4U6/2yBrHY9xshhgdpIdWdrIaVVdtlJ1+vvkuqrOveVK6tcyKwO7PqqdnMNbjGNG2SafLKHYSOMVgkEtr3FKVxxu38wWKuPkT4OxdAOzmjAYJ8D7pkEYYBpYsGABHnnkEZx77rnw+Uy9yciRI/H1119nbXAdAXRSFAfN4+A2OZwCjUwqEwCPGieWqssS42QPnDTimTHLGGkyTj7wgVMHFId3koUlbViq6nKZqmu7HUFpyJdTjZO95Uo6FbF2tsqfhYoqr0jWq47pw4I+LpjL+ZBSQuF8nNJxaAccfJySMk7t0+TXL8tmVV0WDDAzYZz4ubdfp+p++OEHHHDAAQmPa5rGLAr2F/AC7GAK+t7J8j7ukT61T3ov2gr6mqBFHN4GjZPD98r5gmxv7Jui0a9F45RjAWa2IBgn2Krqsp2qy4E4PI8+Tulcuwpjq/TfGduQhyglzjFOJcZGsjmmgBBi0YeZgWD7z3XeKNIUh2fIOKXl45Tb+yTv4ZcNHyf62hDHOHmvqhM+TgCAQw45BO+8807C4y+88ALGjBnT5kF1JNCLP+CTUkbifCBDtfRR1VvUnhnjZJakssWqDXFOjLt4KHKerkszVefjAivSxoau+UJUERonS7CUU8apDS1XuMCJ98bJtgM2vc8kME4ebuj0pk+Zprw2+eWdww3GSSNAa1xlQWdxyJ/XMaWCmdJKf3NJN710PUy6Jue5ya9qSdW1nXU0GScJ4QAlCNJnnNJpDlzIyKiq7tZbb8V5552HH374AZqmYeHChVi3bh0WLFiA1157LdtjLGgoqjlBQ34fGqG4RtWmWFsCJBkxRfPedy4D53CFC+qyKQ4vCfkRNdicmKqhCO72AG1GuoETspOWyScilpYrnWNHljb4YKlAm/xSnU5J0PRxAvRrIJzEIiNd2FN1lDHwcu3a9VE0gMpryxW/jOKgj5WtN0UVZn5ZEvKn9X1yDbOnW/o+TnRNputh0t6jeW/yazJpQX/bWUfeFT6UJuNkNcDsHOtbRozTzJkz8fzzz2PRokWQJAm33HIL1q5di1dffRXTpk3L9hgLGnwuOVUkHuM0R6E0NRLpNhMGeBpazqo4nNdz5TwFkG5VHbLDLuQTPMu032qc+GBJi3tq6OwZOUjV0TJ/ID1bES+wBz/piJZNpkH/3TQ/zH2QEuV0MJLE96tTLfow+n0KgXFiKS0uVef1dNL1la6HyZ3D86tx4h3RKeOUTlN5O9qiceI3/fsl4/SHP/yBeTdNnz4d06dPz9W4Ogzi3I4lHEgeifMMkCZLQNR73jlR45T6dTEuz52u8NEJvIaB+lblfPFLVxxOFMC4p3WUqjo+CN5/U3W2G4kSAYIl2XnvXPg4+cw9Z9Jqqgyg2nRK6fRQs7uOm6/Ng8aJK1kHdId1nW1SOHG4n93IC4lx8snp+zjRTSMNEJNrnOi8kwCQvLZcyUbbHUtVXSDNqrr93Y7g2WefxdSpU1FRUYGJEydi9uzZeOeddxCLdYydfS6gcs6zNNftFlXzDFC6VTm8UZvX1ylMc5DdqrqgT86Kjb8npJmq8yM77EI+YWGc9ttUnS09l01LAsucIRmzWTzjJEmSeS1m+Rqwp+rSYYuZZsdnM8DMix2BflxpGpP3cuKDTiNuKgjGyVxX5bTF4XTTXOSJcTLmYKDY+OD82REEsqhxCvpk8z4nquq8Yf369diyZQseffRRHHDAAViwYAEmTpyIyspKTJ06FXfeeSdWrlyZq7EWJPiqDBaJuzBOfKVDwJ/eokvZKvoZqQIWTSOsdYDfoM6BtqXq+F1HNkpcPSHdwIl0PI2TaPKLxEApm5V19krMDG9a1MSRBgR08+O1MtYrEn2crI8ng93HibVcyUOqLs4VvwCwNPrlhfWUcSqElitxbuObtjjcJl3wVFUXzG/gFPDJWaqqM85tBowTX33YWaQIaWucevfujfPOOw+PPfYY1q9fj02bNuGhhx5Cv379MG/ePBxzzDGe3+uhhx7CyJEjUV5ejvLycowfPx5vvPEG+zshBLNmzUKvXr1QVFSESZMm4csvv0x3yDkFE+H5Umuc+MmcKePE8ukpLgI+r8xX1WVDHB7kLsact01I146AZ5w6TKpOME4JjX2zqQGxM0wZzgsqcKYBQYBWU3msjPWKBHE4TW15cQ6nQRd7bfsYYAJmCqspqljMQ1n6MNcecB6gchtfmhr1Oi5T46R/z+RVdTbGKcdWKXzRUjY2ubx+LZymxknd3xknO9avX48lS5Zg8eLFWLx4MVRVxeTJkz2/vk+fPrjrrruwZs0arFmzBsceeyxOPvlkFhzNmzcP9913Hx588EGsXr0aNTU1mDZtGhobG9sy7KyCr14wqw2cJ1ScK+mkk9nrLoBG/EUBD7QwrBdJgGsn0DZxuBn4BVjgVzgaJ0IIApw4XNI6Rgo5YmOccm4qWoiwB07ZrKxLk7V0g5mq06/BXF0DdC/CUnXMi8lD4OSiccpHXzjeABMAZ4JpFYeztagAeq6Y63f6cga6dtP54KnJL9Xt5VHjRNO1Tj6CXhHnZBrsPufVjmB/1zht2LABjz/+OM477zz07dsXY8aMwYsvvogRI0bgxRdfRH19PZYuXer5/WbOnIkTTzwRBx54IA488EDceeedKC0txfvvvw9CCObPn4+bbroJp512GoYPH46nnnoKLS0teOaZZ9L+oumCkOQNeylU1aR6TcbJzQDTvEidvD9aY8kbBANAEd3dqNbXsZttrAWAdbL6fXw7AZcPiLUAKW7Y/I4ykMaCvLMxgq11Ldha12Lplu4Ey3cB0rrpqRqxaJykDG+QuUCyc8svQBpxr4BK9h52RBU1L6aH2UBrTE0MlOyBVFuQbik4Iew6ooirGpv/pfZUXbar6qgBJgDEWhIadMcUzfXcOjX5DSOaJ42TlXEqNQKKbfWt2N2kM4h6qq5wGCczY5BJyxUCgKDcr1+XnlJ1TOOUmlGNxFXPQZz9fsUHhH6nlLJtfqcCq6rzc5kVJ0kKIQnXssXHaX+0Ixg8eDBuu+02jBgxAgsXLkRdXR3eeOMN/O53v8P48ePh92dkCwUAUFUVzz33HJqbmzF+/Hhs2LABtbW1OO6449hzQqEQJk6cmFRHFY1G0dDQYPnJBL9+/lOMveMt7GxMvoDz6bdwCsaJb7xoZ5yWfFmL4bMW4/nVm5N+TlHAehF8t7MRo25bgjtfXwt8vQiY2wf46ElLYOWXzao6R7p/1zfA3QOAxb9P+l3j3I6SXYwpdo2P/ud7HHHn2zj67mU4+u5lOPzOt7Ct3plN2LC7GaNvW4LZr35lPpjAOLkHQ4pmZZwKReP0n292YcSsxXhq5UbHv9sXIKdU7zvf7sLwWYvx2LsbUn5eJK5i0j3Lcfaj72c03nzi6Q82Yfisxdi9z3ad5jJwSlU0sPgm/XrY9Q17iA/4mcaJpeqyLA43rvUJG+YDdw9Az9hGAPoNPa5qmHb/Cpzyl/ccmUl74HTAZ/fis9DP0TuWet60FXFufQPM4/Tgsu/w9tc72WOMQSsAjZPCbXzT8XEihEDVCB4KzMfv156CCjSmEIcbcy5QpP+bInivb4lh3Jy3ceXTH6f+EgCueuYTHH7nW9hjBKimHYGUuMn970L9PvHZ857eG7AyTmavOof73D8vBe49EGjaxR6yisP3Q8bpzDPPRDQaxdy5c3H77bdj/vz5+Pjjj9uUWvjiiy9QWlqKUCiEyy+/HC+99BIOPvhg1NbWAgCqq6stz6+urmZ/c8LcuXPRpUsX9tO3b9+MxrV6Yx2aogrW1SZPC/LVC6FkkTh4J2+ZLbqUnfpocx1UjeDTLfWOr6XUK8unG7qKz7fuQ0zR9Nf98JGuAdryocX6QJJSCB+3f6rvgLZ8mPS7mjtK7yWuqzfu1b+z8fktMdX1mH7xwz5EFQ2fbK4zH0y46blfeBoh8Esc40QKQ+P0xQ/7oGjE+r042Clvp13ZJ5vroWoEq9bvSfl53+9qxvZ9Ede5VEj4bIv+vVqbm61/yGpVne14pmKcNq/Sr4faz9lD9Jz4Oc2IKQ7PDeNUU/8poEbRP/oNe3x3UxSb9rTgvz80OAYedn1Ulz2fICTF0T+e+8DJzjhNO7gaXUuCCPl1hr1PZRHGD+qWV91VKrCqOllOy8eJruVj5XUoUhsxUKpNvomk6xZN1aXQ8H27swn7WuP4ZIvzmmHH6o170RhRsH6Xfh1ZmvzaN7nsPvGBp/cGeANMvkOGw4Ha+iEQbQB2r2MP8VYYnYVxSosiev55PUL9+uuvsWzZMixfvhz33HMPIpEIjj76aEycOBGTJk3C4Ycf7vk9hw4dik8//RT19fX45z//iQsuuAArVqxgf6fVYBSEkITHeNx444249tpr2e8NDQ0ZBU+0giZVaonvrp0q96toiYsvncz0c9w9oKylr/bXKRoxd+nRRov1AZCiUWjUCGRS7PL5XYfXEld6HO89cxT+8f4mrNlU58rI0e9iMWpLM1UXsKTqCiNwosfNbWG1B9pOx4cem1QMKADsMJ4TV0nK66W9wUSsml0c3o6pulhTwhjiNv0OAFYZG82RAWZQ1dMpRURnaDWNWNYjRSUI+Oyv1f9lFXnGNZCPTQS/PgDApKFV+PjmRENkmrZTtfafn1Q+4fNJzCbBSwqRftdS6HPEDzU9OwItrqe1XL471dN5NS417x/62sFrnDT7Jpfqq+g89wCzMMjHVdU5rOOU5ec0XPFOqHHKKLc2bNgwDBs2DFdccQUA4KuvvsIzzzyDO+64AzfeeCMUxXuKJBgMsobBY8eOxerVq/HAAw/ghhtuAADU1taiZ8+e7Pk7d+5MYKF4hEIhhEKhTL6WBWZX7+QnmrcYSBqJg2+5wourNePz9M9xozKZxskmDqfjUzTNXOhjTZZxAUhOQzvcKJzAV1Z4LXHlq2lCKTRgLHDij0Ea4vAEjVOBpOroeXf63oSQhEDb6Xl0Id3RkDqg2Mk9R9GIxeW60MCa0trFsu2ZqosmXg9RG5sC5I5xotdowAicwpqhW9SIZT2Ka4ntjnhfOQCQjQIJKZtO7C6wM05u8HHBgkaA9pye/MY3HXG4ohL4oKJI0o+vX1KTp2xpsE7tCAA9uPA736vMtTD13NI0guYYvX8YmzTue9HEEtvksg12GoETl4ZN2uSXXltc1WBnrKrLWJS0Y8cOLF++HMuXL8eyZcvwzTffIBQK4Uc/+lGbBkQIQTQaxcCBA1FTU4OlS5eyxsGxWAwrVqzA3Xff3abPSIWooiYwOm6wtFxJlvuFdfKFbN3Vm1IxTnZ7f5UGXIr597h5QfDaK8DcgToGTvQCSpEecfJxSrUjauYqkVJpwBx3WWnYEagaQYivqiuQVJ3JOCWe25iqMU1+cdCHlpialHHa1RiFqhG2yDthR4OZBnBiJQoJ7PqhjFOgBIg356iqjro2e2Sc4ikYJ19uNE4sfaTqaZewC+PkFLDZGwRT1jUfhRJ81W0y+LhIKdVcziWoTgmgdgTeNU5xTUMJzPkRhOKRceLc8L0ETh7mVgu3XjDGiTK5PhmAZn0vGtTEvFens/nvT9FyhW6AuI2QVRy+HzJOL7zwAkvRrVu3Dn6/H0cccQTOOussTJ48GRMmTEiL7fn973+PE044AX379kVjYyOee+45LF++HG+++SYkScI111yDOXPmYMiQIRgyZAjmzJmD4uJinHPOOWl/0XTQzO3qmlIETnwuOWXLFU7jFLAxNnaqNfFz9OexVJ1iDbj0VJ1xs4k1sYuY6gnM1gsOb84Yp+Q3K75fUcCjxol3DDaPT4pUHb8ApZOqI9ZUnVwgVXU0EHRaWPkdWJeiAFpiqmPgTZkGjQB7mqKoKg+7fh7PSuW8CXMbQee1j1pHFFXogVO2GCdCzGA7UATEW5LbERDieD3QcxfiGSfb5idb0N+OIKBYGSeVEMt65JQmt9sRUMZJzsMmwu4c7gaecWpPnRN//Hg7Ai9jUlRiCZz8UNCatKqOm4PsTWKAy+2SXu8xRUuZzuSDabq2so2zLEGijBNL1Rkbq3QYJ4tzeBIDTIdUHX+PiHr4Ph0BaQVO5557LsaOHYtTTz0VkydPxlFHHYWioqLUL3TBjh07cN5552H79u3o0qULRo4ciTfffJM1Cr7++uvR2tqKK6+8EnV1dRg3bhyWLFmCsrKyjD/TC/iJmIpxopPCz7dcSRH8BHxSgjicfo7TZORdwN0ZJ80UHDowTklpaKZxSi5YpDeIkN9sHBlPscjwbSpC/uSpOrpYWG5EadsR8D5OhRE40fPudIOlc0WSgLKwH9v3ORcX8PNwR0OqwIlnnAqbGmebCc0Yc7gCaPghi4ET9/39YT1wSsY4xVvM13DXg71iDEDaJrZeQQhBCHHIhgt+WNMDOFWzzgOn+aRxGzkAkA3GSSa5vxbszuFu4Bkm/dpon8CeD5B8vEmwR41TiWQG1qk1Tsac84cAyacH80m8nJptAXKydDsfTNO1VeFStjRGYRY1SvoaJ6tzeJL7HP2eLowTHWO4kGlwD0grcKqrq0NJSZYabwJ47LHHkv5dkiTMmjULs2bNytpnekFTOoGTQ5NfVx8nTrBttyNoSsI48WLFIlvLFSq+VjTOPyPWaLE+AFL0u2KpCe+Mk5eqOkKIhXEKpWDkHOnpdDROqgqfZH6/fOyyvYCed6cbHQ2SQlwrA6fiAnqeAZ1RGoEurp/HC8gLoeQ7Gdj1QwOnokr932xV1fHBc6AIaEVy80F+Fx5PZJyCDoxTW7rOO0ElVjYjRBknTUsQh9vBNGM0VadSxikfqTpvGic/FzjlwZfTFVbGia88Tv3auKoxYTgABKB683GS/XrwFG9J6uXEn+eYoiVNfzoxTip3X9I0aoBpfN+cMk5U42R+NzuDF413/MDJsx1Bc3NzWkFTs728uAOBn4ipxOGmb0pqK3rGTnGMk10c7hg4cROvyGbvz8ThKl9V12SxPtDHp//JmXEyLiCiJt2Nx7hdhxcb/0hcY0xZSchvHh8XDZhzqs574KQp1rHLKdqz5Av0vDstNDQtFw6YGjAnxokP5nekqKyzpOoKXIzJ9DyES9UB2WOc+MDJb7B0ycTh/C5csaY8AReNU7btCDRiYTPMwMm6HjmZz9Lr22/TOMk5FoermqkXSqlxSmCc2gf8ps8vm4yT12bKdsYpqfCZD5x8Af3/SdbaphTMottzGePEbdITNrk0qEmnqo7TOLne5zQVAA3OzO9m31x3Bi8nz4HTAQccgDlz5mDbtm2uzyGEYOnSpTjhhBPwpz/9KSsDbA+kwziZLJKUPBKHucMJcr3q7Bonp9fyFw6rqkuwI+Cq6rQ4VGO3TBdQT4wTkPSG5aRxSiZe5I9jccBnHh8XxskUh2eWqksInAqk5Qo9786pOpNxCiUJLPl5uLPBfaeqagS7m9xp8kJDXNUgQ4OfsoPhCv3fXAROzHwwyTUd5QSzSmIA6sQ4ZVvjpBFiYTNo4KQRmzjcYdPCXMel/DJO/DFIxThJUvp94XIB/trwpVlVl8A4SUoKxsm4pmU/4DOETUmkERbGKaWOlOt1yTROpoQkaN/k8oGTR7NPnnFy1fLygWCSVF1n8HLynKpbvnw5/vCHP2D27NkYPXo0xo4di169eiEcDqOurg5fffUVVq1ahUAggBtvvBE///nPcznunIKfiHyKxAnML8PHtVxxYZyYYNvGOBFC2Oc4TSqecWIaJ+PmavFx4tMbBotk1zg5+zjx6YkIEHLWkPFVdX52MbpfBKyiLuiDzLWkcWWcjGOgEf19/T45sYouaeBkvdkWCuNEFz6nBZBnnEJJynz5OZnMy2lPc9RyjrN9U8829EpILsDNOuPEzYF0GSdLVV0im5JTxgkmm0H9nFSNpGQiTAZc/z1fgRM/t73YX/hkCZpK2lUczruspzQJtkEXh5vnKACPdgSyH/AFjcfcN3Y8s5hqfllSdUzjZP1uAHeOaKqOaHrKMJg8k8QHPnqqzqWZPf99VPdUndced4UMz4HT0KFD8cILL2Dr1q144YUX8J///AcrV65Ea2srunfvjjFjxuDRRx/FiSeeCFn2TGQVJKypOo8aJ0uTXzfGie4COB8nlaA1rrKUllPQxU/cMNM4Ecv4LKk6AJqxcw548nFy3mUnPI3tOngbf/dFhheG82N3Y5z44CCuEvh9SAyUkgRDms0/zJcHXYcX0OAy7tAMls6VsN/nGnjzgTVgFX/bYWejCj1wUjRdCM1AGadcaJxo4JRMHB51S9Xp54SvqrNbimQLmgaUSlypu2r6OPHpEUfGiReHayok43rJ9bXA39xTicMBfXxxlXhqXJwrMK87Wnls6wmYDIqmoYQ7R34ojtc3A52HvgDgTx04pWIWeVhSdTaNU8An6y4c4NKinMcSok0pAyfLueW0mAnrOH+tcdeY/fpwW/87EtL2cerTpw9+/etf49e//nUuxlMQSEscTv0yOI2TWw7XNMC0Mk4WqtXRm4UPzqy73JaYgwEmAER1jRllhpI2sHS5WdjhxDglu6h5YThg3mjcdhxNNkFkUdDXRo1ToQROhh1Bkqq6UIDvOm59XktMtTDqyUww7X/z6jzcXlA0DWHKOMl+riVFlnycLCkSY7lLVm3pkramN0Ur42Ts5HPQcsXiEWQETrrRIS8OT8Y4yZYbsx9qTj2T+KpDL6XmelWu5ilIyRX4dRVAWoxTXCUJ4vCkjBPTOPk8MU78eU6LcYrTCl4zgKZrPwtSeVF6rAmAu6G0/l5WNpHdg1TNOqf4DUkScXhnYJw6NjWUI1jtCLyJwwO+1D5OvGCbr6qz57PtE42nXd2q8XQDTPNmI8WsjJOcrA9TzLmSKOFpnEDWi48TvfiLjS7p5k4luTic/6y0NE62hahQAidazeJkWEgDZZ5xsosu7cF7MsbJ/reOYEcQkmipdhEQMFihFNYYnsGLcmUqyk1WVcexr/FEcTjPpuSqya9dHE6NMHUfJ14cnniDZ73qJFi+pw9qToXYvAbGC2TGgrS/xsnHGCfv4nAnO4KkDvIWcbiXVJ13cbg1VZfYciWhy4NiD5ySg55bWdLvXXxFnLWQx6vGSQROnRJNXLSfOlVn+mWkYlSYj5NsZZzsn2FnrFROgM6/Lq5qbOIqGgFxuCBYrzpaVWdfFFTFyjIluWHxAlkvPk6s3UrQyji5eVVR9gzgAyfvjBOxpWAKLVXn1NPMiXGyHx86P+hGfk9z1HUx7WiMk6oRk3Hyh8x0Wracw+kNS/J5qmZyraqjhRF+nnHKnY8Tz2b4iIIg4onO4UkYJ1mWLCmZgME45Qq8s7QXUMbaixA7V7BXATLn8IwMMNXkPQtZ4BQwAyfFW6ouVZuSJos43Kpx4s2WzZYr3BrvwZLAXlHKp6stQZCbOFy1BqidIVUnAicH2A0wSZIdCE/3ptLw8G0bgtwuwM4o2F8f54IzvprN+jpiSW9IsWbjs+yMk+272HccSVIkcQvjlFrf0WJL1SVzDreL8NnuLa2qOutC5C+YwMmsqrPPJbOqLhnjpP/eozQEvyyBELNRqh124XhH0DixwClQZAZO2RaH82XgyVJ1LmlrewNbIIfO4cQqPAaAErRCTaOqzidJCam6XAbR0bQZp9QayVyDnjdfQqrO22tLeQG/UVXneq+w+zgBKTROvJYt+YBaYomMEx+ssLWarqn856bBONH57vfJLL1pIQlSVNXR+4BI1XVSNNvo8GQRP29qyZeTO11AfKqOp/ntQYN9Yqmaw+tsTFUAKiTOJVmOO1fVJTBO9gsniSiXN7jzkqpLFIe7N0G2p0QzSdURpTAZJ/pdCHFy0aVVde5lvvQ4loX96FGmL7pu6bqEVF17Ogx6gKJppjjcHzYtA7JtRyD7uFSd16o6JwPM3DuHqxoswmNA/12xVdU5apzYGiNZtCx+KdeMkzcPJzaeNPREuYJd40SH7t3HySoOd7q+zQ/jNU7JU8b2YpBU86vJonGyGWDKUmJ2wMI4pe5X5+QI70gS8Kk6S5Nf/TkscNpfGafNmzc7BgaEEGzevLnNg2pv2FNnyQTivEMrTbUQ4qx74N28eZrfbrJpZ5z43UPQoo0yX2cp6QYgx6zicFc7AjtVm0wcrpgXkJk3TyYON1J1TBzu3gTZfszZYkGDQcln/d0BCak6OAew+QYfvNh3jzzj5Fbm28wFoLTViptA3P54LFmlTwFAVQnCEk3Vhc3deLaq6ogT45Ssqo6vMHVqueLEOGX3GGsasbAZAFCKSGKqLkmvOlmSLAFiAEp+NE4eU3Xp9IXLFfh0FmBqnLz7OFk1TvRxR/BVdSk0TvZikHQ0TvaWK36fZN3kEuIgDk8Op3PraC2TIlVXEnJf/zsaMgqcBg4ciF27diU8vnfvXgwcOLDNg2pvtMTsgZP7ieY1TnQyAS5GltwugO1WHVJ1boxTQLYHXObrwrAFDUoTew2QTqrOG+NEdzHJFmO6aypl4vBkjJMtcLIzTvSGmoxxsi1EfijtujBT8CXX9t0j3SHyjJM9cKbHsSToR7XBOO10DZz0RbHMCFYLnXGKW1J1YV0gDmSxqo4XhxtVdcnE4TGu4wE3hqhDqo5ei6k0KOlCJQTFkpU5LEYEqkasbHiqXnVc4OeDltPSf6dUZjLQwKldxeGcdhTgUnWexOHWc0Sbi7uyQ07icBc9qT0DkbqqzpwTdG21OodzBpj2uZ+BxgmAs5mxxY6A65ep0cBpP2ec3LobNzU1IRx2bz7aUWBngJKZYPITNOiTmYDXScdjtlyRmYjSSeNkn1gsOONsDOKqdffJdu0G5DhlnFL4ONmp2jSdw5MtxvZUnelzldwZG3DQOHkInDQb4xSAWhDO2fyO0c5Esqq6QGqNU0nIj2rGOCUuuoqqYU+z/njvyiLjsfb//smg8j5O/nBuq+pYisSjHQFvgEntCHjncA86v0zgyDhJrYgommX+OJ1bd8Ypt6k6Uzzvze7A77Ye5RH8phdIj3FSVM1qgCkZgZMr4+RkgOnMfLrKFlzg5OPEVwzSYx3XtMTrKkPGKeS0VlkYJ/P/dN6ZqbqOzzil5eN07bXXAtAt82+++WYUFxezv6mqig8++ACjR4/O6gDbA/abeLJUHW+AKUl6ZV0krjkKxHkfp5ALcwQkluubn8EbZ1pfZ0/V+RXd+yWlj1MmGiefuYtJdlHbfZxMn6vE1ySk6uxVdb7UgZN9IdLTE+0fOPBjcGOcQn73qjrzOPpQXW4wTg7u4bubYiBEXyyry8P4urYx66Xy2YaiarZUXbar6miqTjZvWElTdckNMC2Mk81TLVuw+zgBQAki2N5qHXfcgU20lNjzGqccXwtOdg3JQNmd9gzsVXuqLh0fJ81a+RiUUjFOdB76OHG4C+PkJltwAb+xp2sHb5NDAx5nxsmLximRcQo7ec5pzj5OdJ7SrhfZZmjbA2kFTp988gkAnXH64osvEAwG2d+CwSBGjRqF6667LrsjbAfQiStLevuPZJYEzHDOYGDCAZ8eODnkcS0+SC7MEZBogGjROHFRf32LOVHtqTp/3JqqY4uCfU1I0DilrqoL+s2UYbKFrzkdxsleVWcPnKjbbjI7AntVnaQysWx7gvd3sethvDBOTY4ap8RFl+qbqspC1sWygGFxDg9wgVNOfJxoqi6ZOJy7kdCm176Aqe/LA+Nk8XGSZIBoKJVa0RCxBU4uth6AwejYqupy6enldHNNhkIQh7clVafYfJzCEtU4paqqC6QUh9vvN6k0dM0O4nC+YtDPpUWJEoGFE/TAOPHGxxQhpy4HlpYr+lzVNML0WqWhQOJrOijSCpyWLVsGALjooovwwAMPoLy8PCeDam/Qidu9NISdjdGkGie2YMhWjwunPC67ULkmv07icPuNk6+Q4Hd0dS3mRE1gnAy3YbOqTn88QSydoHHy4OPk83HeIOlU1Zk7Dnu6134MmKiZpepon7FkPk7WBScA1XFXnm/wIt7E9gOmxikUSMU48am6RMaJBU7l4Zzd1LMNhe9VZ6mqa9WFrB5cqJOiLXYEgM58+QIuBpg2Y8EsgRCYbEZJFdBUixJE0NBqHbcTg0SHkuDjJOU2bZ2xOLwAmvzaU3VehmT3cQrIKcThll51tMmvc+CUyDglDzSaHMThKpel8HNzNh6NIsi/2IvGiWu1ReHIOPHrr8Gm8XOuNNR5GKeMNE5PPPFEpw2aCOeVUmWkRbxU1dGLzwwOnHrO0SBLsqTcEnyc7IwTVyHBL0x1zVzgJNnSVIrHlit2qjZJisQ0ueNKXD1U1dELJpREPN+SBXG4PQVTOOJwTuNkT9UpNFXn44JuZ42drnGiqToHxsl4rLoslOgWXKDQDTA5jRM9z0RLzgx5RbrO4S4bCZMtNm8eOROH86XuZXo7DD1wsjFODtee6RxuZZx8eTLATFccrrbjxoZ+NvO6S6fJbzyKkGSuRUFJf6+0xOFZYJwUVbNs0iNxvZLYrBiULHNWta/vXjROTqk6J3bcwTnc0qB+f9U4UTQ3N+Ouu+7C22+/jZ07d0KzTf7vv/8+K4NrD0TiGmu4W1UWBtDgKVVHb1ThJI1+HX2cFCdxuDPj5JNlo/eQnkKss6TqrBdhkDFOtlRdhlV1mkYsfh5+Ly1XKONkOIfTYwPo1Ri8db+rOJzYNE5JmvwyehgSZBA9PVEQgROncXJpeGnxcVLsqTpOHF6mM057m2OIKipLfwJmpV11eZjrYdj+398NhBBdHO7nDTCLzCcoETNFmyl4bYkX53CX1LXJqJjHO2epOt4As7QGwGcolVoTbspO1x7dZMk2jVMAak6D6MztCHI2pJTg+7kB6bVckW3rZjClOJyuY/6UTX7TEYc3x6zPtfsO8j5OAKDEbOt7OoyTpcG1A3tk6VWnfzee8d9vxeEUl156KVasWIHzzjsPPXv29NTUsaOAD5J6lKZmnOJcTyDApdrAgIU54hZd7+Jw/TOChgDdmqqz3gxo4MRartCKkYSqOm+BE38BBPwONv4OsKfqAj4z6NMZuQD33BQGmJ7sCPRjEJNCCJOIXlVXAIwLf+y8ME4JdgScOLyiOICgT0ZM1bCrMYo+lWaBxg4WOIXwQ71+403aP6udQeeOyTiFzPMMGHOxjcw233KFapzc5pCmAfFm62MG4xR3Ypxy1KtOUzUzDVRWAwAJYnHAxcfJGIqucTLXBD9URHIqDqdiZI+Bk1QIjJOZzgK4tlQejhM1GKYIprQjcKqq85qqS7055cG3ruK7TejDsM2jmBdxeOK5DTtpnCx2BAbjxG0aaeDUGVJ1GQVOb7zxBl5//XUcddRR2R5Pu8NkSXwoDeuHpymJHYGqWi++sEtlFGA1kLQwTsb7dykKYF9rPDFVZ9sZBXyJgRNjnMIVQKQeQdVqR+BKQ9Odk/E6t6o6/uINci1XvFzU9ILRqw59aI2rCYxcAuOUIA4PWX93gnGxxqSwETgVSFUdt3i4GWBancPdxeGSJKGqPIStda3Y0WAPnPSbfFV5mP0/WS/B9obKAif9vBF/WN+E+cN60JSNyjrHFIkL48SzCOx6sDNODuLwLJuMBkgEPsl4z7KeAGARIlM4MUhuPk65Zl8zZZwKoclvyjXSAbItwA4YabuUBpgefJxcK4wdQNfN8rAfDRHF8hig3yskSReIKxqBGrd9pifGyagotRhgOqxVFnG4/n96jCUJKErScqujISONU2VlJbp27ZrtseQVrTHnk9fEBU5d/IkT0Q67wDAZ48SzUzxj02RM+G6lwcTXEgJCXcDpZxgTmNc4sZLukh76czR9oQ0ycThlnGyDohon43VuVXV8nj3o4w0wnRcZTSOMRqaME+DiOIvE4JQFZOnYERh/i0n6c3PdZsILeL0BYAs0CQGJ68xgKODjUnXOQSU9jlQgbjfB3LWvGSHEUF0e9tRLMBtwu468gB4XypZqPqMAIJuVdU4+Tm52BDRwknxAUYUxBv0YJ+tVl23GKUz0a5BAAkr167LUgXFSVE0P7DgW2erjxDf5zY7eT9OI89qWblWdL3mQ4jqvGrYD9Zv1n1hLwp+pxscLmK9eBqk6n51xSmlHoM/DiCqnDOBdZQsOMNsxBdjc5AMvnxYFNM083jRVJxnnyU3jpMbNdJtDyxXHhu0OzuEKd88LJTFA7mjIKHC6/fbbccstt6ClJXHidgR8XduAUbctwZxFaxP+RiftHPwJl68+Hj1Ql8I53PTLAPiS+xRVdbzI29AqdS8JJb725Ssw/Y0foQp1FsaJfx3ApepY4NQCgJi7qVQ+TiXdjUE636zoguCXJciyzcbfAS3c4lrKBU6OjrOwWkAATqm61HYE9MKNyfpxzLWuwwvswk7LeF7/DZ7dezb6STsMHyeTxeMXfztzRwXi9sq62ftuworQr1FdpHnqJdhW/P39TRg+azGWrduZ0evp2GjQr9LgmAVOWWCcWMsVX2o7Arr7DpVyDub6MU7OOGX3GBdp+rpKAiVASE9V2pv+AkAoshu4Zwjw0mXsMVMPCZs4XMvKtfCzBWswfu7b2GcTqtPjE/LIOLmuRwA+2VyHkbMX44G3vrX+4e3bgPuGAfNH6D/3Hwy07GV/3tUYxeF3voWrnv3E0xgSquro5tJDgOlTrIxTypYrRsXZ9D+9h89rjXPp5uMUc1kLnZ7LCnD8LDCh60UFGuGffzDwf+exqm+WqisyiA8nxokQ4JFJwEMTAE11rCh1ZJy4Ta1m3Ed4g+hkhVMdDRml6v74xz9i/fr1qK6uxoABAxAIBCx///jjj7MyuFzhq20NiCkaVq7fnfA3OmkPUz9HkDRjqLwVTdFhru9FF3874+RUQurUqw4AW4S6lujBgWVibV6FgNqCofIWBHxDAZiLN794sVRdSTcAgAwNYcS896qjgZNLesS+o/QzRsN5keEDIb4VjRvjxC724iD2Nsc4xsluR5C6qi4m6ze9Qqiqs9s1WHZoWz5ECDGMlr4zfJx8lufR35k43BDZVxTr82QfV55OCMFIsg4hSYFP3Q2/T39ttvuo8fhkcx1UjeDzLfsweWhV2q9XbKk6Fjhl0z3cyY7ANVVnsK/BsoSeeU4aHqpximY5OC0yGCctWAo5WAoAKJUSGaeuLd/rY97yIXuMLySx+DhliX39eHMd6lri+H5XE8b0q2SPO2nAkiGZj9MXP+xDXCVYs2mv9Q9bV+v/yn59HWitA3Z/C/QbBwD477Z9aIwo+GRTnacx2A0wWTDn4TD57Kk6I3By1e8Y61ac+LCpPo6RgOs8pNc7XQuTBbxmGt+HkN+HRijsseHyJkitdcCWD+D3XaAPg6bqirsBLbt1TZ+m6QaxFPEWYMd/9f9H9jm6wncp1q8lfvPOfx/qqcdb6SSz6uloyChwOuWUU7I8jPyCTm4nE8GmqAo/FHQh+wDoO71GL1V1Nh+n5L3qZMeyXTNVx73WCGyKEAWxMU48WOBU3I09VooI895wFYczxomm6pxvVlHbjjvANArOF4Fdl8PG6arjoYtFwLpY0Ka+zPXZ/VxINFUn6zfeQqiqS2ScuN8NRqVaqkPY70OY261H4io7VnbGqcRw4LU4BsfiCBs6i2JZQcAIEvJRSWUPgr1CtaXqVJmm6gy2J6saJ59pR+CWquMZJ95PCs46D77Aw60NVSaggRMJlupjgVUcTgss2I2KK+hQmR0BgLg1VZeNa4GuTXYW3r4+pEIyl26apkuQSNDve/pjwH/uBXZ8YRE309S1PdXthrg9VZcG4+Q3GCcNMmRoHOOU3AAzDh+aVeO269arjm0iA0b1rIfK5ZCfbUqpOLynr15/UryVBYeWwIki1gSEuSIMflxKhGOczI1dVVmin5yiRFlAIdlSdT6f5Fo13BGRUeB06623ZnsceQWtBNjdFIWiahaDsOaogu7YBxn6BVCKCGqTVtUZC5UtVec02XnGSZZNwR5FNyfGyQhswoghTqvqbIGTT5ZMH6dAMRAsBWJNKJFaWZBF13RXxqmYpuqyyzjxaToAKSvHuhYH8T2aHRgnzt/HDcbCGjduwEEo7e6cbU+VWTQQxgJVLdUhFNCN6nyyBJUrKVY1gtY41Yr5jH+NogVuXja1NIN2iSySVU/O7m0FHaNTeyEviNtTdbIRHNNznaRvomc49qpLoXEKliborJwqi+h1SIjOnnllW1Kh2AicECzVf2AVh1MmgjFK3HGyiMMTnMPbNhcIIWxtSvQaSk/jlEwcTud7gkSCnjdfkAWUfKqJboS9OlPbPfhktzXSAdQnLxooR1G8ngVOjhonQljKWIUPzYpxjFL4ONG1MKlXXsxcZ02GWn+sRqrXnxRvAU0KETpXwuW6lo+oemPrJIFT3IFxYn5yHPnQ3BJBF+P/MlEATbO0C3Nb+zsiMtI4dXTQCJoQvb8Xj+aogmrJpHpLpFZPPk4Bm3Db6QKyL7787swnSygv0mc3Y5xUhS2KRVLM1DjZdnUVRQGTcfKH2GJbikhCqi6RcbKJw1NU1dHvF0hhsGi3IqAIuew6+FSd/r7GONNI1UkaDZwMcTjUpM7m+YD9xmA5XnGOcTKOS5jR2cbNg2OV6LGkwSi/I29tNm8gshZPeX6ygWwxTnTu0vNmsj05Cpzc5pBF42Ttmeek4eGv32we5yJQxqkECJUBsIrDK4psRp7cNUvnm2wLnAJZuBbiKmHFJW4l814ZJ8rQOzX5pYFTwrpLv48vyNY4Xty8I03GielTjbGk03KFdmaIBfRQIYAkVXXcfFMgo0lNHjglrIUexOElIT+bm7TYqFo27mNEQ7FfM4ZiBDr+kBl82gXivPZKibH7ZYgLilkHA65nZnOrbdOtxS1tbTqTximjwEmWZfh8PtefQgcf8doFtk22wKkUEVdxODXwAziNE0vVuVeeUME2vzsrCfoS01gcDV2EqFlVZ9vVdSkKcB3mizh6v9VM1XnVOLn5ONk0DKkYjWbOtJEHu3hsuw62yyox+hm5MU6eAicjVSdpUNtZHG4PoPnf6e6vSqpnAVPY1naFLqK8RqDEIXBqaeE0F2rUdHbPQwl6puXF9qo6RaKMEw1ashE48eJwrxqnUk5nZa2qs2icOIYpW41+CW9+GSwzGSe0AgYLTvUlZqrOrKxz61WXDedwPkB26y2ZjSa/kVjipgEAxzj5kzJOqkY8BbLM5sUuZ/BwnIIG40QDJ58RODnOA0vg5EdTCsap2bYW8uLwuuYYnnxvg844wsrs07WjxThu1eAIANmw/KCpOl9In19AYvcIvhWMEnGc+9SIt74lzq7/llbb9apELQJ8t7W/IyKjVN1LL71k+T0ej+OTTz7BU089hdmzZ2dlYLkEPxHtgVNzVEEVpTihM05udgQ8m2DXODldQGYFXiLjxE98FjRwi0IRYmg0PoOnTAF9IQ3vo+7LYY7ej7DPcqxiUaKm3iNF4GTfUTLncJddLG/ayIMJBLlFWFE19p0rGeNEAyeqcfLi46R/JtPKAFDjzotTvmBnnCwVMsaxrkYdY+LsbVeaHbRiTqm6SCtX4arE8lJVR79LpoZ29MZFe9UplHHKZlWdozjcZU4wxqkMoK1Qk1TV+X0y0xtly5JA1bgeaCFT4+STCMKIIYIQY5wkzeab4w+52hFkI1XH3/DcvIa8M04uDDh4HZVt3dW4VB1jnDiNE8d+RBUtZdpQtZkXp8M4BSjjFNQDJz8xAqcUjJMKGU1xY1wuveqo3jNhLQSwYNUm3P/WN9jRGMUNxw/jNqhmk3D6+iqpjsbaKJHjAIIgjHEKemOc1Biiij4O/tyWF+kMV1TRjXj7di1Ga8R271DjUDX9mPp9kuPa31GRUeB08sknJzx2xhln4JBDDsHzzz+PSy65pM0DyyX4hX6HredXU1RFLz5VhwiaY4qj+JMPQmggEXQRh/PslN9Bq1TMUa0m42RO6LAUTWB7KMrDAWujVEbvtzqk6vgDwV0wVOPkIsi19ytK1auOLqzFQWfGiRfA84wepacTNU6p7QgY4+Qz23ao2eh31ga4apxUhYnZq6U6dm7tx6eJKzemoMEof9yirVbGKR8+TjGmccqUcTJSAJI1xZrdqjpj/nhxDuc1TvQ5rKrOuWos4NNvHtlinFRCUEr1TKFSIFDC/laKCCIIsRuqpalqvFUPnCwGmPZUXRsZJ+48J6bqEjVgyUA3csk0TnGVWNsK8am6EGVLElN1dKx2faUdvP4G4N3MUx+nkBE4KSG9stCXTOPErUEKfGiMe2OcKpnm1XzPvc36NbF+p/69rak6qnHSP68HsTNOQRCVZ5wSWTt9kHbGSQ/U+XMrSRKqy8PYvLcFOxoi6Nu1GJGo7XpVo1BUQzbBMU5xVb8X0ntSR0RWNU7jxo3DW2+9lc23zAn4hd5uItgcVSwUZ6kUgUbMi5kHf9GbqTpncTgfYPgdGKcSjnGKuDBOPqeAK+hDwCdzqTqTcSrmgi3HRYHeKPxFQNBYoFP4OAVtGidXHydOtMgj7JDKpOaXQZ/MggKTcUpD42Ts+vjAibjs6vIFVx8njk0pkmLwx/Wdc9B2fEzGyWTuqC0Bf/OyBE5KNKV4PxugY8y0vDhB4wQb45Rv53DHqroICCGujAr9PVvHWdO4CrpgGSDL0IzgiQrEaapO5qsDDWaMNfm1pepkiUBr4yaCv2bd+ql5TdUlsyNojbt8jsqdS5vGSdUIdnGbYC/pY7tzuKsO1AFBw2tLMRgnH117HBkncywqZOyLUxV64lrLF4NUFidWxtK/ba3T54I1VWdU1UVVAATdYdo5FNPiIcY4hd0ZJz7roEQdK0oB3k/OEOUnBE4xS3AatjR579isU9YCp9bWVvz5z39Gnz59svWWOQNPp+60WRIkiMMNvYGTQJzvw8P3kQMSdx785DeZIzPiLuWo1qiDximMGPuMgC3gCvgkUxweMDVOpTCr6qhNh4WGjnE3Cj494rBw2IXtgRQ35iaOQubh5B7LBwcJrVxYk9/UdgT0RqJR5gKA1s6Bkz2Vyb6XPUBtrAXgxDgliuydUnWxKJeqU2N5FYdnugjSuUPnbtSuccqqOJxr8uvqHM5pnLgxqBphl4Q9MAja52sbwTf4lYzrWAuYxR4AUFGkHydLqs44Vpb2TLYbsxpvW+AUSZKqMyuvPFbVJXEOd2W2LIyTlS3Z0xy1sOle0sf2VlbptFwJ0cApVKG/B03VJdE4KfABkNDAAqfE88Hruirt7DvMc7C1rsV4vunxFmaMk4IuaEYQXGGJZMwFuh76uXSnXeNkEYdHHZ3DAb21E2CmSGP2BsJKzKJx4huSd3Qvp4xSdZWVlZa0FSEEjY2NKC4uxj/+8Y+sDS5XsIjDG60nuymq6LlhA11kfRI1R1WgzPo+fPPWVOJwXl/gpHEqCfoT2SoL4xTVTe1gFYeXhvzw+2Sz5Yo/xNijEpgaJ0ePEvr+wRIzPQLoN3X+dwAxlTajtWqc4ik0TgnicOYczjFO3HMtbSwIcbAjSJ2q0+QAFPjghwpNad9UnT1wYb/b2ZTG7UDVMNMg1KZxsqbqEhmnWMQWOAVyb0dgisPbxjhRtjROA6dsVtVR+wrZzzmHp6qqKzNZgnirtd2QK+OUPY0TNbtkgVOwBGgxN3EVxVTjxM3tuI1xkqSEG7Pm9r09wso4uWic0mzy65iqiyWuDQA4cXgggXGyb4C9ME5U40Qrok1xeOrxh43ASQtX6K9NyjgZPmXQ175Wzd3HiS8Godc5/570ezVEFOxrjVvW2RDTOFk3/wBQLNs8v3whM92ZwDhZA3K3islq5uVkWHbEbJtUNWYeY5/EGg7HVee2PR0JGQVO8+fPt/wuyzJ69OiBcePGobKy0vlFBQSLxsnOOMWsk65M1ieak0Cc1yzRQJJO3oRUHXc1MubIFgDZb5r8hC6SYs7VeCGfXnHFV9Vx3i8JqToL48Q7JZvpLSiRhMApbtMw0BJeQuCYr2Y3fJvGyen48MGBRZvDezZ5siPQ/0bkAFTJDz9R25yeaCvsjBx1oHZjnOzBs9l0OpFxao6p0DQCWZagRLlATInCH5KMz8u9ODzzqjoNfijwS/r7sMDJ5trdJjj6OLmwkLzGid5glKhlx2/X8NDfs9XxXa+qo4GTfmMjXLEHiBk4WVN1+vmna5Jsa/ILoO2pumSME0tletOtJDObbHVjnDQucGIaJ30Nsxf5eAnmmQcf1Tg5sfIuoP0ENYNxkj2Iw+NG4BSnt10nxslpE8kzTtz/t9a1WNZOunY0x9TEwMnYWFNjSivjlMyOIJqgb6UwvZyMylN7A2HVZKt4KUtcVbJ2vbQXMgqcLrjggmyPI6/gT5pd4xSLRNBVMicS3f05persvY4A013VPjF4PwsaZAUtAVDyqrowZ0dgZ6r8Mp+q48XhXFWd8VpCYArdeU2HLwC9kog47vSjNnGsn0szxlUNPtmaknPzcQqzXn6Ji2PCYsEHSb7U4nC6eBGfn+3uiNtNMk+wMz5mqs6BcQISgucmB1sHnn1qMUSwaox7PzXGUia59LFiBphtqKpj8xZAFDRwyoWPU5rO4TSIUlrZjUOSzE0PRW4YJ/1cymFr4FRqME7U780aOBml+MZ089mq6oC26/0iyRgnxfnm6gYvBpiAnXHifZwMTaZxnuwbYC/pYyq1sPfz9KJxKjKaqGtFOlEgQ4MEjYnkLdCo+aWxthEaOCWeD74YxEk/F+HYuC17W2FpucL1qhtiC5yKoB8fSfWiceKrNaOujFMV1Tg1RnSWUFUA/jagxhM6a4QDMpqimW+2CgUZBU4AUF9fj8ceewxr166FJEk4+OCDcfHFF6NLly7ZHF9OwF9Ue4y+aHRShKK7LM+l9LgT46Q4ROJuLVfsHk5Aojg8saqO93GKuTJVfp/MGWCGbYyTtWIE0CvrfBKsO2xJ0lMk8RbHG1acXTy+hDE4LX5uzuFOLVf44CDIa6f4IIn5OCVL1dGbZACqFAAI2j9VpznPgwQ2JUHj5C4ODwfMMvjmqILSkB8K3yleiTJGMB/O4ZkugqpGTKYUQAxGYGPzUGoTHBknD1V1nJcUv+O2V9YmaPLaCNWBceLtRYqDPpaqtwROcco46eOwi8OBtjNObpWwQFvE4YnHjQ8O2OfwaXs5kMCW2BknL15BbWnyS9viIGxmWAJQnRkn47grRL+GY4xxck/V8XrPqIVxMo8NzziVhEyNU3NUQRWcAydHE9EEHyerONytDyGfqtvZGGHu6fxr7QL8kMPGuSMiI3H4mjVrMHjwYNx///3Yu3cvdu/ejfvuuw+DBw8u+Aa/QOIit6vJnMClsd0AAGL4uND2B14ZJ7PJr+b43ADXTDFoCYCsBpiEEKvGSTI1TnzAVRzSGSfWcoXbSegaJ6vwEeDEj/wOm74WcEyR2C8efuft5GzrZoCZPFXnc2ecPBhgyixV54cq6Z/b3lV17oyT7Rg30VSd9fg4MXeSJCUIxDVemMmJw3OVqiOEcOLwDBknzWScoiQAtlnPalUdZ4CZShxObyChMovOis5vu/EskH3GSa+q41qucP+WoBXFQb9pMUIcGCdjGE6Bk2s1oUdYKmHdGKe0e9Ul/s0xVceP3Rfg2BK9mnSnTavqhXFSMvVxIoS5u6Oogj3sh+rs8m1L1bENAtESNoJOek8njROgV9bx6yzfcsWeqqMaWFnltLBuGid7qk5xDoqpOHxHQwQ7GqLww7Y2q3FGLrBUnYuUpaMho8Dp17/+NX784x9j48aNWLhwIV566SVs2LABM2bMwDXXXJPlIWYf9pNGdyuaRtBF2aP/v1yvDtRz2cTRPdzuywSYk8t+4ToxTgF7qs6IxjViBFq8xgmmxiloq8bz26vquJYrdnG4/v7GwsBXEQFJjQftLSd8ssT63zkJxJscmBLAOVXXxOl4LBonS+CUWuMk0xuJHIBGA6cC83Ey7QiSM07RJOJw/nf6dxK3purozTVXjJMlfZCpxknV2IIeQcDUf9n6xLUJPOOU0jmcK5bg+uUxxskhKKDXYnZ9nDgDTO7fUkTY9Q44a5wsvepsmwbNLWD0CAvj1EbncF8SxskxVccHgb6g6XodoxonuzjcO+PEmvxK7sGcBfFW+GA8qbgrezgAJanGSbFrnICEOc5f704Vm/z3+n53M/u80qCZsdArw+st71sEqnFK18cpyunXnDVOjREFG3dbq/gA6D5OtmPstP53RGTMON1www3w+80J4Pf7cf3112PNmjVZG1yuYA+cqM6pJc6J6roNBqDvIkKIO6bqnIKhkIutvGPLBnuqjvO5iMTVBI2TL4nGyRSHh1j5sluqLpFxMhahJMaD9vFLkpQ0HdTs4uOUjHHid1lRxSYO93G7NBcwjVMBBU72hZT9TnugGfS9qXGyenm1sHJjawBqZ5wsgZNi+nflyo6A/15RRdMZ0jShcKm6KIJmkMnYnhw5hxPVuXQqyqfqjDHEW1133ACsVaBZgKYRFDMfJ8o46ddniRTR7UdobzW+wtRgid2cwwGAKG2rqktugOl8c3WDz4Xd0TTiaFViYQl5xinaBBDCNr903nuqqmMtV5JUHjshZnqmSaFy9v8A1KS96lRizBU+cLKdI95ewIlx4oPKdbUN7P8lXMZCIzDvYyVVAIAw0dd0WePF4VadmDkma5NfN/1aaciPYmNd+uKHfYmpOjVmkgs+U+MEdHw7gowCp/LycmzevDnh8S1btqCsrMzhFYUFaujV1XBmpbsV3sNJ7nYAe34xIs4+TjbhG8D5utguIMXmg8Q/F6BVEXzgpCVW1TlonEqMVF1YMqvqFGqYh4i5O+XONFuseE2H8VoAjimSqMOOkrVdcQqc3Jr8JhGHlxqeVICNcfLi+gwzVQdfAKpMxeHtzTi5per0ObeVGM2VG2sBQrgO4lQc7nwczX51+vMkPthVYyl9ttoKO8OSCfWucqm6CAmYxyoXVXX8HAIS03Vq3LxhhMosmwiTcUqsGMu6xklVTc8duqHhUu8lIT8bhzVVZwROPONk19C0OVVnfse4Sizf2c3rxw1uLt32eUQDCcvYeQNMogJKhK3hfSqLHd/HCaZ8wioOT5mqM1iuZhJCMBhgTKYfLtViNsZJ4RXU9sCJu95ZP1CNsGCOXzfpdw75ZV3nym28maVO10H6c2APnMJw6venf6C1lQ9lgu1BMXUPB4DPf9gHv2TXOMXYZoj1WWVVw/sh4/Q///M/uOSSS/D8889jy5Yt2Lp1K5577jlceumlOPvss7M9xqyDTu6+XfWLjO5W+NywVNGHBRIlUoQ5YfNIpnGyt6Fg+XSLONz8P+1FZnGOtqTqnKvqSkN+RsMCAAJhKH49cCqVWtlCZhGHu2qczPSEHcyOgO/VJbt7OTW5pJicdhy8ODzE7+AtaRYPgRMxAydNSpGWyRMSDDBtzuEscFJjQGtdggGme6rOZ/m7ZBN0Mmf3HFXV2Re+TBp3xlWNafMiCJrzKFdVdZRxAhLnBb/rthhgtprmjk6MU5YDVM0yDv06pn5OJVKrXgxCy+dTBk6279jmVJ31nFt8xDI0wLRvLOwdGprtqTo5oBey0MAJgNLagD1GKxK6pntzDrfqbzwzTsa62YwifQ005pVfSs44mQGTpBev8N/LAC8O59d51hfS4TqjawMNSiRoqEK9/kcjcArTwMkiDremOxksa0mEEQ1O87+qTL9nrN3egIAD42S/R5omzx2bccqoqu7ee++FJEk4//zzoRj0byAQwBVXXIG77rorqwPMBVjgVFmEz7bUWxgnVo1Q1lMPKJRWlCLCbu48FFs5K5Csqs5dDwWYN8KwX0ZM0fQbpyVVF2OUsp1xUlusWqC4T188nAwwAW6XZ2eckhgPUgNMfswBFx2Nomrsxp9gRxBI3HHw4nDGlCiccFL26YwB4ClwkgooVUfPO22Iaa+qa0AxmnxdUKruAxq3I2QEDfT4uDJOQWuqTlbt4nDuOOYAdoYloqjogoDLs52hV9UZ4nA4ME5ZCZz4VF2Qe9w2L+i15gvqaQyHqjonNiWQZXG4ZAjUFcjwG2OQ7YwTLdAgCutFbFbV8RonK+PU1mvBnl5piiqoLAlaW9KkW1VHvAZOXINfQKfQAyVAvBl1dXUgRH/PXl3CjmN1gplGooETHMeUAGPdbCJh/TozGCfXVJ1qNcAEAFUOwqfGE85Rk4VxMtfsmKo3LeaPM/0/XRtoUNIVjQhIKjRIkCv768/X9M/xaaakw5Vx4oM5JWJZw+ygjFNM0eAP6mOPkICeAVGj7BgHWKpuP2acgsEgHnjgAdTV1eHTTz/FJ598gr179+L+++9HKBRK/QbtjJiNcaIVGZZqhLIaSzWLox2BrSoDsGoeeN2Ho8bJ0nOOTn5uYnG7z5CksIjeamPgYzcfFfquOubXv1epFIHPaI/Nl1GzhYGvIgKSpkgo42TtDu+so2nmyokTWq4wy4VEoWmCc7gj4+S+INIdOJH90JhLdHtX1VkXN3tVXRRBNAVoum4708gxxinmHDjZxeGyrRKG9aprY2NXNySk6jLYQepVdRzjlKBxyrIdAZ+qs1sSJKStTUsEN3EsYFbaZStVh6iun2lBEWj1hcT5sunicMo4cd/BuAE7OYdrxjJPsugcDphz0+KsnmaTX3uqjncNB3hxOGd+SWHc+PfW6QU9VWUhFAW935hNbz056ZgSwBinsL4G+vR5FYDi0nJFH0ucC5wUydkE00kcDugbIJ5FG9TDbP5cYmOcqgxheJOvAjA0WCFCAycHcXiCjxO/lsRcDTABUyAOgN2fmhFm3y3RAHM/1jhRFBcXY8SIERg5ciSKi4uzNaacg15U/WjgxBgnThxOGSfoAUgy53AfJyCik5cQ64LiqHGypdwAWy83204gaARIdm0UpWHjsr4bi/vMiwpxU8hoUtHGA24aJ0fGKXFHaamA40CPVcBn7U8EOO84mhzy+nGVgFjMC1MzTvRGIvkDIJQKT/L8fIBS1VREyeYEDZxIAM2h7vpjjbWsCXKENfk1DfF4lHCBEyHEXBABnXGSnYPabMHOqEYy2EHyjFOEBM1jk8QWI20QjnGSJC4Ad2Gc6C6c85JKJg5nGqcsHWdibGZaYDr5yyEqDm/VK0+Nc+sHn6rTGSc632QZTOOkGE2vpSxW1QHmdc7PMa/icLcmvwnpQCqRYCkmLnAy1q199fqa3aM8zGkovWicrBtfZoCZInCi50hP1dkZJycDTEMczt1uFZaqs1fVmcUgkiRZbEX4YzO4ykxVsmyFce+g97AGfze2CQkS/Vpi6V1/0NwwKxHrRoIbEzF6NQLO55YyTvr319+jhZj6QNV2jJ18/DoiMkrVRSIR/PnPf8ayZcuwc+dOaDYWoJC9nHj/mb6GkJD2q4s0N6KLZBgJltWY1SxoxR5HA0waDCWm6gB9stsrI5LZEQC2Xm623HNI08dpN84MGguoYrSsiEshqESCTzK8oIwLxCdJUEE4xsn9ZmGHuetIHL/dANNNGA5wqUyHyhneLRcA4vGY7iWdtsYpyBin9k7VMTo96Mw4RRBES8gIdBu3I9TFWpXpZutQHKKeLSpaYqrFSJJP1bm1xMnW96LIZCGMqxoratBTdVTj5G6LkTb44BvQb3KakshE8u2HAMsmIpkrNhVqZ4txkozNTIvEBU5hug7pqTrKOAV4xon2qqPpJ66qTvEVIag2mxuRDGFncah8wdqSJr2WKwmMU9z5M8x2K1y61Vi3GhvrAVSiuixkaig9+Tg5G2CmStWp0Ub4QVN1EhuT35Vxsmuc3Nuu2FPzQZ+MuKoirhBoxAzg+3c1iQozVUcZJxo4dQcC+vOCjHFKNEoGoG+iqScVJw7XuDYqTue2R5nJOPkdGKdEA0xnKUtHQ0aB08UXX4ylS5fijDPOwBFHHJHgplvIUDTCumhTxqm+JY5IXIVqeOnEpBCCoXKzmkWKYLNHcTi/K40a7TD451oMMG0pNwDWtit2xsmY/Ak97oxde0zSJ3FcI2hGEcrRYqFh9V0ot6NyS084VNWZ5cbmxe93YTV4XyY7zHL7RHfgEhs9rSiqHjhJHOOUpMmvj/7NFwAxAiepvcXhRnBNUwgxm8YpigAiYb1kGI21CHczF/64qrHjniAOD5qMU3NUsbQu0VN1yVvitBX21Fybq+oQNNOKSWwx0gavkwN0xkJpTUzVuRVKAFBiiRsWCtpiKWvMnnFNtnKMk8l8t1oqTwMSn6qz2hH4uEBa8RcDsbYzTvZzbmecZMksO08FytLbN132VF2ixolnnPSAspUGTuVhzgfNu8aJtaXy6OOkRUzGKeCTWarO7+YcrlmdwwHOBDOJjxNgaOhiKmKqCkkzTST7OgRONCipNnS6jcHujHEKaDbGiWr5fEE9wLYETubGmXD/T8U4BY2qulYY144aTUiH7teM0+uvv45FixbhqKOOyvZ4cg5+ge9RFmKi3V2NUUiGl06Dvzu6c5UbpTAdWnnYaUhAd5+lwj1r+a5DVR0Te5spLVZVFmllF1wcAQQQZyWlfORfEvIjSPSbT9ygf2MKQRPCeuDE2eknlADbfZySGA862e67mSy6pZcA88KJq4QxIU0O4nAAiMepoaWNcSKE6T94+DhxOJFSM1T5AGVRaKrO3qsuQoKIFXGBE6dx4tPDbnYETTEFTVGFGUkCsDBOgMHsBLIbOGWDcVISxOEOVXUu59ozeI0T4O4e7lYoAUCL6yx0ezFOptYyYklnB+AQONHNHDfvVSNV19YKU/s5ptdtMg2MG/wuFWyUcaJrqGNVHYURUEaa9gHQ9TYhv3fGya6/YVKGFIwTC5yIoXGiqTpJTapxsjBOLv3qnBgnQF/TKeMUDvjQp9KcH6U2fSxN1TUFejDGKWCk8v2McTKCm2Ap0LrXuknnxkS4dDm/6aewBE6yBhCghdDAKbGqLuSwce6IyEjj1Lt376z4Nc2dOxeHH344ysrKUFVVhVNOOQXr1q2zPIcQglmzZqFXr14oKirCpEmT8OWXX2b8mfzEDvllduJ3NETga94BAGgKGpoTrprFyccpboumKZy6WpsVeImME39TpJNfiTSwxxpkXeAXcEzV+VjgFDMifUXT0EyMC8vCOHFUNCGJzuFJjAedDO7cTBbd0kuANZUZVfTWMnxqzydLZgNQShnLNg8eFxNMVlXnC4AY9LnUzuLwONM46eM3ncP1hSyCIGLFNfpjjds5KltlxzHolx3N5wDKONlSdUrU2kswB15OWRGHq6Y4PEqCJvvAsT1tFojbAyc393A74+QLsEpO2s7Gqaoo5KLzyxQ0cGrlAycqDpciKAlKpp8bX/5tC5z8xJz3qhGIkiR9Hr0gwWOJBk5pml8C5lpkZ5xocNatVL9+E8XhXKrOWLdiLfpaWZU242Td+LKqupQaJ6OqDkV6MEHtCFIZYHK32yicAyd7MQivoaOp0qKAj/lV8c8NMY1TvT4+G+MkQ4OPzhmfcY05NfpVeI2TuVmXHdL9VVyqLmAwTi00VafEzGNsT9Xtj+LwP/7xj7jhhhuwadOmNn34ihUr8Itf/ALvv/8+li5dCkVRcNxxx6G52RQ0z5s3D/fddx8efPBBrF69GjU1NZg2bRoaGxuTvLM7osyTQp8ItCpgR0MUgRY9cGoJGVVOQXPBSiYO99tyv055XMbYcJOPXhR8Sovm6OmuBoFitvukJaV2cXjQYKKiVOOkamaemdtJWHxK4q1mAGJPTyTpVecsDveuceKZj0hcZ+Xo4mkuFjRw4vQpEjdVXW4AtFeSxKXqCoVxokGkaUegB6dRBKCWJDJO0biWlLnjxeFN9lSdGre2xMmBQNzJjiBdqBrfciVovifH9mQ9cHJlnGwaJ4AxsNSV3UnjkW1xuGPgxGlRuvhi7Dq2ME5xG+NE/ybJ0IybZNvF4fo57lKkH0MzVZee+SXAMU52OwIjVde9NMQ+gxCStKqObjL1VJ258UgFU39jTdWl9nGiAv6wHkzIKarqaJNf+Nixi2rGOpjg42S95nmNLBW8hwMyelWE2fVNxeFmVZ3OOLWEelgCpyC/ufIbASid73yjX9Wa9gfc2cSSkB9ldKzGnGuGyTjZbXjsnRE6KjJK1Y0dOxaRSASDBg1CcXExAgGrf8vevXs9vc+bb75p+f2JJ55AVVUVPvroIxxzzDEghGD+/Pm46aabcNpppwEAnnrqKVRXV+OZZ57BZZddlvbYaaRLL3LaqPCbHY0Y0bwTAMzUCWOcWtESU6FpRC/79gUBWXbUOAFAL189wmgGqdsMdB0ABEsY8xDwyfoi5wuyi4LdGGMtbPKzwClYimhEn4g84xRCDIrkR1HAx3aXhpQaMYVApZUN3E7Cxzvj8jsMw2mcpkiUWGvCxLDsKlUFaNyGGm0neqMeik0v4tZuhR6rgE9CXCWMcaKgAWTQJyMS16AoZqquVZVM1YemAAhC1QgUTWPHjJVn+4MgBrOQ6mahKgqU+q0mm1DeG5B9aI2pCAdkXb8XawGCtqpRYgSftsejigq/LLM5QRcOk3HSXYBlThxOSnvqL26sRdhI/bTEFGzco28gnJi7Ek4c3hxVUG0JnMzFLqZoFkuC1pjK9FaW79KwDSD6HI8VdUe4qATJQH29KNyqmCzHI96qByOSyTaYLVcCplknZXuIql8rXAwRiasI+d3PCyEEtQ1mJVD3WBxhAHtaVXRRNfiZTYW7xokQve1HUSAMxJuhxfTAycKoRJuA1r3oqtSiB+pR31KDrXUtKAn6UVkS1I9p43YzcCvunjiHHCAbVbCWwClQBBUSfCAok6Os2sqaqjN61RHKOJkMjddrIRVocNytNIh9rfEEcbgj4xRvtQbCBhjj5GKA2atYwxfQ24dE4hqKjLFrst/c7dt6rVWXh1gw58kAk0/VqXG2fvDi8H2tcTRG9M8ujteha1AFmnfpY5WM8+mjVXUKFI1gy94WyIanlCRJFnE4PXYRmqpTotA0gu0NERBCEth6ep/SWvYBLXXojV2o8ulBUnVZGLUNkQQfp2pL4KSP0a/aAyfj/pCCcaJrCTu3DtdcVXkIjbsUpjFlVXVqzNTcMY2T/m99Swxb61oQDvhYkMxACLBvKwACNGRGkOQaGQVOZ599Nn744QfMmTMH1dXVWROH79un56q7du0KANiwYQNqa2tx3HHHseeEQiFMnDgRK1eudAycotEoolHzxDc0NFj+TneGNNdaXaaf5Afe/hb3B7YAPiBebAROVFtgNN1sbtiDskeOAHofBpz7QoKdPADgnfvwamw2EAbwvPEev/yIPbcULcD9hwC9RiMw/E/6+4d8wNrXgP87HxNrfo3XcSijgxEqRYQFTobFvtqM90JXYx0GQpJmslRd1AicFE0zy5m5nQRL1WnEfDxYavZjMRinVz/6Hq09N+Occf2448YFfo9PB35Yg/8FgDCw850jgVGL2XPdTBspQn4f4qqCSFxj/lBFAV9CLz7VCJz2tmo4as4yrKUsvbEQnfXwKmyvb8Wy305CyCezqg7ZFzAZBpKccfr27h9hWPwr84EBP8Kmmc9j+vz/4KyxfXHbwbXAM2cBx88FxnHz7dVfAZ//H/CL94HKAQD0xXrSPcvRv1sxnr9sPACT7SnmgpW4piFEAycSBEp6AJAAoqIori96dS1xXPb3j/Tj6CCyt6TqYgpz4AZg7hJlCTGYrNe73+7GBU98iN+feBAuOXqg+fxFvwVWP6ofOwBNqAC57nMUlXZxPW6J4vDEG1VUUXHsvStQXR7CwnP6Af97BHDIacAp/6sP09JyJWi9ifr1oIVPG2+rb8XU+1bgxBE9ce/YfcCCU4Bps4EJv2TPue21r/DEexvZ788H92CcDPzhX2uxbc0q/IsyFglVdabG6Y7X1+Lv72/ClxUhBEAFsqa2CPt+AB48HIg341wA54aBuWvPxtH/nQlJAh7+6WE4buufgVUPmu9f1BX45UeWprBOkOP6OCIyd3OSJLSgCGVoQZlEe7LJLDWiH0z9nJsaJxo4hTxVpHoBPefdS0L4flezmapTXZylP30W+NeVwBmPA4ecavmTmx1Ba1zFaOk7/O+W2/CA7xT8WT0NTVEFRcb5WrOlGSXb9uGQXl3MamEj2KwqC2NbvcHkemA0WMYAGvCX8ehFZEi4Gaqmf4/Pt9bj9IdWIq4S/FheiT8F9fNJw8CIbPyPVdXpx+FH85YBAE4YXoOHfnoYY8hV+Nixi2g+3bxUjeGKpz/C4i93WMZmisMlHCJtwOEvXgBZi+O9MIC9AD5/FH0q+1gCp6BPhk/S0MNwDW/lGCefGkGIBdomS7axUcYAAJu270T/g4w/27oQAMa53f458LcpwJFX6tedgeryMNbvamYsZwvHOCmgRVE0Vaevg+98uxtH360fp3lnjMRZY/uan/nPS4H/vqj/P5obH7q2IqNU3cqVK/HCCy/ghhtuwIUXXogLLrjA8pMJCCG49tprcfTRR2P48OEAgNpavcqturra8tzq6mr2Nzvmzp2LLl26sJ++ffta/k4vfsowHHdINbqXBhHyy+gi6Rddv9699Scb0ThdrGI//Bdo2QNs+QAAR/XyGqetqwEAcVpBEWsCdq5lN4UabTvQshvY/AEOH9AVg7qXYMbIXsDWDwGi4sDWz8zXAUCwBBFYGadBUi26Sw0YJ38JaBoLqPhUXR0xdhIte9jQfIyK5h4v4hZy4yILIYaPN9dZjhvdwYX9EvDDGv1zjMqQbnut9hN7m/RFrrLY2UnabLuislYJ/HPpLkuJG9RvnCCuccGppkDVCD7aVIdt+yK6Dxd/U/AF2C5bTmL6RzSVBU3E8MDC5lVYu20fInFNPwZbV+vMx4b/WF+8YYV+U6/9gj20ta4FtQ0RfLK5nj1GzzvfpDemaJaquqJwGAjrQUqvUASHD6hEyC8j5JdRHPThx6N7JYw9eapO/7/d1fqzrfVQNYKPN1nPLTa/bxwD/Zh1Rz12b0quI0wUhyfeqLbXR/BDfSs+3lwPdfvnQLzFchwVlaBC0gP4epRaU750VxtrYQ+t29GIlpiKVev3AJtW6ufFuN4o1mzUv5tecGEGFypkfLalnn3HhFSdIQBHsBhrNu5FTNEQJfpziZ1x+uEjwx9NYinhw3zfwSdLIAT4ZEu9OS45AEDSBbjr/514IG2grXNohSyDwRwM6KKPwS9L1m708VYQYlYMy5qZ2mLXQhsDJ8o40R6fNHCqb9E/i6ahGLZ+qMsBNr6b8F5upf+RmIrh8gb4oWCsf735OUa6K0ZkfLXN2AyzjW0r+3ynXphuoMx4ubIb2PMtAnvXoQwtjLX7fOs+xFUCWQIO9X2njxc+aL4QtpLu+FjW71M0CBnduwQhv8zWr9XGXGRVdZDZsWvRTMZp5Xp9LQ769Gt+yrAqdiyDPhlj5O8ga3EQyFCMRsHY8iFOO7QP+ncrxvjB3QDoJsdd/VHdhgaAEqowGSctghAtIPGHGOu7K6qPY/su8z5hdw6nxxbbP9X/ZlsLTx7dC/0qi1jTadOOwOxVR1vsjBvYFX0qi/T+esYceP/7PZb3o+uRRc9WYMgocBo2bBhaW7PgscLhqquuwueff45nn3024W92RosQ4spy3Xjjjdi3bx/72bJli+XvrHWIsQgeOagb1vxhGtbdcQKOHazvYKq7VuhPNvK/5bI+eeL1P+iP2/UEvPbB0EP8Nn4ZGrqO1B9TIqwPF7vBxZrQq0sY/75uEi4+eiCjm7soe9jf6RhaDSbJbwROgbi+cPiJArTuZam6qBHIxFWCHajUX99oBpiWxYo+XlZjjt2gb0OIJ/ipUO1Bic98/Pd9/66/rxaz6KJ2NurBEF9xwcNs9Kix51bxRmqUcTIWyziRLcJKEM00xoNxE+fEvrIvwOhzibinJ2KtJhu56YIP9f9oChTDu8TSaJk7juCPH6chY6kLVWNzg573Io41iqvErKpDUGccjZuAX2nGC5dPwLo7TsC6O07AV7cdjysnHZAwdrojbXKxIwDMgJ4GJBFb42DzQOjBy+4zFuIzbZD+WMP2hM+0vMSucXK4UfGfE23R2WQ0btePH3SNExWy7iCV1r56Dq7GdNOzszECQsenWJkjejP/xyXjsO6OE3Bob/0aphVNmluqjs5ff5iNOy4b2iDj5sE0PPTcHzQD0swHAADHHViBKycNNsdAd+1nP6vv0AFg4ztICSM1osrWIKSsRE+dBo35HPDJCVV1PHvDUnX+ECTGvrZNHE6DY7twm7as4l2kAZi2Jo2Jm1wfl67l0RpX2VwukhXzc+haAL8ZtHPFO7Kkr29OvTCdQAhBQ6v+nuXKbvZ4KczjSOf0jJG9cPQA/fi/UnEe1l36HY6O/gnbfcYG21hrfn5UP6y74wS8de1EAJyVAkvV+dmxi1BZRaQFjRH972tunop1d5yAxy48nN3fAj5Zr44GsL73j3GP8j/6e8aacM64fljx28kY3MPUwHX1G7IN4tMDJC5N2sV4HyYMB9i9RY2ZumK7czhgnFuX8/k/h/fDf35ztPmetKpOiZmsnnHv6du1GO/ecCzW3XEC7j5dvz9SA2oGqje8/D2goh8KERkFTnfddRd+85vfYPny5dizZw8aGhosP+nil7/8JV555RUsW7YMffr0YY/X1Og3dTu7tHPnzgQWiiIUCqG8vNzyw8POOFmgmIun/iQr46TSxVqNAprGMU5c4GRMuigCUCiLoUQY8xBi3isE4CercYOgFzEViSJUynwx/KoxcSP7zNc1bmeMU4SYjNNOkhg4UWJMSxE4hRFL8FOhTY6LfeZiHQlUQCVSwpho0+Qqt8CJY5x2Gs/lF12TcTIDJwKZtY6ApiQ2GOUYBNlvdiyXk+g6Yi1GXzAio9VfwR6n+rKoopopTX6xiNSbc4W7sTs1PaXnPcjtsGKKZqmqKw353ftGuYAyTlFFw77WeIIBJpBY9UhvBAmFDsZn7o4FzHnT5MzospfYq+ocUiP858SbjXVBiwMtugYyrhHmObOTVFhF7A7Hg6YD4ypBvH6b8V3de33pn0crmozAidlU2OYFd+1TgS7VDFIvG8Y4GbYlKOtpac1SwgWz7ObjDwEDf6T/f0PqwIlWgbImsBTc5wB6QUpC4MSxNzIxGSfqM5TsWvAC2ri8G2WcYjRwcrneKYvXmBiE082mXYgdiWtsLhcZa2VzVIFm3MDj8JtBO7OLibBzY27KkgeJzTGVsXOlMTNwKpEi7HE6p8MBGSXGurc3JicaH9sqNak+qTWu6oEDDZyIjMriICQJjM1satbnd1HAx0TWPIJ+GeWGKXOrXMIV/Thrfyr9RhcM2oCYC5zKJeN+4zeZHHpvIRyzyzNOsnFvqS4Lm/erph2JBTrca+gYicWOwN3KgM4f/UXEWuFaWpPwukJARoHT8ccfj1WrVmHKlCmoqqpCZWUlKisrUVFRgcrKSs/vQwjBVVddhYULF+Lf//43Bg4caPn7wIEDUVNTg6VLl7LHYrEYVqxYgQkTJmQydHYx2FuBADAXTzrZ6IVpBE6WXbgS4TROsuVxQA+c4jI1lDT7XRXxzAAvyDMmS1lcv4h9cVNz0WoERH56k4jUm69rrIWfBU6UcdKwgwVO5ph9fNUIv/hTGMaDISnOAiUKykAVcboKyR9CI4oTxsQYpzLbDtRAmKPTzd0qxzj5KONk7PwNelrjGv1abso2xknyB9nNQkqSnog168FeM8KIE4nR2nTHY2GcmmrNXjV8EMUtYDzDQoMUyqIEfJLVRZ5W1ZGAfsN16xvlAl4wvntfM/wSF3SwwMnOOGkJ4+Q/c2c0gB2kAgDgSxE4JdoRJN6oeFYwzrF7dO6pisYqgHai0paqM6p9OPd8/jPNTYx7ry8ArHLUZ8wH1aVHGH/tM+2OkfqmjFPAzjiV1ZiVqGrMkj41A6cw0G+8XhW6d70uwk8CGjjRLgAM9GanmmyivaqOJ+xk1qIkZLKvbU7VUcZJ/86UYaW9Pqle1BxThoyTkVIK08AppqC5Vb+xx+EzA2yuFQ3dbHllnCjbFPTJCLaY+qJSGCJ7jbBruCjgQ7GhIdwTkRmLzKqpfVZrAV7b2RxTGLupwqcHYUE/Y5xamk1hu1MWJeiTUQ7D20suRZODzQyPCp8+Br2PnqxXJBspry6ggZN5nui9haajAVgYJ933iaBHecgMhIkKNJvBJgDLRoSKw4kStax/dpgV7bymKmIyo8FSoLTK8Xu2NzIShy9btiwrH/6LX/wCzzzzDP71r3+hrKyMMUtdunRBUVERJEnCNddcgzlz5mDIkCEYMmQI5syZg+LiYpxzzjkZfWY0aQUI3XVaPS6K/7+9/w6z7KjOhfF3xxM7Tk9PkEYjjQJCOYEQEkhgI5skY7gmmfTZXBswBpFtgz+4GJtwMRcbjDD8bOxr8MX3w8AFfG2QDQjJMkmBnIzCKM30hM590g6/P6pW1arae59zuqdnpnu03+eZp6dPn7D3PrWrVr3rXe+SN5O7zCaAXmsg49SjyS9qqUXBSKl0lgCqfpYLRBivoIGWqq4RjJM4Lq+AcSJTMxKH9+KUBU6ccWKCzFzGqaaOkTNOvThRx18jxsmrwPddzKcNjDvL6pjSNFU3QlGqTpcMJ7nP1eJwGThJfZNmnGLdigFyQaWS39QVLtlysXD7iMOjlrjmS6iJ9wibYnKQQWy7F+vdTxIJXVhzq7mDLmCcSA/SjbQOTiy8MTpRgjRqw4H4zhprYJwqvqeqE+fsypO4C6RppgkzBb88oEGs00r72r4aN95y/8Ap06suN1WnH6NrDUCMve3nIezNKwZ2Jh3HmQMZJ/13lwI7NsknSaoaTNuMkx8EQI8xTnbgJO/91Kuo60P3E31GLuNEaY+orcrClzuxPi4vFI7M2y8QGpF7bgEueDaKQIFT4hYxTiT85+w1MoyT4RDtDr4XBoG3qqJ007KVqpvul6pLEk15g4vDzXHEU3WhDFaWOjGWVtoYQT7j1EBbdTQYVuO0ICvlRms+HLZJaDhtIBVyBpoDq4GnWgMd7Lhoy8eVIaTSzUXyGAS7HCXCo25UPt6Dh2rgoVHx0FkRr2m1pLC9YK7kjNOS08QyLPNiC+Oe+C6W0ppel4IaEHc148S0QxQ4qaAIyBggh4hEULzEnrP4EDDCsj4s9U3i8CTqInLzK88Bfc4L7UhX+/LzCjcu47SmwOnqq68u/Nudd9459PvccMMNAIBrrrnGePxjH/sYXvKSlwAA3vjGN6LVauEVr3gFZmdncfnll+NLX/rSmg04icLNT9XJG52ci+Wut56Kx322M0HUytc4seatOnDqKHYq5A7PvBcdGzDbnFn40bI6hpVUPI80TmbgtE81eF3JY5yIVnU9044gj3GSAWMVXaywwInrnUh3AL+CwHWxoBgncUxLnUi9NjORSvDJbT9pnBg7pUpwmSAU0OmWfqm6CKI6zxlCEBtJFmQ5rQrdRKUJLM/INGlVLNR8Z7f4kAycOOOUHzhRSjhiu1POOKU9ETi1EQjhuGKchi+/bVR8zK30MJeXHo+7OuVpaZwMF3z2efeveEobZ4z1HGQYpwGpOmWvAaix1+iKsu55ZxRdBCb7kMPA0Wd6iBG25Y6XpepW2Dht2oGTL8ZDNCBV13VClaohBteN+zBOxIJGXVX9KDQ5jHECRLruoTuFsLZf4ETj2GacWIAGABmHiqiNmDF2yvjVD+F4g9PWg8C/X1scvj8n3Q5AB05pLApiGHtQ1KuuzfouUhXYcifC8opknFIeOAndUdNpqfmct6zqp4Wdl4L20Wpg3M8NuUmOk1RtfiqBNhlupwEemrfGAwUicr5yHAeNio/5Vk9cI5YurgQeGhUf7RXxmo5k0oo2mVzjtOQ0sEQGlgWME+lxl1HVwUpQB9rzjHHS39NySqwqY5ys9HcFPXF8s0xaYrOIcmyljqe0tog6iP0ccoGOteqjGgjrmZnFNnZvaej5KGiIQJsHZxsIa0rV2Zifn8eHPvQhXHLJJbj00kuHfl2aprn/KGgCxCB829vehoceegjtdhs33XSTqrpbC/oyTlyXAKhdbzVtA0gRrszo5/Z0qi7IZZxC9KgyhrFTFS5W5tF11wycgkgzThQQeVEB4xRbqboowSGMCoaG0araABP5jJOqqjPF4bTz8lwHAdvJ+p6DhbRhHBPtPkeqvvIusqEYp17CNE55jJMMnGR5cGQwTixIYam6HoT7+DDicGJBljnjBKjvpRslqhM6AH3NChgnzrDQpMv1ELp9QsKC9Iqg1KntzZCME6BtCpaWxGtSmONQMU4JaZxyUnX0eV6Ih5a0Ni7gYz0HVGRB1YJ5O3wjcMq5js2eCJzmPFHZOVjjJMvhMQ+Hdt5MHE6f5zp6jNGi5fkyVVfQXJUCkpWU7cblAuDFw2mcmrmpOjkHnPp48XOAQNwtEIer95HnW/Os6x13VWobsBgnSlsfgTicf79TKlUn2UK1+SlI1QEZnVO/Jr+KcZIB1HInwkpbFujAE/c7oO6ZOjoqFUT6SaC/JcGCFGSP1ALj2JqS3U+klxcgxpKjJBghHpCWB5lUHQtMdfFGbFTVVXwXzYqv9agdGTgVyBoE4yTWggXUsUweSQXzxKgrNU5pVXepkPP6uKPvdcJyIv7v0nyUphmrjhA9UxwOZHVrFDR6gdLncY2T3V0DEGu71jl1zPOi+795AgZOX/7yl/GCF7wAO3bswAc+8AE85SlPwbe//e31Orajgq7SOPVJ1VkaJxcJauig1jmgnxu18oVvTOPUUYyT1jhRvzlxMFmNEwBMYxZBTOXRTazIwU0TuM04kYCvJQOnKEkRw8Oib+qc3IGMkxSHO2aqjhikWuDBYQtC4HHGaQ4AcgMhG1zAmZeqo0kwlotzJAXocV9xOFWueKJ1gtSEeH3SE7F0HF5KqyIVKSdi8tIBdHsFAPqaFWicjFSdnHR1jz9XM05RrK6jR2X3q9Q4AXpyJro/8plpZdzVVXVyzHdU+jDRQQrzL9q/0FZMZaU1IHCS7zlKTsg5i1RugAao6zgiRbnz/pQ4/gEaJzp+MvgT56nvJy4MV0yDFLH60qRX9QvL2BGIRYHuIQBoJbQbJ8d+aeJJer6R7Vp7FHUsjZOV9j/lMYKdmr0HmDMrfTlcmXaPXYtxssThNTcbBMWsstVlLUqcdUjV0ffruY7hHN6LExxcKqii5ekfi6EosiPgGqcAlKqLsCKruAtTdXLOqDLtat/AiSrqqr7JODmMcWIaJxofbYR4YJYCJytVxwLXhkrbRkavumrgoRH6ipWJOsMzTvMJE4cXMNNUyLQEnqoTc0yexmk5oU25HDs5LaoU49TtxziRhCPU1i5M42R31yCQLk7pnOyekSdK4HT//ffjHe94B/bs2YPnPe95mJiYQK/Xwz/+4z/iHe94By6++OKjcZzrhv7icGIB5MAKG4DcxW9zZhHGbCLotfJbrjCNk+6ArQOncEjGSX1WpanoVEoZoDWnX7f4EHz5OE36VK67IBckGuSKuu1akz9B2RGYqToSitdCT99YXgjfZYyTPKb9JBQtSNMBmg1YaEeYlZS5UVXnm6k6WuxUd/E0zgZOsa668Vx3qFQdBUXLqInvR96sZKgn3pxNUEsyfcUnDYNx4qk6EodzjZNkgLptxZj4FRmkr1LjBOjJmXboSVDXZoc8VWeVVwMsyGM7vJmFjgqcws7hLCvDQIsXLaKDGCeHB4TyOo5I6w0ap4MYJ/pMI3DKYZwMx3oKnChVpxgna1zI+1b56wBYke7OlAoPfVePAb8KVMf1XBHrwGml09ULCf29OgrsvEj8vw/rpDROmao6SgdJ4XRO4EStYYQTtr5PHf/IAyft4+aq80xS4P7ZFtJUfCZV2ykYDEVB4GQ7h7NUHVkqLHcitBXjxAInOUZcJ8WorytJaZrLK1ggkMZprIhxStg5B54xrxPjpDINOaaqRoUl29TR9WsrGwDxXsWyBhdjknGaR12LwztLytaDgwqZllOeqhOvGcupqlOBE8lAeJ86mR6uOD1sHamYgbBdPKKaMPtI1PXome7sOaDzJtYywzjx9WkDYVWB01Oe8hScc845+OEPf4gPfOADePDBB/GBD3zgaB3bUUFhe4BEL75qsnMctZjucSxqsqcF36Y4XAzAdhqio1J12o4gNBgnuShbLVC2OXOoKMZpRKUP3NxUnWac6Hnkxq2aFSvGSZ4e6Vf8mjJeBIBU7o4pVUelwsQ+1UMPvFoo8LMaJ1UlZ9P2DKRDuH9WnGPou4Z5HmkHUlaNAvBUXWSkxXpGqk5ouVx58/ZjnFSXc1TEuKCJmDFOeUzJMBonqkBS6VymcYpZBYufYZxWp3ECdOCU+lWmhekUisMBFuSxHm0zi23Moolu6onAbqmYdaINyEhVHENeFRP/joxrKq8jWW/QODWr6rIMHH3mtPR+AmAsVrmO9XLRCmTw0CPGyd5Zy3uLFhIAWI7NVF3guZa+ydFpj6ijArZel1UJcRO/UwfbEhDjlNjmfxbjVJGBU+Jo6w0aV57jMI1VRWmcvCOoqqPvtxJ4qLN+k3cdEN/P9Egl2wR2iMApr8kvjWfyp1vqxKobRARfB9hBHamcE8Yc8XfHcZiGsh/jJK7FZCUBWjoQV4yTlapTvmtpqOYt37YjyEnVcfPOOBUap2bFU4FT2uvP0AcuFOM0l9Q145TGpsM3fa48/iXUdCUbBU7EODEfpyXJqgZxNnCKA3EPbqmmYs7uFjOIvJcgBVyIO8zHKT/UoPOeUYyT1TNyg1bVrSpw+tKXvoSXvvSl+G//7b/hqU99Kjwvh7XZ4CgUh/NBGLBBXCkInKJ2prs2Ep3P7iBQeWxhgCm1LnmMU29FN9yF2FFXEjFI07CRzUPzwGlpP1y5E2jJ3TLRo8vBlHoOoKvq/JYMnGjyl6Dy64oTwUWidDotTlkz0WngOpi3NE5kZra1D+NE1/7eQ+K4p0fMUlwVYKjASU6yqb7Oham61BPFOySIRZ/FQi7Ky2lNsHTKhHJFvjbR1xxgGic9acRM9Myr1Wi3Sq1qfM9VAWHUpcnZQbUix9oaNE40OVO7FcevGsxEkR0BwATi8vOSsIHZFeFOfADj5nmuHAb+8mrgVr1JUqm6KqXq+jNOBosn35fMXluyqbZhgNnHx2m6IFVH55QbOMlUnXL0z6Tq5E49ZqXkMTFOUnPjudkUt+HjJN6bqlyNvwPaz6kP40QC7iRjR6ADYgCoueJaJa6vP0OeA/VeE78EygCz770wAHTtq74L13WUtu2uA32qwoxUnTl/0kKaafLbi9V4Fm1jRGVaVwajXXiacXIcRL7YeIx6ev4eptEvMU47PLOwoiEZJ56qq/qeurZthHhwzhaH56TqQhY45TBO5ONE605R4NRwu8r9/nDMAicgd66og4vDSeMkr5FknFLGOC3KzUGQUqpOV4NG0gB2R13Ou8Y9bK2HdD+5erw5cU+te3nicCDHksBmnGhe3GBYVeB08803Y3FxEZdddhkuv/xyfPCDH8SBAwcGv3ADoTBVxwMnqqoDGONk+a/0cjROLFoXgZOv3ltV1SU5GifrBph2ZlGTlXxJoA0wnbzAKU3gL90PQO+WKVW3LBckGuRUVadE7lzfBHO3HaKnmKYVg3GS18kTouYM41Tk6cJAjBMFTvakERYxTmrRM8Xh3Dk8ggffdYUJJvozTipwQlUyTuIm9aQwnyZRBXK9ZpNGd0VPvJxh6diMk6vF4UlXC00bkrFZi8aJAoSK3KE7gck40Y6TjqGdyziJz+uw3mgztgfYz24UFWF3fFyfd2xqnPJ299wLTFWJAqo8fZwCp+q0PM7hfJzINFO8KC9Vx+5tpXGSTs2FqTrxnSxGOnBalIGTcuz3LcYJ0EFLEqEhGzSrZqqOp4XDALDrcvFz/r6sD44E+S/FXmD+wTMDp6qsbk3cQG30qBmx5zrMDqGi7gX3iMThxL6Ia0tj766D0ofIFjfHPTM4zTBO8nRscXhXM04uEvgQm6ReVzJOqW+0+yFd34ir51U6xn6M07zUOBlpX+hUV5LqqroqY9o7CNTnZwIndr4NQxxOGicX1cBDs+Irq4tAsmrTBeLwRirumxge5qJAtF3xTL85DqoAX7btCACMS8YpkRqkJEnVprySyuvHxg1VhU+TdLIPg6juJ89XmQvEXUUueEUaJ1scbmucNihWFThdccUV+OhHP4qHHnoIv/3bv41PfvKTOOmkk5AkCW688UYsLm7MTsYchak6CgjsyU6WvJ7uZlN1kWITHPM9AHQRKDqWp/WClAVOFDBZi+U2zKKaiqAiChrqfbKBk/hcb1EEdYpxkp/VUoGTGOTEOIWccWLgu21uSUABVM1I1VVyq+qGEofLie2h+ZZ8rjlpFGmc+ovDeVUddHqiz2LhSLHjUmpqnAIVOLXMFyzuE+wLdylnKShTHG5qnAJfi8MT+bltBKgTO7IGjVNTpeok4xTUWGk0E4erwIkzTqbGSTUsBbLmqQd+JE9KB+wdxTjJVF3O7p4Ht4Y+UJanT8QicOrURODUM1quNIzj4585UBzOqznlbj+UgVMu4xT3lOneArsHFiIKnMTiVsllnPTu3U26qIeebrjsW4thZUS3kJj5EfKgGKeMONyyI6AefE6ggrdUzg+uA6ZxCoa6FwaBxjONYQoMfi4Zp6ww3L537Ko6ySrnOofrYDhEhPlWD1EvxzkcQFcGESPsXiVGO29MEkgcPpUeNh5XXSIS5uPke0aqjqACE8s5HADz9LLtCFzUmTi8ii5GKn5hQ/SmDHbaXlOl/+Mge28QyHNwCdWsONyhwEmMpW6cqJYrFXQFQ8cyCh25yZiukTaWa5xmzM2H6o0YqjnISbq6qrggVUeVmLThzjBOGxRrqqqr1+v4jd/4Ddxyyy343ve+h9e97nV417vehenpaVx33XXrfYzrisJUHd3ozKJePFHsfE9zrAg7yjHAlJNa4viI4Sl7AKO6IM1xDleBkxai0w0Q+Q3V+8fptUTgQgHUxKnicZnma6Uh4iTVmpZVMk5LPb2wVNFVKTpdVecbolPTx2kOQJ++VQx07WnOtMuYtcZJLg4p2RFoHycuXu9EibqJe/DgOo5wDwcry84BubMrxkku1lTR2CDHeCrzX9oPLAh2L5GPcSZlOUccTt+F7zrqvBLqhYcQTVrk18Q4SdM/udB4IUvVRR3W5LePOFzuWlWZM6Dcw9WucubH4icLnDJVdTm7e+4XFSY06cprufAAxhOxaPXqonLGYJwq2euhxeFz+nmp/u6X+2icwlCysdQklQvf2SK/2NNs1XJCgZM0nezHOAFA3EE99HX7GztwAoDpc8TPAz/O/g1M41RoRyCOpeIk+nkUOBmpOt3QdSj2dQB0+xFinMTPuw9S4FTg4USwGSeq8GWBUxQn6MaJ0T4oRA/3Hl5RLuldeEa1XE8GTqq7AzvGvDFJoFTdZEKBkzgew8eJWDZPl+grjyJwxilrR1A3xOFaf1n1hQFmWwUsvUJhOAA0EzH+V9yGun8T1eEgO1dU5X0m7AhMxmlUBmFkddGJEpXNqKFjGbdW1Po1VZPfEU/VIQWWmQaS7ic3UHOvy5v8DkjVzZzIjFMeHvGIR+A973kP7r///twGvRsNqlddYDNOlmEdQX6BhiAVAHpa4+RZgROVEq9Q6itq6bL0fqm6sZMBAFWnp3ZQsd9QuwInapls09RZxiG1ESJKdKl5W+7k7aq6SpsCJ4tx6kT6hnZ6KjhRfepscbjnYCHVqbphXMMBPbERMqk6ueCnaqcmAw4arqmZqhPicNmqAv7QqTpyZ19GVbyHXKxV4ESpupEdomVGmgD7vgcA2Icp/f7ymhhVdVavusDTXdNTu90KwDROw7O25JNFrsaCcdI0OVX92L3qjGOVY28h4YGT5TpPjFNvRaXGOqvQOHmIlYEgxnbJD/kBfMRIUgdpfatxnAAynlr8M6et9AqxTjpwYuNLsiykceqmOvhWYCn2eRY40SJJ6ZRcjZPrQwWDUQfNiqcXfi9nQdx6tvhZwDh5KnAqYJzkuYYuY5wCCpwoVecaGxxXMgAeokxvuGGhK8wk4yTH3oGcJt0ATH0TIBZZ7jNFaWR2PMSoVB2TcTqw2EEASneZjFPHE5sdnlavqFRdP8ZJHItq8CvHZUOKzJM0VWO6zjyzVBYBOeJwg3HKapxiaUfAfZyq6PadK+sqcBpRgVyac28QqolM1aHGNE4icPIc2Vxbjq1upBmnGrqW/1ioMhiTNIyJcSLTV84iKk2dr8a9gxQppcoLUnU0bpY6kZiTHi6BE8HzPDzjGc/A5z73ufV6y6MCyk+rTucE24qAYFOG9IVGLS34Vgl7aV4nBw4ZV4pedZKd4oGTnaqrb0FS0VVuANDz62pXIDxkZOBUHQVGdxrP7SBAFKfqszo16YEhaVVK1VXbUpdmM06dCG1GIVPARBNQndsR+CF8z8U85PVoz2OhFanFbWtBzh5g5oQS9m51cFVdnjhc7+pcF2yxKJ48iS1aSskAUwQvFZtxqo4BDRmEPngHAOAesGtHtgY5qTrFOHmOYoASJjRVepwj8HFSGqcCcXiUpIjixFikli2N01ysv4MZsFRdd1l4D6kTE+OvKxeV/lV1MpDhKc8tp4uf8joewijCivhso6qOAknmHdOJYgSIMOVYTumxrr4CGOOU6garFZmq6ySu8RoA+t73KqplC6DTMpRez1TVAaK4wmr0259xeqT4mcc4paliSNPCqjqpcZIMTOz4OYwTtPbLC+FK888AcUZTNCxsbWjTSi0VpupqE2KhTRNgWethiaXngZxKjfFUndwUEOPU41V1ADoyxUzVcOIYh0jVScap2ZGBkxyXzRzGifcX5dWOWXE40zhJ8fxKN0YSa3F4hcThNM86wwVOy45mnPpV4FJR0RKq2i6BGCqJ2KHWXAnaMptRdzpYavcMx/vlWJzDZCUxNWsTu8VPziImWcYJ0E2Ci8ThzYqvrtXMQvvETtVtZnRYWa0BZX6ZzzgpTJwmn99SHiQ240TlmMoThonDvSQnVUcsQ2UEKWOBUjiIvZrqJ+T0VrSHU3UsE/i0EcrASbId1Um5OxC0KgX9VTI3tOzslzuxEi1W0VU36oqhcdLicJtx2r8gJp3xepBhlThsYb49cVQsxokCJt5yZckOnFSvOtFyhRgnvw/jRIHTMqqi+k3erJRWokkUYUMvlHLBfyCZ1KlYSndx53DLANN3NeOkGvyCM05r8XEy7QjAGSfLjqAdmYGNChBkYHK4J5lG3zUZpwM/MT+UAidLHN6PcSJvHLiB1vjI67g/nRDVmtAidgDm4iArr7pRgq2YE/9PPe2ULoMECvRV+pNVqoYVeZwJ2RHwVJ2+93llJC1uxJaFPFXHe2gxV+9GxUdI1Wv2JgwwGSfbh4cdU4ZxssThFc44WVYFwo4gj3FKMpqiYZFhnDKBU0GqLhzRJoaMoXBzmvyqz2CpOgpCdeDkGeJwKmqos+B8mFQdicOrHTkXbjlDvA8Th5NUgRhduD62jGiTWVXu31ccHiGJ9NykGCeequuzyazFYj5YMgKn4gpc0hIup7WMjxMhkgwZZ5wAaaTLAu4lqfcbDxOTQZyUm59cximAyzYMjny8yI4AsATiDzfGabOAbrpKhnGSk6dvDrJM5Dt5qviZ1+RXTmqJCpx0yal6LhmNATpgYoPF4cFQUEeUOmgT48R3bdWxTKqtnZqpujDw9XMWH1I3UrWTzzgtdyJVJlsBT9UxO4KIMU5c45REODArUij9KuqAYRgncZykcUpU4MTE4WyB68bMjkD5OA1mnIIM4yS+66qdqqs09bXa930AwEPJOJYgx0p3Gd0oMSd0armiWEkHoU9lvayqjhYgmijiTl/jSY6mMsAkhqNqmPFpO4LEcIIHuDhcjMGDPfG6kydqrM/hviwzohgnM1XXi1NjUeYNd2kxyruOM+m4Wuh6fFGn+y5NdKAZJUoYPoMJRGQSGZupUrvBL6AZpzYFTlwczu59o22OXFQocKrELaAj2a6RvMBJtF2pOPoeyWDqLAAO0Dqc9cliQvfETvNZGqdQNviNHF8tjJSqc13u4xSqTUSAyLR8WAUMM0jkBE6ZdityoQ1qbA7SDAVnIJRfXC8GkGpxPXTg5Mv72OhVB6BNgVOq59XqAMYpSVI1VpTec+pMcV7QY43Gs0od+jVjrvLtJr8sFclTdbrIxVWME7GZFXQLG/wCQIUHTvK8nSptKpYzzw9iOaeBa5xMxomq5bpxYqQeWytLatykXgVLkfTIChIzTTcu0+0G4yTP3fXh+VoHRpq9Io0TwE0w2waJsJHxsAuclDg8o3GiydOasELzC0zGT1XP13byrnoM0IzTUpxN1Xm8gaKtcao04YzqCTkJm6K6gw1uyAo6VMczgU9HNkrVxpyuMWm5joM62ggj+XlW4LXUiTTj5GSr6kSqTosHfc9BCxUl2p47JAKyfmJHIMs42ROH0gKxYIj/FKk6PSl2owSp4RzuwJMLZdDHu0btziyNE1U0kpkcwqa+VvL8Z9IJo28UL70HNOOUp3HiJqlNW+MEDK1zUnYEamKvGgustiNIM3oPO1W3v02BU10HTiuHgIe+Y36oLALQ4nC9gPLPMBruUgAajmSu4/50QgXSBuMU6J29skzoJUrfNJOOo0fWAjKYzziHs8ApDClwolQd1zjpe99It8rFLZSMXoXYiaBhfl/smpupupwFMawDk5K1Ju2YOg7GRheKw8Wxhqqqzld/o35qvuHjFMKTAZyP2BTgrwI6VSeuH7d8CD0X43XreHmxDc1TnHFiCyltLlrdGAFieGBMobx/KVC0q+pajggaa6lmRCoD7AgWO5Ei+7xlufhLxok2S7z4RH2fQdVgx/0hGSeSHDiuLzywKroRbsWJsG0kv6IOAKqRmAvm04YK5FyVxs4yTrQZFIyTqXEi0IajGyWI4aEjbXM6K8sqMI+cQHWiaHoxC4TrwIiUiOQyTiEC31UbcKoSDQo0TgA3wSwZpw0LlaobuqpOf4FzaQPdYFw+v81cUU3GiWj1ZdrdspYrRqrO1jhZjFMSNNCLE+GWS0EDRfnVsUyqrY0QvVgzToHnsElrHzzX0cLasJmJ6pctjZPycSIDzNA37AgEo+FgxRGL3OKc0Av0y9kDJuNUCzyMWLtX0gJxUSWgq+vyUnVJZAZOrlosIqQ5rQkArQfQTX7F9ahKLxTNOI1kgtT96QSWFeO0aPZlgw7Qe6xXk9JExMQ4sVSdF+h0zJA6J52q0xM7F4dTQN+Nk0wqbckywHywLd7r5Ika5tFAj9icu75qfqhknLRzuF4webUTD0CU/oQzThIzmFAsRpKyKivXZQLxRXUexDjtTyd0SyMlDrc0Tok+52rFCpzyGKegZlZG0uJGgVOLmNrthnEsb7vSrHj9U3UAsFXqnKhakRCTV5ELx7MWU+aNA+iAIoKvWXJ5Hq7l40Tv5TtHoHHqwzhttQxsAVgLLWkt9+vTYYFTzBgnbkUAaHNXI1WXFzglLFXn9zfAJCuCiaALhxhEyTgFiBCip+5nx9GMI/yq1VPTZpyyLVeWu5pxgmRieKoOAHY0ipfhigycDsV6XfJqBYUkUUe11VnOsSMg9KCr6gDNrLZbS8yvykdXBj9+0tHsVlhnm3H9fXL7i9D3lF+aMwTjpFN1pcZpw0KJwzM+TjogMMAi35l0HG1y9O2tZPvwEOMkdVKKcWIaJ9VvDsjROJkLSxw01aSibjSK8gsYJ25HEPou0xfsg+s62CY1Ink9gJa6EaOQeyrHbzJOusyZJo4lV1yjlQVR2tsvZw+YVXXTo9lJVzNOclcN0X+KUnVR1DO9XOLE8HxyXUfRxaJyK+cg4khVS4kmv5xxagNI9YLPGSeJ/ekElsjFt7NkMGCA2O3GSap2toGrfZwcJg43KsBWqXNq2honv5YvDo/TzO7bZpwOdsX12jVZB+Bg3tsi/k6putqkPLE58TJVnq6ZtLyqPddh/b+4VkyCa5yAgso6xTjFqrp1fzqhdspaHG5V1THGqUqMU+wYrxEfSoyT1ji5DpgORfZBU/5n5n2n9UdtNEJfL/62wJswLXVOGcZJzEFdBLCVBLaOiQKJiFXV5WuctI+Tj3jtGifLjoCLw3OtRwYwTnwhpUa/rV5s6JsAYCxM1bEDknFirNmK3LxUDMaJxmM+40TC8NMq8j7jLApEum6lo21rnEiPD170ogITCnJzU3WxYpw8+T1wcTgAbKsWfyehDJwORuI8HQfwqgWME2//hKwdAYEYJ2VbI6UgvbZO1bXTQB9j3GXfZ93YjCsocbiPwHNU4OQlgzVOtF7sXywZpw0LzTjZzuGDq+r2pxN6MLFUnaIhLUsDch4WjJMMsnhVXW9F7IrVYBkxFpbIr6sdYod0ThTlV8eA+pQqDe3CRwoXvdhO1elJy3MctWNPR7bjnf/3R/jf375Pfd5yJzKqPVSqridufKFx0uJwujGXIBin1qIInAYxTpzty9NDhRbjFMHDVLOimKdOz5xcu1GCNNJVdT5L1fmIzcVYvYi1SkENHd7kFwlq6OgUUw5Tsp+n6rpLGcap3TM/lzNOTpyTqgO06WOOdiEPOlXHqri4c7jqB5ZkU3WUWqSKwLSGWuCpRq2z3qT5YeR63Z5HkqRqXIaeq77PPMZpS7OivXH8Rs51HDcC6ShP5ySPsRsnyjV8Jp1ASznzd41zauYxTiFZhJA4nKfq9L1PAfBUs8IYJ8l6UI9He9Nhi8OdtTJO4nO68JXPkQLriQcwjRN0VZ0j/2a0XPErihEpvBeGADFOFcsAEwB2jATAP70e+MFn9AsGaJyMwIl8xrpZxmnMl8abrKquy5gkakFSNRgnOU8UMk7ivXaHTK/maeau4bRV6l00+KWgoYBxou/GSNWJY1jqREpyQMxfsyJ8/sgzT/kk5SDoiWOc6YkxVvFdOEXtmeSc1kpDxHIeFG9iBk7E1NLmh4qPekwc3kp8Y61THk5882Ok6uSY9wJUfFel0R0KnIZI1ZmMU6lx2lAoNsDUdL0BpnGawYQaZPktV8R7OHIiW470jpgYEdduzNhdMulJtrD0/AZjnChwYqk6pmEibRJnnESqTk9aPFW3FGzFX37tLrzjCz9Un7fciY1qj5acPMyqOt6rTpz3okzV9ZalOHyAxslmnGyoAIMYp9TD9GhFVdd1Oubk2o0TpKyqznUcpesIEOXvsuU176S+KHFWBpjiBm+irVN1FuOUwsFBjKlUXdxeNFI8gAgi+CIVeJpxcln7BkNkm9NmpB+oesyoqlOMU0en6qLUaPALZJv8LqGKbaMVdYyHnS3sg7Yps1W05w0RfCXwcn1z6P3HagHGPHG+Pb8BNHSwD0jGKWSBU1/GSafqDjgT6CrGyfZxsjROjoeqfKxFjJORqpObmaCqjnt6tGJ47QCAvzQocJLicKVxGoJx4mnkWDNOmdSXZUdA/ct6RuAkGScuDvdCxYgER8I4FbRcAYDL3J8C3/oo8G9/pF+Qy1AwxskpYJwc895uBjLVrXyczKo6KtDgzvSDquqoou5kX1q70PHJQL2JtlUQozfEfG4LhvBxEvpLOfdLFrziu/BcR821VStY5Ah64v48LFN11cArti6hTggymPStXnXqaY4ZONHa0uus6HspdnV7oqirxeH8+1w5qNcDZkcQeK66N0maUmRHADCN03yrZJw2Kga2XMm0STAZpxXWuDejcZLBlyOpc96+gXpQOVwcDogFnA8WNin3vIZmnBwKnEgcLv2erMCpFydakOy7Bq3qMsaJ+tgttCO14C1xA8yclit54nAAWJSMU7oyB6Cg4SdDlbF9eeyUElGn2o5geqSqGKfuAMbJ1DgV6DpYnzpApnAdR92wDafFtDmmximqTSGGhyXJOHVX5jOBU7tnCnG5OJzStcLHiQVOq0zV2c7hoqqOxmdXi8OTpDhVxxin6dGqOsaDDmOcph+px1t73mCWQs9VmjXTmVzrjSZ8qT/zGoDr6fQxxD3FPdVyvZxkKrsTJSpV16lNZ8ThS0XicNdX6cCVKM+OgBgnrXGaHqnqqjonRuimcJbkpsVO1WXE4ez7yMOWM0Xw2J430x3yPLpSp2d+hhU4MQaGNnvUksmzxOGccVqrxqltbTi5OHxnIJkbmcYVB8ZTdVnGyXUdJRMj5j4vVTfiy/laMmxdq6qOWF8eOCkfpwIDTErV7fQocJLHR/c+WmosVQOPjQ9bHG47hzNdH7uvyY6AUnWOI5okG4xOAfyuOEZqbVULvGKzXHYvAyi0IyDtUlel6mTvuo4Why9FHjpsrTMYxPqkDhZpM8HGW+hpxonsYPprnMT9s7i4AECOz1LjtLEwsMmvbUcQWoETWQwwjZPdq84JxEBYiPRnCCOwFK4dONmME1tUum5duZN3KXBaOSR+qsBph/y7GOQRZ5yMqrqH4Lm6z9dyOKU+5/CyrkqiaohqYZNfLg4X501eTk5H3OQDU3VMHJ7HTmlxuLYj2DZaURqnbjcbOCW8qs5x4LMS7H6ME00yih2q0OTZZtVgTaC+RbpEA13ZIoQYp+5yVhzejhIlDHccMXGEOQaYJuNUsJMsgC/TZEYVlxKHdww7AsPEFNDtFeROcRliUaBjPOBM6A/aagdOekEKPKdvqq5Z8TAuO9erRsJyTMapg0MYg+/pBshGuTy7HmmaGuLwpLnDEIdHsQ4OtQGmPE7XU4GTZpyyVXWpX1FjfdtoxdChNL0oa35JYOLwhiEOL2BegyowuUf8f0YzvrQp6aRBTuAUGs9RTtq8qk7eA67DxeGhqvryj8COwPa/4/0At7lyAW8vaAatl8NQLB8wAlbacMasqs5O1TVlqq7CGLYk1czkogqcdHpbMU5R/rmSOFwVytiME0vVVXzXKB7g0oJ+veo4w0wGmLxM3xCI9wmcvK4ISufl5rQ/4yT95IhxKrAjIG2gTtWJ8RN3VtS4WYh4YMfF4Q0xodk6J7qfPB+B76p7kwJePyPa06CWW6rvp+Nmjnmj4WEXOA1knGwDTItxWlaBk9Y4aXG4GHSujPA7sYNU3lRe3DF6MKE6Ln52lnRqJhwB/AoWXLFIdby6dgF3rEnYYpy6KlWXsO7djkGrhojUwrPg5wdOuuWK7lVHP41edX5FUcEL8qamTt5bmwNSdUMyTk6q6XnBOMnAqWdOrr1Y2xFEECW/rgxeQydGlKd1YCkqQI8LmpSaaJvVYK6rTA871WnjtVFrQQUKY6p3W5xpcKkc0VnLlTo3Cl1jo1+V3giqbIHtscBJ2xFsaYq/L3WijJh024hO1R0AC5ymzwZq4+L/rTnjHnIch3Wjz6bq6qGPMdm5XjUSlmPyAMaRwIXvutqsM8rXOHUi0fx1whHH7I/uYKmEjuH4rcXhFDj5Kh24EuWIw+W9H7l63HLGCQBGvCjbboXA9EfCx6lPyxX1AZSuYzonOX/04CuDSIWMOFzqoVKtzTFTdcxLSgb8PpI12xEQ41TN0ThNOnL+Sno6YOOMUy2HoYCeN5UcoRcbHk4A0JDtTsjwkyxJulbg5BupukGMkxibqsGvYpwEk9NASzGmVa7r9CsYrflqo5B1DreCPrpGMqDigVOj4qtNqpKJ2EgSuHKeos1pxXeL5wn5O6Uv/QI7AmreqwInOc7Trk7VLXRZqi7umKlXIKtzonOnVB0oPSwDpz6MUy30MFr1db/BsGlWrW5APLwCp14b3YjtJKy/AcjS61zjlI6zSjlugGlqnFwefMn/+0nbzGU3RKoM3cVMCeacrGhquzU1qXTtwIkWMgqcHN22QjNhrkGrntT+KXbgkPEZAHBwSea1uzHr2t3LpOqyzuHivOcScTONYgVbGmE2KLXAGSe7wS+6K1CSF9arbttoVU2ava45QfEmvzHpZ1w9sUexyQaJF1GqTrJGsUkRN5yWyTgB6lq3quK7ozRB3F5QCzcFJlzjREGB6sFHzaC9iuFnk6tx6iwCc3uz/1bEpG/6BtVyncMjxjhtaUirjE6EVJZidx0hvN/GUnX70mLGiSbciucCSzPY5R7ESTiA3sqCegn3VBqRgROVjtN1JL8o33PUxEosXZKkiHwSyy+hGyfYKtN0qV/FyPiUXnjinvo8wYBZVXWup4M76lWX4xzek/eQ5zrY0gyRQi8Ap3kzgxknmaoLrZYrSZL10dICcVZZF/NUnfl0WxxOKZAePDXHuLlVdSxwcrTGqRsluH92BffPruCBuVauZQc3TbUZJ55iHo3n9IuovJ8zTpz5fug7Yvx2VzKNfkWqzry3G678XiXDRt8HBdiLslVQwJpt0/dvXPOuDqyUHUEs2XuLceLi8FrgsbWhBsdx1GYvY0eQmPMMBfAkDs8ETopxaiEX3SXVwH1hKMaJWHTSOOUzTkocTj0spcYpjXQvyrmuw46vw8ThduAk7wnmHF7x9X1D90K/VB0gNtCqNdMG1zcBgD/4KScIVg4jveEJuME9Bb8RvzEbOA1ZVbfITC1j5NsReKF+j9SrwsEivKSrFzjH04GPrXECsOBvAXp3oeXoqrpM4GSl6sgNlrdcCT1X06rze/Hy/3yZCpUPu5MApEfIUpZxIh+nNE2tJr9MHC4X5n3dChAAo87yQH0TYFXV8VTdwf8EPnwldp/1XADXKoo7lqm6OXnwPalxqoceVrqxtCMQxxU7zBdJIonMyRiAuuYrkqamYCANm3BA4nCmcQLUZLFSEYwTBV1JR1fVbWmEuOvAsqyqMzVwdL14ebN5Yayd5OG7gQ9dkT+xOi7w/P+NRqWK6pJmAXlKhz6vx+wIpiQbGCUpuiuLqABYkQHNNBOH70vG9WdtfQSwX45dJg5/gfdF4L3PxocBoArEnw+BXbcCU2caDXdH5E5S+V7JMTtDgZPrGNYJAPDCv/4GfumBw3gRAHQWhTAclFrZjm1jVWNHnBGGA7kap4heY6TqxPUl0Wwj9FQqqoMAISL8Tfz7UCb0heLwjiUOF9/viz/2TfzgwQV89Q3XKKf1XMZJBU5BtqqOa5zSVGucUiYOT1hVHW0uvIqVqhN9C6/9HzfhnkM6mHj6hTvxgeddrH7/39++D7/3j9/FB553CZ56wY6+jFMjmtPH2VkEmtNGektds/n7gE8+X/xem8CE+6dYRpWl6hKTlYdusBtw3yoAnTgGEGBBBgle3BYMo+upjZlK1X3nk8BnXw4886PA+f9FBU6jPQqcTI1TEy3MKMbJZWuD+J63jVaw9/BK1gDTcvxX6Uw51vzATtWxVFgeyDMt1RVupsYpn3GiVJ1XYEdAraJozusR09prATKVPdd1GKPbZuJwuZmxBf/sXgs8R4xL6GrIfowTIAKn6KAcMxtc3wQ8nBinB2+H0zosKkDQx8fJrqoLasAjr8PPRx6FB7EFi6Rb6rWYK7SdqquCxkkqJ7Uqusy6v2ruGizG6bsTT8I9yTb8rHmZ1ji51iJLgdOea4DJ0/HvlavEIbCWKwG1+LjoeUBQR88J0U4D3Dt6KfZ7WktFqbqlTqR2Kw2nhZWeaNpLEqEaF4f7VZw61cBFu8axIn2cJtwV/OrFZuPhPDiOg2dctBOP2TOJUybZbuihO0Vl0sxtAMACJ2FHEEm2oCfFlhN12TqAMU4JBU7MebnXywmcLFqbrlliiMMtxum8ZwLju/Hg1seJ1yrncF1VR4xOJ0pUKpfGGgWMyj0+U8Fp7STv/7actB0xZugfNU2991b8ykU7RRqJ3s8Qh2c1TmQ3AADt5TkAeoc6PaI1TnfF24FTHguc/2wR5OcwTo/GD8RHwUOSOqKC5v5viWvDxOGU8lT2DWddi2R8Nz4fP0ZcD9cx+uoBwLfumcXBbqiuRyeKVZrZGdmB6dGq1jhFHe3hFOYHToHniEomlR5hvbdUlaP47poVXwUGn4mukp42obj25/6qto0gsKq6hlVVlyQpvn7XIRxe7uJn+xmTOHqS+Ll8MHMc3dRHs2rtaZVeKgXinmKcuqyqzuOpOtVzLFD3QoAYUZzg4FJXBU3EMP7Hzw8ZH/f1nx9CkgLfuFs8blfVTTVDPP6srfjlc7fDb7NzyDBOcoyf/2wxvikAbM3ibGcvAJaqi7KM01lTIXZN1lTgRJ5UNAbnWXNqum8yqeO7bxb3yz23ANDi8EbXaj3F9I3Lhh2Beb8+4+KTcOqWOh596qS+xoBZqQnNyrmKcdL33lPO36H1tL0CxkmK7UVbK9kuK3DNeYIzhZKpHh+fxC+cPa2Nha0NmtI40Zwnj8PttdS46XAfp6iT/T7rpq+bLQ5XGicMFocDwFg92FSM08MncJLNSkXj1jQrDu+ZuwoDz/k7fOa8v0AKFwtkMRC1cjROUhzu6wWIek5V0WMLXFVH1e0FRoOKncS9J1+Ha7r/A/+JU1Rw1itinMZOBl51O/6p8aviEGwfJwB4wh8Ab34I77zkJpzd+Vv8r0d+CItdfcMdXO4gTVMsdyJFCY9iBSvd2KDr67xXnRci8Fx89neuxPtedDUA4DE7PPzW40/PXr8cvP+5F+OTv3WFKRqUEx+JBH3ZesH3AzSrvmGACQCTDR44kQFmDuOUFzhZtDZNxIncURnicPquznsWcP13sb95jngtaMJZ1oyTTNXxqjrf0jiRANYp0tNRIE27ufN/DXjLfv3viW+Rf9+Hl119OnY25fjjPk5xR32uaPKr063EvnSWxSK3kIjj2DZaUQtpK3GA3/hn4FkfFe+XU1W3VTJAf73jD/GP8eOMY+YNd+vSiX2RDEN3XIjWy2/H55Ir1XWhY6Xihm6UqJ0zOkvosj51GNmObaNVXVUXd5UmpVnAODmOg1rgadaL79ZZ02VABHv0Pv9v9P/g7M7f4uljnxLX/tf+Bhn4+po3Kh5CqdNJvQpmV7rqfty/wJgFS7NE5wEIximj/ePzUtyBTxoneOq9qFrTNTROFVX1RQaYNFZHqz5u/f0nAgAOLXcM+4z9i215zFLYb1XVOY6D//kbj8aHX3gpHB78tSlwsjQxl/8W8AcPiGt4qhgr22TqlVj1djdrR3DqmI+b3/hE1bqDNgZ0vy7H2g+JvlNdVSfPh+4jmVZaaEVooIWAdFFUkCPn36bTVgaYdlUdAPz65bvx1Tc8AadOyQA6p1cdoFk50mr6LFX3/MtPwSV7JNNVJA5vmxV16ngUI5Oanm/y/B937mn4q5c8SltaOI5R9NSSXmZK1ym/Izduq2PpIEClKr87QxwuH6PNA91HiU7VBczHKXAi+K6TtdewUAs8szfoBsfDKHASTJPrpGg67WzvnKKqOgm6CeZ6jH6NiYYkjZNmYygwo8Cp4nQxVUn0Z5CehYklaTDS4ntoqaMmlR5nnBwvE5Vrs0MrVcdAvyZpihVWBXZ4qYt2TzBLJEIcdVbQ7sZKGB56rghyFOPEJnK2qB4R5E3oyUDSlYGT54uFTGmcZKqO+mN1mTg8IW2T66lAKy9VlxYwTrEvruu4s6SFqta1pkVEUeK9ZcY46cCpSONE3dZdO3BSO0nJTBRpamyanJXTc3E4NRWOkhStrjiWWuipsdyRmiRKd0yzqrquXZFExQxxB1FbLDhTqQhkVirT2E9icnnMvOFuTQZOFKABMETKvOKwFyfqWuomykuywe+cOv9toxXt48QZJ+7EThVkjrzugafd3rk+RPUO1IGT8T5gepY8MF0ZT9V1ERjBEgUh4g1z2AYmDs8ETlxoHnU045T6WuMk703Pgenj5OrAKUpSQ382WQ/huw7SVGsdxbF2jJ8di3EysMIZp0XzvGxWFVDjd5sjdHpmyxWrwXXclSJ/8RzFOMl7qxunOsC2GCdV/Un3kbxfFto9HYSHI3qhVoxTy2KcClLrBE8H8ByKcaLAiaXqAGQc3zOgwAlW4BTU1Zg2xjH9Py/wYN9Dy6qqc2Uw5MUt5iXmo1GXQZIhDpfHYrPjShzuI/RcJUAP0RvINgFCdqHF4Rvb/BJ4OAVOB3+i/jvhdbIRMDPBywP5lqjACXqisu0IEOgFKPZ0qm6KrPX9ih7cdFM7rhrckzLdc2i5mx84VccyVQeeCpxyUnV0vKyKhXeBP7TcVQuPZpyWsdKLlUBc9Zez+vGp4wGOPHCSN6GjGCepbwiEUSQFQm1pgEmpuh5jnGIm26NAK46syRjCtBLQwY8KnOTEME2taYCMiy0xLkvSysCPlhXjsUVqiJJUVyPSoks/KR3hhtaiYmsXiqq4bGEmrwjl4nBXB0Fao+KpsRy1ROC0nFbRlCwLD2AMhE01WSetOQAptsiqpHZ1WjcGlsfMF2fq/bfA0iq8LN53mTg8TtRY5E2UO1GCrZxxGtGpuqjXHahxAoBa6Cr7CeXaz64fVRc1GeOkTr9fwQNjj2qBp7yIOggUcwMMzzh18gIn19XMRtRWPck6qac2eypwct0+Pk6Jca1c19EtL3KCvBn5k9JemcAp7gGtWf17UaqOQ47faclY9hOHI2obAQn5s5E4vBslOsDu2Km6IsapZ7CXCipN31bXSGic2P2VBzc/VUfBty/TVUFgGaLSGCiqqlOBk5YzVAPP8JszmFP6f16qiwnE24n2/AMATwZOftxGSqk6BGjU5fvwVB0xTraXFHMODznjhKj/pkOiFnpMU1oyThsHB/9T/XfSzxmoFh1rQzNO+pIFqQyc7Ca/flXRxbEU3lXQwzgxTkFND266qcMRFQxpxqmrNE49zwqcLHBxbSZVJ8GrWLhh46ElLa7tBaMAgDFn2UjV1UO9uxdvziYBZa2woHf5a4G8Cd3eChwk8FjgVA80g9SWwleVqotzNE5gzYFzGKe4TUGDtI6QwVDki4mBJtYOAiPtx59LQVcYZ1N1ALDUNoWROlUnK00qlleJvYsbhnFKU3NHnNerjlV1VQNXjWUVOKGqHNxDZmGQcP8r1wUqYmwkrXlMYFELlKtbldCbjpkbYFZkSmSWBU60WHqSxvfZ+KXXanZoUaTqSBze3I7xeqB6brVaK9l2K0A2cAo8zU4A+jrLhWsl8eUxe2YAhgGME2u54jgOarJ0vp0GKvAAYPxfLWRRW90znY4UqSPI7/fIBOKacfLU53tKHI58HycnQRQlBhsIaMNaCpZWuhEW5didWewgSVLmf2ddB1ndqbAKxolSvco5vJvDOEUdI3ByfLrnZZVdnLDWR4vGMXaiRLy+JY9xeQaIIyy0IxW0GfeWcg5vqSrZqlVVlwvVciUyNEd0fT0lOSgInAYwTksG4ySvv81OA8MzTokpng9kSq6KjvKY66Y+RpoNfXyUqitinJhzeOi5ShxeQTQc4xT4WU3pBsbDJ3BizXUnvZwqhgF0LN0ES91YPSdImFOv9R5080aurFJzupgMY/0ZNLgpVccGO6V7Di93VUojshknC8R68RLcbKpOPCdJU92rDCbjFEmadBQr6EYJFju6gg2AIQ7PHE+aDG3emAv22gba8B094biuA1dS4u2OOAbFOMUpUnnjJtyGQO560hzGKW1Tqs5knHqyBJ4cqqmJKAf17ep50lslaWG5bQrWAZ2uoqCAxoRq4ZFhnAo0TkWMU3vOZPkM53BdVRfFiZFqobFMrNtSqo39OLPStVknxSzO6bRZfQp+pcIYJztV5yGQ5oSzkb42EQucAF1gESWccdJMghCHz6nzdxwHvqxeXWmtZIIBALmBUweBDq7pOsuqKTK3bTBxOCETMHAwcTgA1FwxFlqJb7I4izxwYvePfN3SsggwUzfMfL75OR14qWS1Ul8tilR04DuJNv/0K4Y1RxJ3M0EmVbbOKJZJH3OUpDi80i1mnJYPmL/n2RHYkOOXfJS4j5OtcULcNbRDrgwCadG3tXD8GDu92HRmTxNEi/ux1IkY48TuLeXj1FZShprl45QLL2fMga5vqtrjhKEVOFEwMyhwcvXaoK5/npcTBa15qS4WONEGge5vvyKtDtBF3KNUXYDREWKculkG0f58Zkdg+zgNqqgDBBtcapw2OMbdnIFql89a0N2uIxU0+HInpHaj7AYLpcYp4oxTwAInGtx0Y7Mom9I9h5a1xomb8+UGTnJw8p5kdmNF1+GpOs446VRHHIr3bjpteIhVxZ3qJ8bE4Qo8RcTbLqwWHTNwIo1TKLUBFDh1uiQO10wQBUcxc3smT6c8ximVk4wtDu96YhIhzyBVOccPUz63NjIujgsJoo6YWJoVbZBH1zj0TMaJFgfa6SkoHydZLVPEOFXH9O539m79eMB8nFivOm6AWQs8NZZTlq6kxXO4wGneWHiqvmcGTkmiFucRP4Yn2ZHDPZaqs6wadKpOs6Fcu2KKw8ViF1bE+7VbK0ZqUEEZYIpxIBYdh/lDyV20ZGfI3LZZ8dEIzQBhKMZJzgdV6ZbcSgJD12Sm6tg8I+eNlZYYQ15YsECzAI2uaSfR4nAvEe8TQs8BoqqOsbBRj1U8inPUTVZJ12TOjw/Oac+6amBdBztwyojDixknCpxoLBipOpoPOePkeAgCU5/TjRKVMtcaJ8lMR1bgBGDl0AMA9MYoj3ESFcXcjqD/2sAreLklQaPiw4VmoILQ0jjR91lUVdcSx7jisMCJipryvJyUrY1V9QkYAWwrtsThcgNXQwdpT4vDx0fkfMTtCJQ43Gac8lN1odPr2+CXUAt9VlVXapw2JMa9nIHa67+raKjAKVaD0E+ZbwpQwDhR4NTFGAVOvKqOhJU5jFMvTjG7Ih2xPXbT5gZO4vNWWBWcPdkbjBMLnFq9GAelF5BTHVWPj2BFBU710BOLeZ44nB/Tkeic2CTQdFqGxgnQvZ60OFwHb4ktDodmnPr5OLUc8V0mqWyQLFmkKUcsAP0Cp5GmvlappMwbFV/tCm3GSdkSyHREWLEmOLWLWxTXkfxj7MDJcfRjs/fIx1yxQFI6gPWq68WJCqgrLFWn+/XVtKkfS+9mBOLSe8ztzLF2FdtRCVwcgPz+kx7QOqzG14ijg4WDXb1wkMZJBU5Gqs4Sh3eWELWXMOqsGNeDqn467TZLDbKAJzUDJwr+ezIdq9IccuFakgtKo+LDZz34gCx7a8BKuZD4f8VmnHhA4vk6oJGf326Jn4HNRKrP0QEaMU4iVUeBkxjnFYdVdzEfJwBImFloQzFOZqpu/6LJyO89zPvAWYwTtYAiDJWqE9+f0MilSFiTX5Wqo/kk7hpmnjSndaNEmKQmTBzeoVSd/J7jFPHCQ8ZHtw/fDwDY6c3JY+GME4nDOyrjZqbqisThLCBKzMCJ0tkAEATWnEnB8wAfpxVXzxO1UI7DXMZpcKqul3royNvarqqrOV0kkWacJkdzNE6UqrP1mLFO1QWeqypUA8QZyUge6gETh5eM08bEqJMTOA2oqiNB7VInUjS7SrlkNE4VFTiRjYCwI+CMkzU42O/VwFM7XqLNowEap7xUnV05yFscLDNxOADce1jsvquVqro5Rp0VZY5ZDTyZw5c3m2fRzusROLFJYNzrKm0AUdzUXZwCKp4WIybM0DjJ/6dxceCUsN1ZN0p0PzWJJVRVXyx1mFJoPTVaU4GVK9mLZsVXC25W4yR+kh1BWO3j40Rpuup43107DkvGya/Jpnh6cc3zcaoGWhzuyGuwlFaVzsV1HXWc2co68R27nQXDjLLqe4jgY8HTrJNquCsnw1YaGhYYqkE2BZXsWDPi8N4y3CVxPdpOVU3aNXn9up3W0Kk6QKdYdapOHOOitBoh1oqzV0G/VJ3l6q0DJw8zLD232I4Mew9D5wSgLasVK5UixkkHaFSe305cXVWXxvARqf5g4tgCgxFJol6GnVPicBkwzViMkxk4DWCcOgtigzVEqq6KLkaxotisVjfRqTrSTUbtDJsBCDaUGNFl5DNOABDPP2B8dG9OjKMd7rxxLAAUU9Ng60PV91BojkwoYJyaFU/NYQAQ2oyTqqor8nESx9hyNQOjUnV5XQYsI2Xzs+QmA4HB1om/EePUNbzEJsbkxjDOEYfbXlIquLUYp1VU1TXsTg0bGA+rwCkKxBcy2i9VN5BxipSpZU3e5H4mVcfKuh2tcRrxmaOwHVVblVuUrqNdYMwDJ3IdZ1CpOjkx53ln6FQdMk1p90pDvEbFV+8/hmUcWhY3ktHgFzhKjJOeBMa8jpp0KpJx8uVOkh5vVn21yFNbA844UeCU5GicXDXJ6OvejRN0PHOiX05raFsBBOmFpkeqardLJfeNiqd2vHSNA8Y4OUgUI1CpFTBOSQTM3iv+b+ubCDbjRJNwnjicOYeLoFyWSctgTzBO+vvkQYwB+R17nQUzVScnc2rjE88/qBvuSvp9CVWD5aQCBk8xTpodyzBOACrzd+vPkOO4Vpe76G6nIFWXHzip4LhrB07aORwwg7DhGCdxf5Dp31LsZdJePJDSVVXi3uu0JWNlp3AJzNzUlYxTm/WqA0QwopoMe6G4Vq6LRFlz9DJBJjFOSuNkMU73ycAp9F2zRRCgDTwpQOosikU0NRdlA0FNBUbTzqwqQmj3WJNfYr6jrrEoV1jVJwVOS6z6EjBZsXjBTNURA5WrcZJzsPJvA1Dl815hVZ2r7QF4qi701SYPACq2xmnIqrq2n5Oq68s4FWucuvBVeym6v51Ai8PBGKct4/J9kkgzifQ9215S7F4LPVdZhYSIhkzVeWhSwJqXatxgeFgFTocnLgIATflz9KOWoSeZKEkNN3CgiHGSu1sZOFXQEx3WAXED2nlcK8qmijGaxOJBqToyLrRK4Dm4jxMtNNSCg3aVzYqn3n/UWVaMUz30TZ8Su4EpBXPrxDiNuW1VVUeMExnIqcCp4ukFTU5YqVFVJwOnOCdwkl5RadhQzg7dKEHbMb//JVSVGJxApf1bRypKX0EBQiPMYZzIx8lzjaqhSq2gqg4ADv1M/BzZhlyowIkYJzkJG3YEuv+bMsBk4nBP9vdaSqtGz8BBXk5eb4FpRLapxWzWFYxTZ+5B9ZIaxLhaTmtGsE6MU6A0TroCkCqaOgjUgl9fvAsAsBBMqfeoy8Az6rUHOocDchEE0KFmwzTe5MI1H5kBE3+v0O8z+fsm4xSm4j5Z6Hk4IO9fCugMnVNgLpxdWVVXrRWl6rKMk9A46Xuxgp4ZOEmQ3o+n6hTjNGpu0ugn/f1euanKFcgT4zS5miUqawAAaBlJREFUR/zsLJqu7EVd7mXAMu3MiTk1TQtSdR0jVReyVF3Xqm6lQNhjrGlKqTpDU5piS2I1+AVYqk6YJAOyxcyAims6NgBGqq5ZMQOnsMiOYIA4vOUxxom0d7bGKE31xjOXcaLAKUA30hWJgPZx4qm6yA0wOcrWKJtBtL2kmDjc1DgNKQ43DDBLjdPGgV/D3OiZAMg9nCGOWBVK/s3BJ1EKYihw6qdx6rDeb3XZsDKfcTJ/n5Jl7TSJJUYV23j29CxxeMbgE5pxanVjRY+fMinO5V7OOFHgBJ2qq/Gdl+OZlSSAnuikoHFNYBqnUbetnMMrFXEtqEmm5+hSdyVmJh8nl4vDKVWXDZzIZDMJmkZKy07V9WOctjRDNWk3nDbqoQfX1U1mF3MYJ+5TU7MZJ9fTE9NBCpwGME6H7xE/VeDEe9UxcTjz41L+MjJwWmHicDpOgPX6Isjv2O8u5jJOB51JAEAkA6fAcxDKNMQyqliWvQ8BrXHylHBeVwDqAMtR30djUZznIgucRhpSn9bjveq4AaalcZLHSbo2tdDI+3a+J/6el6pbjcYpkN/xfQsxkhRwHeDs7WIxMBgopXER1yjqSna3XhBssABNp+qkrw/bzKlUHQucEujiDqUHk4swVVTOrvTQiWJ1jOfuFKwPzQ255pfEOE2eJn62F3Sg4foZKw8FuSHYhlnESSL0SEmq7w+aT6KOrqpzAyOop8BJNY9mGy9iZpwlyTjtuBAA4C/vwyhWUIGcy3LE4Z6jj8NoudIvcFLu4XquqVd8tfmLUhfV0JozBwZOc+K0fBY40XxnO3f3Wprly9U4iTHVTX113ej+dqQtSg0dOFLD2qg34OWRCJSqs72kmLN74DnKYy1AJHzFBqBuiMPLVN3GwZYz0HaJirUYJ55jLrg5PNdRTAIJvikf30/jxAOnmtGrzlo0rcFCPc+IcUr8QYyTmarLZ5zEc8hiAIDqFffQvLgGTR44OSsqVVcLvGJhOD+mdWKcRtyOmnSqxDjJHRsFVEbgJNmFlJdey112aovDo45KdSRhw9jFtiz7gRVUMp3tacJphD46ctJuoqW8rmzGKWBVdcpVOvXQqOZcRxoHh/5TXojt2ecAOqBaEGJXxZTmiMPjJFUBddVgnCQbhALGKZOqGxd/7y0Y4nA634PSPTyRu/xGxVfBCTVzVX5ZpHGSkyqvADQKF+T1HV2+R7xPsFVfAhk4pVHH8I1SoMDJsQMna6GVC9dcz2KcWBDWv6pOXjuyA5Bj6+ezmtXdMS4+M989XKbj5c9GYeCkP8dJqHLPNf5WdbqqI73JOBH7GmVSdeP1QN0DMwsdpas8/yRxT9PckMs4UXGLwThZ7VbyoNzDZxEnesOnNU48cDL1M4C4B1UAYAfCgGr065Ldy86LAABha0aPXVs/GOg5mdJ1InDqn40QxybHnWFH4Km5KoaXvX4W45iBnEu7PFWn7AgsjROvrgtyUl2ccSLX9cg0wKyhC1cWGIw2G+KcHPuY2XtzLykV3Io5ucs0TnmbeBu1sBSHb0xsfQRatHu1GSc+cPvsKmgHqgXfXWXgZxoR1nSHbhl5V5weatTCgxtgEqzBMtk0ezIlQ1bV9U/ViQG80NIeJVtHtNM1IFNyinFaNqvquKmejSMNnJJE9+wDMOK0tcapIhtG+nLBhw5c6DydhKrqhmCcWICWBk3DLbvlmpPjEmqKYVIvZ327SBPVcNpKdE2TG5Xkq+DAdVTw3EGBV0/FDpwGME60y6RglonDeR9AMjQUzuHSYyWidGVT200ARuWSAfkdV6J57aw+skMxbPsxKT9MBk6hrzu2Sx2K8guz7AgCZUeQGCk9CnLGVoTma6XKAqemuFZu0sUhOU77O4eL41zhYmJ235K5rQ6ceKpuSHF4msKXY/GuWTHuto1WsW3E3AiJk6bAaQVpmqo0SbNeoPFgdgSacZLHKOetCnoIKD2UGzhlq+ocx1HpupnFtgruzj9ZfN80N+QzTpSqO1387Mz3dw0nyPG7zZlFlLDihbxUHe+D5umgnjQ6HVvsD61z8pYl47TzYgBArXMgX98EAK6Ltrz/SSBeM6rqCkT7AGOc9CatUfHhS/avBy97/RTjmBM4JbHyxCJTYoCLwy2Nk/JwagrNlY0+4nAy4q04PQQy6B8jDye+HnqhmWngOise3Fo+TqU4fDNj6iysOGJCqqc24yS/MK+SP+gkaKLpuZpFUoOCV5z5ulkq0f9VdJX2QbRcsTVOlji8YQYncZ7hJENGHN4nVae6g1d8JULX5+gpZmHMWcbsiniukao7GoyTZZw54rThSQPMqvS1IcbJQ4xa4Bk9zmgHnjpMGJpDn4vPEpNMKw0RhoHaEXWiBO0kQJTqMbCcVpU+iKBclANXVWg10FLjQ/k4WRonx3GUzq2NINPWA4BmImmnPIhxItAkTN9NGiN0dBWb8uEJXZV2JkF7rWGOp0Hi8Mn2ffCdBCkcoDGtGKd9yTgAwFsWx96s+Op7bctNi/ILyxhgMo0TC5woyGn2RNn7SkUHTnWpBQoRqT5r/cTh9L0Yhoms4GG2Q4yTmbLjx5cLLg5PIjhSH/Pgkvi5bbSSKfk3X9fGQjuCLwOEkWaROFzr12ij0E48kf5klb4BBR/MqVpVm8ZZcbg4RvH6nx9YVhozYpwIGQ8nAFiWdgSUqussas+fvoETaZxmkaSpmrfU5rKSLw5Xm5xIs5cqcGJzSDVwUUUHflf6SsnAqdE7jJMcyZLl3FuUGtaMk4tBFdd0bAAyPk6acXKz188yTjUPZEH9txvotaFmG2DSOferqAMMxqlnicM9lv2gTekEWRHwud5mELnOijuH+9o5PBzSALPuA3VpXaJ81jYwHj6B09ZHYEXuXuvJsvm3QU0cJWjB6ThskrL1TfJ9KqT7kJNxzY3UThR+TdxoXGBtMU68dQcApEaqbjxzbLY4PE+ToRknMcibFU+J0AlNS+NEqAee2XHdBh2THTj12sADtxmtCHJhBU5Np62ElVVZnk1+Tj4SNenTeVLvLl4anLJdtgHV4LeKauAZjFOX+8JAME6ZVB1VqPkeIkldN9DRgVNgaZwcB7j/NiDqqMCpkHGyiwYGMU4Eov0Zy+Bbfb8cJGjM3I4RLwKQakH76ITxvEqhOFyMi/HeDABgJdwCeNq36sF4XBzKigicGhVPfa+0INGi3SMfJy9bVce9yIwWKQA6tWl9PnIchswrJ59xMn2clniLDpamP9yVjJO8z+uGOLxf4KQDGj4PENs8PVrNCLABYEkabqLXwsxCW51HGBbMQyxAc+SY7sEXCyExTk6+ODzhjJNyDtebDNK4fe9+cf+OVHycMlkHX/MyHk5RRzBMgE7VpYlO3/VN1RHjNIcoZqlkJ4dxYn33VFo9jnXKqYBxUgUMfg2YOE3NDec598hjyN5bHSsrUXWZC3tRVR2gAyeWqmuETOMEL3v9+jmH0zwa1OGx+TbbckWuZf08nNhndaE1Tto5PBsQbiFhuNcncDIYJ20ZIZzDZZbAiYbycaqm+hqsuH0C1A2Ch0/gNHUWliXjVLUZJ5WT7x840Q5U6ZYcxjhZpfq0+ByU46Hp9liuXH4OH+QFGidC6td0vjnHjiAYQuNEh7rQ1jvOKStAM8Thjg4w66HPUnV9GCfb1+Vf3wp89InA9z6VfQ1H1wxmG2ip3U+VUnVkhIlYTfp0nd0cOwK1y05sxklMMiupEPEHVqUOL4NfTqsZkbRK1QUuEqk/aDgtNT5ImEqM0+UL/wz8/54IfPmPdOCUFjBO9sRXxDhVRswxY4vDAcVgEK5zb0Xj756M07/7XsGWSkZqZHTceF5xVZ3JQLQk+0PfwYOx+HvYPgiXgls5oZPpJAVFsdVPkVsn8FSdbUDaqbIqQxU4sUomo6qOxOGmHcEiL1+XaZjUcbEciRtEi8P1QtdfHM6YAzYPULpi20iVlfyLv//wwQV85edanL5/oYOARN1FKSGfM04UOHlCaK9SdYxxMgIneS5xDys5ejDSuH33AbFgT49W4HuuqroF8lzDZYDk+sDITj0/EVs6BOMkxOFpH41T1zBXrOSIw8ntn2ucqoFreI3BddW9dIF7l37cQtfVqXfjeIBVi8M910HTl8UQ8JR8I/N+eRonYvKqY4aHWEbjRCm6QYyTfH4rrRjtagAgDHyzpReALeThxMdiaDNOTGfF0qmiqk4cZ4jhnMMrkszopR5acc68uMHw8Amcxk5WC2I1thmnIaomoCn8tgycamA6Egq+vArgOGqiPdCS5dRuL+tAywe5rXGymCDP84En/iFw5fW5N7xnVdX1S9VRmqRR8TFpBWhFjFM1HCAO33ae+PnQd/R5pinwoy+I///4C9nXcHQWjV9F4CTpe2KcQm1HoBgn32ScUm72R0GU7eNEuhvUBOPEhMk93jQUgvGw7Qh0w1MPqWoM2maMk8n+nbtws7wG/4SG7GPWRpif+rAnvmaBHQFgjgMVOOnzd+KuIcw81RVM0dh9/2Z41YyPj5uHUCQOtwL2ttQbKcYpGgEcF24aYwsWjFQd0e9K46TE4VbLlSQxUnULVuAUNTTjRIEBD5zMqjqLcaLAKWHl6wbb7Mj3WKXGSd0PqWbYUh+pnF7zUnVf/vF+tFJx/K3lRexfaDNR94DAiZXoK8YpoErfnnar5oGTvBfSJMq1bqDj+9FDC8bv9BNgHkIEYpbqU7IJtFxIl8Q4G4ZxmnZEVR1p8CqZqrp2bqqOB05RDuNUDbyMliltis98pLPXOAYOSvtR5bVKHQID7AiIcTLnmmYoq0VzNU7EIOYYYN73DfFz27mosKC9kmGcrFRdUSn/mddi8cxfwV/FT9Z2BBQ4+a7hExinDraOy2C0X6quwlgvFtz6rl1VNzhwcpSnXBUtS1O6EfHwCZwcB0upNPrKBE5D+HRAT6StVAyKKro5FXVy5ycH+H751jWnl00J8kFuLZhTlvbI9xzgca8FnvTfco+NduztIcThhGbFz2ipTMbJStX1E4dPnSkW+bgD3P8t8djs3brq655b+qfrrFRdDdqOoCarzypM40TfRWCl6tKc9EQR42Sn6rpxLJuG6p3yEmo5jJPuFO9UOOMk9WxsgXGRYPfSneKXw3dhtyPEqj23kjEoFW/KxkF9S39BKk810Jgy3MM7Bk0+JptbBwv34kxXfC9LaRXbRk1mgALJIjsCQqcmgjpiAVYiIJWBzbQzazBOsQycllXgJPUVuS1XdKC6kOjzX0hr8HibGgqcyFDUdw1BvG65IplAmaqbp/fs6MApkdcs9Fw1HhrDapx4oEOVUKxn4rbRqnLnXu7GWOpE+I+7DqkN2AMHZ7F/UafquDbJAE8JslRdFCfqbxV04SPLXFHaOu511ffaNDRO4rm0mOrAiXlEFfWpa0zJJ8jxQf3h+jFOckNQcSL4nTklH6ikVqou6eX7OMUscFK9B3mqzmWBkwiQFoIt8jN7xuMcXc9knFQg51eV8WouaJPGGhIDwAgRUalbXFWX13LlHrnZOvVxxtjLaJyUOHwA41SfxNyTP4ybkwsyVXWh5yJmUpAuAh0wG4xTQSW4YUcQwHEcpN7qWq5o+UTNSNVvVDx8AicAC3JBDJMVTeMDmiEZMlW3kupUnZ/xcNITMAAsS9qxmhc48UFeYIBJGCSw8yxxeD+NE0GIw+3AyVPMwih4qm6AONxxgFMfJ/5/zy3mT0DsTmd+VHwCHTNwqqct1eS3IX2cKFXnO4n6LmiR80njxMThxD5lquqoR5tM1Wk7AsE48fTQclrN0ThRVZ0Ht6I7qtMOni8w5zj3oBrrc3tscgcAIHIKFkeucSrSN6m/s4mfj13FTJilwNwx/xfd2wFQg19z3BdW1QV1o2Fsry6CJNJ0JSmQKiZhzmCcEunab4vDlccV0zjxVN18rI9tJp0wmR8rVZdJfRYwTnOxvD7dJcUUJ3LHzRkrUxzezwCTB06CsemwwGl6tIJGxceIfL/7Z1fw7XtmVeC0/9AcZhY6uTYCBpQ4vA1HBhPdlDROknFilVFGjzr5vbXbepHOE4fzYxY/+zBOlE5SgZPNOPUJnPwKFj1ZpdmawXyrByBFaDNOgE7je4FKW3UiXVUXU4l83FWtl6qBxywzxH10X88qqsm5v3ixh+c6CJQutc8GRh6bOgaGZkCpOj87J1OwYjf5TWLg3n8X/z/1ccaYz1TVZRin4oo0W7vYiTXjlDLSoAufBU5sXBQyTkuMcZJaOlffm8OIw5VtSVpFqxcNePLxx8MqcJpP2CDgqaFhqiagJ5oVKeqsoKsM/LKMk5nWq6CbDdD4ILcGfOi7GKnqiW2QiRgNzpUhUnWEZsVDPfT1LgZmqm6MaZxq4QBxOACcepX4Sbulu282/84DKRt040udRC1dUeJw6vFERphujjjcQ3GqzikQh1Oqjpc4d+Is49TO2BHoqjq/JrQAPFXHF5gr3B8ar70o/i4Aq4UOBx8H/dJ09t/tsmEAiDrGbnWUNdz9Re82AMBSWlOLJIGL5Q04jrGgRTJwMnqDyce2ObMiCJH3GaU0lySbFGVaruh0qZGqY/fs/nTCFNjK86Ty+4zYvkDjpAKnzqK6b2MVOOn3GDpV53pa49LJBk60CNF1/uL396MTJWjJueHQ3DxmFtvMuHJAqq7XVmxaD574noyquuz7pI44nnZHzEGcWQN0vzp1zFLztI35e1XsVJNinGSlowqciHHqk6oDsOCLgKvSnsFCu2e46puBk5wbvMBIqxNzknBvIdWvjonDZTD/42WLMcllnMRzmmiL8TLk2qC+f4vdbtDDjpdlmFkFrFH5u+97grkMR4AdF6p7WDiiy++MrnVPkgCDGCfoTUqSCqNZur9DzzW+qy4CTNTlgRvicOsa0Cavs2g4h/OfoRPpNbIf1JxcLRmnjYZW4qOT0gSXFzj131WofnUycKqhq7vJW+9hG2CGaTd7ExqMUzY3zdN1g6J2uikoGzZMqo4YEs462c7hhIHicAA47fHi5/3fEiXJFEDtuUb8vOdrxSdA34dM9VRTLQ535KREvZ58Jg4PfReiE5c8ceYzQosFr3QBoHY3S8Q4qRLnBL3IrKoT4nB9I0dxovQ5Fd+FX5OMExeHs0BCBU7yGpAjcewWMU5sTAxknHJSdYDhHs4D6CZrXrrbEayAbX4J9BGHA8aCFjfEwhN6rspiRA3tCN1gjJMTmowTpeqUxkke50o3UteXjo+wHxNmusNinLKBU76P02xEjNOyStPT99E0AqchxeHsWIhxol5dvutgUjajpuv8f+4UjWe3TY6Ll6ws4UcPLerAoTBVx6oBJXrwxfVi4nA/h3FKJevWke7khhYMJrMkfq8YP4E+DX7rknGi/nLDME7QgVO1PYOFVqTTYoC2IwB0UOCFbGzGagPj+aGek+R4q/hcHL4DUZzgjllrs5KzMemxVJ1pRTAs42RpnOhhxwo6AfP68Mo6mjd3PxbwfASy3U+VX38+T3SX9JjowzjxQLnVi9VaEfqucSyRE+ogr2+qjqVImR0BAKQu6Q8jXXneD6rheJmq23DoRAkWiU3IC5wG3Oi0WC9R+o37OFlpOBqkbRLJpZ1sqq4P4wSY6bpBAjv77/1arhBooeE6J8441ZgLsekcXjCxT+4R1TVxF/jO/xJGiF4IXPVa8fd7bhFGl3mgXaVsxVBNVhA4lkZFisQ9JCroC31X77BhapyUi7itcWKMU8VinLpxbKbqLMaJ634qvoeK9EBqcHG4TyxYjEe5PxFPfvwbjDRiUqSn4+OgqKIu7+9Gqo67h+tbXDnzMiznME6FdgSAYYWRSLGt4zj6NVL3tM2ZFWNJXmtH7pCXbXE4uarLDcjciv6uXMcMnDKpOvldi6bJqVEFJw7QTN8S43S4J69PV1fVkaktD76awzJOgF5gFOMkPmPrSEU1xiW90F0HBZN7xk4ZODhd3H1wOZcpMj9DHnfHCpxiXVVXFXJx85ig9X6dTo5RKIDRqm8E/Hkap4y4mcThham6/ozTkmyfU2sfxEK7p80vHU+cq2edb0HLlcBzM5ofUxy+Hd97YB57eywYK9AP9nxinFqC3RzQw1Qhx44AABo0BTk+MuDfM6+sI2b+NCF9IHE4N6mFX9Fp884SY5yK+7zxMczT4aHvqn51AJDwVPEwqTpuQSOvg9Y4Dddyhb7jZWSlERsRD7vAiZqycoOxTLVbAWiyWYilODzPjkAxTjJVJ/VQXtzJ2h7QIHeD3JuYBzSDSjrtQGlYcTgAZYLpuXIBZLu9Eck6GQaYRRO746ibHTf/qfh58qPEziloAK1ZYOYH+a+lG18uxlXutSV3y9WcqrqK7xqNNBXLBJ22c/qJw30t2uzFxDgxOwLrRuaBU+i7qMrAqem01C6eFpjznLsx4rREr6lTrlAmfACQFqXqDI3ToMCJM05sYmficD4O6lRJx9oodL1axl+GC3Az4CkU9vl0zp2aSNtMO7MiuKXGq1VxXkuWxkm3XBFjc25F9kYMRBpZ3a8A9qfjJuvBJvgQ0cBUneqpR4FT1Fb6mZ6bDZyGFocDeu6wxOGcybF1RLu3CbEysZCDxeHy9UwPmKmqc7rahsLYRIjjIcbJ1oM5jmMcH6XoOBtZaEegAic5b9AGa0CwsRiK8691ZrDQ6unSf7thNdM4qQCdicND381ofiqBa6Tq/uOuQ9ifMr+yAjaXAifNOA1XcZ1nRwAAdalxSvMYJ9dlujW5NsQRcO+t4v9S+kBjz7hPea+47tJQGiffdRQzTFYpgLjfeeCU8vmdj8UicfjKYf2YDJgcX1e8Dqdx0pvZknEagK997Wt4+tOfjp07d8JxHHz2s581/p6mKd72trdh586dqNVquOaaa/CDHxQsvEOgG8UFjNNwVXU02SxGmnFSAY3FWulUnRhILhI9uG3GqWCwbzFSdYM0Tubf8wMn83ebcWqEMg/veoikWy1V1g0UhxNIIL7wgP7dC4DdV4jfbd0TQTFOIlhQYm9ABU5hqKvqVNsQz2ScHJ6qG6RxSquScRLfYTdK0GXi8K5bRQLXCJYobRd4DjzXQa2pGSedqhPHS2m6/ROXinOgoBIovoYG47QKcbifM9lZdgR1ajW06zHqsTjIjr1CcTigAqcodeHQgglWWVfhGifNOJEWbNlquWJrnOZaOu1WCz0zVVcgDgfEBF2cqjMNMA1TTcmaUKDTLBCHD2ScKEiRgRO51m9j2iEeRE2PVDA1MQ6AB04D7AjocTl3xTJJLXycqKqup6vqOHMg74VeN59xEsfKjk8yTTyYyhg4qsDJ0jgRBgROy6F4Xb1zAPMtpnGijSWNY0pD8ZYrTBwe+swKQV6bJtoYodT0yHb8x8/twCl/UxIxcbjYLA63NhSJw+ueGOdJXuAEZCvr9n1HbOqrY8D2C/T5ISdwVefMGafiwMlhNjlkzus64t7j1aqOPyzjJD+/NasfowBSjtUA0VA+ThQcL6WlxmkglpeXceGFF+KDH/xg7t/f85734H3vex8++MEP4lvf+ha2b9+OJz3pSVhcXMx9/iAIxkl++ZxepEE7oKqO0kPzPHBSGiczqFDNKMEGYVFVXQG9ajBOA6J2e3AOIw4nhoT64vGFIg7FQjcmK+tqg5zDCSQQJ1CwoCruCgInCmTzJjQKgORP2zmcxMFJ6hiBExTjZGucmDicaZxEqk6Lw0nvYDBOPe3hBACNkXEAIg3WCGlnKH6qwGnLo81rABQvKqvSOPFUXQ7jFHWNgLouW6zgEU/Wz80J2gt9nAAVOB3AOCqhZvcoWKSWKNucOTRDTy16QV2MJyUOt5zDQ8U4aVf7euhZjJMtDtfjMEBkml8CWcZJnlcEX++qpU6H7lPubbQmxkky2dQI3GBxWNrritO3wJHfWc3pwkUCX7YYKqyqo/uOvLGkwWYvTnRVHbqsqi7LOFHaOi9womBprBao73NLI1TBbZZxssXho+bfB6TqlkMReDe6B7HQjlQAqdhTFSgyjZNiQ1MV2FdyGKfJVLAgbbeGrtfAt++ZxTwaynaiKHBSqTqnLYo8hqy4Vmkza66pyYd583EDygRT3pu0sdx9pQr4aexlUqW8ye4QjBPAqr2pqwEJzyv6u3L4/M7HYkYcLj+LB0424+TECFjrp0IwcXirW1bV9cWTn/xkvOMd78Azn/nMzN/SNMX73/9+vPnNb8Yzn/lMnHfeefjbv/1brKys4O///u/X9HmdXoHGqTfcroImm8MdOZBz7QikSNNinAzQABzIOA2vcbIZp2HsCChQmmpk0xRJRbuHV3xX6DQGpeoAYOJUYGyXft5Jl4n/q8Dp34HZe4G5vaZ/Cd34tcnswkG7NTmRCB8nLQ6nVF0PHjwWHFKePYq6uH92RaWB6LtfSqtGVV0vStGLEsVIkD9MnsaJvt/m2Lj625bWPcDcXox192GXsx+XSX3T4a0ycNp1OWLpqOsUBU6r0TiFDe2dw8cuM0rkjFM1kWL/05+IHjGhOYZ5w4jD96fjZpm0DGj2dsXiOYV5TLbvUf0bw7rFOGUMMMV78T6KtcDrLw53XbVg5afqTHG472nriYTSDnLxp+pX/h51tlBlhNE2fJNxSqQ4lgdLPIh6zJ4tah4YC2LDxHNwqk6M354KnHSvuglnEdXeXOZ9SBxO90pGDyaPr4qOccyu66iKu8zCTYxTXaTclDicMCTj1OgewGKrxzyTKuZPXlXHNU68KszSOE1EwiphztuCr/5kBq1ejIl6CIfuqYJNCfmNNdAS5ztsVZ0qyLBSdR6l6gYETjQXkr6JbUDpnGv29adznr1HBy99NE78veg+VL0+WZDrhexc+bxip+oyGidHzdF8jZjqPQjM3VesbwWYHUGZqjsi3H333di3bx+uvfZa9VilUsHVV1+NW2+9tfB1nU4HCwsLxj9CNx4gDh8yVXfXvGyYimKNk15UHLRTK3hSjJMc5AX06uQqNE7233NTdRbjRL246HOMhYdV1tVJlKgYp4KJHTD9nHY9Wu/UdlwozrczD/zZBcD7zwf+/BK9o+O9luzrQbs1+dOD6eNEHcgjeMZ1oF3efQfmcdW7v4JL/uhG3PyzAwbjVDEYp1im6sQYocCJV9XR/2kRadZHVFPgMz/1i8D7z8djP38Nbq68Bg2ng8NpE8vjj1Dndm/tkeIcinawauJzgOZ0/nM4aCEwqurkeGPicAcJqsQ4NbZirzyOoGYtdhgucJpJJ4zgnLyrXv7ZvYhSF66T4pxP/6J+WUOKw+VuMlapOlPjRJU+OlWnJ/EDtsYJUBN06PSKxeGufpxYk4RME6UXEd2jnHV1XQeN0Nz1F0JpnMR8QwLb6RzdEABcsWeLes24HTgNKQ6P5GIcsV51T/G+iTPv+//k+7D71KM+j9K6wWbnAFyQ/Ajfq7wUv5V+yniczsG49t0VoCe1R4Wpuv6MU6sqxnezdxCLrY7uU0cBl28xToY4PDbF4RbjNBaLoO7u9ih+6++E9cZj9myBQwFTUapO9Z5cY1WdpaesyZYrqZsNVI1zjVqCId37H+J3xk6Hgxinz78a2P998f9BjJO8fsqpnb5TFuQGYc4mDChu8qsqmvV44+m+V/7gOcD7zwP+13OKD4z1D22V4vC1Y98+4QWybZtZMrpt2zb1tzy8853vxNjYmPq3a9cu9bdOFOeLw4esqjtzWxPnnzSm6N4aunjK+fJGtHLhPKXQhhVo0CS7+7HAljOA856V+3ncjmAw4zREqq6AcXrsGVtw2lQDT7tA78KcmnYPV81O6Tr1Y5wA4NEvFRV2j3mFfszzgce8TNx8dP4L94vdEmD2WrJvftdknKpeiotPEXqF0HcxLtOJ82gY6ciTdp0KADjZPQTPdZCkwLfuPqw+c186kdty5bbkLCw2T8N9O0VKqx/j5Houbh//JXQRChM5v4rEq6CdBlhJK/ib6Jfh+3qRmj//JXjQ2YapC385/9pNnCqE5Bc+zygnL8SFzwW2nCmCVAJ3DpfjoA7G7lWaWKDjuIil7ST6icPTM34B96bT+EJ8hbGQPu2CHaiHHkLfx6fTa9Bh1wMXPBeNqrgHdJNfk3GyA5NmxUc99PBgugUHph6Nz6dXoYMwq7OR12j3mIerH2EFmso5XL+GdE7KNFEyTisycOLeaQDwq5echAt3jeO0qQEd262quq0TYzhtqoErz9A6sJMnanjSOdvwKxftxO4tdbUQTYQxzpri6ZGC710Fx+LaxcQ4JQlw2tU45G1FOw0QuxURzJyhA1dKW/tFnlcAHhv8FIET43HBj81rcNFOnDbVwKNOndQPUkWdF+qAKZOq6z+ftsItSFIHXhrDa8+yVF1FvzfAGKfQSCN3uDhcMU4iqDy7IdjVg45gKSfqAZ776FOAC35NNPzd84TcY+qG4wCALc6CCFSGraorcA5/xKj4fXxia/7ruDfX0ow4V8cDtp2rnnL5nkmcNtXAk8+3gr1zf1Vcc7rPps9Vuqgi0PWj+1BtflhQNNJkY71frzo7UObjNqjh/8aPRjsNtNnv3TcXd49ozwEAFtKGMnHeyCjgDzcObNOwNE3zW1VI/P7v/z5e+9rXqt8XFhZU8NSNEiyC+hrxVN1wu4pq4OHzv3sVsHgG8KdA3enixVfsFn/MVNXphUDoJ6gyJBQpBgAY3wX87m2Fn8dTdQPF4dbCM5xzuFhEdozV8JXXX2P8za2JwGQUy7oMVp1jH8YJAE66FHjVHdnHn/gW8Q8A/uIxwIEfCcuC6bMtxondkI6rWx3IlN22pg9Iliz0dGuFmXTCOMdTHnEpcAvwuLGDuP6iM/GnN/4US4f3ASuHkMDBf6YnmS1XZInzAYzjll/6Z7SjGPjOd0zGqccma4lHv+aTxmn+6MF5PPXPb1G/38CO6eKn/FfgKf+1+Np5PvAb/1L8dxuPe634x6HsCHRVnVFRF9Rx8VN+E3jKb+a+ZT87gmjbhbi6834AwNvZNfitx5+O33r86fK3bDDWlM1jtXO4qXGyA/9GxYfrOEjg4sZH/RX+8P98H0CaFWnL++3jL74Y2DFh/s3SOAE63aHadMgAYEVajIzWzKDlHc84P3MuuaBgVTJOZ2zfgq884xrjKa7r4KMvukw/IFnHIG7jU//1UuD9UL0uc2HNT5GsII3iFJg+G9fv/ARu/tlBvO/ZF+KZl5xsvlZeg0Cl6rJT/9ZU3EfK/0jiJVeehpdceZr5ZC4Mp+O1F9IB6S3XD3AIo9iKeUwmh3QrFN9inHIMMI1Une8C6Yjx3C2J0Dg9/apL8PRr+Xh8KfColxYeU1sWN4w5K6Ih97BVdQWM02QiGM3dp55uv0K+LzFObTEXAsJfigX7u7c0MvMzAODSF4t/qwBdP6qqU/cTY8CLGaeCqjoCu89Cz8UretcDAF579cl41TceL8iF9nxuk3pKNc6hgdFNEDhtWMZp+3YRXdvs0szMTIaF4qhUKhgdHTX+EUw7gryqugG7CgLf+VH6qkDjBAARNzscdAMyTK5GHJ7xccp+tVnn8OK42auPAxDu4dlU3fDnUAiiyqmvFVXOhCMm48RFlUqAqW+skPWk2p9OmOe4VabIFh/EyTVZuTQrdEf3p9Noo4KK71o+TroVCLEbHYNxku1WbNqcwWZF7KD2qEMxTj11bsrDKWz277mF/lV1XcvHalgo81glDh/EOHlq3C11esq+oChVZ1czAchonACd7qCeZBQALFLgVB2C5cuDxTgNTO0A5qI5TOGFxfTGDhOHA0hSs1LRfO1gxkkt3Iv7sn+zYeubgFVrnDzXUZVu084s6q68BrSIZ8Thpsapl8s4LZnnMqjAwkIcjqjmy1txePiqOmVHYI1DupZFekXVf7A9+LnrgAzjpAInxibxcdbPOZx7SQEG4xT6TDIR1LWNSdHYWpGBUzpSapyOBKeddhq2b9+OG2+8UT3W7XZx00034bGPfeya3lOIw9deVafABxlRuQU+TgAQuTyCX0XgVGfi8EEapyFSdXm96opAgdMoVnRufRhx+LCgCY0muCKNU27gZHqQTCvGady8DtUxYPQkAMDuZK84n4X/BAD8JBU78jzGCZAeTVIP02aMU7tnpuryYFcfDVWOu55g4nC6Hg2yIuhTrkzoV1XXtXyshgWxm8vdCGmaMjsC8R524NRgrYC4KWam0SyzXsggJ3Ai9lQFTjLQIYuR0VrxPdEXlo/TUPc5zTe9Fru3+gRuBYwTBU50Te0NknhQisOlHjBPHG5sYvjGMg92RR2w6lSd5+jAaZszh/FA3md07dg4Fi8Ic1uuhDkaJyztFz9XGYS4rquOaSqZHX5toGpe2/pEsUgFx0HXqNdac7C3GtB9tmRV1RnflWFt0kcczr2kAB08wsx4+J6Tne9tMMap7FU3AEtLS7jzzjtx5513AhCC8DvvvBN79+6F4zi4/vrr8Sd/8if4zGc+g+9///t4yUtegnq9juc///lr+rxunGAxj3EasqpOwQu0iSAxTTbjxPt3uTxqHz5w8j0X47Jn0GA7AvOrHCQOdxxoJikPJA7PZZwGpOqGQYZxKtA4DcM4QTNOmd32tBBB7+jcI35t3w0A+GkiAqpqoBmnHuvfFHiuqhTLZZz6Bk7mdQ2Gcc5dT3BxOFX/EeM0QDwK9BeHqzYXrjNQd8dB7GaaAivdmDX5NVuuEEgcDmhvJyAnBa2sFzrIIC9wIsbJNReBhUg8PlY7QsZJzQND3CO0AUt6eg7qtynx8xknCpiIccqdK1xqV0SNs/MYJ8YGLO7vf+wrLFVHWKU43PMc7E/HAYj04GhR4KRekO8cXsnROK01CPFcB/shAqfJ9BBbG4asqrOtTwYyTqyqTj23OKNypCiqqisOnPqIwwHzO2dWMHz98V0nO99zRF2VcZhNR0qN0yB8+9vfxhOeoEV6pE168YtfjL/5m7/BG9/4RrRaLbziFa/A7OwsLr/8cnzpS1/CyEj/kss8RHGCOEmx5OaJw4fMYxMcR9xIvWXRZNF4D1nlwwZO6legimZWmebaOVbD3Eqvb1oNyEvVZSdPvhFthH5frVhuVd2w4vBhwHcgcaTfuzKS1TgRKABJzcBpglJ1mMCUvWhsPRv4z3/FxPLPAZyCU+J7ARf4aSIYp4rvKQ8hk3FyAIjH20ZVnenjlAc7qMr7Lo4quHP4WhinPuJwdX1WmX6sBR5cRzQYXe5EysfJU6m6bBqZgliykfBcJ5v2LDAeBKADbDaGKHBqu+ZCON8Tjx9xqk79PsR9zp8jxbF9Ay7rPamNB11LCkbtIhBAG8MWpurS1GQDFh8Cps4oPhbFOGnx+1oYpxkQ4zQrdGddsFSddS14VR0Th4uqOqZxStM1p71cRzDXADAeHx6+qq7AOVwfR0EApwKnY8M4VexUXY443Lju/cThgDmfcCd/Ngd67gDGSY79FA4WUd8UqbrjGjhdc801SItU9hDC8Le97W1429vedsSfRTfZYpojDqc89qDKCY6gKgOnfMbJdR0EnoNenIrqIsIqA6c/eeb5uHPvLC48ebzv84ayI2ATqt3kMwPFOK2gFlBV3VFinFjT0uEYJ72rCzwX22RrhZl0AtsLGKfK7E8QeE/AWc79AICfpqJgwGjya3QM91SgaRpgksZpeMbpmGuccsThDawP49SNY+M5w8JxHDRCH4udCEudSLEkto8ToVHxFbs3uywWo1yWz+/HOGXF4VW5CWg75iKwUCAOHxr2ZqLIxJLDCJzm89/HeL75t8SlVJ2ssqOq8LwNEesdBuToG1cOm8LmQTonaeNgBE5+RQQQ9D6DGCdL47ToSaalkHEKjXFnsCZc49RZ0BvaohRZAVx2TGO9g0NXXCu2hV/DzqKe24pYJJWuPUYaJ3IOz4jDh2GccipLK/mpOr7+BJ7bn3GSLVviyhiStrsp7Ag2fFXdeoEWgaVcA8whdxUcQR3AIR105bBWoeeiF8dwDNv6VQRnAC7aNY6Ldo0PPpxhUnVG4DTgq5fNXEfBU3WrZOb6Qe1A9hnOwPDD1WmcfK1xyojDAWCrCJycmR/jkc0WxjvLSOHirnSH6NHkOupadXjjUN9Ri7rZcmWwxinwXHiuk0lHHTMwcTgFbVocPpitHSZVN9AQMgeNigicljsxa/Lryp/Zis9WT3zflKrLDda8VWqcyOHcMe/DjhQE23YEQ2MtjBP1Kos7TFTeJ+CyxeEuVdVJcXhSLA4fyDgtWQtakRaFQIxTnQVOjiME4isyqBow1/muo9idaWcOqTdEqo7Na4bAmWucaHGujOWzJH3AdVcjvYMApenXwjhRujMcyaYxCUZV3QB2ah1gi8O1j9MaxOGAxTjpMVUpYpzscQYofVNcGQeATcE4bVhx+HqDFoEW7TTbPFVHgdMqghqf7RSM99ATJlVeOWFBNL+OsCfLvMWaBxWDUn9c45SxI1iXVB3tQB7SQSzdhMYuhrE35CDOAqcqIkw54rvcn45nFw2qrFuewdWVnwIA5mq7hCeQZI0448QFp6pRc06T30EVZXziGGQlse7IcQ5XqbphGKdhUnVrCpyoSi5iTX77+zgBwLxM1a2ecSoOnIx+dQDaCFAPvdwNx1CwA6Vh73NajBTj1C9wCkDpYwBIHJNxivoFTpaPU0YcbgdKAxmnHHE4YAYIq6iq2+bMoumRHYFVVadeYAZOyzzdxBknlfJaPXPDGadG98DwFddeXuA0xHFwbdzSMWCc1l3jNJhxGqhxagnGKa1Nil/LwGnjgBaBri+/6KilB7miY1fBpPCKGCC3AS5N9KaF/eoYp6EPZ6gmv4xxynEONsA0TjW6uYb1cRoGTUldJz3RfgXQN2FYEDhx9knqOho9sbvtph5mMZJdNCpNYPwUAMATY+E4/0AgvLcopcbL77kbMf293UtUSnkYcTh/b/Fex5pxolSddg437AgGQAWSfRintQROTWVJEKmUqFcQOFHLFWAQ4zSMHUHWAHMF5n3YRrh2YTiQvSdWGzi15sTPfpsSxzHeV6XqkiEYJ3+AHYG9oOUxAxwrOak6QAdOXsW8d3PgsQq2rZhDw7HsCHJSda6rmWDqeygYJ9I4LR5Ryovrrurdg6uoqiNxeE66s99xBCwDQsHoMamqi43fjaAor6rOr2mNKQdnsA07Al5V5/bXOEnGyZHega1e3FfCsxHw8Amc5IJHjVsBaKZjtVV1AKNYKXDKMk40ePxjwDittuXK4FSdCJwqToQRXy5A8ToyTn6oPWAO/Uz8pJuQ71qNVB2biOWiWO+KyUZMdgWVXjJdd97KNwAAP0tJGG4zTqla0Cu+a+iYKPBWTX77aJz4ewNDtOtYb6j0lXYOXxXjZNkRLLR7eOaH/h03fPXnaxaHA8zLqcsYJ0rV5bjaqyCnS8FqzkJsi8O/+VHghquAhQeZxom3XBH/X0zNe72ThmsXhgM5jNOQc0nGxmDApiQncIqUxqnYjsAhHyenKHCSCxrdg/0YpzTNF4cDunfiEJIEzwUOYQxx6sBzUkxGMrWlmvxmxeEATzfJgNpmnBYeFP9fQwDisfRhtT0z/NqQ5xw+jNib3nfuXvk+gejXeZSQe+0Aq0l4jji8KOXJ5xP2ugzjRBvlxX1Z93CpcXIa4rzjJM1vML6B8LAJnO4+JMSC4yMNHV2TrmC1VXUA899omz/ZxHbezjFUfBdjzIRztRqnYTFMVR3fMOT6uHCETSRyeJw/Jd9LicPXKfijCeWgDJzyGCeHM07ZwKnaFhM47VxzhbHTZwMAglQc/x1tsQOkRZQmj1YvhlzPDTsCQPs3EeNSHZCq44zTsfdx0uJwOjclDh9G48Q0XwDw9Z8fwu175/DeL/0EP90vNhtr1TgBIlU3yACzwVJ1hKFSdXd+Atj/PeD7/8harmRTdYtJNlW3Zg8nfhxFvxchk6ob8Do2R6Wr0jiROFxck7pt4EqB0o4L5e99NE7dZb1RLErVDRCGi+N0kcDFAYwDACbaD4g/2E1+1QvMwKnNXfxpzkhj3cbpCFN1fm9JLeprcg4fhnGi9z18j37uUUzt073dtjsgFKXqJveIa7vjooI3zNejZqvq5DWIu7ohMUH+7jV0wLjR03UPm8DpW3eLG+DyPZP65u4siuh3TVV1gxmnP3/exfjWW34RzQYbXOshrM7BUD5OqxGHu67qV3f5dvlecTYdeUSgm+mQMKXM1zjliMMBtShWZOBEu8R+jBPhW8uirULV0jhR3p8eCzwH9HZUTaedwzcy48TE4S6l6tbAOEVkByAWgzhJ8eGbfi7eZhWu4QSeqousVF2eONwOnPqLw+XYpIXunlsKNE7iPRYScwy3cYSMU0aPs8bAaRDj5GUZJ+r7pzVO2Ze5zDm8GrjZSk9a5HdepH8vSpcQ2+TXsqaI5B4+xFxKQbPSFLX3ma/NSdUBWbZTBE7sOGg+WQvj5DhYRg1LxEgu3G8eUxHyxOHDaJYC63OOor4JyG4+8p3D2RisTwKv/RHw/P9d8IacceIGmPp+DjyZYiYmzQ7KpcbJq29RG/6NLhB/+ARO94gv54o9Uzpwai+YotLVBARKHF5cVee5jpiMj8COYFjYAUNeCby3GnE4AIds8mlSJ8ZpmFLrYWAHTopxKkrVcY2TrApZEfS+YpzyAifJOAFAL/Xwn8lO8Vrf1DgtscAp8Fw4jqPbrsggQjuHDxCHc8ZpFUaR6wLuHK5SdavXOHVjoe2aa2n90MGlrvGc1UCLw3VVHU2UtkZPOIebY7Q/4ySPkbRC996q78kc53A7cOogWLsVAbB2cbi/WsZJ/z2VppakRYtV4JS9TlrjFOXf+7SYEbPQWzG97jh4nzobq2CcyG9qRt67DqiCrVgcDmTHXui7go2mz1SB0xo0TvKtaT5BOmRVXZ5z+GoYJ/qcoxw45V47QMzp5Hdmj+XqqFExZ74Bn6vzNU5qPBbpnIiBqk3oqtcycNoY+Ol+UfIuGCe5K+osaqYIWJ1wm1vlA/2N0riwcDUC9FXATs3lp+pWwTgBur+QCpzWYNvQD6pElZXtAoOr6gClXwlaMwD05Jtn/oepR4Cqke5Jt6MnXTgU4+RlGSe6fqrtis04DRKH2+LIYwkmDleputU4h8vXpKlYjGdZyxP1nCNI1S2zqjrVcoX1tiJX+1qGccrTODFxeBwBHTlWOwvAAdGXME/jNBdbjFN6vMThlsZp0KaEL2oeGWCazuF56WrNOCX9XcMn9wzRV4wCpy3Zv6nAaTWM07j1BxIkW9eCAqeihua0KVDtVlbPOJE+jOYTfUxDMk5JXlXdEBonwlEUhgNZ9ltdO8fRgedq5nfO9PVzDgeKK+uIJa5Poi6Lltob3MvpYRM4AcBZ25qYalZYqm6BBU5O/z5RNlSqjuwI+uik+E13lKrq7JL3PPHuqsThgBk4JYmeFNZDHA5kd1d0E/Kb0aiqc6HKsSXj5C+Lm1DpEvICp7AOTJwKAPhpepJ6mHRK1JCS9E2hZJsAvdAS4zSsjxHXOK1FSH1EyBGHN5Vz+PA+ToBgnShVd+052sRvLefUlJPiSre/ASa52g+ncWI+TuS+TaDxygJu2tHORnmpuiPROK2VcVqtOFz/PVUGmLZzePZlrk8tV6JsRW2SmL3dBvUVK7IiAPSmdIjAiYKU/XaQYjf5JVCqrog1sTcFa2Kc5DFJ3VXmmApfSONQjrlh3cvt63SsGSd+H9OxrCajUCAON6vqKHAqYpzmxM/auLrnS8ZpA+GKPXKHRHn4zoJmjILawK7xBvxVME5FvhjriGyT3+xXy9mYgeJwQAdOrVmz3Hu9GSdCrh2BNclb/eq8ZZmqQx9xOABMnwMAuMvZpT9OMU7FWpqKEqJKxklV1a3Cx+m4icO1HcGqnMPZ2OlGiWp5ctWZUyp46tvnsAB1JQ6PVZsQLQ7PutrbjFNu4ORpIbzaudrISdUd7pmbpCNP1a3BABPQu/w1iMPp3FVVXR9xuCtTdYET57iGH5IbEQdoTvf33AH6p+pq4+LnEClhxTjBZncK7AjcglSdzTgR1igOB3KCuYHicMs5fFj3cvscjzLjlKsPU7/I6zdEmjXzGqDQx8nLME5WH0SpcUJtUm04V7obu9Hvw8Y5HACuOF0GTkaqbo1u2NzHKU21ODVvp8UfO0pVda7rqF5gQH6qblXicABoCBE1lmf0+QHrLw4nhEMGTklPMU7Oksk45abqAODKVwGuh6/d/UuiHxY048TTRIB57biXE7A2H6djrnHiveqIcSJx+DALmueqsSQCJ7EYjNdDvPW6c1EPPbzosaeu+rAoWOepOgoqHcdRbus0Nu3Kr4HicNJKuL7ZbJWNocmGeP7Mciw2P7K4o7Pu4vAhd+00jyijxUHicPZ3z/Rxivs0+XWZc3im3RIxAI2t4j0HMk4ycKrnpOrOfhpw983AZf9P//MA4HkD0mJFVXVFiz+3MalNrmme8gpTdYPsCEgcLscdBZ3VAe7ldgbieGmcAODqN4miip0XD/+GBU1+DcZJaZyY6TEH3bf1SdRDscHb6FV1D6vA6fLTKHDi4vA1eDgBMHycBgnM8wzFjgJ8z+3rs7PqVB2fQCPGOK2bONxmnMg8z9eLmmOdB6XukgjoteG0qN3KOIA+QcopjxH/PnwrMCdeU7E0ToQ8xokCpuFTda46nr7NlI8GlDi8qyat1TBOgLgG7Z5opDorGafxWoCTxmt4/3NXMbEy5NkRcCGzLwMnYkR8z0XoucrTJVeQz8XhtHPddp7wxeGBlMS2UXH/HVruIJ1swola6MFHAned7QiG9XGyFs7V2BEUME55Pk6eR6m6uNj8kha2gYxTn1Rdcxr4tY/1Pwc6plWn6vqIwwFzU7BG5sZbM+Nk+YkN27DXTgGusrfeatE3cLroeeLfqt4wn3Hic2o2VcfGVa+tmbnaBGqhYKPKVN0GwVnbmpiQu81cxmm1om3u42QIzAdpnI5i4MSChvxUnf7/MFV1xgRK5+iFq0tp9kNjGryFhHET0gKfYZzk4pkmqty3nQZYgNBFFTJOEtOj+vqrqjprMuE0cyXDOA3bckX8/Zin6QDTOdx34SFGjVyZh9A4AcxNPU4wL527J+pHFjA3DDsCWVXHvi+VVmQanGqQDWINMHZNBUqNKWD3lfo5TCc3WQ/hu44giX0xZroQ57W+qbpV2hEM+zr2d0d+z70hfJzcQAdOmXvfXuTzFjgOJQ6fyv/7kPBVVd249Ycicbj4vVDgzDcFRU11B4CCzsPupH7QcQfrX21x+LDu5Rlx+DG2IzhS/WWRHYFvbogA5I8rumcdD6iMKgnARm/0+7AJnB51GrsRuI+TcoZdZQqNU+wUfDludqHnz7X/v87wjUUoZ9fJGadBLVcAc6DTTmq9hOGAYJb4rpXfhGFR4MQa/cob8IAzCQrACjVOEtMj+vhtA0z10eym16m61fk40YJvl9kfE7D0VeA6mm0Csr47BaAJthczxql+BIEFLB+nxPRxAvSY5YxInY3T/uLwntY41SaA0x6vn8MCJ9d1sFWOAeoi0KbAaV2dw9cYOA1aoPn7qsDJ9HHKZZxYy5WBjBN3ec5DP8ZpFaBNzmGMIALbiKzCjsB12CZxHRmneZ+lIf0h9K+enaobknEyNGsVMXaPIjJB5xqqY803yJdV5Guc5Lha2qdaZml90wTgOKp4Y6On6h42gdOjT2WBExeHr7XEnovDufll3g12DHycAJNlGmSAuXrGaZ3NL+3PAIZknHjgJCanQ0xcOmgDtc1gnApSdZxxUqk6q+XKgAmniM06JmDpq8BzdeDk+kN/f3QNFtuRYtuONHCiYH2pE2c0TuL/4jN54QIXoQ8Uhys/mEng1Mfp51hjiFjHtisDp1T8/cjsCNaaqrOetwofJ1qsKQglO4I8ltO1A6d//zPgP/5C/LGQcSrSOMk+dXkap1WANnopXMxyhqfIADNHHG7Mc1xvs0bmht5u0QichrhnbOdwCjqbA5gv/v2PbF8/Nr8A/ea6NcHQOPGWK1kmWfcnjXSvQ6ZvAoCaqrwtA6cNgct2sxuTJob7vql3qasVbdPOYOHBwcHXsQqcctIeHI4jdtu1wMOW5hBpF7pOKweB7pL8kPUOnNiOjN+ElFKyG4VSaXkSq8npEJt088z/OLaNZhkn3jgUGMQ4JcbjReAap2MOYpV6y9g+4qPBheFDTsx0DWYWRMDsu85wwXYfmE1+ScjMFkE3yzjxyrr+4vCuuXudfiQwdopggetmSmmbZJyWHXHPt9J1YJyMgMfJZ57zkEnVDe8cThYDmaq6XI0TtVyJsC09ANz4/wJf/ANg79f7a5xs93CjT92RMU58IzefF6gUOIdX2NyWWxUGrJlxmh4R8/OWyYlV9d3LOIevReN0lCvqgAEap7XAC/SYZGwp3+So79kL9Jih68NZYuiN0kqvrKrbEBjju+XTnyh8fWbvAb7+IfHYagOaXY8WP2d+CMzf3/89jkFVHWAGS3mpOgD4/377CrR6OXR9HuqTYkJIesDcXvHYegnDCQMZJytA4XYE8uY7bARO/T9u24j+jrh+JvBcRGSqyd6EjCzbMkVHAdSwVXXHvN0KILRjXgjEXZw3sow/f+YZwD/BDEwHgCbU/QtiUzBeD45Y5E7VXK1erATfXo4ur2mk6jjj1E8c3jGM9OA4wEu+IIKpprnAE+u4JPvVUaqueUQ+TlYByLDXKpOqWz3j1JMO71RRm6fz401+d3bv1n/4yp9oh3DFOMl7knRjdbbpbM9rVuUINU78u18KtwLdH4tfclN1jpoL8oo3xC88cFob47Rrso7PvOKx2DFWA/5uuzBUHWZt8BgTDqxC48S+/6OsbwKOQuAEiOu+0im0IzA2jyPbReC9uA/YcYHJEkPf72WqbiPCC0TpJQDs/774udrAqTGlvIHw8y/L9yhinI6+jxNg60Xyv9pTpxp45I7R3L9l4Dh6MqXGmUeVcRpG48Sq6uTkNOfp3WqevoMjTxwOmBOIkaqTwVWnJxan4cXhknE6HuJw1wXGpF/V7L04ZzJHAzIAKnBaFIHTEaWxJHiwviAF52aqLo9xYhqnPF1Znjic2OCJ3bml1cQ6zsu2Kx0EGKn6+e16hoXBKq+mddNqxeH6cxz53F6cKLYJKND5Mefw6dZd+vG7bwL2fU/8nxZuo6+YpXOiFEvYPOJNIL/erYoMbt1A3+OcffMCFYwW3avrwTgBwMWnTGD7WJVdjyHWBsU4rbKqzgugCmSOB+O0Hhs7uu4FdgTGfWWngVsm41QrA6cNjvOfDUyern9fi2ibdBQ/u1H8LLrBjoFzOGAuQuvGdNDkMXev+HmsGSfHZpx44CRuvnlf73xtB3UbZqouXyvBdUnk9dSONEsCDNHkVzJOxyVVBwDjp4ifc3t1mnVIKwJAX48DMlV3pBV1gAgm6XpQAGqm6mRVHQ+cgoJFksDF4cxIrx8oeCb38HZ6hB5OgCnqXk3gZM87A1uu8FQdaZxS5eEEaH8kA67uVTexLAOnQKZ0iSXhC3eRzkml6Y6MbQLMBbVbk/oXHoxxxsnQzxSk6tZB42SArsEwa4PHUnXDuoYDstVJbbjnrgP6GmCuFXTdCxgnYy2yrS5sjRMZYJZVdRsUnq9ZJ2BtAc2pV4mfB2VPrKIJ8xhV1dHC4zr5JclrAg30WRk4rbdGi0/WPHBSGqcCcfjiQypFuhAwxmnAiG5WfEUHc51SpWAXq1quSE+jvOfn4bim6gAzcOrIwGk1jJM87plFETgdqTAcEBo7O0Vs6PKkEakpDh+ScYo6rHVD/8okStUd7IpzaiM8MisCQCyARY7X/ZDxcRo+cNKMU6qKlIBBjFOM0UXZBPeJb9Gf53hmMFTk5aTML488cOLffURmu0XMXUGpe6HGaZAoexgoxmmItUF9bymw77uaeRomGKJzPg6M07rMT4pxym+5kss4SSsZrXEaB1Cm6jYHzv8vwJYzxf/XkoI69SoYPkSFjNOxEYfTAF3XprI00IlxOlpVdX7NoHq1xsk6Fwqc/vE3gcNi57wQaA3LIDsCx3HUwlkxqnO4OFz/n7dcoYo6YDDFTa87boHTxG7xc+7eNTFOShy+SBqn9WEabYG5oXHKY5wGaZy4OFxpnAYFTmIMH5CBUwfBkfWpU8dSMX8Og9WKw9n8QeLwXpyYjFPepon0QYhQn5eB0xm/CFzyYvH/5jZTTziQcToyYbg4Ts5EyM8rCpwKzBXNqrqmPrbV9B0tgjqmIb5PvsH7S2mFMax7uQqcjj3jNGgDOBQqOam6fhonQBRVARmNU431s9zIeHgHTq4HPPW9wJYzgLOfuvrX1yeFSzGhKCjyAuDcZwJ7nqDbmBwF0OK/rk1laaCTAH69U3XT5wAnPwq44Nnm42deKwT8Zz3ZfPzcXxW9lPyq+Lf7SsxWTlZ/HkZT9KxLTsLpWxu4aNe4eqyIWqYg64G5ltFuZZBQ+tLdEzh9awNPveDo7yJzMU6B017hVwYMbX4J6Al1v0zVja+DxglApt0Hv9ZPu2AH9kw1DOuQ+qBmyRRodBaB3rL4/yDGSRYIfLF9LhZqu/DF+LIjZ5wAVg22is1RJlU3YKFl91+9KoKu+VbP0Djl6vxk4FF1enCjlnifyT3A418vdGCXvNB8/iDGaT1Sdew4O9svFXPp+c9iT8hP1RUyTjsuFO9x0fOP+NgAiMBy4jTgnOsGP7cyIuYqmpf82vDHcf5/AbadD5x0yZEd7xA4KuLwc54hxtLuq9RD1cDDk8/bjmsesdXUR249W/x84HaR0rR0iXS/t9gmdSPiYVNVV4g91wC/e9vaX3/a44D9UlzZb8Icsg3BkYCYpnUVJNOui3QQ6804+SHw0n/NPn7yZcCrv5N9/PGvF//4W/zNt9T/B4nDAeCVTzwTr3zimcZjRYLTM7eJ3dRP9i0O3W4FAKaaFfzb664Z+LyjBh44HQHjpFzDG+sTMNupOs6OvPRxe/DSx+0x/m5U1fVL1bXnxE/H1WXkBRivBwg9Fz+OT8F7HvG/8H++vhf/ZV0Cp3VI1a1CHD4+0gCwgINLHRXUAwW6OpuBmTpLMAQj24Hf+mr2+UV9xdbJNRwwtVj1kXHg5f9uPcEX32eaGGxGUVodlZHsexwJps4AXn3ncM91HOD5n1zb51z7R2t73RpwVAKnS16YDbwB3PCCS7PPPelSMYaXZ4ADP8lonHSqrmScTmxwo72jWDE3DGgRWtf0kE0frzfjtA4ozKevAkXi8DO3CZZmZrGjPI0qAzycNgRI47TwgJ6c1qBxIqxHVR2QTdUNEs9XwyEZJ/WC8YFCN/IzA4Cf7RdB5RGLw/mxHFVxuP77WLMBT7aPobEJFLQdsrWCtPMvAt33S1Yn+/VM1bFNTiHjp9KfQzBOJQbiqFTVrQZ+Bdh1ufj/PTdnfJzofi8NME907L4CSud0FPVLw+DopOqsVNNxPsc8rEfgVMQ4NSs+ThoXrMD3H5gHsE66gKON5rT4rtJE7OyANVXVEdajqg7ItvoZxI7yVF1uwGqntrjnUB+Qzuk/Z2TgdCQNfglrYZyCuvn7wMCJa5wC1ULowTlhclo4/u3AaXpQ4FTQr24dxeH8WAsDcz8bOBm9JDfDvbiBYK8Nx6WzAZENd3+t9HF62KI2IYy8gA3AOB2NVJ3FOA0Srx4H8MlgzYFTUYkzdLrue5spcHIczTrt/4H4uQqNk30N1qOqDsim6gbZRwzsVWcHGkP2+iLt2qFlUf20PozTGjROq+1xZ/WqI2uFh+aFiL+wOMJO1W19ZP/P4RonXrK3jhonzjYWXn86XzdfeHzcii82Kda95cpacJoMnO76qvBfA5jGqWy58vDBnmvET1lSebwQHI1UXXXM1GGsZ5PfdQLfNQ2qqitCoakegLNkuk4HTpsgVQfowIn0P2vQOKm3WqfAqWmJwwcFugNbrtiB/AAPJwLvWQj0SRWtBjlppYHIOIcP33IFXpZxKoxDXev8pgcETqqvGPPHAoQ2BViXVF018OC7DkLfLWb8ylTduiLTXup4BE47LxFMKznWe6FqE6UMMHsxUrvdzwZCKQ5fD1x5vQgwLnzecT0MYprWNXByHNHV+mg5h68D1oNxym1KKUGB090HRdVWdYD55YYBCcQJa3AOV2+1Xqm6VWqcBjf5tcbjkIzT9Kj5unXRcK2FcfJCiFR/ar5H4Wew9/ZClXJ8UDJOhQwetxrwq6Jite9xyb5iyweEQLwxBXRXtMZp7OT+rx8CtdDDnz33YgSeU7wZocC4KHAqGadVI/RdRN0Ygefk6+GONvwQOOUxuuNGbUK5wvP7vb2BK+vKUbceqE8Cj3sdMLrzuB4GTZpFferWDK5z2oDi8NyGkqtEWNB+BQDO2mYGHJuOcSKsgnGqZDRO65+qc50CITNDLRjAONkpqGE1TiMW47QePk4qcFrFPeI4ps5pFeJweKE6j33zknEqupyOo1mnqbOyPSDzYFsSzN8nflZGhw5QB+GpF+zAtef28S9SjFN+O4+ScVo96Jod16CTF1UxlpibEm9kL6dy1J1AOCqME2DqnDa4OHwYO4I8mIyT+R5nTFuB02ZhnCZsxmltGqfQc40A5kjAq+oG6ZuAIQwwHcdknVapcSIcNx8nwKysWxXjFKjzeHBOapz6BaKkExqUpiPYJpjUPWD8lOGbGB8pcsThlT56xBKDQQHTcb12RuCk71nPddRGeCPrnMpRdwLhmDBOG1wcvlZhPGet7JRQPfSxa7JW+PcNiyNgnHjwPV4PBhp+DgvOOA3zXQ0UhwNmsDF04GQGKOsTOK2hqg6wNITDt1wR4nDx+76FIQInYucGWREQbMaJugfYKeCjCSUOZ33QylTdEYHu7eMqrN95kZYOWCxxnemcNirKUXcCwT8a4nDAZJxOUHF4YVNKibOmNVuzeVJ166NxWi9hOGCKw4dJq9YH+TgBZrpuaI2TyQqti8aJgp7V3iPEODne4BSa5aZNjBM5hw/HOJ0z3HHZjNMcY5yOFdQ1zW+5UjJOqwdtQI7rtfMC4JQrxP+toiraLG1kS4Jy1J1AOHqpus3DOK1V7DhoMiYjTGATMU71LUDQ0L+vsapuvYThgMU4DfFdbR2pYHqkgnN2jBZ/tzyYGFLjNFr11ffoOkAjXIdgeMeF4uf281f3OqqsG4apakwBoycL1sj1MynHvhuH7ecLfdLJjxruuKiyTjFOe8VPOwV8NJGTqivF4UeGcCMETgBw3jPFz5NMh3EqvtnIqbqyqu4EAgVMwyxIq8IGZ5z4BLDWc+esVS7jxATim0bjRF5OB34kfl+Nxomn6tbJNRwwU2/DNKOuBh6++oZr+jMpPJgfknGiZs97D69gtLZOqchH/1fgvGcNHbwpUKpumMILLwBe+S3BTDkOJuoBAs9BLxaMU9+Nwwv+EYjaojXJMMgwTjJwOt6MUykOPyJsCHE4IHr5nflLQGOL8fBfvvAyOA5w0ngN3dbycTq4/ihH3QkE1XJlvScTg3Ha4OLwo8Q4nbVtE6bqAM0O+FWjMmkQ+DVYL9dwwBaHD/dd1UO//zU3xOHDBy2kc1oX80vCaoMmQKfqhtVGhXX1XMdxMM0qBAdqnIYNmgCmcZJtV2aPQ6qO5psyVbduoOu3IZhzK2gCRDHO6VubRoXdRsMGuHIl1gv+0Wi5AlhVdRsvVVdZB43TIPr/jOmmKvXeEBPOsKBFbhX6JsBinNZR49RYpcZpKKyBcQK0zmld2q0cCRTjtDY2lwvd1+2aAnrDtLQfaM9rI8xjGjiVBpjrjQ2TqtvEKK/cCQTawa97qq4yohfeDZiq46m1o9FyBRApo1Mmhd/OpmKcaJFbhb4JOHoaJ844rZsWjxZV118Vo0IeSOvVwHjNII2T7Uk1JLjOaa0bh1w0tgKOC6Qx8MBt4rHquDD7PVZQ320+41S2XFk9NkRV3SZHeeVOIFTlgn5UKE7afdotIjYAjrZzOIHSdfX1EBIfK5BDdGV0VS87WlV1XBy+buwIBfPMgXgYbB8TrxuvHWcWdTXi8BwYgdN6bpo8H2hMi//f903x81gKwwHVioN7XfGxuanY3w2CknE6cpTi8BMIT79wJ368bxHPedSu9X/zJ/w+8NMvAbsuX//3PkKE65KqG+BQDeC3rz4dgefiyef3cTreaDjjF4Hznw2c/dRVvYwHo+vlGg6IoDT0XXSjZP2YUUrVrULfBADXXXgSvnPfPF782FPX5zjWCqXjWVsAx9vHrNUAthAj24GlfcB93xC/H8s0HQBc9OvA/P3ABc9VD5VVdUeGDSMO38QoA6cTCKdONfAXv37J0Xnz854l/m1ArIc4vJ9zOOHS3RO4dPf6tJo4ZghqwLM+uuqX8Ws6ts6MTLPi43DUPTqM0yqwfax69O6X1eAIGScuDl+rAWwhRnYAD90J3P9t8fuxNL8EgG3nAM/+W+Mh33XgOECalqzJWkDO6+W1WzvKK1di04MmgCNhMEr634RRVddYXw0QCcSHsSMYCsQ4raWibSMgWIUdQQ62HW3GCdCd7I914JQDx3E2RtuQTYoyVXfkKK9ciU0PmkSPpNN3KTg1Yfo4rS/j1JBeTuuWqqOAY50azx5zrMbHKQdHTeMEmFYkwLFP1RUgLAXOawZdszJVt3aUV67EpgftnI6komhQy5WHG46WOBzQlXXHO1W3YbBaHycL20aOUlUdAIxsM38/1uLwApSsydpRXrsjR3nlSmx6bG1WEHgOto+t3Zyz9IYxMdkIEfoudoxV171Kkyrr1q0Z9dhJ4ueW09fn/Y41xmQxx+hJa3r5aE23jznqjNPYUSg8WQN2jFfhOMD20Y1nyLvRsUPOkzvGNl6F9GZBKQ4vsekx0QjxmVdceUR+PCXjZGKkGuCzr7jSMKxcL2jGaZ2u81WvBU69Cth95fq837HGI58OvOhzwElrE6rz9jHrHzixCtL61Kr9wI4WPvqiy7B/oYOd4+Xiv1q88IrdeOSO0c1X6LKBsClWiA996EM47bTTUK1Wcemll+Lmm28+3odUYoPhvJPGsEsaVK4FpTg8i3N2jmL3lsbgJ64SShy+Xot8WAf2XLNmA8njDtcD9ly9unYoFkggfiQ6v1xwxmmD6JsAwZZctGv8eB/GpkTF93DlGVMbuqXJRseGXyH+4R/+Addffz3e/OY344477sDjHvc4PPnJT8bevXuP96GVOIFQisOPHShVt+4O9w9jUPuY9XYjQH0KcOQCu4ECpxIljic2/Arxvve9D7/5m7+Jl770pXjkIx+J97///di1axduuOGG431oJU4ghEwjsu7pjhIGKFW37p5DD2OQQHzdx67r6nTdBhGGlyhxvLGhA6dut4vbbrsN1157rfH4tddei1tvvTX3NZ1OBwsLC8a/EiUGgYTK6yZYLlGIxnprnEroVN16V9UBOnAqGacSJQBs8MDp4MGDiOMY27aZJbHbtm3Dvn37cl/zzne+E2NjY+rfrl0bowqkxMbGKZN1XLZ7As+4aG2VTSWGx+POnMLuLXVce862wU8uMRSecPY0dm+p45fOPQrtgC54DjC5R7TvKVGiBJw0TdPjfRBFePDBB3HSSSfh1ltvxRVXXKEe/+M//mP83d/9HX784x9nXtPpdNDpdNTvCwsL2LVrF+bn5zE6urpGpyVKlChRokSJ44OFhQWMjY1tuPV7Q9sRTE1NwfO8DLs0MzOTYaEIlUoFlcrajORKlChRokSJEiX6YUOn6sIwxKWXXoobb7zRePzGG2/EYx/72ON0VCVKlChRokSJhys2NOMEAK997Wvxwhe+EJdddhmuuOIKfOQjH8HevXvxspe97HgfWokSJUqUKFHiYYYNHzg95znPwaFDh/D2t78dDz30EM477zz83//7f7F7d1kaW6JEiRIlSpQ4ttjQ4vD1wEYVl5UoUaJEiRIlirFR1+8NrXEqUaJEiRIlSpTYSCgDpxIlSpQoUaJEiSFRBk4lSpQoUaJEiRJDogycSpQoUaJEiRIlhkQZOJUoUaJEiRIlSgyJMnAqUaJEiRIlSpQYEmXgVKJEiRIlSpQoMSTKwKlEiRIlSpQoUWJIlIFTiRIlSpQoUaLEkNjwLVeOFGSMvrCwcJyPpESJEiVKlCgxLGjd3mgNTk74wOnQoUMAgF27dh3nIylRokSJEiVKrBaLi4sYGxs73oehcMIHTpOTkwCAvXv3bqgLv55YWFjArl27cN99922ofj7rhRP9/IDyHE8EnOjnB5TneKJgs5xjmqZYXFzEzp07j/ehGDjhAyfXFTKusbGxDT1A1gOjo6Mn9Dme6OcHlOd4IuBEPz+gPMcTBZvhHDci4VGKw0uUKFGiRIkSJYZEGTiVKFGiRIkSJUoMiRM+cKpUKnjrW9+KSqVyvA/lqOFEP8cT/fyA8hxPBJzo5weU53ii4OFwjkcTTrrR6vxKlChRokSJEiU2KE54xqlEiRIlSpQoUWK9UAZOJUqUKFGiRIkSQ6IMnEqUKFGiRIkSJYZEGTiVKFGiRIkSJUoMiRM6cPrQhz6E0047DdVqFZdeeiluvvnm431Ia8Y73/lOPOpRj8LIyAimp6fxjGc8Az/5yU+M56Rpire97W3YuXMnarUarrnmGvzgBz84Tkd8ZHjnO98Jx3Fw/fXXq8dOhPN74IEH8IIXvABbtmxBvV7HRRddhNtuu039fbOfYxRFeMtb3oLTTjsNtVoNe/bswdvf/nYkSaKes9nO8Wtf+xqe/vSnY+fOnXAcB5/97GeNvw9zPp1OB7/7u7+LqakpNBoNXHfddbj//vuP4VkUo9/59Xo9vOlNb8L555+PRqOBnTt34kUvehEefPBB4z028vkBg79Djt/+7d+G4zh4//vfbzx+Ipzjj370I1x33XUYGxvDyMgIHvOYx2Dv3r3q7xv9HDcKTtjA6R/+4R9w/fXX481vfjPuuOMOPO5xj8OTn/xkY5BsJtx00034nd/5HXz961/HjTfeiCiKcO2112J5eVk95z3veQ/e97734YMf/CC+9a1vYfv27XjSk56ExcXF43jkq8e3vvUtfOQjH8EFF1xgPL7Zz292dhZXXnklgiDAP//zP+OHP/wh/vRP/xTj4+PqOZv9HN/97nfjwx/+MD74wQ/iRz/6Ed7znvfgv//3/44PfOAD6jmb7RyXl5dx4YUX4oMf/GDu34c5n+uvvx6f+cxn8MlPfhK33HILlpaW8LSnPQ1xHB+r0yhEv/NbWVnB7bffjj/8wz/E7bffjk9/+tP46U9/iuuuu8543kY+P2Dwd0j47Gc/i2984xu5LT42+zn+/Oc/x1VXXYWzzz4bX/3qV/Gd73wHf/iHf4hqtaqes9HPccMgPUHx6Ec/On3Zy15mPHb22Wenv/d7v3ecjmh9MTMzkwJIb7rppjRN0zRJknT79u3pu971LvWcdrudjo2NpR/+8IeP12GuGouLi+mZZ56Z3njjjenVV1+dvvrVr07T9MQ4vze96U3pVVddVfj3E+Ecn/rUp6a/8Ru/YTz2zGc+M33BC16QpunmP0cA6Wc+8xn1+zDnMzc3lwZBkH7yk59Uz3nggQdS13XTf/mXfzlmxz4M7PPLwze/+c0UQHrvvfemabq5zi9Ni8/x/vvvT0866aT0+9//frp79+70f/yP/6H+diKc43Oe8xx1H+Zhs53j8cQJyTh1u13cdtttuPbaa43Hr732Wtx6663H6ajWF/Pz8wB0E+O7774b+/btM865Uqng6quv3lTn/Du/8zt46lOfil/8xV80Hj8Rzu9zn/scLrvsMvzar/0apqencfHFF+OjH/2o+vuJcI5XXXUV/u3f/g0//elPAQDf+c53cMstt+ApT3kKgBPjHDmGOZ/bbrsNvV7PeM7OnTtx3nnnbcpznp+fh+M4iik9Ec4vSRK88IUvxBve8Aace+65mb9v9nNMkgT/9E//hLPOOgu/9Eu/hOnpaVx++eVGOm+zn+OxxAkZOB08eBBxHGPbtm3G49u2bcO+ffuO01GtH9I0xWtf+1pcddVVOO+88wBAnddmPudPfvKTuP322/HOd74z87cT4fzuuusu3HDDDTjzzDPxxS9+ES972cvwqle9Cv/zf/5PACfGOb7pTW/C8573PJx99tkIggAXX3wxrr/+ejzvec8DcGKcI8cw57Nv3z6EYYiJiYnC52wWtNtt/N7v/R6e//znq+awJ8L5vfvd74bv+3jVq16V+/fNfo4zMzNYWlrCu971LvzyL/8yvvSlL+FXf/VX8cxnPhM33XQTgM1/jscS/vE+gKMJx3GM39M0zTy2GfHKV74S3/3ud3HLLbdk/rZZz/m+++7Dq1/9anzpS18ycu42Nuv5AWLXd9lll+FP/uRPAAAXX3wxfvCDH+CGG27Ai170IvW8zXyO//AP/4CPf/zj+Pu//3uce+65uPPOO3H99ddj586dePGLX6yet5nPMQ9rOZ/Nds69Xg/Pfe5zkSQJPvShDw18/mY5v9tuuw1/9md/httvv33Vx7tZzpGKM37lV34Fr3nNawAAF110EW699VZ8+MMfxtVXX1342s1yjscSJyTjNDU1Bc/zMlHyzMxMZme42fC7v/u7+NznPoevfOUrOPnkk9Xj27dvB4BNe8633XYbZmZmcOmll8L3ffi+j5tuugl//ud/Dt/31Tls1vMDgB07duCcc84xHnvkIx+pChY2+3cIAG94wxvwe7/3e3juc5+L888/Hy984Qvxmte8RrGIJ8I5cgxzPtu3b0e328Xs7GzhczY6er0env3sZ+Puu+/GjTfeqNgmYPOf380334yZmRmccsopau6599578brXvQ6nnnoqgM1/jlNTU/B9f+D8s5nP8VjihAycwjDEpZdeihtvvNF4/MYbb8RjH/vY43RUR4Y0TfHKV74Sn/70p/HlL38Zp512mvH30047Ddu3bzfOudvt4qabbtoU5/wLv/AL+N73voc777xT/bvsssvw67/+67jzzjuxZ8+eTX1+AHDllVdmLCR++tOfYvfu3QA2/3cIiCos1zWnFc/z1I73RDhHjmHO59JLL0UQBMZzHnroIXz/+9/fFOdMQdPPfvYz/Ou//iu2bNli/H2zn98LX/hCfPe73zXmnp07d+INb3gDvvjFLwLY/OcYhiEe9ahH9Z1/Nvs5HlMcH0360ccnP/nJNAiC9K/+6q/SH/7wh+n111+fNhqN9J577jneh7YmvPzlL0/HxsbSr371q+lDDz2k/q2srKjnvOtd70rHxsbST3/60+n3vve99HnPe166Y8eOdGFh4Tge+drBq+rSdPOf3ze/+c3U9/30j//4j9Of/exn6Sc+8Ym0Xq+nH//4x9VzNvs5vvjFL05POumk9Atf+EJ69913p5/+9KfTqamp9I1vfKN6zmY7x8XFxfSOO+5I77jjjhRA+r73vS+94447VFXZMOfzspe9LD355JPTf/3Xf01vv/329IlPfGJ64YUXplEUHa/TUuh3fr1eL73uuuvSk08+Ob3zzjuNuafT6aj32Mjnl6aDv0MbdlVdmm7+c/z0pz+dBkGQfuQjH0l/9rOfpR/4wAdSz/PSm2++Wb3HRj/HjYITNnBK0zT9i7/4i3T37t1pGIbpJZdcokr3NyMA5P772Mc+pp6TJEn61re+Nd2+fXtaqVTSxz/+8en3vve943fQRwg7cDoRzu/zn/98et5556WVSiU9++yz04985CPG3zf7OS4sLKSvfvWr01NOOSWtVqvpnj170je/+c3GIrvZzvErX/lK7r334he/OE3T4c6n1Wqlr3zlK9PJycm0VqulT3va09K9e/ceh7PJot/53X333YVzz1e+8hX1Hhv5/NJ08HdoIy9wOhHO8a/+6q/SM844I61Wq+mFF16YfvaznzXeY6Of40aBk6ZpenQ5rRIlSpQoUaJEiRMDJ6TGqUSJEiVKlChR4migDJxKlChRokSJEiWGRBk4lShRokSJEiVKDIkycCpRokSJEiVKlBgSZeBUokSJEiVKlCgxJMrAqUSJEiVKlChRYkiUgVOJEiVKlChRosSQKAOnEiVKbHq87W1vw0UXXXRE73HPPffAcRzceeed63JMJUqUODFRBk4lSpQ4pnjJS14Cx3HgOA6CIMCePXvw+te/HsvLy2t+z9e//vX4t3/7t3U8yhIlSpTIh3+8D6BEiRIPP/zyL/8yPvaxj6HX6+Hmm2/GS1/6UiwvL+OGG25Y1fukaYo4jtFsNtFsNo/S0ZYoUaKERsk4lShR4pijUqlg+/bt2LVrF57//Ofj13/91/HZz34WaZriPe95D/bs2YNarYYLL7wQn/rUp9TrvvrVr8JxHHzxi1/EZZddhkqlgptvvjmTqkuSBG9/+9tx8skno1Kp4KKLLsK//Mu/GMfwzW9+ExdffDGq1Souu+wy3HHHHcfq9EuUKLGJUTJOJUqUOO6o1Wro9Xp4y1vegk9/+tO44YYbcOaZZ+JrX/saXvCCF2Dr1q24+uqr1fPf+MY34r3vfS/27NmD8fFx3HTTTcb7/dmf/Rn+9E//FH/5l3+Jiy++GH/913+N6667Dj/4wQ9w5plnYnl5GU972tPwxCc+ER//+Mdx991349WvfvWxPu0SJUpsQpSBU4kSJY4rvvnNb+Lv//7v8YQnPAHve9/78OUvfxlXXHEFAGDPnj245ZZb8Jd/+ZdG4PT2t78dT3rSkwrf873vfS/e9KY34bnPfS4A4N3vfje+8pWv4P3vfz/+4i/+Ap/4xCcQxzH++q//GvV6Heeeey7uv/9+vPzlLz+6J1uiRIlNjzJwKlGixDHHF77wBTSbTURRhF6vh1/5lV/B61//enzqU5/KBETdbhcXX3yx8dhll11W+N4LCwt48MEHceWVVxqPX3nllfjOd74DAPjRj36ECy+8EPV6Xf2dgrUSJUqU6IcycCpRosQxxxOe8ATccMMNCIIAO3fuRBAE+MY3vgEA+Kd/+iecdNJJxvMrlYrxe6PRGPgZjuMYv6dpqh5L0/RIDr9EiRIPY5SBU4kSJY45Go0GzjjjDOOxc845B5VKBXv37jXScqvF6Ogodu7ciVtuuQWPf/zj1eO33norHv3oR6vP+ru/+zu0Wi3UajUAwNe//vU1f2aJEiUePigDpxIlSmwIjIyM4PWvfz1e85rXIEkSXHXVVVhYWMCtt96KZrOJF7/4xUO/1xve8Aa89a1vxemnn46LLroIH/vYx3DnnXfiE5/4BADg+c9/Pt785jfjN3/zN/GWt7wF99xzD9773vcerVMrUaLECYQycCpRosSGwR/90R9henoa73znO3HXXXdhfHwcl1xyCf7gD/5gVe/zqle9CgsLC3jd616HmZkZnHPOOfjc5z6HM888EwDQbDbx+c9/Hi972ctw8cUX45xzzsG73/1uPOtZzzoap1WiRIkTCE5aJvtLlChRokSJEiWGQmmAWaJEiRIlSpQoMSTKwKlEiRIlSpQoUWJIlIFTiRIlSpQoUaLEkCgDpxIlSpQoUaJEiSFRBk4lSpQoUaJEiRJDogycSpQoUaJEiRIlhkQZOJUoUaJEiRIlSgyJMnAqUaJEiRIlSpQYEmXgVKJEiRIlSpQoMSTKwKlEiRIlSpQoUWJIlIFTiRIlSpQoUaLEkCgDpxIlSpQoUaJEiSHx/wfp6YUXqFjaSgAAAABJRU5ErkJggg==",
2711
      "text/plain": [
2712
       "<Figure size 640x480 with 1 Axes>"
2713
      ]
2714
     },
2715
     "metadata": {},
2716
     "output_type": "display_data"
2717
    }
2718
   ],
2719
   "source": [
2720
    "#Line plot gender vs amt_weekends\n",
2721
    "gender=smokers[['gender','amt_weekends']]\n",
2722
    "gender_male=gender.loc[(gender['gender']==\"Male\")]\n",
2723
    "gender_male=gender_male[['amt_weekends']]\n",
2724
    "gender_male.columns=[\"Male\"]\n",
2725
    "gender_female=gender.loc[(gender['gender']==\"Female\")]\n",
2726
    "gender_female=gender_female[['amt_weekends']]\n",
2727
    "gender_female.columns=[\"Female\"]\n",
2728
    "gender_male=gender_male.reset_index(drop=True)\n",
2729
    "gender_female=gender_female.reset_index(drop=True)\n",
2730
    "genders=pd.concat([gender_male, gender_female],axis=1)\n",
2731
    "lines=genders.plot.line()\n",
2732
    "lines.set_xlabel(\"Period\")\n",
2733
    "lines.set_ylabel(\"Amount (Weekends)\")\n",
2734
    "lines.set_title(\"Figure 11: Line Plot for Gender and Amount Smoked on Weekends\")\n",
2735
    "lines.set_xlim([0,175])"
2736
   ]
2737
  },
2738
  {
2739
   "cell_type": "markdown",
2740
   "id": "07801f8d",
2741
   "metadata": {},
2742
   "source": [
2743
    "```Figure 6``` above shows the histogram plot for the variables gender and smoke. In this plot, we can observe that there are more female smoke cigarettes than males. Although the difference may seem large with non-smokers, there is not much difference for smokers between male and female. ```Figure 7``` shows the histogram for highest qualification and smoke. The plot indicates that the top 2 smokers are with no qualification and GCSE/ O-Level. Interestingly, Although respondents with a degree have a higher non-smoker count than GCSE/ O-Level, there are still lesser smokers when the two is compared. ```Figure 8``` shows the histogram plot for ethnicity and smoke. Here we can observe that most respondents who are non-smokers and smokers fall under the \"White\" category. ```Figure 9``` shows the histogram plot for gross income and smoke. In this plot, non-smokers are highest within the £5,200 to £10,400 category, and second highest being in the £2,600 to £5,200 category. Smokers are highest within the £5,200 to £10,400 category, however second highest smokers fall under the £10,400 to £15,600 category. ```Figure 10``` shows the line plot for gender and amount smoked on weekdays. Since there are more data for female, we have limit the output to 175 only. From the plot we can observe that male smokers smoke significantly more on weekdays. ```Figure 11``` shows the line plot for gender and amount smoked on weekends. Similarly to weekdays, male respondents smoke more when compared to female respondents.\n",
2744
    "\n",
2745
    "### 5.4 Three-Variable <a class=\"anchor\" id=\"5.4\"></a>\n",
2746
    "\n",
2747
    "In this section we will look and compare between 3 variables within the data set."
2748
   ]
2749
  },
2750
  {
2751
   "cell_type": "code",
2752
   "execution_count": 50,
2753
   "id": "dc6ae13a",
2754
   "metadata": {
2755
    "scrolled": false
2756
   },
2757
   "outputs": [
2758
    {
2759
     "data": {
2760
      "text/plain": [
2761
       "Text(41.60538975694445, 0.5, 'Amount (Weekdends)')"
2762
      ]
2763
     },
2764
     "execution_count": 50,
2765
     "metadata": {},
2766
     "output_type": "execute_result"
2767
    },
2768
    {
2769
     "data": {
2770
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAApMAAAH+CAYAAADAlIXkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADhd0lEQVR4nOzdd3gUVdsH4N/Z3tIrCaGHEjrSEZIoJTRFRWkKCGL/EBvqqy+CIig2Xhs2FFAQbKACEkAJvXcIvYZACIS0zfad8/0xZJPNJmR3UzYJz31dEXPmzMyZzezss6cyzjkHIYQQQgghXpD4ugCEEEIIIaT2omCSEEIIIYR4jYJJQgghhBDiNQomCSGEEEKI1yiYJIQQQgghXqNgkhBCCCGEeI2CSUIIIYQQ4jUKJgkhhBBCiNcomCSEEEIIIV7zKJhcsGABGGOl/rz00ks4f/48GGNYsGBBFRW3auXn52Pq1Kno378/wsLCwBjD9OnTXfLZ7XZ89NFHSEpKQv369aHRaNCqVSu8+uqryMnJqVAZ0tLS8PTTT6N58+ZQq9UIDg5G27ZtMWnSJKSlpVXo2GW5fPkypk+fjgMHDrhsW716damvQU3RqFEjjB8/3uP9DAYDpk+fjpSUFLf32b9/P+Lj4xEQEADGGObOnevxeb1x/fp1KJVKMMawZ8+eajlndUpNTcX06dNx/vx5j/Z76623EBcXB0EQYLfbERgYiIEDB7rk+/jjj8EYw6hRo1y2vf3222CM4dChQ94Wv0yFz8MPPvig0o/tjZSUFDDGPLrnrVYrmjZtWqn3eqdOnWrU61KZvHmuAMDmzZuhVCpx4cIFAMCQIUPg5+cHm83mlG///v1gjKFevXqlHoMxhk8++cTr8t9Ko0aNMGTIEK/2rSmxwSOPPIJhw4ZVyrG2bNmCUaNGoUGDBlAqldBqtWjdujVefPFFHD9+vFLO4Y2y4paq5lXN5Pfff4/t27c7/UyePBn16tXD9u3bMXjw4MouZ7XIysrC119/DbPZfMsbzmg0Yvr06WjYsCHmzp2L1atXY9KkSfj666/Rq1cvGI1Gr85/6dIldOrUCevWrcMLL7yA1atX47vvvsOoUaOwe/dunD171ssru7XLly9jxowZZQaTM2bMqJLz+pLBYMCMGTM8euhPmDABV65cwdKlS7F9+3aMHDmy6gpYzA8//ACLxQIAmD9/frWcszqlpqZixowZHgWTly9fxpw5c/DWW29BIpFAKpWid+/e2LJli8sHcEpKCrRaLTZs2OBynJSUFISEhKBt27YVvYw6SS6XY9q0aXjrrbeQlZVV4eMdOHAA+/fvB1A372Vvniucc0yZMgWTJk1Cw4YNAQCJiYnQ6/UuXx4L7+WMjAyXgKXwnImJiRW6hrps+vTpWLVqFf79998KHeeNN95A7969ceHCBbzxxhtYs2YNVqxYgQkTJmDdunVo1aoV7HZ7JZW6luAe+P777zkAvnv3bk92qxYFBQUVPoYgCFwQBM4559euXeMA+JtvvumSz2az8evXr7uk//LLLxwA/+GHH7w6/7Rp0zgAfvbs2VK32+12r45bnt27d3MA/Pvvv3fZ9swzz3APbxO3VMbfi3POGzZsyMeNG+fxfrf6+5ZFJpPxp556yuNzlcVisXCr1VpuvjZt2vDw8HDepUsXHhAQwA0GQ6WVoSYofN9s2LDB7X2mTp3Ko6Ojnd4TH374IQfAt2/f7kiz2+08KCiIv/TSSxwAT01NdWwzm81crVbzBx54oFKuo6Rz585xAPz999+vkuN7asOGDR6/zpyLr1NwcDB/5513KlyGwufJ4MGDOQC+devWCh+zJvHmubJ69WoOgB8/ftyRtnfvXg6Az5492ynvPffcw0ePHs3r1avHv/jiC6dtd911Fw8NDXV8hlW2hg0b8sGDB3u1b+F7obTPmOo2ZMgQ3q9fP6/3X7JkCQfAn3zyyVJfa0EQ+GeffcZtNltFiuk1T++/W3H3M4pzziu1z2RZVdl//PEH2rVrB6VSiSZNmuB///sfpk+fDsZYufsCrtW2hfvu27cPw4cPR1BQEJo2bQpA/Jb3xRdfoEOHDlCr1QgKCsLw4cPdqtUrbLIvj1QqRUhIiEt6165dAcDr5uisrCxIJBKEh4eXul0icf5z7dy5E0OHDkVISAhUKhWaNm2KKVOmOLafPn0ajz76KGJjY6HRaBAdHY2hQ4fi8OHDjjwpKSno0qULAODRRx91vAbTp0/H+PHj8fnnnwOAU5eGwhokd1/rhIQEtGnTBps2bULPnj2h0WgwYcKEMl+H8ePHQ6fT4ejRo7j77ruh1WoRFhaGZ599FgaDodzX8eLFi3j44YcRHh4OpVKJVq1a4cMPP4QgCADEey0sLAwAMGPGDMd1ldVcXti9w2azYd68eS73yZEjR3DvvfciKCgIKpUKHTp0wMKFC52OUdjE+MMPP+DFF19EdHQ0lEolTp8+fctr2blzJ44cOYJHHnkEkyZNQm5uLn777TeXfIWv8fbt29GzZ0+o1Wo0atQI33//PQBg1apV6NSpEzQaDdq2bYs1a9a4HGPLli24++674efnB41Gg549e2LVqlVOeUq+b0u+RsVrFwubxdasWYNOnTpBrVajZcuW+O6775z2e/DBBwGINSqFr+2tmsMsFgvmz5+P0aNHO70nCmtkitcKHTx4ENnZ2Xj88cdRr149p9rJnTt3wmg0OtXk7NmzB/fccw+Cg4OhUqnQsWNH/Pzzzy5lyMjIwBNPPIH69etDoVCgcePGmDFjhkutaElWqxXjxo2DTqfDypUrAXj+Ptq9ezd69+4NjUaDJk2a4N1333Xc24WOHz+OpKQkaDQahIaG4sknn0R+fr5Lefbv348hQ4Y43itRUVEYPHgwLl265MijUCgwYsQIfP311xA/q7xjMpmwZMkS3HHHHfj4448BwOleKFR4jx06dAgPPvggAgICEBwcjBdeeAE2mw0nTpxAUlIS/Pz80KhRI8yZM8flGOU9A4Cym/1L+ywqfCadPn0agwYNgk6nQ0xMDF588UWYzWbHfp48VwrNmzcPXbp0QYsWLRxpHTp0QFBQkFPZBEHA5s2bkZCQgPj4eKd72WKxYPv27UhISHC8P929Ry0WC2bOnImWLVtCqVQiLCwMjz76KK5du3bLcgPAF198AZlMhjfffNORdvnyZTz00EPw8/NDQEAARowYgYyMDJd99+zZg5EjR6JRo0aO59WoUaMcTf2Fr6lMJsPs2bNd9t+0aRMYY/jll18AANeuXcPjjz+OmJgYx3X06tUL69evd9rvkUcewfr163HmzJlyr680M2fORGhoqKP7TEmMMTzzzDOQSqVO6evXr8fdd98Nf39/aDQa9OrVC//8849TnsJ7/+jRoxg1ahQCAgIQERGBCRMmIDc31ylvXl4eJk2ahJCQEOh0OiQlJeHkyZOllvnUqVMYPXq00/uh8LO9kLefUQ6eRKmFNZM7duzgVqvV6Yfz0r99/P3331wikfCEhAS+fPly/ssvv/Bu3brxRo0aOdV43eqbC0pE2m+++SYHwBs2bMhfeeUVvm7dOr5ixQrOOeeTJk3icrmcv/jii3zNmjV8yZIlvGXLljwiIoJnZGS4fa3efMMsfH3++OMPp/T4+Hi3avd+/PFHDoD379+fr1mzhufm5paZd82aNVwul/N27drxBQsW8H///Zd/9913fOTIkY48Gzdu5C+++CL/9ddf+caNG/ny5cv5sGHDuFqtdnwLzs3NdZT7jTfe4Nu3b+fbt2/naWlp/PTp03z48OGO2p7CH5PJxDl3/7WOj4/nwcHBPCYmhn/66ad8w4YNfOPGjWVe27hx47hCoeANGjTg77zzDl+7di2fPn06l8lkfMiQIU55S9ZMZmZm8ujoaB4WFsa//PJLvmbNGv7ss89yAI5aRZPJxNesWcMB8IkTJzqu6/Tp06WWJzMzk2/fvp0D4MOHD3fk55zz48ePcz8/P960aVO+aNEivmrVKj5q1CgOgL/33nuOYxTWCkVHR/Phw4fzP//8k69cuZJnZWWV+ToUvsYA+NGjR3leXh7XaDQ8ISHBJV98fDwPCQnhLVq04PPnz+fJycl8yJAhHACfMWMGb9u2Lf/pp5/46tWreffu3blSqeTp6emO/VNSUrhcLud33HEHX7ZsGV+xYgXv378/Z4zxpUuXOvIVvvdKKryHzp075/S3qV+/Po+Li+OLFi3iycnJ/MEHH+QAHH//zMxMPmvWLA6Af/75547XNjMzs8zXZNOmTRwAX716tVN6YS1k//79HWkffvghr1evHuec8xEjRvAHH3zQsW3GjBmO15Zzzv/991+uUCh47969+bJly/iaNWv4+PHjXZ5LV65c4TExMbxhw4b8q6++4uvXr+dvv/02VyqVfPz48Y58JWsms7OzeWJiIo+MjOR79uxx5PPkfRQSEsJjY2P5l19+ydetW8effvppDoAvXLjQkS8jI4OHh4fz6Oho/v333/PVq1fzMWPG8AYNGjjVTOr1eh4SEsI7d+7Mf/75Z75x40a+bNky/uSTTzrV4HLO+bJlyzgAfujQoTL/LuVZvHix4+/MOed33nkn1+l0PD8/3ylf4T3WokUL/vbbb/N169bxqVOncgD82Wef5S1btuSffPIJX7duHX/00Uc5AP7bb7859nfnGcB52TW1pX0WFT6TWrVqxT/44AO+fv16Pm3aNM4Y4zNmzOCce/5c4byodnzq1Kku2+69916u1Wodn6+FtZUnTpzg8+bN4+Hh4Y68GzdudHpt3b1H7XY7T0pK4lqtls+YMYOvW7eOf/vttzw6OprHxcU5tYIUr5kUBIG/+OKLXC6XO71OBoOBt2rVigcEBPBPP/2UJycn88mTJzvuveJ5f/nlFz5t2jS+fPlyvnHjRr506VIeHx/Pw8LC+LVr1xz57rvvPt6gQQOXmr4HH3yQR0VFOV6fAQMG8LCwMP7111/zlJQUvmLFCj5t2jSn5xfnnF+9epUD4J988kmZf5eypKencwB81KhRHu33ww8/cMYYHzZsGP/999/5X3/9xYcMGcKlUilfv369I1/xe3/atGl83bp1/KOPPuJKpZI/+uijjnyCIPDExESuVCodn5Fvvvkmb9KkiUvccvToUR4QEMDbtm3LFy1axNeuXctffPFFLpFI+PTp0x35vP2MKuRVMFnaj9VqLfVN2KVLFx4TE8PNZrMjLT8/n4eEhFQ4mJw2bZpTvsIP/A8//NApPS0trcw3bFk8DSYvXbrEIyIieOfOnV2ao++66y4ulUrLPYYgCPyJJ57gEomEA+CMMd6qVSv+/PPPO31Ic85506ZNedOmTbnRaHT3krjNZuMWi4XHxsby559/3pHuTTO3J691YTD9zz//uFXOcePGcQD8f//7n1P6O++8wwHwLVu2ONJKBpOvvvoqB8B37tzptO9TTz3FGWP8xIkTnHPvviwA4M8884xT2siRI7lSqeQXL150Sh84cCDXaDQ8JyeHc170Ru3Tp4/b5ysoKOD+/v68e/fujrRx48ZxxpjLB1Tha1w8SMnKyuJSqZSr1WqnwPHAgQMuD9Pu3bvz8PBwpw92m83G27Rpw+vXr+9ozvE0mFSpVPzChQuONKPRyIODg/kTTzzhSPO0mfu9997jAEr9cjhs2DCnD+ChQ4c6vmB98cUXPCwszHEtiYmJTh/ILVu25B07dnRp1hkyZAivV6+e4339xBNPcJ1O53RdnHP+wQcfOAWnxYPJc+fO8bi4OB4XF8fPnz/v2Meb91HJezsuLo4PGDDA8fsrr7zCGWP8wIEDTvn69evn9Drv2bOHA3B8Eb+VU6dOcQB83rx55eYty1133cVVKhXPzs7mnBfdM/Pnz3fKV3iPlXxNOnTowAHw33//3ZFmtVp5WFgYv//++x1p7j4DPA0mAfCff/7ZKe+gQYN4ixYtHL97+lzZuXMnB+AS8HDO+dy5czkAvm3bNs658xej1NRUDoAfOXKEc170xajwS4C79+hPP/3kEoxzXvSZULwpvTCYNBgM/IEHHuABAQFOgRDnnM+bN6/UCpXCL8W3aua22Wxcr9dzrVbr9Owv/DstX77ckZaens5lMpkjkOecc51Ox6dMmVLm8YuLjo7mI0aMcCtvcTt27OAA+Kuvvlpq+YtXsBU+ZwoKCnhwcDAfOnSoU3673c7bt2/Pu3bt6kgrvPfnzJnjlPfpp5/mKpXKccy///77lp+Rxe+/AQMG8Pr167tUTj377LNcpVLxGzducM69+4wqzqtm7kWLFmH37t1OPzKZzCVfQUEB9uzZg2HDhkGhUDjSdTodhg4d6s2pnTzwwANOv69cuRKMMTz88MOw2WyOn8jISLRv397jEXbuunHjBgYNGgTOOZYtW+bSHP3PP/+U2/wFiNXjX375Jc6ePYsvvvgCjz76KKxWKz7++GO0bt0aGzduBACcPHkSZ86cwcSJE6FSqco8ns1mw6xZsxAXFweFQgGZTAaFQoFTp07h2LFjFbpmT1/roKAg3HXXXR6dY8yYMU6/jx49GgBKHUhR6N9//0VcXJyjy0Gh8ePHg3Ne4Y7XpZ3v7rvvRkxMjMv5DAYDtm/f7pRe8p69lZ9//hl5eXlOXQImTJgAzrmj+bq4evXq4Y477nD8HhwcjPDwcHTo0AFRUVGO9FatWgGAozmpoKAAO3fuxPDhw6HT6Rz5pFIpHnnkEVy6dAknTpxwu9zFdejQAQ0aNHD8rlKp0Lx5c6emLE9dvnwZjDGEhoa6bEtMTERBQQF2797t1CwIAPHx8bh27RqOHj0Ks9mMHTt2OJq4T58+jePHjzvuueL39KBBg3DlyhXHa7By5UokJiYiKirKKV/hSPLC92mhffv2oXv37oiIiMDWrVsdgywKj+XJ+ygyMtLl3m7Xrp3T67lhwwa0bt0a7du3d8pX+P4p1KxZMwQFBeGVV17Bl19+idTU1DJf88KuN+np6WXmuZVz585hw4YNuP/++xEYGAgAePDBB+Hn51dqUzcAl5HDrVq1AmPMacS+TCZDs2bNnK6/qp4BjDGXz62Sr72nLl++DACldm0q2W0jJSUF8fHxAMTXIjw83PEsTElJQUREhOO97e49unLlSgQGBmLo0KFO+Tp06IDIyEiX+y8rKwt33XUXdu3a5egWU9yGDRvg5+eHe+65xym95L0HAHq9Hq+88gqaNWsGmUwGmUwGnU6HgoICp8+nhIQEtG/f3qlZ9ssvvwRjDI8//rgjrWvXrliwYAFmzpyJHTt2wGq1lvaSAxBfb2/v5bKEhIRALpc7fgq7I23btg03btzAuHHjnF5jQRCQlJSE3bt3o6CgwOlYJV+/du3awWQyITMzE0DRZ2BZn5GFTCYT/vnnH9x3333QaDQuzzWTyYQdO3Y47ePJZ1RxXgWTrVq1QufOnZ1+SpOdnQ3OOSIiIly2lZbmqZLTI1y9etVxvuJ/VLlcjh07duD69esVPmdJ2dnZ6NevH9LT07Fu3To0adKkwsds2LAhnnrqKcyfPx+nTp3CsmXLYDKZ8PLLLwOAoy9L/fr1b3mcF154Af/9738xbNgw/PXXX9i5cyd2796N9u3bez3ivJCnr3VpU1ncikwmc+mXGhkZCQC3HFWalZVV6rkKg6nKGJFakfN58jrMnz8fKpUKSUlJyMnJQU5ODtq1a4dGjRphwYIFLqMFg4ODXY6hUChc0gu/2JlMJgBF79OqeN1K61usVCordP8ZjUbI5XKXPklA0Qfwhg0bsH//fuTk5Dg+gOPi4hAWFoaUlBTs2LHDqb/k1atXAQAvvfSSy/389NNPA4Djnr569Sr++usvl3ytW7d2yldo3bp1uHr1Kh577DFHIFXI0/eRO69nVlaW471SXMm0gIAAbNy4ER06dMB//vMftG7dGlFRUXjzzTddPogLv7R6+3f77rvvwDnH8OHDHfey1WrFPffcg61bt5Y6lUpp961Go3H5Aq1QKBz3MlB1z4DSzq1UKp3O7anC17O0SoG2bdsiNDQUGzZscHwxKryXAaBPnz5ISUmB2WzG9u3bnfr+unuPXr16FTk5OVAoFC55MzIyXO6/kydPYufOnRg4cCDatGnjUuasrKxSP9tLux9Hjx6Nzz77DI899hiSk5Oxa9cu7N69G2FhYS732eTJk/HPP//gxIkTsFqt+OabbzB8+HCn4y5btgzjxo3Dt99+ix49eiA4OBhjx44ttb+mSqXy6l4urDQo7QtESkoKdu/ejS+//NIpvfDZMnz4cJfX+L333gPnHDdu3HDap+T7XKlUAii6X7Kysm75GVkoKysLNpsNn376qcu5Bw0aBMD1eeXpZ3Uh1+rEShQUFATGmOPFLK7kH7jwzVTYmbnQrd74JTu/hoaGgjHmmLOrpNLSKiI7Oxt9+/bFuXPn8M8//6Bdu3aVevxCDz30EGbPno0jR44AgKOTd/FO8qX58ccfMXbsWMyaNcsp/fr16y4fap7y9LV2Z2BTcTabDVlZWU5vlsJ7prQP1EIhISG4cuWKS3phDUBptVkV4en53H0dTp48iS1btgCAU81eccnJyY4HQkUEBQVBIpG4dR3F36fF/8ZV8UWtLKGhobBYLCgoKIBWq3Xa1qZNG0fAqFQqERERgZYtWzq29+nTBxs2bHA8Vwo/gAuv77XXXsP9999f6nkLB0iEhoaiXbt2eOedd0rNV7wWGABefvllnDlzBmPHjoXNZsPYsWOdrqWyn1khISGlfoCWlta2bVssXboUnHMcOnQICxYswFtvvQW1Wo1XX33Vka/ww86b948gCI7BLGW9tt99912pA2m84e57sqzPnOq+lwG4BBOA+KyIj4/HmjVrsGvXLqcvRoBY0z59+nRs374dJpPJKZh09x4NDQ1FSEhIqQPyAMDPz8/p9x49euDBBx/ExIkTAYiDh4q3xIWEhGDXrl0uxyl57+Xm5mLlypV48803ne4zs9lc6msxevRovPLKK/j888/RvXt3ZGRk4JlnnnHKExoairlz52Lu3Lm4ePEi/vzzT7z66qvIzMx0ub4bN26gUaNGpV7zrURFRaF169ZYt24dTCaT05eADh06ABBrXEuWCwA+/fRTdO/evdTjelq5FhIScsvPyEJBQUGOFqaSr1ehxo0bO/3u6Wd1oSoNJrVaLTp37owVK1bggw8+cNSI6PV6x0jGQhEREVCpVC6TB//xxx9un2/IkCF49913kZ6ejoceeqjiF3ALhYHk2bNnsW7dOnTs2LHCx7xy5Uqp3wr0ej3S0tIcD4DmzZujadOm+O677/DCCy+U+YHDGHPZtmrVKqSnp6NZs2aOtJLfeoorvk2tVjvSq+O1Xrx4MSZPnuz4fcmSJQDgaLYszd13343Zs2dj37596NSpkyN90aJFYIw5Hri3umZP3H333Vi+fDkuX77sFEQsWrQIGo2mzIdHeQrn4Pvmm2+c/laAWOZ7770X3333XaUEk1qtFt26dcPvv/+ODz74wPF3FgQBP/74I+rXr4/mzZsDgOMBfOjQIccsAADw119/eX1+T/8WhcHhmTNnXL7AFX4A//3335BIJE4fvoD4ATxjxgxkZWUhKirKcV0tWrRAbGwsDh486PLlq6QhQ4Zg9erVaNq0KYKCgsotr0QiwVdffQWdTofx48ejoKAATz31lONYlf0+SkxMxJw5c3Dw4EGnpu7C909pGGNo3749Pv74YyxYsAD79u1z2l44sjwuLs7j8iQnJ+PSpUt45plnMHz4cJftzz77LBYtWoRZs2aV2l3KU+4+A4rfywMGDHDk+/PPP70+t6f3cmGzdFkjixMTE/Hbb7/h/fffR3h4uCM/IN7LWVlZ+PTTTx15C7l7jw4ZMgRLly6F3W5Ht27d3CrzuHHjoNVqMXr0aBQUFGDhwoWOVoLExET8/PPP+PPPP52aakvee4wxcM5dPp++/fbbUudnVKlUePzxx/HZZ59h27Zt6NChA3r16lVmGRs0aIBnn30W//zzD7Zu3eq0zWazIS0tzetn5+uvv47Ro0fjhRdewOeff15u8NWrVy8EBgYiNTUVzz77rFfnLKnwPV7WZ2QhjUaDxMRE7N+/H+3atXPqbljZqjSYBMRVKgYPHowBAwbgueeeg91ux/vvvw+dTuf0DaSw39B3332Hpk2bon379ti1a9ctH4Al9erVC48//jgeffRR7NmzB3369IFWq8WVK1ewZcsWtG3b1vEQL8vff/+NgoICxzQaqamp+PXXXwEAgwYNgkajgdFoxIABA7B//37MnTsXNpvNqd9BWFiYY6oiQHy4bdy4sdx+k++88w62bt2KESNGOKYJOXfuHD777DNkZWXh/fffd+T9/PPPMXToUHTv3h3PP/88GjRogIsXLyI5ORmLFy8GID4oFixYgJYtW6Jdu3bYu3cv3n//fZfm8aZNm0KtVmPx4sVo1aoVdDodoqKiEBUV5ZjM+b333sPAgQMhlUrRrl27Snmtb0WhUODDDz+EXq9Hly5dsG3bNsycORMDBw7EnXfeWeZ+zz//PBYtWoTBgwfjrbfeQsOGDbFq1Sp88cUXeOqppxzBg5+fHxo2bIg//vgDd999N4KDgxEaGurxt9U333zT0T9p2rRpCA4OxuLFi7Fq1SrMmTMHAQEBHl+7zWbDokWL0KpVKzz22GOl5hk6dCj+/PNPXLt2zVFTXRGzZ89Gv379kJiYiJdeegkKhQJffPEFjhw5gp9++snxwBw0aBCCg4MxceJEvPXWW5DJZFiwYEGFVmcqbC77+uuv4efnB5VKhcaNG5dZA134ZWLHjh2ltgYkJibi119/xdq1a/HZZ585bSv8AN60aZNL/6KvvvoKAwcOxIABAzB+/HhER0fjxo0bOHbsGPbt2+eYguStt97CunXr0LNnT0yePBktWrSAyWTC+fPnsXr1anz55ZeldkH58MMP4efnh6effhp6vR4vv/xylbyPpkyZgu+++w6DBw/GzJkzERERgcWLF7s0Ja9cuRJffPEFhg0bhiZNmoBzjt9//x05OTno16+fU94dO3ZAKpWiT58+TumFwfut+qPPnz8fMpkM//nPf1xqbQHgiSeewOTJk7Fq1Srce++9Hl1radx9BkRGRqJv376YPXs2goKC0LBhQ/zzzz/4/fffvT63p8+V+vXro0mTJtixY4dTUFCoMEBcvny5SyDepk0bhISEYPny5YiOjkZsbKxjm7v36MiRI7F48WIMGjQIzz33HLp27Qq5XI5Lly5hw4YNuPfee3Hfffe5lGv48OHQaDQYPnw4jEYjfvrpJygUCowdOxYff/wxxo4di3feeQexsbFYvXo1kpOTnfb39/dHnz598P777zten40bN2L+/Plltpo9/fTTmDNnDvbu3Ytvv/3WaVtubi4SExMxevRotGzZEn5+fti9ezfWrFnjUht+6NAhGAwGl8ndExISsHHjxnKnvxo1ahSOHj2Kd955BwcPHsT48eMRGxsLQRCQlpaGH374AUBRra5Op8Onn36KcePG4caNGxg+fDjCw8Nx7do1HDx4ENeuXcO8efNuec6S+vfvjz59+mDq1KkoKChA586dsXXrVse5i/vf//6HO++8E71798ZTTz2FRo0aIT8/H6dPn8Zff/1VeeMIPBmtU96k5WWNyF6+fDlv27atY7qXd999l0+ePJkHBQU55cvNzeWPPfYYj4iI4Fqtlg8dOpSfP3++zNHcxacPKO67777j3bp141qtlqvVat60aVM+duxYp5GuZWnYsGGZI9YLR6oWXmdZPyUn0XZ3aqAdO3bwZ555hrdv354HBwdzqVTKw8LCeFJSkss0KJyLI0EHDhzIAwICuFKp5E2bNnUapZ2dnc0nTpzIw8PDuUaj4XfeeSffvHkzj4+P5/Hx8U7H+umnn3jLli25XC53er3NZjN/7LHHeFhYGGeMuYzYdee1jo+P561bty73+guNGzeOa7VafujQIZ6QkMDVajUPDg7mTz31FNfr9U55S5u0/MKFC3z06NE8JCSEy+Vy3qJFC/7++++7jLJfv34979ixI1cqlaX+3UpCKaO5Oef88OHDfOjQoTwgIIArFArevn17l/dA4Ui5X375pdzrX7FiBQfA586dW2aewilICke8lvUalzXRcGnXsnnzZn7XXXc5/pbdu3fnf/31l8u+u3bt4j179uRarZZHR0fzN998k3/77beljuYu7dyl3X9z587ljRs35lKptNxRn5xz3rt3bz5o0KBStxWOdEWx0a6FBEHgwcHBHAD/5ptvXPY9ePAgf+ihh3h4eDiXy+U8MjKS33XXXfzLL790ynft2jU+efJk3rhxYy6Xy3lwcDC/4447+Ouvv+64R8uatPz99993mY2iIu+jcePG8YYNG7q8Bv369eMqlYoHBwfziRMn8j/++MNp9PLx48f5qFGjeNOmTblareYBAQG8a9eufMGCBS7n6N27t8to1Pz8fA7AaTqykq5du8YVCgUfNmxYmXmys7O5Wq12HL+s53vhc6Gk0l4Xd58BV65c4cOHD+fBwcE8ICCAP/zww45R7iVHc5d27tJmN/D0ufLf//6XBwUFOaZcKykyMpID4J999pnLtmHDhnEAfMyYMS7b3LlHORdHxH/wwQe8ffv2XKVScZ1Ox1u2bMmfeOIJfurUKUe+0t7PGzZs4DqdjiclJTmmEbp06RJ/4IEHuE6n435+fvyBBx7g27Ztc3lNC/MFBQVxPz8/npSUxI8cOXLLhSgSEhJ4cHCwy8INJpOJP/nkk7xdu3bc39+fq9Vq3qJFC/7mm2+6LJDx3//+l4eGhrq83nfccQePjIws9byl2bRpEx8xYgSvX78+l8vlXKPR8Li4OP7UU0+VGmts3LiRDx48mAcHB3O5XM6jo6P54MGDnT4Tyrr3S5stIycnh0+YMIEHBgZyjUbD+/Xrx48fP17qbALnzp3jEyZM4NHR0Vwul/OwsDDes2dPPnPmTEceTz6jSlP5S5u4wWKx8Li4uArNQk/qrrIe3IQU+vXXX7lUKuWXLl3ydVHqvNOnT3PGGF+7dq1T+qpVqzhjrEJzTxJxmhuFQlHq9ECkyNWrV7lKpeIvv/yy18ew2Wy8UaNG/D//+Y9Tel5eHpfJZKUG7MQ9lboCTlkmTpyIpUuXYuPGjVi2bBn69++PY8eOYerUqdVxekJIHXP//fejS5cupa6MQSrXzJkzcffdd7s0fW/YsAEjR46kdc0rKCoqClOmTME777zjspIREQeabtq0CRMnToREIsFzzz3n9bF+/PFHRxeT4jZt2oTo6GhMmjSposW9bVV5n0kAyM/Px0svvYRr165BLpejU6dOWL16Nfr27VsdpyeE1DGMMXzzzTf4888/IQiCy9yupHLYbDY0bdoUr732msu24n24ScW88cYb0Gg0SE9Pd5mz9nb37bff4q233kKjRo2wePFiREdHe30sQRCwePFil36ZgwcPxuDBgytY0tsb47wCi60SQgghhJDbGn2dJ4QQQgghXqNgkhBCCCGEeI2CSUIIIYQQ4jUKJuswzjny8vLKnYSVEEIIIcRbFEzWYfn5+QgICHCs5kMIIYQQUtkomCSEEEIIIV6jYJIQQgghhHiNgklCCCGEEOI1CiYJIYQQQojXKJgkhBBCCCFeo2CSEEIIIYR4jYJJQgghhBDiNQomCSGEEEKI1yiYJIQQQgghXqNgkhBCCCGEeI2CSUIIIYQQ4jUKJgkhhBBCiNcomCSEEEIIIV6jYJIQQgghhHiNgkkfSU9Px8MPP4yQkBBoNBp06NABe/fudWznnGP69OmIioqCWq1GQkICjh496sMSE0K8IXCOC/k3cDT7Mi7k34DAua+L5HOcC+BXz4OfPyL+ywVfF4kQUgEyXxfgdpSdnY1evXohMTERf//9N8LDw3HmzBkEBgY68syZMwcfffQRFixYgObNm2PmzJno168fTpw4AT8/P98VnhDituM5GViTloqrxjzYBAEyiQQRan8kxcShZWCkr4vnE/ziMQi7VgPZGYDdBkhlQFAkJF0HgTVo5eviEUK8wDinr8nV7dVXX8XWrVuxefPmUrdzzhEVFYUpU6bglVdeAQCYzWZERETgvffewxNPPOHWefLy8hAQEIDc3Fz4+/tXWvkJIeU7npOBxad2w2S3QCNTQiaRwibYYbBZoJLKMSa2y20XUPKLxyCsXwRYTIBKC8hkgM0GmAoAhQqSvmMpoCSkFqJmbh/4888/0blzZzz44IMIDw9Hx44d8c033zi2nzt3DhkZGejfv78jTalUIj4+Htu2bfNFkQkhHhA4x5q0VJjsFgQoNFBIZZAwBoVUhgCFGia7FWvSUm+rJm/OBbFG0mICdIGAXAEwifivLhCwmCDsWk1N3oTUQhRM+sDZs2cxb948xMbGIjk5GU8++SQmT56MRYsWAQAyMjIAABEREU77RUREOLaVxmw2Iy8vz+mHEFL90vTZuGrMg0amBGPMaRtjDBqZAleNeUjTZ/uohD6QeVFs2lZpgRKvCRgT07MzxHyEkFqFgkkfEAQBnTp1wqxZs9CxY0c88cQTmDRpEubNm+eUr+SHEOfcJa242bNnIyAgwPETExNTJeUnhNya3ma62UdSWup2sclbgN5mquaS+ZBRL/aRlJXRVV8mA+x2MR8hpFahYNIH6tWrh7i4OKe0Vq1a4eJF8Rt5ZKTYj6pkLWRmZqZLbWVxr732GnJzcx0/aWlplVxyQog7dDIVZBIJbIK91O02wQ6ZRAKdTFXNJfMhtU4cbGOzlb7dZgOkUjEfIaRWoWDSB3r16oUTJ044pZ08eRINGzYEADRu3BiRkZFYt26dY7vFYsHGjRvRs2fPMo+rVCrh7+/v9EMIqX4xuiBEqP1hsFlQcowj5xwGmwURan/E6IJ8VEIfCG8ABEWKg21K9hXlXEwPihTzEUJqFQomfeD555/Hjh07MGvWLJw+fRpLlizB119/jWeeeQaA2Lw9ZcoUzJo1C8uXL8eRI0cwfvx4aDQajB492selJ4SUR8IYkmLioJLKkWsxwmK3QeAcFrsNuRYjVFI5kmLiILlFt5W6hjEJJF0HAQoVoM8BrBaAC+K/+hxxNHfXQWCMPpYIqW1oaiAfWblyJV577TWcOnUKjRs3xgsvvIBJkyY5tnPOMWPGDHz11VfIzs5Gt27d8Pnnn6NNmzZun4OmBiLEt2ieSVfO80zaxaZtmmeSkFqNgsk6jIJJQnxP4Bxp+mzobSboZCrE6IJuqxrJ0nAuiKO2jXqxj2R4A6qRJKQWoxVwCCGkCkkYQ0O/YF8Xo0ZhTAJENPJ1MQghlYS+ChJCCCGEEK9RMEkIIYQQQrxGwSQhhBBCCPEaBZOEEEIIIcRrFEwSQgghhBCvUTBJCCGEEEK8RsEkIYQQQgjxGgWThBBCCCHEaxRMEkIIIYQQr1EwSQghhBBCvEbBJCGEEEII8RoFk4QQQgghxGsUTBJCCCGEEK9RMEkIIYQQQrxGwSQhhBBCCPEaBZOEEEIIIcRrFEwSQgghhBCvUTBJCCGEEEK8RsEkIYQQQgjxGgWThBBCCCHEaxRMEkIIIYQQr1EwSQghhBBCvEbBJCGEEEII8RoFk4QQQgghxGsUTBJCCCHECbeawe02XxeD1BIUTBJCCCHEgZuNgD4H4NzXRSG1hMzXBSCEEEJIzcCNesCk93UxSC1DwSQhhBBym+OcA4Y8wGL0dVFILUTBJCGEEHIb41wQm7VtFl8XhdRSFEwSQgghtylut4mBpECDbYj3KJgkhBBCbkPcZgX02QAXfF0UUstRMEkIIYTcZrjFBBTkAqAR26TiKJgkhBBCbiPcZACMeb4uBqlDKJgkhBBCbhPckA+YC3xdDFLHUDBJCCGE1HGcc6AgB7CafV0UUgdRMEkIIYTUYVwQxIE2dquvi0LqKAomCSGEkDpKnPonGxDsvi4KqcMomCSEEELqIG61iE3bNPUPqWIUTBJCCCF1DLcYgYI80NQ/pDpQMEkIIYTUITT1D6luFEwSQgghdQRN/UN8gYJJQgghpJYTp/7JBawmXxeF3IYomCSEEEJqMS4I4kAbm8XXRSG3KQomCSGEkFqKpv4hNQEFk4QQQkgtRFP/kJqCgklCCCGkluFmI2CgqX9IzUDBJCGEEFKLcGM+YKIR26TmoGCSEEIIqQXEEds5gNXs66IQ4oSCSUIIIaSG44IgDrSxW31dFEJcUDBJCCGE1GA0YpvUdBRMEkIIITUUt5rFychpxDapwSiYJIQQQmogGrFNagsKJgkhhJAaQBBswPHdQH4WuFILxDSHRCL1dbEIKZfE1wW4HU2fPh2MMaefyMhIx3bOOaZPn46oqCio1WokJCTg6NGjPiwxIYSQqiTsSQaf9wL4mvngW5cD/y4GlsyGcHiLr4tGSLkomPSR1q1b48qVK46fw4cPO7bNmTMHH330ET777DPs3r0bkZGR6NevH/Lz831YYkIIIVVB2JMMvuU3wFwAMAkgkYr/Wo3A3mQKKEmNR8Gkj8hkMkRGRjp+wsLCAIi1knPnzsXrr7+O+++/H23atMHChQthMBiwZMkSH5eaEEJIZRIEG/jOVeJIbYkMkEhuBpQS8XcuAAdTINBIblKDUTDpI6dOnUJUVBQaN26MkSNH4uzZswCAc+fOISMjA/3793fkVSqViI+Px7Zt2255TLPZjLy8PKcfQgghNdjx3YDZADApwJjzNsbEdKsJOHu49P0JqQEomPSBbt26YdGiRUhOTsY333yDjIwM9OzZE1lZWcjIyAAAREREOO0TERHh2FaW2bNnIyAgwPETExNTZddACCGk4njOVQAcYGVkYBC3F2RXX6Fu4lQbStxEwaQPDBw4EA888ADatm2Lvn37YtWqVQCAhQsXOvKwEt9QOecuaSW99tpryM3NdfykpaVVfuEJIYRUCm4yAHIVAFb27D8c4nZtUPUVDAA/vR988dvgRn21npfUThRM1gBarRZt27bFqVOnHKO6S9ZCZmZmutRWlqRUKuHv7+/0QwghpObhhnzAmAc0aSsGlNwO8BIRJediulwl5quOclktEDb/Br75VyA7A0Lyd+Ka4ITcAgWTNYDZbMaxY8dQr149NG7cGJGRkVi3bp1ju8ViwcaNG9GzZ08flpIQQkhFcc7B9dniyG1AnEeyfYI46EawAYIgDroRBPF3JgHaJ1TLfJM8+yr4X18Ap/cVJaafAnKvVfm5Se1Gk5b7wEsvvYShQ4eiQYMGyMzMxMyZM5GXl4dx48aBMYYpU6Zg1qxZiI2NRWxsLGbNmgWNRoPRo0f7uuiEEEK8xAVBXGPbbnVKl7S9EwIAHEwRB9twDoABcrUYSLa9s2rLxTlwag/4jpWA3Va0IbIJJEOeBPMPqdLzk9qPgkkfuHTpEkaNGoXr168jLCwM3bt3x44dO9CwYUMAwNSpU2E0GvH0008jOzsb3bp1w9q1a+Hn5+fjkhNCCPEGt9vEQLKMQS2StndCaN1DHLVdkC32kWzStsprJLnVDL7tD+DsQecNbfuA9RkBplRV6flJ3cA4dYaos/Ly8hAQEIDc3FzqP0kIIT7CrRagIEdsvq5B+I0r4BuWAnnXixKVGrA+D4LVbw74hYDJ5L4rIKk1qGaSEEIIqSLcYgQK8lD2cO3qxzkHTuwC37XauVk7ohFY/ENg2gDfFY7UShRMEkIIIVWAG/WAqWZNrcMtJvCtK4DzxSdBZ0D7eLAOd4FVw0AfUvdQMEkIIYRUIs45YMgDLEZfF8UJv54OnrIUyL9RlKjWic3aUc18VzBS61EwSQghhFQSzgVAnwPYLL4uigPnHDi2A3z3384DgOo1AevzEJiGBneSiqFgkhBCCKkEXLDfnPrHVn7masLNRvAtvwMXU4sSGQPrcBfQLgFMQtNNk4qjYJIQQgipIG6zijWSvOasZ82vpYGnLBMD3EJqP3GQTb0mvisYqXMomCSEEEIqgFvNYiBZQ0Zscy4AR7eB70l2no4oqpnYP1Kt813hSJ1EwSQhhBDiJW42AIZ81JhA0mQQ19W+dKIokUnAOvUF2vYGY9SsTSofBZOEEEKIF7gxHzAV+LoYDvzqefCUnwFDblGiJgAs4SGwiEa+Kha5DVAwSQghhHigpk39w7kAHN4Mvm+9c7N2/RZgvYeDqTS+Kxy5LVAwSQghhLippk39w416sVk7/VRRIpOAdR4AtO5JzdqkWlAwSQghhLihpk39wzPOiaO1jflFidpAsIQRYOENfFYucvuhYJIQQggpR02a+ocLAnAoBfzAvwAvNvCnQSuwOx8AU6p9VzhyW6JgkhBCCLmFmjT1Dzfkg2/6BbhypihRIgXrkgS06gHGmO8KR25bFEwSQgghZeBmozjYpiYEkpdPi4GkUV+U6BcMljACLLS+z8pFCAWThBBCSCm4UQ+Y9OVnrOpyCHaxSfvgRjgFtY3agPW6D0yh8lnZCAEomCSEEEKc1KSpf3hBLvjGn4Gr54sSpTKwroOAFl2pWZvUCBRMEkIIITfVpKl/+KUT4Jt+BcyGokT/ELCEkWAhUT4rFyElUTBJCCGEoOZM/cMFO/jedcCRzc4bmrQH63kvmFzpm4IRUgYKJgkhhNz2asrUP1yfI84dee1iUaJUDtZ9MBDbmZq1SY1EwSQhhJDbFucC+OUzQPZVQKkGQur5bNUYfvEY+ObfnPtqBoSBJY4CC4rwSZkIcQcFk4QQQm5L/OIxCDv+ArIzxKZtqQzwDwXaxYNFNa2+ctht4HvXAke3Om9o1gms+1AwuaLaykKINyiYJIQQctvhF49BWLtArAVUasRaSbsdyM4A37YC6DmsWgJKnn9DbNa+fqkoUSYH63EvWLOOVX5+QioDBZOEEEJuK4JgB9/+hxhIavyBwn6IMgkg9QcMeeCHNgL1Gldpkzc/fxR86++AxVSUGBgBljgSLDC8ys5LSGWjYJIQQshtgwsCcP4IkJMp1kiWHNDCmJiedx3IugKERld+GWxW8N1/A8d3Om9o3hms2xAwmbzSz0lIVaJgkhBCyG2B223i1D8FeWIfSaW69IxSKWC2AyZD6dsrUoa8LPANPwE3rhQlyhRgvYaBNWlf6ecjpDpQMEkIIaTO41YzUJALcAFQacTBNna72LRdkt0uBpQqTeWW4ewhsT+m1VyUGFwPLGEkWEBopZ6LkOpEwSQhhJA6jZuN4vKIhetah9QTR21nZ4h9JIs3dXMurjgTFCnmq4zz26zgO1cBJ3c7b2jZDazLQGrWJrUeBZOEEELqLG7MB0wFTmmMSYB28WItoSFP7CMplYo1kmYDIFeCtYuvlME3PPca+IalYuBaSK4E63UfWOO2FT4+ITUBBZOEEELqHM652KxtNZW6nUU1BXoOE0dt510X+0hKpUBQpBhIVsK0QPzMAfBtfziv8x0aDZYwEswvuMLHJ6SmoGCSEEJIncIFASjIcQ7iSsGimgL1Goujtk0GsY9kJayAw20W8B1/Aaf2OW+I6wnWeQCYlD56Sd1CdzQhhJA6wzFiW3BvjW3GJJU6/Q/PvgqeslSceqiQQgV25wNgDeMq7TyE1CQUTBJCCKkTuNUi1khyofrPzTlweh/49r8Au7VoQ1gMWMIIMF1QtZeJkOpCwSQhhJBaz2XEdnWe22oG3/4ncOaA84Y2vcHu6AcmkVZ7mQipThRMEkIIqdW4UQ+Y9L45940M8JSfgNzrRYlKDVjvB8BiWvqkTIRUNwomCSGE1Erljdiu8nOf3C3OH2m3FW2IaAgWPwJMG1DtZSLEVyiYJIQQUuu4O2K7Ss5tMYlT/pw7VCyVAe36gHW8m5q1yW2HgklCCCG1iqcjtiv13NfTwVOWAflZRYkqLVifB8GiY6u9PITUBBRMEkIIqTV8NWKbcw4c3wm+a7VzEBvZBCz+QTCNf7WWh5CahIJJQgghtYKvRmxzsxF863LgwtFiqQzokAjWPhFMUvFlFwmpzSiYJIQQUuP5asQ2v5YmNmvrs4sS1TpxkE29JtVeHkJqIgomCSGE1Ficc7E20mKs/vMe3Qq+J9m5ST2qmdg/Uq2r1vIQUpNRMEkIIaRG8tWIbW42gG/+DUg7XpTIGFjHvuKI7Qqu3U1IXUPBJCGEkBpHHLGdAwi2cvNW6nmvXgDfuEycv7KQxl9s1o5sVK1l8SmpHKApjoibKJgkhBBSo/hixDbnAnB4C/i+dc7nrd8crPdwMJW22sriU0wq9glVqn1dElKLUDBJCCGkxvDFiG1uKgDf9CuQfrIokUnA7ugPtOl1mzRrM0CpAdTa2+R6SWWiYJIQQkiN4IsR2zzjnNisbcgvStQGgiWMAAtvUK1l8RmZEtD4gUkpJCDeoTuHEEKIT/lixDYXBODQRvAD/wC8WC1oTEuw3g+AKTXVVhafkcjEIFKu9HVJSC1HwSQhhBCf4VwQB9pU44htbtSDb/oZuHymKFEiBes8AIjrCcZYtZXFNxig1gFKzW1wraQ6UDBJCCHEJ7hgFycDt1ffiG1++YwYSBqLNafrgsASRoKF1a+2cviMQi0OsKGR2qQSUTDpJs45Nm7ciM2bN+P8+fMwGAwICwtDx44d0bdvX8TExPi6iIQQUmtwm1WskeT2cvNWyvkEAfzgv8CBFDgN7mnYGqzXfXV/9LJUBmgCwGRyX5eE1EE0ZKscRqMRs2bNQkxMDAYOHIhVq1YhJycHUqkUp0+fxptvvonGjRtj0KBB2LFjh6+LSwghNR63mID8G9UXSBrywJO/Aw5sgCOQlEjBug8FSxxVtwNJJhHnyfQPpUCSVBmqmSxH8+bN0a1bN3z55ZcYMGAA5HLXN+OFCxewZMkSjBgxAm+88QYmTZrkg5ISQkjNx00FgDG//IyVdb70U+CbfgFMBUWJfiFgiSPBQqKqrRw+oVADaj8wCdUbkarFOOfVN5lXLXTkyBG0adPGrbwWiwUXLlxAbGysR+eYPXs2/vOf/+C5557D3LlzAYjN6jNmzMDXX3+N7OxsdOvWDZ9//jlat27t9nHz8vIQEBCA3Nxc+Pv7e1QmcmsC50jTZ0NvM0EnUyFGFwSJjzqy16Sy2O1WZB1MgZB3DRL/MIS0T4BUSrUhRMQNeYDZAMGUC/z5DWDWA0odcM8kSFQBlXsuwQ6+bz1weJPzhibtwHoOq9sjmKVysTaSaiJJNaFg0sd2796Nhx56CP7+/khMTHQEk++99x7eeecdLFiwAM2bN8fMmTOxadMmnDhxAn5+fm4dm4LJqnE8JwNr0lJx1ZgHmyBAJpEgQu2PpJg4tAyMvG3LkrH5F+j2/wuFzQoGDg4Gi0wOfce7ENn7wWotC6lZxBHbuYDNDOGHtwCb2TWTTAnJI9Mq53z6HHGQzdULRYlSGVj3IUBs57o7gplJbq5ecxtMa0RqFKr79sCaNWuwZcsWx++ff/45OnTogNGjRyM7O9vj4+n1eowZMwbffPMNgoKCHOmcc8ydOxevv/467r//frRp0wYLFy6EwWDAkiVLKuVaiHeO52Rg8andSC/IhkIig79CDYVEhvSCHCw+tRvHczJuy7JkbP4FwXuSobRZIACwMQkEAEqbBcF7kpGx+ZdqKwupWbjdJvaPvFUgCRRtr+j50o6D//mZcyAZEAY25Cmw5l3qbiCpUAP+oRRIEp+gYNIDL7/8MvLy8gAAhw8fxosvvohBgwbh7NmzeOGFFzw+3jPPPIPBgwejb9++Tunnzp1DRkYG+vfv70hTKpWIj4/Htm3bKnYRxGsC51iTlgqT3YIAhQYKqQwSxqCQyhCgUMNkt2JNWiqEaqjsr0llsdut0O3/F4xz2JgEXCIBGAOXSGBjEjDOodv/L+x2a5WXhdQs3GYVA0m7TWzaLiuQLGQzi/m8OZdgh7Drb/D1PwDmYpOfN+0INvQpsODqramvNlK52AdUG0B9I4nP0AAcD5w7dw5xcXEAgN9++w1DhgzBrFmzsG/fPgwaNMijYy1duhT79u3D7t27XbZlZIg1ShEREU7pERERuHDhgkv+QmazGWZz0cO6MPAllSNNn42rxjxoZEqX2g3GGDQyBa4a85Cmz0ZDv+DbpixZB1MQaLPCDgaUrPVhDHbOoLCJfSnDO/Wr0rKQmoNbjEBBsTW2//zGvR3//AZ46CXPzpWfLS6JeC2tKFEmB+t+D1hsJ4+OVWtQkzapQehrjAcUCgUMBgMAYP369Y6aw+DgYI8Ct7S0NDz33HP48ccfoVKpysxXMkjgnN+yiWb27NkICAhw/NDcl5VLbzPd7JdY+mS/MokUNkGA3ma6rcoi5F0T+0iWcW9yxsDAIeRdq/KykJqBG/VAQS6c5nM0u7nmtrv5Cs91IVVs1i4eSAaGgw19uu4GkkoNNWmTGoWCSQ/ceeedeOGFF/D2229j165dGDx4MADg5MmTqF/f/ZUT9u7di8zMTNxxxx2QyWSQyWTYuHEjPvnkE8hkMkeNZGENZaHMzEyX2sriXnvtNeTm5jp+0tLSysxLPKeTqSCTSGATSp8bzybYIZNIoJOV/QWhLpZF4h8GDgZWRpM64+JgHIl/WJWXhfgW5xy8IBcwlRIQKnXuHcTNfNxug7BzFfi/iwFLsS9NzTuLzdqB4e6drzYpbNLW+FOTNqlR6G70wGeffQaZTIZff/0V8+bNQ3R0NADg77//RlJSktvHufvuu3H48GEcOHDA8dO5c2eMGTMGBw4cQJMmTRAZGYl169Y59rFYLNi4cSN69uxZ5nGVSiX8/f2dfkjlidEFIULtD4PNgpKTIHDOYbBZEKH2R4wuqIwj1M2yhLRPgEUmhxQcKBlQcg4pOCwyOULaJ1R5WYjvcEEQl0a0GEvPcI+b8++6kY/nZYGv+gpILdaHXKYA6/MQJL3uA5Mp3DtXbcEk4uo1/iE03Q+pkajPpAcaNGiAlStXuqR//PHHHh3Hz8/PZe5KrVaLkJAQR/qUKVMwa9YsxMbGIjY2FrNmzYJGo8Ho0aO9vwBSIRLGkBQTh8WndiPXYoRGprjZnGyHwWaBSipHUkxctczxWJPKIpWK0/8o9iRDxgXYORObtm8Gkpwx6DveBR3NN1lncbtNXBpRKHuNbYkqAIJMeetBODJlufNN8nOHwbcuB6zFjhMcCZYwCiwg1LOC1wZKjdg3klHdD6m5KJgshyd9ISuzJnDq1KkwGo14+umnHZOWr1271u05JknVaBkYiTGxXRxzOxpsFsgkEkRrA6t9bseaVJbI3g8iAyiaZ5IL4GAwyxQ0z2Qdx60WoCAH4EK5eSWPTPN6nklus4LvWg2c2OW8oWVXsC6D6l6NnUwhrl5T166L1Ek0aXk5JBKJ2/OS2e3Vs86su2jS8qpTk1adqUlloRVwbi8uI7bd5OkKODz3OnjKT8CNYv3I5UqwXveBNW7rZelrKCYRg8i6vF44qXMomCzHxo0bHf9//vx5vPrqqxg/fjx69OgBANi+fTsWLlyI2bNnY9y4cb4qZqkomCSEFMc5h1WwQyGteKMUN+pLH2hTyfiZg+DbVgA2S1FiSBRYwkgw/5AqP3+1UmoBtZaatEmtQ8GkB+6++2489thjGDVqlFP6kiVL8PXXXyMlJcU3BSsDBZOEkEKcc+RajJAyCfwU3o/y55wDhryyB9pUEm6zgO9YCZza67yhVQ+wLklglRAQ1xjUpE1qOQomPaDRaHDw4EHExsY6pZ88eRIdOnRwzEFZU1AwSQgBxAAwx2KExW6DRqbwOpjkgiD2jyxeS1gFeE4m+IalQM7VokSFCuzO+8Eatq7Sc1crJr058Tg1aZPajerSPRATE4Mvv/zSJf2rr76iCcIJITVS8UCyQsdxrLFdxYHkqX3gf33hHEiGxYDd82wdCiSZ2KQdEEKBJKkT6lA7QdX7+OOP8cADDyA5ORndu3cHAOzYsQNnzpzBb7/95uPSEUKIM4Fz5FgMsFZwcKAnI7a9P4cZfPtfwJn9zhta3wl2R7+606wtUwAa/7pzPYSAmrk9dunSJXzxxRc4fvw4OOeIi4vDk08+WSNrJqmZm5Dbl8A5cswGWEuskuRpM7e3I7Y9wW9kgKcsBXKLLbmpVIP1Hg4W07LKzlutmBTQ6MAUVBNJ6h4KJuswCiYJuT0JXEC22VjqcpueBJNVPWKbcw6c3AO+cyVQvBk+vCFY/ENgusAqO3f1YTcnHqdR2qTuonp2D+Xk5GDXrl3IzMyEIDg3+YwdO9ZHpSKEEJGdC8g2G2AXvG+Sro4R29xiAt/2B3DukPOGtn3AOvUFk0ir7NzVhpq0yW2CaiY98Ndff2HMmDEoKCiAn5+f02TmjDHcuHHDh6VzRTWThNxe7IKAbMutA8nyaiarY8Q2z7osjtbOzypKVGnB+jwIFh1b9o61BTVpk9sMBZMeaN68OQYNGuRYJ7umo2CSkNuHTbAj22yEUM4gmVsFk+Ia29lAKc3jlYFzDhzfKS6LWPwckY3FZm1NbX9OMUClEQNjatImtxGqe/dAeno6Jk+eXCsCSULI7cMq2JFjNkCoQN0At5oBfQ6qaqANNxvFlWzOHymWyoAOCWDt7wKT1PLgi5q0yW2M7noPDBgwAHv27EGTJk18XRRCCAEgBpLZZgMq0sjEzQbAkI8qCySvXRJHa+uzixLVOrA+D4FFNa2Sc1YbJgU0fmAVWFWIkNqOgkkPDB48GC+//DJSU1PRtm1byOXOS1/dc889PioZIeR2ZLHbkGMxViyQNOYDpoJKLFWxY3MOpG4D35Ps3Kwd1VQMJNW6Kjlv9Shs0tY59Z8n5HZEfSY9ILlFMwxjDPYKTgxc2ajPJCF1l9luQ47F4HFlYmGfSc65ONDGaq6S8nGzAXzzb0Da8aJExsA63A20i6/dzdoypVgbSU3ahACgmkmPlJwKiBBCfMFksyLXavS6VZoLdrF/pN1aqeVyHD/zInjKMjFYLaTxA4sfARbZuErOWS0kUkBNTdqElETBpJdMJhNUKnqgEEKql9FmQZ7F5P0B7FaxfySv/JYUzgXgyBbwveucl16MjhWn/VFpK/2c1YMBKu3NUdrUpE1ISbW4naH62e12vP3224iOjoZOp8PZs2cBAP/9738xf/58H5eOEFLXFVjNFQskrWaw/OyqCSRNBeDrfhD7RxYGkkwC1nkAWL+xtTeQlCkB/xAwNfWNJKQsFEx64J133sGCBQswZ84cKBQKR3rbtm3x7bff+rBkhJC6Tm81QV+B/o3MVABL/g38cPk4MsyVO+CGZ5wH/+MzIP1kUaI2AGzgY2Bt+9TOORclUkAXBOYXRH0jCSlHLXyH+86iRYvw9ddfY8yYMZBKi5b6ateuHY4fP36LPQkhxHt5FiMKrF6uSMM5mCEPOfk38E16Kg7kX8fnFw5BXwkr3HAugB/cAL7mW3H5xUIxLcDufRYsomGFz1H9GKDSAf6hYHKlrwtDSK1AX7c8kJ6ejmbNmrmkC4IAq7VqOrITQm5fnHPkWU0w2bx8vnABkoI8pOlv4MeMkyiw2wAA1yxGbLyRjsHh3g+G4UY9+KZfgMunixKZBKxLEhDXs3Y2CdMobUK8Qu8YD7Ru3RqbN29Gw4bO37Z/+eUXdOzY0UelIoTURZxz5FqMMN8MAD1mt0NSkIvDeVfxW+ZZ2IrNApcU2hADwxp5X7bLZ8A3/QwY9UWJuiCwhBFgYTFeH9dnJFJx9RqqiSTEKxRMeuDNN9/EI488gvT0dAiCgN9//x0nTpzAokWLsHLlSl8Xj5BKw7kAZF4UgwW1DghvUKv6vQmcI02fDb3NBJ1MhRhdECS1qKaMc44cixEWbwNJmxVMn4OU7HSsv3HJkSwFw2CBoeuFY8jOykBQy26QeFALxwWxWRsHNsBpXqKGrcF63QemVHtXXp+hUdqEVAaatNxDycnJmDVrFvbu3QtBENCpUydMmzYN/fv393XRXNCk5cQb/OIxCLtWA9kZgN0GSGVAUCQkXQeBNWjl6+KV63hOBtakpeKqMQ82QYBMIkGE2h9JMXFoGRjp6+KVq8KBpNUMQZ+DP66dw/78645kFeeYcOoQWuVeB4MYClqlchjiuiO0c1L55TLkgW/8Gcg4V5QokYJ1GQi06l77gjG5Upwzkpq0CakwCibrMAomiaf4xWMQ1i8CLCaxxkYmA2w2cbk9hQqSvmNrdEB5PCcDi0/thslugUamhEwihU2ww2CzQCWVY0xslxodUAqcI8digNXL1bSY2QCjPhtLMk7jvCnfkR4kCHjmyA5Emo2wA+BgYOCQQgwqc9v2vmVAydNPif0jiy+76BcMljASLDTaq7L6jEQm9oukJm1CKg19JSOEABCbtoVdq8VAUhcIFNY0yRWATA7ocyDsWg1JTIsa2eQtcI41aakw2S0IUGgcNWUKqQxyiRS5FiPWpKWieUBEjWzyFjhHjtkAq+BlIGnMR1Z+Nn7IOIGsYlMINVTqMHHXWgRbjLCBOf6uHAw2ziEDhyZ1B4SOfV2avLlgB9//D3BoE5yatRu3Bes5rJatBENN2oRUFQomyxEUFOT2g+fGjRtVXBpCqlDmRbFpW6UtCiQLsZsfxNkZYr6IRj4p4q2k6bNx1ZgHjUzp8p5ljEEjU+CqMQ9p+mw09Av2USlLJ3AB2WYjbN4EkpxDUpCLc/nXsSTjFIzFjtFBF4IBuVkIsog1kqX9Xe2cQ263Ivv4ToS07lV0WH2OOMjm6oWi/FIZWNfBQIsutSsgkyvFATYSafl5CSEeo2CyHHPnznX8f1ZWFmbOnIkBAwagR48eAIDt27cjOTkZ//3vf31UQkIqiVEv9pFUl7FSiUwGmAzOI3hrEL3NBJsgQCMrPWCQSaQw2CzQ2yqwgkwVsHMB2WYD7IJQfuaSBAGSglzsy76MP66dh71Y7eHdwdFICIyC6fLZm30kSw/+Cpu8uT67KC3tBPjmXwGzoSijfyhY4iiw4JrbTcAFNWkTUi0omCzHuHHjHP//wAMP4K233sKzzz7rSJs8eTI+++wzrF+/Hs8//7wvikhI5VDrxME2NpvYtF2SzQZIpWK+GkgnU0EmkcAm2KEoZVCFTbBDJpFAJ6s5TbMVCiTtNkCfg3XXL2JjzmVHsowxPBDeBG11IWKCNhAcEAPGUgJKMR1guiCxWXvvOuDIZudMTTuA9binFgVl1KRNSHWqeR2farDk5GQkJbl2Uh8wYADWr1/vgxIRUonCGwBBkeIgi5Lj8jgX04MixXw1UIwuCBFqfxhsFpQcV8g5h8FmQYTaHzG6IB+V0JldqEAgabPAnncDP1856RRIaqUyTIxqVRRIAlA16wirVA4pUOrfVQpxVHdQ/Rbgq79xDiSlcrA77wfrPbz2BJJyFRAQSmtpE1KNKJj0QEhICJYvX+6SvmLFCoSEhJSyByG1B2MSSLoOAhQqQJ8DWC0AF8R/9TniaO6ug2rk4BsAkDCGpJg4qKRy5N6cWkfgHBa7DbkWI1RSOZJi4mrE4BubYMcNLwNJZjHBkHMd89OP4khBUT/tcLkaT0a3RozKueaYSWTIat4ZAgAZOBgXxCUWuQDZzVpJa/1YYOU84Fpa0Y6B4WBDnwKLvaN2BGUSmThxui6Q+kYSUs1oaiAPLFiwABMnTkRSUpKjz+SOHTuwZs0afPvttxg/frxvC1gCTQ1EvOE8z6RdbNqmeSYrjVWwI8dsgODFo5eZCpCZew0/ZJxETrG1tZup/TEyohlUt5gz0XgwBSEn90ButxbNMymRAUHhUGVdds4c2wms+1AwWSndHWocJna9UGpqR9BLSB1EwaSHdu7ciU8++QTHjh0D5xxxcXGYPHkyunXr5uuiuaBgkniLVsCpGl4HkpyDGfU4lXMFyzJOw8yLajS7+odjcGhDSN24Pi7YYDtzCHJjHqQyJQLSTwLFA0mZAqznvWBNO3hWPl+Rq8QBNlQTSYhPUTBZSYxGI9TqmrWUGAWThNQcVsGObLPBpT9nubgASUEedmalYeX1C47x2gxAUkgD9AyI8KhGTi2VQ3P5FPiW34Fi81EiKBIsYSRYYJhn5fMFqQxQ+4OVNlCMEFLtak9VQw3wzDPPlJpeUFCAgQMHVnNpCCG1hcVu8y6QtNuBvGysyjiFv4oFkgomwZjIWPQKjPSsaddug3zXavANPzkHki26gA15suYHkkwiBpH+oRRIElKDUDDpgbVr1+KNN95wStPr9UhKSoLdy+XPCCF1m8VuQ7bFi0DSZoU17zoWXz6G7blXHcn+Ujkei26FllrPRqVL8m/Af/0iyE7tKUqUK8HiR0DScxiYTO5Z+aqbUiPOdanS+LokhJASaJ5JD6xduxZ33nknQkJC8PzzzyM/Px8DBgyATCbD33//7eviEUJqGLPdhhyLwWklQrdYzcjLvYYfr5xEhqVo4vB6Cg0eqdcc/h4OjFFcOArt7jVgxQbtICQKLGEkmH8Nn4lCphBXr7nF4CJCiG/Ru9MDjRs3RnJyMhISEiCRSLB06VIolUqsWrUKWm0Zq4YQQm5LJpsVuVajx4EkMxtxOScDP145iXy71ZHeShOIByOaQuHJYBObFZp966E6e8A5vVV3sC4Da3aARqvXEFJr0AAcL+zYsQN9+/ZFt27dsHLlyho38KYQDcAhxDeMNivyLEaP92NGPY5lXcIvmWdhLTZiu1dAJAaExHg0Il2Sex26bSsgy71WlKhQgfW6D6xRG4/LVn1oqh9Capsa/LW0ZujYsWOpDzSlUonLly+jV69ejrR9+/ZVZ9EIITWQ0WZBnsXD9b85Bwx52JJ5HmtvpDkqMyUAhoY1Qhf/cI8Opzh3CNo9a8GK1WwiNBosYSSYX7BnZatOCjWg9gOTUHd+QmoTCibLMWzYMF8XgRBSSxhsFuR7HEgK4Poc/HnlFPbmF9UiqiRSjIxohmaaAPePZbNAu2ctlOcPO6e37gV2R/+a26wtU4hBZE0fBEQIKRU1c9dh1MxNSPUpsFqgt3oYSAp2mPOy8NPl4zhrzHMkB8mUeKRec4Qr3O9CI825Bt225ZDmZRUlKtRgvR+ouSsXSaRiEKlQ+bokhJAKqKFfU2uunJwc/Prrrzhz5gxefvllBAcHY9++fYiIiEB0dLSvi0cI8QG91YyC4vM2usNuQ3b2Vfx4+RiuFQtCG6h0GBMZC63UzVo6zqE8exCafevA7Lai9LAGYAkjwHSBnpWrWjBApQVUWuoXSUgdQMGkBw4dOoS+ffsiICAA58+fx6RJkxAcHIzly5fjwoULWLRoka+LSAipZnqrCQVWS/kZi7NZkHY9HYuvnIBBKAoA2+mCcV9YE8jd7TNoNUO7Zw2UF1Kd09v2AevUt2YuM6hQA2pdzSwbIdVs/PjxyMnJwYoVK3xdlAqhXs4eeOGFFzB+/HicOnUKKlVRs8zAgQOxadMmH5aMEOILeRbPA0lmMeHwlTP4Lj3VKZBMDIrCg+FN3Q4kpdlXEbB2gXMgqdSA9RsHSecBNS9Yk8oBvxAwbUDNKxshpEKoZtIDu3fvxldffeWSHh0djYyMDB+UiBDiK3kWI4w2a/kZizPqseHKKfybne5IkoLhvvDG6OAX6t4xOIfy9H5o9q8HE4qtvBXRCCz+ITCtBwN2qgOTiP0ilTVzCjVCajPOOex2O2Qy34ZzVDPpAZVKhby8PJf0EydOICyshq9pSwipNLleBJI2fS5+vXjYKZDUSGR4NKql24Eks5ig3fYHtHuTiwWSDGifAJY0oYYFkgxQaoGAUAokSY2Xn5+PMWPGQKvVol69evj444+RkJCAKVOmAAAsFgumTp2K6OhoaLVadOvWDSkpKY79FyxYgMDAQCQnJ6NVq1bQ6XRISkrClStXHHnsdjteeOEFBAYGIiQkBFOnTnVZZpVzjjlz5qBJkyZQq9Vo3749fv31V8f2lJQUMMaQnJyMzp07Q6lUYvPmzVX62riDgkkP3HvvvXjrrbdgtYofIowxXLx4Ea+++ioeeOABH5eOEFLVOOfItRhh8iSQ5AKMOdew4MJ+HNIXjbQOk6vwRP04NFL7uXUY6Y0r8F/7PZRpx4oS1TqwAeMh6dSvZjUdyxSAfwiYxg+M0ccMqfleeOEFbN26FX/++SfWrVuHzZs3O80d/eijj2Lr1q1YunQpDh06hAcffBBJSUk4deqUI4/BYMAHH3yAH374AZs2bcLFixfx0ksvObZ/+OGH+O677zB//nxs2bIFN27cwPLly53K8cYbb+D777/HvHnzcPToUTz//PN4+OGHsXHjRqd8U6dOxezZs3Hs2DG0a9euil4V99HUQB7Iy8vDoEGDcPToUeTn5yMqKgoZGRno0aMHVq9eXeOWVKSpgQipPJxz5FiMsBQfMV0eux3Xs6/gh/RjyLYVjfZuovbHqIhmULsz7yPnUJ7aA82Bf8GEolVxUK8JWJ+HwDTuBaPVgkkBjQ7MgymNCPG1/Px8hISEYMmSJRg+fDgAIDc3F1FRUZg0aRL+7//+D7Gxsbh06RKioqIc+/Xt2xddu3bFrFmzsGDBAjz66KM4ffo0mjZtCgD44osv8NZbbzm6wUVFReG5557DK6+8AgCw2Wxo3Lgx7rjjDqxYsQIFBQUIDQ3Fv//+ix49ejjO89hjj8FgMGDJkiVISUlBYmIiVqxYgXvvvbe6XqJyUZ9JD/j7+2PLli34999/sW/fPgiCgE6dOqFv376+LhohpAoJnCPHYoDVbi8/cyGbBWevpWFpxkmYivVtvMMvDPeENYTUjRo7ZjFCu2s1FJdOFktkYB3uAtol1KCVYhig0tyc6qemlIkQ95w9exZWqxVdu3Z1pAUEBKBFixYAxNXtOOdo3ry5035msxkhISGO3zUajSOQBIB69eohMzMTgBicXrlyxSlIlMlk6Ny5s6OpOzU1FSaTCf369XM6j8ViQceOHZ3SOnfuXJFLrnQUTHrhrrvuQs+ePaFUKmmONELqOIELyDEbYRXcDySZxYQ9GWfw17XzEG4ujsgADAiJQa+ASLeeG9KsdOi2/gGpIbcoUe0HljACLLKxh1dRhWRKQONXc1fXIaQchcFcyfdlYbogCJBKpdi7dy+kUufuJDqdzvH/crnz3LCMMZc+kbci3Gx5WLVqlcu81Uql0un3mtYSSl8hPSAIAt5++21ER0dDp9Ph3LlzAID//ve/mD9/vo9LRwipbHYu4IbZ4FEgyY16JF88gj+unXMEknImwaiIZrgzsF75gSTnUB3fCf/1PzoHktGxYPc+W3MCSYkU0AWB+QVRIElqtaZNm0Iul2PXrl2OtLy8PEd/yI4dO8JutyMzMxPNmjVz+omMjHTrHAEBAahXrx527NjhSLPZbNi7d6/j97i4OCiVSly8eNHlPDExMZV0tVWDngAemDlzJhYuXIg5c+Zg0qRJjvS2bdvi448/xsSJE31YOkJIZbILArItBtiL91O8Fc5hLcjFr5eO4lhBtiPZTyrHw5GxiFbpbrGziJkN0O5cCcXlM8USJWCd+gJte9eQJmRavYbULX5+fhg3bpxjVbvw8HC8+eabkEgkYIyhefPmGDNmDMaOHYsPP/wQHTt2xPXr1/Hvv/+ibdu2GDRokFvnee655/Duu+8iNjYWrVq1wkcffYScnByncrz00kt4/vnnIQgC7rzzTuTl5WHbtm3Q6XQYN25cFb0CFUfBpAcWLVqEr7/+GnfffTeefPJJR3q7du1w/PhxH5aMEFKZbIId2WYjBO5uIClAn3sNP6YdxWWLwZEcqdDg4XqxCJQpb7GzSHYtDdptf0BqzC9K1ASAJTwEFtHIswuoKnKV2KRdk0aOE1IJPvroIzz55JMYMmQI/P39MXXqVKSlpTkWKPn+++8xc+ZMvPjii0hPT0dISAh69OjhdiAJAC+++CKuXLmC8ePHQyKRYMKECbjvvvuQm1vUAvH2228jPDwcs2fPxtmzZxEYGIhOnTrhP//5T6Vfc2Wi0dweUKvVOH78OBo2bAg/Pz8cPHgQTZo0QWpqKrp27Qq9Xu/rIjqh0dxVx24zI2frCiA3EwgIR2CvYZC6ETBUSVmsRuSv+xEsNxM8IBx+/R6GVF6x0bQC50jTZ0NvM0EnUyFGFwSJG7VQNkHAnmsXcMNcgGClFp3DGkLmg0EinAtA5kXAqAfUOiC8gdu1elbBjhyzAYK7j0a7HVdvXMYP6anIsxdNGdRCE4CHIpoBJj2UaxdCZTHDpFDC3H8clJpi80FyDtWx7VAf3gRW/JwxLcDuHA6m0rhXjqokkYlBpNw39zgh1a2goADR0dH48MMPqdXRDVQz6YHWrVtj8+bNaNiwoVP6L7/84jLS6lbmzZuHefPm4fz5847jTps2DQMHDgQgdvqdMWMGvv76a2RnZ6Nbt274/PPP0bp160q7FuK9rFVfwu/EHgSg6IPfvncdclp0RsjgJ2+xZ+XL/XkOtJdOwNGAeuUs+PEdyK3fAgEPTfXqmMdzMrAmLRVXjXmwCQJkEgki1P5IiolDy8Cy+wetvZSKv9NSYbJZwcHBwLDs7F4MjIlD//pxXpXFG/ziMQi7VgPZGYDdBkhlQFAkJF0HgTVodct9LXYbcixG9zvN26w4mXkeP2ecgqVYLWaPgAgMDGkA1a8fQFtsKiG1yQb8+QUKpDJYHnwZzFQA3Y6/IM84V3RMJgHrPABo3asGNCMzMRhXampAWQipOvv378fx48fRtWtX5Obm4q233gKAGjX9Tk1GwaQH3nzzTTzyyCNIT0+HIAj4/fffceLECSxatAgrV650+zj169fHu+++i2bNmgEAFi5ciHvvvRf79+9H69atMWfOHHz00UdYsGABmjdvjpkzZ6Jfv344ceIE/Pxq0Jxyt6GsVV8i4MRuAEDxcEMCjoATu5EFVFtAWRhIlkZ76QRyf57jcUB5PCcDi0/thslugUamhEYmhU2wI70gB4tP7caY2C6lBpRrL6VixfmDsHMOKRgkTALOOQw2C1acPwgA1RJQ8ovHIKxfBFhMYr8+tRaw2YDrlyCsXwRJ37FlBpRmuw05FoPzH/ZWzEbsuHIKf2dddOzCAAwObYjuARFQ/PK+UyBZnNZug/Tn96BUaCAxFWvR0AWCJYwEC/N1Z3sGKNWASleDph8ipGp98MEHOHHiBBQKBe644w5s3rwZoaFuLnN6m6Nmbg8lJydj1qxZ2Lt3r2OeyWnTpqF///4VOm5wcDDef/99TJgwAVFRUZgyZYpjYlOz2YyIiAi89957eOKJJ9w+JjVzVy67zQz7J89AAl5qvMEACGCQTv68ypu87VYj+KfPlpuP/d9nbjd5C5zjkyMbkF6QjQCFc01U4cov0dpATG6T6NTkbRMEvLzzdxhsFsiYxGmbwDlsXIBGpsD73e6v0iZvzgUIv30MXL8E6AKB4jVpnAP6HCC0PiQPPO/S5G2yWZFrNbodSArGfKy+dAy78jIdaUomwYjIZmiuCYTZkIvIP78o9zhOdX0NWoHd+YDvlx6UK8UpiGiENiHETfSV0w1vvPEG/v33X5hMJgwYMAAbN26EXq+HwWDAli1bKhRI2u12LF26FAUFBejRowfOnTuHjIwMp2MqlUrEx8dj27ZttzyW2WxGXl6e0w+pPDlbV5QZSAJiHCIBF/tSVrH8dT9Waj4ASNNn46oxDxqZ6/ypjDFoZApcNeYhTZ/ttG3PtQsw2aw3aySd95MwBikYTDYr9ly74HZZvJJ5UWzaVmmdA0nxAsT07AwxXzFGmxW5FjcDSc5hzr+BH8/tdwokA2QKPB4dh+aaQACAcu3CWx6GoVggKZGCdRsCdtcY3waSUpk41Y+OpvohhHiGgkk3/PTTT+jbty8CAwMRHx+PGTNmYPPmzbBYLF4f8/Dhw9DpdFAqlXjyySexfPlyxMXFOZZdioiIcMofERHh2FaW2bNnIyAgwPFT0+elqnVyM8vP40m+CmBunsPdfACgt5lu9pEsfaSuTCKFTRCgt5mc0m+YC8Q+kmX0qWOMgYPjhrnA7bJ4xagX+0jKygiEZDLAbhfzFe5isyDPYnTv+IKA3JwMfHNuP04bi76o1Vdq8WR0HCKURQNlVBZzaUcA4FwbKQBgg58Ai+vhuz6JTCqOGvcPpQE2hBCvUDDphjNnziAtLQ3ffPMNmjVrhkWLFiE+Ph5BQUHo27cv3nnnnXJrDUtq0aIFDhw4gB07duCpp57CuHHjkJqa6the2kz85X3YvPbaa8jNzXX8pKWleVQmUo6A8MrNVwHczXO4mw8AdDIVZBIJbGVM0G0T7JBJJNDJVE7pwUotGMpe6YFzcTBOsLKKV2xQ68TaNVsZa2fbbIBUKuYDUGC1IM9iKj1vSXYb0q+n4csLB5FpLQo+22iDMTGqFfxkCqfsJkXpQVnxdzAHkKvUgoVGl5q36jFApQMCQn3ftE4IqdUomHRTdHQ0HnnkEcyfPx9nzpzBhQsXMG/ePDRo0ABz5sxBnz59PDqeQqFAs2bN0LlzZ8yePRvt27fH//73P8ds+iVrITMzM11qK0tSKpXw9/d3+iGVJ7DXMAhgKCukL+wzGdhrWJWXxa/fw5WaDwBidEGIUPvDYLO4BIaFg2ki1P6I0QU5besc1hAqmRx2cJfpdATOYQeHSiZH5zDnWRAqXXgDICgSMBWIfSSdL0BMD4oEwhugwGqG3upmIGmz4OiVM5h/6QgKig2oiQ+sh4cimkJeSj9Qc3/nyYWLN2tzFLWoa++p3tH/DnKVGESqdTRKmxBSYRRMeuHMmTNYu3YtkpOTkZycDLvdjsTExAodk3MOs9mMxo0bIzIyEuvWrXNss1gs2LhxI3r27FnRopMKkMqUyG/RGQBcAsrC3/NbdK6W+SalcjUK6re4ZZ6C+i08mm9SwhiSYuKgksqRazHCYrdB4BwWuw25FiNUUjmSYuJc+kXKJBIMjImDlDHYuAC7IIhBpCDAxgVIGcPAmLgqn2+SMQkkXQcBCpU42MZqAbgg/qvPARQqSLoOQoHNCr217GZoJ2YjNqWlYtnVU7DdDFClYLg/rDH6hcSUOfemUhMA083rLVkbWcgglUOlC/b4OitEKgN0wWC6QJp4nBBSaaiXtRvOnTuHDRs2YMOGDUhJSUFubi569eqF+Ph4PPvss+jSpQtkZfXTKsV//vMfDBw4EDExMcjPz8fSpUuRkpKCNWvWgDGGKVOmYNasWYiNjUVsbCxmzZoFjUaD0aNHV+FVEneEDH4SWQD8TuyBpFhoIIAhv5rnmQx4aGqZ0wMVeDnPZMvASIyJ7eKYZ9Jgs0AmkSBaG3jLeSYLp/0pnGdS4GIdrkamqNZ5JlmDVpD0HVs0z6TJIDZth9YXA8l6jVHgZiBpN+Tjj7QjOKDPcqSpJVKMjoxFY/Utav0FO9SHNkFdYhnGkoGk39jpHlxZBTGJOM1PTZgAnRBS59DUQG6QSCRo0KABnn76aSQmJqJTp06QSr3/Vj9x4kT8888/uHLlCgICAtCuXTu88sor6NevH4CiScu/+uorp0nL27Rp49F5aGqgqkMr4JSuJq+Ao7daYLC5MWiOcxjzs7Ek7TAumIqWNgyRK/FIZHOEKsp+bSUFudBu+wPyrPSiw0llKGBSSOw2mJRq6IY+Ub01kgq1ONUPzRdJyG2rUaNGmDJlCqZMmVIlx6dg0g0jRozApk2bYDKZ0Lt3b8THxyMxMREdO3as0f2NKJgkRJRnMcJos5afkQu4kX0VP1w6gqxiNZiNVH4YHdkMGqm8zF3l6aeg3bkSkuKDegLCwBJHgQXdur9zlZDKALU/mFxRfl5CSKUZP348Fi50nR7s1KlTjsVKqltVB5PUzO2GZcuWAQCOHz/uaOp+//33YTKZcOeddyI+Ph4JCQno0qWLj0tKCCkp12KEyZ1AUrDj/LWL+OnycRiLjWjv6BeKe8MaQVbW2t52O9SHUqA+scs5vVlHsO73+CCYoyUQCSnkbStLRSUlJeH77793SgsLC6vy8/oKtXt4oGXLlnjqqaewbNkyZGRkYNu2bejQoQNmzpyJHj16+Lp4hJBiClftcSuQtNtw4PIJLLyU6hRI9g2uj/vDGpcZSEr0OfD/5wfnQFImB+s9HJLew6s/kJQpAf8QMJWWAkly2zuek4FPjmzAl8c2YcGJHfjy2CZ8cmQDjufces7myqBUKhEZGen0I5VK8ddff+GOO+6ASqVCkyZNMGPGDNiKTWfGGMNXX32FIUOGQKPRoFWrVti+fTtOnz6NhIQEaLVa9OjRA2fOnHHsc+bMGdx7772IiIiATqdDly5dsH79+luWLzc3F48//jjCw8Ph7++Pu+66CwcPHvT6eimY9NDVq1exbNkyPPXUU7j//vsxa9YsWCwW9O7d29dFI4TcxDlHjpuBpGAxYf2FQ/j96lnYbw6TkTGGERFNkRAUVWZQJk87Af/k7yC7caUoMSgCbOgzYM06Vsp1uI1JAW0AmB+tXkMIIAaSi0/tRnpBNhQSGfwVaigkMqQX5GDxqd3VElCWlJycjIcffhiTJ09GamoqvvrqKyxYsADvvPOOU763334bY8eOxYEDB9CyZUuMHj0aTzzxBF577TXs2bMHAPDss0XL6er1egwaNAjr16/H/v37MWDAAAwdOhQXLzqv9lWIc47BgwcjIyMDq1evxt69e9GpUyfcfffduHHjhlfXRn0m3fDLL784mrdPnDgBmUyGrl27IjExEYmJiejZsyeUypq3cgT1mSS3I+FmjaTFXsbk5cVYjXr8fuEgjhYULRGplcrwcGRzxKh0pe9kt0Fz4F+oTu11Tm/eWVwWUVZ2v8oqodQAap3LeuOE3K4EzvHJkQ1IL8hGgMK5u0dhi0W0NhCT2yRWSZP3+PHj8eOPP0KlKlrgYeDAgbh69SoGDhyI1157zZH+448/YurUqbh8+TIAsWbyjTfewNtvvw0A2LFjB3r06IH58+djwoQJAIClS5fi0UcfhdFY9updrVu3xlNPPeUIOov3mfz3339x3333ITMz0yl2adasGaZOnYrHH3/c42umr7BuGDNmDDp37oz77rsPiYmJ6NWrF9RqWjGCkJpG4AJyzEZYy1jFpzh9fhaWXDiES8WWeQyXq/FIveYIKmNZQUn+Dei2rYAs+2pRokwB1us+sCbtKlx+j0hl4jKI1R28ElLDpemzcdWYB41M6dKywJg4ZdlVYx7S9Nlo6Fc1MyskJiZi3rx5jt+1Wi2aNWuG3bt3O9VE2u12mEwmGAwGaDTi1F3t2hU9SwoXK2nbtq1TmslkQl5eHvz9/VFQUIAZM2Zg5cqVuHz5Mmw2G4xGY5k1k3v37oVer0dISIhTutFodGo+9wQFk27Izs6GVlvFS8ERQirEzgVkmw2wl5jf0QXnyLxxBT9cOoLcYlMFxaoDMCKiKVRlNBMrLqZCu+tvsOLTCwXXA0sYCRYQWglX4C4aYEPIrehtJtgEARpZ6VP4ySRSGGwW6G1uroLlhcLgsThBEDBjxgzcf//9LvmL12LK5UVfEAvf46WlCTefdS+//DKSk5PxwQcfoFmzZlCr1Rg+fDgsltKnQhMEAfXq1UNKSorLtsDAQPcusAQKJstRUFDgUSDpaX5CSMXZBQHZFjcCScGO05kXsOzycZh5Ud6u/uEYHNoQ0tKCM5sVmv3roTpzwDm9ZTewLgOrt2ZQrgI0frR6DSG3oJOpIJNIYBPsUJTy5dAm2CGTSKCTqUrZu+p06tQJJ06cqPTpgTZv3ozx48fjvvvuAyD2oTx//vwty5GRkQGZTIZGjRpVShmok005mjVrhlmzZjn6M5SGc45169Zh4MCB+OSTT6qxdIQQq2DHDXdqJO027Lp0DD+kpzoCSQZgUEgDDC0jkJTkZcF/3ULnQFKuBEscBUmPe6ovkJTIAF0QLYNIiBtidEGIUPvDYLOg5LAQzjkMNgsi1P6I0QVVa7mmTZuGRYsWYfr06Th69CiOHTuGZcuW4Y033qjQcZs1a4bff/8dBw4cwMGDBzF69GhHrWVp+vbtix49emDYsGFITk7G+fPnsW3bNrzxxhuOAT6eoprJcqSkpOCNN97AjBkz0KFDB3Tu3BlRUVFQqVTIzs5Gamoqtm/fDrlcjtdee82rjquEEO9YBTtyzAYI5YwjtFuMSL54BDtyi/o6KpgED0U0RUtt6R8oinOHod2bDFZ8RHhoNFjCSLAq6mflipq0CfGUhDEkxcRh8andyLUYoZEpIJNIYRPsMNgsUEnlSIqJq5b5JosbMGAAVq5cibfeegtz5syBXC5Hy5Yt8dhjj1XouB9//DEmTJiAnj17IjQ0FK+88gry8vLKzM8Yw+rVq/H6669jwoQJuHbtGiIjI9GnTx9HH01P0WhuN126dAm//PILNm3ahPPnz8NoNCI0NBQdO3bEgAEDMGjQIEhq2HJlNJqb1GUWuw3ZFoPzotel5TPk4ecLB3HSkOtI85fK8Ui9FqinLGWtapsF2r3roDx3yDk9ridY5wHVN/WOQi2O0qaaSEK8cjwnA2vSUnHVmAebIEAmkSBC7Y+kmDi0DIz0dfHqFAom6zAKJkldZbJZkWs13jqQ5By5edex+OIhZFiKptCIUmrwcGRz+MtcJxSX5l6DdusKyPKuFyUqVGB3PgDWMK4Sr+AWaBlEQiqNr1bAud1QMzchpFYx2izIs5QzCpMLuJKVjh8upUJvL2qmbqUNwoPhTaAoWdvHORTnDkG7dy1Y8fkpw2LAEkaAVUffKiYBVDowVSm1pYQQr0gYq7Lpf0gRCiYJIbVGgdUCvbWcQNJux7GrZ/FrxilYi43Y7h1YD/2C67vWSlgt0O5ZA+WFo87pbXqD3dGvepqZFWpA7QdWw7rKEEKIOyiYJITUCnqrCQXW0udNK8StFmxNP4a1WWmONAkY7glriM7+4S75pTmZ0G1dDml+sSXElBqw3sPBYlpUWtnLJJUDGn+aeJwQUqtRMEkIqfHyLEYYy1ln224yYOXFw9ibf82RppJIMSqiGZpqApwzcw7lmQPQ7FsHVny1nIhGYPEPgWlL5K9sTCIOriltABAhhNQyFEx64OLFi4iJiXGZooNzjrS0NDRo0MBHJSOkbuKcI89qgqmcQNJUkIOlFw7hrLFoOowgmRKP1GuOcEWJpU+tZmh3/w3lxWPFEhnQLh6s411V36xNa2kTQuoYCiY90LhxY1y5cgXh4c7NZTdu3EDjxo1ht5e/HjAhxD2cc+RYjLAUHxDjmgk3cjPx48XDuF6sL2UDlQ5jImOhlTo3H0tvZEC3bQWk+uyiRJUWrM+DYNGxlX0JzmQKsV8kNWkTQuoYCiY9wDkvdeJgvV7vtK4mIaRiBM6RYzHAeqsvaIKAi9fTsCT9GAxCUcDZTheC+8IaQ158MAvnUJ7aC82Bf52btSObgMU/CKapwqmzmPRmk7a6/LyEEFILUTDphhdeeAGAOGv8f//7X2g0Rf2c7HY7du7ciQ4dOviodITULQIXkG02wibcIpC023Doymksv3oG9mKTTd4VFI3EoCinL33MYoJ212ooLp0odgAG1iERaJ9YhSOo2c0mbS01aRNC6jQKJt2wf/9+AGLN5OHDh6FQFE0mrFAo0L59e7z00ku+Kh4hdYadC8guZ51tbjEh5dIxbMhOd6RJwXB/eGO09wt1yivNuiw2axcUrX4DtQ4sfgRYvSaVXn4HmUIcpV1dq+UQQuqk8+fPo3Hjxti/f3+NrrSiJ50bNmzYAAB49NFH8b///Y9WkyGkCtgEO7LNRgi87EDSZszH8ouHcVhfNJWPRiLDmMhYNFT7FWXkHKoTu6E+uAGs+PGimon9I9W6qrgEQCIV+0UqqNsLIber8ePHY+HChXjiiSfw5ZdfOm17+umnMW/ePIwbNw4LFizwTQGrAAWTHvj+++99XQRSQ9gEAXuuXcANcwGClVp0DmsImRvNpZwLQOZFwKgH1DogvEGFm0Br0nJhNqsJl1J+BsvLBPcPR/2EhyCTlx9YWQU7cswGCGWt7so5CvKzsOTiEaSZ9Y7kMLkKj9RrjuBi52BmI9TbVkB19XzR7mCQdOoLtOtTRU3ODFBpxcE8LrM9VP7fnBDiHl+9/2JiYrB06VJ8/PHHUKvF/tImkwk//fRTnZz5hYJJDxQUFODdd9/FP//8g8zMTAglmuLOnj3ro5KR6rT2Uir+TkuFyWYFBwcDw7KzezEwJg7965e9fjO/eAzCrtVAdgZgt4lrMAdFQtJ1EFiDVl6V5XhOBtakpeKqMQ82QYBMIkGE2h9JMXFoGRjp7SV65fyK/6He2cOo7+jDeAz2w5twqUlbNBr2XJn7WQU7ss0G8LICSUHA9RtXsCj9KHJsRZOWN1H7Y1REM6iLNSXLrl+Cbv0PKP5RwW/+N+fQRgS1T/Dy6m5BrhRrI0tp0q6KvzkhxD2+fP916tQJZ8+exe+//44xY8YAAH7//XfExMSgSZOiLjZr1qzBzJkzceTIEUilUvTo0QP/+9//0LRp0zKPnZqaipdeegmbNm2CVqtF//798fHHHyM0NLTMfaoa42U+wUlJo0aNwsaNG/HII4+gXr16LjUQzz1X9gemL+Tl5SEgIAC5ubnUNF9J1l5KxYrzB2HnHFIwMMbAOYcdHFLGMKxR+1IDSn7xGIT1iwCLSazBkskAmw0wFQAKFSR9x3r8cDuek4HFp3bDZLdAI1NCJpHCJthhsFmgksoxJrZLtQWU51f8D/XPHgIAFH+gFL5DLjVpV2pAabHbkGMxlh1I2m04m3keP2WcgrnYgJzOfmEYGtYQ0sIaBs6hOr4D6oMpKP6uLHnUPJkCQY+86dG1lUkiAzR+YHJlqZur4m9OCHGPL99/48ePR05ODuLj47Fq1SqsX78eANC3b18MGTIEKSkpCAwMxIIFC/Dbb7+BMYa2bduioKAA06ZNw/nz53HgwAFIJBKXPpNXrlxBu3btMGnSJIwdOxZGoxGvvPIKbDYb/v333yq5HndQzaQH/v77b6xatQq9evXydVGID9gEAX+npcLOOWRMUtSUzBgY57BxcftdUS2dmrw5F8RvxxYToAsECveTKwCZHNDnQNi1GpKYFm43vwicY01aKkx2CwIUGscXG4VUBrlEilyLEWvSUtE8IKLKm7xtVhPqnT0MwDV44xADynpnD8NmNTk1eZcbSFrN2HPlFFZeO4/CNgAGYEBIDHoFRDqumZkM0O78C4orRS0DZX1D9rdZYNBnQ6ML8vQyi2Fic5lSU+pUYUDV/M0JIe6pKe+/Rx55BK+99hrOnz8Pxhi2bt2KpUuXIiUlxZHngQcecNpn/vz5CA8PR2pqKtq0aeNyzHnz5qFTp06YNWuWI+27775DTEwMTp48iebNm1fZ9dwKPcU8EBQUhODgYF8Xg/jInmsXYLJZIQVzCdAkjEEKBpPNij3XLjjvmHlRbGZRaYseaoXYzb522RliPjel6bNx1ZgHjUzpEtAwxqCRKXDVmIe04pNzV5FLKT9DCl5mAMcBSMFxKeVnR5rZbkO2peymbW4qQPKFw/izWCApZxKMiozFnYFFrQKyzIsISJ7vViBZKHfV1+5dWGkUaiAgDKyUvpFOquBvTghxUw15/4WGhmLw4MFYuHAhvv/+ewwePNilKfrMmTMYPXo0mjRpAn9/fzRu3BiAuOJeafbu3YsNGzZAp9M5flq2bOk4lq9QzaQH3n77bUybNg0LFy50mmuS3B5umAvAwSEp45ssYwwCF3DDXOC8wagX++uotaUfWCYDTAYxn5v0NhNsggCNrPSl/2QSKQw2C/Q2U6nbKxPLy/Qon8lmRa7VWGbUZynIwa8Xj+C4IceR5ieV4+F6zRGtvPkaCgJUx7ZDfWQzWLGA1J0+OxqL0a3yOvF09Zoq+JsTQtxUg95/EyZMwLPPPgsA+Pzzz122Dx06FDExMfjmm28QFRUFQRDQpk0bWCwWl7wAIAgChg4divfee89lW7169Sq38B6gYNIDH374Ic6cOYOIiAg0atQIcrnzB8u+fft8VDJSHYKVWjCIfSRdvu3i5gpJYAhWlniAqXVix2+bTWxmKclmA6TiKinu0slUkEkksAl2KEoZ+GET7JBJJNDJqn6KGu4fDuCYW/mMNgvyLGUEuFyAPucafrh0FFcsBkdyPYUGD9drjgCZ+Noxox66HX9BXny0NpMgXyaHn9VcbjkMCjUCys11E5MCGh1YyfW9y1MFf3NCiJtq0PsvKSnJERgOGDDAaVtWVhaOHTuGr776Cr179wYAbNmy5ZbH69SpE3777Tc0atQIMlnNCeFqTklqgWHDhvm6CMSHOoc1xLKze2GwWcA4d2rqFm4OwtHIFOgc1tB5x/AGQFAkcP2S2F+neCDKudghPLS+mM9NMbogRKj9kV6QA7lE6tTkyjmHwWZBtDYQMRXqG+ie+gkPwX54U5lN3QyAHQzBdw4rO5C025GRlY4fLx9Dnt3qSG6pCcSDEU2hlIg1sLKM89Dt+BMSU1HtL2cMTKmG1j8UyLzgcuiSAgY/7sZVlT3Vj1uq4G9OCHFTDXr/SaVSHDt2zPH/xQUFBSEkJARff/016tWrh4sXL+LVV1+95fGeeeYZfPPNNxg1ahRefvllhIaG4vTp01i6dCm++eYbl3NUFwomPfDmm5U0CpTUSjKJBANj4rDi/EHYuAApdx3NPTAmzmW+ScYkkHQdJI4s1OeUPrKw6yCPOoJLGENSTBwWn9qNXIsRGpnCZTR3Ukxctcw3KZOrcKlJW9Q/ewgMpY/mTm/cGtqy2qBtVpzIPIefM07DWmyC8Z4BEUgKaSBegyBAfXQLVEe3Oo3WhkwBpgsEOIc07zrsuHVH8DyZAkHlBdhylThKW+L9Q7kq/uaEEPfUtPdfWbOpSCQSLF26FJMnT0abNm3QokULfPLJJ0hISCjzWFFRUdi6dSteeeUVDBgwAGazGQ0bNkRSUhIkVbY0bPloaqA6jKYGqhqlzTOpksk9nGfSLjaz1MF5JqXFwkk7mBhIDphY+k5mI7ZfOYU1WRcde0kADAlthK4B4QAAZsyHbvufkBfrLM8BMI2/cwd7zgFDHqwmA2Sl1JGWOy2QVC72iyytWcxLVfE3J4S4h95/1YeCSQ9IJJJbNnnZ7fYyt/kCBZNVh1bAKV3JFXACet4DSxnXJxjysDr9OHYVG8CjlEgxMqIZYjVir0b5lbPQ7vgLEnNRH0rOJGDaAEBZSj9GmxWwWWDuMRQ52/6ExmIU+0gOfrzs6YCYRFyvW1k1g+poBRxCfIfef9WDgkkP/PHHH06/W61W7N+/HwsXLsSMGTMwcWIZtS8+QsEk8aVcixEmm9V1Axdgyc/G0ktHcdqY50gOlCnwSGRzRCg1YrP24U1QH9vuvG9EIyAnE9D6i0FgKceGQQ/WezhY/dhySsgApQZQa+nDhRBCKoCCyUqwZMkSLFu2zCXY9DUKJokvcM6RZzWVHkja7cjJvYofLx1DprVoip4YpRZjIptDJ5NDUpAH7fY/IL9+qeiYUhkk3YeAB9UDNiwRp+opbZqemzWT7K4xYKHRZRdSphT7RZYyEp4QQohn6ElaCbp164ZJkyb5uhiE+BznHDkWIyx2m+tGmwWXrqdj8ZUTKBCKtrfRBuOB8CaQSySQp5+CdudKSIqN+uYBoZAkjAILjgS4AO4fKvaBkvq7jtI0G8RRnCFlzLcmkYr9IhVVP2USIYTcLiiYrCCj0YhPP/0U9evX93VRCPEpgXPklhFIMrMRhzMv4PdrZ2Ar1hiSEBSFu4KiIREEqPf/A/WJXc47Nu0ISY97HINiGJMA7eLBt60ADHliM7VUKnauNxsAuRKsXXwpzdYVnOqHEEJImSiY9EBQUJDLfH75+fnQaDT48ccffVgyQnxL4AJyzEZYhRKD0DgHjPlIyTiDf7LTHclSMAwLb4yOfqGQ6HOg2/4HZFmXi3aTysF6DIUk9g6Xc7GopkDPYeCHNgJ51wFz0ShN1i5e3F4cNWkTQkiVoqerB+bOnev0u0QiQVhYGLp164agoKqfHJqQmsjOBWSbDbALgvMGwQ4hPwcrMk7igD7LkayWSDE6MhaN1f6QXzoJ7c5VkFiLmrWFgDBI7xoNFhhe5jlZVFOgXmMg64q4LJpKA4TUc66RlEgBjT+YXFlp10oIIcQVDcCpw2gADqlqNsGObLMRAi8RSFotMOZnYcmVk7hgynckh8pVeKRec4RIZNAc3ADVyT1Ou/HYOyDpPgRMVsG5HpVacbofatImhJAqRzWTHsrJycH8+fNx7NgxMMYQFxeHCRMmICDA7dV+CakTrIIdOWYDhBLfR5mpANfzruOHKydxw1a0VnZjlR9GRcZCZ8iHbtsKyLIzHNu4TAHW815Im3aoWKGkMkATAFbaSG9CCCFVgmomPbBnzx4MGDAAarUaXbt2Becce/bsgdFoxNq1a9GpUydfF9EJ1UySqmKx25BjMcLp8cEFSAz5OJt3DUsyTsFUrP9kJ79Q3BPWCOq0E9Du/hsSa1GQKQRFQJo4GiwgtAIlYmJNpEpbgWMQQgjxBgWTHujduzeaNWuGb775BjKZWKlrs9nw2GOP4ezZs9i0aZOPS+iMgklSFSx2G7ItBudFuO02SArysDfnCv64dh5CsY39guujj18YtAf+ger0fqdjCc27QNptcMVqEithLW1CCCHeo2DSA2q1Gvv370fLli2d0lNTU9G5c2cYDIYy9vQNCiZJZTPZrci1GJ0CSWYxgRvysD4rDZtyrjjSZYxheHhTtBO42KydU7RsIpcrwXreC0mT9t4XRiITg0gaYEMIIT5FfSY94O/vj4sXL7oEk2lpafDz8/NRqQipHkabFXnWEoGkUQ+rMR+/ZZ7F0YJsR7pOKsfDkbFoknEe2j1rwIqthmMPrgdpwkhIvG7WpjkjCSGkJqFg0gMjRozAxIkT8cEHH6Bnz55gjGHLli14+eWXMWrUKF8Xj5AqY7RZkFdsVRpwAZKCPOSb9Pgx4xTSzQWOTREKNcaGNka9Q5ugOnvQ6Tj2lt0h6zrQ+zkfqUmbEEJqHAomPfDBBx+AMYaxY8fCZhNX+ZDL5Xjqqafw7rvv+rh0hFSNAqsF+mLzQBb2j7xizMOPGSeRa7M4NjXXBGC0KhDBKT9Blnvdkc7lKvA774O8URvvCiGVicsgUpM2IYTUONRn0gsGgwFnzpwB5xzNmjWDRqPxdZFKRX0mSUXprWYUFBt5DasZEkMeTuizsezqaViKzS/ZzT8c9+Xnwm/vOjB7sWbtkGixWds/2IsSiKO0odRQkzYhhNRQVDPpBY1Gg7Zt2/q6GIRUqXyLCYZitY7MbAAz6rE9NwOrr190dJ1kAIYG1EPi6QNQnj/idAxbqx6Qd0nyrllboRZrIyUl19kmhBBSk1Aw6QGTyYRPP/0UGzZsQGZmJoQSy8ft27fPRyUjpHLlWYwwFg6a4RzMqIdgNmD19QvYmVc0KlvBJHhUHYQ2u/6GNK9oyURBoQa/834oGsZ5fnKaeJwQQmoVCiY9MGHCBKxbtw7Dhw9H165dqdmN1Dmcc+RZTTAVBpKCHZKCPJisJvx89TROGnIdeQOkcvyfyYJ6e38Hs9sc6baw+pDFj4TEz8P16plEnHhcWTO7jRBCCCkd9Zn0QEBAAFavXo1evXr5uihuoT6TxBMC58i1GGEpDAxtFkgK8pBjMeKHjJO4ajE68jaWKvB0+llo0044HcPSuhcUd/SHxKNmbQaoNDen+qEmbUIIqW2oZtID0dHRNJ8kqZMELiDHbIT15hKIzGwEM+pxyZSPHzNOQV9sQE0fARh+bDtk+pyi/ZUa2HrdB5Wnzdpypdgv0tupggghhPgcVQN44MMPP8Qrr7yCCxcu+LoohFQaOxdww2wQA0nOwQx5YMZ8HNFn4dvLx4oCSc7xaH4eRuxPcQokreENIAx92rNAUioDdEFguiAKJAkhpJajp7gHOnfuDJPJhCZNmkCj0UAudx4gcOPGDR+VrG4ROEeaPht6mwk6mQoxuiBIbvZP5VwAMi8CRr04ZUx4A0fT6K22lcWbfQAg83oahKXvQmu1oECugGTkqwgPjSl3P5vNgrO718Cedw1S/zA06ZIEmUzhxqtStht5Wbi4/CMEGvXIUevQ4L4XEOwf4ta+VsGOHLMRAhcc/SO5zYKNOVew7sYlRz6NzY6XrlxAZMY5RxoHYG5zJ5Qd+0F6c636Y3v2osnh3yEBIAA42/Z+tOp8R9EJmQRQ6cBUt0+/SG/vMUIIqS2oz6QH+vbti4sXL2LixImIiIhwGYAzbtw4t44ze/Zs/P777zh+/DjUajV69uyJ9957Dy1atHDk4ZxjxowZ+Prrr5GdnY1u3brh888/R+vWrd0ub23sM3k8JwNr0lJx1ZgHmyBAJpEgQu2PpJg4tMjLhrBrNZCdAdhtYu1WUCQkXQcBQJnbWINWpZ6LXzzm8T4AkDv3cWhvNgcXVyCRImDK12Xud2z9IkQf3QaV3QoGMRgzSeVIb90TrfqO9eh1KnT6q+fRqCDPJf281h/Nnvj4lvuKgaQBAueO/pE2wYY/r53HvvyiCcdjDXo8fe4YlIai8wgqLcy97oM6pqUj0Ld+/3qpTR0CAPmjswClWgwkb6Opfry9xwghpDahYNIDGo0G27dvR/v27St0nKSkJIwcORJdunSBzWbD66+/jsOHDyM1NRVarRYA8N577+Gdd97BggUL0Lx5c8ycORObNm3CiRMn3O63WduCyeM5GVh8ajdMdgs0MiVkEilsgh0GmwWt8nMw6sJxKGxWcV1mmQyw2QBTgVjbBQBccN2mUEHSd6zLBze/eAzC+kWAxeT2PkDZgWShsgLKY+sXocmhTZCAww4GDnF+Rik4BDCcbdfH44CyrECy0K0CSovdhhyLEZxzR/9Ig92KnzJO4ZwpX8zEOQZfv4JBF06AFZuc3BrRCMKdw6H2LxqtXVYgWUgAoHhhvieXV+t5e48RQkhtc/tUEVSCli1bwmg0lp+xHGvWrMH48ePRunVrtG/fHt9//z0uXryIvXv3AhBrJefOnYvXX38d999/P9q0aYOFCxfCYDBgyZIlFT5/TSRwjjVpqTDZLQhQaKCQyiBhDAqpDAFyFXpcPAGrqQDQBgJyhRhAyhXi78Z88Ucb4LxNFwhYTBB2rRabGm/iXBBriywmMY8b+wBi0/atAkkA0Ap2ZF5Pc0qz2SyIProNEnBYwSBIGLhE/NcKBgk4oo/+f3t3Hl9XVS/8/7OnM+ecJE2bpDSd6EAnkLYUWoYyUwoqigqiKBdFHxSVy716L+pzRX9eQXwerly5ODwyCDJ5FRCRqVxoCxYsFAqdKKVj2mbokOTkzGfvvX5/7OQkJzlp09Ax+b555RWyp7POaijfs9b6ftcy7G4Fwvdnb3zPPgNJgLHJOHu71X7slHVsWnIplOuipdrR0u3szqX5zY61hUAyZOe5cfNaLtmyrhBIKk0jPeMs9AuuKQok1725Yr9/kejAyldf7ff7O9YN9HdMCCGORRJMHoDbbruNf/qnf2Lx4sXs2bOHeDxe9DVQbW1e7b7KSm+7uc2bN9PY2MiFF15YuMbv9zN//nyWLVvW53Oy2exBa9PhVp9ooSkdJ2T6ey0fqEm2UZ1JkjDMou37AHDyoBSgvH/vTtO8EaGWRm/NWqfmbd6xQNi7pj/3AO6j/dt/ved1m954joCTx0EDvcfr6RoOGgEnz6Y3nuvX8wG2PXHHgK5L23lacylwXPRkK1ouzeZ0nF/vWMPujv23xyXa+MHaN5m0p7HrPQUjpM/7PMFZF/RaKzx+1eP9assJy+/r13WDwgB/x4QQ4lgkCTgHYMGCBQCcd955RceVUmiahuPse9SqFKUUN910E2eccQbTp08HoLHR+594dXV10bXV1dX7zCS/9dZb+eEPf3jAbTgaJOwMtusSMo1e50K5LIZysTULR7lAt2tcBzonjd0SozymCZmUl/zQKZ3w1q8Fw6UbU+oeIJzv38hhz+uc+K7CGslSOqe8nfiufj0foLxH2/pzXcrO0Z7LgGOjJ9vAdXi7fTdPNm/GQaEpxfmN2/j4jo3o3Va/5GrHY8+7jHBZZclC/f39RDqkPrkO8HdMCCGORRJMHoCXX375oD/zhhtu4N133+XVElOAPf/H3Rm09uXmm2/mpptuKvwcj8epq9t/hvHRIGIGMHUd23Xw9SgVk/L5cTQdU7kYPbNgdQMvFANKJXbYNhiGl0XbKRjxEiFs25t27M89QNLyEcxl9vtekpaP7qtajejwQsBYKqDsPG5Eh+/32Z1agxFGpfYfiLR2vIdkPkcin0HLZdBS7bjK5aWWHSxu2QlAJJ/ji5vXMq2ta1pcaRrpE+djzjiLiOXv8zVc+hcoDqkJ3QH+jgkhxLFIgskDMH/+/D7PrVy58oCf941vfIOnnnqKpUuXMmrUqMLxmpoawBuhrK2tLRxvbm7uNVrZnd/vx+/v+3/6R7O6SAXVwSg7kq1YulEUNDeGYzQFwhyXTuDrGUwaVtc0otFjL2elvGSHqlEwYnTX8RGjoaIGdm8H0yqehuzrHkC/8l/hgVv2+170K/+16OfxpywgtfwZgk7eGzztPtXtKgwUacNi/CkL9vvsTqM/cRP89jv9ui6Zz5LIZ9HSCbRsirzr8viuTaxKeKWsjm9v4csb1xDLZwv3OaEoqXmXET5uIuY+s681Nsy8iilv7X8t73tz/oGP7PeqQWKAv2NCCHEsGlIzTwdbW1sbd999NzNnzmTWrFn7v6GDUoobbriBxx9/nJdeeolx48YVnR83bhw1NTUsWrSocCyXy7FkyRLmzZt30Np/NNE1jQV1UwkYVmFLP1cpco5NWz7Da6MnYwXCkGyFfM7L3M7nvJ9DZRAsg2Rb8blEq5c1O2dhUV0/TdO9ckK+gHdNP+4BGFFVR1LvPQ3fXVI3etWbNE0fO6bNw0XDQqG7Cs31vlsd2dw7ps07oHqTldFhbAnvO0N/SziKFQiTyKXRE61o2RQJO8+9O9exKrEXTSkW7NzMP773VlEgmRs5gdTCL1M2aj+BpBWAWBUzzj5vv6OOLvCRM87o9/s71g30d0wIIY5FUhpoAF566SXuvfdeHn/8ccaMGcPll1/O5Zdfzsknn9yv+7/2ta/x8MMP8+c//7motmQsFiMYDAJeaaBbb72V++67j4kTJ/KTn/yExYsXD+rSQHAgdSYdb5qwZJ3J4nP9qzPZv3vg2KgzuTkcZcQ//IRMNo2ejINr05RL8WDD+7TaOcryWa7ZtJYp8a5C+0rXSZ10DtqUeYR9vROhCnQTQmVoPaa+c3d8qc86k0OtLFCngf6OCSHEsUSCyX7avn07999/P/feey/JZJLPfOYz/OpXv+Kdd95h6tQD24+4r/9J33fffVxzzTVAV9HyX//610VFyzuTdPrjWAwmQXbAOVA9d8AZddk/YgRC5DJJ9FQclGJDqpVHmzaSdR0mxffyD5vWEOuWKOSEYyROv4xg9TgCptXHK2neCLA/2Ofv8MpXX+WE5fcVdsB5b84/DKkRyVJkBxwhxGAnwWQ/LFy4kFdffZVLL72Uz33ucyxYsADDMLAsa0DB5OFyrAaTYuAc5dKaTeMk29CyKQD+3tbEX3dvRSnFwp2buXjn5qIRxNyoyaRPvZSySHnf09q+IATLhtTuNUIIIfpHEnD64YUXXuCb3/wm119/PRMnTjzSzRGiJMd1ackkUIlWNDvnFYLfs41lbU3Ecln+YdNqJrW3Fq5XukHq5PNwJ59CzBdALzVaZlgQiqL1OVophBBiqJNhhn545ZVXaG9vZ/bs2Zx66qncdddd7NrV/5qAYvBxlWJr+17WtOxka/teb3/rQ3jf/uRdh73JFlR8N9g5sq7Dw40bWNbWxJS2PXx3zd+LAkknUk78/C+gnXAaUV+wVyDpAo3N9WzdtpqGbetw9rPzjxBCiKFLprkPQCqV4tFHH+Xee+9l+fLlOI7DHXfcwbXXXtvvpJjDSaa5D419JQmdUF5z0O/bn5xj09a+B1IJQNFm5/h9w/s0ZRNcumMzFzZsKfrUmB09heSci4kEYwTMnpMTGtu3rsZ++3+IpuLorour68TDMfQ5Cxkz9fQBt1MIIcTgJMHkAK1fv5577rmHBx98kNbWVi644AKeeuqpI92sIhJMHnzvtTby0IY3yDg5QqYfUzewXYeUnSNgWHxu4iklA8OB3rc/WTtPW1sTWtYrpr4zm+TBhvcx0u1cu3E1ExJthWuVYZI6+XzyE2YS9Qd7r480fWzbuprg0j/ic/KkTT+ObmC4DgE7R94wSZ99hQSUQgghisg09wBNnjyZ22+/ne3bt/PII48c6eaIw8BViufq15JxcsR8IXyGia5p+AyTmC9IxsnzXP3aXlPXA71vf9K5DPG9OwuB5NpkC/9vxzpG72ngu2uWFwWSTlkl8Qu+iDt5NuWBHoGkZkA4hhuO4b75PD4nT8IXwjFNb+9w0yTpC2I5Nu7yZ2TKWwghRBFJwPmQDMPgsssu47LLLjvSTRGHWH2ihaZ0nJDZuwajpmmETB9N6Tj1iRbGlFV+6Pv2JZVOkGxtBuWilOJvbY0s2rWVj+3YyAWN24quzY6ZRnL2AoKBMCHLV9wGX9CrGanpNG16l2iyjbTpL96lB0DXyJg+osk2mrasYeT4E/vVTiGEEIOfBJNC9FPCzmC7LiGz9C44pm6QsnMk7MxBua/PdsT3kE60AF4poL/s3sqmXdv4x42rGd+tgLkyTJKzLiQ3/kTKrCD+7usjddPL0u62b3Qu1ULQdXH6aKejG+h2jlyqpV/tFEIIMTRIMClEP0XMAKauY7sOPqP3fzq262DqOhEzcFDu60m5LonWJjKZJABpx+aRpg+I7NzIdzevJeTYXc+MVpE8/TKoqKbcCnSb1tYgEIZAuNcoqS9UgavrGK6Do/dup+E6uLqOL1Sxz3YKIYQYWiSYFKKf6iIVVAej7Ei2YulGUTCmlCJl5zguXE5dpOKg3Nedm8+SaG0m27GH9t58hod3vMcZm1dzblN90bXZcSeSnHUBPn+IiOXrKvtj+r0p7RIBLUD12GlsC8cob2/x9iDvPtXtKgJ2jtayCkaPndav/hJCCDE0SAKOEP2kaxoL6qYSMCzacmlyjo2rlFeaJ5cmYFgsqJta2Prxw97XyUm10763oRBIbsu084cP3uSL775aFEi6pkXi1EtJnnoJoUCYaGch8o4EG62sos9AEsDQDfQ5C8kbJuFcGsO2wVUYtk04lyZvmOhzFmLopafBhRBCDE1SGmgQk9JAh8bhqjOpXAc30UJ7qp18Rwb1O+172Lz+Na7cvK54Wjs2nMTpn0DFqohYfvydQaM/BMHIAe0FvXXt33CXP0M02SZ1JoUQQuyXBJODmASTh46rFPWJFhJ2hogZoC5S0efI4kDuU/ksbqKFtmwKx/UytpfsrmfYqsXMb95RdG3m+JNJnXwehs9P1Apg6DoYJoRiA94G0XEdmrasIZdqwReqoHrsNBmRFEIIUZIEk4OYBJPHJpVux0m105bL4CqXvOvy0tZ3OWPVK9SlEoXrHNMiPWchudFT8RsmYcvvBab+EATLeiXYCCGEEIeCJOAIcZRQrgPJNuxchngujasUSSfPW+++zCc2rCTQrVh4pnwEmdM/gRutJGz4CVoWoHlrI337zgoXQgghDiYJJoU4CqhcGlLt5Ow87fkMSil2p+K0vf4UH28uztZOTJhJ7uTz0E2LmBXAMgwwLC+Q7JFgM9DpeKVcaN4G6QQEIzBi9AGtuxRCCDF0SDApxBGkXBdScchnyNi2V7hcwY6mzVS9/jST0l3T2lnTIjPnEpzRU7B0gzKf38vWDoQhEOk1rT3QRCG1bR3u8megpREc21t/WVGDPmch2ugph6wvhBBCHJtkzeQgJmsmj24qn4VkHJRDKp8jZecA2Ln2b0xc/Sp+1y1c2xKtgjM/hSqrINCxPlLTTQhH0Sx/r2e/19rIQxveIOPkCJl+TN3Adh1Sdo6AYfG5iaeUziDftg73xQcgl/GCVNME24ZMEnwB9PO/IAGlEEKIIjIyKcRhppSCdDtkUyilSOSzZB0bN58lvuwJpjdsLrp++/gTCc1aAIZBxPITMC2vAHk4hqb3nnp2leK5+rVknBwxX6gwYukzTCzdoC2X5rn6tUyKVRdNeSvleiOSuQxEyqHznOUD04JEK+7yZ9DrJsuUtxBCiAIJJoU4jJSdh1QbdBQuT+SzXhHzvY3or/6R8an2wrUpw6J59oVEx52IpmmUWQFvO8ZgBC0Q7vM16hMtNKXjhEx/r6lvTdMImT6a0nHqEy2MKavsOtm8zZvaDoS7AsmuG73jLY3eddVjD0Z3CCGEGAQkmBTiMFGZpJfQgsJ1XdryGRzHwf1gBbG3/wer27T2trIK1BmXE40Nx9B1r36kaUG4fL+1IxN2Btt1CZml60KaukHKznnrM7tLJ7w1ksE+AlXThEyq4z0IIYQQHgkmxRFxKLKM+zpnuy5v7trK3mySSn+Y2cPHYHZMDw+0OPfe+B62PXEH5ekErcEIoz9xE5XRYaXb7Nheko2dw3VdmravJ9G+F8P0U75tDZXb3y+6/o26SYw69aP4TR8+w/T21/aFvPWRJaaXN2/9gNiTPyPo2KQNk9YLv4ap69iu441k9mC7DqauEzF7lBAKRrxkG9v2prZ73WiDYXjX9UGKnQshxNAjCTiD2NGagHMosoyBkufeGjeNh3MJMnYehUJDI2BaXFw3lcnxlgFtG/jBr/+Rscl4r+NbwlEmfPU/itucSXnrI1Hs/OAtnHeXUJaKY7ouulJFtSPbTYvl00/nxMmnYWgaQcMi5POjhWJo/mDJtqTu+DI+ev8nnEPjB/MWEvMFi6a6lVK05dIcFy7nm9PP6b1m8k//Abu3F6+Z9E5CohWqRqFf/o8lg1rZhlEIIYYmCSYHsaMxmDwkWcadgY1yi85lk220oXh47AlsjA5D0zSUUjgoToi38Nmt7xFwbNKmH0c3MFyHgJ0jb5ikz76iZADUVyDZqTOg7D4aCbDzg7fw//0ZLDuP0jVCto3RLQjcUFbOttkXcXL1eNAgYgYI+IMla0d26iuQ7NQZUIZM3yHP5t669m8EFz+Gz8kfUH8KIYQ49klKpjhsemYZ+wwTXdPwGSYxX5CMk+e5+rW4PT7f9MoytnxeAGn5IBzzRv7S7RDuOqdMH82Ggd9xuKhhK6amoWsahq5joXF+wxZ8tk3CF8QxTdA1HNMk6QtiOTbu8mdwuo0agje1va9AEmBsMs7eXfUQ31MIJF3XxXl3CZadx0BR1vEdwAWerxnNznCMj4wYi67plPtCBCIxKKvsM5DcvPWDfQaSAD4U0VSenGsTz6XJuTbHhcv7DCQBtNFT0M//AlSNgnwWEnHve9WoPgNJx3Vwlz+Dz8mT8IX63Z9CCCEGB1kzKQ6bQ5Jl7OQBBarj33VvrV/KzqGAlGlSnUlxXKqd7WFvdHZUqp2aTJKkaaK0Hp+odI2M6SOabKNpyxpGjj+xcGrbE3cwvR/vs/Evd1HxiX8s/Lx92zrKE60ElIPZLVBuM3389+hJnLankdGpOG1NW6kbdyJ6pLxk7cjuYk/+rB8tga+veon2a289oLWp2ugp6HWT+70DTtOWNUSTbaRNP+g9nr2P/hRCCDE4SDApDptDkmXcLQOabiNftnJQgK3phJRNJJ8rnAvncxhKYWs6ugJ6xqe6gW7nyKVaio6X9zOLOZpJec1RikQug3/j24Qdu+hl3iur4LnasXy0cStl+Ry6UuhOHj02vGTtyJ6Cjt2vtgQdm8rugXk/aZre7/I/uVQLQdfF6ePPta/+FEIIMTjINLc4bCJmoJBlXEq/sox76h54dcsaNjUDDTCVi6PpJLplJyctH46mYSq310AngOE6uLqOL1RRdLx1H1nM3cUDIVzlEk+04FvyB4ZvW1cIJF3gL8eN539qxvCpHZuI2HkMV+HoBuawUf0KJAHSfUx/D/S6D8MXqsDVdYw+/lz76k8hhBCDgwST4rCpi1RQHYx6U9C91kUqUnaO6mCUukiPoGPEaKio8ZJAeuaLGRagedPfRlf9xZDpQwNCtk1TIMSOUFnh3PZQGY2BMGHb9kYmu3MVATtHPByjeuy0olOjP3FTv97n8PO+QPuODwg/81t8O7rK/rRaPu6cPJN2y8/lOzZiKRdNKSwnT1ukvNfr7UvbZd8+qNd9GNVjpxEPxwjYOXB7dOg++lMIIcTgIMGkOGx0TWNB3VQChkVbLu3t/KIUOcemLZcmYFgsqJvaa02fpule+R9fwCtPk895mdv5HCTbIFjmfSW7zml2jhGOQ9YweL52DLZSuErhuC55FC/WjiVnmoRzGQzbBldh2DbhXJq8YaLPWdirPmJldBhbwvvOit8eCBHYuJLIiw9ipNoKx9dEK7lt6il8pKWZCxu2oiuF4bgE8jnyplXy9fZl3JgJ5HrOz/eQQ2PcmAn9fuZAGbqBPmchecMknEv3uz+FEEIMDlIaaBA7GksDwcGqM+l4BbRL1pnsOnew60wqx2brb/6JUSXWT+4MhBheWYtv58bCMQeNv4waz6sjx3OJZjFx3d+JptvRFDi6TjxS/qHqMO6rzmTopt8O6JkDJXUmhRBiaJJgchA7WoNJODZ3wOm+HWJbopWdi+4jmkkR94cYduJ8Kt58ASPdtbd2i+Xn3uOn01JRzdW1kxjuCxIwTBJ7G8naGXzhyoOyQ0zPHXDaLvv2YRmRLEV2wBFCiKFHgslB7GgOJo8lPQuQd+e6NpmVi/G/uxit239Kq2JVPDB+KlWRSq6qmUDYtCizgvijlWi+0rvZCCGEEMciKQ0kxD6obApS3naIPdnJOM7S/ybQuKlwzNE0nhx1PP9TPZqPlFVx2Yhx+HSTaCCMWVaJZlq9niOEEEIcyySYFKIE5Tpeck+J0UiA3PYN6K/+Eavb2sk9vgD3HD+dLZEY51eOYn55LT7DpCwcRY9U9Fn0WwghhDiWSTApRA/7Go1Urkvu7RcxVy0tmtZeWT6cB8dNIW/5uGLEeGZEhuE3TCJlleghWWIghBBi8JJgUogO3mhkHOxsyfNuMo695DGspi2FY3lN44m6iSweMYqwafGlmknUBSKELD+h2HA0X6Dks4QQQojBQoJJIQCVTXtJNiVGIwHcHRtwl/43ZiZZONbsD3LP8dOpD0cZYQW5unYSFT4/EX+EQKwK7TDsPiOEEEIcafJ/OzGkKdeFVBvkS49GKtfBeetFtFVLiyr8r6gYwUNjp5AxTSYEo1xZPYGgaRENl2OVVaL1o8yREEIIMRhIMCmGLJVNeXUjlVv6fLINZ/Gj6M3bCsfyms4fR0/kleHHgaYxJzqCS6rGYOkGsVgVpqyPFEIIMcRIMCmGnH3Vjezk1q9HvfJH9GyqcKzJH+SeCTPYHipDAy4eNpq5sWovY7uiGsMfOgytF0IIIY4uEkyK/drXrjNHk/3ugJNJMFwzODlcgaF709CO67Jq707acmliviAzyqvR3n4RVr9atPP18spqHhl7AlnDxKfpfLr6eKaEK/BbPiLlNeiWr19tTOWy/HXFM+QSLfgiFVwyayEhn/9Dve+B7iYkhBBCHAwSTIp9Kt4P2wbDLOyHrY2ecqSbV9BXOzv35rZzGcryWSyleMGwOKv2eACWNmwk5+RRQCyXpbJ+A6NSXVsi5nWDx0ZPZFnVSNA0oobF52snMdIfJhwIE4wN73eizcMvPcCMTas4O5PEUApH09i4Zhmrxs/gqnO/MKD3PdB9zoUQQoiDRbZTHMQ+7HaKats63BcfgFwGAmEwTbBtyCTBF0A//wtHRUDZVzuzyTbalMsTdRNoCpWhoaFQuFAYdVSADkyOt/Cx7RsIOk7hubuCEX41fhoNoQgAtb4QV9dOImb5KQvF8EUr+z1C+/BLD3DOuuX4HYekaWJrOqZyCds2WcPg5SlzDjigfK+1kYc2vEHGyREy/Zi6ge06pOwcAcPicxNPkYBSCCHEIXf0zVWKo4JSrjfSl8tApBwsH2i69z1SDrkM7vJnvKnlo7CdyvSxS9cJOA7nN9ZjoqFrGoamo+MFkQqwXMVFDVu5Yut7RYHk68Nq+PcpswuB5JRQOdcdN4VyK0AsWoU/VtXvQDKVyzJj0yr8jkOr5SOvGyhNI68btFo+/I7DjE2rSOVKZ5SX4irFc/VryTg5Yr4QPsNE1zR8hknMFyTj5Hmufi2ufFYUQghxiEkwKUpr3uZNGQfC0HP9naZ5x1saveuOpFLtVIp0Lo2uFBnDYFguTXW3+pCdynMZrtm0ilN37ywcy+k694+bwgPjp5EzDABOj9Xw2ZqJBE2L8soarHDsgJr41xXPUJNJkjTNkn2ZNE1qMkn+uuKZfj+zPtFCUzpOyPT3KkOkaRoh00dTOk59ouWA2iqEEEIcKFkzKUpLJ7y1h8Fw6fOmCZmO0jpHUs92ui64Do5rowBH0zFch5CdL7ptStsePr59IwG3azSyIRDmN8dPp6ljNFIDPjZ8LKdER2CZFmUVtRj9TLTpLpdowVAKu4+RTFvTMZRN7gACv4SdwXZdQqZR8rypG6TsHAk7c8DtFUIIIQ6EBJOitGDES2KxbW/quCfbBsPwrjuSOtuZz3vt6ZjWNTQDDTCUi6NppEzLO+66XNCwmTl7Gose8/qwWh4ZO5m87gVnmlKcG63mlOgI/L4AkfJq9I5nHChfpAJH0zCVS17rHfyZHW30RSr6/cyIGcDUdWzXwVciAch2HUxdJ2LKdo5CCCEOLZnmFqWNGA0VNV6yTc91d0p5xytqvOuOIDW8DqJVkG73RiU7BA0LDQg6Dnt8QZoCYSqyaa754N2iQDKr6/xu7BQeGD+1EEjqrkt1Ps9Zw8cQDEYoGzZywIEkwCWzFtIYCBO27ZJ9GbZtGgNhLpm1sN/PrItUUB2MkrJz9MyhU0qRsnNUB6PUHUCAKoQQQgyEBJOiJE3T0ecsBF8AEq2Qz3k7xeRz3s++gFce6AjWm1T5LFr7XrTpZ4Dl7yhEngflojl5hjkOOV3nlREjmdy6iy9teIeabmsndwbC/HTKKfx9+MjCMct1qMplmDt8NLGySsLl1R/6PYZ8flaNn0HWMCjP57BcB00pLNehPJ8jaxisGj/jgOpN6prGgrqpBAyLtlyanGPjKkXOsWnLpQkYFgvqpkq9SSGEEIeclAYaxD5saSDoWb/R8aaSj3CdSW8/7Tjku9YDqp0bUe8ugfjurnZGq1g7cjzZLas4uce09vsjj+c3I0eT6hYoBhybKsdlzvDRnHP8LHwHmGizP511Jmu61ZlsDISlzqQQQohjmgSTg9jBCCbh6NoBZ1/7aSvlwp4GLzEoEEIZJix5DFqaCtfYpsW6GWfxG1PDoetXf7I/zOxwJSdUjqSyshbzEG2NKDvgCCGEGGwkmBzEDlYweTToz37aRdd/8DbqtT97094d7IoaXph2Gk9nu3a4MdD4xIhxfKSsCtOwiFbWYFgfLrgTQgghhhLJ5hZHNdWZ7JNJAvv/3KPyOdTf/wIb3io6npw4m4dGjmFlqrVwLKSbfK5mImOCZVi+AGUVNRj93BpRCCGEEB75P+cRsnTpUn72s5+xYsUKGhoaeOKJJ7jssssK55VS/PCHP+Q3v/kNLS0tnHrqqfzXf/0X06ZNO+xtdVyHpi1ryKVa8IUqqB47DaMj89l2Xd7ctZW92SSV/jCzh4/B1PUPdV/nudZUGyNcxYnl1Rgd57KZBM2LHsCfipMNRRlxwRfwB7zyRNnmeuxFvyOYSxfa7voC7Jp5If9lJ9ndLZAcbgX4fO0korqPF5s30wgMb9nJp8bNJGDu/z+L+voPiP3xp/iVS1bTafvUv1BXN+FD9/WxznFysPx5aGuG2AiYcxGGceC1OYUQQhw7ZJr7CHn22Wf529/+xsyZM7n88st7BZM//elP+fd//3fuv/9+Jk2axI9//GOWLl3K+vXrKSsr69drHIxp7q1r/4a7/BmiyTZ018XVdeLhGPqchayPVvBs/Voydh6FQkMjYFpcXDeVyfGWAd0H8Ny2NZiZJAHHRgN8hsVZtcczYemTDE/2Luy9K1ROOhhk9J4Guq8UdIC/Vx3HX44bR1u3dYmjk3FmGX52RKKsTbeT6FFHc0ZFLTdMP6fPPsnc8aWSn8JsIHDTPf3v3EHGWfQArH6leD2rpsP0MzEuGFiCkRBCiKOfBJNHAU3TioJJpRQjR47kxhtv5F/+5V8AyGazVFdX89Of/pSvfvWr/Xruhw0mt679G8HFj+Fz8qRNP45uYLgOAdsrZ/PImMm8F63EQEPTNJRSOChOiO/ls1vXE3DsA7pPA/yOTTifx+oIMhUKF7h2w7vUldgSsdCHPX52gPVl5dwz4UTS3WpEnryniU9vfR9H13hszGRWVwwv+by+Asq+AslOQzWgdBY9AKuW9H3BjPkSUAohxCAldSaPQps3b6axsZELL7ywcMzv9zN//nyWLVt2WNrguA7u8mfwOXkSvhCOaYKu4ZgmSV8An21zfsNWTAWGrqNrGoauYyo4v2ErPtsm4Qv2+z6fgmguSzSfw0JhaB3nNB0rn+93IKmAPPDq8OO4e/LJXYGkUpzbsJWLd24maZqYrsvZzdvR+vgstaqlgYxtFx2rr/9gv+tCzI7rhhLHyXkjkgVat68Oq1/xrhNCCDHoSDB5FGps9GoiVldXFx2vrq4unCslm80Sj8eLvgaqacsaosk20qYf9OJxP1eDpGlSk0lS12Nv7rp0gppMkqRp4vYYLuzrvoCdpyKXwd9tn+zuPr5jY5/t7P4SLpAFnqybwGNjT8DtKF9kOQ5XbVnH3N3eNLit6yQti5pMklGp9hJP9fxxc3EST+yPP+3z2oFcN2gsf77b1HbPMeKOn5XrXSeEEGLQkWDyKKb1qBWolOp1rLtbb72VWCxW+Kqrqxvwa+dSLeiui6P33ktaKbA1HUMpwvni0aZwPoehFLaml9yFsft9hutSns1Qls+hlagb2akil+11rPu4l+r4ymga9004kZdrxhSui+ay/ON7K5jRuhsF2JoGmlZoR6Rb6aCedqeLA03/Pto4kOsGjbbmg3udEEKIY4oEk0ehmhpv55Keo5DNzc29Riu7u/nmm2lrayt81dfXD7gNvlAFrq5jlBgt1DQwlYujaSR7JK8kLR+OpmEql55xb+E+wNU0KnJprMLz+w6SW3oU9e45rQ3Qavn4+ZTZrOq2BvK4VDvfXvsGY1Lt2JqO0xFIQlf7E/vYc7sqEEE1bUFtWY1q2kK2n4Xa+3vdoBEbcXCvE0IIcUyR0kBHoXHjxlFTU8OiRYs4+eSTAcjlcixZsoSf/rTvKVS/34/ff3AKblePnca2cIzy9haSulE01a0rCNk2O0IR6oORok8k9cEIjYEwx6USpAyrKPLTFYTyeZqDIVosP3q3kct97dfy55HjmbZ+Ra/rOm+vD0b41aSTaPUFCuemte7m2o2rCbgOLpAwzEIgiVKEO9q/PVQ6M35SfC9XNO7EbW0CxwbDxCirhnjDPlrqafvUv3Bsl4g/QHMugtef6pjqVpT8U9J07zohhBCDzhAbQjl6JBIJVq5cycqVKwEv6WblypVs27YNTdO48cYb+clPfsITTzzB6tWrueaaawiFQlx11VWHpX2GbqDPWUjeMAnn0hi2Da7CsG3CuQw50+TF2jHYGjiui6sUjutia/Bi7Rhypkk4l+m6L58nkk3jGAavDR+Jo4GjOu5TbiGbW8Nb+9h5zrJzfLJhc8lpbYBVsSrumDKrKJA8q3EbX97wTmENZk7TvexwpbBch/K8l1X+Qu0YVIllA5Pie7mm/gP0PTvA8kMkBpafgJ1kfxPYNgy5epOG4YPpZ3Y7oij+U8IrDyT1JoUQYlCSkckj5M033+Scc7pKz9x0000AfPGLX+T+++/nO9/5Dul0mq997WuFouUvvPBCv2tMHgxjpp7OViDZWS/SzuHqOq1lFehzFjItWsG2jnqRrnLR0AiZPqaddC7ZcSeTXv4M0UQrej4LukZ7OIp+4nwmRKLsbNhIzsnjdgSRgY5akgBLO87VpuJcvm0DFfmuNZOq2/eXq+t4vG5iISDUleLyreuZv2sHCkjpBmuqjiOaSVCdSWIoG0fT2BmK0DBtLv6yCmgpHmnUlOLyXQ2Uo0GkvGs00/KBaWEATipe8lPYUC0LBGBc8AUckDqTQggxBEmdyUHsYO3NPeAdcLIpdm14CzvZghWMUnXcRPTC7jguq/bupC2XJuYLMqNyZGGXG8dxaHjzOWrWvYbe7dczXzOOlpnnkXz9r7xcPow3h3WtH/VrOp8aPhbjg7fQUu3kKms57czPEPAFyNl5Xl+9hHSihWCkgtOmz8fXsVYyY9v8cfNb7E63UxUs41PhYVh//ZU3ImmVGEnL5yCfZdfsTxBafJ/sgNOD7IAjhBBDjwSTg9jBCiYPlHIdSLVDPnPg92ZSqFf/BPXvdR3TNNLTzyIzdS4Z1+HRpg/4IN1V9ihm+vhCzSSq/SGUL0AkNpyQNbC1o2rLatzn7vGmtksl0igXEnH0BdeijZ0+oNcQQgghBhOZ5hYHlcokIZ2gaL1cf+9t2opa8hgk2wrH3GAZiXkfxx5eR0s+y4MN79Oc79p7e5Q/zOdqJlJm+lDBMNGyKgL7yNDer2AEDBNsu/TIpG2DYXjXCSGEEEKCSXFwKDsPqTYv87mDqxSNyThJJ0vY8FMTjqKXSHhRyoVVr6LeWlS03i5XezzJ0y5F+UPUZxL8vvF9kt2ePz1cyeUjxmPpBipcRixSid84sF9pJ5+mfdHv0dqaUbERlJ1/FVTUwO7tYFoU1TdSCjJJqBoFI0Yf0OsIIYQQg5UEk+JDUa4L6XbIpYuOb4rv5pWGD9idTeC4LoauU+WPcGbtBMZHq7ruzyRRS/8bdmzoOqbppE86m8zkOaBprErs4U/Nm7C7rciYX17LeZWj0HUDFYlRHorhO8BAsu0PtxPevp7CGGPDJtR7r5OpGkXQF4BEKwTCYHaMVGaS4Augz1mINtRqSQohhBB9kDWTg9ihXjOpsmkvkOyx48um+G7+smUVWTdHwPBh6ga265Bx8vh1i4+OncH4aBWqcbM3rd1tS0MnFCUx7zKcquNQSrGktYEX924vnDfQ+PjwscyMDgfDRItUUB6MYJbYqWdfOgPJvmSqRhEMRaGlERzHm9quqPECydFTDui1hBBCiMFMRibFAVN23gsi7Vyvc65SvNLwAVk3R5kVLEwTW4aJpRu05zO8unMDYze9Cytfovuei7njJpKccwnKH8RWLk82b2ZlYk/hfFA3uKpmIuOCUTB96GUVlAfCGAc4Sujk0/sMJAECu7fDDf+J3rLLWwMajMCI0TIiKYQQQvQgwaToN6VcL7DKpvq8pjEZZ3c2QcDwUWo/xQrX5azVf4P2lq7n6jqpk84lO2k2aBopJ8/DjR+wJdM1YjnM8nN1zWSqfAGUP4gZKafcFyq5BnN/2hf9nv6kz7S/+DDlC6874OcLIYQQQ4kEk6JflFLQtrvXlHZPSSeL47oES2RCH9e2h3M3vkMo3zWi6YTLScz7OM6wkQDszqV5sPF99nQrVD42UMZVNRMJGSYqWIYVKqPcF0QbQCAJoLU1H9TrhBBCiKFMgknRT2q/gSRA2PBj6Dq262DpBlWpOIFclnEtzUzZtb1o1+Zc3QkkT7kY1bEV4qZ0nEcaN5Du2AYR4OSyKj4+fCymbuCGovgCYdqyaXamWomYAeoiFfsdnexZtHx6dBg0bNr/O46N2O81QgghxFAnwaQ4qGrCUar8EfzNW5nbvJ2KVIKgk8fotjbS0XTSM88nN2FmYSr8rfgu/rxrC063+pQXVI7irPJaNMPADZezI5tg6bZVNKXj2K6LqetUB6MsqJvKCeU1Jduz6LXHqV3zGlMySQylcDSNBn+IMmB/45plF3z+w3aHEEIIMehJMCkOKl3TuMDw4d+2gYCdw+86RftYO2jsnHEG4YmzAC9h58W921na2rVHtqlpfGrE8UyPVIJh4oZj7My088Tmd8g4OUKmn5DpZYjvSLby0IY3+NzEU3oFlItee5zpb72E33FImia2pmMql9p0kpym49/HSGty1GRiVvCg9o0QQggxGElqqjiolHKp2fA2MTtPsEcgmTFMHMtPddM2UIqc6/BY0wdFgWTEsPjyyCleIGn6cCPlhP0hljR8QMbJEfOF8BkmuqbhM0xiviAZJ89z9Wtxu2eG23lq17yG33FotXzkdQOlaeR1g1bLR9YwSRild8pJjppM7DPfOVRdJIQQQgwqMjIpDiq1/X1o3orebd2jAvLBCIY/BK6N3r6H5J6dPJBpZUc2WbhuhBXk6tpJVFh+lC+ICkWI+kI0p9tpSscJmf5eSTeaphEyfTSl49QnWhhTVgnA66uXMCWTJGmaJbPKk6ZJwHX42+mf5qTm+q4dcC74vIxICiGEEAdAgklx0Kj692DJH6B7IKkb2JEYWucooGGyU9O5O95AW7dp5onBGFdUH0/AMFGBMCoYJuYLEjAsEnYG23UJmaULk5u6QcrOkbAzhWPpRAuGUth91IW0NR1D2WQy7VL+RwghhPgQJJgUH5pybNSKF2DN34qOu74ATihaNDK4NhDid7VjyXQLJE+NjmBh1RgMTUeFysAfpMIXLGyPGDEDmB0Z4qW2TLRdB1PXiZiBwrFgpAJH0zCVS17rHYSaysXRNIKRig/9/oUQQoihTIJJsV+uUtS37yXb1kzY8FMTjhbK8aj2Fm9LxF31hesVGsq0cMJRuudML41V8nhVLarjXg1YOGw0p8Wq0XQDNxxDt3xELT+7t64ll2rBF6rguDFTqQ5G2ZFsxdKNoqlupRQpO8dx4XJqA2Hef+0pnPguRkQqafKFGJlJ0mrpxVPdShG2bXaGIpw27UxU05bDtsuNqxT1iRYSdqbfpY2EEEKIo5nszT2IHYy9ud9rbeS5+rU0p9qIpdoxdJ0qf4Qzaycwbm8T6m+PQ65retmOVZGdfCr+tcvQ8jlcvx/HMHlyWDVLK7rqNvo0nc9UH88J4QrQvYxt3bRIbFoJbzxLNNmG7rq4uk48HGP3jDN5ys2TcfKEzK79vlN2joBh8fE9DUxa/xYBJ4+Gt04zpxvYmo7bsUayM5s7bNtkDYMdx5/IyYn2jv23bTDMQ7r/dmdfHkhpIyGEEOJoJ8HkIPZhg8n3Wht5aMMbXjkew8eIbBrbdcjns5y7cwsndRuNBMiMP4nUzAvAtLCatuJfu4x8soX7jjuetdGu6eSo4ePq2knU+kNgWrihGIZp0r5xJeElf8Dn5EmbfhzdwHAdAnaOvGGy9dSF/M3n6xWMnbHjA2asXY6OwkFD4Y16GigUsNsfxFJuoc5kUyBMZtRETt652QuEA2EwTbBtyCTBF0A//wsHNaAs6kvT3ysYLlXaSAghhDgWyDS3KMlViufq1xbK8Wh4mdPD8lnO3/AOw1PxwrXK9JGcvYDc2GmFY/nqMeyqrOb3O9bR6OQLx0f6Q1xdM4ky04fyBVDBMgzDIGb5aX/jWXxOnoQvBLo39evoJkndIJxLU7XqFW64+ofsSMUL08S1gTCZl/6AjiKPVrhPAa4LFoqIneftMy4nk24jGKngtGlnYvz5Li+QjJR3TYFbPjAtSLTiLn8GvW7yQZny7tWXHa/nM0ws3aAtl+a5+rVMilXLlLcQQohjjgSToqT6REtxOR6lGL+ngfmbVuPrlq2diVaROeOTuNFhRfdvzyT4feMGEt0CyanhCj41Yjw+3UD5Q6hgBFM3KPcHadq8mmiyjbTpLwSEBbpGxvQRTbbRvHUtY8afWDj1/mtPMdbJ43QLJLvf57gQcGxqcxkmnfFpAFTTFtyWRm9EskTZIAJhb+q7eRtUjx14J3bo1ZdFL1e6tJEQQghxrJBgUpTUvRyP4Tic98FKZu4s3s/6rWG16HMuZnSPQHJNYi9/bN5EvlvG9hnlNVxYWYfekbGtfAEsw6DcF0LXNHKpFoKui9NH+R9HN9DtHLlUS/Hx+K7CGslSOqe8nfiuroPphLdGMhgufZNpQiblXXcQDKS0kRBCCHGskGBSlNRZjsfIpfnCO69SnWwrnMvqBi+OncJ7sWEs9IVoSreTcXL4dYv12QSL9m4vXKsBE00/FY6LiwbhGFg+LN0gns3QkGojYgawQuW4uo7hOjiaier4R+v4x3AdXF1HYfLu775PNN1OPFiGUTe9EDCWCig7jxvR4V0HgxEv2ca2vantnmwbDMO7rg+26/Lmrq3szSap9IeZPXwMpl56SnwgpY2EEOJIUcr1ZmYOU5ULceyTYFKUVBepoDoYRW1dSyCbLhy3NY0Gf5DdyiFgWCxr2kRrNkleKVoMg/ZuAZWmFLF8ltZMimXJVp5ta+SkEWOYVTWapQ0f0Jxp70qkCZRxaaiMYe2ttGnFgaEGhPNZTNem7oV7u06kErCnAQcv2cZ1KZ7qdhUGirRhMf6UBV3HR4yGihrYvd1bI9mjbBCZJFSN8q4r4YXta3m2fi0ZO18IeB/btIKL66Zy4aipffbl/kob1UnNSyHEEaa2rcNd/sxhq3IhBgf5qCFK0jWNWOMWrtz6HiiFjUbCMNlj+hiWy3Lp9k1E9uxgd6YdTTfYbVpFgaTuulTkMvhcl7ym0+LzY+s6K3bX88D7f2dnqhWfbhL1BfHpJjtSbTxfO5aMYRDNZbFcB00pLNchmssSsPMEXbdkWzsnjy0UuqvQXO+7hcJFY8e0eZhm1wikpunocxaCLwCJVsjnQLne90Srl809Z2HJT+IvbF/Lk1veIWXnvIxxTUcDUnaOJ7e8wwvb15bsywV1UwkYFm25NDnHxlWKnGPTlksTMCwW1E2V5BshxBGltq3DffEB74O25YdIzPu+ezvuiw+gtq070k0URykJJkVJqVyW2VvX4XccWn1+dgZCtFl+bMMkblr4XJfTm3diaibbdI1UtzjIch0qcxlMpcjqBi0+P263wCzj2kTNAD7DRNc0fIZJzBdkTSTGo2On0BCK4HddonYOv+uy0x/E6nNVpEcDUrqBNxGu0DtGJDedeBZTzv9C7+tHT0E//wveCGQ+C4m4971qVJ9lgWzX5dn6tThKYWo6hq6jaxqGrmNqOo5SPFu/FrtE0HtCeQ2fm3gKx4XLybk28VyanGtzXLhcygIJIY44pVxvRLKzyoXlA033vkfKIZfBXf6MNwUuRA8yzS1K+uuKZzg7kyRpmqB5tRvpLEmqaaQMg3bLZIsOTrf7wq5LKJf1gjvDJFFqTSLQbmeJGaHCz3nXQSnF+7FKWkeMpjbRSiCfJWP5mb15db/avLV8OIHJp+LEd2FEhzP+lAVMMUu/PnQElHWT+7026M1dW8nYeQy0XqOIuqZhKI2MnefNXVs5rXpcr/tPKK9hUqxadsARQhx9mrd5U9uHqcqFGFwkmBQl5RItGEph9xFYrawYwdOjjsfpNrU9HA1/Pk8WiJs+MmbXr1fPBJl8j0+3rnIL6w8dFHvKuxJmKrP9y3KOZhKMnfuxfl1baJem9/svxr3ZJAqF3kefaJqGq1z2ZpN9PkPXNCn/I4Q4+hzmKhdicJFgUpTki1TgaBqmcslrXSVtFLB0xCherR5VOKYpxYx0kkoFW3w+mnQ/eaPrnlLjblaPgEzXdLSOKzUFbdkUedfB0g32+AOM7sdfYPFg2YG9yQNU6Q+joaGU6v3JHS+ZRkOj0t/HX8ZCCHG0OghVLsTQJWsmRUmXzFpIYyBM2LYL09u2pvFk3YSiQDJo5/lfG97l8+vfYsEHK7l88zrGdSsj1NcEbpnpL/q5M8vZVYrmbIK2fIaUk6ctn+F3Y3tnSJcy+pM3HdibPECzh48hYFo4KNweu5C6SuGgCJgWs4ePOaTtEEKIg66zykUm2bWkqVNnlYuKmj6rXIihTYJJUVLI52fV+BlkDYPyfI6cpvPQuKmsLa8qXDMineRb771NbSZF0gqQ1k2Gp+JctWU9k+J7AW8ks/OrU0A3idvZXlnNPTew6ZS3LDaF9r23+JZwjPJDPH1s6joX103F0DRs5eK4rhdEui62cjE0jYvrpvZZb1IIIY5WH6bKhRCaUj0/gojBIh6PE4vFaGtrIxrddzDWl4dfeoCR2zfw7MhxtPq7imqPT7Tx5c3vkdc18goczfvLyNQ0qmybXZEYPxl7Ak63AFFH4/Sa8cwePobn6tfSlI4X6kwO95fxfrxpnznb/7TmDcZ32xO805ZwjAlfvWNA728gStWZDJhWn3UmhRDiWFFcZ9LxpralzqTYDwkmB7GDEUwm81m+98ZTpLvtsT3LCnH1yiVopgWWj7wCF4Wh6QQMC83OQT6Lc8n1vJBPsjuToCoQ4cJRU/F1rKV0lSrKan53z3aerveytnsm63T/+cLKcUx886+FHXBGf/KmQz4iWcqB7IAjhBDHEtkBRxwoScAR+xS2/CwcPZ0/bX4bDVgwrI75qRSG4+AGQqAbWICGhqnpXuTXkfVn5VJcOnZGyef2zGp+eef6ovN9rbVsN+HEL/74oLy3D8PU9ZLlf4QQ4lh3IFUuhAAJJkU/XHDcCbRkktQqxZRwBUo1egFjx6C2jobRGUjCgLL+qgL9u7a/1wkhhBDi8JBgUuyXAk4dPobdTZtoyiQZVjeZYEU1xp4GCMcw9G6BZD/2tgbI2XleX72EdKKFYKSCs6ecwV+3rcarNlk8Mtk5xa2jHfNrEmX6SAghxGAjwaTYp/daG71kmWQrwUySlD9IRbyJSyafwuQ3X0BPxb2dEcyO+mSZ5H6z/ha99ji1a15jSiaJoRSOprHlzeeZM2YKrwe8JJ9SC3lPrxlfWHN5LCpe2G57Nd1kYbsQQohjnCTgDGIfNgHnvdZGHtrwBhknR1C3QNNwlEvayRM0LL4SqWLU2tcPKOtv0WuPM/2tl/A7DknTxNZ0TOUStm2yhsFzk2ayPBDE7RZOdmaBf37iqQPuiyNNbVuH++ID3r63pYLvPvYDF0IIIY52MjIpSnKV4rn6tWScHDGft4e2rVx0dHyGSSKf5Qknyzc+eSP6rvp+Tdvm7Dy1a17D7zi0Wr7CLjJ5zaDV0inP5zhl6zo+ffX/x+LGDSWzwI9FSrneiGQuA5Hyrt1zLB+YFiRacZc/g143Waa8hRBCHHMkmBQl1SdaaErHCZl+NK1jC0HA0DR0TSdk+mhKx9mebGNMP7P+Xl+9hCmZJEnT7L0doaaRNE2qM0neWvcql37k/IP8jo6g5m3e6G0gXPJ9Ewh755u3SQalEEKIY44Mg4iSEnamo6B414igoenoHSNnpm5guy4JO9PvZ6YTLRhKYfcx+mZrOoZSpBMtH67xR5t0wlsjafbx2c00vWUC/dh/XAghhDjayMikKCliBjB1Hdt1sHSDvOvgKBdD07F0A9t1MHWdiG7irn0N2vdA2TA44RR03fu1sh2bteuXk07sJRipJBAqx9E0TOWS13pPW5vKxdE0gpGKw/12D1jPout1kQr0nqOOnYIRL9nGtr2p7Z4GUEpJCCGEOFpIMClKqotUUB2MsrV9D45S2MotbB1oajqGpvHxPU2MeuPHqFzaKwmkafDyI7inXsIKTRFe+RK16UQhY9vwh2g3fZTnsrRaevGUr1KEbZudoQinTZ9/5N54PxQy3LttB1kdjLKgbionlNf0vmHEaKiogd3bvTWSPd53f0opCSGEEEcrmeYWJemaxtSKGrKuTda1QSl0NFCKrGtz+o6NnP7BO5BNgqZ7I2uaDtkkziv/zcRXn6Am2U5WN4ibPrK6QW06STSfxdU0yvM5LNdBUwrLdSjP58gaBg3T5uIzrSP99vvUmeG+I9mCTzeJ+oL4dJMdyVYe2vAG77U29rpH03T0OQvBF4BEK+RzoFzve6J1v6WUhBBCiKOZ/N9LlOQqxdqWRvy6iV83QNO8cj2aRhCNC3du8QIiwwJd9wJJXUcZJppShB2bNsMkb5goXSdvmLRZPnQFccvHzmCEgOsQs3MEXIedoQirZ57LBXM/eaTfep96Zrj7DBNd0/AZJjFfkIyT57n6tbglqm1po6egn/8FbwQyn4VE3PteNUrKAgkhhDimyTS3KKkzmzvqC+IzTHKOjatcdE3nI7t2EHRsHDTQij+RKOXtXqMBQeWS7v5QXSdlmpTZOeKnf5J1Tq6wA85p0+cz/SgekYTeGe7daZpWyHCvT7QU7TteuGb0FPS6ybIDjhBCiEFFgklRUmc2d8j0EmV8RtevSiyTAhRK0+i596G3rtJjKVUcTOJlbIeUTTYd56w5lx7Kt3DQ9eyTnkzdIGXn9pnhrmm6lP8RQggxqMiQiCipezZ3T22BEKCh9dxE2zta+Pd8iezmrozt3iN3R7t99QnQleFuBg5zy4QQQogjR0YmRUmd2dw7kq1YaJzQtJWyTIr2QIg1w+s4zzAJOnk0Ba6mCiOUnfGjAtJoWI5TyObOAyHbpjFcxtTJcwbULqXcIzZNXNQnulE01a2UImXnOC5cTt0xUNpICCGEOFgkmBQl6ZrGgrqpvP8/v2f+9g0EHRsNL0i84IN32FpWyQltu1FOHgcNpYGmwOhI0sloGrW5TGH9pOr4SlgWyY+ci2kc+K+e2rbO25awpdErAm6Y+90L/GDq7JOHNrxBWy5NyPR1FG93SNk5AobFgrqpfdebFEIIIQYhmeYWfSpf9QoXbXuPkGPjomGj4aIRcmwmte3ivVgVacPCAEylMIC0YbGiejT4Ah2jlArVEUpqGgRNH7OHjzngtqht63BffMCr1Wj5IRLzvu/ejvviA6ht6w7um+/DCeU1fG7iKRwXLifn2sRzaXKuzXHhcj438ZTSdSaFEEKIQUxGJkVJjpMn8vZL6J3bH3aMtinAVgpTuYxu38udp13C9L0NxDIp2gIh1lQdx+XvvoJyXYyqUWSyaVzXRtdNAv4gZrINd/kz6HWT+z09rZTrjUjmMhAp75pLt3xeEfBE6wE/88M4obyGSbHq/u+AI4QQQgxiEkyKkva8s5hyO99R/qdnlo2GozSCjs2U3dtZO3J84VRNewvVmSQJw8RSimAwXHxvIOxNUzdv639Wc/M2755AuGRbBvTMD0nXtJLlf4QQQoihRqa5RUlufBdaZ/mfUufx1kKWZVJFx0O5LIZysTUdR7m9bzRNcBwvgaa/0glvjaTZx2efgTxTCCGEEAeFjEyKkvTocG8nblU6oNTxprzj/hA5x8ZRLoamk7J8OJqOqVwMNG+XF9f1dskxfWDbYBi4gTDb2/eWnCbumbGtAmEv2ca2vantnjqeSTBS8r0cyQxwIYQQYrCTYPIod/fdd/Ozn/2MhoYGpk2bxs9//nPOPPPMQ/66w046m/Srj+O3c9hKFU8vK4WBImWY/C1WSS6T6ChWrtFqGMwLhBidjOOL7/ZGFDvrBhkm6AbJYSO5t3kTTZl2bNfF1HWqg1EW1E1lcryld8Z2eTUEyyDR4q2R7NEWMklvm8IRo3u9jyOdAS6EEEIMdjI8cxR77LHHuPHGG/ne977H22+/zZlnnsnFF1/Mtm3bDvlrG4ZF4uRzUZqGqVw01wWl0FwXU7m4msYLteNI4x3X0UApMsphbbQSv+N4o5Jo3r7dHaOUbi7Dq34/O1Kt+HTT265RN9mRbGXZG8+QeeG+3hnbe3ZAss17TqIV8jlvX/B8zvvZF/CCwx6jjUdLBrgQQggxmEkweRS74447+NKXvsSXv/xlpkyZws9//nPq6ur45S9/eVhev+bMT7N39kVkTR863u41OpA1fSwdP51lo47Hrxugabgd9SUDms7U+F5yhukFbihv9BAFlp+cYTJubxMxy9vzW9c0fIZJzAowd9t68pkkhMu96WxN975Hyr3gMRzzRiDzWUjEve9Vo9DP/0KvUcZeGeA9n5fL4C5/xpsCF0IIIcSAyTT3USqXy7FixQr+9V//tej4hRdeyLJly0rek81myWazhZ/j8fiHbkfNmZ/GmXcZe95ZjBvfhR4dTvL4E3lp/WtEdROfYZJzbFzloms6dal2ajIp2iwfejiGz3XBdUA3yOk6bck2qjNJapJtNJV17RRT03HcywJ38dFt/+vOjO10O9r5V3s7z+xv/eNRmAEuhBBCDEYSTB6ldu/ejeM4VFdXFx2vrq6msbGx5D233norP/zhDw96WwzDYsTMCwo/r2nZie26hEwv4PN1282mK5vbwlGqKGHGsfPYmo6hbEK5rqC3930udA8mwcvYzqTQMkm0sdP33+jODPCepYl6PE8ywIUQQogPR6a5j3Jaj1E1pVSvY51uvvlm2traCl/19fWHpE0RM4Cp69iu0+tcyufvyubuMWJodBx3NI2Uz9/v+4D9Zmz3Eox0ZYCXcqDPE0IIIURJEkwepaqqqjAMo9coZHNzc6/Ryk5+v59oNFr0dSjURSqoDkZJ2TmUUkXnGsMxmgJhIo6Nr0dQ6NN0Io5NUyBMYzjW7/sKGdsVNSUztksaMdq7PpPsWLP5IZ8nhBBCiJIkmDxK+Xw+Zs2axaJFi4qOL1q0iHnz5h2hVnl0TWNB3VQChkVbLt2xZlKRc2za8hleGz0ZKxCGZGtx5nWyFSsQ5rXRk2nLZ/p/3z4ytvuiaTr6nIXgCxxQBrgQQgghDoymeg4tiaPGY489xtVXX82vfvUr5s6dy29+8xv+3//7f6xZs4YxY8bs9/54PE4sFqOtre2QjFK+19rIc/VraUrH91Mv0vGmlDvqO66PVgzovoHUhSyuM/nhnyeEEEKIYhJMHuXuvvtubr/9dhoaGpg+fTr/8R//wVlnndWvew91MAngKkV9oqVfO9l0z7we6H0DITvgCCGEEIeOBJOD2OEIJoUQQggxtMnwjBBCCCGEGDAJJoUQQgghxIBJMCmEEEIIIQZMgkkhhBBCCDFgEkwKIYQQQogBk2BSCCGEEEIMmASTQgghhBBiwCSYFEIIIYQQAybBpBBCCCGEGDAJJoUQQgghxIBJMCmEEEIIIQZMgkkhhBBCCDFg5pFugDh0lFIAxOPxI9wSIYQQQ11ZWRmaph3pZohDQILJQay9vR2Aurq6I9wSIYQQQ11bWxvRaPRIN0McAprqHL4Sg47ruuzcufOgfBqMx+PU1dVRX18vfxl0kD4pTfqlN+mT3qRPShvM/SIjk4OXjEwOYrquM2rUqIP6zGg0Ouj+gvuwpE9Kk37pTfqkN+mT0qRfxLFEEnCEEEIIIcSASTAphBBCCCEGTIJJ0S9+v58f/OAH+P3+I92Uo4b0SWnSL71Jn/QmfVKa9Is4FkkCjhBCCCGEGDAZmRRCCCGEEAMmwaQQQgghhBgwCSaFEEIIIcSASTAphBBCCCEGTIJJsV93330348aNIxAIMGvWLF555ZUj3aTDaunSpXz0ox9l5MiRaJrGk08+WXReKcUtt9zCyJEjCQaDnH322axZs+bINPYwufXWWznllFMoKytjxIgRXHbZZaxfv77omqHWL7/85S858cQTC8Wm586dy7PPPls4P9T6o5Rbb70VTdO48cYbC8eGYr/ccsstaJpW9FVTU1M4PxT7RBzbJJgU+/TYY49x44038r3vfY+3336bM888k4svvpht27Yd6aYdNslkkpNOOom77rqr5Pnbb7+dO+64g7vuuos33niDmpoaLrjggsLe6IPRkiVL+PrXv87rr7/OokWLsG2bCy+8kGQyWbhmqPXLqFGjuO2223jzzTd58803Offcc/n4xz9eCAKGWn/09MYbb/Cb3/yGE088sej4UO2XadOm0dDQUPhatWpV4dxQ7RNxDFNC7MOcOXPU//pf/6vo2AknnKD+9V//9Qi16MgC1BNPPFH42XVdVVNTo2677bbCsUwmo2KxmPrVr351BFp4ZDQ3NytALVmyRCkl/dKpoqJC/fa3vx3y/dHe3q4mTpyoFi1apObPn6++9a1vKaWG7u/JD37wA3XSSSeVPDdU+0Qc22RkUvQpl8uxYsUKLrzwwqLjF154IcuWLTtCrTq6bN68mcbGxqI+8vv9zJ8/f0j1UVtbGwCVlZWA9IvjODz66KMkk0nmzp075Pvj61//Opdccgnnn39+0fGh3C8bNmxg5MiRjBs3jiuvvJJNmzYBQ7tPxLHLPNINEEev3bt34zgO1dXVRcerq6tpbGw8Qq06unT2Q6k+2rp165Fo0mGnlOKmm27ijDPOYPr06cDQ7ZdVq1Yxd+5cMpkMkUiEJ554gqlTpxaCgKHWHwCPPvoob731Fm+88Uavc0P19+TUU0/lgQceYNKkSTQ1NfHjH/+YefPmsWbNmiHbJ+LYJsGk2C9N04p+Vkr1OjbUDeU+uuGGG3j33Xd59dVXe50bav0yefJkVq5cSWtrK3/605/44he/yJIlSwrnh1p/1NfX861vfYsXXniBQCDQ53VDrV8uvvjiwr/PmDGDuXPncvzxx/O73/2O0047DRh6fSKObTLNLfpUVVWFYRi9RiGbm5t7fWoeqjozMIdqH33jG9/gqaee4uWXX2bUqFGF40O1X3w+HxMmTGD27NnceuutnHTSSdx5551Dtj9WrFhBc3Mzs2bNwjRNTNNkyZIl/Od//iemaRbe+1Drl57C4TAzZsxgw4YNQ/Z3RRzbJJgUffL5fMyaNYtFixYVHV+0aBHz5s07Qq06uowbN46ampqiPsrlcixZsmRQ95FSihtuuIHHH3+cl156iXHjxhWdH6r90pNSimw2O2T747zzzmPVqlWsXLmy8DV79mw+97nPsXLlSsaPHz8k+6WnbDbLunXrqK2tHbK/K+IYd8RSf8Qx4dFHH1WWZal77rlHrV27Vt14440qHA6rLVu2HOmmHTbt7e3q7bffVm+//bYC1B133KHefvtttXXrVqWUUrfddpuKxWLq8ccfV6tWrVKf/exnVW1trYrH40e45YfO9ddfr2KxmFq8eLFqaGgofKVSqcI1Q61fbr75ZrV06VK1efNm9e6776rvfve7Std19cILLyilhl5/9KV7NrdSQ7Nf/umf/kktXrxYbdq0Sb3++uvq0ksvVWVlZYW/V4din4hjmwSTYr/+67/+S40ZM0b5fD41c+bMQvmXoeLll19WQK+vL37xi0opr5THD37wA1VTU6P8fr8666yz1KpVq45sow+xUv0BqPvuu69wzVDrl2uvvbbw38nw4cPVeeedVwgklRp6/dGXnsHkUOyXK664QtXW1irLstTIkSPVJz/5SbVmzZrC+aHYJ+LYpiml1JEZExVCCCGEEMc6WTMphBBCCCEGTIJJIYQQQggxYBJMCiGEEEKIAZNgUgghhBBCDJgEk0IIIYQQYsAkmBRCCCGEEAMmwaQQQgghhBgwCSaFEEPW+vXrqampob29/Yi245ZbbuEjH/nIAd1z//33U15efkjaU8pdd93Fxz72scP2ekKIY4cEk0KIXpYtW4ZhGCxYsOBIN+WAnX322dx44439uvZ73/seX//61ykrKyORSGBZFo899ljRNVdccQWaprFx48ai48cffzzf/e53D1azj3rXXXcdb7zxBq+++uqRbooQ4igjwaQQopd7772Xb3zjG7z66qts27btSDfnkNi+fTtPPfUU//AP/wBAJBJh9uzZvPzyy0XXLVmyhLq6uqLj27dvZ9OmTZxzzjmHtc1Hkt/v56qrruIXv/jFkW6KEOIoI8GkEKJIMpnkD3/4A9dffz2XXnop999/f9H5xYsXo2kazz//PCeffDLBYJBzzz2X5uZmnn32WaZMmUI0GuWzn/0sqVSqcF82m+Wb3/wmI0aMIBAIcMYZZ/DGG28Uzpeatn3yySfRNK3wc+d08IMPPsjYsWOJxWJceeWVhWnqa665hiVLlnDnnXeiaRqaprFly5aS7/MPf/gDJ510EqNGjSocO+ecc1i8eHHh53Xr1pFOp/na175WdPzll1/GsixOP/10AP7yl78wa9YsAoEA48eP54c//CG2bReub2tr4ytf+QojRowgGo1y7rnn8s477/T5Z7B582YmTJjA9ddfj+u6hf4ZPXo0oVCIT3ziE+zZs6fono0bN/Lxj3+c6upqIpEIp5xyCi+++GLh/I9+9CNmzJjR67VmzZrFv/3bvwHen+2cOXMIh8OUl5dz+umns3Xr1sK1H/vYx3jyySdJp9N9tl0IMfRIMCmEKPLYY48xefJkJk+ezOc//3nuu+8+lFK9rrvlllu46667WLZsGfX19XzmM5/h5z//OQ8//DB//etfWbRoUdEo1ne+8x3+9Kc/8bvf/Y633nqLCRMmcNFFF7F3794Dat/GjRt58sknefrpp3n66adZsmQJt912GwB33nknc+fO5brrrqOhoYGGhgbq6upKPmfp0qXMnj276Ng555zD+vXraWhoALyg8cwzz+Tcc8/tFUyeeuqphEIhnn/+eT7/+c/zzW9+k7Vr1/LrX/+a+++/n3//938HQCnFJZdcQmNjI8888wwrVqxg5syZnHfeeSXf++rVqzn99NP59Kc/zS9/+Ut0Xefvf/871157LV/72tdYuXIl55xzDj/+8Y+L7kskEixcuJAXX3yRt99+m4suuoiPfvSjhZHla6+9lrVr1xYF8O+++y5vv/0211xzDbZtc9lllzF//nzeffddXnvtNb7yla8UBfOzZ88mn8+zfPny/v5xCSGGAiWEEN3MmzdP/fznP1dKKZXP51VVVZVatGhR4fzLL7+sAPXiiy8Wjt16660KUBs3biwc++pXv6ouuugipZRSiURCWZalHnroocL5XC6nRo4cqW6//XallFL33XefisViRW154oknVPe/pn7wgx+oUCik4vF44di3v/1tdeqppxZ+nj9/vvrWt7613/d50kknqR/96EdFx5LJpLIsSz388MNKKaU+/elPq9tvv13l83kViUTU+++/r5RSaty4cep//+//rZRS6swzz1Q/+clPip7z4IMPqtraWqWUUv/zP/+jotGoymQyRdccf/zx6te//nXhfZ100klq2bJlqrKyUv3sZz8ruvazn/2sWrBgQdGxK664old/9TR16lT1i1/8ovDzxRdfrK6//vrCzzfeeKM6++yzlVJK7dmzRwFq8eLF+3xmRUWFuv/++/d5jRBiaJGRSSFEwfr161m+fDlXXnklAKZpcsUVV3Dvvff2uvbEE08s/Ht1dTWhUIjx48cXHWtubga80cR8Pl+YFgawLIs5c+awbt26A2rj2LFjKSsrK/xcW1tbeJ0DkU6nCQQCRcdCoRBz5swpjEIuWbKEs88+G9M0Of3001m8eDHbtm1j8+bNnHvuuQCsWLGCH/3oR0QikcJX58hoKpVixYoVJBIJhg0bVnTN5s2bi5J6tm3bxvnnn8/3v/99/vmf/7moXevWrWPu3LlFx3r+nEwm+c53vsPUqVMpLy8nEonw3nvvFa15ve6663jkkUfIZDLk83keeughrr32WgAqKyu55pprCiOad955Z2GEtrtgMFi0fEEIIcwj3QAhxNHjnnvuwbZtjjvuuMIxpRSWZdHS0kJFRUXhuGVZhX/XNK3o585jnev9VMc0efcp087jncd0Xe81nZ7P53u1cV+vcyCqqqpoaWnpdfycc87hscceY82aNaTTaWbOnAnA/Pnzefnll/H5fAQCAU477TQAXNflhz/8IZ/85Cd7PSsQCOC6LrW1tUXT5J26rxEdPnw4I0eO5NFHH+VLX/oS0Wi0cK5nv5Ty7W9/m+eff57/83/+DxMmTCAYDPKpT32KXC5XuOajH/0ofr+fJ554Ar/fTzab5fLLLy+cv++++/jmN7/Jc889x2OPPcb3v/99Fi1aVHivAHv37mX48OH7bY8QYuiQkUkhBAC2bfPAAw/wf//v/2XlypWFr3feeYcxY8bw0EMPDfjZEyZMwOfzFZWVyefzvPnmm0yZMgXwgqn29naSyWThmpUrVx7wa/l8PhzH2e91J598MmvXru11/JxzzmHDhg08/PDDnHHGGRiGAXjB5OLFi1m8eDFz584tjGrOnDmT9evXM2HChF5fuq4zc+ZMGhsbMU2z1/mqqqrC6waDQZ5++mkCgQAXXXRRUe3LqVOn8vrrrxe1s+fPr7zyCtdccw2f+MQnmDFjBjU1Nb2Sj0zT5Itf/CL33Xcf9913H1deeSWhUKhXv9x8880sW7aM6dOn8/DDDxfObdy4kUwmw8knn7zf/hVCDB0STAohAHj66adpaWnhS1/6EtOnTy/6+tSnPsU999wz4GeHw2Guv/56vv3tb/Pcc8+xdu1arrvuOlKpFF/60pcACgkt3/3ud/nggw94+OGHe2WS98fYsWP5+9//zpYtW9i9e3efo5YXXXQRr732Wq/Ac968efj9fn7xi18wf/78wvFTTjmFtrY2/vSnPxWVBPq3f/s3HnjgAW655RbWrFnDunXrCqN6AOeffz5z587lsssu4/nnn2fLli0sW7aM73//+7z55pu9+umvf/0rpmly8cUXk0gkAAqjhbfffjvvv/8+d911F88991zRvRMmTODxxx8vfAC46qqrSr73L3/5y7z00ks8++yzhSlu8DLIb775Zl577TW2bt3KCy+8wPvvv18I9sELWMePH8/xxx+/zz8DIcTQIsGkEALwprjPP/98YrFYr3OXX345K1eu5K233hrw82+77TYuv/xyrr76ambOnMkHH3zA888/X5g6r6ys5Pe//z3PPPMMM2bM4JFHHuGWW2454Nf553/+ZwzDYOrUqQwfPrzPOpkLFy7Esqyi8jlAYQq7vb2ds88+u3Dcsizmzp1Le3t7UTB50UUX8fTTT7No0SJOOeUUTjvtNO644w7GjBkDeNPwzzzzDGeddRbXXnstkyZN4sorr2TLli1UV1f3alckEuHZZ59FKcXChQtJJpOcdtpp/Pa3v+UXv/gFH/nIR3jhhRcKwWqn//iP/6CiooJ58+bx0Y9+lIsuuqgwRd/dxIkTmTdvHpMnT+bUU08tHA+FQrz33ntcfvnlTJo0ia985SvccMMNfPWrXy1c88gjj3Ddddfto/eFEEORpvqzGEcIIQahu+++mz//+c88//zzR7oph41SihNOOIGvfvWr3HTTTf2+b/Xq1Zx33nm8//77JT9wCCGGLknAEUIMWV/5yldoaWmhvb29KEN8sGpububBBx9kx44dhZ1/+mvnzp088MADEkgKIXqRkUkhhBgiNE2jqqqKO++8k6uuuupIN0cIMUjIyKQQQgwRMnYghDgUJAFHCCGEEEIMmASTQgghhBBiwCSYFEIIIYQQAybBpBBCCCGEGDAJJoUQQgghxIBJMCmEEEIIIQZMgkkhhBBCCDFgEkwKIYQQQogBk2BSCCGEEEIM2P8PSA6pu8nMj3UAAAAASUVORK5CYII=",
2771
      "text/plain": [
2772
       "<Figure size 600.25x500 with 1 Axes>"
2773
      ]
2774
     },
2775
     "metadata": {},
2776
     "output_type": "display_data"
2777
    }
2778
   ],
2779
   "source": [
2780
    "#Scatter plot for amt_weekends, amt_weekdays & gender\n",
2781
    "sns.lmplot(data=smokers,\n",
2782
    "                x=\"amt_weekdays\",\n",
2783
    "                y=\"amt_weekends\",\n",
2784
    "                hue=\"gender\",\n",
2785
    "                palette=\"Set2\")\n",
2786
    "plt.title('Figure 12: Scatter plot for Amount (Weekends), Amount (Weekdays), Gender')\n",
2787
    "plt.xlabel('Amount (Weekdays)')\n",
2788
    "plt.ylabel('Amount (Weekdends)')"
2789
   ]
2790
  },
2791
  {
2792
   "cell_type": "code",
2793
   "execution_count": 51,
2794
   "id": "e20caab0",
2795
   "metadata": {},
2796
   "outputs": [
2797
    {
2798
     "data": {
2799
      "text/plain": [
2800
       "Text(55.19588194444445, 0.5, 'Age')"
2801
      ]
2802
     },
2803
     "execution_count": 51,
2804
     "metadata": {},
2805
     "output_type": "execute_result"
2806
    },
2807
    {
2808
     "data": {
2809
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAH+CAYAAACYx9S4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC31ElEQVR4nOzdd3hUZd7G8e+Znt47KXRCL4I0pQsKuOirWLBg72WxrWtbdnVZ+7ruqrsuoGvDBuwqSkd6CVWQXkINkN6nP+8fYUaGBEggMEnm97mucyU5c+bMMyczkztP1ZRSCiGEEEKIJkzn7wIIIYQQQlxoEniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5TSrwfPTRR2iaVuP25JNPkp2djaZpfPTRR/4u6jkpLS3l6aef5oorriAuLg5N0/jDH/5Q47F/+9vf6N27N7GxsZjNZtLS0rjxxhv55Zdfzumx33nnHTRNY/bs2ac95sMPP0TTNKZPn35e1/qnn35C0zR++ukn774//OEPaJp2DiU/f57XVXZ2dp3v+8MPP5z2d3Q6zz//PGlpaRgMBiIjI+v8mOdqwoQJaJrGqFGjLtpjXkzvvfdenV+PRUVFxMbGMm3aNADeeOMNNE1j9erVPse53W6io6PRNI0dO3b43Ga32wkODubaa689r/Kfzvjx4wkNDb0g5z4XAwcOZODAgXW6z+TJk0lJSaG8vLxeyvC///0PTdOIiYnBZrPVyzkvhGXLlnHTTTeRlpaG2WwmJCSEDh068MQTT7B9+3a/letMf1sasyYVeDymTp3KypUrfbZHH32UpKQkVq5cyciRI/1dxHOSn5/Pv/71L2w2G2PGjDnrsVdeeSX//ve/mTt3LhMnTmTDhg1ceuml1T6Qa+OWW27BbDYzZcqU0x4zdepU4uLiGD16dL1f67vvvpuVK1fWy7kuph9++IGJEyfW+vj//ve/vPLKK9x2220sXryY+fPnX8DS/crhcPDpp58CMHv2bA4fPnxRHvdiOpfAM3HiRJKTk7nhhhsAGDRoEACLFi3yOW7Tpk0UFhYSEhJS7bbVq1dTWVnpva+o7vbbbyckJITXXnutXs43efJkAAoKCpg5c2a9nLO+Pf/881x22WXs37+f559/ntmzZzNz5kzuvPNO5s2bR2ZmJi6Xy9/FbFpUEzJ16lQFqKysLH8XpZry8vLzPofb7VZut1sppVRubq4C1EsvvVTr+2/dulUB6oUXXjinxx87dqwymUwqLy+v2m3btm1TgHriiSfO6dwnW7RokQLUokWLzvtc9cHzutq3b1+d7/vQQw+purzNXn75ZQWoY8eO1fmxTqc2r72vv/5aAWrkyJEKUK+88kq9PX5D0aFDBzVgwIBaH5+fn6+CgoLUBx984N3ncrlUZGSkGj58uM+xb731lkpOTlY33XSTGjt2rM9tf/zjHxWgNm/efF7lP53bb79dhYSEXJBzn4sBAwbU6Tp7vPHGGyoiIuK8PytzcnKUwWBQgwcPVhaLRQ0bNuy8znchfP755wpQ999/v/cz/WRut1v9/e9/V06n0w+lU3X+23ImdrtdORyOejnX+WqSNTync7pmlv/+97907twZs9lMixYteOedd6o1oZypiebU6j/PfdevX891111HVFQULVu2BEApxXvvvUfXrl0JCgoiKiqK6667jr179561/J7muXMVFxcHgMFgOKf733XXXdjtdj7//PNqt02dOhWAO++8Ezj99Vq2bBlDhgwhLCyM4OBg+vbty6xZs8762DU1aWVkZDBq1Chmz55N9+7dCQoKol27dmeshfLwlO+1117jlVdeIS0tDYvFwiWXXMKCBQvOen+AKVOm0KVLFywWC9HR0VxzzTVs27bNe/v48eP5xz/+AeDTvHq6prGMjAyef/55ABISEnxeV263m9dee4127dphNpuJj4/ntttu49ChQz7nGDhwIB07dmTJkiX07duX4OBg7+/kTCZPnozJZGLq1KmkpqYydepU1CnrCnuaGj///HOeeeYZkpKSCA0NZfTo0Rw7dozS0lLuvfdeYmNjiY2N5Y477qCsrMznHFarlWeffZbmzZtjMplISUnhoYceoqioyOe401WpZ2RkMH78eO/PnubGRYsW8cADDxAbG0tMTAzXXnstR44c8bnfL7/8wuLFi72/h4yMjDNek48++gin0+mt3QHQ6XRcfvnlLF++HKfT6XNtBg4cyIABA3yaYj23xcXF0aFDB6Cqievll1/2/i7j4uK44447yM3NrVaGL7/8kj59+hASEkJoaCjDhw9nw4YNZyw3wPLly4mNjWXUqFHeZqJdu3Zx8803Ex8fj9lsJjMz0/v6PLmsmqbxxRdf8Nxzz5GcnEx4eDhDhw6tVjOslOK1114jPT0di8VC9+7d+fHHH6uVxe128/LLL9O2bVuCgoKIjIykc+fOvPPOOz7HjRs3jpKSEm/z4bn6+OOPcTqd/Pa3v+Xaa69lwYIF7N+/v9pxRUVF3HXXXURHRxMaGsrIkSPZu3dvja+92ly7unj55ZeJjY3l7bffrvEzXdM0HnroIfR6vc/++fPnM2TIEMLDwwkODqZfv37VPq88n5W//PILN910ExERESQkJHDnnXdSXFzsc2xJSQn33HMPMTExhIaGMmLECHbu3Fljmevy+vnkk0944oknSElJwWw2s3v37nO5TPXPz4GrXnn+E1+1apVyOBw+m1JK7du3TwFq6tSp3vv8+OOPSqfTqYEDB6oZM2aor7/+Wl166aUqIyPD5z/zmu7rwSlp+KWXXlKASk9PV88884yaN2+emjlzplJKqXvuuUcZjUb1xBNPqNmzZ6vPP/9ctWvXTiUkJKijR4/W+rnWtobH6XQqq9Wqtm3bpn7zm9+o+Ph4deDAAZ9jBgwYUKtaCJfLpdLT01XXrl2rPUZSUpLq3bu3d19N1+unn35SRqNR9ejRQ3355Zdq5syZ6oorrlCapqlp06Z5j6uphsdzTU+Wnp6umjVrptq3b6/+85//qDlz5qjrr79eAWrx4sVnfC6e8qWmpqr+/furb7/9Vn399deqZ8+eymg0qhUrVniPramG589//rMC1E033aRmzZql/vOf/6gWLVqoiIgItXPnTqWUUrt371bXXXedAtTKlSu9m9VqrbFM69evV3fddZcC1OzZs9XKlSvVwYMHlVJK3XvvvQpQDz/8sJo9e7b64IMPVFxcnEpNTVW5ubnecwwYMEBFR0er1NRU9e6776pFixad9VocPHhQ6XQ6df311yullHr++ecVoH766Sef4zy/l/T0dDV+/HhvOUJDQ9WgQYPUsGHD1JNPPqnmzp2rXn31VaXX69Ujjzzivb/b7VbDhw9XBoNBvfDCC2ru3LnqjTfeUCEhIapbt24+1+V0r+309HR1++23V/vdtGjRQj3yyCNqzpw56t///reKiopSgwYN8rm2LVq0UN26dfP+HtavX3/G6zJ48GDVq1evavvffvttBXhfI55an3/+85/ems5ffvlFKaWUzWZTQUFB3mvrcrnUiBEjVEhIiJo4caKaN2+e+ve//61SUlJU+/btVUVFhfdxXnnlFaVpmrrzzjvV999/r6ZPn6769OmjQkJCvOdXqnoNz5dffqnMZrN64IEHvDUEv/zyi4qIiFCdOnVS//nPf9TcuXPVE088oXQ6nfrDH/5Q7XeckZGhxo0bp2bNmqW++OILlZaWplq3bu1T4+B5T951113qxx9/VP/6179USkqKSkxM9KnhmTRpktLr9eqll15SCxYsULNnz1Z//etffR7XIzMzU1177bVn/L2cTZs2bVRSUpJyOp1q/vz5Cqj2WC6XS/Xv319ZLBb1l7/8Rc2dO1dNnDhRtW7dutprr7bXrrYOHz7s/eyoi08++URpmqbGjBmjpk+frr777js1atQopdfr1fz5873HeX4vbdu2VS+++KKaN2+eeuutt5TZbFZ33HGH9zi3260GDRqkzGazeuWVV9TcuXPVSy+9pFq0aHHO18Dz+klJSVHXXXed+t///qe+//57lZ+fX+frdCE0ycBT0+ZwOGr8I9yzZ0+VmpqqbDabd19paamKiYk578Dz4osv+hy3cuVKBag333zTZ//BgwdVUFCQevrpp2v9XGsbeMxms/catGnTRm3durXaMYMHD1Z6vb5Wj+t5bif/sfjuu+8UoD788EPvvpquV+/evVV8fLwqLS317nM6napjx46qWbNm3qrdugQei8Wi9u/f791XWVmpoqOj1X333XfG5+EpX3JysqqsrPTuLykpUdHR0Wro0KHefacGnsLCQhUUFKSuuuoqn3MeOHBAmc1mdfPNN3v31bVJy/M8Tw4xnj+iDz74oM+xq1evVoD6/e9/793nCa8LFiyo9WN6mlxmz56tlFJq7969StM0deutt/oc5/m9jB492mf/448/rgD16KOP+uwfM2aMio6O9v48e/ZsBajXXnvN57gvv/xSAepf//qXd19dA8+p1+a1115TgMrJyfHuq2uTVnBwsLr//vur7d+4caMC1J///GellFLr1q1TgNq+fbtSSqmEhAT197//XSml1OLFixWg3nvvPaWUUl988YUC1LfffutzzqysLJ/jDhw4oAwGg09gVKrqsykxMdGn2ezkwPOXv/xF6fV69eqrr/rcb/jw4apZs2aquLjYZ//DDz+sLBaLKigoUEr9+js+9bX91VdfeYO7UlXvAYvFoq655hqf45YvX64An+s8atSoav8knc64ceNUQkJCrY6tyZIlSxSgfve73ymlqv6oN2/eXKWnp/s0Hc2aNUsB6v333/e5/6RJk6q99mp77Wpr1apVPmU8mdPp9PlH3VPm8vJyFR0dXe2953K5VJcuXXyCuecz5NT32YMPPqgsFov3nD/++KMC1DvvvONz3CuvvHLO18Dz+rn88svrdE0ulibZpPWf//yHrKwsn62mZpzy8nLWrl3LmDFjMJlM3v2eavrz9X//938+P3///fdomsYtt9yC0+n0bomJiXTp0qVaVXh9WLFiBStXruTTTz8lLCyMQYMGVRuptWDBAp/q+TO544470Ol0Ps1GU6dOJSQkxKfq/1Tl5eWsXr2a6667zmdEiV6v59Zbb+XQoUPn1Jm6a9eupKWleX+2WCy0adOmxirsmlx77bVYLBbvz2FhYYwePZolS5actsPgypUrqays9GlaAUhNTWXw4MG1bhKrLU8n2FMfr1evXmRmZlZ7vKioKAYPHlyrcyulvM1Yw4YNA6B58+YMHDiQb7/9lpKSkmr3OXUUV2ZmJkC1DuqZmZkUFBR4m7UWLlxY4/O4/vrrCQkJOa/rdvXVV/v83LlzZ4Bavw5OVVRUREVFBfHx8dVu69y5MzExMd73608//URiYiJt27YF4PLLL/f+zjzHeDosf//990RGRjJ69Gifz4CuXbuSmJjoPX7OnDk4nU5uu+02n+MsFkuNzWZKKe677z5eeuklPv/8c55++mnvbVarlQULFnDNNdcQHBzsc76rrroKq9XKqlWrfM53tuu5cuVKrFYr48aN8zmub9++pKen++zr1asXmzZt4sEHH2TOnDk1vqY84uPjOX78eK0/j07l6azsacbVNI3x48ezf/9+n9fX4sWLARg7dqzP/W+66Safn8/l2p2PmJgYjEajd/v222+Bqs/xgoICbr/9dp8yuN1uRowYQVZWVrURbjX9Dq1WK8ePHwd+/Vw59Xd48803n/c1OPVvX0PRJANPZmYml1xyic9Wk8LCQpRSJCQkVLutpn11lZSU5PPzsWPHvI938ovaaDSyatUq8vLyzvsxT9W9e3d69+7NuHHjWLRoEUopfv/735/z+dLT0xkyZAiff/45NpuNvLw8vv/+e66//nrCwsJOez/PtT71mgAkJycDVSPL6iomJqbaPrPZTGVlZa3un5iYWOM+u91erf+Jh6ecp3su5/I8zqSuj1fTcaezcOFC9u3bx/XXX09JSQlFRUUUFRUxduxYKioq+OKLL6rdJzo62udnzz8Lp9tvtVq9z8NgMHj7knlomkZiYuJ5XbdTXwdmsxmg1q+DU3nud3IY9tA0jQEDBrB8+XIcDgeLFi1iwIAB3tsHDBjA4sWLUUqxaNEiEhMTadeuHVD1GVBUVITJZKr2GXD06FHvZ8CxY8cA6NmzZ7Xjvvzyy2qfFXa7nS+//JIOHTpw5ZVX+tyWn5+P0+nk3XffrXauq666CqDa+c52PT2/q9O9f0727LPP8sYbb7Bq1SquvPJKYmJiGDJkCGvXrq12X4vFglLK+5qpi9LSUr7++mt69epFXFyc97V8zTXXoGmaNwx5ym8wGKq9Zk/93D+Xa3c2qampQM1h/KeffiIrK4sPPvjAZ7/n9XDddddVK8err76KUoqCggKf+9Tmd2gwGKodd+rv71yuQV0+gy6mc+u92kRERUWhaZr3xXSyo0eP+vzs+eA7dU6HM31In9oZLTY2Fk3TWLp0qffFd7Ka9tWnsLAw2rVrd9pOabV11113MW/ePP773/9y5MgR7HY7d9111xnvExUVhU6nIycnp9ptns6lsbGx51Wuc3Hq79mzz2QynXZuE88HxOmeS30/j5Mfr1mzZmd9vLp0bPf8EXjrrbd46623arz9vvvuq2uRaxQTE4PT6SQ3N9cn9CilOHr0KD179vTuM5vNNc6fUt9h8kxlBar9EfEYNGgQ06dPZ/Xq1SxdupRJkyZ5bxswYAB5eXmsW7eOVatWcc0113hv83SqPt18Vp5/Gjy/02+++aZajUlNzGYzixYtYvjw4QwdOpTZs2cTFRUFVL33PDWpDz30UI33b968+Vkf42Se63O698/JHcINBgMTJkxgwoQJFBUVMX/+fH7/+98zfPhwDh48SHBwsPfYgoICzGbzOc0r9MUXX1BRUcGaNWu8z/1kM2bMoLCwkKioKO9rsaCgwCf0nPp8LsS1S05OpkOHDsybNw+r1eoTqrt27QpQ7Z8tz+vh3XffpXfv3jWet67/pHuuQX5+vk/oqY9r4K85084moANPSEgIl1xyCTNnzuSNN97w/kdaVlbG999/73NsQkICFouFn3/+2Wf/f//731o/3qhRo/jLX/7C4cOHq1WlXgx5eXls3ryZfv36ndd5xowZQ0xMDFOmTCEnJ4c2bdrQv3//M94nJCSESy+9lOnTp/PGG28QFBQEVI3g+PTTT2nWrBlt2rQ5r3Kdi+nTp/P66697P3RKS0v57rvvuOyyy6qNkPDo06cPQUFBfPrpp1x//fXe/YcOHWLhwoVcd9113n0n/1flec515Wme+vTTT31CQVZWFtu2beO55547p/MWFhYyY8YM+vXrx8svv1zt9n//+9989tlnbNmyhY4dO57TY5xsyJAhvPbaa3z66af89re/9e7/9ttvKS8vZ8iQId59GRkZ1d5rCxcuPG2tW23UpebPZDLRokUL9uzZU+Ptniaqt99+m+LiYp+J9jp06EBMTAyTJk3CarX6zL8zatQopk2bhsvl4tJLLz3t4w8fPhyDwcCePXtq3TzQrVs3Fi9ezNChQxk4cCDz5s0jPj6e4OBgBg0axIYNG+jcubNP8/256t27NxaLhc8++8ynfCtWrGD//v2nHQEXGRnJddddx+HDh3n88cfJzs6mffv23tv37t3r83NdTJ48mbCwMGbOnIlO59t4sXbtWp566ik+++wzHn74YQYMGMBrr73Gl19+yQMPPOA97tQRYhfi2gE899xz3HzzzUyYMIF//OMfZw0I/fr1IzIykq1bt/Lwww/XSxkGDRrEa6+9xmeffcajjz7q3X/qKNwLdQ38IaADD8Af//hHRo4cyfDhw3nsscdwuVy8/vrrhIaG+vx35+l7M2XKFFq2bEmXLl1Ys2ZNjUO0T6dfv37ce++93HHHHaxdu5bLL7+ckJAQcnJyWLZsGZ06dfJ589Xkxx9/pLy8nNLSUgC2bt3KN998A8BVV11FcHAwxcXFDBs2jJtvvpnWrVsTFBTEzp07eeedd7DZbLz00ks+5xwyZAiLFy+udbu52Wxm3LhxvPvuuyil+Mtf/lKr+02aNIlhw4YxaNAgnnzySUwmE++99x5btmzhiy++8Mt/BXq9nmHDhjFhwgTcbjevvvoqJSUlZ5wsMDIykhdeeIHf//733Hbbbdx0003k5+czceJELBaLz/Xt1KkTAK+++ipXXnkler2+zh8abdu25d577+Xdd99Fp9Nx5ZVXkp2dzQsvvEBqaqpPeKiLzz77DKvVyqOPPlrjzLgxMTF89tlnTJ48mbfffvucHuNkw4YNY/jw4TzzzDOUlJTQr18/fv75Z1566SW6devGrbfe6j321ltv5YUXXuDFF19kwIABbN26lb///e9ERESc8+N36tSJadOm8eWXX9KiRQssFov391OTgQMH1jjMGqpCTXx8PDNmzCAuLs7bjwmqPisuv/xyZsyYAeATeG688UY+++wzrrrqKh577DF69eqF0Wjk0KFDLFq0iN/85jdcc801ZGRk8Mc//pHnnnuOvXv3MmLECKKiojh27Bhr1qwhJCSkxtdoZmYmS5cuZejQoVx++eXMnz+fZs2a8c4779C/f38uu+wyHnjgATIyMigtLWX37t1899133v5VtRUVFcWTTz7Jyy+/zN13383111/PwYMH+cMf/lCtSWT06NF07NiRSy65hLi4OPbv389f//pX0tPTad26tfc4t9vNmjVrqtUW/+EPf2DixIksWrTotDM4b9myhTVr1vDAAw/U2H+tX79+vPnmm0yePJmHH36YESNG0K9fP5544glKSkro0aMHK1eu5D//+Q+AT2Cqy7UbOHCgtznzTG666SZ++eUXXnnlFTZt2sT48eNp3bo1brebgwcP8sknnwC/1viFhoby7rvvcvvtt1NQUMB1111HfHw8ubm5bNq0idzcXN5///0zPuaprrjiCi6//HKefvppysvLueSSS1i+fLn3sU9W368fv/FPX+kL42wTD55upNWMGTNUp06dlMlkUmlpaeovf/mLevTRR1VUVJTPccXFxeruu+9WCQkJKiQkRI0ePVplZ2efdpTWySNtTjZlyhR16aWXqpCQEBUUFKRatmypbrvtNrV27dqzPsf09PTTjkTzjCKyWq3q7rvvVpmZmSo0NFQZDAbVrFkzdcstt/gMZ/Wo7bD0k23atEkBSq/XqyNHjlS7/XTXeunSpWrw4MHe5967d2/13Xff+RxTl1FaI0eOrPH5nG00jqd8r776qpo4caJq1qyZMplMqlu3bmrOnDk+x55u4sF///vfqnPnzspkMqmIiAj1m9/8ptr1tdls6u6771ZxcXFK07SzTmB4uteOy+VSr776qmrTpo0yGo0qNjZW3XLLLd5h6yc/9w4dOpzxuXt07dpVxcfH+4xQPFXv3r1VbGysstls3t/L119/7XPM6d53NT2XyspK9cwzz6j09HRlNBpVUlKSeuCBB1RhYaHPfW02m3r66adVamqqCgoKUgMGDFAbN2487SitUx+7ptdQdna2uuKKK1RYWJh3eP2ZLFiwQAFqzZo1Nd4+duxYBajrrruu2m1//etfvcNzT+VwONQbb7yhunTpoiwWiwoNDVXt2rVT9913n9q1a5fPsTNnzlSDBg1S4eHhymw2q/T0dHXdddf5DEOuaeLBQ4cOqXbt2qmMjAy1Z88epVTVa/7OO+9UKSkpymg0qri4ONW3b1/18ssvV7tup/6Oa3o/u91uNWnSJJWamqpMJpPq3Lmz+u6776q9/958803Vt29fFRsb6/2Mveuuu1R2dnaN13vdunU++5944gmlaZratm1btWvp4RkpuHHjxtMe87vf/c7n/AUFBeqOO+5QkZGRKjg4WA0bNsw7gurUkUu1uXZKKdWjRw+VmJh42jKcasmSJeqGG25QzZo1U0ajUQUHB6v27durBx54oMa/B4sXL1YjR45U0dHRymg0qpSUFDVy5Eif39fpPkNq+hwrKipSd955p8812L59e42jJM/n9dNQaEqdJYoGIIfDQdeuXUlJSWHu3Ln+Lo64ALKzs2nevDmvv/46Tz75pL+LIxqozp07069fvzr/9yzq7tZbb2Xv3r0sX77cZ3+vXr1IT0/n66+/vuBl+Pzzzxk3bhzLly+nb9++dbpvaWkp0dHR/PWvfz1tXxfhXwHfpAVVnXCHDRtGUlISR48e5YMPPmDbtm3VZgIVQgSW1157jWuuuYbnnnuuWodxUX/27NnDl19+Wa1ppKSkhE2bNvHxxx/X+2N+8cUXHD58mE6dOqHT6Vi1ahWvv/46l19+eZ3DDsCSJUtISUnhnnvuqfeyivohgYeqZP7kk0+Sm5uL0Wike/fu/PDDDwwdOtTfRRNC+NGIESN4/fXX2bdvnwSeC+jAgQP8/e9/rzb4ITw8/IKtdh4WFsa0adN4+eWXKS8vJykpifHjx9fYgb82Ro4c2WgXpg4U0qQlhBBCiCavSU48KIQQQghxMgk8QgghhGjyJPAIIYQQosmTwBOAlFKUlJScdXIsIYQQoqmQwBOASktLiYiI8M7WLIQQQjR1EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5Bn8XQIhAoJSioqKCwsJC7HY7JpMJg8FAeHg4wcHB/i6eEEI0eRJ4hLgADh06xLp169ixYwfbtm3j0KFDOByOGo8NDw8nISGBtLQ0WrVqRcuWLWnTpg2RkZEXt9BCCNGEaUop5e9CiIurpKSEiIgIiouLCQ8P93dxmoycnBzmzJnDkiVL2Lt3b43HKJ0BpTOgKTe4XWjKddrzJScnk5mZSbt27Wjbti2tW7cmKCjoQhVfCCGaNAk8AUgCT/1RSrFu3TpmzJjBihUr8LydFBqusERcofG4QuJwB0ehDEGgP6VS1WlHZy9Ds5WhryxEV1GAvjIfnbWk2mNpmkZycjIZGRlkZGSQlJREYmIicXFxREVFERoaik4n3fKEEKImEngCkASe86eUYu3atUyePJnt27d79zvDk3HEtMQZmQYG87k/gNOGvjwPfXkuuvI89OV56BwVZ7yLTqcjIiKC0NBQQkNDCQ8PJzIyksjISBITE0lNTaVZs2YkJCSgadq5l00IIRohCTwBSALP+dm+fTvvvfceP//8M1DVTOWIbY09vj0qKOKCPa7mqERXWXhiK/bWDOkcFWgue63PExMTQ7du3ejevTv9+/eX14AQIiBI4AlAEnjOTWFhIR9++CE//PADAErT44hvhz2pM8ro5741bhea04bmtFaFH6cdzWlF57SiOSrRbKXorCXobCVV/YdOMBqNDBgwgKuvvppOnTpJzY8QosmSwBOAJPDUjVKKWbNm8f7771NeXg6AI6YltmaXoEwhfi5dHbmd6Mty0ZccwVB0AH1lofemrl27cv/999OuXTs/FlAIIS4MCTwBSAJP7R0+fJg33niDDRs2AOAKjsGa1ht3WIKfS1YPlEJXnocxdwfG/D3eEWNDhgzhwQcfJCYmxs8FFEKI+iOBJwBJ4Dk7pRT/+9//eP/997FarSidHltKDxwJ7UFreiOhNFsZ5sPrMOTvQaNqbqAJEyYwcOBAfxdNCCHqhQSeACSB58zy8/N57bXXWL16NQDOsCSsGf1QlqZ/rXTleViyl6GvKACqansmTJhASEgja7oTQohTSOAJQBJ4Tm/VqlVMmjSJ4uJilKbH1uySE7U6AdSZ1+3ClLMJ05FNaChSU1P54x//SPPmzf1dMiGEOGcSeAKQBJ7q7HY7H374IV9//TUArqBorC0H4A6K8nPJ/EdXdpygPYvQ2csxWyw8/dRTDBkyxN/FEkKIcyKBJwBJ4PF1+PBhJk6cyM6dOwGwx7fHltoTdHo/l8z/NIcVy96fMJQcAeCGG27g3nvvRa+XayOEaFwk8AQgCTy/+umnn3jt9depKC9H6c1UNr8MV1Sav4vVsCg3psPrMedUTbTYs2dPXnzxRcLCwvxcMCGEqD0JPAFIAg/YbDbef/99Zs6cCYArNJ7KFgNR5lD/FqwBMxTsw7JvKZrbSUpKCn/6059o0aKFv4slhBC10vTG1wpxFocOHeKhhx7yhh1bYicq2l4lYecsnNHNqcgcidsUyuHDh3nwwQf56aef/F0sIYSoFanhCUCBXMMzb9483nrrLSorK3EbLFibX4YrMtXfxWpUTu3XM3bsWO655x6MRqOfSyaEEKcngScABWLgKSsr469//Svz588HwBmWiLXFgMa3NERDodyYDq3DfHQzAG3atOGFF14gNVXCoxCiYZLAE4ACLfD8/PPPTJo0iZycHBQa9uSu2JO7NMkZky82Q+F+LPuWoblsWCwW7rvvPq6++moZxSWEaHAk8ASgQAk8VquVDz/8kOnTp6OUwm0KpbLFgKaxDlYDotnLsexdgqE0B6iq7fntb39LZmamn0smhBC/ksATgAIh8Kxdu5a3336bw4cPA2CPbY0t9VIwmPxcsiZKKYzHt2E+vB7NZUfTNAYPHsy4ceNkJJcQokGQwBOAmnLgOX78OP/4xz9YvHgxAG5jMNaMftIx+SLRHJWYD2ZhzN/t3de3b19Gjx5Nz549MRgMfiydECKQSeAJQE0x8JSUlDBt2jSmT59etbo5Go74TGwp3aVWxw905fmYcjZhKMzGswpZeHg4AwYMoEePHnTu3Jno6Gi/llEIEVgk8ASgphR4CgsLmTlzJt988w3l5eUAOEMTsKX3wR0sf1D9TassxnR8G4aCfeiclT63paSk0Lx5czIyMkhNTSU+Pp6EhARiY2MxmSSkCiHqlwSeANTYA49Siu3btzNz5kwWLlyIw+EAqhb8tDXrjisiNbBWN28MlBt9SQ6GooPoS3PQVRZypt9QeHg4MTExxMbGer/GxsYSHx9PfHw8iYmJhIbKRJFCiNqTwBOAGmPgcbvd7NmzhyVLlrBw4UJvZ2QAV0gc9sSOOKMyGl7QUW40e7m/S1EnyhRy4YfsO23oy/PQWYvQVRahs5Wgs5Wj2cvRlKtWpwgLCyMpKYnk5GTvlpKSQlJSEnFxcTI0XgjhQwJPAGoMgcdms7F792527tzJ5s2bWb9+PUVFRd7blU6PMzIDe0Im7tB4/xX0LDRbKaE/f+3vYtRJWefrUWY/LQyqFLhs6OwVaI5KNEfFie8r0Ozl6OzlaPYydE7bGU+j1+u9TWTx8fHExMQQHR1NVFQUYWFhhIWFERISgslkwmKxYDAY0Ov11UKS2+2umtLgxFfPx6V2Ilh77uO5vxCi4ZIhE+KicrlcWK1WysrKKCkpobS0lPz8fPLz88nNzeXw4cMcOnSII0eO4Ha7fe6rdAac4ck4o5vjjEwD/SlLGSgFbudFfDa14Gpg5akNlxNcDv89vqbHbQ6Dk0OXzuBbe+dyoLOVodlK0dlKT9QQlaCzlaLZynC5XOTk5JCTk3PRiq3T6TCZTJjNZiwWC0FBQQQFBREcHExISAghISEEBwcTGhpabV9wcLD3eIvFgsViwWw2N6hRbS6XC4fDgcPhwG63Y7fbfX72fO90On22U0MjVAVGnU7n/eoJjZ7NZDJhMBgwGo2YTCZMJhNGo9G7mUwm9Hq9N3gKURtSwxOALnYNT2lpKY888gjZ2dl1up/bYMEdEosrJBZXeDKukDjQneG/aJeDsPWfnF9hG5hRo0YxduxYvvrqK2bNmkWgvl1Lu99aPeCejnKj2SvQ2ctO1AqVVdUW2SvRnFY0lw3NaUNzOcHtrHUTmmh8HnroIa6//np/F0M0EA3n3wfRZB06dKhOYcdtsOCMTMUVmYorOPZEn5LA/E9u7NixpKWlMXbsWL7//nt/F6dx0HQocygu80mdmpUCl70q8DhPBB73icDjcoDbVRV8lLvaudA0FLoTr0ENNEABuNHc7qpzuKtqxbxhymlFc1SetelNXFhz5syRwCO8pIYnAF3sGh63283MmTNZv349mqahlMJut1NaWkpJSQkFBQVUVlae/v6GIFzhSTjDk3FFNEOZgms+sAE2aWm2MkJ/mXHO9/dHDU9Zh2tQ5gY2AurUJq1TeWp1TjRvVTV1nejvYy+vquFpYDU5Op3utE1aOp0OpZRPk43nvXPy957bz/S9h2f/2e576r5TaZqGy+WqlyYt+LUflF6vx2g0epuyTm6+8jRpndyM5Xa7qz2fk8sdHh7ODTfcIAvaCi8JPAGoIXZarqio4Pjx4xw5csRbI7Rjxw6ys7NxuX79Q6UAV1hiVT+eqOYoo8V/ha6F8+20fOqH+cXg107Lp6MUmrMSzebpuFyKzlZ2os9OVT8e7dTamRoEBQURHh7u02nZbDZ7/5jWptOyUsr7x1qn03n7nXj+OJ+uD4/nq6cPj8VikT4oQlxEEngCUEMMPKdjs9nYtm0b69atY+3atWzbts17m9L0OGNaYE9ojzs4xo+lPIPzHJbu6YviNoWevmarnl2UYeknc7tP1MSU/ToSy1GBZq9E5zgxQstRedZAYzAYSEpK8m6JiYnVRmmZzeaL9KSEEA2NBJ4A1JgCz6mOHz/OokWLmD9/Prt27fLud4YnYUvp0aCHqAvA7UZXkYeh9Ci68rwTc/AUo9XiY0jTNGJiYoiLi/MJNp45eGTuHSHEmUjgCUCNOfB4KKXYunUr06dP56effvI2ezkjmmFrdoksK9GQuJ0Yig5hKNiLofhQVQffU5jNZu+8OXFxccTExPjMtOzZGtIwbSFE4yKBJwA1hcBzsqNHj/LJJ5/w448/VvW18C4c2g0M0oThL5q9AtPRLRjzdlSNhDohPDycLl260KFDB1q0aEFGRgZxcXHSn0UIcUFJ4AlATS3weBw6dIgPP/yQxYsXA1XD221pl+KMbhGww9r9QXNUYDq8AWPeLm+/m/j4eIYMGcKgQYNo1aqVt9OvEEJcLBJ4AlBTDTwea9eu5W9/+xsHDhwAwBGZhi2jL8p4cTr9BizlxnhsG+Yj6701Oh07duSWW26hV69eEnKEEH4lgScANfXAA+BwOPj888/55JNPcDqdKL0Za0ZfnNHN/V20JklXUYBl3xL0FQUAtGvXjgceeIAuXbr4uWRCCFFFAk8ACoTA47Fnzx7+8pe/eEd0OWJbY03rXftlCsSZKYXx+FbMB9eiKRdhYWHcc889jBw5UkZMCSEaFAk8ASiQAg+A0+nko48+4rPPPquaRM4cTmXLgbhDYv1dtMbNaSVo7xIMxYcA6NOnD08//TRRUVF+LpgQQlQngScABVrg8di4cSOvvPIKubm5KE2HLbUXjvhM6dB8DnQV+QTtWoDOXobJZOKBBx5gzJgxMtJKCNFgSeAJQIEaeKBq5fZXX32VZcuWAeCITMfavL8MX68DQ/4eLNnL0NwukpOT+dOf/kTLli39XSwhhDgjCTwBKJADD1RNWjh9+nTef//9qsUNTaFUthyEOzTO30Vr2JQb86G1mI5uAeDSSy/l+eefJyysga27JYQQNZDAE4ACPfB4bN++nYkTJ5KTk1PVxNXsEhwJHaSJqyZOG0F7fsJQchiAW265hTvuuEM6JgshGg0JPAFIAs+vSktLef3111myZAkAzohUrM0va/CrsF9MuooCgnYvQGcrxWyx8OzvfsfAgQP9XSwhhKgTCTwBSAKPL6UUM2fO5L333sPhcOA2BmNtMQBXeJK/i+Z3hrxdWPavQHO7SEhI4OWXX6Z169b+LpYQQtSZBJ4AJIGnZrt372bixIkcPHgQAHtiJ2wp3UEXgM02LgfmA6sx5e0EoFevXjz//PPyehFCNFoSeAKQBJ7Tq6ys5O9//zuzZs0CwBUUhbXFgIBafV1fehTLviXobGVomsbtt9/ObbfdJktDCCEaNQk8AUgCz9ktW7aMN954g6KiIpSmw57UGXtSlyZd26M5KjEd3oApdzsACQkJ/O53v6Nbt25+LpkQQpw/CTwBSAJP7RQUFPDmm2+yfPlyAFxBkVgz+uMOjfdzyeqZy47p2FZMOZvR3FWLfl511VU89NBDhISE+LlwQghRPyTwBCAJPLWnlGLRokX87W9/o6ioCABHTCtsqZc07tXXlUJXnosxdwfGgn1obidQtejn/fffT9euXf1bPiGEqGcSeAKQBJ66Kyoq4p///Cc//vgjAEpnxJ7UCXtCh4a/EKlSaM5KdNYSdJWF6EuPoi/JQee0eg/JyMjgtttuY+DAgdJXRwjRJEngqSWlFMOGDUOv1zNnzhyf29577z2effZZNm/eTFpamp9KWHsSeM7d1q1b+dvf/sb27VX9XNwGC/akzjji2l7c4KPcaPYKdPYyNHsFmrMSzWFFc9nQnHY0lx3Naa3a57R6a3BOZrFYuPzyyxk1ahSdOnWSdbCEEE2aBJ46OHjwIJ06deLVV1/lvvvuA2Dfvn107tyZd999l/Hjx/u3gLUkgef8uN1uFi5cyNSpUzl8uGrmYaU34YhtjT0+E2Wp32uqOSrQleehL89HV1mIrrIIna0YrQ5vXZ1OR2JiIs2aNaN9+/Z0796dzMxMjMYGXjslhBD1RAJPHX388cc8/PDD/Pzzz2RkZDBkyBDCw8P57W9/y1NPPcWmTZuIjo7m9ttv5+WXX8ZgMABVTQaPP/44jz/+uPdcXbt2ZcyYMfzhD38AQNM0PvzwQ2bNmsWcOXNISUnhzTff5Oqrr/be53//+x9PPPEEhw4donfv3owfP57x48dTWFhIZGRkrZ6DBJ764XQ6mTt3Lp999pk3+AC4QuJwRGXgjEpDmcPrtlSF04a+Ih99eR66slz05bnoHBU1HqrX60lISCAuLo6oqCgiIyMJDw8nLCyM0NBQwsPDiYyMJDIykri4OEwm0/k+ZSGEaLQM/i5AY3P77bczY8YM7rjjDv7v//6PLVu2kJWVRfv27Rk/fjz/+c9/2L59O/fccw8Wi8UbZmpr4sSJvPbaa7z++uu8++67jBs3jv379xMdHU12djbXXXcdjz32GHfffTcbNmzgySefPOs5bTYbNpvN+3NJSUldn7aogcFg4KqrrmLEiBFkZWXx7bffkpWVhb68KqhwKAu3wYw7JA5XUBTKGIQyBoGmB+UG5ULnqESzlaGzl1XV3tjLqz2Opmmkp6fTtm1bWrRoQUZGBunp6cTFxclaVkIIUUsSeM7Bv/71Lzp27MjSpUv55ptv+Ne//kVqaip///vf0TSNdu3aceTIEZ555hlefPHFOnUCHT9+PDfddBMAf/7zn3n33XdZs2YNI0aM4IMPPqBt27a8/vrrALRt25YtW7bwyiuvnPGckyZNYuLEief+hMUZ6XQ6Lr30Ui699FLy8/NZunQpS5Ys4eeff8bptKErPoSh+FCtz5eYmEjbtm3JzMwkMzOT1q1bExzciEeECSFEAyCB5xzEx8dz7733MnPmTK655ho++eQT+vTp49Pps1+/fpSVlXHo0KE6dWTu3Lmz9/uQkBDCwsI4fvw4ADt27KBnz54+x/fq1eus53z22WeZMGGC9+eSkhJSU1NrXSZRezExMYwZM4YxY8Zgt9vZu3cv27Zt49ChQxQVFVFYWIjdbsdkMmEwGAgPDycxMZGEhATS0tJo0aIFYWFh/n4aQgjR5EjgOUcGg8HbP0cpVW2Ei6drlGe/Tqfj1O5SDoej2nlP7USqaRput/usj3MmZrMZs9l81uNE/TKZTLRr14527dr5uyhCCBHwZMKNetC+fXtWrFjhEz5WrFhBWFgYKSkpAMTFxZGTk+O9vaSkhH379tXpcdq1a0dWVpbPvrVr155HyYUQQojAIIGnHjz44IMcPHiQRx55hO3bt/Pf//6Xl156iQkTJnj77wwePJhPPvmEpUuXsmXLFm6//fY6dzi977772L59O8888ww7d+7kq6++4qOPPgKQOVSEEEKIM5AmrXqQkpLCDz/8wFNPPUWXLl2Ijo7mrrvu4vnnn/ce8+yzz7J3715GjRpFREQEf/rTn+pcw9O8eXO++eYbnnjiCd555x369OnDc889xwMPPCBNVo2EUoqCggJycnIoKCigsLCQ4uJiysvLsVqtWK1WnE4nLpcLt9vt0zSqaRo6nQ69Xu/dDAYDRqMRk8mE2WzGYrEQHBxMSEgI4eHhREdHEx0dTUREhMygLIQIaDIPTyP3yiuv8MEHH3Dw4MFa30fm4bk4HA4HO3bsYOfOnezYsYPdu3dz+PBhrFbr2e9cz4xGIykpKaSmppKenu4dARYdHX3RyyKEEP4gNTyNzHvvvUfPnj2JiYlh+fLlvP766zz88MP+LpagqvbmwIEDrFixgvXr17N58+Yaw42GItrsJsrsJtykCDO6CTYozPqqzaADnQY6lHfOQqVAAW6l4VLgVuBSGk43uBTY3RoOt4bNpVHprNrKHBpFdh2lDh0Oh4Ps7Gyys7NZunSptyzJycn06tWL3r1707VrVywWy0W6WkIIcXFJDU8j89vf/pYvv/ySgoIC0tLSuPXWW3n22We9I8ZqQ2p46tfu3btZsGABy5Ytq1bTFmZ00yrCSXqok/QwJ8khLuIsbgwXsXXJ6YYCm46jFXqOVug5UKZnT4mBI+V6FL/2/TKbzfTv358rrriCHj161Ok1JYQQDZ0EngAkgef8FRQUMHfuXObOncvevXu9+w2aon20g87RDtpHOUgJcdVpZYmLqcKpsaPIwKZ8E5vyjOTbfu1EHxUVxciRI7n66quJj4/3YymFEKJ+SOAJQBJ4zo1SivXr1/Pdd9+xbNkynM6qFcgNmqJrrJ1e8Xa6xDgIMjS+t5RSsK9Uz4qjZlYeM1PqqKqC0ul09O/fnxtuuIEOHTr4uZRCCHHuJPAEIAk8dVNRUcHcuXOZPn06Bw4c8O5vGe7gsiQbl8bbCTE2nbeR0w0b8kzMP2RhW9GvE2F27tyZG2+8sdqs4kII0RhI4AlAEnhqJycnhxkzZjBr1izKy6sW9bToFX0TbQxOtpIW5vJzCS+8Q2V6Zh+0sPyoGZeqCjktW7bklltu4fLLL5fFS4UQjYYEngAkgefMfvnlF7766iuWLl3qXdYjIcjFsGZWLkuyNcomq/NVYNMx56CFRYctWF1VwSc1NZWbb76ZYcOGSQdnIUSDJ4EnAEngqc7pdLJs2TK++uortm7d6t3fIcrOiFQrnWIc6KQVhzKHxtyDFuYeslDhrOrnk5CQwA033MBVV10lw9qFEA2WBJ4AJIHnV2VlZfzwww9Mnz6do0ePAlWdkPsk2BieZiUttOk3W52LSqfGwsNmZh8MotheFXzCw8P5zW9+w5gxY4iJifFzCYUQwpcEngAkgQcOHTrEjBkz+PHHH6moqAAg1OhmSIqVISlWIs3ytqgNuwuW5Jj58UAQudaq/jxGo5EBAwZw9dVX06lTJ+ngLIRoECTwBKBADTxut5usrCxmzJjB6tWrvetUpYQ4uaKZlX6JNkzSB/ecuBWszTXx4wELe0p+HdmVkZHBFVdcwaBBg0hKSvJjCYUQgU4CTwAKtMBTXFzM7Nmz+e9//8uRI0e8+7vE2BnWzEqnaEeDnRywMdpbomfRYQurjpuxuX69sB06dKB///5ceumlNG/eXGp+hBAXlQSeABQIgUcpxcaNG5k1axaLFy/G4XAAEGxw0z/RxtBmVhKD3X4uZdNW6dRYdczEqmNmthcZfJaxiI+Pp1u3bnTq1InOnTuTmpoqAUgIcUFJ4AlATTnwHDt2jDlz5jBnzhwOHz7s3Z8e6mRIMyt9EmyYpdnqoiuyaWTlmtmUb2RboRGH2zfchISE0KpVK1q1akXz5s1JT08nPT29yb0+hRD+I4EnADW1wFNaWsrixYtZsGABGzdu9PbNseirRlsNSLbSPKzhrmkVaOwu2F5kZGeRgR3FRvaWGKoFII/w8HCSk5O9W2JioneLi4vDbDZf5NILIRorCTwBqCkEnpKSEpYvX86SJUvIysryrmsFkBnp4LIkK5fE2bHIfHgNntMNRyr07C81cKBMz+FyPTnlep/FTE8nKiqK+Ph47xYXF+fdYmNjiYmJkVAkhAAk8ASkxhp4Dh48yKpVq1i5ciWbNm3C5fp1jpzUECe9E2z0TrATFyR9c5oCqxOOW/Ucq9BzvFJHnlVPnlVH7onv7aepFTpVaGgoMTExREdHExUVRVRUFBEREURGRhIeHk5ERARhYWGEh4cTGhpKUFCQ9CcSogmSwBOAGkvgKSwsZMOGDaxfv57169f7jLCCqpBzSbydnnF2mskEgQFFKSh3auRZdRRYdRTYdORb9RTYdBTadN6vp2sqOxOdTkdoaOhpN084CgsLIyIiwrtFRkZiNBrP/gBCCL+QwBOAGmLgsdls7Nmzh127drF161a2bNni0+kYQK8p2kY66BrjoGusvVGMsnK5q9ahakyizW70javINVIKKpwahTYdxXaNYruOEruOEoeOUrtGqUNHqUOj3KFR7tRR5tC8C6Seq7CwMKKiooiJifFusbGx3s3T1CZrjwlx8UngCUD+CjxKKQoLC8nJySEnJ4cDBw6wf/9+9u/fz4EDB7wLdZ4sNdRJ+ygHHaIctI10ENTI/k7kVup4YmWUv4tRJ2/2KQzIZkGlwO6GcqeOCodGpUujwqFR7tSodGpUODXKTtxW5tQoc1SFpLITwcldy7CkaRpRUVHe8OPpcxQdHe3td+RpdtPpmkDyFKKBaGR/PkRDtXfvXo4cOUJ5eTnl5eUUFxd7t/z8fPLy8sjPz8dms532HOFGNxlhTjLCnbSJcNIy3EmIsfZ53PMHqyFpaOWpDbsbbE24hdCko8YRe5oGZj2Y9W6i69jP2a2g3OGpRdIosuuqthNNa55mtiKbDqeCgoICCgoK2LFjx2nPqdPpfJrLPM1oYWFhhISEEBISQnBwMBaLBYvFgtlsxmQyYTKZMBqNGAwG9Ho9er0enU6HpmneTSnl3dxut/ery+XC5XLhdDq926k/n7o5HA6f+7lcLu+5Tj73qf9ba5rmDXQnl9Pzvaf8BoPBu3me16lfT7d5znXyJv2zApfU8ASg+q7hWbduHU888UStjtVQRJndxAW5SQxykRLiIjnERbNQF1Em93kNHbe54J7FgbFo5ahRoxg7dixfffUVs2bNqvbHRJzehwPy/TYXk1tVrTjv7Wt0ov9Rkb3q5yKbjmK7jlKH1OxcDIMGDeKll17ydzHERSI1POK8FRYW1uq4MKOb1hFOkoJdxAW5SAx2kRzsIsKkZI6cOho7dixpaWmMHTuW77//3t/FEbWk0yDcpAg3uUgPdXn7GHkCj6e/UYFNx6EyA8cqZZbMC2njxo243W5pOgwQEnjEeevbty8333wzOTk5lJeXU1ZWRmlpKUVFRZSWlnqPK3XoWJ9nqnb/YIOb1FAX6aFOMsKcNA93kRTsQlfHEGTSVf333pDkWXU8u7r++/B89dVX3hoeTxNFfZl0aSGxlkbYFldLpovwt83lhhKH5g0xhaeMHiu0VY0oO3mtsdqwWCzeJq3g4GDvZjabvZvRaPRunmaik5u0TnZqc5bn6+masxwOh3f/yd+feqzb7fZuZ2vS8nz1bCc3Z3mew6nNVyc/v1P3e473nFsp5fO8Pd9rmkb//v0l7AQQadIKQBez07LT6aSwsJC8vDzy8vI4evQoOTk5HDlyhIMHD5KTk1NjZ+UQg5tWEU7aRDjoEO0gI6zuAaghuFCdlk/+IK/vt3Cgdlo+HbfC22m53Ok7qsvTYbn0RN+dYseJkWB2zWftsDMJCwvzjuLydFz2zBcUHR3t7ccTHh4uw96FOA8SeAJQQxqWbrPZOHjwIHv27GHnzp3e7dTOzcEGN+2jHHSJcdAlxk6kuXG8bC/UsPQim0aeVU+sxVXv16KpDEs/lVtBiV3zGZZe5tAod+goOxFkKpw6yk+EG89IrUpn7cPLyXQ6nc9orJNHZJ08G7TFYrkAz1YIcSoJPAGoIQWemjidTnbv3s3mzZvZuHEjGzdupLy83OeYFmFOesTZ6BnfOObjEReOZxLCfKvOZ+LBohNboV1Hsa2qJuZcgouH2Ww+48SDnloZT81MZGQker30wRGioZDAE4AaeuA5ldPpZOfOnaxZs4ZVq1axfft2n9tTQ530jpdlJZoqt4Iim45cq448q468yqolJvJtOvKtVTMs13aZCU3TCA8PJzIyksjISG9TkWe4d1hYWLWZlUNCQggNDcVkqt7/TAjReEjgCUCNLfCcKj8/nxUrVrBkyRLWr1/vs6ZW6wgH/RNtXJpgJ9ggL+3GxO6Cg+UGjpTrq7YTa2gdr9TXaomIyMhIn6Yiz+aZ8dgzmZ/McixEYJLAE4Aae+A5WUlJCUuXLmXBggVs2LDB24HXqFNcEmdnYLKVdpFOGfbewLgVHCnXs7PYwK5iI9mlVSHndE1OOp2OhIQEEhMTSUxMJCEhwbt5VkmXVdGFEGcigScANaXAc7K8vDzmz5/P7Nmzyc7O9u5PCHIxMNnK5Uk2wkzycveXErvG5gIjm/JNbCkwUlbD5HpRUVE0b96ctLQ00tPTadasGSkpKcTHx0vNjBDivEjgCUBNNfB4KKXYvn07P/zwA/Pnz6eyshKoqvXpFW9jaIqNlhFOP5cyMJQ5NNbmmlh1zMy2QoNPDY7FYqF9+/Z06tSJdu3a0bp1a2JiYmTqfyHEBSGBJwA19cBzsoqKChYuXMj//vc/du7c6d3fItzBFc2s9Iq3Y2iCQ7D9SSnYVmhg4REL63JNPiuQt2rVit69e9OrVy/at28vtTZCiItGAk8ACqTA4+Gp9Zk5cyYLFy7E4XAAEGFyMyTFyuAUK+HS3HVerE5YetTCvEMWjlb8Ohy7ZcuWDB48mMGDB5OUlOTHEgohApkEngAUiIHnZIWFhXz//ff897//JS8vD6hq7uqbYGNEmpWUkCa8VPgFUGTTmHsoiIWHzVQ4q6rLgoODGTp0KKNHj6Z169Z+LqEQQkjgCUiBHng8nE4nP/30E19//TU7duzw7u8cY2dEqpUOUQ4Z3XUGuZU6Zh0IYmmO2TtsPCUlheuvv54rrriC4OBgP5dQCCF+JYEnAEng8aWUYvPmzXzzzTcsXbrUO7Q9NcTJFalW+iTYMMmEuV6Hy/V8vz+IlcdMuE/0z+nYsSM33ngjffr0kdmFhRANkgSeACSB5/QOHz7Mt99+yw8//IDVagUg3OhmUIqVISnWRrOG14WQXVoVdLKOm7yjrXr27Mktt9xC586dZXSVEKJBk8ATgCTwnF1paSmzZs1i+vTpHD9+HAC9pugZb2dIipU2EYExmaFS8EuhkVn7LfxS+OvSCv379+eWW26hXbt2fiydEELUngSeACSBp/acTidLly5l+vTpbN682bs/JcTJwGQbfROa5mSGNhesOGpm/iELB8urho7rdDoGDx7MzTffTIsWLfxcQiGEqBsJPAFIAs+52blzp3dYu6e5S68pOsc46Jdoo2uMvVH39VEK9pQYWH7UzMpjJu+IK4vFwlVXXcX1118vw8qFEI2WBJ4AJIHn/JSVlTF//nxmzZrFrl27vPtNOkXnGDs94ux0inY0inl9XG7YXWJgY56JrFwTxyt/TWzJyclcc801jBgxgrCwMD+WUgghzp8EngAkgaf+7Nu3j7lz57JgwQJvXx+PZiFO2kc5aBnuJCPMSUKwG50f+/0oBaUOjQNlBvaWGNhTYmBHkcFbkwNVtTmXXXYZV1xxBT169ECnk2mohRBNgwSeACSBp/4ppdi5cyfLli1jxYoV7Nmzp9oxFr0iMdhFfJCL+CA3UWY3YUY34UY3QQaFWa8w66smQdQ00GugAYqqsKKoWmW8atNwKXAqcLo1HG5wuDWsLo1KZ9VW5tAotusosuvIt+rIqdD7hBuP8PBwevXqRZ8+fejTp4/MnyOEaJIk8AQgCTwXXlFRERs3bmTTpk3s2LGDPXv2YLPZ/F0sAJKSksjMzCQzM5MOHTrQtm1bmTtHCNHkSeAJQBJ4Lj6n08mhQ4c4dOgQOTk5HD58mMLCQoqKiigsLKSiogKr1YrVasXpPPNK7pqmodfrMRgM6PV6jEYjZrMZk8mE2WwmJCSE0NBQQkNDiYmJITo6mtjYWNLS0khJScFsNl+kZy2EEA2HBJ4AJIGnYVNK4Xa7vcFH0zTvptfrZYI/IYQ4BwZ/F0AI4csTbKSZSQgh6o8MwRBCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNngQeIYQQQjR5EniEEEII0eRJ4BFCCCFEkyeBRwghhBBNnsHfBRBCXDhWq5UtW7awefNmdu7cSU5ODsePH8fhcKCUIjo6moSEBDp27EiPHj3o0qULRqPR38UWQoh6pymllL8LIS6ukpISIiIiKC4uJjw83N/FEfWsqKiIZcuWsWzZMtavX4/dbq/1faOiohg5ciTXXHMNMTExF7CUQghxcUngCUASeJqeyspKli1bxvz588nKysLtdntvc5tCcIUm4gqNw22JwG0OBU0PgOaoQGctxlB6FH3RIXTOSgAsFgs33HADN9xwA8HBwX55TkIIUZ8k8AQgCTxNg9PpZP369cybN4+lS5ditVq9t7mCY3BGZeCMTMMdFAmadvYTut0YivZjOroFfXkuAAkJCTz11FNccsklF+hZCCHExSGBJwBJ4Gm8lFJs3bqVBQsWsGjRIgoLC723uc1hOGJa4ohpibJEnM+DYCjMxnwwC529DIAxY8bwwAMPYDabz/cpCCGEX0jgCUASeBoXpRTbt29n0aJFLF68mGPHjnlvcxvMOKOa44hthTskrnY1ObXlcmA+lIXp+HYA2rRpw0svvURKSkr9PYYQQlwkEngCkASehs/tdvPLL7+wePFilixZwvHjx723KZ0BZ1Q6jugWuMJTQHdhZ5fQFx/CsncxOqeN0NBQXnrpJXr27HlBH1MIIeqbBJ4AJIGnYXK5XPz8888sXryYpUuXkp+f771N6Qw4I1NxRjXHGdkMdBd3RgnNXk7Q7oXoy3PR6XQ88MADXHfddWj1WaMkhBAXkASeACSBp+Fwu91s2bKFhQsXsnjxYp8+OUpvOhFyMnBGpFz0kFON24V5/wpMebsAGDlyJI8//rjM2yOEaBQk8AQgCTz+pZRi9+7dzJ8/n4ULF5Kbm/vrbXpTVXNVVAau8GTQ6f1Y0hoohfHYVswH16Ch6Nq1KxMnTiQi4jw6SQshxEUggScASeDxj6NHj7JgwQLmzZtHdna2d7/SG3FGZTTckFMDfdFBgvb8hOZ2kJyczKRJk0hPT/d3sYQQ4rQk8AQgCTwXT2lpKYsXL2bevHls2rTJu19p+qrmqpgWOCMufp+c+qCrKCRo1zx09jKCQ0J4/rnn6Nu3r7+LJYQQNZLAE4Ak8FxYFRUVrFy5koULF7JmzRocDgcACnCFJeKIaYUzKgMMJr+Wsz5ojkosuxdiKKsaKn/HHXdw6623orvAI8eEEKKuJPAEIAk89a+0tJSVK1eybNkyVq9ejc1m897mCorCGdMSR3QLlDnUj6W8QNwuzAdXe+fr6dWrF7///e+JjIz0b7mEEOIkEngCkASe8+d2u9mzZw9ZWVmsXr2azZs3+65fZQ7DEd0cZ3RL3MFRfizpxWPI3YnlwEo0t4vY2Fh+97vfyZIUQogGQwJPAJLAU3dKKQ4dOsTGjRvZsGEDGzZs8BlCDidqciLTcEZn4A6Krt9ZjxsJXUUBlj2L0FuLgaolKe69915ZgFQI4XcSeAKQBJ6zU0px4MABNm7cyMaNG9m0aRMFBQW+x+gMuMIScUY0wxnRDGWRawlUW5IiNjaWRx99lMsuu0wmKhRC+I0EngAkgadm+fn5rF27lqysLNavX1894Gh6XKFxuMIScYUl4QqNbxRDyP1FX3wYy/4V6GylAHTp0oX777+fzMxMP5dMCBGIJPAEIAk8VTwTAC5btoyVK1eyc+dO39u9ASepKuSExjXK4eN+5XZiOrIJ09EtaMoFwKWXXsq4cePo1KmT1PgIIS4aCTwBKNADz969e1m4cCELFy7kyJEjPre5gmNwRqTgCk+RgFOPNFsZ5iMbMOTtRqPqI6dNmzb85je/YdCgQdLHRwhxwUngCUCBGHjy8/OZP38+c+fOZc+ePd79StPjjEjBGZmGKzIVZQzyYymbPs1agunozxjz9nhrfMxmM/3792fAgAH07NmToCD5HQgh6p8EngAUKIHH6XSycuVKfvjhB1avXu0dNq40XVVH4+gWOCNTQS+LX15smsOKMW8nxryd6Kwl3v0mk4kuXbrQs2dPunbtSsuWLdHrpZ+UEOL8SeAJQE098Ozfv58ff/yROXPm+Awdd4XE4YhtjSO6ORjMfiyh8FIKXXkexoK9GIoOeDs4e4SEhJCZmUmHDh1o27YtrVu3JjY2Vvr+CCHqTAJPAGqKgae0tJRFixYxe/Zstm7d6t3vNlhwxrbGEdsad1Ck/woozk4pdNYi9MWHMZQcQV92DM3lqHZYZGQkLVq0oEWLFjRv3pyMjAzS0tIICwvzQ6GFEI2FBJ4A1FQCj2fNqkWLFrF69eqT1qzScEU2wxHbBmdEKsi6To2TcqOrKERffhx9WS66inx0lUXeTs+nioyMpFmzZjRr1ozk5GRSUlJITEwkKSmJqKgoqRUSIsBJ4AlAjTnw5OTkkJWVxYoVK1i/fj12u917mysoCkdsK5wxLVHGBjLqR7nR7OX+LkWdKFMIaA00JLqcVbVAFQXoKgurNmsxurNcY5PJREJCAnFxccTHxxMXF0dsbCyxsbHExMQQHR1NdHQ0BoOMyhOiqZLAE4AaS+BxOp0cOHCA7du3s2XLFjZt2sThw4d9jnGbw3FEZ+CMboE7ONpPJT09zVZK6M9f+7sYdVLW+XqUuZE1D7kc6KwlVeHHVoLOWoJmL0NnLUVzlFPbup3w8HCioqK8W0REBJGRkURGRnq/Dw8P925ms/QFE6KxkH9nhN+43W7Ky8spKCggPz+fY8eOcfToUQ4dOsT+/fs5cOCATw0OnGiuCo3DFZGKMzKtql/O6ZoqlAK388I/kTNx+fnxz4XLCTX0nWno3JZw3DUt7+F2oTkq0NnL0ezl6BxWNEdF1T5HBZq9As1ZiaYUJSUllJSUsH///lo9psViITw8nLCwMO/Xk7fQ0FDvFhISQnBwMKGhoQQFBREUFCQ1SkJcRFLDE4AaQg3PpEmTmDNnzlmPUzojrpAYXKHxuEITcIUlgN5UuwdxOQhb/8l5lrRxGzVqFGPHjuWrr75i1qxZyNsdSrvfWn0qAqXQnFY0TxjyfO+0VoUhh+3E9yd9PU1fogvhmmuu4cEHH8RolCkUhDhX8u+F8Iv58+ef9jalM+KMSscRnYErolnD7U/SCIwdO5a0tDTGjh3L999/7+/iNFyahjIGnZh4Mursx7vdaPbSE81oJVXNaLaSqiY0W2m9h6EZM2YwePBgOnXqVK/nFSKQSOARfjF8+HB++OGHGm/T3A6M+bsx5u9G6Qy4g6O9NTzOsMTaz6GjM1T9N+9Hmq2M0F9m+O3xv/rqK28Nj6ZptarhKetwDcocehFK5yc1LRei3CdqdypP1OhUemt4dD61PSdqeFz26ue4gP7v//5PFl0V4jxJk1YAaghNWlC1eGdlZSUFBQUUFBRw7NgxcnJyOHz4MPv37yc7Oxur1ep7HzTcITE4PX14gqNP34enAfB3p2VPyKlt2IFG2mn5TNxONFs5OntZVR8eezmaoxydvaofT1UfHmutOzafLCQkxNuB+dR+PKGhoYSFhRESEuLtw+PpxxMcHIzFYkEnUyYIcdFI4AlADSXwnI3L5eLQoUPeUVobN27k4MGDPse4zaE4o5rj8IzSamjhx8/D0jV7BTp7GW5TKMpUu6H6DXpY+uk4baeM0ipFZyutanZyVNbqFDqdjoiICKKjo4mKivKOzjp5lJZn8wQb6XQsROMhgScANZbAU5Pjx4975+FZu3YtNpvNe5vLEokztiWOmFZVf7RF0+NyoKssrD4Pz1lCjcViITExsdo8PHFxcURHRxMTE0NERISs2yVEEyaBJwA15sBzssrKStasWcOiRYtYvny570zLEclVMy1HpoFO/og1Sm43uop89OW5J2ZazkNnLT5t01NsbCwpKSmkpKR4Z1v2zLQcHh4uMy0LEeAk8ASgphJ4TlZWVsbixYuZM2cOP//8s3e/22DBGdMSR2wb3MG1GH0j/EcpdJUFGIoPoy85gr7sOFoN8yjFxsZ619LKyMggIyOD1NRUQkKkVk8IcXoSeAJQUww8Jzt06BA//vgjs2fPJj8/37vfFRxbtfREdAuU0eLHEgovpdCVHcdYsA9D0f5qS0SEhYXRoUMHMjMzadeuHW3atCEqSoKrEKLuJPAEoKYeeDycTidZWVn88MMPrFixApfLBYDSNFzhzXBEN8cZlVb7iQxFvdEclRhzd2LM24nOVurdb7FY6Nq1Kz179qRbt25kZGTISCYhRL2QwBOAAiXwnKyoqIj58+czd+5cdu7c6d2vNB2u8BScUWk4I5pJZ+cLTLMWY875GUP+HjTlBqpCzuWXX86AAQO45JJLZH0qIcQFIYEnAAVi4DnZ/v37WbhwIQsXLqw2zN0VFI0rIgVneDKu0ATQy7Dj+qDZyjAfXlcVdE7sy8zMZMyYMVx++eUEBQX5tXxCiKZPAk8ACvTA46GUIjs7m6VLl7Jy5Uq2b9/uMzmf0nS4QuJwhSVWbaHx1ddgEmfmcmI6shHTsS3eGp1+/fpx880306FDBz8XTggRSCTwBCAJPDUrLCxk3bp1ZGVlsX79enJzc31uV5qGOyQOZ1girvDkqgBU0zIFAgB98SEs2SvQ2csA6N69O/fffz9t2rTxc8mEEHUxfvx4ioqKmDlzpr+Lcl7k01qIE6Kiohg6dChDhw5FKcXhw4fZuHEjmzZtYtOmTRw/fhx9WdVGzs8oTY8rLBFnRDOckc1Qlgh/P4WGweXAfHANptwdACQkJPDoo4/St29fmQtHCOE3EniEqIGmaTRr1oxmzZoxatQolFIcPXqUjRs3smHDBtatW0d+fj6GksMYSg7DwdW4LBE4I9NxRmfgDo5peMtcXAS6inyCdi9CZysBqha9vOuuuwgOrt2yFkKIpkcphcvl8vtSLDLeU4ha0DSNpKQkrrzySn7/+9/zzTffMHXqVB588EF69OiBwWBAby3GfPRnQrb+j5Cfv8Z8MAtdeT4ESKuxMXcHwVu/R2crIS4ujrfeeotHHnlEwo4Q9aS0tJRx48YREhJCUlISb7/9NgMHDuTxxx8HwG638/TTT5OSkkJISAiXXnopP/30k/f+H330EZGRkcyZM4fMzExCQ0MZMWIEOTk53mNcLhcTJkwgMjKSmJgYnn766WoLDyuleO2112jRogVBQUF06dKFb775xnv7Tz/9hKZpzJkzxzvycunSpRf02tSG1PAIcQ40TaN58+Y0b96csWPHUlZWxurVq1m6dCmrVq3Cai3DdHQzpqObq9b4immBI6Zl01qF3MPtwnxgJabcquH+vXv35tlnnyUiQpr4hKhPEyZMYPny5fzvf/8jISGBF198kfXr19O1a1cA7rjjDrKzs5k2bRrJycnMmDGDESNGsHnzZlq3bg1ARUUFb7zxBp988gk6nY5bbrmFJ598ks8++wyAN998kylTpjB58mTat2/Pm2++yYwZMxg8eLC3HM8//zzTp0/n/fffp3Xr1ixZsoRbbrmFuLg4BgwY4D3u6aef5o033qBFixZERkZetOt0Oufcadlut7Nv3z5atmzp92oqUTfSafnCslqtrFq1ikWLFrFy5Ursdrv3NmdoQtVSF9HNwdD455vRHJUE7V5QtQyEpnH33Xdz0003yWSBQtSz0tJSYmJi+Pzzz7nuuusAKC4uJjk5mXvuuYdHHnmE1q1bc+jQIZKTk733Gzp0KL169eLPf/4zH330EXfccQe7d++mZcuWALz33nv88Y9/5OjRowAkJyfz2GOP8cwzzwBVE7g2b96cHj16MHPmTMrLy4mNjWXhwoX06dPH+zh33303FRUVfP755/z0008MGjSImTNn8pvf/OZiXaKzqnNSqaio4JFHHuHjjz8GYOfOnbRo0YJHH32U5ORkfve739V7IYVoTCwWCwMHDmTgwIGUl5ezZMkS5s2bx4YNGzCUHcNQdgzzgVVVnZ1jWuCMSGuU8/3oKgoI2jUPnb2c0NBQXnjhBS699FJ/F0uIJmnv3r04HA569erl3RcREUHbtm0BWL9+PUqpaqMgbTYbMTEx3p+Dg4O9YQcgKSmJ48ePA1UBKicnxyfIGAwGLrnkEm+z1tatW7FarQwbNszncex2O926dfPZd8kll5zPU653df6UffbZZ9m0aRM//fQTI0aM8O4fOnQoL730kgQeIU4SEhLClVdeyZVXXklubi4LFixg3rx57NmzB2PRAYxFB1A6A87IdBwxzXGFpzSK1d31RQcI2vMTmttJs2bNmDRpEqmpqf4ulhBNlidwnDrS0bPf7Xaj1+tZt24der3vZ0hoaKj3e6PRdy4xTdOq9dE5E7e7aj6tWbNmkZKS4nPbqbOkN7QFfesceGbOnMmXX35J7969fS58+/bt2bNnT70WToimJC4ujhtvvJEbb7yRvXv3smDBAubPn8+xY8cwFuzBWLAHpTfijEzDEdUcV0Ryw5vnRymMR7dgOZQFVM2tM3HiRMLCmmDfJCEakJYtW2I0GlmzZo33n4uSkhJ27drFgAED6NatGy6Xi+PHj3PZZZed02NERESQlJTEqlWruPzyy4GqJq1169bRvXt3oOpvvdls5sCBAz79dRqDOn+a5ubmEh8fX21/eXm5zLEhRC21aNGCFi1acPfdd7N161YWLlzI4sWLycvLw5i/B2P+nhM1P6k4o5rjjGjm/2YvtxNL9gqM+bsBuPrqq3n00UelD58QF0FYWBi33347Tz31FNHR0cTHx/PSSy+h0+nQNI02bdowbtw4brvtNt588026detGXl4eCxcupFOnTlx11VW1epzHHnuMv/zlL7Ru3ZrMzEzeeustioqKfMrx5JNP8tvf/ha3203//v0pKSlhxYoVhIaGcvvtt1+gK3D+6vxJ1bNnT2bNmsUjjzwC/Fq99uGHH/q0+wkhzk7TNDp06ECHDh146KGH2LJlC4sXL2bJkiXk5uZiLNiHsWAfSqfHGZGKMzoDZ0TqRV/iQrOVEbRnIfryPHQ6HQ8//DDXXHON/JMjxEX01ltvcf/99zNq1CjCw8N5+umnOXjwIBaLBYCpU6fy8ssv88QTT3D48GFiYmLo06dPrcMOwBNPPEFOTg7jx49Hp9Nx5513cs0111BcXOw95k9/+hPx8fFMmjSJvXv3EhkZSffu3fn9739f78+5PtV5lNaKFSsYMWIE48aN46OPPuK+++7jl19+YeXKlSxevJgePXpckIIOHDiQrl278te//vW0x2RkZPD444975ySoiaZpzJgxgzFjxpCdnU3z5s3ZsGGDd1hfY+PpDV9YWFjrYX8ySqvhc7vdbN++3Rt+Tp4nw1vzE92iqubnAvf50RcdIGjvEjSXnbDwcP7w0ksX7H0uhKi98vJyUlJSePPNN7nrrrv8XZwGr85jR/v27cvy5cupqKigZcuWzJ07l4SEBFauXFnnD8Hx48ejaRr3339/tdsefPBBNE1j/PjxAEyfPp0//elPdS3uRXXvvfei1+uZNm2av4siGjmdTkf79u154IEH+Pzzz/nXv/7FzTffTHJyMprbibFgH0G7FxC68QvM2cvRlx6t/wkOXXbM2csJ3jUfzWWnXbt2/Ouf/5SwI4SfbNiwgS+++II9e/awfv16xo0bB9Cghn43ZOfU+N6pUyfvsPTzlZqayrRp03j77bcJCgoCquYx+eKLL0hLS/MeFx0dXS+Pd6FUVFTw5Zdf8tRTTzF58mRuvPFGfxdJNBGe9vk2bdpwzz33sGPHDhYuXMiCBQvIz8/HlLsDU+4O3KZQHDEtcMa0xB0Ude4PqBSGgr2YD61FZy8HqpaIuP/++6uN8BBCXFxvvPEGO3bswGQy0aNHD5YuXUpsbKy/i9Uo1LmGp6SkpMattLTUZ4K12urevTtpaWlMnz7du2/69Omkpqb6jOk/efpsgOPHjzN69GiCgoJo3ry5d5bIk+3atYvLL78ci8VC+/btmTdv3lnLs3XrVq666ipCQ0NJSEjg1ltvJS8v76z3+/rrr2nfvj3PPvssy5cvJzs72+d2p9PJo48+6p2u+5lnnuH2229nzJgx3mPONl03wA8//ECbNm0ICgpi0KBB1R5HNG2aptGuXTsefPBBvvrqK9566y2uvPJKgoOD0dnLMOf8TMiWGQRvmYHp8Ia6LW3hdmHI30Pw1u8I2rsYnb3cO339I488ImFHCD/r1q0b69ato6ysjIKCAubNm0enTp38XaxGo86BJzIykqioqGpbZGQkQUFBpKen89JLL3nH6tfGHXfcwdSpU70/T5kyhTvvvPOM9xk/fjzZ2dksXLiQb775hvfee887eRJU9YG49tpr0ev1rFq1ig8++MA7c+Tp5OTkMGDAALp27cratWuZPXs2x44dY+zYsWd9DpMnT+aWW24hIiKCq666yuf5ALz66qt89tlnTJ06leXLl1NSUsLMmTN9jnn++eeZOnUq77//Pr/88gu//e1vueWWW1i8eDEABw8e5Nprr+Wqq65i48aN3H333bWa98hms1ULqKLx0+v1dO/enWeeeYYZM2bw0ksv0bdv36p1vSoLMR/ZQMjW/xKyaRqW3YswHt2CvugguspCNFspmrUEfelRjLk7sexZTMimLwnauxh9RR5BQUHceeedTJkypdpkYkII0RjVuUnro48+4rnnnmP8+PH06tULpRRZWVl8/PHHPP/88+Tm5vLGG29gNptr3WP71ltv5dlnnyU7OxtN01i+fDnTpk3zWfTsZDt37uTHH39k1apV3pldJ0+eTGZmpveY+fPns23bNrKzs2nWrBkAf/7zn7nyyitPW47333+f7t278+c//9m7b8qUKaSmprJz585qM1h67Nq1i1WrVnlrqW655RYeffRR75BBgHfffZdnn32Wa665BoC///3v/PDDD95zlJeX89Zbb/lM192iRQuWLVvGP//5TwYMGMD7779PixYtePvtt9E0jbZt27J582ZeffXVM17fSZMmMXHixDMeIxo3s9nMoEGDGDRoEKWlpSxbtoxly5axbt06rNZKdIX7MBbuO+t5YmNjGTlyJL/5zW8afDOyEELURZ0Dz8cff8ybb77pU+tx9dVX06lTJ/75z3+yYMEC0tLSeOWVV2odeDwfsh9//DFKKUaOHHnGNslt27Z5p7v2aNeunc8opW3btpGWluYNO8BZh82vW7eORYsW+cxK6bFnzx6ysrK47777vPt+/PFHLrvsMiZPnszw4cO9Zb7qqqu46667mD9/PldccQXFxcUcO3bMZ0pwvV5Pjx49vDVhtZmue9u2bdUmfKzNVADPPvssEyZM8P5cUlIis+I2YWFhYd7ZnW02G1u3bmXLli3s3LmTI0eOcPz4cRwOB0opYmJiSEhIoEOHDvTo0YNOnTrJvDpCiCapzp9sK1eu5IMPPqi2v1u3bqxcuRKA/v37c+DAgTqd98477+Thhx8G4B//+McZjz3dFNs1HXOys80Z4na7GT16dI01JklJSbjdbp+1glJSUnC5XPznP//h6NGjPn8oXC4XkydP5oorrjjt459cxtpM132O67xiNpurTfktAoPZbKZbt27SLCWECHh1DjzNmjVj8uTJ/OUvf/HZP3nyZG+tQX5+PlFRdRslMmLECG+n5+HDh5/x2MzMTJxOJ2vXrvXWmuzYscNnNsj27dtz4MABjhw54l051hPITqd79+58++23ZGRknPa/3FOn0P/uu+8oLS1lw4YNPuuXbN++nXHjxpGfn+/9L3rNmjXeKb9dLpfP/D+1ma67ffv21fr9rFq16ozPSQghhBDnEHjeeOMNrr/+en788Ud69uyJpmlkZWWxbds2vv32WwCysrK44YYb6nRevV7Ptm3bvN+fSdu2bRkxYgT33HMP//rXvzAYDDz++OPeYe1QtZhp27ZtvdNsl5SU8Nxzz53xvA899BAffvghN910E0899RSxsbHs3r2badOm8eGHH9ZYrsmTJzNy5Ei6dOnis79Dhw48/vjjfPrppzz22GM88sgjTJo0iVatWtGuXTveffddCgsLvbU+tZmu+/777+fNN99kwoQJ3Hfffaxbt46PPvqoNpdXCCGECGh1HqV19dVXs3PnTq688koKCgrIy8vjyiuvZMeOHd7+Mg888ABvvfVWnQsTHh5e65l/p06dSmpqKgMGDODaa6/l3nvv9VnjS6fTMWPGDGw2G7169eLuu+/mlVdeOeM5k5OTWb58OS6Xi+HDh9OxY0cee+wxIiIivJ2PT3bs2DFmzZrF//3f/1W7TdM0rr32WiZPngzAM888w0033cRtt91Gnz59CA0NZfjw4d4pwaFquu4XX3yRSZMmkZmZyfDhw/nuu+9o3rw5AGlpaXz77bd89913dOnShQ8++MCng7UQQgj/c7lcOJ3Oi7a5XC5/P+V6kZGRccbVFM5XnZeWOFVRURGfffYZU6ZMYePGjU3mwl9obrebzMxMxo4de9FnkJalJYQQ4sJwuVxce931FBcWXLTHjIiKZvo3X5+1deRk48ePr3EC4V27dtGqVav6LF6t1WZ5qPNxzsMxFi5cyJQpU5g+fTrp6en83//9H//+97/rs2xNyv79+5k7dy4DBgzAZrPx97//nX379nHzzTf7u2iiCSssLCQ7O5ucnByOHDlCbm4uRUVFFBUVUVlZicPhwOFwYDAYMJlMWCwWoqKiiI6OJi4ujmbNmpGWlkZ6erpPk7EQomZKKYoLCyjtfhtodW5EOYcHdMP6/5zToJYRI0ZUmzMuLi6uvkrW4NQp8Bw6dIiPPvqIKVOmUF5eztixY3E4HHz77be0b9/+QpWxSdDpdHz00Uc8+eSTKKXo2LEj8+fP95k7SIhzpZTi6NGjbN++nR07drBz50727Nnjs8Lx+dDpdGRkZNCuXTu6dOlCt27dfJqQhRCn0HRQQ1eIelf7OX6rMZvNJCYmVtv/3Xff8Yc//IFffvmF5ORkbr/9dp577jnvYB5N0/jggw/47rvvWLhwIenp6UyZMoW4uDjuvvtusrKy6Ny5M59++iktW7YEqqZ2mTBhAqtWraK8vJzMzEwmTZrE0KFDT1u+4uJinnrqKWbOnInVauWSSy7h7bffrtZntrZqHXiuuuoqli1bxqhRo3j33XcZMWIEer2+xiHqorrU1FSWL1/u72KIJsLpdLJ79242b97M5s2b2bJlCwUF1avQNRRxFjcJwS7igtzEmF2EmxThJjdBeoVBBwadwqU0HC6wujRK7DqK7DryrTpyKvTkVOgptsPevXvZu3evd8LMZs2a0bt3b3r37k2XLl1k6QkhmoA5c+Zwyy238Le//Y3LLruMPXv2cO+99wLw0ksveY/705/+xFtvvcVbb73FM888w80330yLFi149tlnSUtL80418+OPPwJQVlbGVVddxcsvv4zFYuHjjz9m9OjR7Nixw2fdTA/PnHzR0dH88MMPRERE8M9//pMhQ4awc+fOc5oYtdZ9eAwGA48++igPPPAArVu39u43Go1s2rRJangaEenD0/g4nU527NjBxo0b2bRpE5s3b6aystLnGL2mSAt10TzcSfMwJ2mhTpJDXJhr36x/WoU2jb0lBnYXG9leZGBviQHFr/NKhYSE0K9fPwYMGMAll1wi8z6JgOV0Ohk6dCilPcZfpBoeN2HrPmL+/Pl1mjR0/PjxfPrppz4DZ6688kqOHTvGlVdeybPPPuvd/+mnn/L0009z5MgRoKqG5/nnn/f2P121ahV9+vRh8uTJ3mWhpk2bxh133FHtc+pkHTp04IEHHvDOwXdyH56FCxdyzTXXcPz4cZ/Pk1atWvH00097Q1hd1PrqLF26lClTpnDJJZfQrl07br311joPPRdC1M7JAWfjxo1s3rwZq9Xqc0ywwU3rCCdtIx20jqgKOaZ6CDc1iTIresQ56BHnAKDCqbG10MjGPCOb8k0Ul5czd+5c5s6dS0hICJdddhlDhgyhW7duMnOzEA3UoEGDeP/9970/h4SE0KpVK7KysnxGNbtcLqxWKxUVFQQHBwPQuXNn7+0JCQkAPguZJiQkYLVaKSkpITw8nPLyciZOnMj333/PkSNHcDqdVFZWnnaSYs8iqTExMT77Kysr2bNnzzk931p/EvXp04c+ffrwzjvvMG3aNKZMmcKECRNwu93MmzeP1NTUapPyCSFqx+l0smvXLjZu3MiGDRtqrMEJNbppG+kgM9JJu0gHzUJd6M48efgFE2xQXBJn55I4O25Vzu5iA1m5JrKOmygoL2f27NnMnj2bqKgohgwZwrBhw2jTps1ZZzsXQlw8noBzMrfbzcSJE7n22murHX9ybdDJTdie93VN+zyrCDz11FPMmTOHN954g1atWhEUFMR1113nnXD4VG63m6SkpBrX1Dx5Gam6qPO/XsHBwdx5553ceeed7Nixwzvr8u9+9zuGDRvG//73v3MqiBCBxOVysXv3bjZs2MDGjRv5+eefqaio8DkmxOCmXaSTdlEOMqMcNAvxX8A5E50GbSKdtIl0clOrCnYVG1h5zMya4yYKCwv55ptv+Oabb0hLS2PYsGEMHTqUpKQkfxdbCFGD7t27s2PHjnofmr506VLGjx/vXUC7rKyM7OzsM5bDs2RTRkZGvZThvOqa27Zty2uvvcakSZP47rvvmDJlSr0USoimRilFdnY2GzZsYP369WzcuJGysjKfY4INbtpGOsmMcpAZ6SDVjzU450qnQdtIJ20jndzSupzNBUZWHDWzPs/EgQMHmDx5MpMnT6Zjx44MHTqUgQMHnvN/a0KI+vfiiy8yatQoUlNTuf7669HpdPz8889s3ryZl19++ZzP26pVK6ZPn87o0aPRNI0XXnjBW/tTk6FDh9KnTx/GjBnDq6++Stu2bTly5Ag//PADY8aM8Vk8vLbqpXFdr9czZswYxowZUx+nE6JJOH78OOvWrWPdunWsX7++2igqi74q4LQ/UYOT1ggDzpkYdNAt1kG3WAeVTo21uSaWHzWxrdDIli1b2LJlC3/729/o0aMHgwYNol+/fkRERPi72ELUD+U+ryHjdXqcejR8+HC+//57/vjHP/Laa69hNBpp164dd99993md9+233+bOO++kb9++xMbG8swzz1BSUnLa4zVN44cffuC5557jzjvvJDc3l8TERC6//HJvn6G6Ou+ZlkXjI6O0LozKyko2bdpEVlYWWVlZ1TrjmXSK1hEO2kc5aB/lJCPMif4iDOJoaAptGquPmVlxzEx26a//c+l0Orp27cpll11G3759z/lDTQh/aiwzLQciCTwBSAJP/VBKsW/fPtasWcOaNWvYvHkzDofDe7uGokW4kw5RDjpEO2gV4cQYgAHnTI5V6Fh9vKq/z4Ey3wrnli1b0rt3by655BI6duwo8/yIRsPlcp3TzMfnStM0CTu1IIEnAEngOXelpaWsX7+e1atXs2bNGvLy8nxuj7W46BTtoGN0VU1OiFHeXrV1rELH2lwTG/JM7Cr2nefHYrHQqVMnunbtSpcuXWjdurXM9SOEqBMJPAFIAk/tud1udu/ezZo1a1i9ejW//PKLT0c7k07RLspB52gHnaLtJAa7kZHX56/UrvFzvpHNBSY2FxgpdfhWjRmNRlq1akW7du1o3bo1rVu3Ji0tTUKQEOK0JPAEIAk8Z5afn8+6detYs2YN69ato7Cw0Of2pGAnnWOqQk7bSMcFm+xPVHErOFSmZ3uRkW2FRnYWG6oFIKjqA5SUlERaWhopKSkkJyeTmJhIfHw88fHxhIWFyTxAQgQwCTwBSAKPr7KyMn7++WfWr1/PunXr2Ldvn8/tFr2ifVRVDU7nGAdxQRdj6IU4HaUg16pjd7GB/aUGsksNHCjTU+48cwcpo9FIdHQ0UVFRREREEB4eTnh4OKGhoYSGhhISEkJwcLD368nfBwUFSR8JIRo5CTwBKNADT0lJCZs3b2bTpk1s2rSJXbt2+TRTaSjSw1x0irbT6URnY4N0Nm7QlIJiu8aRcj1HKvQcr6za8qw6Cmw6ymqoEaqr4OBgQkNDCQsLIywszBuYIiMjiYiIIDo6mujoaGJiYoiNjfVOwS+EaBgk8ASgQAo8TqeT/fv3s23bNrZu3cqWLVtqXLslIchF+xOjqTIjHYSZ5G3RlNhdUGzXUWLXUWzXKHPoKHVoVDg1Kpw6yp0alU4Nq1OjwlX11eqqut2lzq0ZLCQkhLi4OOLj40lISCAhIYHExETvFh0dje5iLC4phAAk8ASkphp4bDYb+/fvZ8+ePezatYudO3eye/fuaotuAiQGu2gX6aBthIPMKCfRFmmmEjVzuKHS6QlHGuWOqoBU5qgKTiUOjZITYarIrqPIpmF1nT3IGI1GEhMTSUpK8m4nB6KIiAjpcyREPZLAE4Aae+ApLS3l4MGDHDp0iAMHDrB//36ys7M5fPhwjVOVW/RuWoS7aBHupHWEg1bhzkZZg+NyQ4Gt8dUIRJvdATfBYqUTCm068q16Cmw68qw68q068qx67/cnD7uvicVi8Xa6TkhIIC4uzmeLiYkhJCREQpEQtSSBJwA15MDjcrkoKioiNzfXux09epRjx46Rk5NDTk4OpaWlp71/qNFNWqiL1FAnzcOcpIe5SApuGks25FbqeGJllL+LUWdv9imUjt6ncLqrAlFupY5cq57jJ77mnfhabK9dQjSbzcTExBAVFUV0dDSRkZFERUV5+xV5+hl5tuDgYAlIF0GgTTyYnZ1N8+bN2bBhA127dvVbOc6mXtbSEsJDKYXdbsdqtWKz2aisrKSyspKKigrKy8spKyujvLyc0tJSSkpKKC4upqioiOLiYgoKCiguLj7jgnIeUSY3icEuEoNdpIS4SA5xkRzsJNigqs2D42gif2vtjfR52N1gc/m7FBeGScc5zbtk0EFckPtEEHRWu93u4kTNkJ78EzVC+TYdhSdtFU4dNpuNI0eOcOTIkVo9rk6n845K84xMCw0NrTYiLTg4GIvFQlBQEEFBQZjNZiwWC2az2buZTCZMJhNGo1H6Ip3E5XJxw/XXkldQfNEeMzY6gi+/nl6n0DN+/Hg+/vhj7rvvPj744AOf2x588EHef/99br/9dj766KN6Lq3/SOAR50QpxSuvvML8+fPr/dwaikizmyizm2izmxiLm1iLm1iLi/ggN/FBLsw1vK9tLrhncUy9l6epGzVqFGPHjuWrr75i1qxZ9f6f6bOrG1+tVG19OCC/xtfi+TLpITHYTWLw6VOuzQVFNh3Fds+mUerQnehPVNW/yNPPqMyp4XBruN1uSkpKzrho44U0evRoJkyY0KRrmZRS5BUU8+GAfPQX4Wm6FNyzmHN636ampjJt2jTefvttgoKCALBarXzxxRekpaXVd1H9TgKPOCfl5eUsWLCgXs6l1xQpIS6ahbhID3PSLMRFjMVFlNlNkLxCL7ixY8eSlpbG2LFj+f777/1dHFFLZj0kBLtJOE0ocrnxdq4ud1bVCh2v1JFbqSe3Uke+rao/kcN98cLH999/z913301ERMRFe0x/0WtcnOkszqPmt3v37uzdu5fp06czbtw4AKZPn05qaiotWrTwHjd79mxefvlltmzZgl6vp0+fPrzzzju0bNnytOfeunUrTz75JEuWLCEkJIQrrriCt99+m9jY2HMv8HmSPyfinISGhvLEE08wc+ZMXK5f2ys0TUMphaZpOBwOb3NWZWXlaf8DcSmNA2UGDpQZWHHMd2mAIH1V7U6MxU1ckIu4IDcJQS4Sgqpqe07+QDHpqv7jbqryrLoLUlvy1VdfeWt4PL+/+jTp0kJim+goONNFbslxKyixaxTaPCPCqmp3ik7U6pTYdZQ4dJTatbNOxFgXOp3O27Tl2XQ6HUop7/sd8H49eZ/n9WQ0GrnxxhsDIuw0JnfccQdTp071Bp4pU6Zw55138tNPP3mPKS8vZ8KECXTq1Iny8nJefPFFrrnmGjZu3Fhjc2ZOTg4DBgzgnnvu4a233qKyspJnnnmGsWPHsnDhwov11KqRwCPO2ahRoxg1alStjnW73VRWVnr78Zzch6e4uJjCwkKKioooKCggPz+fvLw8ysvLqXTpOFiu42B59XNqKOKC3FV9eIJdNAtxkhpa1Z+nKU4UeKH+uM6aNYvvv//+goQdqCr3hWj2aYpsLqpGclVWjezKs+rJt1X14fH03anrvEChoaGEh4d7J0wMCwvz6cPj2TyzS3v68Xg2i8UiK9U3YbfeeivPPvss2dnZaJrG8uXLmTZtmk/g+b//+z+f+0yePJn4+Hi2bt1Kx44dq53z/fffp3v37vz5z3/27psyZQqpqans3LmTNm3aXLDncyYSeMRFodPpvB+s8fHxtbpPRUWFd5SWZ/N00Dx06BCVlZXeGXU3nHQ/TxNZepiTjDAXLcKcpIY6G/2aV9FmN2/2KTz7gXVUZNPIs+qJtbiINNd/4Ik2N83anXPhdEO+tWokVu6JUJNbqSf3xNeSWswIrWmad0Znz+YZoeX5GhERQWRkJGFhYRgM8jEvTi82NpaRI0fy8ccfo5Ri5MiR1Zqd9uzZwwsvvMCqVavIy8vzDiw5cOBAjYFn3bp1LFq0iNDQ0Gq37dmzRwKPEKcKDg4mPT2d9PT0arcppSgoKODAgQNkZ2d7t927d1NeXu5tIluaU3W8XlOkhbpoHeGgdYST1pHORveHWH9iZE99iwuC1jTRYVQXkdONt/NwoU1HgU1PwYnRVZ6RVoW2s8+/ExIS4p18MCEhwTsPT3x8PHFxcURHR0uIEfXqzjvv5OGHHwbgH//4R7XbR48eTWpqKh9++CHJycm43W46duyI3W6v8Xxut5vRo0fz6quvVrstKSmpfgtfB/KuEY2Spmne/267devm3a+U4vjx4+zatYtdu3axY8cOtm3bRnFxMftKDewrNTD3UNWx8RYXbSMdtItykhnlaLL9TETtOd1QeWJpiUqnRqXrxNcT35c7qpaiqOoIXDUqqtSuUeKo/XpdJpPJZ4blU2dbDg0NbdKjmETDM2LECG94GT58uM9t+fn5bNu2jX/+859cdtllACxbtuyM5+vevTvffvstGRkZDSqcN5ySCFEPNE3zrlvUv39/oCoEHT161LuW1pYtW9izZw/HrXD8qJ6lR6vuGx/kosOJ9bTaRzkINcqcnI2ZUlWjlApOLCDqGb5dcmL4tie0VDh1VDiqAs35jljS6/VERUV5Z0OOjY31vh7j4+NJTEwkKipKAo1oUPR6Pdu2bfN+f7KoqChiYmL417/+RVJSEgcOHOB3v/vdGc/30EMP8eGHH3LTTTfx1FNPERsby+7du5k2bRoffvih3yZJlMAjmjxN07z/PQ8ZMgSoGnWwZcsWNm3axIYNG9ixYwfHK+F4pZ5FRyxoKJqHO+kY7aBztIOW4c6AWx6hsXC44XC5niPleg6X6zlaoefYib5dVte5BQuz2eztwOvpe3ZyR9+TZy+OioryrpYeHh4uk/AJoGp+nPMZMl6nx6kHp5t1X6fTMW3aNB599FE6duxI27Zt+dvf/sbAgQNPe67k5GSWL1/OM888w/Dhw7HZbKSnpzNixAi/vj9kaYkA1JCXlvCX8vJyNm3axLp161i3bh3Z2dk+twcb3HSIctA5xkGnGEej6//TVLgVHCnXs6vYwJ4SA9mlBg6X6884cikiIoL4+Hifzr2eZRc8o5Y8gSYkJISgoKAGVQ0vGpfGMtNyIJLAE4Ak8Jxdbm4ua9euJSsri7Vr11abmTY1xHki/NhpE+FsksPgGwKl4GC5nq0FRrYVGdlRZKCihvllwsPDad68Oenp6aSlpZGSkkJycjKJiYmYzeYazizEhRNoa2k1FhJ4ApAEnrpxuVzs3LmT1atXs3r1arZv3+7zYWbRKzKjHHSOttMpxkG8LJR5XiqdsKXAxMY8I5sLTBSdspCmxWIhMzOTDh060LZtW9q0aUN8fLz0ixFCnJEEngAkgef8FBUVsW7dOtasWcOaNWsoLPSdGyc+yEXHaAcdox1kRjoIkc7PZ1Vi11iXa2JdromthUacJzVRmc1munTpQvfu3enatSutWrWSJichRJ1J4AlAEnjqj9vtZvfu3WRlZbFmzRq2bNniu9QGihbhTjpEOWgfXTUHkFGavwAotWuszTWx6piZ7UUGn/lpmjVrRt++fbn00kvp2LGjNEsJIc6bBJ4AJIHnwikvL2fjxo1kZWWxbt06Dh486HO7UadoE1E17D0zyklGWGD1/7G5YF2uiZXHzGwpMPp0Nm7Tpg0DBgygf//+NU42KYQQ50MCTwCSwHPxHDt2jPXr17Nu3TrWr19PQUGBz+0WvaJNZFXTV2aUg/RQV5Mb/u5ywy+FRlYcNbMuz4TtpKHirVu3ZvDgwQwcONCvM7AKIZo+CTwBSAKPfyil2L9/P+vXr2fDhg1s3LiR0tJSn2OC9G7aRDpP1AA5SAt1oWuEfXGVguxSPSuOmVl1zEzxSR2Pk5OTGTZsGEOGDCEtLc2PpRRCBBIJPAFIAk/D4Ha72bNnDxs3bvRu5eW+y8IHG9y0jXSSGemgXSMIQDnlOlYeM7PquJmjFb8Okw0PD2fw4MEMGzaM9u3by4gqIcRFJ4EnAEngaZhcLhd79uxhw4YNbNiwgc2bN582ALWLdNA20v9NYErBoXI9a3NNrD1u4mD5r6OnTCYT/fr1Y9iwYfTq1UtGVgkh/EoCTwCSwNM4OJ1Odu/ezYYNG9i0aRM///wzFRUVPseY9YpW4SdWgI9w0jLCSbDhwr6lyx0aO4oMbD4xV06+7deaHL1eT8+ePRk8eDD9+/cnODj4gpZFCCFqSwJPAJLA0zh5ApCn+WvLli2UlZVVOy4hyEXzMCfpYU5SQlykhLiIsbjPqSnM4YZjFXr2l+rZU2pgT7GR7FK9zxByk8lEjx49GDBgAP369SMsLOx8nqYQQlwQEngCkASepsHtdrNv3z42b97ML7/8wi+//MKRI0dqPFavKWItbmIsLsJNinCjG4tBYdTAoFO4lIbdDTaXRsmJVcXzKnXkWnU+4cYjNTWVbt260bt3b7p3747FYrnQT1cIIc6LBJ4AJIGn6SouLmbnzp3s2LGDvXv3sm/fPg4ePIjT6TzncwYHB9OiRQvatWtHu3bt6Ny5M/Hx8fVYaiGEuPAk8AQgCTyBxeVykZubS05ODsePH6e4uJiioiIqKipwOBw4nU70ej0mkwmLxUJUVBTR0dHExsaSlpZGdHS0jKoSQjR6MmxCiCZOr9eTmJhIYmKiv4sihBB+08TmdBVCCCGEqE4CjxBCCCGaPAk8QgghhGjyJPAIIYQQosmTwCOEEEKIJk8CjxBCCCGaPAk8QgghhGjyJPAIIYQQosmTwCOEEEKIJk8CjxBCCCGaPAk8QgghhGjyJPAIIYQQosmTwCOEEEKIJk8CjxBCCCGaPAk8QgghhGjyJPAIIYQQosmTwCOEEEKIJk8CjxBCCCGaPAk8QgghhGjyJPAIIYQQosmTwCOEEEKIJk8CjxBCCCGaPAk8QgghhGjyJPAIIYQQosmTwCOEEEKIJk8CjxBCCCGaPAk8QgghhGjyJPAIIYQQosmTwCOEEEKIJk8CjxBCCCGaPAk8QgghhGjyJPAIIYQQoskz+LsAQjQ2SikOHDjAzp072bt3L7m5uRQUFGCz2XC5XBgMBoKDgwkPDyc6Opq4uDiSkpJITk4mOTkZi8Xi76cghBABRwKPELXgdrv5+eefmT9/PqtWrSIvL++czxUXF0dKSgopKSkkJyeTmJhIXFwcMTExREVFERQUhKZpp72/UgqHw0FFRQUVFRVUVlZitVqxWq04nU6UUuh0OoxGI6GhoURFRREdHY1OJxW6QojApSmllL8LIS6ukpISIiIiKC4uJjw83N/FadBsNhuzZ8/mm2++4eDBg979StPjConBHRSN2xyGMgaB3ojSNDS3G9wONKcVnb0CzV6OzlaKzlaK5rKf9TH1ej1BQUFYLBb0ej2apuF2u3E6ndhsNqxWKy6Xq07Pw2AwkJSURMuWLWnXrh1dunShTZs26PX6Ol8TIYRojCTwBCAJPGfncrmYPXs2H330Ebm5uQAovRFHVHOc0c1xhSWA7hwqSJ1WdNaSqs1WUhWC7OXo7OVojgo0d92CjNLpUToj6A0onQG0EwFGKVAuNKcdzWlFo/rbPCoqir59+zJ8+HA6dep0xlolIYRo7CTwBCAJPGe2Y8cO3nrrLXbs2AGA2xSCPbETjtjWoDdeuAdWCtwuNJcNzeUAt7NqHwo0HWgaSjP8Gm70xqr9Zz2vG81egc5ajL4iH13ZcQylOVWPcUJqairXXnstI0aMICgo6MI9RyGE8BMJPAFIAk/NHA4HH3/8MZ9//jlutxulN2FL7oojvt251eY0ZG4X+tKjGAr2YizYh+Z2AhAREcFNN93EmDFjpHO1EKJJkcATgCTwVHfw4EH++Mc/smvXLgAc0c2xpV2KMgb7uWQXgcuBMW8XpmO/oLOVAhAbG8sdd9zBiBEjpJ+PEKJJkMATgCTw+FqwYAFvvPEGlZWVuA1mbOn9cEZn+LtYF59yY8jfg/nIBnS2MgDatGnDY489RocOHfxcOCGEOD8SeAKQBJ4qTqeTf/7zn3z99ddVP4clYm0xAGUK8XPJ/Mztwnh8G+YjG9BcDjRNY/To0dxzzz2EhYX5u3RCCHFOJPAEIAk8UFxczMSJE1m/fj0AtqTO2FO6164TcIDQHJWYD2ZhzN8NQExMDI8//jiXXXaZn0smhBB1J4EnAAV64MnOzub3v/89R44cQekMWFtcjjMqw9/FarD0JTlY9i9HZy0BYNCgQTz22GNERkb6t2BCCFEHEngCUCAHnjVr1vCHiROpKC/HbQqlsvVQ3MHR/i5Ww+d2YjqyEVPOZjQUERERPPbYYwwaNEjm7xFCNAoSeAJQoAaeGTNm8O6771bNWhyagLXV4KoZkkWt6crzsOxbir6yEIDLLruMxx9/nJiYGD+XTAghzkwCTwAKtMDjdDr5xz/+wYwZMwBwxLTCmtEPdDLc+py4XZhyNmHK2YSmFKGhoTz44INceeWVUtsjhGiwJPAEoEAKPKWlpfzxj38kKysLAFuzHtgTO4P8YT5vuoqCqtqeinwAunbtyoQJE0hLS/NzyYQQojoJPAEoUALPgQMHeO655zh48GBV5+Tmlwfm/DoXknJjPPoL5iPr0dwuDAYDN954I+PGjZMlKoQQDYoEngAUCIFnxYoVvPzKKyc6J4dQ2Woo7hDpZ3KhaLZSLPtXYig+BFTN1HzfffcxZMgQdDoZ6i+E8D8JPAGoKQcel8vF1KlT+fTTTwGkc/LFpBSGov2YD6xBZ/91puZ7772XHj16SP8eIYRfSeAJQE018OTl5fGnP/2JTZs2AWCPb48ttad0Tv7/9u48PMr63v//856Ze2YyWcm+sYQlQFgDMRBAEUGo2qvHLtJ67OGytXpqtUpr9ZxWe6rnW8XjKb2stlr1svZoXeB3qj0tapEKCSIgEATCIhCSEAwJ2ZNJMvv9+f0xZmQMKChkkpn347rmmsznvmfmk0+2Vz7bPdgMP9amA1gb96EZwSuyT58+nRUrVkjwEUJEjASeGBSNgaeiooLVq1fT3d2NMum4x8zDnzYu0tWKaZrPhbVxL3rzYTQVAGDSpEksX76cyy67DIslyq5AL4QY0iTwxKBoCjydnZ08/vjjvP322wAEHGm4xl2OsidHuGain+btxdpYhd56GM0IBp+MjAyuueYarr76ajIzMyNcQyFELJDAE4OiIfAEAgHefPNNnn766WCvDhrenGl4c4tlCGuI0nwu9OZD6M0fYPK7g2WaRklJCVdeeSULFizA4XBEuJZCiGglgScGDffAU1lZyVNPPcWRI0cACMSNwF1wKUZ8eoRrJs6JEcDSUYfechiLsylUbLVaKS0t5dJLL2Xu3LkkJ0svnRDiwpHAE4OGY+BRSrFnzx5eeOGF0BXOlVnHk1uML7MIZOnzsKS5u9HbqtHba0IXJwUwmUwUFRVRWlpKSUkJhYWFMudHCPGFSOCJQcMp8LhcLsrLy3nttddCPTpKM+HLmIQ3d4YsN48WSmFytWPpOI6l43joWl394uPjmT59OjNmzGDatGkUFhai63qEKiuEGI4k8MSgoR54vF4vu3fvpry8nIqKClwuFwBKM+PLKMSbPQ1lSxi8CikDzds7eO8XYcoaD1pke8w0Tw+Wrg8xdzVgcTaiBbxhx61WK4WFhRQVFTFp0iQKCwvJzc2VTQ6FEGclgScGDbXA4/P5OHbsGFVVVbz//vvs3r0bt9sdOm7YEvFlTMSbUQgW+6DXT/M4Sdj3/w36+0ZKz/TrULbESFfjY8rA1NeO2dmI2XkKi/MUWsAz4LT4+HgKCgoYP348Y8aMYfTo0YwaNYrU1FTZ+0cIgQyKi0ERCATo7OykpaWFpqYmGhoaqK+vp7a2ltraWnw+X9j5hu7AP2I0/tQCAglZ53axT6XA8F+Eyl+E1xzKAn4I+D77vEFkONIw4tPxZU8DpdDc3Zh7mzH3tmDubcXU10Fvby/79+9n//79Yc91OBzk5eWRk5NDdnY2mZmZZGRkkJ6eTmpqKikpKdjtdglFQkQ56eGJQYPVw/PEE0+wY8cOurq66OrqwjCMs56rzFYCCVkEErPwJ+dhxKWe/xXNAz4Sd7/wBWs9tHz5y19m+fLlrF27ltdff51Y/XF1zvoXMH/KnB3DwOTuxOTqCPYGuToxuTvRPD1ofHab6bpOUlISiYmJxMfH43A4WLp0KVdeeeUF/CyEEJEkPTzioujt7WXt2rVnPW7ocfiTRxJIzifgSA0Ooch/2AMsX76cUaNGsXz5ctatWxfp6gxdJhOGIxXDkQqn77BtBDB5nGiebsx97ZidTZh7mtE+0RPo8/loa2ujra0tVFZbWyuBR4goIoFHXBQ2m42srCxOnTp1xuMmnwtr6xFUey0BRypGfDqBhAwCidko/XNuPmeyBHsCLjDN00PCgdcu+Ouei7Vr14Z6eDRNG5Qenp4pXx3cSeHnwnSOv6oMA5OnK9jT4+rC5O7C5OnG5O4eMPH5sxQVFX2OigohhioZ0opBgzWk5XK5qK+vp6uri87OTlpbW2lpaaGxsZGGhgZOnjxJIBAY8LxA3Aj8yfn4R4wJbiYY4Z6fSE5a7g85gxV2YAhOWj4bIxAcvuptwdTXhrmvHZOrA02dfeg0KSmJrKwsMjIySEtLC83hSU5OHjCkNWLECJnXI0QUkcATg4bKKi2fz8eJEyeorq7m4MGDVFVVUVNTE/aH3bAl4ksbjy99QuR6HSK4LF3z9mHy9mBYE1DWwbnswlBYln4mms+F2XkKc88pzD3NmPrazhhu4uLiwlZpjRw5kry8PLKzs+XSFULEMAk8MWioBJ4z6ezsZNeuXbz77rts27YttDxdoeEfMRpv9jSMhIwI11IMioAPc3cjlu6TmLtPYnZ3DjglOTk5tA9PYWEh48aNIzs7W/bjEUIMIIEnBg3lwHM6t9vN5s2bef3119m7d2+o3J+UhydvlgSfKKS5u7F01mPprMfccwrtE7+eCgoKmD59OlOnTmXKlCnk5OTIsJMQ4pxI4IlBwyXwnK6mpoY1a9awYcOG0PJ2X2oBnvxLht4EW3FeNHc3enstlvaaAZeUyMvL45JLLqG4uJgZM2aQkpISmUoKIYY9CTwxaDgGnn6NjY0899xzbNiwAaUUymTBmzsTb/bUITnvRJxFwIelvRa99SiWno9X8plMJmbOnMn8+fOZM2cO+fn5EaykECKaSOCJQcM58PQ7evQojz32GFVVVQAEHGm4Cy4N7sMihizN3Y21+SB661G0j3Zz7g85ixcvZsGCBSQnJ0e4lkKIaCSBJwZFQ+ABUErx97//nSeeeAKn04nSTHjyZuPLnhrxpewinKm3FWvjPiwddfR/ZXJzc7nmmmtYunQpGRkyH0sIcXFJ4IlB0RJ4+rW3t/OrX/2KrVu3AsFJze6xl6H0uAjXTJh6W7E1vI+l60SobM6cOXz961+npKREVlMJIQaNBJ4YFG2BB4K9PevWrePxxx/H6/Vi6A5c46/ASMiMdNVikubuxtZQid5eCwSHrZYsWcL1119PQUFBhGsnhIhFEnhiUDQGnn41NTU88MADHD9+PDjENWoOvoxJMsQ1WAI+rCf3Yj21H00ZaJrG4sWLufHGG2UCshAioiTwxKBoDjwAfX19PPLII5SXlwPgzZiIZ9RcMJkjW7FophSWjlps9Tsw+foAKCkp4fvf/z7jx4+PcOWEEEICT0yK9sADwSGuV155haeffhqlFP7EbNzjrkDp9khXLepoHif241uxdDUAwcnIt99+O2VlZbIpoBBiyJDAE4NiIfD02759O//5//4ffb29GLZEXBOWYMSNiHS1ooMy0E8dwtZQiWb40XWdG264geuvvx6bzRbp2gkhRBgJPDEolgIPQF1dHT/72c84efIkyqzjGncFgeS8SFdrWDO5OrDXbsHc2wLAjBkzuOuuuxg1alSEayaEEGcmgScGxVrggeBFSX/+859TVVWFQsMzei6+zMmRrtbwowysTVVYG95HUwYOh4Nbb72Va665RpaYCyGGNAk8MSgWAw+A1+tl9erVrF+/Pvg4czKekXNA/lCfE1Nfe7BXp68VCO6nc9ddd5GZKUv/hRBDnwSeGBSrgQeCk5lfeuklnnnmGQD8iTm4xi8Ci0xmPivDj7VxH9bGvWhKkZCQwO23386yZctkUrIQYtiQwBODYjnw9NuyZQu//OUvcbvdGNYEXOMXY8SnRbpaQ465uxH78XcxubsBWLBgAT/60Y9IS5O2EkIMLxJ4YpAEnqCamhruu+++4GRmzRyc15NeKJsUApqnB9uHO0M7JaempnLHHXewcOFC6dURQgxLEnhikASejzmdTh588EG2b98OgC91LO7RZWCJ0WXVfg/Wxiqspw6gqQAmk4mvfOUrfO973yMhISHStRNCiM9NZmsOcWPGjOHRRx/91HM0TeMvf/nLoNQn2iQmJvLQQw9xyy23YDKZ0NtriN//GuauDyNdtUGl+VxYG3aTsG8ttqZ9aCrAjBkzeOqpp1i5cqWEHSHEsCeBJ4JOnDjBTTfdRG5uLlarldGjR3PnnXfS1tYW6arFFJPJxD//8z/z+OOPk5+fj8nXh+PIW9irN6F5eyNdvYtHKczOJuw1m4nfuxbbyT1oAR9jxozhwQcf5NFHH2XChAmRrqUQQlwQlkhXIFbV1NRQVlZGYWEhL7/8MgUFBRw4cIC7776bN998k+3bt5OamhrpasaUKVOm8Mwzz/Dss8/y6quvonfUYumsx5dVhDd7KkqPi3QVvzDN58LsPIW5+ySWzvrQda8AJk2axLe+9S0uu+wy2VNHCBF1JPBEyG233YbVauWtt94iLi74h3TUqFEUFxczbtw47r33Xp588skBzzt69Cg33XQTO3bsYOzYsfzmN78Z7KpHtbi4uNCS68cee4yqqiqsTVXopw7iTxuLL30CgYSsLz6xWRlonh5M3p6P7nvRfC40vxvN70EzfGAEguehUJhAM4HJjDJZUGYdzDrK1H9vQZkswXM0Lfg8I4AW8AZf19uLyd2JyecKq4bD4WDRokVcffXVFBUVyYRkIUTUksATAe3t7axfv54HH3wwFHb6ZWdnc8MNN7BmzRqeeOKJsGOGYfC1r32N9PR0tm/fTnd3NytXrhzEmseOCRMm8Nhjj7F9+3aef/55Dh06hN56FL31KIYeRyApj0BCJgFHGsqWgLLYw0OQMtD8XjRfXzBseJyYPN2Y3E5M7i40rxMtQusFxo4dy/Tp0ykrK2PmzJly3SshREyQwBMBR48eRSnF5MlnvrTB5MmT6ejooKWlJaz8H//4B4cOHaKuro78/HwAHnroIa666qpPfT+Px4PH4wk97u7u/oKfQWzQNI2ysjLmzp3LgQMHeOONN6ioqKC3txdTWzV6W3XoXIUGZgvQ37vi/8zX13WdnJwcsrKyyMzMJC0tjZSUFBITE4mPj8dqtWKxWNA0DcMw8Pv9oa9lX18fLpeL3t5eXC4XLpcLr9eL3+/HMAzMZjO6rpOQkEBycjKZmZnk5+czZswYHA7HRWw1IYQYmiTwDEH9OwV8cnjh0KFDjBo1KhR2AMrKyj7z9VatWsUDDzxwYSsZQzRNY+rUqUydOpU777yT/fv3U1lZyZEjR6ipqaG9vR0NBQHfgOcmJyeTnp5Obm4uOTk55Ofnk5eXR35+PhkZGTJXRgghBokEnggYP348mqZx8OBBrr322gHHP/jgA0aMGEF6enpY+Zm2TDqXORc//elP+fGPfxx63N3dzciRI8+/4gKbzcbs2bOZPXt2qMzn89HZ2YnH4yEQCGCxWIiPjychIQGLRX7EhBBiKJDfxhGQlpbGlVdeyRNPPMGPfvSjsHk8TU1NvPjii6xYsWJAmCkqKqK+vp6TJ0+Sm5sLwLZt2z7z/Ww2m8zTuIh0XScjIyPS1RBCCPEppD89Qn7729/i8XhYtmwZmzdv5sSJE/z973/nyiuvJC8vjwcffHDAc5YsWcLEiRNZsWIFe/fu5Z133uHee++NQO2FEEKI4UUCT4RMmDCBXbt2MW7cOL75zW8ybtw4brnlFhYtWsS2bdvOuAePyWTitddew+PxUFpayve+970zBiMhhBBChJNracUguZaWEEKIWCNzeIQYpgKBAB0dHbS2ttLa2kpHRwcdHR10dXXR09OD0+nE5XLhdrtDE6oNwwDAYrGg6zo2my00wTo5OZnU1FTS0tLIysoiNzeX9PR0zGZzhD9TIYT44iTwCDFEeTwempqaOHXq1ID7lpYWWlpaQgHmYtF1nby8PAoKChgzZgwTJkygsLCQtLQ02ZVZCDGsyJBWDJIhrchTStHT00NzczOnTp3i1KlTNDc309TUFLp1dHR85uuYNEWy1WCEVZFkNUi2GiToigTdwGFRxFkUVpPCagazpuiPKAEFfkPDY2i4/Bp9fo1ur4lOr0aXx0SL20yr20RAnTnUpKamUlRUxJQpU5g2bRoTJ05E1/UL2EJCCHFhSeCJQRJ4Lj6v10tzc3Mo0LS0tIRCTUtLC83NzfT19X3m69jNijR7gAy7QbrdIM0e+OjeINVukGI1MF2kjhZDQZvbxMk+Mw29Zk70WDjuDH78cXQKstlsTJkyhVmzZjF79mwKCwtlKEwIMaRI4IlBEnguDKfTSX19PQ0NDaFbU1MTjY2NtLW1ndNrJOoGqbaPw0zaR8EmIy74cYJFfeHrlF5ongDUOS1Ud1mo7rZwpFPH6Qtf8BkfH8/s2bMpLS2ltLSUzMzMCNVWCCGCJPDEIAk858fn81FbW0t1dTXHjh3j2LFjHD9+/DOHnKwmFQoxabZgj8zH9wFS7Qa2KOgEUQpO9pk51GHhYIfOwQ6dPn94ABo7dixz585l7ty5FBUVyQ7UQohBJ4EnBkng+XQtLS3s37+f/fv3c/DgQaqrq/H5Bl4nCyDVFiDbYZAVFyAzLkBGnEH6R0NQCfrQ650ZDIaCWqeFqjadqnad6i5L2BBYUlISc+bMYf78+VxyySXEx8dHsLZCiFghgScGSeAJ193dTWVlJbt372b37t00NDQMOCfeYjA60c+ohAAjEwLkxfvJcQSIk46Kz+T0aVS16exts7KvTaf3tN4fi8XCzJkzmTdvHvPnzycrKyuCNRVCRDMJPDEo1gOPUoqamhq2bt3Ke++9x8GDB8OWd2soRiUEmJDiY0KSn7FJfjLjjJjsrbnQAgZUd1vY3WplT6uVxr7wMb3x48czf/585s2bR2FhoSx9F0JcMBJ4YlAsBp5AIMCBAweoqKjg3XffpampKex4Xryfqak+ikb4mJjix2GRH4vB0NhrYnerlfdbrRz9xNBXeno6ZWVllJWVMXv2bLkArhDiC5HAE4NiJfAYhkFVVRWbNm1i8+bNtLe3h47pJsXUVB8z07xMS/ORbr+4G/iJz9bt1djbZuX9Vp2qdiuewMfhx2azUVxcTFlZGXPmzCE7OzuCNRVCDEcSeGJQNAcepRQffPABGzduZNOmTbS2toaOOSwGxek+SjI8TE31RcUKqWjlDcChTp09rcEA1O4J/2KNHj2a0tJSSkpKmDFjBna7PUI1FUIMFxJ4YlA0Bp7a2lrefvttNm7cyMmTJ0PlcWaD2Rle5mR6mZLqw2L6lBcRQ5JScKLXzN5WnT1tVo51WzBO2wFa13WmTp1KcXExs2bNYtKkSbLsXQgxgASeGBQtgaehoYFNmzaxceNGampqQuVWk2JWupc5WR6mp/nQJeRElV6fxoEOnX1tOvvbB/b+2O12ioqKmDZtGtOmTWPy5Mmy9F0IIYEnFg3nwNPY2Eh5eTnl5eUcPnw4VG7WFNPTfMzN9DArwyvDVTFCKWhymTjQrnOoQ+dQp07PJ3Z91jSN0aNHM3nyZAoLCyksLGTs2LHExcVFqNZCiEiQwBODhlPgUUpRV1fHO++8w5YtWzhy5EjomIaiaISPuVleZmd4SdDlWznWGQpO9po53GnhcFdw08NW98D0q2kaeXl5jB07ltGjR4dueXl5OByOCNRcCHGxSeCJQUM98Ljdbvbu3cv27dvZvn07jY2NoWMaikkpfkozPZRkekm2yrev+HRdXo3qLgt1zo9vXd6zj3OOGDGCvLw8srOzycnJISsri4yMDDIzM0lPTychIUH2BxJiGJLAE4OGWuDx+XwcOXKEPXv2UFlZSVVVVdilHHRTsCenJMNLcbqXJAk54gvq8mqc6LFwosdMY5+Zk73B+09eBPVMbDYbaWlppKamMmLEiNAtOTmZlJQUkpKSSE5OJjk5mcTEROx2uwQkIYYACTwxKJKBRylFS0sLhw8f5uDBgxw6dIhDhw7h8XjCzku1BZiR5mNGWnB11XCbkxMwoN0js6UBUm0G5mHSFL0+jVMuEy0uM61uEy1uM21uE+0eE+1uU9hlMc6VruskJiaGbgkJCQNu8fHxoZvD4Qj7OC4uTladCXEBSOCJQYMReAzDoLW1lYaGBurr6zl+/Dh1dXVUV1fT3d094PwE3WBiio/JKX6mpXrJdgzvSzm0uEzctW1EpKsxJKwu6yAjLjo2dvQGoNNrosNjottrosur0e010e0z4fRqdPtM9Pg0ej66D6gL801ss9lC4ScuLg6HwxH2uL/s9MdxcXHY7fYzHrPb7ZhMwySFCnGByL8N4rx1dHTQ1tZGd3c3XV1ddHR00N7eTmtrK83NzbS0tNDU1HTWK4ybNEWeI8DYJD/jkv2MT/KTGx/AdIEDjlLgjdDf2Ui971DkNcATiHQtLpxkq0GyNfgFtpo4azBXKvh59/hM9Pq14M1nos+v0ffRY5dfo88fLHN/VO4KBMtdfg3/R4HJ4/Hg8Xjo6Oi4YJ/H2cLQmYLT6eHJbreH3Ww2W+jeZrNhsVhkCE8MSdLDE4O+SA/PW2+9xapVqziXbxuzpki3G2Q7AuTGB8h1BBid6CfXEcA6CENUngDcXJF28d9omPnyl7/M8uXLWbt2La+//vo5fS3FmT2zsO2iDrf6DXAFgmHIHQjeXH4NT+Djx24/uAPBMk8gGJhCx/0aHkPD49dwBcAT0MKuV3YxmEwmdF0PPe4PP/3fZ0qpsECklGLu3LmsXLmS1NTUi1o3Edukh0ecl8OHD5/1D2RevJ8JH/XYFKb4yLAPn7kbsWT58uWMGjWK5cuXs27dukhXR3wKiwkSTYrEC7TlglLgM4IBqc+v0ekx0eUN3jq9Jro8WvD+tNv5MgxjwJy8z7J582aKi4v56le/et7vJ8S5ksAjzkteXt5ZjzX0WmjotVB+Mrh8PM1ukBkXIMdhkBcfHLYamRC4YL+8P4vVFPwPPBJa3SZ++t7QnMOzdu3aUA+PpmkXvYdn1ZyOqL04q3WQAr2h+Lj3xs+AXpzTe3jcoZ4ewh67A8Genv6eIa8xdIadCgsLmTNnTqSrIaKcDGnFoC8ypKWU4vDhw7S2tn7qHJ6zzd+B4Aqs0YkBxiX5g/N4kvzEWaLr23AoT1ruDzmDEXYguiYtfx6G4qO5OsF5O30+jV7/x3N5+vwfz9np+2jIyu03heby9AeUi8VkMuFwOLDb7WecDN1f3j9n5/TyT87f6b9ZrdbQTVaYiaFCAk8MutirtAzDoL29nZMnTw5YpXX6hT37aShGJwaYmOKjaISPSSk+4ob578ihvCy906PR6jaTbg+QYrv4P/7DaVn6ufAbhFZodXmDq7WcPi107zxtpVZwovKFmzdjMpnCVmn1h5HTJxufXnb6xOTTy0+/Wa1WmWQsYoIEnhgUyX14enp6qKmpCduHp6mpKewcs6YYl+RnepqPmeleRsYHhvUSdTF8KAU9Po1mt5lWl4lWt4lWtzm0D0+n10S39/MFGJvNdk778PTvv9O/H0//xw6HQ8KJEF+ABJ4YNNR2Wm5ubqaqqiq00/Ine4FSbQFmpfuYneFhYoofSxT1FojIMFRw2PFEr4WTvcGdlpv6zDS5TPSdw+aCZrM5bJfl/p2WP3lLTEwkKSmJxMRErFbrIHxmQoizkcATg4Za4PmkkydPsnPnTrZv387u3bvDVnzEWwxmZXiZk+mlaIRPwo/4TIaCD3vN1HZbqHVaOO40c6LH8qmTdtPT08nJySE7O3vAtbTS09NJTk6WjfuEGGYk8MSgoR54TufxeKisrGTLli28++67dHV1hY7FWwxKMrzMyfIyOcUXVfNExOfX59c42mXhSKeF6i6dGqcFzxkm/VqtVsaMGRO6UvqoUaPIz88nLy8Pm80WgZoLIS4mCTwxaDgFntMFAgH27dtHRUUFFRUVYbvOJukGc7I8zM3yMj7JL3N+YojLD0c6dQ526Bzq1DnuNA+YY+NwOJg4cSKFhYUUFhYyYcIE8vLyMJuH2UXahBCfmwSeGDRcA8/p+sPPxo0bqaioCLs+V7o9wNwsL3OzPDLhOQoZCuqcZva1WTnQrlPdbRlwzarc3FymTZvGtGnTmDJlCqNGjZJwI0SMk8ATg6Ih8JzO5/Oxa9cu3n77bbZs2YLb7Q4dy3H4mZMZHPbKi4+iCzrFmB6fRlWbzt42K1XtOk5f+PhlTk4OxcXFFBcXM3PmTDIyMiJUUyHEUCWBJwZFW+A5ndvtZtu2bWzcuJHt27eHbYCY6/BzSaaXkgwvoxKk52coUwpO9pnZ06qzp9XKkS5L2DCVw+Fg9uzZlJSUUFJS8qk7gAshBEjgiUnRHHhO19PTw9atW9m4cSO7du3C7/eHjqXbAxSne5mZ5mNiim9QLmYqPl3AgKNdFna3Wnm/1copV/gXpaCggLlz5zJnzhymTp0qO/gKIc6LBJ4YFCuB53ROp5Nt27ZRUVHBrl27wpa6W02KySN8TE0N7vScFx/AJL0/g8Ll16hq19ndYmVvm07vaXvg6LrOzJkzmTdvHmVlZWRnZ0ewpkKI4U4CTwyKxcBzOrfbTWVlJe+++y47duygtbU17HiiblCY4qMwOXj191EJfukBuoBaXSb2tOnsbrVyqEMPm3CclJREWVkZ8+fPp6SkBIfDEcGaCiGiiQSeGBTrged0SilqamrYuXMnlZWVVFVVhU16huClLvLiAxQk+hmZEGBUgp+8+ACJVvnROReGgmPdluB8nDYrJ3rCh6Ly8/OZN28eCxYsYMqUKbKaSghxUUjgiUESeM7O5/PxwQcfsH//fvbv38+BAwfo7Ow847kJukGOI0C2I0BWnEFWXICMuAAZdoMEXcX0pOhOj8b+dp197VaqPjFUZTKZmDJlCvPmzWP+/PmMGjUqgjUVQsQKCTwxSALPuVNK0dLSwgcffEB1dTXHjh3j2LFjAy54+kk2syLdHiDNZpBmN0i1GaTZA6TaDdJsBiNsRlQNk7n8Goc7LRzo0DnYrnOiN7wXJyEhgdLS0tCk4+Tk5AjVVAgRqyTwxCAJPF+cy+Xiww8/pL6+noaGhtCtqalpwJygs0nSg2EozR746N4g3W6Qbg+QbjeItwzdXqJ2t4nqbstHl3DQqTvD7saFhYWUlpZSWlpKUVGRrKoSQkSUBJ4YJIHn4vJ4PDQ3N3Pq1ClOnTpFc3MzLS0tYR9/cp7Qmdg/6iVKtxukx310/1EwSrMFSLKqi76azG/AKZeZhl4zH/aYqXNaOO600OEdeOGy3NxciouLKSkpobi4mJSUlItbOSGEOA8SeGKQBJ7IUkrR3d1Nc3PzgGDU1NREU1NT2HXCzsaiKVI+Gh4bYTNIshok64pEa7B3KF5X2M0Kq1lhMwXDkaaBRjDI+JWGJxAcjurzm3D6NDo9Jjq9JlpdJprdZtrcpgGXbYDgPJyxY8cyZcoUpk6dyowZM8jMzLwIrSWEEBeGBJ4YJIFn6PN4PJw6dYqmpiYaGxtDoaipqYlTp07R1tbGYP3oxsXFha4q3n/xzXHjxhEXFzco7y+EEBeCBJ4YJIFn+PP7/bS2tobdOjs7aW9vp7u7G6fTidPpxOVy4Xa78Xg8GIZBIBC8npjFYkHXdaxWKwkJCSQkJJCcnExqaippaWlkZWWRm5tLTk4OGRkZaEN1MpEQQpwjmUUoxDBksVjIzs6W3YeFEOIcDZx5KIQQQggRZSTwCCGEECLqSeARQgghRNSTwCOEEEKIqCeBRwghhBBRTwKPEEIIIaKeBB4hhBBCRD0JPEIIIYSIehJ4hBBCCBH1JPAIIYQQIupJ4BFCCCFE1JPAI4QQQoioJ4FHCCGEEFFPAo8QQgghop4EHiGEEEJEPQk8QgghhIh6EniEEEIIEfUk8AghhBAi6lkiXQEx+JRSAHR3d0e4JkIIMXwlJiaiaVqkqyHOkQSeGOR0OgEYOXJkhGsihBDDV1dXF0lJSZGuhjhHmur/d1/EDMMwOHnyZFT+d9Ld3c3IkSM5ceKE/CI6R9Jm50/a7POJtnaLxt+h0Ux6eGKQyWQiPz8/0tW4qJKSkqLiF+pgkjY7f9Jmn4+0m4gEmbQshBBCiKgngUcIIYQQUU8Cj4gqNpuNX/ziF9hstkhXZdiQNjt/0mafj7SbiCSZtCyEEEKIqCc9PEIIIYSIehJ4hBBCCBH1JPAIIYQQIupJ4BFCCCFE1JPAI6LGE088QUFBAXa7ndmzZ/POO+9EukpDxqpVq7jkkktITEwkMzOTa6+9lsOHD4edo5Ti/vvvJzc3l7i4OC6//HIOHDgQoRoPPatWrULTNFauXBkqkzY7s4aGBr797W+TlpaGw+Fg5syZVFZWho5Lu4lIkMAjosKaNWtYuXIl9957L++//z6XXnopV111FfX19ZGu2pBQUVHBbbfdxvbt29mwYQN+v5+lS5fS29sbOueRRx7h17/+Nb/97W/ZuXMn2dnZXHnllaFrr8WynTt38vTTTzN9+vSwcmmzgTo6Opg/fz66rvPmm29y8OBBVq9eTUpKSugcaTcREUqIKFBaWqq+//3vh5VNmjRJ/fu//3uEajS0NTc3K0BVVFQopZQyDENlZ2erhx9+OHSO2+1WycnJ6ve//32kqjkkOJ1ONWHCBLVhwwa1cOFCdeeddyqlpM3O5t/+7d/UggULznpc2k1EivTwiGHP6/VSWVnJ0qVLw8qXLl3K1q1bI1Sroa2rqwuA1NRUAGpra2lqagprQ5vNxsKFC2O+DW+77TauueYalixZElYubXZmf/3rXykpKeG6664jMzOT4uJinnnmmdBxaTcRKRJ4xLDX2tpKIBAgKysrrDwrK4umpqYI1WroUkrx4x//mAULFjB16lSAUDtJG4Z75ZVX2L17N6tWrRpwTNrszGpqanjyySeZMGEC69ev5/vf/z533HEHzz//PCDtJiJHrpYuooamaWGPlVIDygTcfvvt7Nu3jy1btgw4Jm34sRMnTnDnnXfy1ltvYbfbz3qetFk4wzAoKSnhoYceAqC4uJgDBw7w5JNPsmLFitB50m5isEkPjxj20tPTMZvNA/47bG5uHvBfZKz74Q9/yF//+lc2bdpEfn5+qDw7OxtA2vA0lZWVNDc3M3v2bCwWCxaLhYqKCh577DEsFkuoXaTNwuXk5FBUVBRWNnny5NACAvleE5EigUcMe1arldmzZ7Nhw4aw8g0bNjBv3rwI1WpoUUpx++238+qrr7Jx40YKCgrCjhcUFJCdnR3Whl6vl4qKiphtw8WLF1NVVcWePXtCt5KSEm644Qb27NnD2LFjpc3OYP78+QO2PDhy5AijR48G5HtNRFAkZ0wLcaG88sorStd19eyzz6qDBw+qlStXqvj4eFVXVxfpqg0Jt956q0pOTlbl5eWqsbExdOvr6wud8/DDD6vk5GT16quvqqqqKnX99dernJwc1d3dHcGaDy2nr9JSStrsTHbs2KEsFot68MEH1dGjR9WLL76oHA6H+tOf/hQ6R9pNRIIEHhE1fve736nRo0crq9WqZs2aFVpyLZQCznh77rnnQucYhqF+8YtfqOzsbGWz2dRll12mqqqqIlfpIeiTgUfa7Mz+9re/qalTpyqbzaYmTZqknn766bDj0m4iEjSllIpkD5MQQgghxMUmc3iEEEIIEfUk8AghhBAi6kngEUIIIUTUk8AjhBBCiKgngUcIIYQQUU8CjxBCCCGingQeIYQQQkQ9CTxCCCGEiHoSeIQQg+rw4cNkZ2fjdDojWo/777+fmTNnDvr73njjjVx77bXndO5PfvIT7rjjjotbISFihAQeIYaIrVu3Yjab+dKXvhTpqpy3yy+/nJUrV57Tuffeey+33XYbiYmJ9PT0oOs6a9asCTvnm9/8JpqmcezYsbDycePG8bOf/exCVXvIu+eee3juueeora2NdFWEGPYk8AgxRPzhD3/ghz/8IVu2bKG+vj7S1bkoPvzwQ/7617/yne98B4CEhARKSkrYtGlT2HkVFRWMHDkyrPzDDz+kpqaGRYsWDWqdIykzM5OlS5fy+9//PtJVEWLYk8AjxBDQ29vL2rVrufXWW/nyl7/MH//4x7Dj5eXlaJrG+vXrKS4uJi4ujiuuuILm5mbefPNNJk+eTFJSEtdffz19fX2h53k8Hu644w4yMzOx2+0sWLCAnTt3ho7/8Y9/JCUlJey9/vKXv6BpWuhx/9DPCy+8wJgxY0hOTuZb3/pWaEjqxhtvpKKigt/85jdomoamadTV1Z3x81y7di0zZswgPz8/VLZo0SLKy8tDjw8dOoTL5eIHP/hBWPmmTZvQdZ358+cD8Le//Y3Zs2djt9sZO3YsDzzwAH6/P3R+V1cXt9xyC5mZmSQlJXHFFVewd+/es34NamtrGT9+PLfeeiuGYeD1ernnnnvIy8sjPj6eOXPmhNWnv+3Wr1/P5MmTSUhI4Etf+hKNjY2hcwKBAD/+8Y9JSUkhLS2Ne+65h09evvB///d/mTZtGnFxcaSlpbFkyRJ6e3tDx7/yla/w8ssvn7XeQohzI4FHiCFgzZo1TJw4kYkTJ/Ltb3+b5557bsAfRgiGj9/+9rds3bqVEydOsHz5ch599FFeeuklXn/9dTZs2MDjjz8eOv+ee+7hz3/+M//zP//D7t27GT9+PMuWLaO9vf286nfs2DH+8pe/sG7dOtatW0dFRQUPP/wwAL/5zW8oKyvj5ptvprGxkcbGRkaOHHnG19m8eTMlJSVhZYsWLeLw4cOhoLBp0yYuvfRSrrjiigGBZ86cOTgcDtavX8+3v/1t7rjjDg4ePMhTTz3FH//4Rx588EEAlFJcc801NDU18cYbb1BZWcmsWbNYvHjxGT/3/fv3M3/+fK677jqefPJJTCYT3/nOd3j33Xd55ZVX2LdvH9dddx1f+tKXOHr0aOh5fX19/OpXv+KFF15g8+bN1NfX85Of/CR0fPXq1fzhD3/g2WefZcuWLbS3t/Paa6+Fjjc2NnL99dfz3e9+l0OHDlFeXs7Xvva1sK99aWkpJ06c4Pjx4+f65RJCnEkkL9UuhAiaN2+eevTRR5VSSvl8PpWenq42bNgQOr5p0yYFqH/84x+hslWrVilAHTt2LFT2r//6r2rZsmVKKaV6enqUruvqxRdfDB33er0qNzdXPfLII0oppZ577jmVnJwcVpfXXntNnf6r4Re/+IVyOByqu7s7VHb33XerOXPmhB4vXLhQ3XnnnZ/5ec6YMUP953/+Z1hZb2+v0nVdvfTSS0oppa677jr1yCOPKJ/PpxISEtSRI0eUUkoVFBSon//850oppS699FL10EMPhb3OCy+8oHJycpRSSr399tsqKSlJud3usHPGjRunnnrqqdDnNWPGDLV161aVmpqq/vu//zt0XnV1tdI0TTU0NIQ9f/HixeqnP/2pUirYdoCqrq4OHf/d736nsrKyQo9zcnLUww8/HHrs8/lUfn6++qd/+iellFKVlZUKUHV1dWdts66uLgWo8vLys54jhPhslkiGLSFEcNXSjh07ePXVVwGwWCx885vf5A9/+ANLliwJO3f69Omhj7OysnA4HIwdOzasbMeOHUCwV8bn84WGgAB0Xae0tJRDhw6dVx3HjBlDYmJi6HFOTg7Nzc3n9RoALpcLu90eVuZwOCgtLaW8vJzrr7+eiooK7r77biwWC/Pnz6e8vBybzUZtbS1XXHEFAJWVlezcuTPUowPB4SO3201fXx+VlZX09PSQlpY24P1PnwhdX1/PkiVL+OUvf8mPfvSjUPnu3btRSlFYWBj2fI/HE/aaDoeDcePGnbFdurq6aGxspKysLHTcYrFQUlIS6sGZMWMGixcvZtq0aSxbtoylS5fyjW98gxEjRoSeExcXBxA2VCmEOH8SeISIsGeffRa/309eXl6oTCmFrut0dHSE/fHTdT30saZpYY/7ywzDCL1Gf9nplFKhMpPJNGDozOfzDajjp73P+UhPT6ejo2NA+aJFi1izZg0HDhzA5XIxa9YsABYuXMimTZuwWq3Y7Xbmzp0LgGEYPPDAA3zta18b8Fp2ux3DMMjJyQkbEut3+pyljIwMcnNzeeWVV7jppptISkoKvb7ZbKayshKz2Rz2/ISEhNDHZ2qXT7bnpzGbzWzYsIGtW7fy1ltv8fjjj3Pvvffy3nvvUVBQABAagsvIyDjn1xVCDCRzeISIIL/fz/PPP8/q1avZs2dP6LZ3715Gjx7Niy+++Llfe/z48VitVrZs2RIq8/l87Nq1i8mTJwPBP6JOpzNskuyePXvO+72sViuBQOAzzysuLubgwYMDyhctWsTRo0d56aWXWLBgQShkLFy4kPLycsrLyykrKwv1Ds2aNYvDhw8zfvz4ATeTycSsWbNoamrCYrEMOJ6enh5637i4ONatW4fdbmfZsmWhidjFxcUEAgGam5sHPD87O/uc2iQ5OZmcnBy2b98eKvP7/VRWVoadp2ka8+fP54EHHuD999/HarWGzfPZv38/uq4zZcqUc3pfIcSZSeARIoLWrVtHR0cHN910E1OnTg27feMb3+DZZ5/93K8dHx/Prbfeyt13383f//53Dh48yM0330xfXx833XQTQGgS8M9+9jOqq6t56aWXBqwQOxdjxozhvffeo66ujtbW1rP2/ixbtoxt27YNCEfz5s3DZrPx+OOPs3DhwlD5JZdcQldXF3/+85/DlqP/x3/8B88//zz3338/Bw4c4NChQ6xZs4b77rsPgCVLllBWVsa1117L+vXrqaurY+vWrdx3333s2rVrQDu9/vrrWCwWrrrqKnp6eigsLOSGG25gxYoVvPrqq9TW1rJz507+67/+izfeeOOc2+XOO+/k4Ycf5rXXXuODDz7gBz/4AZ2dnaHj7733Hg899BC7du2ivr6eV199lZaWllAgBXjnnXe49NJLQ0NbQojPRwKPEBH07LPPsmTJEpKTkwcc+/rXv86ePXvYvXv35379hx9+mK9//ev8y7/8C7NmzaK6upr169eHhslSU1P505/+xBtvvMG0adN4+eWXuf/++8/7fX7yk59gNpspKioiIyPjrPsIXX311ei6zj/+8Y+w8v7hKqfTyeWXXx4q13WdsrIynE5nWOBZtmwZ69atY8OGDVxyySXMnTuXX//614wePRoI9pq88cYbXHbZZXz3u9+lsLCQb33rW9TV1ZGVlTWgXgkJCbz55psopbj66qvp7e3lueeeY8WKFdx1111MnDiRr3zlK7z33ntnXYF2JnfddRcrVqzgxhtvpKysjMTERL761a+GjiclJbF582auvvpqCgsLue+++1i9ejVXXXVV6JyXX36Zm2+++ZzfUwhxZpo6nwFnIYT4gp544gn+7//+j/Xr10e6KkPe66+/zt13382+ffuwWGTKpRBfhPwECSEG1S233EJHRwdOpzNs5ZcYqL+nScKOEF+c9PAIIYQQIurJHB4hhBBCRD0JPEIIIYSIehJ4hBBCCBH1JPAIIYQQIupJ4BFCCCFE1JPAI4QQQoioJ4FHCCGEEFFPAo8QQgghop4EHiGEEEJEvf8fHyZuOIb62/0AAAAASUVORK5CYII=",
2810
      "text/plain": [
2811
       "<Figure size 600.25x500 with 1 Axes>"
2812
      ]
2813
     },
2814
     "metadata": {},
2815
     "output_type": "display_data"
2816
    }
2817
   ],
2818
   "source": [
2819
    "#Violin plot for amt_weekends, age, gender\n",
2820
    "sns.catplot(data=smokers,\n",
2821
    "           x=\"amt_weekends\",\n",
2822
    "           y=\"age\",\n",
2823
    "           hue=\"gender\",\n",
2824
    "           kind=\"violin\",)\n",
2825
    "plt.title('Figure 13: Violin plot for Amount (Weekends), Age, Gender')\n",
2826
    "plt.xlabel('Amount (Weekends)')\n",
2827
    "plt.ylabel('Age')"
2828
   ]
2829
  },
2830
  {
2831
   "cell_type": "code",
2832
   "execution_count": 52,
2833
   "id": "bbdeac34",
2834
   "metadata": {},
2835
   "outputs": [
2836
    {
2837
     "data": {
2838
      "text/plain": [
2839
       "Text(55.19588194444445, 0.5, 'Age')"
2840
      ]
2841
     },
2842
     "execution_count": 52,
2843
     "metadata": {},
2844
     "output_type": "execute_result"
2845
    },
2846
    {
2847
     "data": {
2848
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAH+CAYAAACYx9S4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC12UlEQVR4nOzdd3hUZd7G8e+Znt4bISR0CL036SAgsIqL7CoWBOva1r6+6lpWZbGgrL2A2EGlqKBgoQgIAoL0DqGFkt6nP+8fIQNDAiSQMCHz+1zXXJAzZ8555mRmcs9TNaWUQgghhBCiDtP5ugBCCCGEEDVNAo8QQggh6jwJPEIIIYSo8yTwCCGEEKLOk8AjhBBCiDpPAo8QQggh6jwJPEIIIYSo8yTwCCGEEKLOk8AjhBBCiDqvTgWe6dOno2lahbeHHnqItLQ0NE1j+vTpvi7qeSkoKOCRRx7h8ssvJyYmBk3TePrpp8/5OKUUffr0QdM07r777vM695QpU9A0jQULFpxxn/fffx9N05g9e/YFXeslS5agaRpLlizxbHv66afRNO08Sn7hyl5XaWlpVX7s999/X6nf0ameeOIJGjRogMFgIDw8vMrnPF8PPPAAmqYxYsSIi3bOi+mtt96q8usxNzeX6OhoZsyYAcDLL7+Mpmn8/vvvXvu53W4iIyPRNI0dO3Z43We32wkMDOTqq6++oPKfybhx4wgODj7vx6ekpDBu3LjqK9B5mDp1KomJiRQVFVXL8b799ls0TSMqKgqbzVYtx6wJy5cv59prr6VBgwaYzWaCgoJo1aoVDz74INu3b/dZuSr7t+VSU6cCT5kPP/yQlStXet3uvfdeEhISWLlyJcOHD/d1Ec9LVlYW7733HjabjauuuqrSj3vzzTfZvXv3BZ37+uuvx2w2M23atDPu8+GHHxITE8PIkSOr/VrfcsstrFy5slqOdTF9//33PPPMM5Xe/5tvvuH555/nxhtvZOnSpfz88881WLqTHA4Hn376KQALFizg8OHDF+W8F9P5BJ5nnnmGevXq8be//Q2A/v37A7B48WKv/TZs2EBOTg5BQUHl7vv9998pKSnxPFaUd9NNNxEUFMSLL75YLcebOnUqANnZ2cydO7dajlndnnjiCXr37s3+/ft54oknWLBgAXPnzmX8+PH89NNPtGzZEpfL5eti1il1MvC0bt2a7t27e93KEnT37t2JiYm56GUqLi6+4GMkJyeTk5PD0qVLmThxYqUek5aWxmOPPcabb755QeeOioriyiuv5JtvviErK6vc/du3b2flypXceOONGI3Gar/W9evXp3v37tVyrNps8+bNANx777306tWLzp07X/AxK/Pa++abb8jIyGD48OG4XC4++uijCz7vpS47O5t3332Xu+66y1O72KFDB8LDw71qH6G0VrJevXr85S9/KRd4yvaVwHNmBoOB22+/nSlTplzwZ+XRo0f5/vvvGTBgABaLxRN+apMvvviC559/njvuuIMVK1Zw22230b9/fwYPHsyDDz7Ihg0beOONN3xdzGrhcDhwOp2+LgZQRwPPmZypmeWbb76hbdu2mM1mGjVqxJQpU8o1oZytieb06r+yx65bt47Ro0cTERFB48aNgdLmpbfeeov27dsTEBBAREQEo0ePZu/evecsf1nzXFXcdtttDB48mFGjRlXpcRWZMGECdrudzz//vNx9H374IQDjx48Hzny9li9fzsCBAwkJCSEwMJCePXsyf/78c567oiatlJQURowYwYIFC+jYsSMBAQG0aNHirLVQZcrK9+KLL/L888/ToEEDLBYLnTt35pdffjnn4wGmTZtGu3btsFgsREZGMmrUKLZt2+a5f9y4cZ6geWrz6pmaxlJSUnjiiScAiIuL83pdud1uXnzxRVq0aIHZbCY2NpYbb7yRQ4cOeR2jX79+tG7dml9//ZWePXsSGBjo+Z2czdSpUzGZTHz44YckJSXx4Ycfcvq6wmVNjZ9//jmPPvooCQkJBAcHM3LkSI4dO0ZBQQG33XYb0dHRREdHc/PNN1NYWOh1DKvVymOPPUbDhg0xmUwkJiZy1113kZub67XfmarUT29+KWtuXLx4MXfeeSfR0dFERUVx9dVXk56e7vW4LVu2sHTpUs/vISUl5azXZPr06TidTk/tDoBOp6NPnz6sWLHC60N8yZIl9OvXj759+1YYhmJiYmjVqhVQ2sT13HPPeX6XMTEx3HzzzWRkZJQrw8yZM+nRowdBQUEEBwczZMgQ1q9ff9ZyA6xYsYLo6GhGjBjhaSZyOBw88sgjxMfHExgYyGWXXcbq1avLPTYjI4N//OMfpKamEhwcTGxsLAMGDGDZsmWefZRSNG3alCFDhpR7fGFhIWFhYdx1111A6Wv3ueeeo3nz5gQEBBAeHk7btm2ZMmWK1+PGjh1Lfn6+p/nwfH300Uc4nU7uv/9+rr76an755Rf2799fbr/c3FwmTJhAZGQkwcHBDB8+nL1791b42tu1axfXXXcdsbGxmM1mWrZseUFfIp977jmio6N59dVXK/xM1zSNu+66C71e77X9559/ZuDAgYSGhhIYGEivXr3KfV6VfVZu2bKFa6+9lrCwMOLi4hg/fjx5eXle++bn53PrrbcSFRVFcHAwQ4cOZefOnRWWuTLXoOwz4pNPPuHBBx8kMTERs9l8wS0M1UbVIR9++KEC1KpVq5TD4fC6KaXUvn37FKA+/PBDz2N++OEHpdPpVL9+/dScOXPUV199pbp166ZSUlLUqZenoseWAdRTTz3l+fmpp55SgEpOTlaPPvqo+umnn9TcuXOVUkrdeuutymg0qgcffFAtWLBAff7556pFixYqLi5OHT16tNLPNSMjo9x5T/f++++rsLAwdfjwYU8577rrrnL79e3bV1XmpeByuVRycrJq376913an06kSEhJU9+7dPdsqul5LlixRRqNRderUSc2cOVPNnTtXXX755UrTNDVjxgzPfosXL1aAWrx4sWdb2TU9VXJysqpfv75KTU1VH3/8sVq4cKG65pprFKCWLl161udSVr6kpCR12WWXqVmzZqmvvvpKdenSRRmNRvXbb7959i17Xe3bt8+z7YUXXlCAuvbaa9X8+fPVxx9/rBo1aqTCwsLUzp07lVJK7d69W40ePVoBauXKlZ6b1WqtsEzr1q1TEyZMUIBasGCBWrlypTp48KBSSqnbbrtNAeruu+9WCxYsUO+8846KiYlRSUlJKiMjw3OMvn37qsjISJWUlKRef/11tXjx4nNei4MHDyqdTqeuueYapZRSTzzxhALUkiVLvPYr+70kJyercePGecoRHBys+vfvrwYPHqweeugh9eOPP6pJkyYpvV6v7rnnHs/j3W63GjJkiDIYDOrJJ59UP/74o3r55ZdVUFCQ6tChg9d1OdNrOzk5Wd10003lfjeNGjVS99xzj1q4cKH64IMPVEREhOrfv7/XtW3UqJHq0KGD5/ewbt26s16XAQMGqK5du5bb/uqrryrA8xpxuVwqPDxcvfvuu2rbtm0KUFu2bFFKKWWz2VRAQIDn2rpcLjV06FAVFBSknnnmGfXTTz+pDz74QCUmJqrU1FRVXFzsOc/zzz+vNE1T48ePV/PmzVOzZ89WPXr0UEFBQZ7jK6XUTTfdpIKCgjw/z5w5U5nNZnXnnXcqp9PptZ+maerhhx9WP/74o5o8ebJKTExUoaGhXtd0+/bt6s4771QzZsxQS5YsUfPmzVMTJkxQOp3O6z05ZcoUpWma5/Ve5s033/S6BhMnTlR6vV499dRT6pdfflELFixQr732mnr66afLXduWLVuqq6+++qy/l3Np1qyZSkhIUE6nU/38888KKHcul8ulLrvsMmWxWNR///tf9eOPP6pnnnlGNW3atNxrb8uWLSosLEy1adNGffzxx+rHH39UDz74oNLpdBU+h3M5fPiw57OjKj755BOlaZq66qqr1OzZs9V3332nRowYofR6vfr55589+5V9VjZv3lz9+9//Vj/99JOaPHmyMpvN6uabb/bs53a7Vf/+/ZXZbFbPP/+8+vHHH9VTTz2lGjVqdN7XoOwzIjExUY0ePVp9++23at68eSorK6vK16km1MnAU9HN4XBU+Ee4S5cuKikpSdlsNs+2goICFRUVdcGB59///rfXfitXrlSAeuWVV7y2Hzx4UAUEBKhHHnmk0s/1XIHn0KFDKiwsTL377rte5awo8AwYMEDp9fpKnbfsuZ36x+K7775TgHr//fc92yq6Xt27d1exsbGqoKDAs83pdKrWrVur+vXrK7fbrZSqWuCxWCxq//79nm0lJSUqMjJS3X777Wd9HmXlq1evniopKfFsz8/PV5GRkWrQoEGebacHnpycHBUQEKCuuOIKr2MeOHBAmc1mdd1113m23XXXXZUKk6c/z1NDTNkf0X/84x9e+/7+++8KUP/3f//n2VYWXn/55ZdKn/PZZ5/1hCyllNq7d6/SNE3dcMMNXvuV/V5Gjhzptf2f//ynAtS9997rtf2qq65SkZGRnp8XLFigAPXiiy967Tdz5kwFqPfee8+zraqB5/Rr8+KLLypAHTlyxLOtVatWqm/fvme+EKcJDAxUd9xxR7ntf/75pwLUCy+8oJRS6o8//lCA2r59u1JKqbi4OPXGG28opZRaunSpAtRbb72llFLqiy++UICaNWuW1zHXrFnjtd+BAweUwWDwCoxKlX42xcfHqzFjxni2nRp4/vvf/yq9Xq8mTZrk9biy19D999/vtf2zzz5TgNc1PZ3T6VQOh0MNHDhQjRo1yrM9Pz9fhYSEqPvuu89r/9TUVK+wOWLEiHJfks5k7NixKi4urlL7VuTXX39VgPrXv/6llCr9o96wYUOVnJzs+XxRSqn58+crQL399ttej584cWK5196QIUNU/fr1VV5ente+d999t7JYLCo7O7tKZVy1apVXGU9Vdq3LbmVlLioqUpGRkeXeey6XS7Vr184rmJd9hpz+PvvHP/6hLBaL55g//PCDAtSUKVO89nv++efP+xqUfUb06dOnStfkYqmTTVoff/wxa9as8boZDIZy+xUVFbF27VquuuoqTCaTZ3tZNf2F+utf/+r187x589A0jeuvvx6n0+m5xcfH065du3JV4RfijjvuoF27dtx6663n3PeXX36pdBvrzTffjE6n82o2+vDDDwkKCvKq+j9dUVERv//+O6NHj/YaUaLX67nhhhs4dOhQudEtldG+fXsaNGjg+dlisdCsWbMKq7ArcvXVV2OxWDw/h4SEMHLkSH799dczdhhcuXIlJSUl5Ua2JCUlMWDAgEo3iVVWWZ+Q08/XtWtXWrZsWe58ERERDBgwoFLHVkp5mrEGDx4MQMOGDenXrx+zZs0iPz+/3GNOH8XVsmVLgHId1Fu2bEl2dranWWvRokUVPo9rrrmGoKCgC7puf/nLX7x+btu2LUClXweny83Npbi4mNjY2HL3tW3blqioKM/7dcmSJcTHx9O8eXMA+vTp4/mdnd5/Z968eYSHhzNy5Eivz4D27dsTHx/v2X/hwoU4nU5uvPFGr/0sFkuFzWZKKW6//XaeeuopPv/8cx555BGv+8vKM3bsWK/tY8aMqfCz8Z133qFjx45YLBYMBgNGo5FffvnFq8k2JCSEm2++menTp3uazRYtWsTWrVu9RoN27dqVDRs28I9//IOFCxdW+JoqExsby/Hjx8+7z0dZf52yZlxN0xg3bhz79+/3en0tXbrU8/xPde2113r9bLVa+eWXXxg1ahSBgYFev4srrrgCq9XKqlWrzqusFYmKisJoNHpus2bNAuC3334jOzubm266yasMbreboUOHsmbNmnIj3Cp6T1itVo4fPw6c+TVx3XXXXfA1OP1vX21RJwNPy5Yt6dy5s9etIjk5OSiliIuLK3dfRduqKiEhwevnY8eOec536ovaaDSyatUqMjMzL/icAF9//TULFizgxRdfJC8vj9zcXE8fCbvdTm5uLg6H47yOnZyczMCBA/n888+x2WxkZmYyb948rrnmGkJCQs74uLJrffo1AahXrx5AhZ2hzyUqKqrcNrPZTElJSaUeHx8fX+E2u91erv9JmbJynum5nM/zOJuqnq+i/c5k0aJF7Nu3j2uuuYb8/HzPa2XMmDEUFxfzxRdflHtMZGSk189lXxbOtN1qtXqeh8FgKNeRXdM04uPjL+i6nf46MJvNAJV+HZyu7HGnhuEymqbRt29fVqxYgcPhYPHixfTt29dzf9++fVm6dClKKRYvXkx8fDwtWrQASj8DcnNzMZlM5T4Djh496vkMOHbsGABdunQpt9/MmTPLfVbY7XZmzpxJq1atGDZsWLkyl13b01/vBoOh3LWbPHkyd955J926dWPWrFmsWrWKNWvWMHTo0HLX85577qGgoIDPPvsMgDfeeIP69etz5ZVXevZ57LHHePnll1m1ahXDhg0jKiqKgQMHsnbt2nLltFgsKKU8r5mqKCgo4KuvvqJr167ExMR4XsujRo1C0zSvzstlr8XTX7Onf+5nZWXhdDp5/fXXy/0errjiCoAqf24nJSUBFYfxJUuWsGbNGt555x2v7WWvh9GjR5crx6RJk1BKkZ2d7fWYc70nyq7B6fud/ho5n2tQlc+gi6l8tPcjERERaJrmeTGd6ujRo14/l33wnT6nw9k+pE/vjBYdHY2maSxbtszz4jtVRdvOx+bNm3E6nRWOanr//fd5//33mTNnTpWGtp9qwoQJ/PTTT3zzzTekp6djt9uZMGHCWR8TERGBTqfjyJEj5e4r61waHR19XuW5EKf/nsu2mUymM85tUvYBcabnUt3P49Tz1a9f/5znq0rH9rI/ApMnT2by5MkV3n/77bdXtcgVioqKwul0kpGR4RV6lFIcPXqULl26eLaZzeYK50+p7jB5trIC5f6IlOnfvz+zZ8/m999/Z9myZV6jJvv27UtmZiZ//PEHq1at8howUNap+kzzWZV9aSj7nX799dckJyefs7xms5nFixczZMgQBg0axIIFC4iIiCj3fI4ePUpiYqJnu9PpLHdNP/30U/r168fbb7/ttb2goKDceZs0acKwYcN48803GTZsGN9++y3PPPOMV2dbg8HAAw88wAMPPEBubi4///wz//d//8eQIUM4ePAggYGBnn2zs7Mxm83nNa/QF198QXFxMatXr/Z67mXmzJlDTk4OERERntdidna2V+g5/fMgIiLCUwtd1gn7dA0bNqxSOevVq0erVq346aefsFqtXqG6ffv2AOW+bJW9Hl5//fUzjlat6pf0smuQlZXlFXqq4xr4as60c/HrwBMUFETnzp2ZO3cuL7/8sucbaWFhIfPmzfPaNy4uDovFwsaNG722f/PNN5U+34gRI/jvf//L4cOHy1WlVqdx48bRr1+/ctv79+/PVVddxX333Ufr1q3P+/hXXXUVUVFRTJs2jSNHjtCsWTMuu+yysz4mKCiIbt26MXv2bF5++WUCAgKA0hEcn376KfXr16dZs2bnXabzNXv2bF566SXPh05BQQHfffcdvXv3LjdCokyPHj0ICAjg008/5ZprrvFsP3ToEIsWLWL06NGebad+qyp7zlVV1jz16aefeoWCNWvWsG3bNh5//PHzOm5OTg5z5syhV69ePPfcc+Xu/+CDD/jss8/YvHnzBb1eygwcOJAXX3yRTz/9lPvvv9+zfdasWRQVFTFw4EDPtpSUlHLvtUWLFp2x1q0yqlLzZzKZaNSoEXv27Knw/rImqldffZW8vDyv91urVq2Iiopi4sSJWK1Wr+HoI0aMYMaMGbhcLrp163bG8w8ZMgSDwcCePXsq3TzQoUMHli5dyqBBg+jXrx8//fSTp0murHyfffYZnTp18jzmyy+/LNd8pGlauS9fGzduZOXKlZ7aiVPdd999XH755dx0003o9fqzNqOHh4czevRoDh8+zD//+U/S0tJITU313L93716vn6ti6tSphISEMHfuXHQ678aLtWvX8vDDD/PZZ59x991307dvX1588UVmzpzJnXfe6dnv9BFigYGB9O/fn/Xr19O2bVuvrg8X4vHHH+e6667jgQce4M033zxnQOjVqxfh4eHlmgsvRP/+/XnxxRf57LPPuPfeez3bTx+FW1PXwBf8OvAAPPvsswwfPpwhQ4Zw33334XK5eOmllwgODvb6dlfW92batGk0btyYdu3asXr16gqHaJ9Jr169uO2227j55ptZu3Ytffr0ISgoiCNHjrB8+XLatGnj9earyA8//EBRUZHn29bWrVv5+uuvAbjiiisIDAwkJSXljENuExMTy4WhgQMHsnTp0kq3m5vNZsaOHcvrr7+OUor//ve/lXrcxIkTGTx4MP379+ehhx7CZDLx1ltvsXnzZr744guffCvQ6/UMHjyYBx54ALfbzaRJk8jPzz/rZIHh4eE8+eST/N///R833ngj1157LVlZWTzzzDNYLBaeeuopz75t2rQBYNKkSQwbNgy9Xl/lD43mzZtz22238frrr6PT6Rg2bBhpaWk8+eSTJCUleYWHqvjss8+wWq3ce++9FQbkqKgoPvvsM6ZOncqrr756Xuc41eDBgxkyZAiPPvoo+fn59OrVi40bN/LUU0/RoUMHbrjhBs++N9xwA08++ST//ve/6du3L1u3buWNN94gLCzsvM/fpk0bZsyYwcyZM2nUqBEWi8Xz+6lIv379+OGHHyq8r1WrVsTGxjJnzhxiYmI8/Zig9LOiT58+zJkzB/Cef+fvf/87n332GVdccQX33XcfXbt2xWg0cujQIRYvXsyVV17JqFGjSElJ4dlnn+Xxxx9n7969DB06lIiICI4dO8bq1asJCgqq8DXasmVLli1bxqBBg+jTpw8///wz9evXp2XLllx//fW89tprGI1GBg0axObNm3n55ZcJDQ31OsaIESP4z3/+w1NPPUXfvn3ZsWMHzz77LA0bNqzwM2Lw4MGkpqayePFirr/++nL9nkaOHEnr1q3p3LkzMTEx7N+/n9dee43k5GSaNm3q2c/tdrN69epytcVPP/00zzzzDIsXL67wdQqltdqrV6/mzjvvrLD/Wq9evXjllVeYOnUqd999N0OHDqVXr148+OCD5Ofn06lTJ1auXMnHH38M4BWYpkyZwmWXXUbv3r258847SUlJoaCggN27d/Pdd995+qZB6WumrDnzbK699lq2bNnC888/z4YNGxg3bhxNmzbF7XZz8OBBPvnkE+BkjV9wcDCvv/46N910E9nZ2YwePZrY2FgyMjLYsGEDGRkZ5WrkzuXyyy+nT58+PPLIIxQVFdG5c2dWrFjhOfepqnINajUfdZauEWUjNtasWVPh/WcaaTVnzhzVpk0bZTKZVIMGDdR///tfde+996qIiAiv/fLy8tQtt9yi4uLiVFBQkBo5cqRKS0s74yitU0fanGratGmqW7duKigoSAUEBKjGjRurG2+8Ua1du/aczzE5OfmMI9FOHTZdES5wWPqpNmzYoACl1+tVenp6ufvPdK2XLVumBgwY4Hnu3bt3V999953XPlUZpTV8+PAKn8+5RuOUlW/SpEnqmWeeUfXr11cmk0l16NBBLVy40GvfioalK6XUBx98oNq2batMJpMKCwtTV155pddwYaVKhyXfcsstKiYmRmmads7f05leOy6XS02aNEk1a9ZMGY1GFR0dra6//nrPsPVTn3urVq3O+tzLtG/fXsXGxnqNUDxd9+7dVXR0tLLZbJ7fy1dffeW1z5nedxU9l5KSEvXoo4+q5ORkZTQaVUJCgrrzzjtVTk6O12NtNpt65JFHVFJSkgoICFB9+/ZVf/755xlHaZ1+7opeQ2lpaeryyy9XISEhnuH1Z/PLL78oQK1evbrC+8eMGaMANXr06HL3vfbaa57huadzOBzq5ZdfVu3atVMWi0UFBwerFi1aqNtvv13t2rXLa9+5c+eq/v37q9DQUGU2m1VycrIaPXq01zDk04elK1U6SrNFixYqJSVF7dmzRylVek0ffPBBFRsbqywWi+revbtauXJluWtqs9nUQw89pBITE5XFYlEdO3ZUc+fOVTfddNMZr9nTTz/tmRLkdK+88orq2bOnio6O9nzGTpgwQaWlpXntV3a9//jjD6/tDz74oNI0TW3btq3Ccyt1cqTgn3/+ecZ9/vWvf3kdPzs7W918880qPDxcBQYGqsGDB3tGUJ0+cmnfvn1q/PjxKjExURmNRhUTE6N69uypnnvuOa/9OnXqpOLj489YhtP9+uuv6m9/+5uqX7++MhqNKjAwUKWmpqo777yzwr8HS5cuVcOHD1eRkZHKaDSqxMRENXz4cK/35Jk+Qyr6HMvNzVXjx4/3ugbbt2+vcJRkZa7BmT4jagtNqXNEUT/kcDho3749iYmJ/Pjjj74ujqgBaWlpNGzYkJdeeomHHnrI18URtVTbtm3p1atXlb89+5vOnTujaRpr1qw572PccMMN7N27lxUrVnht79q1K8nJyXz11VcXWsxz+vzzzxk7diwrVqygZ8+eVXpsQUEBkZGRvPbaa2fs6yJ8y++btKC0E+7gwYNJSEjg6NGjvPPOO2zbtq3cTKBCCP/y4osvMmrUKB5//PFyHcb9XX5+Pps3b2bevHn88ccfnia887Fnzx5mzpxZrmkkPz+fDRs21MhSJ1988QWHDx+mTZs26HQ6Vq1axUsvvUSfPn2qHHYAfv31VxITEys1FYjwDQk8lCbzhx56iIyMDIxGIx07duT7779n0KBBvi6aEMKHhg4dyksvvcS+ffsk8Jxm3bp19O/fn6ioKJ566qnzHvUJcODAAd54441ygx9CQ0NrbLXzkJAQZsyYwXPPPUdRUREJCQmMGzeuwg78lTF8+PBLdmFqfyFNWkIIIYSo8+rkxINCCCGEEKeSwCOEEEKIOk8CjxBCCCHqPAk8fkgpRX5+/jknxxJCCCHqCgk8fqigoICwsLAK18YRQggh6iIJPEIIIYSo8yTwCCGEEKLOk8AjhBBCiDpPAo8QQggh6jwJPEIIIYSo8yTwCCGEEKLOk8AjhBBCiDpPAo8QQggh6jwJPEIIIYSo8yTwCCGEEKLOk8AjhBBCiDpPAo8QQggh6jyDrwsghL9SSpGdnU1hYSEAYWFhhIWFoWmaj0smhBB1jwQeIS6i9PR0li5dypo1a9ixYwdFRUVe94eGhpKamkqvXr3o3bs34eHhvimoEELUMZpSSvm6EOLiys/PJywsjLy8PEJDQ31dnDrP6XTy66+/MnfuXDZu3Oh1n0IDvREAzWX3us9oNNKvXz/+9re/0aRJk4tWXiGEqIsk8PghCTwXR0lJCfPmzeOrr77i+PHjQGnAcYUm4AxvgCskHrclDHT60ge4XeiKszEUpGPITkNfnOU5Vq9evRg/fjyNGzf2xVMRQohLngQePySBp2YVFBQwZ84cvv76a/Lz8wFwGyw4YlvgiGmOMgVV6ji6wgxMxzZjyN6HBmiaxsCBA5kwYQIJCQk1+AyEEKLukcDjhyTw1IzMzExmzZrFt99+6+mb4zaHYI9vgyO6CejOr8ucVpKHOX0dxux9ABgMBq688krGjh1LZGRktZVfCCHqMgk8fkgCT/XavXs3X3/9NT///DNOpxMAV0AE9oS2OCMbglY9sz/oijIxH1qLIT8dAIvFwqhRo/jb3/4mnZuFEOIcJPD4IQk8F87pdLJixQpmz57Nhg0bTm4PjsWe0BZXWBLU0PByfX465kNr0RdlAqXBZ8SIEVxzzTXExcXVyDmFEOJSJ4HHD0ngOX9ZWVnMnz+fb7/9lszM0sCh0HBGpmCPa4U7OPbiFEQp9HkHMR/+E31xaTn0ej39+vXjr3/9K6mpqRenHEIIcYmQwOOHJPBU3a5du/jqq69YtGiRp9nKbbDgiGle2hHZHOybgimFPv8wpiObMBQc8Wxu0aIFV155Jf3798disfimbEIIUYtI4PFDEngqb+PGjXzyySesWbPGs80VFIM9tmVp/5yyIeW1gK4oC9OxLRiy96IpNwDBwcEMHjyY4cOHy1w+Qgi/JoHHD0ngObedO3fy3nvvsXbtWuDUZqvWuINjfFy6s9McJRgzd2I8vgOdvdCzvWnTplx++eUMGDCAqKgoH5ZQCCEuPgk8fkgCz5nl5OTw7rvvsmDBAgCUpsMR3RR7QluUOcTHpasipdDnp2PM2IEh94Cn1ken09G2bVt69+5Nz549ZU4fIYRfkMDjhyTwlKeUYsGCBbz55puexTwdkY2w1e906QWdCmgOK4bsvRiz9qAvyvC6r0GDBnTp0oVOnTrRrl07goIqNzGiEEJcSiTw+CEJPN6ysrJ48cUX+f333wFwBUZhTe5x8UZcXWSarQBDzn4MuQfQFxxD4+RHgE6no0WLFnTu3JkePXrQvHlzdLrqmUdICCF8SQKPH5LAc9KqVauYOHEieXl5KE2PPbED9vjW1TZZYK3ntGHIT0efn44h/wg6W77X3TExMfTv35/hw4eTnJzso0IKIcSFk8DjhyTwlE4cOHXqVL744gsAXAGRWBv3xR0Q4eOS+ZZmKywNP3mHMOQdRnM7PPd17NiR6667jk6dOqHV0KSKQghRUyTw+CF/Dzw5OTk8++yzrF+/HgB7bCq2pC61aoh5reB2Ysg7jCFzF4bcg56mr/bt23PHHXfQokULHxdQCCEqTwKPH/LnwLN9+3aefPJJMjIyUDoj1oaXlc6nI85KsxViOroZY8YONOVC0zSGDx/Obbfd5nevISHEpUkCjx/y18Dzww8/MHnyZBwOBy5LGNYmA3EHhPu6WJcUzVaI+fAfGLP2ABAREcF9991Hv379fFswIYQ4Bwk8fsjfAo/D4eDNN99k7ty5ADjDkyhp2BcMJt8W7BKmLziKOe039NZcAPr27cv9998vq7YLIWotCTx+yJ8Cz/Hjx3nmmWfYsmULALZ6HbDXa19jK5n7FbcL05ENmI5sQFOK8PBw7r//fvr27evrkgkhRDkSePyQvwSelStXMnHiRPLz81F6EyWN+uAKb+DrYtU5uqJMLPuWoS/JAUpre+69915ZvkIIUatI4PFDdT3wFBcX88477/Dtt98CpRMJljTuj7LUvedaa7hdmNL/xHRkIxqKoKAgJkyYwF/+8hcMBoOvSyeEEBJ4/FFdDjyrVq3i1Vdf5dixYwDY41phq99ZhpxfJLriLCz7lqMvzgJKl6245ZZbuOyyy2TGZiGET0ng8UN1MfDs3buXd99917M8hNsUjDWlF66wRB+XzA8pN8aMHZgOr0PntAGQnJzMlVdeyeDBgwkJufTXJhNCXHok8PihuhJ4lFJs2LCBWbNmsWzZstJtmoYjthW2xA6gN9bgyd1o9qKaO341U6agi79chtOO6egmTMe3obnsABgMBjp06EDHjh1p1aoVDRs2lAAkhLgoJPD4oUs58LhcLnbt2sVvv/3GL7/8wuHDhwFQgDMipXR1c0tYjZdDsxUQvPGrGj9PdSlse43vVn132TFm7saYscPTsflUwcHBREVFERQUhMlkQqfT4Xa7cTqdOBwObDab5+ZwOHC5XCil0Ol06PV6LBYLgYGBhISEEBERQWRkJFFRUcTFxREbG0t8fDzR0dHSl0gIPyefAKLW27FjB4sWLWLPnj1s27aNoqKTNStKZ8AR1RhHXGrl1sFSCtzOCy+UqxqOcTG5nOBynHu/GqHhiG6KI7opmi0fQ+4h9IXH0Zdko7MXUVhYSGFh4XkfPT8//5z76HQ6YmJiiI+P9wShqKgoIiMjiYiIICwsjJCQEIKDgzGZZH4mIeoiqeHxQ5daDc+YMWM4fvy452elN+IMTcQZ3gBnRHLVmq5cDkLWfVIDpbxwI0aMYMyYMXz55ZfMnz+fuvzWLOh4Q+nvzeVAZy9Ec5SguRzgdlFaX6eBpkPp9KAznPhXD5oepWml96PQlBtcTjS3A81pKz2OowSdoxjNVojOXoRmLyzdr5KeeOIJBg0aVEPPXAjhK1LDI2q9U2t0XEHR2GNb4gqrjzIG+LBU1W/MmDE0aNCAMWPGMG/ePF8X5+LQG0tr5s5zlfozRkK3E81ejM5eiM5WUFqjVHAUna3gnMfcvHmzBB4h6iAJPKLWa9euHb/99hsA+qJMAvYtQwGu4DicUY1wRDUGfSWbIXSG0tqFC6TZCgneMueCj3OqL7/80lPDo2latdbwFLYahTIHV9vxLpTmsqMrOIquJLe0FsZRXFrDo1ylzY5aaQ0Pmh6lM4DuxL+a7sRNA+U+0UTpQHOdqOFxWtEcxZ7RYecSFhbmadIKDg4mJCSE0aNH1/CzF0L4gjRp+aFLrUnL7XZz5MgR9uzZw5YtW1i/fj07d+703K90BhwxzbDHt0WZAi9KmWqi03JZyKnusAM+7rQMoBS6ogyM2fsw5B1EZz13v5sLZbFYiI2NJS4ujoSEBOLi4jx9eGJiYoiMjMRorMGRfEKIWkUCjx+61AJPRY4fP87ixYuZP38+Bw4cAEBpeuxxqdjrtat8jc/5qoFh6WVNMG5TcLUHN58MSwdwuzBm7cZ4bAv6klzPZk3TSE5OpmHDhiQkJBAZGenpMHzqKC273Y7dbvcapeV0OlFKodfrKxylFRERQXR0NKGhoWiyZpoQ4gQJPH6oLgSeMkop1qxZw8cff8zmzZsBcBsDsDXogTMyxbeF82fKjSFzN+bD69E5SoOh2WymT58+9O7dmw4dOsj8O0KIi0oCjx+qS4GnjFKKlStX8uabb3rm5nFEpGBN6QUGs49L5190hcex7P8NfXE2ANHR0fztb39j2LBhBAfXnn5EQgj/IoHHD9XFwFPGZrPxySef8MUXX+ByuXAbA7E27ocrJN7XRav7XA7Mh9ZiOr4NKJ1Q8IYbbmDUqFEyt40Qwuck8Pihuhx4ymzfvp3nn3+egwcPotCwJ3bEntC2dHSPqHb6/HQs+5ajs5dOIDhkyBDuuOMOIiLOb7i5EEJUNwk8fsgfAg9AcXExU6ZMYeHChQA4whtgbdgHDFLbUG1Oq9WJi4vj4YcfpnPnzj4umBBCeJPA44f8JfCUmTdvHlOmTMHhcOC2hFLSZBDugHBfF+uSp887jGX/CnS20lqdkSNHcueddxIYeHGmBhBCiKqQwOOH/C3wQGkT15NPPklGRgZKZ8TaqE/pshSiyjRHMeaDazBm7QGkVkcIcWmQwOOH/DHwAOTk5PD000+zYcMGAGwJ7bAndvDN/DSXIpcD07EtmI5sKl27StO48sorue2226RWRwhR60ng8UP+GngAnE4nb7/9NrNmzSr9OTQRa6M+dW5druqk2YswHt+O6fg2NJcdgBYtWvDPf/6TFi1a+Lh0QghRORJ4/JA/B54yP/30Ey+//DI2m6106HqjvrhCE3xdrFpDc5Sgzz2IMXsf+vx0tBPLdNavX5/x48fTr18/dDqpGRNCXDok8PghCTyl9u7dy9NPP+1ZmsIW36a0iUvnh2vqup2lK4rnp2PIT0dXlMmpA/jbtWvHqFGj6N27N3q93mfFFEKI8yWBxw9J4DmppKSEN954g/nz5wPgsoRjS+mFKyTOxyWrYUqhs+ahzz2IIf8w+oJjaMrltUvTpk257LLLGDBgAElJST4qqBBCVA8JPH5IAk95y5cv55VXXiEnJwcAR3RTbImdLtrq6xeFUuhKsjFk78OYnYbO5r1ieXR0NB06dKBTp0506tSJmJgYHxVUCCGqnwQePySBp2L5+fm88847fP/99wAonQF7fGvsca0u6fW4NEcJhszdGLN2oy/J8Ww3Go20b9+ebt260aVLFxo0aCCriwsh6iwJPH5IAs/ZbdmyhTfeeINt20pnD1Z6E/bYljjiUi+d0VxKoc8/jPH4Dgx5B9BOvM2NRiPdu3enf//+dO/eXYaTCyH8hgQePySB59yUUvz66698+OGHpKWllW7T9DiiGuGIS8UdGOXbAp6J04oxYxemjG2eGZABWrZsyRVXXEG/fv0ICQnxYQGFEMI3JPD4IQk8led2u1mxYgWff/65p8YHwBkchyO2ZelszTrfj1rSSvIwHduMMWs3mru083FwcDBDhgxh+PDhNGrUyMclFEII35LA44ck8FSdUootW7Ywa9Ysfv31V1yu0lDhNgbgiGmOI7YFynjxm4d0RZmY0v/EkHvAM4y8SZMmjBo1ioEDB2KxWC56mYQQojaSwOOHJPBcmMzMTL777ju+++47srOzAVCaDmdUY+xxrXEHRtR4GXRFmZgPr8eQd9CzrVevXowZM4a2bdtK52MhhDiNBB4/JIGnejgcDn799VdmzZrF1q1bPdudYfWxJ7TFFRJf7efUrHmYD/2BMScNAJ1Ox6BBgxg7dizJybIYqhBCnIkEnkpSSjF48GD0ej0LFy70uu+tt97iscceY9OmTTRo0MBHJaw8CTzVb8uWLcycOZNly5ZR9pZyhsSXBp/QRLjAGhfNXowpfT3GjJ1oKDRNY9CgQdx0003Ur1+/Op6CEELUaRJ4quDgwYO0adOGSZMmcfvttwOwb98+2rZty+uvv864ceN8W8BKksBTcw4dOsSMGTNYuHAhDocDAFdgFPb4NjgjUqCK609pjmJMRzZjPL7NMxNyjx49uPXWW6UjshBCVIGs/lcFSUlJTJkyhYceeoh9+/ahlGLChAkMHDiQhg0b0rVrV8xmMwkJCfzrX//C6XR6HpuSksJrr73mdbz27dvz9NNPe37WNI0PPviAUaNGERgYSNOmTfn222+9HvPtt9/StGlTAgIC6N+/Px999BGappGbm1uDz1xUVv369XnooYf47LPPuOaaa7BYLOiLswjYu4SgjV9iOrwezZp/9oMoha4wA/O+5QRt+ArTsc1oykXr1q353//+x8SJEyXsCCFEFfnhKokX5qabbmLOnDncfPPN/PWvf2Xz5s2sWbOG1NRUxo0bx8cff8z27du59dZbsVgsXoGmMp555hlefPFFXnrpJV5//XXGjh3L/v37iYyMJC0tjdGjR3Pfffdxyy23sH79eh566KFzHtNms2Gz2Tw/5+ef4w+uuGCxsbHcddddjB07lm+++Ya5c+eSk5ODOX095vT1uCzhuELjcVvCUQYLaKA5rOiKszDkH0FnPzmHTmpqKjfeeCPdunWTzshCCHGeJPCch/fee4/WrVuzbNkyvv76a9577z2SkpJ444030DSNFi1akJ6ezqOPPsq///1vdFVoxhg3bhzXXnstAC+88AKvv/46q1evZujQobzzzjs0b96cl156CYDmzZuzefNmnn/++bMec+LEiTzzzDPn/4TFeQsPD+emm27i2muvZenSpfz444/88ccfYM1Fb8094+MsFguXXXYZV155Ja1bt5agI4QQF0gCz3mIjY3ltttuY+7cuYwaNYpPPvmEHj16eP1R6tWrF4WFhRw6dKhKHZnbtm3r+X9QUBAhISEcP34cgB07dtClSxev/bt27XrOYz722GM88MADnp/z8/Nl9euLzGQyMXjwYAYPHkx+fj7r1q1jx44dHDhwgMLCQpRShIeH06BBA1JTU+nYsaPMoSOEENVIAs95MhgMGAyll08pVe4beFlf8LLtOp2O0/uHl3VqPZXRaPT6WdM03G73Oc9zNmazGbP50l38si5wOp3s27ePAwcOcPjwYQoKCiguLiY6OprExEQiIyOJj4+nYcOGJCUlValWUAghxLlJ4KkGqampzJo1yyuQ/Pbbb4SEhJCYmAhATEwMR44c8TwmPz+fffv2Vek8LVq08KzkXWbt2rUXWHpRU7Kzs1myZAmrVq1i48aNWK3WSj0uMDCQNm3a0LlzZ3r06CHDzoUQohpI4KkG//jHP3jttde45557uPvuu9mxYwdPPfUUDzzwgOeb+oABA5g+fTojR44kIiKCJ598Er2+amsw3X777UyePJlHH32UCRMm8OeffzJ9+nQA6eNRS7jdblavXs2cOXNYs2aNp3YOINDgpn6Qi/hAFyFGRYBB4VJgc2lk23RklOg4WGiguLiY33//nd9//50333yTxo0bM2DAAAYNGkRcXJwPn50QQly6JPBUg8TERL7//nsefvhh2rVrR2RkJBMmTOCJJ57w7PPYY4+xd+9eRowYQVhYGP/5z3+qXMPTsGFDvv76ax588EGmTJlCjx49ePzxx7nzzjulycrHXC4XixYt4uOPP+bgwZPLPTQOddA11k6rCAf1g13ozpFLXW44VKRna46RDVlGtuca2bNnD3v27OGDDz6gQ4cODB8+nMsuu0x+50IIUQUy8eAl7vnnn+edd97x+iN7LjLxYPVRSvHbb7/x7rvvcuDAAaC0JqdPgo0BiVbiA93nOMLZFTg01mWY+O2omW25J/t3hYSEcPnll8tK6EIIUUkSeC4xb731Fl26dCEqKooVK1Z4mtGee+65Sh9DAk/1SEtL43//+x/r1q0DIMjg5ooGJQyqbyWgBupOM0p0LDtiZtkRM1m2k82hzZs3Z9iwYfTv35+wsLDqP7EQQtQBEnguMffffz8zZ84kOzubBg0acMMNN/DYY495RoxVhgSeC2O1Wvnoo4/48ssvcblcGHWKIUlWRiSXEGio+beTW8HmbCNL0s2szzThUqXtZHq9nm7dutGvXz969OhBSEhIjZdFCCEuFRJ4/JAEnvP3559/8tJLL3H48GEAOkTbub5pETEBF9Z0db7y7Rq/HTOz4oiZ/YUnQ6/BYKBt27Z0796dzp0707BhQ+nYLoTwaxJ4/JAEnqorKSnh3XffZe7cuQBEmF3c1KyIjjHl51LylcNFen4/ZmJNhonDRd41fhEREbRp04a2bdvSunVrGjduXG7OJyGEqMsk8PghCTxVs2nTJiZOnEh6ejoA/etZ+XuTYgIuQvPV+TparGNDlomNWUZ25Bqxu71rd0wmE82aNSM1NZXU1FTatGlDVFSUj0orhBA1TwKPH5LAUzl2u53p06czY8YM3G43kWYXt7QsonVk7anVqQyHG/bmG9iZa2BnnpHdeQaKnOVnck5MTKRjx4506tSJLl26EBQU5IPSCiFEzZDA44ck8Jzb3r17ef7559mzZw8AveOtjG1WfFE6Jdc0pUprgPbkG9idb2RXnoFDhXoUJ2uBDAYD7dq1o3///vTp00deJ0KIS54EHj8kgefMXC4XX331FVOnfoDD4STE6ObmFkV0jrH7umg1qtipsSPXwJZsIxuzTRwtPjns3Wg00rt3b0aOHEn79u2l87MQ4pIkgccPSeCpWHp6Ov/973/ZuHEjAO2j7ExoWUiYyf/eIkeKdaw9bmLVMTMHT+kA3ahRI0aPHs2gQYMwmUw+LKEQQlSNBB4/JIHHm9vt5ptvvuHdd9/FarVi0Suua1pE3wQbUpkBaQV6lqRbWHHUjM1VekFiYmL4+9//zogRI2SJCyHEJUECjx+SwHPSwYMHefnll9mwYQMALcId3Nqy0Gfz6tRmRQ6NJelmfjwYQI69tNNzdHQ0Y8eOZfjw4VLjI4So1STw+CEJPKUjsGbOnMnHH3+Mw+HApFP8rUkxAxOt51zg09853LDsiJnv0gI8S1zExcVx8803M3jwYPR6/TmOIIQQF58EHj/k74Fn7dq1TJkyxbPgaptIO+Oa+2625EuVww1L0818mxZI7okan+TkZMaPH0+fPn2kc7MQolaRwOOH/DXwHDhwgLfffpuVK1cCEGZyc22TInrE2aWvzgWwueDnQxbm7Q/wzO/TtGlTxo0bR8+ePSX4CCFqBQk8fsjfAs+xY8f46KOPWLBgAW63G72mGJho5epGF2exT39R7NRYcMDCgoMBWE90bm7cuDHXXnst/fr1q9ICt0IIUd0k8Pghfwk8hw4d4osvvmDhwoU4nU6gdLHPvzcuIiFImq9qSoFdY8FBCz8dOhl8YmJiGDlyJMOHD5clLIQQPiGBxw/V5cDjdrtZu3Ytc+bMYdWqVZS9vFuGOxjduJimYU4fl9B/FDo0fjlk4cdDFgocpU1dOp2Ojh07MmDAALp16ybhRwhx0Ujg8UN1LfAopdi3bx+LFy9m4cKFHD9+3HNf+yg7I1NKJOj4kN0FazJMLDpsYVee9wrtTZs2pU2bNrRq1YpGjRqRlJQkTV9CiBohgccP1YXAY7PZ2Lx5M6tXr2blypUcOHDAc1+gwU2veBuD6ltJCKz5piuXG7Jt5RfjvNRFmt3oq/lpHSvWseqYmXWZJvYVlA82Op2O2NhY4uLiiIyMJDw8nODgYIKCgggICCAgIACz2ey5mUwmLBYLZrMZi8VCQEAAFovFZ0PjT/04lc7aQtQuEnj80KUWeOx2O4cOHWLPnj3s3LmTbdu2sX37dk+/HACDpmgT5aBHnI2O0XZMF/HvXUaJjgdXRly8E14kr/TIqdGh+rk2je25pYuX7s03cLhIj9VVPQmrLPwEBgZ6bmWBKSAgAJPJhNlsxmAwYDAY0DQNnU6H2+3G7XbjcDhwOBzY7XZsNhtWq5WSkhKvf61WKzabDbvdjtPpxOVyeQWesmNbLBYsFgtBQUEEBQUREhJCWFgYYWFhREREEB4eTmRkpOcWGhqKTlf3ArQQviZ1x6JWOHLkCFu3biUvL4/s7GyysrI4duwYR44c4dixY7jd5f/whpvctI600zbKQdsoR6VGXCkF9mr+G17dx6st7O7SIec1JcCg6BBtp0N06cKsSkGOXUdWiY5sm44Ch458u4bVqaPYpWFzadhdYHdr2N0aDjfYXRqOEz/bXHhWfC8LJDk5OTX3BM7B6XTidDqxWq1VepxOpyM8PNwThsLDwwkLCyM0NJSQkBBCQkIIDAz01HqFhISQmJhYQ89CiLpDanj8UG2r4bHZbFx11VWUlJSccZ9Ag5vEIBfJIU4ahrhoFuYgNsBd5flzbC64dWnt7Cg7YsQIxowZw5dffsn8+fORt2blvN83C7O+NDA53GB1aaU3p0bJqf+eCE02l4bdDQ6XhkuBU2mUXWpNAx2g1ykMGpj0CpNOYdKDRa8wl910pf8adaX7GLTSx5S9HBXgcms4VWkos7lKy1Dk0ChyahSeCHP5Zf/adeTZdZ7O3VU1fvx4brzxxuq4nELUWVLDI3zObrefNezEB7pIjXBQP8hJcoiLBsFOzHVw9YIxY8bQoEEDxowZw7x583xdnEuOpoFJXxpAQvEOi2U1eycDT2kNUVko8Qo8Gug1hUFHadg5EWrMJ4JN5UN2+cCqVGkgK3SUDzv5do0sm45DhQaOlVTtBX7kyJEq7S+EP5IaHj9U22p4AL7++mvWr19Pbm4uOTk5ZGRk4HA4KtxXpylSgl00D3fQKtJBi3BHpfvs1ESTVqZVx2O/X3gfntpWwzOxWw7RFt+017lV6bD2AruOYqfmqbUpq51xujXsJ/7vUqXNWraymh0Xnhoeq0uj5MS/J+tfzp9eK6vhOVH7o1cYdQrjiaCk00p/ZwoNlxscp9XwFDs13Kpq5dA0jdDQUE+TVlkn7qCgIAIDAwkODmbo0KHExsZe8PMToi6TwOOHamPgOZ1SitzcXI4cOcKhQ4fYv3+/p9Nydna2174mnaJNlJ2uMaX9QSwXud6yujota5qGUsrzr6/VdKdlKG2C2l9wstNyepGeDKuOHJuuWgJKRU4d4XVqp+Wy6+5yuXA6nZ5Oy1arFZerejszmc1mT9+ciIgIIiMjy/1b1o8nJCREFmQVohpI4PFDl0LgOZtjx46xceNG1q9fz+rVq8nMzPTcZ9Erusba6F/PRuOLNPdOdQ1Lz7VpZFr1RFtchJt9/7asiWHpUDo0fV2miQ1ZRnblGXG4Kw42mqZ5ajSCg4M9Q85PHZZedivbXjYK69SRWaeO1DKbzecVHpxOJyUlJV4jtMpGaZUFI5fLhcvl8oQno9GI0Wj0lK+sViY0NBSz2Xyhl1EIUUUSePzQpR54TqWUYvfu3SxdupRFixaRnp7uua9RiJPLk0roFmuvkT/covJKnBorjppYftTM3nzvyQfDwsJITU2lcePGpKSkkJCQQFxcHOHh4TIJoRCi2kjg8UN1KfCcSinFpk2bmD9/PosWLfL0AYq1uBiRUsJl8TYMEnwuqqPFOhYcDGDFUTO2E+tq6XQ62rdvT8+ePenSpQsNGjSQSfqEEDVOAo8fqquB51S5ubl8++23zJo1i7y8PADiAlz8tVEx3WLtVR7OLqrmQKGeb/YFsDbD5OmLk5yczMiRIxkwYACRkZE+LqEQwt9I4PFD/hB4ypSUlDBv3jw+++wzcnNzAWgc6mBs02KayPpa1e5QoZ45+wJYk3Gyj0qPHj0YM2YM7du3l5ocIYTPSODxQ/4UeMoUFxfz9ddf8/nnn3tmvu2TYOVvjYsJMclb4EIdL9ExZ18gvx0trdHRNI1+/fpxww030KhRI18XTwghJPD4I38MPGWysrJ4//33WbBgAQBBBjfXNS3msnibNHOdhxybxrdpgSxJN+M6Mb9Mnz59GDdunAQdIUStIoHHD/lz4CmzefNmXn31Vfbs2QNA6wg7N7coqvF5Z+qKXJvG9wcC+OWwxTOsvEuXLkyYMIEWLVr4uHRCCFGeBB4/JIGnlNPp5Msvv2T69OnY7XYsesXfmxTRv57U9pxJZomOHw5aWJJ+Mui0bt2aCRMm0KFDBx+XTgghzkwCjx+SwOPt0KFDTJo0iU2bNgHQOtLOLS2KiPTRsgq1jVKwM8/AT4csrM0weZZGaNmyJTfffDNdunSRzshCiFpPAo8fksBTntvtZtasWbz//vvY7XYCDW5ubFZEjzj/HcKeUaJj1bHSyQKPFJ+cALBjx46MHTuWjh07StARQlwyJPD4IQk8Z7Z//34mTpzI9u3bAegaa2Nc8yKCjXX/beJyQ1qBgY3ZRtZnmkgrOBlyLBYLAwYM4K9//SuNGzf2YSmFEOL8SODxQxJ4zs7pdPLZZ5/x0Ucf4Xa7CTe5uaVlIW2jKl69/VJlc5UGnF15BnbmGtmRa6DEdXIq6rIZkQcMGMCAAQMIDAz0YWmFEOLCSODxQxJ4Kmf79u08//zzHDx4EIABiVb+3rjooq/GXh2Ugiyrjp15BnbnGdmdb+BAod7TH6dMcHAwHTt2pEePHnTr1k1mRBZC1BkSePyQBJ7Ks1qtvP/++8yaNQuAGIuLW1oW0jKi9s/SnGvT2JRtYmuOkW05BrJt5VcJj4qKolWrVrRp04Y2bdrQtGnT81pNXAghajsJPH5IAk/VrVu3jkmTJnHs2DEA+tez8rcmxQQaatfbJ71Ix9oMM2szvPvgAOj1epo2bUrr1q1p1aoVqampxMbGSsdjIYRfkMDjhyTwnJ+ioiLeeecdvvvuOwDCTW6ua1rk88VIc2wavx01s/KYmQOF3iGnWbNmdOnShQ4dOtCqVSsCAgJ8VEohhPAtCTx+SALPhVm/fj0vv/wyhw8fBiA1wsG1TYpIDnFdtDI43bA+08SvR8xszDJ6ViTX6/V07tyZ3r1706NHD6Kioi5amYQQojaTwOOHJPBcOJvNxowZM/j0009xOBxoKHrG27gqpYS4wJqbsPBIkY6lRywsP2Im33FyRFXr1q25/PLL6devn/xOhRCiAhJ4/JAEnupz5MgR3n//fRYtWgSATlN0j7VzeVIJjUKrp8anyKGx+njpBIC78oye7ZGRkQwdOpRhw4aRlJRULecSQoi6SgKPH5LAU/22bdvGRx99xKpVqzzbGoU46RFvo0usnUhz1Wp9sm06NmcZWZNhYnO20bMSuU6no1u3blxxxRX06NEDg+ESHCMvhBA+IIHHD0ngqTnbt29n1qxZLF68GKfz5ND1xCAnzcOd1A9yEh/oJsToJsCgcCmwuTRybDoySvSkFejZm28gvdg7yKSkpDB06FAGDRpEdHT0xX5aQghxyZPA44ck8NS87OxslixZwqJFi9iyZQtVfZtpmkaLFi3o1q0b/fr1IyUlpWYKKoQQfkICjx+SwHNx5efns2HDBrZs2cL+/ftJT0+noKCA4uJi9Ho9JpOJmJgY4uLiaNSoEc2bN6dVq1aEhYX5uuhCCFFnSODxQxJ4hBBC+BvduXcRQgghhLi0SeARQgghRJ0ngUcIIYQQdZ4EHiGEEELUeRJ4hBBCCFHnSeARQgghRJ0ngUcIIYQQdZ4EHiGEEELUeRJ4hBBCCFHnSeARQgghRJ0ngUcIIYQQdZ4EHiGEEELUeRJ4hBBCCFHnSeARQgghRJ0ngUcIIYQQdZ4EHiGEEELUeRJ4hBBCCFHnSeARQgghRJ0ngUcIIYQQdZ4EHiGEEELUeRJ4hBBCCFHnSeARQgghRJ0ngUcIIYQQdZ4EHiGEEELUeRJ4hBBCCFHnSeARQgghRJ0ngUcIIYQQdZ4EHiGEEELUeQZfF0AIAcXFxWzYsIEtW7awb98+0tPTyc7Opri4GJfLhclkIiAggLCwMCIjI4mLiyM+Pp6EhATi4+OJi4sjKioKg+Hsb+mSkhIyMzPJzMwkIyODrKwscnNzKS4uxuFwYDQaCQ4OJiEhgZSUFFq0aIHJZLpIV0EIIWqOppRSvi6EuLjy8/MJCwsjLy+P0NBQXxfHbxUWFrJkyRKWLFnC+vXrcblcF3zMsLAwQkJCCAgI8IQfq9VKcXExeXl5WK3WKh3PYrHQqVMnRowYQdeuXdHr9RdcRiGE8AUJPH5IAo9v7dq1i9mzZ7No0SJsNptnu9scgjMkHndgFG5LGMoYgNKbQNNAudFcDjRHCZqjGJ29CM1WiM5WgM5egGYvRlPuSp1f6Qy4TUEoUyDKGIgyWErPo9OB243msqGzFqArykTnLPE8rn79+tx666306dMHTdOq/boIIURNksDjhyTwXHxKKdasWcOMGTNYt26dZ7vLEo4zujGOiIYoywX8LpRCc1pLA5HLDi4HcOKtrelRemNpsDFaQF/JJiql0JVkY8zcjTFzV+lxgfbt2/Poo4+SkJBw/uUVQoiLTAKPH5LAc/G4XC5+/fVXPv/8c3bt2gWAQsMZmYIjNhVXcGxpDU5t57JjOroZ09HNaG4nFouFf/7znwwdOtTXJRNCiEqRwOOHJPDUPJvNxsKFC5k5cyaHDx8GSpuSHDHNsce1QpmDfVzC86NZ87HsW4ah8BgAf/nLX7j77rulY7MQotaTwOOHJPDUnOPHj/Ptt9/y7bffkp+fD4DSm7HHtcQelwoGi49LWA2UwpT+J+b09UBpE9d//vMfQkJCfFwwIYQ4Mwk8fkgCT/VyOp2sWrWKH374gZUrV+J2l3YedpuCsMe1xhHTDPRGH5ey+ulzDxKwZwma20FycjIvvvgicXFxvi6WEEJUSAKPH5LAc+FcLhebNm1i8eLFLFmyhLy8PM99zpB4HLGpOCMagFa35/bUFWcRsPMndI5iYmJiePnll0lOTvZ1sYQQohwJPH5IAs/5cTgcrFu3juXLl7N8+XJycnI897kNAaWjraKb4Q4I910hfUCzFRKwcyF6ax5hYWG89NJLNGvWzNfFEkIILxJ4/JAEnsqz2WysWbOGJUuWsHLlSoqKijz3Kb0JZ0QyjshGuEIT6nxtztlojhICdv6IvjiLoKAgJk2aROvWrX1dLCGE8JDA44ck8JydUopNmzaxYMECli5d6hVy3MYAnOHJOCOScYUklE7WJ0q57ATs/AlD4THMFgvPP/ccnTt39nWphBACkMDjlyTwVMxqtbJw4ULmzJlDWlqaZ7vbGIgzsiGOiBTcl8q8Ob7ichCwexGG/MMYjEaefuopLrvsMl+XSgghJPD4Iwk83goLC5k9ezZff/31yaHkOkNpyIlqgiskXkJOVbhdWPYswZi7H51Ox8MPP8ywYcN8XSohhJ+TwOOHJPCUstlsfP3118yYMYOCggIA3OZg7LGtcEQ3AYPZxyW8hCk3lrQVGDNLZ5eeMGEC119/vazBJYTwGQk8fsjfA49Sip9//pn33nuPjIwMoHRNK3u99jgjU/y683G1UgrTobWYj24CYOjQoTz44IMYjXVvTiIhRO0ngccP+XPg2bNnD6+99hqbNpX+EXabgrAldsIZ1UiCTg0xHt+Gef8qNBStW7fm6aefJjo62tfFEkL4GQk8fsgfA09JSQnTp0/nq6++wu12o3QG7Altsce3Bp3B18Wr8/S5BwnYuxTNZSciIoLHH39cRnAJIS4qCTx+yN8Cz++//87kyZM5dqx0wUtHRDK2pG6X7AKelyrNmkfA7kXoS0onbBw9ejS33HILFksdWF9MCFHrSeDxQ/4SeHJycnjzzTf5+eefgdLmK2tyT1zhST4umR9zOTEfWo3p+HYA4uPjuffee+nRo4d0aBZC1CgJPH6orgcet9vN999/z7vvvktBQQEKDUdcKrbEjnVyEc9LkT73IJb9v6Gzl07q2KFDB2699VZSU1N9XDIhRF0lgccP1eXAs2vXLqZMmcLmzZsBcAVEYk3phTs4xsclE+W4HJjS/8R0bAuaKl1hvn379lxzzTV069YNg0H6Vgkhqo8EHj9UFwNPdnY206dPZ968eZ5OybbEjjjiUmX0VS2n2Qoxp6/HkLUb7cTHUXR0NIMGDaJfv340b95cmruEEBdMAo8fqkuBp6CggK+//povv/ySkpISAByRDbEldUWZgnxcOlEVmq0Q0/GtGDJ3o3NaPdujoqLo0qUL7du3p23btiQkJEgAEkJUmQQeP1QXAk9WVhazZ8/mm2++obCwEABXUDS2pK6lS0GIS5fbhSH3IIbsfRjyDqK5nV53h4WF0axZM5o0aULDhg1p0KABSUlJBAVJwBVCnJkEHj90qQYep9PJH3/8wffff8/y5ctxuVzAiVmSEzvgjEipfWteKTeavejc+11ClCno4jUTul3oC46iz0/HUHAUXXGWp7/P6SIiIkhISCAhIYG4uDji4uKIiYnx3MLCwqRmSAg/JoHHD11KgScnJ4f169ezevVqfvvtN8/ingCu4Fjs8a1xhjeotf10NFsBwRu/8nUxqlVh22tQ5hDfnNztRFecg744C11xNjprLrqSXK8msDMxGo1ERkYSFRVFZGSk5xYREUFkZCTh4eGe/wcEBEg4EqKOkWEQolYpKSnhm2++Yfv27ezcuZP09HSv+90GS+kq5jHNcQdGVv0ESsFpTSQ1ynURz3WxuJzgcvjs9O6AcNwB4RDV+JQyOdDZ8tHZCtFshegcRWj2InT24tJ/XTYcDgfHjh3zTEB5NkajkfDwcM8tLCyM8PBwQkNDCQsLIzQ0lJCQEIKDgwkJCSEoKIigoCBZJ0yIWkxqePxQba7hmT17Nv/73/88PyvAHRCBKywRZ1j90v45F1Kb43IQsu6TCy9oLTFixAjGjBnDl19+yfz585G384VRmh5NuWrs+LfccgvXX399jR1fCHFmUsMjapXi4mIAlN6EI7op9tiWKEvtCmW1yZgxY2jQoAFjxoxh3rx5vi7OJa+w/bVobie6kpzSpjJrDvqSXHQleWgu2wUf/4MPPuCqq64iOFiWNRHiYpPAI2qVspE2msuO6dgWTMe24LKE4wqrhzMsCVdIAuguoIZHZ6Cg4w3VVNpz02yFBG+ZU2PH//LLLz01PJqmXZQansJWoy69dchcTjRnCTpHMZqj5MTNis558v+a00rw+s/RqLhTdHW47bbbJOwI4SPSpOWHanOTltVq5bvvvmPHjh3s2LGDgwcPet2v9GYckQ1xxDTDHRTto1JWXk13Wi4LORcr7ICPOy2fidOKzpqPzlZQ2o/HXojOXtaPpwjNZa/S4SwWCxEREeX675T9e2ofnrJbYGAger2+hp6gEOJCSeDxQ7U58JwuNzeXDRs2eEZp5eTkeO5zBcWUjtKKSK61o7Rqeli6Zi9GZy/EbQpGmQJr7DynuqjD0k/ncp4YoZV1otkpB30lm5vMZjNRUVGeW9kIrbKRWWUBJyIiQlZwF6IOksDjhy6lwHMqp9PJn3/+yQ8//MCvv/6Kw1E6UshlCcNerz3OyEa1bx4ecWHcTvT5RzDkp6MvOIquOBuNij+yoqOjqVevHvHx8cTHxxMbG0tsbCzR0dHExMQQHBwsQ82F8GMSePzQpRp4TpWTk8PcuXOZM2eOZ24eV2Bk6UzLofV8XDpxQdxODDkHTsy0fKjcqKnIyEiaN29O48aNadiwIcnJySQmJhIQEOCjAgshLgUSePxQXQg8ZYqKipg1axYzZ86kqKi06cgRkYwtqdul17HWz2m2AkzHtmLM3OXV5yY2NpauXbt61tKKiYmRmhohRJVJ4PFDdSnwlMnNzeWjjz7im2++ObFauh57vQ7Y41pf2KguUeM0a/6J1dL3epqr4uLiGDx4MH379qVJkyYScIQQF0wCjx+qi4GnzN69e5kyZQobNmwAwBUQgTWlF+7gWB+XTJTjcmA+vA7j8W2e9bE6d+7MNddcQ+fOnWXEkxCiWkng8UN1OfAAKKVYuHAhb7/9Nnl5eSjAEdsSW/3OoJep/2sDfe4BLGm/oXOUTjTZpUsXbrnlFpo3b+7jkgkh6ioJPH6orgeeMrm5ubz99tssXLgQALcxCFty99Jh7MI3XA7MB3/HlLETgHr16nHffffRrVs3HxdMCFHXSeDxQ/4SeMqsXbuWyZMnexYidYQ3wNagu3Rqvsi0kjwCdv+C3pqLpmmMGTOG8ePHYzabfV00IYQfkMDjh/wt8EDpDM6ffPIJM2bMwOVyoTQ99oS22OPbgF5WWKlp+twDBOxZiuZ2EB0dzeOPP06HDh18XSwhRCWMGzeO3Nxc5s6d6+uiXBAZviL8gsVi4dZbb+WDDz6gffv2aMqFOX09QZu+xpCxE1TNrZ/k74zHthC46xc0t4N27drx7rvvStgRQlx0EniEX2nYsCGvvvoqTz31FHFxcegcxQSkLSdo82wMmbvBLcGn2iiF+cBqLAd+BxTDhw/nlVdeISoqytclE0JcREopnE6nr4shgUf4H03T6N+/Px9//DF33HEHoaGh6Kz5BOz7laBNX2E8ugmc516bSZyF241l36+Yjm0G4Pbbb+ehhx7CYJDmQyHOV0FBAWPHjiUoKIiEhAReffVV+vXrxz//+U8A7HY7jzzyCImJiQQFBdGtWzeWLFniefz06dMJDw9n4cKFtGzZkuDgYIYOHcqRI0c8+7hcLh544AHCw8OJiorikUceKbcwsVKKF198kUaNGhEQEEC7du34+uuvPfcvWbIETdNYuHAhnTt3xmw2s2zZshq9NpUhgUf4LbPZzN///ndmzJjBrbfeSkREBDp7EZaDawj+cwaWvUvR5x2W5q6qcjux7FmEMWsPOp2Oxx57jGuvvVYmDxTiAj3wwAOsWLGCb7/9lp9++olly5axbt06z/0333wzK1asYMaMGWzcuJFrrrmGoUOHsmvXLs8+xcXFvPzyy3zyySf8+uuvHDhwgIceeshz/yuvvMK0adOYOnUqy5cvJzs7mzlz5niV44knnuDDDz/k7bffZsuWLdx///1cf/31LF261Gu/Rx55hIkTJ7Jt2zbatm1bQ1el8s6707Ldbmffvn00btxYvrVdYvyx03Jl2Gw2fvrpJ+bOncvu3bs9293GAJwRDXFGJOMKiau9K7PXBi4HAbt/wZCfjtFo5JlnnqFnz56+LpUQl7yCggKioqL4/PPPGT16NAB5eXnUq1ePW2+9lXvuuYemTZty6NAh6tU7uZ7goEGD6Nq1Ky+88ALTp0/n5ptvZvfu3TRu3BiAt956i2effZajR48CJ6eKePTRR4HSRZsbNmxIp06dmDt3LkVFRURHR7No0SJ69OjhOc8tt9xCcXExn3/+OUuWLKF///7MnTuXK6+88mJdonOqclIpLi7mnnvu4aOPPgJg586dNGrUiHvvvZd69erxr3/9q9oLKcTFYDabGTFiBMOHD2fbtm0sWLCAxYsXU1BQgOn4VkzHt+I2WHCGNygNP6H1QCezAXs4bQTu+gl94XECAgJ44YUXpHOyENVk7969OBwOunbt6tkWFhbmmaxz3bp1KKVo1qyZ1+NsNptXv7nAwEBP2AFISEjg+PHjQGmAOnLkiFeQMRgMdO7c2dOstXXrVqxWK4MHD/Y6j91uL/d+79y584U85WpX5cDz2GOPsWHDBpYsWcLQoUM92wcNGsRTTz0lgUdc8jRNIzU1ldTUVO655x7Wrl3LkiVL+O2330rDT+ZOTJk7UXojzvAGOCIb+X340RwlBOz8EX1xFsHBwbz44oukpqb6ulhC1BllgeP0puGy7W63G71ezx9//FFuWZbg4JNzjhmN3rPNa5pWro/O2bhPDOyYP38+iYmJXvedPqdWUFBQpY97MVQ58MydO5eZM2fSvXt3rwufmprKnj17qrVwQvia0WikR48e9OjRA6fTyYYNG1i2bBnLli0jKysLY9YejFl7Smt+ohrhiG6GOzDS18W+qDRbIYE7F6Cz5hMREcFLL71EkyZNfF0sIeqUxo0bYzQaWb16NUlJSUBp94Rdu3bRt29fOnTogMvl4vjx4/Tu3fu8zhEWFkZCQgKrVq2iT58+QGmT1h9//EHHjh2B0r/1ZrOZAwcO0Ldv3+p5chdJlQNPRkYGsbHlF2IsKiqSTomiTjMYDHTq1IlOnTpx7733smXLFpYsWcKiRYvIycnBdGwrpmNbcQXHYo9NxRmRUudXatcVZRGw60d0jhLi4uJ45ZVXqF+/vq+LJUSdExISwk033cTDDz9MZGQksbGxPPXUU+h0OjRNo1mzZowdO5Ybb7yRV155hQ4dOpCZmcmiRYto06YNV1xxRaXOc9999/Hf//6Xpk2b0rJlSyZPnkxubq5XOR566CHuv/9+3G43l112Gfn5+fz2228EBwdz00031dAVuHBVDjxdunRh/vz53HPPPcDJ6rX333/fq91PiLpMp9PRpk0b2rRpw5133snatWv5/vvvWbFiBRQeJ6DwOG5jEPb4VBwxLerkoqX6nAME7F2C5i7t1Dhp0qQKvwwJIarH5MmTueOOOxgxYgShoaE88sgjHDx4EIvFAsCHH37Ic889x4MPPsjhw4eJioqiR48elQ47AA8++CBHjhxh3Lhx6HQ6xo8fz6hRo8jLy/Ps85///IfY2FgmTpzI3r17CQ8Pp2PHjvzf//1ftT/n6lTlUVq//fYbQ4cOZezYsUyfPp3bb7+dLVu2sHLlSpYuXUqnTp1qpKD9+vWjffv2vPbaa2fcJyUlhX/+85+eOQkqomkac+bM4aqrriItLY2GDRuyfv162rdvX+1lvhjKesPn5OQQHh5eqcfIKK2ak5WVxXfffcc333xDTk4OAEpvwh7bEkdcKsoY4OMSVgPlxnR4PeYjGwDo2LEjzz77rFc/ASFEzSsqKiIxMZFXXnmFCRMm+Lo4tV6V69t79uzJihUrKC4upnHjxvz444/ExcWxcuXKKoedcePGoWkad9xxR7n7/vGPf6BpGuPGjQNg9uzZ/Oc//6lqcS+q2267Db1ez4wZM3xdFOEjUVFRjBs3jpkzZ/LII4/QoEEDNJcd85ENBG38EvP+lWi2Al8X87xp1jwCt33vCTtXX301kyZNkrAjxEWwfv16vvjiC/bs2cO6desYO3YsQK0a+l2bndcEOm3atPEMS79QSUlJzJgxg1dffZWAgNJvv1arlS+++IIGDRp49ouMrN0dQYuLi5k5cyYPP/wwU6dO5e9//7uviyR8yGQyccUVVzB06FBWrFjBZ599xvbt2zEd34bx+HacEck4YlviComHS6Hvm9OO6ehGTEe3oCkXgYGB3H///eWGpgohatbLL7/Mjh07MJlMdOrUiWXLlhEdHe3rYl0SqlzDk5+fX+GtoKAAu91e5QJ07NiRBg0aMHv2bM+22bNnk5SU5DWm/9TpswGOHz/OyJEjCQgIoGHDhnz22Wfljr1r1y769OmDxWIhNTWVn3766Zzl2bp1K1dccQXBwcHExcVxww03kJmZec7HffXVV6SmpvLYY4+xYsUK0tLSvO53Op3ce++9num6H330UW666Sauuuoqzz7nmq4b4Pvvv6dZs2YEBATQv3//cucRtYtOp6N37968/fbbTJ48mS5duqChMOakEbjjB4I2z8KU/ie6klw4vzlASyk3mr0YXVEm+vx09DkHMGSnYchOQ597EH3B0dJzOG2VP49S6IoyMe9fRfDGLzEf2YimXHTq1Ilp06ZJ2BHiIuvQoQN//PEHhYWFZGdn89NPP9GmTRtfF+uSUeUanvDw8LOOxqpfvz7jxo3z9B6vjJtvvpkPP/zQUz03bdo0xo8f77UGyOnGjRvHwYMHWbRoESaTiXvvvdczeRKUzhVw9dVXEx0dzapVq8jPzz9r3x6AI0eO0LdvX2699VYmT55MSUkJjz76KGPGjGHRokVnfezUqVO5/vrrCQsL44orruDDDz/kmWee8dw/adIkPvvsMz788ENatmzJlClTmDt3Lv379/fs88QTTzB79mzefvttmjZtyq+//sr1119PTEwMffv25eDBg1x99dXccccdno6yDz744FnLBaUTT9lsJ9eGys/PP+djRPXSNI2OHTvSsWNH9u7dy5w5c/j5558pKcnHfHgd5sPrcJuCcIUk4AqMxG0JQxkDUHpT6czOyoXmcqA5raXBxl6IzlaIZitAZy9EsxejUbkgozQ9yhSI2xRUeg5DAEpvLJ1HyO1Cc9nQWQvQFWehc1o9j0tOTua2226jZ8+eMiJTCHHJqXLgmT59Oo8//jjjxo2ja9euKKVYs2YNH330EU888QQZGRm8/PLLmM3mSvfYvuGGG3jsscdIS0tD0zTPWiBnCjw7d+7khx9+YNWqVXTr1g0oDRwtW7b07PPzzz+zbds20tLSPMNkX3jhBYYNG3bGcrz99tt07NiRF154wbNt2rRpJCUlsXPnznIzWJbZtWsXq1at8tRSXX/99dx7771eoe/111/nscceY9SoUQC88cYbfP/9955jFBUVMXnyZK/puhs1asTy5ct599136du3L2+//TaNGjXi1VdfRdM0mjdvzqZNm5g0adJZr+/EiRO9wpfwrUaNGvHggw9y5513snTpUpYuXcratWtx2ovQZe3GmHV+x9XpdISHhxMaGorFYsFgMKCUwm63U1RURH5+PoWFhWjKVRqUKtGXKDAwkC5dujBixAg6depU6S8xQghR21Q58Hz00Ue88sorjBkzxrPtL3/5C23atOHdd9/ll19+oUGDBjz//POVDjzR0dEMHz6cjz76CKUUw4cPP2ub5LZt2zzTXZdp0aKF1yilbdu20aBBA685Qc41bP6PP/5g8eLFFXbA3LNnD2vWrOH222/3bPvhhx/o3bs3U6dOZciQIZ4yX3HFFUyYMIGff/6Zyy+/nLy8PI4dO+Y1Jbher6dTp06eWSsrM133tm3byk34WJmpAB577DEeeOABz8/5+fmeiauE7wQGBjJs2DCGDRuG1Wpl06ZNbNmyhb1793LkyBGysrIoKSnB6XRiMpkICAggPDycyMhI4uLiiIuLIyEhgfj4eOLj40sXPz1HILHZbGRnZ5ORkUFGRgbZ2dnk5ORQUlKC3W7HZDIRFBREvXr1SE5Opnnz5rJWnhCiTqjyJ9nKlSt55513ym3v0KEDK1euBOCyyy7jwIEDVTru+PHjufvuuwF48803z7rvmabYrmifU52rGt7tdjNy5MgKa0wSEhJwu92eGiWAxMREXC4XH3/8MUePHvX6w+ByuZg6dSqXX375Gc9/ahkrM133ea7zitlsLjflt6hdLBYLXbp0oUuXLjV6HrPZTEJCAgkJCTV6HiGEqG2qHHjq16/P1KlT+e9//+u1ferUqZ5ag6ysLCIiIqp03KFDh3o6PQ8ZMuSs+7Zs2RKn08natWs9tSY7duzwmg0yNTWVAwcOkJ6e7lk5tiyQnUnHjh2ZNWsWKSkpZ/xWGxIS4vXzd999R0FBAevXr/dav2T79u2MHTuWrKwsoqKiiIuLY/Xq1Z4pv10ul9f8P5WZrjs1NZW5c+d6bVu1atVZn5MQQgghziPwvPzyy1xzzTX88MMPpSNONI01a9awbds2Zs2aBcCaNWv429/+VqXj6vV6tm3b5vn/2TRv3pyhQ4dy66238t5772EwGPjnP//pGdYOpYuZNm/e3DPNdn5+Po8//vhZj3vXXXfx/vvvc+211/Lwww8THR3N7t27mTFjBu+//36F5Zo6dSrDhw+nXbt2XttbtWrFP//5Tz799FPuu+8+7rnnHiZOnEiTJk1o0aIFr7/+Ojk5OZ5an8pM133HHXfwyiuv8MADD3D77bfzxx9/MH369MpcXiGEEMKvVTnw/OUvf2Hnzp28/fbb7Ny5E6UUw4YNY+7cuZ4aljvvvPO8ClOVWX8//PBDbrnlFvr27UtcXBzPPfccTz75pOd+nU7HnDlzmDBhAl27diUlJYX//e9/Xiu8n65evXqsWLGCRx99lCFDhmCz2UhOTmbo0KEV9o04duwY8+fP5/PPPy93n6ZpXH311UydOpX77ruPRx99lKNHj3LjjTei1+u57bbbGDJkiFeIOtd03Q0aNGDWrFncf//9vPXWW3Tt2pUXXniB8ePHV/q6CXEqpRRFRUWevjzFxcVYrVYcDgeapqHT6QgICCA0NJSwsDBiY2OleVSIc3C5XOfdBeF8aJp2zoqCS0FlVku4EFVeWuJ0ubm5fPbZZ0ybNo0///wTl8tVXWWr09xuNy1btmTMmDEXfQZpWVrC/1itVtLS0ti/fz9paWkcPHiQ9PR00tPTsVqt5z7AKaKjo6lfvz5NmzalWbNmtGzZksTERBmqLgSlYefq0deQl5N90c4ZFhHJ7K+/qlLoGTduXIUTCO/atYsmTZpUZ/EqraYDz3kPv1i0aBHTpk1j9uzZJCcn89e//pUPPvigOstWp+zfv58ff/yRvn37YrPZeOONN9i3bx/XXXedr4sm6piCggJ27drFzp072bVrF7t37+bgwYOejvEVCdC7CTUpAgwKi15h0CmUArfSsLo0Ch0aBQ4dVpdGZmYmmZmZ/Pnnn57Hx8TE0LFjR7p06UK3bt3K9XUTwl8opcjLyaag442lc2jV+AndsO7j86pRGjp0KB9++KHXtpiYmOoqWa1TpcBz6NAhpk+fzrRp0ygqKmLMmDE4HA5mzZpFampqTZWxTtDpdEyfPp2HHnoIpRStW7fm559/9po7SIiqysnJYefOnezevZudO3eyc+dOjhw5UuG+IUY39YNcJAa5iA90ERfoItbiItLixlyJL4ZKQaFD43iJnvRiPWkFevblG0grMJCRkcHChQtZuHAher2edu3a0a9fP/r27UtYWFg1P2shLgGaDi7GvFVn/h5zTmazmfj4+HLbv/vuO55++mm2bNlCvXr1uOmmm3j88cc9g3k0TeOdd97hu+++Y9GiRSQnJzNt2jRiYmK45ZZbWLNmDW3btuXTTz+lcePGQOnULg888ACrVq2iqKiIli1bMnHiRAYNGnTG8uXl5fHwww8zd+5crFYrnTt35tVXXy3XZ7ayKh14rrjiCpYvX86IESN4/fXXGTp0KHq9vsIh6qK8pKQkVqxY4etiiEuU0+nk4MGD7N27lz179rB792727NlDVlbFsxTGWFykhDhJDnGRHOIkOdhJmEld0LJdmgYhJkWIyUnjMCe9T4xst7lgV56RLdlG/swycrgI1q1bx7p165gyZQpdunRhyJAh9OzZU/r/CFHLLVy4kOuvv57//e9/9O7dmz179nDbbbcB8NRTT3n2+89//sPkyZOZPHkyjz76KNdddx2NGjXiscceo0GDBp6pZn744QcACgsLueKKK3juueewWCx89NFHjBw5kh07dnitm1mmbE6+yMhIvv/+e8LCwnj33XcZOHAgO3fuPK/1NSvdh8dgMHDvvfdy55130rRpU892o9HIhg0bpIbnEiJ9eGovl8tFeno6aWlpntu+ffs4cOAATqez3P4aivhAtyfUNDwRcoKMF6/D5OmOFetYm2Fi1TEz+wtPfqcKDg5m0KBBDB8+3OszRIi6xOl0MmjQIAo6jbtINTxuQv6Yzs8//1ylSULHjRvHp59+isVi8WwbNmwYx44dY9iwYTz22GOe7Z9++imPPPII6enpQGkNzxNPPOHpf7pq1Sp69OjB1KlTPYNoZsyYwc0330xJSckZy9CqVSvuvPNOzxx8p/bhWbRoEaNGjeL48eNeX5SaNGnCI4884glhVVHpq7Ns2TKmTZtG586dadGiBTfccEOVh54LIUoppcjIyGDPnj3s27ePvXv3eoKNw+Go8DEWvZukYBf1g1w0CHbSIMRFUpATSy2bCDku0M3wZCvDk60cKdKx4piZ5UfMZBcWMnfuXObOnUuzZs0YMWIEAwcOJCgoyNdFFsIv9e/fn7ffftvzc1BQEE2aNGHNmjU8//zznu0ulwur1UpxcTGBgYEAtG3b1nN/XFwcgNdCpnFxcVitVvLz8wkNDaWoqIhnnnmGefPmkZ6ejtPppKSk5IyTFJctkhoVFeW1vaSkhD179pzX8630R2WPHj3o0aMHU6ZMYcaMGUybNo0HHngAt9vNTz/9RFJSknRUFKICbrebgwcPsmPHDk9n4r1791JQUPFaViadot6JvjaJQU7qB5WGnCiL+4KapHwhIcjN6EYlXN2whK05Rpakm/kjw8TOnTuZPHkyb731FgMHDmTEiBG0aNFCRnoJcRGVBZxTud1unnnmGa6++upy+59aG2Q0Gj3/L3vfVrStbLDEww8/zMKFC3n55Zdp0qQJAQEBjB492jPh8OncbjcJCQkVrql56jJSVVHl74aBgYGMHz+e8ePHs2PHDs+sy//6178YPHgw33777XkVRIi6ori4mK1bt7Jx40a2bNnC9u3bKSoqKrefXlPEB7o8tTZl4SYmwI2ujv3d12nQOtJB60gHBXaN5UfNLEm3cKTYyvz585k/fz6NGzdm+PDhDBw4UDo6C+EjHTt2ZMeOHdU+NH3ZsmWMGzfOs4B2YWEhaWlpZy1H2ZJNKSkp1VKGC6oMb968OS+++CITJ07ku+++Y9q0adVSKCEuJVarlY0bN7J+/XrWr1/Pzp07yw0BN+kUySFOUkKcpISUNknVC3Jh9MPFx0NMimENrAxNsrIj18CSdAtrMkzs2bOH//3vf7z99tv07NmTIUOG0LVrV1m8VIiL6N///jcjRowgKSmJa665Bp1Ox8aNG9m0aRPPPffceR+3SZMmzJ49m5EjR6JpGk8++eRZp8oYNGgQPXr04KqrrmLSpEk0b96c9PR0vv/+e6666iqvxcMrq1o+SfR6PVdddRVXXXVVdRxOiFpNKcWBAwdYtWoVa9asYcOGDeX63URbXDQLc9I0zEHjsNKaG4Mfhpuz0TRoEeGkRUQhNzg0Vhw1s+yImf2FsHTpUpYuXUpoaCj9+/enf//+tGnTpk7MJiv8hHJf0JDxKp2nGg0ZMoR58+bx7LPP8uKLL2I0GmnRogW33HLLBR331VdfZfz48fTs2ZPo6GgeffRR8vPzz7i/pml8//33PP7444wfP56MjAzi4+Pp06ePp89QVV3wTMvi0iOjtKrO6XSyadMmli9fzsqVKz2jFcpEml20inDQMsJBywgnUZaL8UlXNx0o0LPsqJlVx8zk2U+mxIiICHr37k3Pnj3p0KGDDHEXtdKlMtOyP5LA44ck8FSOzWbjjz/+4Ndff+W3337z+jZi0BQtwh20jXbQJtJBvUDXJdehuLZzuWFrjpFVx0z8kWmi2Hky/FgsFtq3b0+nTp3o1KkTDRs2lA7PotaQtbRqJwk8fkgCz5lZrVZWr17N0qVL+e2337zmkAg2umkfZadjjIPWEfZaNxy8LnO6YUuOkfWZJv7MNJJt8/5wDw0NpVWrVrRu3ZrmzZvTpEmT8x7JIYSomyTw+CEJPN6sViurVq1i6dKlrFy50msxzQizi84xdjrH2GkW5kQv/XB8Tik4WKhnc07p7M47co3Y3eVrd6Kjo0lJSSE5OZmkpCQSEhKoV68eMTExXsNrhRD+QQKPH5LAUzp0/Pfff2fp0qWsWrXKK+REW1x0ibHTJdZOo1BnnRsiXtc43bC/0MCuXAN7Tqztdazk7NX7ISEhREVFER4eTkREBKGhoYSEhBASEkJQUBBBQUEEBgYSEBBQ4U2az4S49Ejg8UP+Gnjy8vJYuXIly5YtY/Xq1V4jq6ItLrrG2ukaa6NhiPTHudSVODUOFelJL9JzuEjP8RI9GSU6Mqx6rK4L++VqmobFYiEwMJDAwECCg4MJCgryBKbQ0FDCw8MJCwsjMjKSyMhIoqKiCAkJkaAkhA9J4PFD/hJ4lFIcPHiQVatWsWLFCjZt2uQ170NcQGlzVddYGykScvyCUlDi0six6cix6Siwa+Q7dBQ5NAqdGsUOHSUujRKnRrFTw+bSsLo0bC6wuTQU5/8iMZlMxMTEEBsbS2xsLPHx8cTHx3ua2qKjo9FdjLWXhPBTEnj8UF0OPMXFxaxfv541a9awevXqcsPHGwQ76Rhtp3OsnaQgCTmi8pQCuxusLg2rU6PkxL/FJ25FzhPByaGjwKFR4NCRZ9fItekocp47yBiNRuLj40lMTCQxMZH69et7/o2NjZUJGIW4QBJ4/FBdCjwFBQVs3bqVDRs28Oeff7J9+3avWpyy4ePtoh10jLYTEyDz44iLz+6CXLuObKuObJuOTKueLKvO08yWadXhUmdO3waDwVMTlJiYSL169Ty3+Ph46YQtRCVI4PFDl2rgsVqt7Nu3j507d7Jjxw62bt3K/v37y813ERvgok2kg9aRdlIjHATU4i/GLjdk2/y3GSPS7JaRb4BbQZZVx/ESHcdK9Bwr1nO0RM/xEh3HS/Q4KhiFdqrIyEji4+OJi4sjPj7e02wWGxtLdHQ0YWFh0lwm/J4EHj9UmwOPy+UiKyuLI0eOkJ6ezoEDBzh48CD79u0jPT29wsm84gJcNAlzkBrhpGW4g+hLqBYno0THgysjfF0Mn3mlR47Uup2DW5WG4uMlOo4Vl3bALgtGGSU6SlyVay47tQN1ZGQkERERREZGEhYW5ulkHRoaSlhYmDSfXSB/m3gwLS2Nhg0bsn79etq3b++zcpyLvKpFjXE6nVitVqxWK8XFxRQXF1NYWEhBQQH5+fnk5eWRk5NDTk4OmZmZZGRkkJWVhdPpPOMxQ43u0gU4Q500DHHSJMxJmKnyHyxl/TBqi9pUFl+wu8Hm8nUpar8os5toi5vUCO/3hlJQ5NTIKCltJsu06siy6siy6ciy6smx6ci3azgcDo4dO8axY8cqdb7AwEDPqLPg4GDPSLTg4GDP6LRTh+1bLBYCAgIwm81YLBbMZjMmk8lz0+v1fjNCzeVy8bdrriYzO++inTM6MoyZX82uUugZN24cH330EbfffjvvvPOO133/+Mc/ePvtt7npppuYPn16NZfWdyTwiGqnlOLRRx9l9erV5/V4vaaIMruJCXCREOgmPtBFvaDSFcZDqxBuKmJ3w61Loy7oGP5mxIgRjBkzhi+//JL58+dX6zfXx37339qtqni/bxbmCv6WaRoEGxXBRhcNQytOjk53af+hXJvuxL8a+XYdeXYd+XYd+Sc6WBfYSztfKzTPF5TKBqTqkJCQwHPPPUfjxo0v2jlrglKKzOw83u+bhf4iZDyXgluXcl7vy6SkJGbMmMGrr75KQEAAUNp14IsvvqBBgwbVXVSfk8Ajqp3D4WDNmjVVekyQwU3jMCdNQktrbeICXNK/o5YYM2YMDRo0YMyYMcybN8/XxRFVZNBBtKW0hqgiDjcU2E+OLDtWrDvRbFbadJZh1WGtRLPZhTpy5AirVq265ANPGb1Weu1r3AXUEnfs2JG9e/cye/Zsxo4dC8Ds2bNJSkqiUaNGnv0WLFjAc889x+bNm9Hr9fTo0YMpU6ac9Xe1detWHnroIX799VeCgoK4/PLLefXVV4mOjj7/Al8gCTyi2plMJm699VZ++eUXlFI4nU7PN8bi4uIKH1Pk1LExy8TGLJNnm15TxAaU1vAkBrmoH+SkQbCLhEDXeQchk67023JtkWnV1fpaji+//NJTw6NpWrXW8EzslnPGP8TiJFMVX+9KQbGzdL6h7BNzDpXV8OTZNfI8NTxatYUZk8mExWLx/GswGMo1Y2ma5vUaOvW11LZtW4YPH14tZRGVd/PNN/Phhx96As+0adMYP348S5Ys8exTVFTEAw88QJs2bSgqKuLf//43o0aN4s8//6ywM/yRI0fo27cvt956K5MnT6akpIRHH32UMWPGsGjRoov11MqRwCNqxHXXXcd1111XbrvL5fL046moD09GRgZHjx7l6NGjOBwOjhTrOVKsZ33myWMYdYrkYCcNQ0trhJqGO4kyuys1p46mUWHTgK9U9Q+ZL8yfP5958+ZVe9iB0udfm34fl4qyvjvHT/TdKRvenmXVefrxVCXI6PV6T4flsLAwz4zRZf13Tu3Hc2ofnrJ+PGazWVbrvkTdcMMNPPbYY6SlpaFpGitWrGDGjBlegeevf/2r12OmTp1KbGwsW7dupXXr1uWO+fbbb9OxY0deeOEFz7Zp06aRlJTEzp07adasWY09n7ORwCMuKr1e7/lQrV+//hn3c7vdZGZmcuDAAQ4cOEBaWhp79+5l7969FBcXszvfyO58Iz+d2D/S7KJFuJOWEQ5aRVw6I7UizW5e6ZHj62KcVa5NI9OqJ9riItxcvYEn0nxp/J58QSnIs2scO9G8dKxYd2KoemlTU3ElJjMMCQkhJiaG6OhooqOjPaO0ykZola0lFhwc7DedioW36Ohohg8fzkcffYRSiuHDh5drdtqzZw9PPvkkq1atIjMz0zPX2YEDByoMPH/88QeLFy8mODi43H179uyRwCPEqXQ6nWcekc6dO3u2u91uDh8+zI4dO9i2bRtbtmxh165dZNvgt2N6fjtmBiAh0EXrSDttoxy0DHdgqqVfPvU6av2w7JgAaIoMpaoJbgXZVh3HrSf7zRwr1nlCzrnW/YqMjPRMPlh2i4uLIy4ujpiYGE9HVCHOZvz48dx9990AvPnmm+XuHzlyJElJSbz//vvUq1cPt9tN69atsdvtFR7P7XYzcuRIJk2aVO6+hISE6i18FUjgEZcUnU5HUlISSUlJDBo0CCgdVbBlyxb+/PNP1q9fz9atWzlSDEeKA/jpUAAmnaJVZOlMyx2i7Rc80kuIynAryLdrpf1mTulLUzZkvKzp6WwzLGuaRlxcnNdSE2WzLSckJMgMy6JaDB061BNehgwZ4nVfVlYW27Zt491336V3794ALF++/KzH69ixI7NmzSIlJaVWzelUe0oixHmyWCx06tSJTp06AVBYWMj69etZvXo1K1euJDMzk/WZJtZnmtBQNA1z0jnGTucY+yXT9CUuLteJNbNKXKcsIOo8sY7WKbcS58mFRsvW0iob7VTkqNxiowaDwRNqysJM2S0hIQGTyXTOYwhxIfR6Pdu2bfP8/1QRERFERUXx3nvvkZCQwIEDB/jXv/511uPdddddvP/++1x77bU8/PDDREdHs3v3bmbMmMH777/vs/5eEnhEnRMcHEzv3r3p3bs3Sin27NnDb7/9xvLly9m5cyc784zszDPy+e4gGoY46RJro0uMnbhACT91lVJQ4NDIsOrJtpbWtOTZtRPz0OgodGgUOjSKnTpKnBr2cyzlUFmaphEeHk5kZCQxMTGeW1nTU0JCAlFRUdLhtw5yKS5oyHiVzlMNzjTrvk6nY8aMGdx77720bt2a5s2b87///Y9+/fqd8Vj16tVjxYoVPProowwZMgSbzUZycjJDhw716RInsrSEH6rNS0vUtOPHj7N8+XKWLl3Kpk2bvBYaTQ520jXWRtdYCT+XKqUgy6Zjf4Geg4UG0ov0pBdXrj9MRYxGo2c24YpuZSOXgoKCPKOayjrll91qU5W+qHmXykzL/kgCjx/y58BzqpycHJYtW8aSJUv4888/vcJPg2AnXWPtdImxkRAk4ae2crhhT56BXXkGduYZ2ZtvoMBR8TdITdOIiooiNjaWmJgYz2ilsnWkTl1GoWzItdFovMjPSNQF/raW1qVCAo8fksBTXm5uLsuXL2fJkiWsW7fOK/wkBpX2+ekUYyc52FWp+X5EzTlSpOPPLBObs43syDWWa37S6/WkpKTQpEkTUlJSSE5Opn79+sTFxWE2m31UaiGEr0ng8UMSeM4uLy+PFStWeMLPqYuZRppddIx20D7aTotaPNy9LlEK9uYbWJ1hYl2GiWMl5TtVtm3bltatW9O6dWsaNWokwUYIUY4EHj8kgafyCgoKWLlyJcuXL2f16tVYrVbPfSadIjXCQZsoB60j7cQHVG62Z1E5Bwr1/HbUzO/HTGTZToYcg8FA+/bt6datG506daJhw4YyaZ4Q4pwk8PghCTznx2az8ccff7By5UrPcPdTRZpdtIxwkBrhpHm4gxiLBKCqyrdrrDhqZvkRMweLTnb2tVgs9OzZkz59+tC1a1cCAwN9WEohxKVIAo8fksBz4ZRS7N69mzVr1rB27Vo2bdqEw+Hw2ifc5KZpmIPGYU4ahzpJCXHKulEVcCvYmGVkabqFP7OMnon4jEYj3bt3Z9CgQXTv3l2aqYQQF0QCjx+SwFP9rFYrmzdvZv369fz555/s2LHDq+8PgIYiIdBFSoiLBiGlK783CHb67czPmVYdv6ab+fWImexTmqxatmzJ0KFDGTBgACEhIT4soRCiLpHA44ck8NQ8m83Gtm3b2Lp1K9u2bWPbtm3lmsDKhBrd1A92UT/ISWKQy3MLMta9t6bTDRuyjCxJt7Axy+iZiTg0NJTLL7+c4cOH07BhQx+XUghRF0ng8UMSeHwjKyuLXbt2sXPnTvbs2cOePXs4fPjwGefriDC5SQxykhjson6QyxOKLsVmsfQiHcuOWFh+1Eye/eQ8OR06dGDEiBH07t1bllAQQtQoCTx+SAJP7VFSUsL+/fvZt2+f55aWlkZGRkaF+2soYgPcNAg+0SQW4iQ52EWEufZ1kM63a6w+bmLFUTN78k9O4BcREcHQoUMZPnw49evX92EJhRD+RAKPH5LAU/sVFhZ6glBaWhp79+5l37595OTkVLh/iNFNSojzxM1FSoiTaB+MEsuxafyZaWJthoktOUbcJzog63Q6unfvztChQ+nZs6cstyCEuOgk8PghCTyXrpycHPbs2cPevXvZvXs3u3btYv/+/V4zQ5cJMrhJPlED1CDYSVKIi4RAF8ZqXLvP6oRdeUa25pTe9hV4B5lmzZoxcOBABg0aRFRUVPWdWAghqkgCjx+SwFO32Gw29u7dW7oS/Inbvn37yo0SA9BpirgAN/UCXcQGuIgJcBFlcRNmchNmUgQYFGadQn8iFLkVWF0aRQ6NfIeOjBIdx0v0pBfpSSvQc6RY7+l4XKZly5b06tWLfv36SZOVEKLWkMDjhyTw1H0Oh4O0tDR27Njh6SC9Z88eioqKKvV4naY8zVHnEhcXR/v27enYsSOdO3eWmhwhRK0kgccPSeDxT0opMjMzSUtL4+DBg6Snp3PkyBEyMjLIzs4mJycHl8tV4WPNZjOhoaHExcWRmJhIYmIiTZs2pVmzZhJwhBCXBAk8fkgCj6iIUgqHw0FJSQkOhwOdTodOpyMgIEBmORZCXPJkqIQQAgBN0zCZTDIfjhCiTqrG8RpCCCGEELWTBB4hhBBC1HkSeIQQQghR50ngEUIIIUSdJ4FHCCGEEHWeBB4hhBBC1HkSeIQQQghR50ngEUIIIUSdJ4FHCCGEEHWeBB4hhBBC1HkSeIQQQghR50ngEUIIIUSdJ4FHCCGEEHWeBB4hhBBC1HkSeIQQQghR50ngEUIIIUSdJ4FHCCGEEHWeBB4hhBBC1HkSeIQQQghR50ngEUIIIUSdJ4FHCCGEEHWeBB4hhBBC1HkSeIQQQghR50ngEUIIIUSdJ4FHCCGEEHWeBB4hhBBC1HkSeIQQQghR50ngEUIIIUSdJ4FHCCGEEHWeBB4hhBBC1HkGXxdAiLrEbrezadMmtmzZwoEDB8jIyMBms6HT6QgNDSU+Pp6UlBRSU1Np3Lgxer3e10UWQgi/IIFHiGqwfft25syZw/LlyykqKqrUY4KDg+nWrRt9+vShe/fumM3mGi6lEEL4L00ppXxdCHFx5efnExYWRl5eHqGhob4uziVt586dvPvuu/zxxx+ebW5jAK6QeNyBUbhNQSi9EU0pNKcVzZqPviQbfeFxNJfD85igoCAGDx7MiBEjaNKkiS+eihBC1GkSePyQBJ4LV1RUxHvvvcc333wDgNI0nJGNcMS0wBUcC5p29gMoN7rCDIy5+zFk7UPnOFkr1KZNG66++mp69+6NwSCVsEIIUR0k8PghCTwXZtOmTTz33HMcO3YMAEdkI2z1O6HMIed3QKXQ56djzNiBIXc/2om3ZGxsLKNGjWLEiBGEhJznsYUQQgASePySBJ7zo5Ri5syZvPfee7jdbtzmEKwpvXCF1qu2c2j2YowZ2zEe347OaQXAYrEwePBgRo0aRaNGjartXEII4U8k8PghCTxVZ7PZeOmll/j5558BcEQ2xprSE/TGmjmh24khex+mo5vRl+R4Nrdt25YRI0bQp08fLBZLzZxbCCHqIAk8fkgCT9Xk5eXx+OOPs3nzZpSmYWvQHUdMi3P306kOSqEvOIrx+DYMOfvRKH27BgYG0qdPH/r160fHjh0xmUw1XxYhhLiESeDxQxJ4Ku/48eM89NBDHDhwAKU3UdJkQLU2YVWFZi/CmLkLY+ZOdLZCz/aAgAA6depEx44dadu2LSkpKdLZWQghTiOBxw9J4KmcgwcP8tBDD3Hs2DHcxiBKml+OOyDC18UqrfUpPIYhex+GnDR0jhKvuy0WCw0bNiQlJYXExEQSEhKIiYkhMjKS8PBwgoKC0C5G7ZQQQtQiEnj8kASec9u7dy8PPvggOTk5uC2hFDcbijIH+7pY5SmFrjgLQ95h9AVH0BdmoLkdZ32IXq8nNDTUcwsLCyMiIoKYmBhiYmKoV68e9evXJzIyUoKREKLOkMDjhyTwnN2uXbt48MEHyc/PxxUQSUnzIShjgK+LVTlKobPmoSvJQVeSi86Wj2YvQmcvQnOUoLmdlT5UWFgYzZo1o0WLFrRr147WrVtLR2khxCVLAo8fksBzZtu3b+ehhx6isLAQV2A0xc2HgKEOLfngdqI5baWzPjttJ//vKEGzF6OzF5aGJFshp9ftGI1G2rdvT69evejduzdRUVE+eQpCCHE+JPD4IQk8FduyZQsPP/IIxUVFuIJjKW56ORj8dPST24muJBd9USb6wmPoC46is5+cDVqn09G+fXuGDBlCnz59CAi4RGrAhBB+SwKPH5LAU96GDRv417/+RUlJCc6QeEqaDq65OXYuRSeaygy5BzDk7EdflOG5KzAwkEGDBvGXv/xF1gETQtRaEnj8kAQeb2vXruXxxx/HZrPhDEmgpOkgCTvnoNkKMGbtwZi5C52twLO9devW/PWvf5V1wIQQtY4EHj8kgeekpUuX8p/nnsPpcOAMq09JkwGgkz/UlaYU+oIjGI9v91oHLDo6mquuuooRI0YQHh7u2zIKIQQSePySBJ5S3333Ha+++iputxtHRArWRn1Bp/d1sS5ZJ9cB24HOWTo3kNFo9KwD1rRpUx+XUAjhzyTw+CF/DzxKKaZNm8Ynn3wCgD26GbaUnqDpfFyyOsLtKl0H7NgW9MVZns1t2rThyiuvpE+fPrIUhhDiopPA44f8OfBYrVYmTZrE4sWLAbDVa4+9XoeLsy6Wv1EKfeFxjMe3YshJ8zR3hYaGMmTIEIYNGyarvwshLhoJPH7IXwPP4cOHeeqpp9i9ezdK02FL7okjppmvi+UXSpu7dvx/e/cdHlWZ6A/8e87UtEmZlElCeqFIDyAQVooI6tpxsexd113Fcm08Xr13LT/bcxWvu+yuq6ur91pWxcI+q15XQcC7gJTQpUgCgUAKCSE9mZlMP+/vjyEHJgkQlGSSme/nec6TzHvOzLxzgPDNW6FrLIfsOTW9vbCwEJdddhnmzJnDdX2IqF8x8IShcAw8a9euxe9+9zvY7XYoWiOc+XPgi7EEu1rhRyjQtB+DrvEQtO3VaquPJEkYO3YsZs6cieLiYqSkpAS5okQUahh4wlA4BZ62tja8+uqr+OabbwAAvuhkOPJmQ+ijglwzkjwOaFuOQtd8BBp7Q8C5/Px8TJ06FVOmTMGoUaM4xZ2IfjQGnjAUDoHH5/Nh5cqVePPNN9HR0QEBCe60cXCnjgdkDk4ebCSXDdrWSmhbK/0boOLUj6WIiAiMGzcO48ePx7hx41BQUMAARETnjYEnDIVy4FEUBd9++y3++te/4ujRowAAX0Q8nNnFUKKTg1w76gvJ44CmvRba9mPQdNRB9joDzhuNRowcORIXXXQRRo4ciREjRnD8DxGdEwNPGArFwNPe3o5vvvkGn3/+OWpqagAAQqOHK20CPMkj+7dVRyiQTttnKlQJfdTAT90XAnJnCzTWOmit9dBYT0DyuXtclpiYiOHDhyM/P189LBYLJM6+I6KTGHjCUKgEnoaGBuzYsQMbN27Etm3b4PV6AfiDjjtlFNwpFw3ITueSy4rovX/r9/cJNtvYn0EYYoJbCSEgO9ugsTVAtjVAY2+E7GjrsbM74N/jKysrCzk5OcjMzERmZiYyMjJgsVig03HrEKJww45wGlJ27NiBlStXoqysDHV1dQHnfBEJ8CQPh8ecf2H2whICULznvs7Xh2tCgc8L+DzBrgUUfTSUhGgg4eQaPkJA42iBbG+GprMZsqMFsqMNnZ2dKCsrQ1lZWcDzZVlGcnIyUlNTkZKSgpSUFCQlJcFsNsNsNiMuLg5xcXFcHJEoxLCFJwwN5Rae66+/Hq2trQAAAQlKlBneuEx447KgRMZf2DfzeRCz6/0L+5pncdVVV2HhwoVYvnw5vvrqK/CfZt9YJ/6iZ8BVFMiudsiOVsiONsjOdsiOdsiuDkh9CbHwjxUymUyIjo5GVFQUjEYjNBoN5syZg3nz5vXDJyGi/sQWHhpSHA7/Hk2OnEvgjc8ENKHzW/jChQuRmZmJhQsX4ssvvwx2dYY2WYYSEQ8lolsIFgKSx+EPPi4rNLZGaGwnoHG09ngJp9MJp9OJhobAKfM7d+5k4CEaghh4aEgy1GyHtq0aPlMqvLEZEIboC/8mstbfenAOksuG6P2f/ei3W758udrCI0nSoGvhsV10ff/c5x/rbLvbCwHJbTvVyuPsgOzqgOyyQnLb1IUPz0dRUdGPqCwRBQu7tMLQUO7S+uMf/4gvvvgCiqIElPsizfCY8+E150HojANapws1aLkr5AzGsAMMkkHLZ+N1QdPZArmzGRpHK+TOFsjO9rN2YWk0GiQmJiIpKQmJiYlISEhAfHw84uLiYDKZArq0IiMjERERAb1ez9lfREMQA08YGsqBB/B3NZSXl2PPnj3Yvn07vv/+ezUACUkDjzkX7tSxEMbYganQBZqWLrk7IbttUPTREPrIC1CxCyso09LPxOfxD1C2NUJjb4Smswmyy9brpTqdDsOGDUNGRgYyMjIwbNgwpKenw2KxwGw2Q6PRDHDliSgYGHjC0FAPPN21tbVh3bp1WLFiBcrLywH4BzR7zXlwDSviNhIhQPI4oLGegMbmX4tH7mwJWI25i8ViQUFBAXJzc5Gbm4ucnBykpaVxZWYiYuAJR6EWeLoIIbB//34sW7YMJSUl/jJZA3faBLhTRnNLiaFE8UJjrYe2vRaajrpeBxUnJiZi1KhRGDFiBIYPH47CwkLExAziLjciCioGnjAUqoHndKWlpXjttdfw/fffAwB8kQlw5sy88FPX6YKRPA5o26qhba2GxloHSfEFnM/JycG4ceMwduxYjB49GsnJ3CqEiPqOgScMhUPgAfwtPqtXr8af//xn/waikgauzCnwJI0AOOh0cPA6oWuphLbliH/biNO6qRITEzFlyhRMmjQJEydORFxcXPDqSURDHgNPGAqXwNOlubkZv/3tb7FlyxYAgCchF87s4guzGjOdP0WBtr0G2qZD0LYfgyROzbgrLCzEjBkzUFxcjNzcXM6GIqILhoEnDIVb4AH8rT1/+9vf8MYbb8Dn88EXaYYj/9LBua5MiJKcHdA1lkPXdAiy16GWFxQU4NJLL8XMmTORmpoaxBoSUShj4AlD4Rh4uuzduxdPPfUU2traoOgi4CicByXSHOxqhS4hoGk/Bn1DGTTtx9RNPuPj4zFv3jzMnz8fubm5Qa0iEYUHBp4wFM6BBwDq6+vx2GOP4ejRoxCyDo6CS+EzpQW7WqHF54Gu6RD0J0ohuzrU4smTJ+Pqq6/G9OnTOVWciAYUA08YCvfAAwBWqxVPPfUUvvvuOwhJhjN3FrwJ2cGu1pAnOTugbyiFrvEQJMW/s3pUVBSuvPJKXHvttRg2bFiQa0hE4YqBJwwx8Pi53W7853/+J7799lsISHDmzIA3sSDY1Rp6hAJNe22PbquMjAwsWLAA8+bNQ2Tk4Fs5mojCCwNPGGLgOcXn82Hp0qVYsWIFAMCZNR2e5BFBrtXQILls0DUdgq6pHPJpW2tMnToVN9xwAyZNmgSZiz0S0SDBTnQKaxqNBo888giMRiM+/fRTGKs2A8IHT8pFwa7aoCS5O/2LA7YcgcZar7bmxMTE4PLLL2e3FRENWgw8FPZkWcYDDzwAvV6Pjz/+GMbqrYBQ4LGMCXbVgs/n8W/O2XEc2o5ayPYmnL4yzsSJE3H55Zdj5syZMBgMQasmEdG5MPAQAZAkCXfffTe0Wi0++OADGGu2Q1IUuNPGBbtq/c/ngeRxQPZ0QnLZILuskJ1tkDtbITvb0H3pv5EjR+KSSy7BpZdeyu0diGjIYOAhOkmSJNx5553Q6/V4++23YajdCQgf3GkTht5WFEJAcvvDi+Sy+cOMpxOSxwnJ6zp1+Jw99qzqLjk5GWPHjkVRUREmT56MxMTEAfoQREQXDgMPUTe33XYbdDod3njjDRjqdkPyeeDKmDKoQ4/ktkNjrYfG1gCNvRGyow2S4u3z8/V6PRITE5GUlIT09HRkZGQgOzsbhYWFMJu5MCMRDX0MPES9uOWWW2AwGPCnP/0J+hP7IXldcGbPAAbLrCMhINuboG2thLa9BhpHW49LdDodLBYLLBYLkpKSYDabERcXh9jYWJhMJphMJsTGxiI2NhYRERHct4qIQhoDD9EZ3HDDDYiKisJ//dd/Qdd8GJLHAUf+nKBuOiq5rP6p4M0VkF1WtVyWZRQUFGDs2LEYMWIECgoKkJaWxtWMiYhO4jo8YYjr8JyfzZs349nnnoPL6YQvIh6OgrkQhpiBq4BQ/PtRnSiDpqNWHURsNBoxbdo0zJgxA5MnT+afJRHRWTDwDHLZ2dlYvHgxFi9efMZrJEnCZ599huuuu65Pr8nAc/4OHDiAxx57DK2trVC0BjhzZ8EXm96/b+p1Q9dUDn1DKWSXTS0uKirCFVdcgeLiYkRERPRvHYiIQsQgGZAQnmpqanDHHXcgLS0Ner0eWVlZeOihh9Dc3BzsqlE3I0aMwBtvvIHCwkLIXhciy1fBULMdOI+BwX0lOdthqNqC6D0fw1izDbLLhpiYGNx888348MMPsXTpUsydO5dhh4joPLCDP0iOHDmCadOmobCwEB999BFycnKwf/9+PProo1i5ciW2bNmChISEYFeTTpOcnIxXXnkFr7/+Oj7//HPo6/dB21YFZ+a0H9/ac4b9qLKzs3HjjTdi7ty5MBqNP/ozEBGFKwaeILnvvvug1+uxevVq9Tf1zMxMTJgwAXl5eXjiiSfw+uuv93jeoUOHcMcdd2Dbtm3Izc3Fyy+/PNBVD2sGgwGLFy/G5MmT8Yc//AFNTU2ILF8FrykNbssY+ExpfZ++LgRkRxu0LRX+Qcjd9qNasGABJk2axNlTREQXAANPELS0tGDVqlV4/vnne3RLWCwW/PznP8cnn3yC1157LeCcoii44YYbkJiYiC1btqCjo+OsY3uo/xQXF2Ps2LH461//is8//xzoqIO2ow6KIQae+Gz4TKlQIs0QWuOpAKT4/KsYd7ZAYzsBbfuxgJlWJpMJl19+Oa655hruR0VEdIEx8ATBoUOHIITAyJEjez0/cuRItLa2orGxMaD8m2++QVlZGSorK9X/EF944QVcccUVZ30/l8sFl8ulPu7o6PiRn4AA/4aZ999/PxYsWIC//e1vWLFiBZxOKwz1+4D6fQAAIWkAWQNAQPJ5eryGTqfDlClTMHfuXBQXF0Ov1w/wpyAiCg8MPINQ18S57l0ZZWVlyMzMDPjtf9q0aed8vSVLluDZZ5+9sJUkVWpqKh588EHceeed2Lp1K0pKSrB//37U1tZCEj7Ad2rrBqPRiOzsbFx00UUYP348ioqKEBkZGcTaExGFBwaeIMjPz4ckSSgtLe11KvmBAwcQHx/fY8+i3lYQ6Mv4jsceewwPP/yw+rijowMZGRnnX3E6q8jISMyePRuzZ88GAHg8HjQ1NcHtdkOSJMTGxiImJgbyYFmtmYgojPAnbxCYzWZcdtlleO211+BwOALO1dfXY9myZbjpppt6hJlRo0ahuroadXV1allJSck5389gMKhbCXQd1P90Oh1SU1ORlZWFzMxMxMbGMuwQEQUJf/oGyauvvgqXy4X58+fj22+/RU1NDb7++mtcdtllSE9Px/PPP9/jOXPnzsXw4cNx2223Yc+ePdiwYQOeeOKJINSeiIhoaGHgCZKCggLs2LEDeXl5uOmmm5CXl4e77roLs2fPRklJSa9r8MiyjM8++wwulwtTpkzBnXfe2WswIiIiokDcWiIMcWsJIiIKN2zhISIiopDHwENEREQhj4GHiIiIQh7X4SEKEp/PhxMnTuDEiRNobGxEY2MjWlpaYLVa0dHRAbvdDrfbDZfLBa/Xvyu7JEmQZRl6vR4GgwFGoxHR0dGIiYmByWRCfHw8zGYzEhISkJycjKSkJGi1/GdORMSfhET9TAiB2tpaVFRU4MiRI6ioqEBVVRWOHz+uBpn+IssyzGYzUlNTMWzYMKSnp2PYsGHIzMxEeno6t7IgorDBWVphiLO0+pfD4UBpaSn27t2LsrIyHDhw4Iz7l+lkgUSjgniDD/EGBXF6gWidgmidQIRWQC/7D81pnc+KADyKBJdPgtsH2L0y7F4JNo+EdreMdpeMVreMVpcMj3LmlbhlWUZaWhpycnKQnZ2NnJwc5OXlIT09na1CRBRyGHjCEAPPheV2u1FaWoqdO3di586dOHjwIHyn7Z8FAFpJYFi0D5nRXmRE+5Ae5YMlwocEowL53LuD/CCKADrcEpqdGjQ4ZJxwaHDCocHxThnH7Ro4fL0P4dPr9cjOzkZ+fn7AwT2/iGgoY+AJQww8P15dXR22bt2KrVu3Yvfu3XA6nQHnEww+jIjzIj/Wg1yTF5nRPmgH0RQBIYA2t4Rauxa1dg2O2TQ4ZtegxqaFu5dWIUmSkJ6ejoKCgoAjLi5u4CtPRPQDMPCEIQae8+fz+bB//36UlJRg8+bNqKqqCjgfq1dwUbwHo+I9GBnvQaJRQR/2dR10FAE0OmRU2bSotmlQbdWiyqZBq0vT6/XJyckoKChAYWGh+tVsNvdpU1siooHEwBOGGHj6xul0Yvv27di0aRNKSkrQ3t6unpMlgYJYL8YmuDHO7EFGtG9IBpy+6nBLqLZpUWnVoMqqRZVNi/rO3kNQfHx8QAgqKChAamoqQxARBRUDTxhi4Dmz9vZ2lJSUYMOGDdixYwdcLpd6LkqrYJzZg/GJboxJ8CBKF97/dBxeCdU2DSqt2pOHBnV2DQR6Bpvo6Gjk5+erASg/Px+ZmZkcHE1EA4aBJwwx8ASqr6/Hpk2bsGHDBuzduxeKoqjnEo0+TEx0Y2KSG8NjvQGzpagnlw+osWlRZfUHoSqbFsdsGnhFzxCk0+mQm5uLvLw8dWB0bm4uoqOjg1BzIgp1DDxhKNwDjxAChw4dwqZNm7Bp0yYcPnw44HxmtBdFSW4UJbpDvqtqIHgVoNbe1RXm/1pt08Lp6/3GWiwW5OXlIS8vD7m5ucjNzUV6ejo0mt670IiI+oKBJwyFY+BxOp347rvvsHnzZpSUlKCpqUk9J0GgMPZkyElyIylCOcsr0YUQMDjaqkH1yUHSLWcYHN01Vb5rzaCuIyUlBbLMZjciOjcGnjAUDoFHCIGamhps374dW7duxXfffQePx6Oe18sCY8xuTEz0YLzZjRg9/xkMBlaPhGM2//T4mpNfj9k1vU6VBwCj0YjMzMyAIyMjA+np6TAajQNceyIazBh4wlCoBp7m5mbs3r0bu3btwo4dO3DixImA82aDD+MSPZiQ6MbIOA/07CEZErpag2rsWtTaNP51g+wa1Hf2PjaoS3JyMtLT05Geno60tDSkpaXBYrEgNTUVJpOJs8aIwgwDTxgKlcDT0NCAvXv3qkdlZWXAea0kUBjnwZgED8YnepAWyfE4ocSnAA1OGXV2/+yw+k4N6jr9X+3es3dzRUREICUlBRaLRd1kNSkpCYmJiTCbzTCbzYiJiWEoIgohDDxhaCgGHpvNhkOHDuHgwYMoLS1FaWlpwDicLpnRXoyM92B0ggcj4jwwsBUn7AgB2DwS6h0aNHSe2lKj0SGj0alBu7tvY350Oh3i4+MRFxeHhIQExMbGBhxdO9RHR0erR1RUFMcUEQ1SDDxhaDAHHq/Xi7q6OlRVVak7i1dUVKC2trbHtbIkkBXtQ2GcB8PjvBge50HMEFkbx6cALS7+x5hgUAZ8qr/LB7Q4ZTS7NGhyymhxymhx+Y9Wl4w2l3zOFqKziYyM7HFERESoh9FohMFgQEREBPR6PQwGg3ro9Xr10Ol06qHX66HVaqHT6dSvGo0GGo2GrVBEfcRVv2jA2Ww2NDQ04MSJEzh+/Djq6upw/Phx1NTUoLa2tsfGm10SjT5kxXiRZ/Ii3+RFjsk7ZFtwWlwy/q0kPtjVCLql01oHfFacQQOkRilIjTrz+7p9QIdbRrtHRodbQodbhtUjweqRYXVLsHtl2Dz+Heo7vTI6vZK6M31nZyc6OzsH6uNAq9VCq9WqAaj7466y7t+ffl1XkOoKU93DVlcAOz2UdQU3g8Ggfn/6Vy4qSYMN/0bSDyaEgNPpRGdnJ+x2Ozo7O2G1WtWjvb0dra2taGtrQ0tLC5qbm9Hc3AyHw3HW19XLAmlRPgyL8u8snhHtQ1a094LMpBICcA+CWeeDoQ6DgVvxt7gMRjF6BTF6BYjq2/VuH+D0SXB4JXR6JfiEBJdPgtMX+NXlk+BSAJdPgscnwa1IcCuAxyfBIwCP4g9PXqXre8CrSPAJwNfLIG2v1wuv13uBP/2Pp9PpYDQa1eP0Fq7eyrqfOz1AdT+6Ahhbt+h8sEsrDP2YLq3du3fj+eefR3t7OzweD37oX59onQKzQUGiUUFyhA9JET6kRChIi/Ih3qBA7qefYy4fsGi9uX9efBC56qqrsHDhQixfvhxfffXVD/5zoh/uv2c2X/AWSEXAH3wUwCtOhiBFglct95cpAlCEv1w5GZR8CtTQ1P01ugKV92RZ19eusOVRTgUxjw8nQ5q/3OWT4D4Z3Fw+9Lq1SH/R6XTqmClJks749/z08q6QFBMTg7vuugvz5s3r/4rSoMAWHjovGzZsQGNjY5+vj9EpSI/yITPai+wYL7Jj/OFmqHZFDRULFy5EZmYmFi5ciC+//DLY1aELRJb8h04GgK7/xAdPmBUC8Cj+QOT0SbB7JLS7/d2AHR4Z7W4Z7W4JVrf/+w63jA6P1GvLVV+cvrbW+XK5XFi6dCnmzp3LgeZhgoGHzsv48ePx97//vc/XWz0yDrTJONCmU8tidArMRgVmo+9kC4+CZKMPyZE+JBv7dxCrXvb/5h1sTU4Zj23tvzE8y5cvV1t4zvabb7AtubgVicbQ7N/TD+D/oaKrhaeX1hxF9GzZOVcrj+fk992719xdX32SGmzcJ7vo3L6u77u67ga2teeH+MUvfsGwE0bYpRWGfuwsLbfbjc7OTjidTjgcDnWQpt1uh81mQ0dHR69jeFpaWs75G5lGEkiJ8J0cw+PDsGgfMqK9SInov26uYGh09O+g5a6QM5jDDhCcQcv9zasADp8Ep1eCo2v8jtff4uH24bRAcHL8ji8wTHR1G3lE4Pgdr3Kqq6krmHQFF+UHtpAMFJ1O1+t4ne5fu2avnW0Mz+kz27oGVXcNsGZ4obNh4AlDwZqWLoRAe3s7mpqa0NDQgPr6etTX16Ourg51dXWora2Fy+Xq9blGjYKsGB+yT5ulZTYqQ3Yhwf6elt7mktDk1CDR6EOcYfD+Ew/GtPS+Uk6u5+PvevHP0LJ5Tn21e2TYvP5um06vf7aWwyudcRuMYOht1lbX4+6ztU6fqXX6NPjTp8qffnSFEb1ej4iIiIAZW91DDGds0WDAwBOGBus6PIqioKGhAdXV1QHr8FRWVsLtdve4Pk6voCDWvwZPYZwHmdG+kGoFov7j9gHNLhnNTg2anf71d1pPrsXT7vZ/3+GWflSXjMFg6LEGz/msw9N9LZ7uU8fPFF66vrK1gygQA08YGqyB50y8Xi+qq6tRXl6OAwcOoKysDIcPH+6xXk+kVsHIOP9KyxclcCuJcCYE0OaW0ODQ4ESnBg0OGQ1O/2rLTeex2jIAmEwmdcXl01daNplMiImJCVhpuWu15cjISLZqEA0yDDxhaKgFnt44nU4cPHgQ+/btw969e/H999/3WOwtweDD6AQPxpo9uCjeg6ghsgoz9Z3bBxzv1Jw67P6vJxwaOH1nT7tGoxEWiwVJSUnqflqn76VlNpsRGxvL4EIUIhh4wlAoBJ7uvF4vDh06hF27dmHXrl3Yu3dvwABpWRIoiPVivNnNjUSHoK5gc8yuQa1di1q7f9f0Rod8xm4nWZZhsVjUndLT0tKQmpqK1NRUWCwWbg5KFGYYeMJQKAae7lwuF/bs2YPt27dj69atqK6uDjifHOHDhEQ3ihLdKIj1DtqBs+FGCP+U/RqbBjU2LWrsGtTY/C02Z5qJZDKZkJmZqR4ZGRkYNmwY0tLSoNPpen0OEYUfBp4wFA6Bp7u6ujps2bIFJSUl2L17d0DrT5RWwfhEN4qSPBiT4OaiiAPE7QOO2TWotmlRbdOg2qpFjU0Dh6/39BkTE4Pc3FxkZ2cHHHFxcWypIaJzYuAJQ+EYeE7X2dmJHTt2YNOmTSgpKUFHR4d6Ti8LjE7woCjJjfGJ7iGz+/pgZ/dIqLJpUGXVosrqDzh1nb232mi1WmRlZSEvLw+5ubnqYTabGWyI6Adj4AlD4R54Tuf1erF//35s3LgRGzZsQH19vXpOgsCIOC8mJPm7vkJtgbz+0uaSUGXzB5tKqz/kNDp7bzYzmUwoKChAXl4e8vPzkZeXh8zMTHZFEdEFx8AThhh4eieEwOHDh7Fp0yZs2LABFRUVAeczoryYkOgf9Jxr8ob9mj9C+BdP7Ao1lSePtjNM+bZYLCgoKEBBQQHy8/ORn5+PpKQkttoQ0YBg4AlDDDx9c/z4cWzcuBGbNm3C3r17oSinWnhMOgVjzG6MM3swOsGD6BDv+lIEcMIhq11SVVYNqmxaWD09w40kScjMzFTDTWFhIfLz8xETExOEmhMR+THwhCEGnvPX3t6OrVu3oqSkBNu2bYPdblfPSRDINXlxUbwHoxI8yDd5oR/CA5/dPqD25GDirnE3NTZtr+vaaDQaZGdnq8GmsLAQubm5iIyMDELNiYjOjIEnDDHw/Dgejwf79u3D1q1bsXXrVlRWVgac10r+ADQ8zoOCWC9yTV6Y9IPvn5kigAaHfHJNG+3JqeAa1J9hCrher0deXp7aclNQUICcnBwYDIYg1J6I6Pww8IQhBp4Lq6GhAbt27cLOnTuxc+dOtLS09Lgmyejf+DTj5O7vw6J8SDT2/8aZQgDtbgmNTg1OdMqod2hQf3JF4nqHBp4zbHTZfTBxQUEBMjIyuOowEQ1ZDDxhiIGn/wghUFtbiz179mDv3r0oLS1FTU1Nr9dqJIFEo4LkCB8SDAriDQriDAqidQJRWgURWgG9DOhkAe3JYCTgDzFuRYJHAVw+/07dNo8M+8mdvdvcMtpcEppd/o0xzxRqAH+rTdd6Njk5OcjLy0NeXh4SEhI4mJiIQgoDTxhi4BlYVqsVBw8eREVFBY4cOYLDhw+jpqam1x3g+4MkSUhOTkZ6erp6ZGVlITMzExaLBRrNEB5wRETURww8YYiBJ/gURUFTUxOOHTuGEydOoLGxEY2NjWhpaYHVakVHRwfsdjvcbjdcLhc8Hg8kSVIPo9EIg8EAg8GAmJgY9YiPj4fZbEZCQgKSk5ORkpKCpKQkrmtDRGGPHfJEQSDLMpKTk5GcnBzsqhARhQVumUhEREQhj4GHiIiIQh4DDxEREYU8Bh4iIiIKeQw8REREFPIYeIiIiCjkMfAQERFRyGPgISIiopDHwENEREQhj4GHiIiIQh4DDxEREYU8Bh4iIiIKeQw8REREFPIYeIiIiCjkMfAQERFRyGPgISIiopDHwENEREQhj4GHiIiIQh4DDxEREYU8Bh4iIiIKeQw8REREFPK0wa4ADTwhBACgo6MjyDUhIhq6YmJiIElSsKtBfcTAE4asVisAICMjI8g1ISIautrb22EymYJdDeojSXT9uk9hQ1EU1NXVhe1vJx0dHcjIyEBNTQ1/WPUB79f54f3qu6F+r8L1Z+hQxRaeMCTLMoYNGxbsagSdyWQakj9kg4X36/zwfvUd7xUNBA5aJiIiopDHwENEREQhj4GHwo7BYMDTTz8Ng8EQ7KoMCbxf54f3q+94r2ggcdAyERERhTy28BAREVHIY+AhIiKikMfAQ0RERCGPgYeIiIhCHgMPhZXXXnsNOTk5MBqNKCoqwoYNG4JdpUFhyZIlmDx5MmJiYpCcnIzrrrsOBw8eDLhGCIFnnnkGaWlpiIiIwKxZs7B///4g1XjwWLJkCSRJwuLFi9Uy3queamtr8S//8i8wm82IjIzE+PHjsXPnTvU87xn1NwYeChuffPIJFi9ejCeeeALfffcdfvKTn+CKK65AdXV1sKsWdOvXr8d9992HLVu2YM2aNfB6vZg3bx7sdrt6zUsvvYTf//73ePXVV7F9+3ZYLBZcdtll6t5s4Wj79u148803MXbs2IBy3qtAra2tKC4uhk6nw8qVK1FaWoqlS5ciLi5OvYb3jPqdIAoTU6ZMEffcc09A2YgRI8RvfvObINVo8GpoaBAAxPr164UQQiiKIiwWi3jxxRfVa5xOp4iNjRV/+ctfglXNoLJaraKgoECsWbNGzJw5Uzz00ENCCN6r3vzHf/yHmDFjxhnP857RQGALD4UFt9uNnTt3Yt68eQHl8+bNw+bNm4NUq8Grvb0dAJCQkAAAOHr0KOrr6wPun8FgwMyZM8P2/t1333346U9/irlz5waU81719MUXX2DSpEn42c9+huTkZEyYMAH//d//rZ7nPaOBwMBDYaGpqQk+nw8pKSkB5SkpKaivrw9SrQYnIQQefvhhzJgxA6NHjwYA9R7x/vl9/PHH2LVrF5YsWdLjHO9VT0eOHMHrr7+OgoICrFq1Cvfccw8efPBBvPfeewB4z2hgcLd0CiuSJAU8FkL0KAt3999/P/bu3YuNGzf2OMf7B9TU1OChhx7C6tWrYTQaz3gd79UpiqJg0qRJeOGFFwAAEyZMwP79+/H666/jtttuU6/jPaP+xBYeCguJiYnQaDQ9fltsaGjo8VtlOHvggQfwxRdfYO3atRg2bJhabrFYAID3D8DOnTvR0NCAoqIiaLVaaLVarF+/Hn/605+g1WrV+8F7dUpqaipGjRoVUDZy5Eh1wgD/ftFAYOChsKDX61FUVIQ1a9YElK9ZswbTp08PUq0GDyEE7r//fnz66af45z//iZycnIDzOTk5sFgsAffP7XZj/fr1YXf/Lr30Uuzbtw+7d+9Wj0mTJuHnP/85du/ejdzcXN6rboqLi3ssc1BeXo6srCwA/PtFAySYI6aJBtLHH38sdDqdeOutt0RpaalYvHixiIqKEpWVlcGuWtDde++9IjY2Vqxbt04cP35cPTo7O9VrXnzxRREbGys+/fRTsW/fPnHLLbeI1NRU0dHREcSaDw6nz9ISgvequ23btgmtViuef/55cejQIbFs2TIRGRkpPvjgA/Ua3jPqbww8FFb+/Oc/i6ysLKHX68XEiRPVadfhDkCvxzvvvKNeoyiKePrpp4XFYhEGg0FccsklYt++fcGr9CDSPfDwXvX0j3/8Q4wePVoYDAYxYsQI8eabbwac5z2j/iYJIUQwW5iIiIiI+hvH8BAREVHIY+AhIiKikMfAQ0RERCGPgYeIiIhCHgMPERERhTwGHiIiIgp5DDxEREQU8hh4iGhAHTx4EBaLBVarNaj1eOaZZzB+/Pjzes67776LuLi4fqlPb1599VVcc801A/Z+RKGMgYdokNi8eTM0Gg0uv/zyYFflvM2aNQuLFy/u07VPPPEE7rvvPsTExMBms0Gn0+GTTz4JuOamm26CJEmoqKgIKM/Ly8Pjjz9+oao96C1atAjbt2/vded6Ijo/DDxEg8Tbb7+NBx54ABs3blR3kQ41x44dwxdffIFf/epXAIDo6GhMmjQJa9euDbhu/fr1yMjICCg/duwYjhw5gtmzZw9onYPJYDDg1ltvxSuvvBLsqhANeQw8RIOA3W7H8uXLce+99+Kqq67Cu+++G3B+3bp1kCQJq1atwoQJExAREYE5c+agoaEBK1euxMiRI2EymXDLLbegs7NTfZ7L5cKDDz6I5ORkGI1GzJgxA9u3b1fP99ZF8/nnn0OSJPVxV9fP+++/j+zsbMTGxuLmm29Wu6Ruv/12rF+/Hi+//DIkSYIkSaisrOz1cy5fvhzjxo3DsGHD1LLZs2dj3bp16uOysjI4HA7867/+a0D52rVrodPpUFxcDAD4xz/+gaKiIhiNRuTm5uLZZ5+F1+tVr29vb8ddd92F5ORkmEwmzJkzB3v27Dnjn8HRo0eRn5+Pe++9F4qiqPcnMzMTkZGRuP7669Hc3BzwnIqKClx77bVISUlBdHQ0Jk+ejG+++UY9/9xzz2HMmDE93quoqAhPPfUUAP+f7ZQpUxAVFYW4uDgUFxejqqpKvfaaa67B559/DofDcca6E1EfBHszLyIS4q233hKTJk0SQvg3WczOzhaKoqjn165dKwCIqVOnio0bN4pdu3aJ/Px8MXPmTDFv3jyxa9cu8e233wqz2SxefPFF9XkPPvigSEtLEytWrBD79+8Xv/zlL0V8fLxobm4WQgjxzjvviNjY2IC6fPbZZ+L0Hw1PP/20iI6OFjfccIPYt2+f+Pbbb4XFYhGPP/64EEKItrY2MW3aNLFo0SJ1l3Wv19vr57z22mvFPffcE1C2evVqAUDU1dUJIfwbvP70pz8VW7duFenp6ep1v/rVr8SMGTOEEEJ8/fXXwmQyiXfffVdUVFSI1atXi+zsbPHMM88IIfwbURYXF4urr75abN++XZSXl4t/+7d/E2azWf3sTz/9tBg3bpwQQoh9+/aJ1NRU8Zvf/EZ9vy1btghJksSSJUvEwYMHxcsvvyzi4uIC7tfu3bvFX/7yF7F3715RXl4unnjiCWE0GkVVVZUQQoiamhohy7LYtm2b+pw9e/YISZJERUWF8Hg8IjY2VjzyyCPi8OHDorS0VLz77rvq84UQwmazCUmSxLp163q9p0TUNww8RIPA9OnTxR//+EchhBAej0ckJiaKNWvWqOe7As8333yjli1ZskQAEBUVFWrZ3XffLebPny+E8P9HqdPpxLJly9TzbrdbpKWliZdeekkI0ffAExkZKTo6OtSyRx99VFx88cXq4+67hZ/JuHHjxHPPPRdQZrfbhU6nEx9++KEQQoif/exn4qWXXhIej0dER0eL8vJyIYQQOTk54v/9v/8nhBDiJz/5iXjhhRcCXuf9998XqampQggh/u///k+YTCbhdDoDrsnLyxNvvPGG+rnGjRsnNm/eLBISEsRvf/vbgGtvueUWcfnllweU3XTTTT3uV3ejRo0Sr7zyivr4iiuuEPfee6/6ePHixWLWrFlCCCGam5sFgHOGmfj4ePHuu++e9RoiOjt2aREF2cGDB7Ft2zbcfPPNAACtVoubbroJb7/9do9rx44dq36fkpKCyMhI5ObmBpQ1NDQA8He3eDwetQsIAHQ6HaZMmYKysrLzqmN2djZiYmLUx6mpqer7nA+HwwGj0RhQFhkZiSlTpqjdV+vXr8esWbOg1WpRXFyMdevWobq6GkePHsWcOXMAADt37sRzzz2H6Oho9Vi0aBGOHz+Ozs5O7Ny5EzabDWazOeCao0ePBgyErq6uxty5c/Hkk0/ikUceCahXWVkZpk2bFlDW/bHdbse///u/Y9SoUYiLi0N0dDQOHDgQMAZr0aJF+Oijj+B0OuHxeLBs2TL8+te/BgAkJCTg9ttvx/z583H11Vfj5ZdfxvHjx3vct4iIiICuSiI6f9pgV4Ao3L311lvwer1IT09Xy4QQ0Ol0aG1tRXx8vFqu0+nU7yVJCnjcVdY1/kQIoZadTgihlsmyrF7XxePx9Kjj2d7nfCQmJqK1tbVH+ezZs/HJJ59g//79cDgcmDhxIgBg5syZWLt2LfR6PYxGI6ZOnQoAUBQFzz77LG644YYer2U0GqEoClJTUwPGAHU5fcxSUlIS0tLS8PHHH+OOO+6AyWRSz3W/L7159NFHsWrVKvzud79Dfn4+IiIicOONN8LtdqvXXH311TAYDPjss89gMBjgcrmwYMEC9fw777yDBx98EF9//TU++eQTPPnkk1izZo36WQGgpaUFSUlJ56wPEZ0ZW3iIgsjr9eK9997D0qVLsXv3bvXYs2cPsrKysGzZsh/82vn5+dDr9QFTmj0eD3bs2IGRI0cC8P+Hb7VaYbfb1Wt279593u+l1+vh8/nOed2ECRNQWlrao3z27Nk4dOgQPvzwQ8yYMQMajQaAP/CsW7cO69atw7Rp09TWoYkTJ+LgwYPIz8/vcciyjIkTJ6K+vh5arbbH+cTERPV9IyIi8OWXX8JoNGL+/PkBawONGjUKW7ZsCahn98cbNmzA7bffjuuvvx5jxoyBxWLpMWBbq9Xil7/8Jd555x288847uPnmmxEZGdnjvjz22GPYvHkzRo8ejQ8//FA9V1FRAafTiQkTJpzz/hLRmTHwEAXRl19+idbWVtxxxx0YPXp0wHHjjTfirbfe+sGvHRUVhXvvvRePPvoovv76a5SWlmLRokXo7OzEHXfcAQC4+OKLERkZiccffxyHDx/Ghx9+2GOGWF9kZ2dj69atqKysRFNT0xlbf+bPn4+SkpIe4Wj69OkwGAx45ZVXMHPmTLV88uTJaG9vx9///veA6ehPPfUU3nvvPTzzzDPYv38/ysrK1NYRAJg7dy6mTZuG6667DqtWrUJlZSU2b96MJ598Ejt27Ohxn7766itotVpcccUVsNlsAKC2urz00ksoLy/Hq6++iq+//jrgufn5+fj000/VkHrrrbf2+tnvvPNO/POf/8TKlSvV7izAPzPsscceQ0lJCaqqqrB69WqUl5ergRTwh6rc3Fzk5eWd9c+AiM6OgYcoiN566y3MnTsXsbGxPc4tWLAAu3fvxq5du37w67/44otYsGABfvGLX2DixIk4fPgwVq1apXaTJSQk4IMPPsCKFSswZswYfPTRR3jmmWfO+30eeeQRaDQajBo1CklJSWdcR+jKK6+ETqcLmLoNQO2uslqtmDVrllqu0+kwbdo0WK3WgMAzf/58fPnll1izZg0mT56MqVOn4ve//z2ysrIA+LvcVqxYgUsuuQS//vWvUVhYiJtvvhmVlZVISUnpUa/o6GisXLkSQghceeWVsNvtmDp1Kv7nf/4Hr7zyCsaPH4/Vq1ergarLH/7wB8THx2P69Om4+uqrMX/+fLU77nQFBQWYPn06hg8fjosvvlgtj4yMxIEDB7BgwQIUFhbirrvuwv3334+7775bveajjz7CokWLznL3iagvJNGXjmoiogvktddew//+7/9i1apVwa7KgBFCYMSIEbj77rvx8MMP9/l533//PS699FKUl5f3GoqJqO84aJmIBtRdd92F1tZWWK3WgJlfoaqhoQHvv/8+amtr1RWm+6qurg7vvfceww7RBcAWHiKifiRJEhITE/Hyyy/j1ltvDXZ1iMIWW3iIiPoRf6ckGhw4aJmIiIhCHgMPERERhTwGHiIiIgp5DDxEREQU8hh4iIiIKOQx8BAREVHIY+AhIiKikMfAQ0RERCGPgYeIiIhC3v8HC/3YtWbz5bcAAAAASUVORK5CYII=",
2849
      "text/plain": [
2850
       "<Figure size 600.25x500 with 1 Axes>"
2851
      ]
2852
     },
2853
     "metadata": {},
2854
     "output_type": "display_data"
2855
    }
2856
   ],
2857
   "source": [
2858
    "#Violin plot for amt_weekdays, age, gender\n",
2859
    "sns.catplot(data=smokers,\n",
2860
    "           x=\"amt_weekdays\",\n",
2861
    "           y=\"age\",\n",
2862
    "           hue=\"gender\",\n",
2863
    "           kind=\"violin\",)\n",
2864
    "plt.title('Figure 14: Violin plot for Amount (Weekdays), Age, Gender')\n",
2865
    "plt.xlabel('Amount (Weekdays)')\n",
2866
    "plt.ylabel('Age')"
2867
   ]
2868
  },
2869
  {
2870
   "cell_type": "code",
2871
   "execution_count": 53,
2872
   "id": "98724910",
2873
   "metadata": {
2874
    "scrolled": false
2875
   },
2876
   "outputs": [
2877
    {
2878
     "data": {
2879
      "text/plain": [
2880
       "Text(51.78546571180556, 0.5, 'Age')"
2881
      ]
2882
     },
2883
     "execution_count": 53,
2884
     "metadata": {},
2885
     "output_type": "execute_result"
2886
    },
2887
    {
2888
     "data": {
2889
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAroAAAH+CAYAAABz3K3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACY+UlEQVR4nOzdeVxN+f8H8NettK+SClFKKYqI7BUlZDeWyZaxjLFUlrE1kS37bixjqYxsM0j2PcaeJWv2JUsloRAlnd8ffp1v172lUuJ6PR+P+3jc+zmfcz7vc7q3+76f8zmfIxEEQQARERERkYJRKukAiIiIiIiKAxNdIiIiIlJITHSJiIiISCEx0SUiIiIihcREl4iIiIgUEhNdIiIiIlJITHSJiIiISCEx0SUiIiIihcREl4iIiIgUUoES3dDQUEgkErmPkSNH4v79+5BIJAgNDS2mcIvXq1evMGrUKDRv3hxGRkaQSCQICgqSW9fHx0fucahatWqh288+fjkfurq6qFGjBubPn48PHz4UetvFxdXVFa6uroVaNzg4GBEREfmuf//+fXh5eaF06dKQSCTw9/cvVLsF9f79e5iYmEAikeDff//9Km1+TU+ePEFQUBBiYmIKtN6aNWtgZGSEV69eAQCqV68OW1tbmXpbt26FRCJB/fr1ZZb9/fffkEgkiIyMLFTsnyORSDBkyJBCrRsVFQWJRIKoqKiiDaqAmjRpUqTv9Y4dO37RcSlu5ubmaN26tdxlZ8+elfmOyf5eun//foHbyv4bf+3P9bp16zB//vwCrfP+/XssXboU9evXh56eHjQ0NGBnZ4dx48bhxYsXxRPoJz79TsztM7Jo0SJYWVlBVVUVEokEL1++hI+PD8zNzYsttl27duX6fW1ubg4fH59ia5u+bYXq0Q0JCcHJkyelHr6+vjA1NcXJkyfh5eVV1HF+FcnJyfjrr7+Qnp6O9u3bf7a+hoaGzHHYuHHjF8cxdOhQcXubNm1Cw4YNMWzYMIwaNeqLt/0tKWiiO2zYMJw+fRqrV6/GyZMnMWzYsOILLocdO3YgMTERALBq1aqv0ubX9OTJE0ycOLFAiW5aWhrGjRuH0aNHQ0dHBwDg5uaG69evIyEhQapuVFQUtLS0cPbsWTEpzrlMSUkJTZo0+eL9UFSTJ0/GkiVLcOPGjS/e1tOnT7Fjxw4AQHh4ON69e/fF2yxpXl5eOHnyJExNTUs6lHwraKKblpYGDw8PDB06FI6Ojli/fj127dqFHj16YNmyZahVqxbu3LlTfAHnolatWjh58iRq1aollsXExMDX1xdubm44dOgQTp48CR0dHQQGBmLr1q3FFsuuXbswceJEucu2bt2KwMDAYmubvm0qhVmpevXqcHJykrusXr16XxRQYaWlpUFTU/OLtlGpUiW8ePECEokEz549w8qVK/Osr6SkVCz7W7FiRanttmjRAleuXMH69esxZ86cImmjKI7X13blyhXUrVs3Xz9C8uPDhw/IzMyEmppanvVWrVoFVVVVuLi4YN++fXj06BEqVKhQJDF8r8LCwpCcnIx+/fqJZW5ubli8eDGioqLQrVs3sTwqKgr9+vXDkiVLcOzYMbRs2VJqmaOjI/T19b9m+N8VFxcX2NjYYM6cOfjrr7++aFtr1qzB+/fv4eXlhZ07d2LLli3w9vYuokhLhpGREYyMjEo6jGI1bNgwHDlyBBs2bEDXrl3Fcjc3N/z000+oW7cufvrpJ5w7dw5KSl9vRKKurq7Md+DVq1cBAP3790fdunXFcktLy68W16ccHR1LrG0qeUX6icht6MK2bdvg4OAANTU1VK5cGQsWLEBQUBAkEsln1wVkT5dkr3v+/Hn89NNPMDAwED9EgiBgyZIlqFmzJjQ0NGBgYICffvoJd+/e/Wz82cMFvkV6enooVaqUVNnGjRvRvHlzmJqaQkNDA7a2thgzZgzevHkjVc/Hxwfa2tq4fPkymjdvDh0dHTRr1izXtrKP74ULF9CxY0fo6upCT08PPXr0QFJS0mdjff78OQYNGoTy5ctDVVUVlStXRkBAANLT08U6EokEb968QVhYmHjccxsCkX167Pbt29i9e7dYP/tUZVxcHHr06IGyZctCTU0Ntra2mDNnDrKyssRtZL+/Zs6ciSlTpsDCwgJqamo4fPhwnvvy5MkT7NmzB23atMHvv/+OrKwsue/R7GN8/fp1eHp6QktLC6amppg+fToA4NSpU2jUqBG0tLRgbW2NsLAwmW1cuXIF7dq1g4GBAdTV1VGzZk2ZermdppV3CtHV1RXVq1dHdHQ0GjduDE1NTVSuXBnTp08Xj01UVBTq1KkDAOjTp494bHM7BZht6dKlaNOmjVSC6urqKhNDcnIyLl++DC8vL9SuXVvqeD98+BB3796Fm5ubWHbr1i14e3tL/S3//PNPmfZTU1MxcuRIWFhYQFVVFeXLl4e/v7/Me/9TgiBg3LhxKFWqFFasWCGWX79+HS1atICmpibKlCmDgQMHyvQ+A8D+/fvRrl07VKhQAerq6rCyssKvv/6KZ8+eiXX+++8/SCQSrF+/Xmb9NWvWQCKRIDo6GgBw9+5ddOvWDeXKlYOamhqMjY3RrFkzmd71nj17Yt26dXJjKojVq1fD2NgYYWFh0NDQwOrVq+XWO3bsGOrXrw91dXWUL18egYGBWLlypdz33saNG1G/fn1oaWlBW1sbnp6euHDhwhfFWRDyPhOCICA4OBiVKlWCuro6nJycsH///lyHWr1//x4BAQEoV64cdHV14e7uLrcH/cCBA2jWrBl0dXWhqamJhg0b4uDBg1J1kpKSMGDAAJiZmUFNTQ1GRkZo2LAhDhw4AODj52Tnzp148OCB1DC13CQkJGD16tXw9PSUSnKzWVtbY/To0YiJiRF76wHZ781sn57GT0pKwqBBg2BnZwdtbW2ULVsWTZs2xX///ZdrTNk+/b/j6uqKHj16AACcnZ0hkUjEtuQNXcjKysKiRYvE72t9fX3Uq1dPaihTfr7nfHx8xP8TOY9p9ntC3tCFgnxvzJ49G3PnzoWFhQW0tbVRv359nDp16rPHh74NhUp0s3vCcj5ys2fPHnTs2BGGhobYuHEjZs6cifXr18v9oi+ojh07wsrKCv/88w+WLVsGAPj111/h7+8Pd3d3REREYMmSJbh69SoaNGggnn4uKm/fvoWJiQmUlZVRoUIFDBkyBM+fP5epl50A5FdWVpZ4XJOTk7F69Wrs2bMHPXv2lKp369YttGrVCqtWrcKePXvg7++PTZs2oU2bNjLbzMjIQNu2bdG0aVNs27Yt11M8OXXo0AFWVlb4999/ERQUhIiICHh6euL9+/e5rvPu3Tu4ublhzZo1GD58OHbu3IkePXpg5syZ6Nixo1jv5MmT0NDQQKtWrcRhGkuWLJG7zezTYyYmJmjYsKFY39TUFElJSWjQoAH27duHyZMnIzIyEu7u7hg5cqTcMYgLFy7EoUOHMHv2bOzevfuzY6pDQ0Px4cMH/PLLL3B3d0elSpWwevVqCIIgU/f9+/fo2LEjvLy8sG3bNrRs2RJjx47FuHHj0Lt3b/zyyy/YunUrbGxs4OPjg3Pnzonr3rhxAw0aNMDVq1excOFCbNmyBXZ2dvDx8cHMmTPzjDEvCQkJ6N69O3r06IHIyEgxprVr14rHNiQkBADwxx9/iMc2Z0/tpx49eoTLly9LJagAULp0aTg4OEgls0eOHIGysjIaNGgAFxcXqSQ4u172dq5du4Y6dergypUrmDNnDnbs2AEvLy/4+vpKvV/T0tLg4uKCsLAw+Pr6Yvfu3Rg9ejRCQ0PRtm1buX8bAEhPT4e3tzcWL16M7du3o3///gCAxMREuLi44MqVK1iyZAn+/vtvvH79Wu77586dO6hfvz6WLl2Kffv2Yfz48Th9+jQaNWokfi4aN24MR0dHuQn64sWLUadOHfHHRatWrXDu3DnMnDkT+/fvx9KlS+Ho6IiXL19Krefq6oo3b9580XjhEydOIDY2Fr169YKhoSE6deqEQ4cO4d69e1L1Ll26BA8PD6SlpSEsLAzLli3D+fPnMXXqVJltBgcH4+eff4adnR02bdqEv//+G69evULjxo1x7dq1QscqCILMd0xmZma+r1MICAhAQEAAWrRogW3btmHgwIHo168fbt68Kbf+uHHj8ODBA6xcuRJ//fUXbt26hTZt2ki1t3btWjRv3hy6uroICwvDpk2bULp0aXh6ekoluz179kRERATGjx+Pffv2YeXKlXB3d0dycjIAYMmSJWjYsCFMTEykhr3l5vDhw8jMzMzzTFb2sr179+br+OSU/Z01YcIE7Ny5EyEhIahcuTJcXV0L/H5bsmQJ/vjjDwD/G+KY15ABHx8f+Pn5oU6dOti4cSM2bNiAtm3bSv1oyc/3XGBgIH766ScAkDqmuQ1nKej3xp9//on9+/dj/vz5CA8Px5s3b9CqVSukpKQU6PhQCREKICQkRAAg9/H+/Xvh3r17AgAhJCREXKdOnTqCmZmZkJ6eLpa9evVKMDQ0FHI2L2/dbACECRMmiK8nTJggABDGjx8vVe/kyZMCAGHOnDlS5Q8fPhQ0NDSEUaNG5Xtfk5KSZNrNae7cucLcuXOFffv2Cfv27RMCAgIETU1NoWrVqsKrV6+k6jZt2lRQVlb+bJvZx0Dew8fHR8jMzMx13aysLOH9+/fCkSNHBADCxYsXxWW9e/cWAAirV6/O175nH99hw4ZJlYeHhwsAhLVr14plLi4ugouLi/h62bJlAgBh06ZNUuvOmDFDACDs27dPLNPS0hJ69+6dr5gEQRAqVaokeHl5SZWNGTNGACCcPn1aqvy3334TJBKJcOPGDUEQ/ndsLS0thYyMjHy1l5WVJVhZWQnly5cXj332sTl48KBU3exjvHnzZrHs/fv3gpGRkQBAOH/+vFienJwsKCsrC8OHDxfLunXrJqipqQlxcXFS223ZsqWgqakpvHz5UhCE/30G7927J1Xv8OHDAgDh8OHDYpmLi4vcY2NnZyd4enqKr6Ojo3P97MmzceNGAYBw6tQpmWX+/v4CAOHJkyeCIAjC0KFDhXr16gmCIAi7du0SlJWVhZSUFEEQBKFPnz6CsrKykJqaKgiCIHh6egoVKlQQl2cbMmSIoK6uLjx//lwQBEGYNm2aoKSkJERHR0vV+/fffwUAwq5du8QyAMLgwYOF5ORkoVGjRkL58uWFmJgYqfVGjx4tSCQSmXIPDw+ZY5pT9mfuwYMHAgBh27Zt4rLsv9OFCxfEsjNnzggAhLCwMEEQBOHZs2cCAGH+/Plyt59TRkaGIJFIhNGjR3+2bm5++eUXAYAQGxsrCML/3jOBgYFS9Tp37ixoaWkJSUlJYtmHDx8EOzs7qfdeXFycoKKiIgwdOlRq/VevXgkmJiZCly5dChVnpUqVcv0/mP3I+V799DPx/PlzQU1NTejatavUdrO/H3L+v8o+Bq1atZKqu2nTJgGAcPLkSUEQBOHNmzdC6dKlhTZt2kjV+/Dhg1CjRg2hbt26Ypm2trbg7++f5z56eXkJlSpVytfxmD59ugBA2LNnT6513r59KwCQ+v+Y2/dXpUqV8vy/m5mZKbx//15o1qyZ0KFDB6lln25T3v+d7L/Hp5/P3r17S+3z0aNHBQBCQEBArrF8Kq/vucGDB0vlFDl9us8F/d6wt7eX+v7N/iyvX78+37FTySlUj+6aNWsQHR0t9VBRkR3u++bNG5w9exbt27eHqqqqWK6trS2317GgOnXqJPV6x44dkEgk6NGjh1QvgImJCWrUqFGkV08PGzYMw4YNg4eHBzw8PDBlyhSsWbMG169flzolCgAHDx7Ms9f7U35+fuJxPXz4MIKDg7Fp0yb8/PPPUvXu3r0Lb29vsVe5VKlScHFxAQDExsbKbPfT4/U53bt3l3rdpUsXqKio5Hm6/9ChQ9DS0hJ/XWfLPm306Wm+L3Xo0CHY2dlJjQXLbk8QBBw6dEiqvG3btjJDQHJz5MgR3L59G71794aysjKA/53el3fKVyKRoFWrVuJrFRUVWFlZwdTUVGqMWOnSpVG2bFk8ePBAaj+aNWsGMzMzmf1IS0vLs8cnLyYmJjLHxsHBQartgnry5AkAoGzZsjLLsntnsz9rUVFR4qniRo0aAQCOHj0qLnNycoKOjg7evXuHgwcPokOHDtDU1JT6/LZq1Qrv3r0TTxXu2LED1atXR82aNaXqeXp6yr0C/N69e6hfvz5SU1Nx6tQp1KhRQ2r54cOHUa1aNZlyeWNXnz59ioEDB8LMzAwqKiooVaoUKlWqBED6M/fzzz+jbNmyUr26ixYtgpGRkXj6uXTp0rC0tMSsWbMwd+5cXLhwQeq0aU6lSpWCvr4+Hj9+LHf557x+/RqbNm1CgwYNxLMYLi4usLS0RGhoqFS7R44cQdOmTVGmTBmxTElJCV26dJHa5t69e5GZmYlevXpJ/R3U1dVleu8LqlGjRjLfMdHR0VizZs1n1z116hTS09Nl4q1Xr16uV/23bdtW6rWDgwMAiJ+TEydO4Pnz5+jdu7fUvmZlZaFFixaIjo4WT6XXrVsXoaGhmDJlCk6dOpXnGbCiVtihd9kXtKmrq4vv64MHD8r9Hikqu3fvBgAMHjw4z3oF/Z7Lj4J+b3h5eYnfAYDs+4O+bYW6GM3W1jbXi9FyevHiBQRBgLGxscwyeWUF9elpicTExFzbA4DKlSt/cZt56dChA7S0tL547E6FChWkjm/20IexY8di79698PT0xOvXr9G4cWOoq6tjypQpsLa2hqamJh4+fIiOHTvi7du3UtvU1NSErq5ugeIwMTGReq2iogJDQ0PxFJw8ycnJ4lRcOZUtWxYqKip5rlsYycnJcr+8ypUrJy7PqSBXZmfPsNChQwfxVLKenh4aNWqEzZs3Y/HixVJjVDU1NaGuri61DVVVVZQuXVpm26qqqlJXvCcnJ8uNLbf9yC9DQ0OZMjU1NZn3R0Fkr/vpvgIfkyclJSUcPnwYzZs3x5UrV8ShFzo6OnB0dERUVBQcHBxw7949MelLTk5GZmYmFi1ahEWLFsltN3scbGJiIm7fvp3rD5ac42UB4MyZM3j27BmmTp0q9yLC5ORkWFhYyJR/+v7PyspC8+bN8eTJEwQGBsLe3h5aWlrIyspCvXr1pI6pmpoafv31V8yZMwezZs3C+/fvsWnTJgwfPly8+FEikeDgwYOYNGkSZs6ciREjRqB06dLo3r07pk6dKs5mkU1dXb3Qf7eNGzfi9evX6NKli9SwiC5dumDatGnYv38/PD09xeORn//Z2UPBsodhfOpLLorS09PL13eMPNmflYJ873z6Ocn+G2Uf7+x9/fQHfE7Pnz+HlpYWNm7ciClTpmDlypUIDAyEtrY2OnTogJkzZ8q8p/KjYsWKACAzxCSn7GWf/lDOj7lz52LEiBEYOHAgJk+ejDJlykBZWRmBgYHFmugmJSVBWVk5z2NS0O+5/Cro98bn3h/0bStUoptfBgYGkEgkcsfGfjoFUfaXZs4LloC8v+A/TabKlCkDiUSC//77T+6V9J+7ur4oCIJQLFe9Zv+CvHjxIjw9PXHo0CE8efIEUVFR4q9bADJj+7IV5pd+QkICypcvL77OHjMsL3nKZmhoiNOnT0MQBKk2nz59iszMTKleoqJgaGiI+Ph4mfLsXsdP28vvcUhJScHmzZsB5P5Fvm7dOgwaNKgg4eYqv/uR2+fk0+SuOGXH8vz5c5nkXE9PT0xms6cOa9iwobjcxcUFhw8fhr29PYD/9QAbGBhAWVkZPXv2zLWHJzsZLVOmTJ4XUn36N+/atStMTEwQEBCArKwscQxhNkNDQ5n/R4Ds/6grV67g4sWLCA0NRe/evcXy27dvy43jt99+w/Tp07F69Wq8e/cOmZmZGDhwoFSdSpUqiT+obt68iU2bNiEoKAgZGRnidQfZXrx4UejPT3Yb/v7+cufkXbVqlZjoGhoa5ut/dnYs//77r9ir/S3I/v+U2z4UZi7X7H1dtGhRrjPtZCfRZcqUwfz58zF//nzExcUhMjISY8aMwdOnT7Fnz54Ct+3m5gYVFRVERETIvH+yZU/T2LRpU7FMTU1N5v8EIPudunbtWri6umLp0qVS5V964ePnGBkZ4cOHD0hISMi1A6Kg33P5VdDvDfq+Fes8JFpaWnByckJERAQyMjLE8tevX0tdHQp8/Cehrq6OS5cuSZVv27Yt3+21bt0agiDg8ePHcHJyknlkf7kWl3///RdpaWnFMuVY9lXY2aeLsxO2T5P35cuXF1mb4eHhUq83bdqEzMzMPG8Q0axZM7x+/VpmftzsU445Z3v40p7F7O1du3YN58+fl2lPIpHIXDCVX+vWrcPbt28xefJkHD58WOZRpkyZXBOtwmjWrJn4Tz2nNWvWQFNTU3xPZX9Jf/o5+ZIbLhS0dyL71Hdu83a6ubnh1q1bWLduHWrXri3VM+ni4oKYmBhERESgVKlSYhKsqakJNzc3XLhwAQ4ODnI/v9kJTOvWrXHnzh0YGhrKrScvkfnjjz8wf/58jB8/HmPHjpWJ9+rVq7h48aJU+bp166ReF/QzZ2pqis6dO2PJkiVYtmwZ2rRpI/bOyWNtbY0//vgD9vb2Mu/nJ0+e4N27d7Czs8t1/dzExsbi5MmT6NSpk9z3crNmzbBt2zYxAXJxccGhQ4ekfjxlZWXhn3/+kdqup6cnVFRUcOfOHbl/h8L2yH4pZ2dnqKmpycxpfurUqUKfam7YsCH09fVx7dq1XPc15/C8bBUrVsSQIUPg4eEh9TctyP8+ExMT9O3bF3v37pU7T/vNmzcxY8YMWFhYoF27dmK5ubm5zP+JQ4cO4fXr11JlEolE5j196dKlQg+Xyq/saQY/TbA/jQ3I32euIP/Hiut7g75NxdqjCwCTJk2Cl5cXPD094efnhw8fPmDWrFnQ1taWmqEge2zt6tWrYWlpiRo1auDMmTMyXzZ5adiwIQYMGIA+ffrg7NmzaNKkCbS0tBAfH49jx47B3t4ev/32W57b2L17N968eSP+mr127Zp415xWrVpBU1MTDx48gLe3N7p16wYrKytIJBIcOXIE8+fPR7Vq1WSuWG/WrBmOHDmS73G6cXFx4vCHN2/e4OTJk5g2bRoqVaokzlzQoEEDGBgYYODAgZgwYQJKlSqF8PBwmS/rL7FlyxaoqKjAw8MDV69eRWBgIGrUqCEz9i2nXr164c8//0Tv3r1x//592Nvb49ixYwgODkarVq3g7u4u1rW3t0dUVBS2b98OU1NT6OjowMbGpkAxDhs2DGvWrIGXlxcmTZqESpUqYefOnViyZAl+++03WFtbF2rfV61aBQMDA4wcOVLuKfpevXph7ty5uHjxoszYzsKYMGECduzYATc3N4wfPx6lS5dGeHg4du7ciZkzZ0JPTw/Ax95lGxsbjBw5EpmZmTAwMMDWrVtx7NixQrdtaWkJDQ0NhIeHw9bWFtra2ihXrpx4Gu9Tzs7O0NDQwKlTp2TGNgIfE8fZs2dj69atGDlypNSyxo0bA/j4A7ZBgwbQ0tISly1YsACNGjVC48aN8dtvv8Hc3ByvXr3C7du3sX37dnHcnL+/PzZv3owmTZpg2LBhcHBwQFZWFuLi4rBv3z6MGDECzs7OMnH5+flBW1sbAwYMwOvXr7Fw4ULxDnurV6+Gl5cXpkyZAmNjY4SHh+P69etS61etWhWWlpYYM2YMBEFA6dKlsX37duzfvz/XY+vn5yfGkj27RbZLly5hyJAh6Ny5M6pUqQJVVVUcOnQIly5dwpgxY6TqZv8/+PQLODupz+uuYNm9uaNGjZIZkwh87Lk7ePAg1q5dCz8/PwQEBGD79u1o1qwZAgICoKGhgWXLloljULPPWJmbm2PSpEkICAjA3bt30aJFCxgYGCAxMRFnzpyBlpaWOFvG/fv3YWFhgd69exf7nTNLly6N4cOHY9q0aTAwMECHDh3w6NEjTJw4EaampoU646atrY1Fixahd+/eeP78OX766SeULVsWSUlJuHjxIpKSkrB06VKkpKTAzc0N3t7eqFq1KnR0dBAdHS3OPpTN3t4eW7ZswdKlS1G7dm0oKSnl+cNg7ty5uH79Onr06IGjR4+iTZs2UFNTw6lTpzB79mwAEH88ZuvZsycCAwMxfvx4uLi44Nq1a1i8eLH4vyRb69atMXnyZEyYMAEuLi64ceMGJk2aBAsLiwJdW1JQjRs3Rs+ePTFlyhQkJiaidevWUFNTw4ULF6CpqYmhQ4cW6HsuuyNrxowZaNmyJZSVleHg4CD3B0hxfW/QN6ogV67ldjVlttxmTti6datgb28vqKqqChUrVhSmT58u+Pr6CgYGBlL1UlJShH79+gnGxsaClpaW0KZNG+H+/fu5zrqQ86rgnFavXi04OzsLWlpagoaGhmBpaSn06tVLOHv27Gf3Ma8rfnNe1duhQwfB3Nxc0NDQEFRVVYUqVaoIo0aNEq+Ozyn76vfPkTfrgrq6umBtbS34+/sL8fHxUvVPnDgh1K9fX9DU1BSMjIyEfv36CefPn5f5G/Tu3VvQ0tL6bPvZso/vuXPnhDZt2gja2tqCjo6O8PPPPwuJiYky+5bzKmZB+DirwMCBAwVTU1NBRUVFqFSpkjB27Fjh3bt3UvViYmKEhg0bCpqamjJXQ8sjb9YFQRCEBw8eCN7e3oKhoaFQqlQpwcbGRpg1a5bw4cMHsU72sZ01a9Zn9//ixYsCgDyvnL5+/boAQLziPLdj7OLiIlSrVi1f+3L58mWhTZs2gp6enqCqqirUqFFD7kwIN2/eFJo3by7o6uoKRkZGwtChQ4WdO3fKnXVBXtufXv0sCIKwfv16oWrVqkKpUqXynG0kW8+ePQU7Ozu5y1JTUwUVFRUBgLBjxw6Z5TVr1sz1aut79+4Jv/zyi1C+fHmhVKlSgpGRkdCgQQNhypQpUvVev34t/PHHH4KNjY2gqqoq6OnpCfb29sKwYcOEhIQEsR7+f9aFT/dVRUVF6NOnj/geuXbtmuDh4SGoq6sLpUuXFvr27Sts27ZN5phm19PR0REMDAyEzp07C3FxcXkeM3Nzc8HW1lamPDExUfDx8RGqVq0qaGlpCdra2oKDg4Mwb948mRlWevbsKdjb28tso0yZMuKsFvJkZGQIZcuWFWrWrJlrnczMTKFChQpS2//vv/8EZ2dnQU1NTTAxMRF+//13ceaUT//HRURECG5uboKurq6gpqYmVKpUSfjpp5+EAwcOiHUuX74sABDGjBmTaxzZcvucC4L8GULkzUSSlZUlTJkyRahQoYKgqqoqODg4CDt27BBq1KghNZNA9qwB//zzj1Q7uX2XHTlyRPDy8hJKly4tlCpVSihfvrzg5eUlrv/u3Tth4MCBgoODg6CrqytoaGgINjY2woQJE4Q3b96I23n+/Lnw008/Cfr6+oJEIsnX90NGRoawaNEiwdnZWdDW1ha/Ixo0aCA8evRIpn56erowatQowczMTNDQ0BBcXFyEmJgYmRkI0tPThZEjRwrly5cX1NXVhVq1agkRERFy/098+j7/klkXBOHjrBXz5s0TqlevLn6O69evL2zfvl2sk9/vufT0dKFfv36CkZGReEyz3xPyZpr40u+N/PyfpG9DgRLdopKRkSHY2dkJHh4eJdE8fcbnfkgQZScc8qYYo//J/tH0559/FnobKSkpgpaWlvDXX39JlV+9ejXXHxPFwcPDQ6hSpUqh1v3zzz8FLS0tqR8hX9vdu3cFVVVVYerUqSUWQ1HKyMgQPD09BR0dHX4OifJQ7EMXAKBv377w8PCAqakpEhISsGzZMsTGxmLBggVfo3kiKmJOTk7o0qULJk+eLDPenj6OX37w4AHGjRsHU1NTmbsyFcS8efNQsWJF9OnTR6r88OHDqF+/Pry8vL4wWlnDhw+Ho6MjzMzM8Pz5c4SHh2P//v3iMIiCOnz4MHx9fYtktp38uHjxItavX48GDRpAV1cXN27cwMyZM6Grq4u+fft+lRiKW6lSpfDvv//Czc0NLVu2xOHDh4tkGBWRovkqie6rV68wcuRIJCUloVSpUqhVqxZ27dolNV6TiL4vc+bMwapVq/Dq1SuZqbB+dJMnT8bff/8NW1tb/PPPP9DU1Cz0tnR1dREaGiozV/ngwYM/OwdpYX348AHjx49HQkICJBIJ7Ozs8Pfff4u3dy2oTy9kK25aWlo4e/YsVq1ahZcvX0JPTw+urq6YOnXqV0u2vwZtbW3xdtJEJJ9EEHK5XyYRERER0XesWKcXIyIiIiIqKUx0iYiIiEghMdElIiIiIoXERPcbIAgCUlNTweHSREREREWHie434NWrV9DT0yv2e4sTERER/UiY6BIRERGRQmKiS0REREQKiYkuERERESkkJrpEREREpJCY6BIRERGRQmKiS0REREQKiYkuERERESkkJrpEREREpJCY6BIRERGRQmKiS0REREQKiYkuERERESkkJrpEREREpJCY6BIRERGRQmKiS0REREQKiYkuERERESkkJrpEREREpJCY6BIRERGRQlIp6QCIiIgUiZ+fH5KSkgAARkZGWLBgQQlHRPTjYqJLRERUhJKSkpCYmFjSYRAROHSBiIiIiBQUE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRLYBp06ZBIpHA399fLBMEAUFBQShXrhw0NDTg6uqKq1evllyQRERERASAiW6+RUdH46+//oKDg4NU+cyZMzF37lwsXrwY0dHRMDExgYeHB169elVCkRIRERERwEQ3X16/fo3u3btjxYoVMDAwEMsFQcD8+fMREBCAjh07onr16ggLC0NaWhrWrVtXghETERERERPdfBg8eDC8vLzg7u4uVX7v3j0kJCSgefPmYpmamhpcXFxw4sSJXLeXnp6O1NRUqQcRERERFS2Vkg7gW7dhwwacP38e0dHRMssSEhIAAMbGxlLlxsbGePDgQa7bnDZtGiZOnFi0gRIRERGRFPbo5uHhw4fw8/PD2rVroa6unms9iUQi9VoQBJmynMaOHYuUlBTx8fDhwyKLmYiIiIg+Yo9uHs6dO4enT5+idu3aYtmHDx9w9OhRLF68GDdu3ADwsWfX1NRUrPP06VOZXt6c1NTUoKamVnyBExERERF7dPPSrFkzXL58GTExMeLDyckJ3bt3R0xMDCpXrgwTExPs379fXCcjIwNHjhxBgwYNSjByIiIiImKPbh50dHRQvXp1qTItLS0YGhqK5f7+/ggODkaVKlVQpUoVBAcHQ1NTE97e3iURMhERERH9Pya6X2jUqFF4+/YtBg0ahBcvXsDZ2Rn79u2Djo5OSYdGRERE9EOTCIIglHQQP7rU1FTo6ekhJSUFurq6JR0OERF9AW9vbyQmJgL4OAsP51UnKjkco0tEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktERERECkmlpAMgIioKfn5+SEpKAgAYGRlhwYIFJRwRERGVNCa6RKQQkpKSkJiYWNJhEBHRN4RDF4iIiIhIITHRJSIiokJxdXWFv79/rsslEgkiIiLyvb2oqChIJBK8fPnyi2P73ty/fx8SiQQxMTEA5B+LiIgIWFlZQVlZGf7+/ggNDYW+vn6xx/a5v/O3jEMXiIiIqFjEx8fDwMCgpMOQYm5uDn9//28+cWvQoAHi4+Ohp6cnlv3666/o06cPfH19oaOjAxUVFbRq1arI2oyKioKbmxtevHghlUBv2bIFpUqVKrJ2viYmukRERFQsTExMSjqE75aqqqrU8Xv9+jWePn0KT09PlCtXTizX0NAo9lhKly5d7G0UFw5dICIiokLLysrCqFGjULp0aZiYmCAoKEhc9unQhRMnTqBmzZpQV1eHk5MTIiIipE7XZzt37hycnJygqamJBg0a4MaNG1LLt2/fjtq1a0NdXR2VK1fGxIkTkZmZKS4PCgpCxYoVoaamhnLlysHX1xfAx1PwDx48wLBhwyCRSCCRSPK1j6GhoahYsSI0NTXRoUMHzJkzR6rH08fHB+3bt5dax9/fH66uruLrPXv2oFGjRtDX14ehoSFat26NO3fu5NpmzqELUVFR0NHRAQA0bdoUEokEUVFRcocuREZGwsnJCerq6ihTpgw6duwoLlu7di2cnJygo6MDExMTeHt74+nTpwA+Dp1wc3MDABgYGEAikcDHx0c8bjl7wF+8eIFevXrBwMAAmpqaaNmyJW7duiV1vPT19bF3717Y2tpCW1sbLVq0QHx8/OcOdZFjoktERESFFhYWBi0tLZw+fRozZ87EpEmTsH//fpl6r169Qps2bWBvb4/z589j8uTJGD16tNxtBgQEYM6cOTh79ixUVFTwyy+/iMv27t2LHj16wNfXF9euXcPy5csRGhqKqVOnAgD+/fdfzJs3D8uXL8etW7cQEREBe3t7AB9PwVeoUAGTJk1CfHx8vhKv06dP45dffsGgQYMQExMDNzc3TJkypcDH6c2bNxg+fDiio6Nx8OBBKCkpoUOHDsjKyvrsujmT/c2bNyM+Ph4NGjSQqbdz50507NgRXl5euHDhAg4ePAgnJydxeUZGBiZPnoyLFy8iIiIC9+7dE5NZMzMzbN68GQBw48YNxMfH5zpNo4+PD86ePYvIyEicPHkSgiCgVatWeP/+vVgnLS0Ns2fPxt9//42jR48iLi4OI0eOzPfxKiocukBERESF5uDggAkTJgAAqlSpgsWLF+PgwYPw8PCQqhceHg6JRIIVK1ZAXV0ddnZ2ePz4Mfr37y+zzalTp8LFxQUAMGbMGHh5eeHdu3dQV1fH1KlTMWbMGPTu3RsAULlyZUyePBmjRo3ChAkTEBcXBxMTE7i7u6NUqVKoWLEi6tatC+DjKXhlZWWxRzM/FixYAE9PT4wZMwYAYG1tjRMnTmDPnj0FOk6dOnWSer1q1SqULVsW165dQ/Xq1fNcV1VVFWXLlhX3IbfYp06dim7dumHixIliWY0aNcTnOX8wVK5cGQsXLkTdunXx+vVraGtri0MUypYtm+tFbrdu3UJkZCSOHz8uJtvh4eEwMzNDREQEOnfuDAB4//49li1bBktLSwDAkCFDMGnSpDz3sziwR5eIiIgKzcHBQeq1qampeDo8pxs3bsDBwQHq6upiWXYCmtc2TU1NAUDc5rlz5zBp0iRoa2uLj/79+yM+Ph5paWno3Lkz3r59i8qVK6N///7YunWr1LCGgoqNjUX9+vWlyj59nR937tyBt7c3KleuDF1dXVhYWAAA4uLiCh3bp2JiYtCsWbNcl1+4cAHt2rVDpUqVoKOjIw6tKEgMsbGxUFFRgbOzs1hmaGgIGxsbxMbGimWamppikgvk/r4obkx0iYiIqNA+vRpfIpHIPR0vCILMmFhBED67zex1sreZlZWFiRMnIiYmRnxcvnwZt27dgrq6OszMzHDjxg38+eef0NDQwKBBg9CkSROp0+oFkVuMOSkpKcnU+7S9Nm3aIDk5GStWrMDp06dx+vRpAB+HExSVvC5Me/PmDZo3bw5tbW2sXbsW0dHR2Lp1a4FjyO14fPr3lfe+yM+xLGpMdImIiKjYVa1aFZcuXUJ6erpYdvbs2QJvp1atWrhx4wasrKxkHkpKH9MaDQ0NtG3bFgsXLkRUVBROnjyJy5cvA/g4DODDhw/5bs/Ozg6nTp2SKvv0tZGRkcx435wX2CUnJyM2NhZ//PEHmjVrBltbW7x48aIgu50vDg4OOHjwoNxl169fx7NnzzB9+nQ0btwYVatWlelhVVVVBYA8j4+dnR0yMzPFRB34uH83b96Era1tEexF0WKiS0RERMXO29sbWVlZGDBgAGJjY7F3717Mnj0bAPI9+wEAjB8/HmvWrEFQUBCuXr2K2NhYbNy4EX/88QeAj1f8r1q1CleuXMHdu3fx999/Q0NDA5UqVQLwcR7do0eP4vHjx3j27Nln2/P19cWePXswc+ZM3Lx5E4sXL5YZn9u0aVOcPXsWa9aswa1btzBhwgRcuXJFXG5gYABDQ0P89ddfuH37Ng4dOoThw4fne5/za8KECVi/fj0mTJiA2NhYXL58GTNnzgQAVKxYEaqqqli0aBHu3r2LyMhITJ48WWr9SpUqQSKRYMeOHUhKSsLr169l2qhSpQratWuH/v3749ixY7h48SJ69OiB8uXLo127dkW+T1+KiS4REREVO11dXWzfvh0xMTGoWbMmAgICMH78eACQGrf7OZ6entixYwf279+POnXqoF69epg7d66YyOrr62PFihVo2LCh2MO5fft2GBoaAgAmTZqE+/fvw9LSEkZGRp9tr169eli5ciUWLVqEmjVrYt++fWJSnTOmwMBAjBo1CnXq1MGrV6/Qq1cvcbmSkhI2bNiAc+fOoXr16hg2bBhmzZqV733OL1dXV/zzzz+IjIxEzZo10bRpU7Hn1cjICKGhofjnn39gZ2eH6dOniz80spUvXx4TJ07EmDFjYGxsjCFDhshtJyQkBLVr10br1q1Rv359CIKAXbt2fZM3lZAIJTFggqSkpqZCT08PKSkp0NXVLelwiL5L3t7eSExMBAAYGxtj3bp1JRwR/aj4Xsy/8PBw9OnTBykpKV/lxgdFJTQ0FP7+/j/krYq/N5xejIiIiL6KNWvWoHLlyihfvjwuXryI0aNHo0uXLt9VkkvfFw5dICIioq8iISEBPXr0gK2tLYYNG4bOnTvjr7/+KtGYWrZsKTVVWc5HcHBwicZGX449ukRERPRVjBo1CqNGjSrpMKSsXLkSb9++lbss+wYKn/Lx8RHvKEbfNia6RERE9MMqX758SYdAxYhDF4iIiIhIITHRJSIiIiKFxESXiIiIiBQSE908LF26FA4ODtDV1YWuri7q16+P3bt3i8sFQUBQUBDKlSsHDQ0NuLq64urVqyUYMRERERFlY6KbhwoVKmD69Ok4e/Yszp49i6ZNm6Jdu3ZiMjtz5kzMnTsXixcvRnR0NExMTODh4YFXr16VcORERERExEQ3D23atEGrVq1gbW0Na2trTJ06Fdra2jh16hQEQcD8+fMREBCAjh07onr16ggLC0NaWhrvgkNERET0DeD0Yvn04cMH/PPPP3jz5g3q16+Pe/fuISEhAc2bNxfrqKmpwcXFBSdOnMCvv/6a67bS09ORnp4uvk5NTS3W2ImIiPJS+/c1X62tc7N6fbW2vjVRUVFwc3PDixcvoK+vL/dWwn/99RcmT56Mx48fY+7cuXj58iUiIiIQExNTrLGZm5vD398f/v7+xdrO18Ye3c+4fPkytLW1oaamhoEDB2Lr1q2ws7NDQkICgI/3Mc/J2NhYXJabadOmQU9PT3yYmZkVW/xERETfMx8fH0gkEkyfPl2qPCIiAhKJ5Iu3//btW0yYMAE2NjZQU1NDmTJl8NNPP32Va266du2Kmzdviq9TU1MxZMgQjB49Go8fP8aAAQMwcuRIHDx4sMjaDA0Nhb6+vkx5dHQ0BgwYUGTtfCuY6H6GjY0NYmJicOrUKfz222/o3bs3rl27Ji7/9EMmCMJnP3hjx45FSkqK+Hj48GGxxE5ERKQI1NXVMWPGDLx48aJIt5ueng53d3esXr0akydPxs2bN7Fr1y58+PABzs7OOHXqVJG29ykNDQ2ULVtWfB0XF4f379/Dy8sLpqam0NTUhLa2NgwNDYs1DgAwMjKCpqZmsbfztTHR/QxVVVVYWVnByckJ06ZNQ40aNbBgwQKYmJgAgEzv7dOnT2V6eT+lpqYmzuSQ/SAiIiL53N3dYWJigmnTpuVZb/PmzahWrRrU1NRgbm6OOXPm5Fl//vz5OHnyJHbs2IEuXbqgUqVKqFu3LjZv3gxbW1v07dsXgiAAAFxdXWVO67dv317qVsBr166Fk5MTdHR0YGJiAm9vbzx9+jTX9nP2roaGhsLe3h4AULlyZUgkEty/fx9BQUGoWbOm1HqrV68W99PU1BRDhgwRl82dOxf29vbQ0tKCmZkZBg0ahNevXwP4OHSiT58+SElJgUQigUQiQVBQEICPQxfmz58vbicuLg7t2rWDtrY2dHV10aVLFyQmJorLs+P6+++/YW5uDj09PXTr1u2buyCfiW4BCYKA9PR0WFhYwMTEBPv37xeXZWRk4MiRI2jQoEEJRkhERKRYlJWVERwcjEWLFuHRo0dy65w7dw5dunRBt27dcPnyZQQFBSEwMBChoaG5bnfdunXw8PBAjRo1pMqVlJQwbNgwXLt2DRcvXsx3nBkZGZg8eTIuXryIiIgI3Lt3TyoRzkvXrl1x4MABAMCZM2cQHx8vd2jj0qVLMXjwYAwYMACXL19GZGQkrKyspGJfuHAhrly5grCwMBw6dAijRo0CADRo0ADz58+Hrq4u4uPjER8fj5EjR8q0IQgC2rdvj+fPn+PIkSPYv38/7ty5g65du0rVu3PnDiIiIrBjxw7s2LEDR44ckRliUtJ4MVoexo0bh5YtW8LMzAyvXr3Chg0bEBUVhT179kAikcDf3x/BwcGoUqUKqlSpguDgYGhqasLb27ukQyciIlIoHTp0QM2aNTFhwgSsWrVKZvncuXPRrFkzBAYGAgCsra1x7do1zJo1K9dk8+bNm3Bzc5O7zNbWVqzzaY9qbn755RfxeeXKlbFw4ULUrVsXr1+/hra2dp7ramhoiEMUjIyMxDPHn5oyZQpGjBgBPz8/saxOnTri85y9zhYWFpg8eTJ+++03LFmyBKqqqtDT04NEIsl1+wBw4MABXLp0Cffu3ROT7b///hvVqlVDdHS02F5WVhZCQ0Oho6MDAOjZsycOHjyIqVOn5rmvXxN7dPOQmJiInj17wsbGBs2aNcPp06exZ88eeHh4AABGjRoFf39/DBo0CE5OTnj8+DH27dsn/sGJiIio6MyYMQNhYWFS18pki42NRcOGDaXKGjZsiFu3buHDhw8Fbit7yIKqqmq+17lw4QLatWuHSpUqQUdHB66urgA+DgMoCk+fPsWTJ0/QrFmzXOscPnwYHh4eKF++PHR0dNCrVy8kJyfjzZs3+W4nNjYWZmZmUj3KdnZ20NfXR2xsrFhmbm4ulfOYmprmOVSjJDDRzcOqVatw//59pKen4+nTpzhw4ICY5AIQx7bEx8fj3bt3OHLkCKpXr16CERMRESmuJk2awNPTE+PGjZNZJu9i8OxkNTdVqlSRmzQDwPXr1wF87BkGPg4J+HR779+/F5+/efMGzZs3h7a2NtauXYvo6Ghs3boVwMchDUVBQ0Mjz+UPHjxAq1atUL16dWzevBnnzp3Dn3/+KRPr5+R2Yf2n5aVKlZJaLpFIkJWVle92vgYmukRERPTdmD59OrZv344TJ05IldvZ2eHYsWNSZSdOnIC1tTWUlZXlbuvnn3/GgQMHZMbhZmVlYd68eXBycoKdnR2Aj8MJ4uPjxTofPnzAlStXxNfXr1/Hs2fPMH36dDRu3BhVq1Yt8t5NHR0dmJub5zrd2NmzZ5GZmYk5c+agXr16sLa2xpMnT6TqqKqqfraH287ODnFxcVKzQl27dg0pKSnikI7vBRNdIiIi+m7Y29uje/fuWLRokVT5iBEjcPDgQXGasLCwMCxevFjuxVbZhg0bhrp166JNmzb4559/EBcXh+joaHTq1Am3bt2SupCtadOm2LlzJ3bu3Inr169j0KBBUjd6qFixIlRVVbFo0SLcvXsXkZGRmDx5clHvPoKCgjBnzhwsXLgQt27dwvnz58VjYWlpiczMTDGGv//+G8uWLZNa39zcHK9fv8bBgwfx7NkzpKWlybTh7u4OBwcHdO/eHefPn8eZM2fQq1cvuLi4wMnJqcj3qTjxYjQiIqIf3Pd2t7LJkydj06ZNUmW1atXCpk2bMH78eEyePBmmpqaYNGlSnrMeqKur4+DBg5g2bRrGjh2LBw8eIDMzE1ZWVrhy5QoqVKgg1v3ll19w8eJF9OrVCyoqKhg2bJjUhWxGRkYIDQ3FuHHjsHDhQtSqVQuzZ89G27Zti3Tfe/fujXfv3mHevHkYOXKkeIMLAKhZsybmzp2LGTNmYOzYsWjSpAmmTZuGXr3+9/dt0KABBg4ciK5duyI5ORkTJkwQpxjLJpFIEBERgaFDh6JJkyZQUlJCixYtZH5cfA8kwucGsFCxS01NhZ6eHlJSUjinLlEheXt7i3M8GhsbY926dSUcEf2o+F78vu3evRsdOnTA7Nmzpeanpe8Thy4QERER/b+WLVti9+7deP78OZ49e1bS4dAX4tAFIiIiohzc3NxynV+Xvi/s0SUiIiIihcREl4iIiIgUEhNdIiIiIlJIHKNLRPSV+Pn5ISkpCcDHqYgWLFhQwhERESk2JrpERF9JUlKSOO0UEREVPw5dICIiIiKFxESXiIiIiBQShy4QERH94OIm2X+1tiqOv/zV2iJijy4RERF98xISEuDn5wcrKyuoq6vD2NgYjRo1wrJly5CWlibWu3DhAjp37gxjY2Ooq6vD2toa/fv3x82bN8U6mzdvhrOzM/T09KCjo4Nq1aphxIgR4vLQ0FBIJBKZh7q6ukxcPj4+GDNmjPj68OHDaNWqFQwNDaGpqQk7OzuMGDECjx8/FussX74cNWrUgJaWFvT19eHo6IgZM2aIy4OCguS2X7Vq1SI7nj8K9ugSERHRN+3u3bto2LAh9PX1ERwcDHt7e2RmZuLmzZtYvXo1ypUrh7Zt22LHjh3o1KkTPD09ER4eDktLSzx9+hT//PMPAgMDsXHjRhw4cADdunVDcHAw2rZtC4lEgmvXruHgwYNSberq6uLGjRtSZRKJROp1VlYWdu7cicjISAAfE9hBgwahd+/e2Lx5M8zNzREXF4c1a9Zgzpw5mDt3LlatWoXhw4dj4cKFcHFxQXp6Oi5duoRr165JbbtatWo4cOCAVJmKCtO2guIRIyIiom/aoEGDoKKigrNnz0JLS0sst7e3R6dOnSAIAtLS0tCnTx+0atUKW7duFetYWFjA2dkZL1++BADs2LEDjRo1wu+//y7Wsba2Rvv27aXalEgkMDExyTOu48ePQ0lJCc7Oznj06BF8fX3h6+uLefPmiXXMzc3RpEkTsf3t27ejS5cu6Nu3r1inWrVqMttWUVH5bPv0eRy6QERERN+s5ORk7Nu3D4MHD5ZKcnOSSCTYu3cvnj17hlGjRsmto6+vDwAwMTHB1atXceXKlS+OLTIyEm3atIGSkhL++ecfZGRk5Kv9U6dO4cGDB1/cPn0eE10iIiL6Zt2+fRuCIMDGxkaqvEyZMtDW1oa2tjZGjx6NW7duAcBnx7EOHToUderUgb29PczNzdGtWzesXr0a6enpUvVSUlLE7Wc/mjdvLlUnMjIS7dq1AwDcunULurq6MDU1zbP9CRMmQF9fH+bm5rCxsYGPjw82bdqErKwsqXqXL1+Wab9fv355bptkcegCERERffM+HR975swZZGVloXv37khPT4cgCPnajpaWFnbu3Ik7d+7g8OHDOHXqFEaMGIEFCxbg5MmT0NTUBADo6Ojg/PnzUutqaGiIz2NjY/Ho0SO4u7sDAARBkIlRHlNTU5w8eRJXrlzBkSNHcOLECfTu3RsrV67Enj17oKT0sQ/SxsZGHPubTUdHJ1/7SP/DRJeIiIi+WVZWVpBIJLh+/bpUeeXKlQH8L/m0trYGAFy/fh3169f/7HYtLS1haWmJfv36ISAgANbW1ti4cSP69OkDAFBSUoKVlVWu60dGRsLDw0Oq/ZSUFMTHx3+2VxcAqlevjurVq2Pw4ME4duwYGjdujCNHjsDNzQ0AoKqqmmf7lD8cukBERETfLENDQ3h4eGDx4sV48+ZNrvWaN2+OMmXKYObMmXKXZ18MJo+5uTk0NTXz3P6ntm3bhrZt24qvf/rpJ6iqqhaqfTs7OwAoUPuUP+zRJSIiom/akiVL0LBhQzg5OSEoKAgODg5QUlJCdHQ0rl+/jtq1a0NLSwsrV65E586d0bZtW/j6+sLKygrPnj3Dpk2bEBcXhw0bNiAoKAhpaWlo1aoVKlWqhJcvX2LhwoV4//49PDw8xDYFQUBCQoJMLGXLlsWzZ88QHR2NiIgIsdzMzAzz5s3DkCFDkJqail69esHc3ByPHj3CmjVroK2tjTlz5uC3335DuXLl0LRpU1SoUAHx8fGYMmUKjIyMpHqiMzMzZdqXSCQwNjYu+gOswJjoEhER/eC+9buVWVpa4sKFCwgODsbYsWPx6NEjqKmpwc7ODiNHjsSgQYMAAO3atcOJEycwbdo0eHt7IzU1FWZmZmjatCmmTJkCAHBxccGff/6JXr16ITExEQYGBnB0dMS+ffukLnhLTU2VOwQhPj4eO3fuhLOzM8qWLSu1bNCgQbC2tsbs2bPRoUMHvH37Fubm5mjdujWGDx8OAHB3d8fq1auxdOlSJCcno0yZMqhfvz4OHjwIQ0NDcVtXr16VaV9NTQ3v3r0rmoP6g5AI+R29TcUmNTUVenp6SElJga6ubkmHQ/Rd8vb2RmJiIgDA2NgY69atK+GIZH0PMdKX499Z8bVt2xaNGjXKdSox+nZwjC4RERFRATRq1Ag///xzSYdB+cChC0REREQFwJ7c7wd7dImIiIhIITHRJSIiIiKFxESXiIiIiBQSE10iIiIiUkhMdImIiIhIITHRJSIiIiKFxESXiIiIiBQS59ElIiL6wTVc1PCrtXV86PGv1hbl3/3792FhYYELFy6gZs2aJR1OkWGPLhEREX3TEhIS4OfnBysrK6irq8PY2BiNGjXCsmXLkJaWJlX3woUL6Ny5M4yNjaGurg5ra2v0798fN2/eFOts3rwZzs7O0NPTg46ODqpVq4YRI0aIy0NDQyGRSGQe6urqMrH5+PhgzJgx4usdO3bA1dUVOjo60NTURJ06dRAaGvrZfXR1dYW/v3/BDw7liT26RERUIvz8/JCUlAQAMDIywoIFC0o4ooKLnXpIpux9yjup5/Lq2AY0Lda4FMndu3fRsGFD6OvrIzg4GPb29sjMzMTNmzexevVqlCtXDm3btgXwMcns1KkTPD09ER4eDktLSzx9+hT//PMPAgMDsXHjRhw4cADdunVDcHAw2rZtC4lEgmvXruHgwYNS7erq6uLGjRtSZRKJROp1VlYWdu7cicjISADAokWL4O/vj9GjR2PJkiVQVVXFtm3bMHDgQFy5cgWzZ88uxiNF8jDRJSKiEpGUlITExMSSDoO+cYMGDYKKigrOnj0LLS0tsdze3h6dOnWCIAgAgLS0NPTp0wetWrXC1q1bxXoWFhZwdnbGy5cvAXxMhhs1aoTff/9drGNtbY327dtLtSuRSGBiYpJnbMePH4eSkhKcnZ3x8OFDjBgxAv7+/ggODhbrjBgxAqqqqvD19UXnzp3h7OxcqONw4sQJjBkzBtHR0ShTpgw6dOiAadOmQUtLC2PHjsXhw4dx6tQpqXUcHBzQoUMHTJw4EQAQEhKCmTNn4t69ezA3N4evry8GDRpUqHi+Fwo9dCEjIwM3btxAZmZmSYdCREREBZScnIx9+/Zh8ODBUkluTtm9rHv37sWzZ88watQoufX09fUBACYmJrh69SquXLnyxfFFRkaiTZs2UFJSwr///ov3799j5MiRMvV+/fVXaGtrY/369YVq5/Lly/D09ETHjh1x6dIlbNy4EceOHcOQIUMAAN27d8fp06dx584dcZ2rV6/i8uXL6N69OwBgxYoVCAgIwNSpUxEbG4vg4GAEBgYiLCysUDF9LxQy0U1LS0Pfvn2hqamJatWqIS4uDgDg6+uL6dOnl3B0RERElB+3b9+GIAiwsbGRKi9Tpgy0tbWhra2N0aNHAwBu3boFAKhatWqe2xw6dCjq1KkDe3t7mJubo1u3bli9ejXS09Ol6qWkpIhtZD+aN28uVScyMhLt2rUDANy8eRN6enowNTWVaVNVVRWVK1eWGidcELNmzYK3tzf8/f1RpUoVNGjQAAsXLsSaNWvw7t07VK9eHQ4ODli3bp24Tnh4OOrUqQNra2sAwOTJkzFnzhx07NgRFhYW6NixI4YNG4bly5cXKqbvhUImumPHjsXFixcRFRUlNXDc3d0dGzduLMHIiL5Pfn5+8Pb2hre3N/z8/Eo6HCL6wXw6NvbMmTOIiYlBtWrVxAQ1ewjD52hpaWHnzp24ffs2/vjjD2hra2PEiBGoW7eu1IVtOjo6iImJkXqEhISIy2NjY/Ho0SO4u7vnq11BEGT2I7/OnTuH0NBQqaTb09MTWVlZuHfvHoCPvbrh4eFiW+vXrxd7c5OSkvDw4UP07dtXahtTpkyR6gVWRAo5RjciIgIbN25EvXr1pN5UdnZ2Cv8HJSoOHEtJRCXBysoKEokE169flyqvXLkyAEBDQ0Msy+65vH79OurXr//ZbVtaWsLS0hL9+vVDQEAArK2tsXHjRvTp0wcAoKSkBCsrq1zXj4yMhIeHhxiDtbU1UlJS8OTJE5QrV06qbkZGBu7evYumTQt3EWJWVhZ+/fVX+Pr6yiyrWLEiAMDb2xtjxozB+fPn8fbtWzx8+BDdunUT1wc+Dl/4dIywsrJyoWL6Xihkj25SUhLKli0rU/7mzZtC/5oiIiKir8vQ0BAeHh5YvHgx3rx5k2fd5s2bo0yZMpg5c6bc5dkXo8ljbm4OTU3Nz7aR07Zt28TZHgCgU6dOUFFRwZw5c2TqLlu2DG/evMHPP/+c7+3nVKtWLVy9ehVWVlYyD1VVVQBAhQoV0KRJE4SHhyM8PBzu7u4wNjYGABgbG6N8+fK4e/euzPoWFhaFiul7oZA9unXq1MHOnTsxdOhQAP875bFixYp8/cojIiKib8OSJUvQsGFDODk5ISgoCA4ODlBSUkJ0dDSuX7+O2rVrA/g4JGHlypXo3Lkz2rZtC19fX1hZWeHZs2fYtGkT4uLisGHDBgQFBSEtLQ2tWrVCpUqV8PLlSyxcuBDv37+Hh4eH2K4gCEhISJCJp2zZsnj27Bmio6MREREhllesWBEzZ87EyJEjoa6ujp49e6JUqVLYtm0bxo0bhxEjRnx2xoWkpCTExMRIlZmYmGD06NGoV68eBg8ejP79+0NLSwuxsbHYv38/Fi1aJNbt3r07goKCkJGRgXnz5kltJygoCL6+vtDV1UXLli2Rnp6Os2fP4sWLFxg+fHh+/xzfHYVMdKdNm4YWLVrg2rVryMzMxIIFC3D16lWcPHkSR44cKenwiIiIvinf8t3KLC0tceHCBQQHB2Ps2LF49OgR1NTUYGdnh5EjR0pNj9WuXTucOHEC06ZNg7e3N1JTU2FmZoamTZtiypQpAAAXFxf8+eef6NWrFxITE2FgYABHR0fs27dP6qK31NRUuReWxcfHY+fOnXB2dpY5ezxs2DBYWlpi9uzZWLBgAT58+IBq1aph6dKl4pCIvKxbt07qgjIAmDBhAoKCgnDkyBEEBASgcePGEAQBlpaW6Nq1q1Tdzp07Y+jQoVBWVpaZLq1fv37Q1NTErFmzMGrUKGhpacHe3l7hb1KhkIlugwYNcPz4ccyePRuWlpbYt28fatWqhZMnT8Le3r6kwyMiIqICMDU1xaJFi6R6L3Pj5OSEzZs357rczc0Nbm5ueW7Dx8cHPj4+uS7/dNhCTm3bts11WV6ioqLyXF6nTh3s27cvzzr6+vp49+5drsuzLyqWx9zcPN8X9H1PFDLRBT5OJK3oc8MRERHR19eoUaNCj7elr0shE93U1FS55RKJBGpqauLAbSIiIqKCyu2mFPTtUchEV19fP8/ZFSpUqAAfHx9MmDABSkoKOfEEERER0Q9PIRPd0NBQBAQEwMfHB3Xr1oUgCIiOjkZYWBj++OMPJCUlYfbs2VBTU8O4ceNKOlwiIiIiKgYKmeiGhYVhzpw56NKli1jWtm1b2NvbY/ny5Th48CAqVqyIqVOnMtElogLz8/NDUlISAMDIyAgLFiwo4YiIiEgehUx0T548iWXLlsmUOzo64uTJkwA+DiSPi4v72qERkQLgneKoOPAHFFHRU8gBqhUqVMCqVatkyletWgUzMzMAQHJyMgwMDL52aERERHJl/4BKTEwUE14i+jIK2aM7e/ZsdO7cGbt370adOnUgkUgQHR2N2NhYcW696OhomYmWiYiIiEhxKGSi27ZtW9y8eRNLly7FzZs3IQgCWrZsiYiICPFe17/99lvJBklEJY6niomIFJtCJroAUKlSJUyfPh0A8PLlS4SHh6NTp06IiYnBhw8fSjg6IvoWcKwt0UdHmrh8tbZcjh75am0RKeQY3WyHDh1Cjx49UK5cOSxevBgtW7bE2bNnSzosIiIiKqCHDx+ib9++KFeuHFRVVVGpUiX4+fkhOTlZrOPq6gqJRIINGzZIrTt//nyYm5tLlWVkZGDmzJmoUaMGNDU1UaZMGTRs2BAhISF4//69VF0fHx+MGTMGwMebT2U/VFRUULFiRQwfPhzp6elSMeT2yI4jt3oDBw6Uavvw4cNo1aoVDA0NoampCTs7O4wYMQKPHz8uisOq8BQu0X306BGmTJmCypUr4+eff4aBgQHev3+PzZs3Y8qUKXB0dCzpEImIiKgA7t69CycnJ9y8eRPr16/H7du3sWzZMhw8eBD169fH8+fPxbrq6ur4448/ZJLVnDIyMuDp6Ynp06djwIABOHHiBM6cOYPBgwdj0aJFuHr1qlg3KysLO3fuRLt27cSykJAQxMfH4969e1iyZAn+/vtvTJkyBQCwZcsWxMfHIz4+HmfOnAEAHDhwQCyLjo4Wt9O/f3+xPPsxc+ZMcfny5cvh7u4OExMTbN68GdeuXcOyZcuQkpKCOXPmfPmB/QEo1NCFVq1a4dixY2jdujUWLVqEFi1aQFlZWe5UY0RERPR9GDx4MFRVVbFv3z5oaGgAACpWrAhHR0dYWloiICAAS5cuBQD8/PPP2L59O1asWIFBgwbJ3d78+fNx9OhRnD17VqoDrHLlyujcuTMyMjLEsuPHj0NJSQnOzs5imb6+PkxMTAAAZmZmaNu2Lc6fPw8AKF26tFjv3bt3AABDQ0Oxfk6amppyy4GPHXe+vr7w9fXFvHnzxHJzc3M0adJEvOaI8qZQPbr79u1Dv379MHHiRHh5eUFZWbmkQyIiIqIv8Pz5c+zduxeDBg0Sk9xsJiYm6N69OzZu3AhBEAAAurq6GDduHCZNmoQ3b97I3WZ4eDjc3d3lnuUtVaoUtLS0xNeRkZFo06YNlJTkp0w3b97E4cOHpRLhovDPP/8gIyMDo0aNkrtcX1+/SNtTVAqV6P7333949eoVnJyc4OzsjMWLF3MuQiIiou/YrVu3IAgCbG1t5S63tbXFixcvpL7vBw0aBHV1dcydOzfXbVatWjVf7UdGRkoNWwA+9hpra2tDXV0dNjY2qFatGsaOHZvPPfqfJUuWQFtbW+oRFhYmxqirqwtTU9MCb5f+R6ES3fr162PFihWIj4/Hr7/+ig0bNqB8+fLIysrC/v378erVq5IOkYiIiIpQdk+uRCIRy9TU1DBp0iTMmjULz549k7tOzvq5iY2NxaNHj+Du7i5VPm/ePMTExODixYvYsWMHbt68iZ49exY49u7duyMmJkbq0aFDhwLFSHlTqEQ3m6amJn755RccO3YMly9fxogRIzB9+nSULVsWbdu2LenwiIiIKJ+srKwgkUhw7do1ucuvX78OAwMDlClTRqq8R48eMDc3Fy8Sy8na2hqxsbGfbTsyMhIeHh5yh0xYWVnBxsYGXl5emDhxIjZu3Ijbt28XYM8APT09WFlZST10dXXFGFNSUhAfH1+gbZI0hUx0c7KxscHMmTPx6NEjrF+/vqTDISIiogIwNDSEh4cHlixZgrdv30otS0hIQHh4OLp27SrT+6mkpIRp06Zh6dKluH//vtQyb29vHDhwABcuXJBpLzMzUxzbu23btnx1kGVfE/RpfF/ip59+gqqqqtQsDDnxYrT8UfhEN5uysjLat2+PyMjIkg6FiIiICmDx4sVIT0+Hp6cnjh49iocPH2LPnj3w8PBA+fLlMXXqVLnreXl5wdnZGcuXL5cq9/f3R8OGDdGsWTP8+eefuHjxIu7evYtNmzbB2dkZt27dwtOnTxEdHY3WrVvLbPfly5dISEjAkydPcOTIEUyaNAnW1ta5jiPOTVpaGhISEqQeL168APBxNod58+ZhwYIF6Nu3L44cOYIHDx7g+PHj+PXXXzF58uQCtfWjUqjpxYiIiKjgvvW7lVWpUgVnz55FUFAQunbtiuTkZJiYmKB9+/aYMGGC1JRen5oxYwYaNGggVaampob9+/dj3rx5WL58OUaOHAlNTU3Y2trC19cX1atXR1hYGJydnVG2bFmZbfbp0wfAx3HBJiYmaNKkCYKDg6GiUrC0asWKFVixYoVUmaenJ/bs2QPg40V11tbWmD17Njp06IC3b9/C3NwcrVu3xvDhwwvU1o+KiS4RERF98ypVqoSQkJA860RFRcmU1a9fX7xgLSc1NTWMGTNGvOPZp3IbtiBvW7kxNzfPtb68WOVxd3eXuRiO8u+HGbpARERElF+NGjXCzz//XNJh0Bdijy4RERHRJ3K7UQN9X9ijS0REREQKiYkuERERESkkDl0ghebn5yfeFtLIyAgLFiwo4YiIiIjoa2GiSwotKSkJiYmJJR0GERERlQAOXSAiIiIihcQeXSIioq8sKChIpiznLV1fvnwpt468MiLKHXt0iYiIiIrY/fv3IZFIEBMTU9Kh/NDYo0tERPSDWzxi+1dra8icNoVa78SJE2jcuDE8PDzEW+TmxdXVFTVr1sT8+fML1R4pBvboEhER0Tdv9erVGDp0KI4dO4a4uLiSDoe+E0x0iYiI6Jv25s0bbNq0Cb/99htat26N0NDQL97miRMn0KRJE2hoaMDMzAy+vr548+YNAGDs2LGoV6+ezDoODg6YMGGC+DokJAS2trZQV1dH1apVsWTJklzbe/HiBbp37w4jIyNoaGigSpUqCAkJ+eL9oLwx0c3DtGnTUKdOHejo6KBs2bJo3749bty4IVVHEAQEBQWhXLly0NDQgKurK65evVpCERMRESmejRs3wsbGBjY2NujRowdCQkIgCEKht3f58mV4enqiY8eOuHTpEjZu3Ihjx45hyJAhAIDu3bvj9OnTuHPnjrjO1atXcfnyZXTv3h0AsGLFCgQEBGDq1KmIjY1FcHAwAgMDERYWJrfNwMBAXLt2Dbt370ZsbCyWLl2KMmXKFHofKH+Y6ObhyJEjGDx4ME6dOoX9+/cjMzMTzZs3F3/xAcDMmTMxd+5cLF68GNHR0TAxMYGHhwdevXpVgpETEREpjlWrVqFHjx4AgBYtWuD169c4ePBgobc3a9YseHt7w9/fH1WqVEGDBg2wcOFCrFmzBu/evUP16tXh4OCAdevWieuEh4ejTp06sLa2BgBMnjwZc+bMQceOHWFhYYGOHTti2LBhWL58udw24+Li4OjoCCcnJ5ibm8Pd3R1t2hRuvDLlHy9Gy8Ong91DQkJQtmxZnDt3Dk2aNIEgCJg/fz4CAgLQsWNHAEBYWBiMjY2xbt06/PrrryURNtF3jXezI6Kcbty4gTNnzmDLli0AABUVFXTt2hWrV6+Gu7t7obZ57tw53L59G+Hh4WKZIAjIysrCvXv3YGtri+7du2P16tUIDAyEIAhYv349/P39AXy8GdHDhw/Rt29f9O/fX9xGZmYm9PT05Lb522+/oVOnTjh//jyaN2+O9u3bo0GDBoWKn/KPiW4BpKSkAABKly4NALh37x4SEhLQvHlzsY6amhpcXFxw4sSJXBPd9PR0pKeni69TU1OLMWqi7wvvZkdEOa1atQqZmZkoX768WCYIAkqVKoUXL17AwMCgwNvMysrCr7/+Cl9fX5llFStWBAB4e3tjzJgxOH/+PN6+fYuHDx+iW7du4vrAx+ELzs7OUusrKyvLbbNly5Z48OABdu7ciQMHDqBZs2YYPHgwZs+eXeD4Kf+Y6OaTIAgYPnw4GjVqhOrVqwMAEhISAADGxsZSdY2NjfHgwYNctzVt2jRMnDix+IIlIvqBFXaqrMJOe0XFJzMzE2vWrMGcOXOkOpUAoFOnTggPDxfH1RZErVq1cPXqVVhZWeVap0KFCmjSpAnCw8Px9u1buLu7i9/3xsbGKF++PO7evSuO2c0PIyMj+Pj4wMfHB40bN8bvv//ORLeYMdHNpyFDhuDSpUs4duyYzDKJRCL1WhAEmbKcxo4di+HDh4uvU1NTYWZmVnTBEhERKYAdO3bgxYsX6Nu3r8yQgJ9++gmrVq3KM9FNSkqSuWGDiYkJRo8ejXr16mHw4MHo378/tLS0EBsbi/3792PRokVi3e7duyMoKAgZGRmYN2+e1HaCgoLg6+sLXV1dtGzZEunp6Th79ixevHgh9R2fbfz48ahduzaqVauG9PR07NixA7a2toU4KlQQvBgtH4YOHYrIyEgcPnwYFSpUEMtNTEwA/K9nN9vTp09lenlzUlNTg66urtSDiIiIpK1atQru7u5yx7126tQJMTExOH/+fK7rr1u3Do6OjlKPZcuWwcHBAUeOHMGtW7fQuHFjODo6IjAwEKamplLrd+7cGcnJyUhLS0P79u2llvXr1w8rV65EaGgo7O3t4eLigtDQUFhYWMiNRVVVFWPHjoWDgwOaNGkCZWVlbNiwoeAHhQqEPbp5EAQBQ4cOxdatWxEVFSXz5rWwsICJiQn2798PR0dHAEBGRgaOHDmCGTNmlETIREREBfatDtvYvj33YSi1atXKc4qxqKioPLddp04d7Nu3L886+vr6ePfuXa7Lvb294e3tLXeZubm5VHx//PEH/vjjjzzbo6LHRDcPgwcPxrp167Bt2zbo6OiIPbd6enrQ0NCARCKBv78/goODUaVKFVSpUgXBwcHQ1NTM9Y1PRERERF8HE908LF26FMDH+2XnFBISAh8fHwDAqFGj8PbtWwwaNAgvXryAs7Mz9u3bBx0dna8cLRERERHlxEQ3D/m564pEIkFQUBCCgoKKP6B84BykRERERB8x0VUwnIOUiIiI6CMmukT03ZE3T+qr52lSz+XV+VYvuCEiouLB6cWIiIiISCEx0SUiIiIihcREl4iIiIgUEsfoEhERAM7aQkSKhz26REQE4H+ztiQmJooJL9H3LjQ0FPr6+iUdRoFERUVBIpHg5cuXJR3Kd489ukQkJW6SvUxZ5ktDAMr///yJ3DoVx18u7tCIqJhM7fHTV2srYO2/BV7n4cOHCAoKwu7du/Hs2TOYmpqiffv2GD9+PAwNDcV65ubm8Pf3h7+/fxFG/HlRUVH4+eef8eTJEyQlJSEwMBC7d+9GYmIiDAwMUKNGDQQFBaF+/frFGoe5uTkePHgAAFBXV4exsTHq1q2LgQMHomnTpsXa9reKPbpERET0zbp79y6cnJxw8+ZNrF+/Hrdv38ayZctw8OBB1K9fH8+fPy+RuN6/fy8+j4yMRNu2bSGRSNCpUydcvHgRYWFhuHnzJiIjI+Hq6vrV4pw0aRLi4+Nx48YNrFmzBvr6+nB3d8fUqVOLve2MjIxib6OgmOgSERHRN2vw4MFQVVXFvn374OLigooVK6Jly5Y4cOAAHj9+jICAAACAq6srHjx4gGHDhkEikUAikUhtZ+/evbC1tYW2tjZatGiB+Ph4qeUhISGwtbWFuro6qlatiiVLlojL7t+/D4lEgk2bNsHV1RXq6upYu3atuDw70X358iWOHTuGGTNmwM3NDZUqVULdunUxduxYeHl5SW0rJiZGXP/ly5eQSCSIioqSiun48eOoUaMG1NXV4ezsjMuXP3/mTEdHByYmJqhYsSKaNGmCv/76C4GBgRg/fjxu3Lgh1rt27RpatWoFbW1tGBsbo2fPnnj27Jm4/NWrV+jevTu0tLRgamqKefPmwdXVVaq33NzcHFOmTIGPjw/09PTQv39/AMCJEyfQpEkTaGhowMzMDL6+vnjz5o24XkZGBkaNGoXy5ctDS0sLzs7OMvteVJjoEv1A/Pz84O3tDW9vb/j5+ZV0OEREeXr+/Dn27t2LQYMGQUNDQ2qZiYkJunfvjo0bN0IQBGzZsgUVKlQQezRzJrJpaWmYPXs2/v77bxw9ehRxcXEYOXKkuHzFihUICAjA1KlTERsbi+DgYAQGBiIsLEyqzdGjR8PX1xexsbHw9PQEAFy9ehUJCQlo1qwZtLW1oa2tjYiICKSnp3/x/v/++++YPXs2oqOjUbZsWbRt21aqJzm//Pz8IAgCtm3bBgCIj4+Hi4sLatasibNnz2LPnj1ITExEly5dxHWGDx+O48ePIzIyEvv378d///2H8+fPy2x71qxZqF69Os6dO4fAwEBcvnwZnp6e6NixIy5duoSNGzfi2LFjGDJkiLhOnz59cPz4cWzYsAGXLl1C586d0aJFC9y6dasQRylvHKNL9APhLaLpS8kbn50fHMNNhXHr1i0IggBbW1u5y21tbfHixQskJSWhbNmyUFZWFns0c3r//j2WLVsGS0tLAMCQIUMwadIkcfnkyZMxZ84cdOzYEQBgYWGBa9euYfny5ejdu7dYz9/fX6yTbdu2bfD09IS6ujqAjxe/9e/fH8uWLUOtWrXg4uKCbt26wcHBocD7P2HCBHh4eAAAwsLCUKFCBWzdulUqIc2P0qVLo2zZsrh//z4AYOnSpahVqxaCg4PFOqtXr4aZmRlu3rwJU1NThIWFYd26dWjWrBmAjz3e5cqVk9l206ZNpX409OrVC97e3mLPb5UqVbBw4UK4uLhg6dKlePz4MdavX49Hjx6J2xs5ciT27NmDkJAQqZiKAhNdIvphfHrBTcqzlBzPk+RekFOYC2eICkNNTU3uc8qdIAgAIDNM4VOamppikgsApqamePr0KYCPHQAPHz5E3759xVPvAJCZmQk9PT2p7Tg5Oclse9u2bRg0aJD4ulOnTvDy8sJ///2HkydPYs+ePZg5cyZWrlwJHx+fAu1fzovXSpcuDRsbG8TGxhZoG9kEQRCP07lz53D48GFoa2vL1Ltz5w7evn2L9+/fo27dumK5np4ebGxsZOp/ekzOnTuH27dvIzw8XKrtrKws3Lt3D1euXIEgCLC2tpZaLz09XerCwqLCRJeoiHAOUiL6EjVq1CjpEL45VlZWkEgkuHbtGtq3by+z/Pr16zAwMECZMmXy3E6pUqWkXkskEjFJzsrKAvBx+IKzs7NUPWVlZanXWlpaUq8TEhJw/vx5cfxtNnV1dXh4eMDDwwPjx49Hv379MGHCBPj4+EBJ6eOo0ez2ARRoOMLnknp5kpOTkZSUBAsLCwAf97lNmzaYMWOGTF1TU1NxCMGnbeWMOdunxyQrKwu//vorfH19ZepWrFgRly5dgrKyMs6dOydzfOUl3l+KiS5REeGwACKiomVoaAgPDw8sWbIEw4YNkxqnm5CQgPDwcPTq1UtMyFRVVfHhw4cCtWFsbIzy5cvj7t276N69e4HWjYyMRP369T+baNvZ2SEiIgLAx44Q4OM4WUdHRwCQujAtp1OnTqFixYoAgBcvXuDmzZuoWrVqgWIEgAULFkBJSUn8sVCrVi1s3rwZ5ubmUFGRTQUtLS1RqlQpnDlzBmZmZgCA1NRU3Lp1Cy4uLnm2VatWLVy9ehVWVlZylzs6OuLDhw94+vQpGjduXOB9KShejEZERETfrMWLFyM9PR2enp44evQoHj58iD179sDDwwPly5eXmjbL3NwcR48exePHj6VmEPicoKAgTJs2DQsWLMDNmzdx+fJlhISEYO7cuXmuFxkZiXbt2omvk5OT0bRpU6xduxaXLl3CvXv38M8//2DmzJliPQ0NDdSrVw/Tp0/HtWvXcPToUfzxxx9ytz9p0iQcPHgQV65cgY+PD8qUKSO3ZzunV69eISEhAQ8fPsTRo0cxYMAATJkyBVOnThWTz8GDB+P58+f4+eefcebMGdy9exf79u3DL7/8gg8fPkBHRwe9e/fG77//jsOHD+Pq1av45ZdfoKSk9Nke5dGjR+PkyZMYPHgwYmJicOvWLURGRmLo0KEAAGtra3Tv3h29evXCli1bcO/ePURHR2PGjBnYtWtXntsuDCa6RERE9M2qUqUKzp49C0tLS3Tt2hWWlpYYMGAA3NzccPLkSZQuXVqsO2nSJNy/fx+WlpZiz2l+9OvXDytXrkRoaCjs7e3h4uKC0NBQ8VS/PG/evMHBgwfRtm1bsUxbWxvOzs6YN28emjRpgurVqyMwMBD9+/fH4sWLxXqrV6/G+/fv4eTkBD8/P0yZMkVuG9OnT4efnx9q166N+Ph4REZGQlVVNc99GT9+PExNTWFlZYWePXsiJSUFBw8exOjRo8U65cqVw/Hjx/Hhwwd4enqievXq8PPzg56enji0Yu7cuahfvz5at24Nd3d3NGzYUJx+LS8ODg44cuQIbt26hcaNG8PR0RGBgYEwNTUV64SEhKBXr14YMWIEbGxs0LZtW5w+fVrsPS5KHLpARMWG45aJvg/f+kWXlSpVQkhIyGfr1atXDxcvXpQq8/HxkbkIrH379jLjTbOnXpTH3Nxcpv7evXthYWGBKlWqiGVqamqYNm0apk2blmectra2OHnypFRZzu27urqKr1u3bp3ntnLKnlUhP6pUqYItW7bkulxHR0fqgrI3b95g4sSJGDBgwGfbq1OnDvbt25frtkuVKoWJEydi4sSJ+Y63sJjoElGx4bhlIlJU2traci/mUhQXLlzA9evXUbduXaSkpIjTseUcqvE9YKJLREREVEDNmzcv6RCK3ezZs3Hjxg2oqqqidu3a+O+//z574d23hokuEREREUlxdHTEuXPnSjqML8aL0YiIiIhIITHRJSIiIiKFxKELRFRijjSRnXj8nYoy8P/zNL5LSJBbB3VGypYRERF9gokuEVExCAoKkil7+fKl1PNP68hbh4iICo9DF4iIiIhIITHRJSIiIiKFxESXiIiIiBQSx+gSERH94GKnHvpqbdkGNC3wOj4+PggLCwMAqKiooHTp0nBwcMDPP/8MHx8fKCmx347kY6JLAAA/Pz8kJSUBAIyMjLBgwYISjoiIFEnDRQ1lytRS1SDBxxk2ElITZOocH3r8q8RG34cWLVogJCQEHz58QGJiIvbs2QM/Pz/8+++/iIyMhIpK8aQ0GRkZUFVVLZZtU/HjTyACACQlJSExMRGJiYliwktERPStUFNTg4mJCcqXL49atWph3Lhx2LZtG3bv3o3Q0FAAQEpKCgYMGICyZctCV1cXTZs2xcWLF6W2M2XKFJQtWxY6Ojro168fxowZg5o1a4rLfXx80L59e0ybNg3lypWDtbU1AODx48fo2rUrDAwMYGhoiHbt2uH+/ftS2w4JCYGtrS3U1dVRtWpVLFmypDgPCeUDe3RJYUzt8ZNMWcqzlBzPk+TWCVj7b7HGVVJq/75Gpkz3xWvx1238i9dy62zVKebAiIiKSNOmTVGjRg1s2bIFffv2hZeXF0qXLo1du3ZBT08Py5cvR7NmzXDz5k2ULl0a4eHhmDp1KpYsWYKGDRtiw4YNmDNnDiwsLKS2e/DgQejq6mL//v0QBAFpaWlwc3ND48aNcfToUaioqGDKlClo0aIFLl26BFVVVaxYsQITJkzA4sWL4ejoiAsXLqB///7Q0tJC7969S+gIERNdIiIi+m5VrVoVly5dwuHDh3H58mU8ffoUampqAIDZs2cjIiIC//77LwYMGIBFixahb9++6NOnDwBg/Pjx2LdvH16/fi21TS0tLaxcuVIcsrB69WooKSlh5cqVkPz/DW1CQkKgr6+PqKgoNG/eHJMnT8acOXPQsWNHAICFhQWuXbuG5cuXM9EtQUx0iYiI6LslCAIkEgnOnTuH169fw9DQUGr527dvcefOHQDAjRs3MGjQIKnldevWxaFD0hfj2dvbS43LPXfuHG7fvg0dHelTXu/evcOdO3eQlJSEhw8fom/fvujfv7+4PDMzE3p6ekWyn1Q4THSJiIjouxUbGwsLCwtkZWXB1NQUUVFRMnX09fXF59k9stkEQZCpr6WlJfU6KysLtWvXRnh4uExdIyMjvHv3DgCwYsUKODs7Sy1XVlbO765QMWCiS0SUB3nTLr1PeSf1/GtOzVSUPh2jzTHc9L05dOgQLl++jGHDhqFChQpISEiAiooKzM3N5da3sbHBmTNn0LNnT7Hs7Nmzn22nVq1a2Lhxo3iR26f09PRQvnx53L17F927dy/0/lDRY6JLRERE37z09HQkJCRITS82bdo0tG7dGr169YKSkhLq16+P9u3bY8aMGbCxscGTJ0+wa9cutG/fHk5OThg6dCj69+8PJycnNGjQABs3bsSlS5dQuXLlPNvu3r07Zs2ahXbt2mHSpEmoUKEC4uLisGXLFvz++++oUKECgoKC4OvrC11dXbRs2RLp6ek4e/YsXrx4geHDh3+lo0SfYqJLRERE37w9e/bA1NQUKioqMDAwQI0aNbBw4UL07t1bvGHErl27EBAQgF9++QVJSUkwMTFBkyZNYGxsDOBjwnr37l2MHDkS7969Q5cuXeDj44MzZ87k2bampiaOHj2K0aNHo2PHjnj16hXKly+PZs2aiT28/fr1g6amJmbNmoVRo0ZBS0sL9vb28Pf3L9bjQnljoktERPSDK8zdyr6m0NBQca7cvOjo6GDhwoVYuHBhrnUCAwMRGBgovvbw8ICVlZVUW/KYmJiId2fLjbe3N7y9vT8bJ309THSJiIjoh5CWloZly5bB09MTysrKWL9+PQ4cOID9+/eXdGhUTJjofscKe0OAc7N6FXNkRETfP94aXfFIJBLs2rULU6ZMQXp6OmxsbLB582a4u7uXdGhUTJjoEhERyZF9a3RSHBoaGjhw4EBJh0FfkdLnqxARERERfX+Y6BIRERGRQmKiS0REREQKiYkuERERESkkXoxGREWi4aKGMmVqqWqQ4ON95RNSE2TqBPNfEBERFSP26BIRERGRQmKiS0RERN+90NBQ6OvrF2gdHx8ftG/fvljiKS5BQUGoWbNmSYfx3eB5Q6IfSFYpLbnPiejHFhQU9M225ePjg5cvXyIiIkKqPCoqCm5ubnjx4gX09fXRtWtXtGrVqugCLSJBQUG4fv06NmzYgAsXLiAwMBBnzpxBamoqTExM4OzsjD///BNlypQpthju378PCwsL8bW2tjYqVqwIV1dX+Pv7o0qVKsXWdkljokv0A3lt07KkQyAiKhYaGhrQ0NAo6TDw4cMHSCQSKCl9PGkeGRmJ33//HU+fPoW7uzvatGmDvXv3Ql9fH/fu3UNkZCTS0tK+SmwHDhxAtWrVkJaWhsuXL2PBggWoUaMGtm/fjmbNmhVr2+/fv0epUqWKtQ15OHSBqJCCgoKkHi9fvhSXvXz5Umb51+wxISL60cgbujBlyhSULVsWOjo66NevH8aMGSP3tP/s2bNhamoKQ0NDDB48GO/fvxeXZWRkYNSoUShfvjy0tLTg7OyMqKgomXZ37NgBOzs7qKmp4cGDBwCAhw8f4sqVK2jZsiVOnDiB1NRUrFy5Eo6OjrCwsEDTpk0xf/58VKxYMdd9iIiIgEQikYl5+fLlMDMzg6amJjp37iz1HZQbQ0NDmJiYoHLlymjXrh0OHDgAZ2dn9O3bFx8+fBDrbd++HbVr14a6ujoqV66MiRMnIjMzU1x+/fp1NGrUCOrq6rCzs8OBAwcgkUjEXvf79+9DIpFg06ZNcHV1hbq6OtauXQsACAkJga2tLdTV1VG1alUsWbJEKsbHjx+ja9euMDAwgKGhIdq1a4f79+9/dt9yw0SXiIiIFE54eDimTp2KGTNm4Ny5c6hYsSKWLl0qU+/w4cO4c+cODh8+jLCwMISGhiI0NFRc3qdPHxw/fhwbNmzApUuX0LlzZ7Ro0QK3bt0S66SlpWHatGlYuXIlrl69irJlywL42JvbpEkT6Ovrw8TEBJmZmdi6dSsEQfiifbt9+zY2bdqE7du3Y8+ePYiJicHgwYMLvB0lJSX4+fnhwYMHOHfuHABg79696NGjB3x9fXHt2jUsX74coaGhmDp1KgAgKysL7du3h6amJk6fPo2//voLAQEBcrc/evRo+Pr6IjY2Fp6enlixYgUCAgIwdepUxMbGIjg4GIGBgQgLCwPw8Ti6ublBW1sbR48exbFjx6CtrY0WLVogIyOjUMeKQxfou+Hn54ekpCQAgJGRERYsWFDCERER0dewY8cOaGtrS5Xl7IGUZ9GiRejbty/69OkDABg/fjz27duH169fS9UzMDDA4sWLoaysjKpVq8LLywsHDx5E//79cefOHaxfvx6PHj1CuXLlAAAjR47Enj17EBISguDgYAAfT8svWbIENWrUkNr2tm3b0K5dOwBAvXr1MG7cOHh7e2PgwIGoW7cumjZtil69esHY2LhAx+Pdu3cICwtDhQoVxH318vLCnDlzYGJiUqBtVa1aFcDHXti6deti6tSpGDNmDHr37g0AqFy5MiZPnoxRo0ZhwoQJ2LdvH+7cuYOoqCixralTp8LDw0Nm2/7+/ujYsaP4evLkyZgzZ45YZmFhISbTvXv3xoYNG6CkpISVK1eKvdghISHQ19dHVFQUmjdvXqB9A5jo0nckKSkJiYmJJR0GERF9ZW5ubjK9sadPn0aPHj1yXefGjRsYNGiQVFndunVx6NAhqbJq1apBWVlZfG1qaorLly8DAM6fPw9BEGBtbS21Tnp6OgwNDcXXqqqqcHBwkKqTmpqKI0eOYMWKFWLZ1KlTMXz4cBw6dAinTp3CsmXLEBwcjKNHj8Le3j6vQyClYsWKYpILAPXr10dWVhZu3LhR4EQ3u3c5O7E8d+4coqOjxR5c4OOPinfv3iEtLQ03btyAmZmZVDt169aVu20nJyfxeVJSEh4+fIi+ffuif//+YnlmZib09PTEtm/fvg0dHR2p7bx79w537twp0H5lY6L7A4qbJPthynxpCED5/58/kVun4vjLRdI+e2aJiKggtLS0YGVlJVX26NGjz6736dhWeUMGPr1ASiKRICsrC8DH0/TKyso4d+6cVDIMQKqHWUNDQ6at3bt3w9bWFpUqVZIqNzQ0ROfOndG5c2dMmzYNjo6OmD17NsLCwqCkpCQTY87xwp/bT3ljeT8nNjYWAMRZGbKysjBx4kSpnths6urqEAQh3+1oaeWY6ef/j+mKFSvg7OwsVS/72GZlZaF27doIDw+X2ZaRkVG+2vwUE1366tgzS0RExc3GxgZnzpxBz549xbKzZ88WaBuOjo748OEDnj59isaNGxdo3W3btqFt27Z51lFVVYWlpSXevHkD4GMy9+rVK7x580ZMEmNiYmTWi4uLw5MnT8ThFCdPnoSSkpJMz/PnZGVlYeHChbCwsICjoyMAoFatWrhx44bMD4tsVatWRVxcHBITE8UhF9HR0Z9ty9jYGOXLl8fdu3fRvXt3uXVq1aqFjRs3omzZstDV1S3QvuSGiS4REREpnKFDh6J///5wcnJCgwYNsHHjRly6dAmVK1fO9zasra3RvXt39OrVC3PmzIGjoyOePXuGQ4cOwd7ePtd5ezMzM7F7924cOHBALNuxYwc2bNiAbt26wdraGoIgYPv27di1axdCQkIAAM7OztDU1MS4ceMwdOhQnDlzRurCuGzq6uro3bs3Zs+ejdTUVPj6+qJLly6fHbaQnJyMhIQEpKWl4cqVK5g/fz7OnDmDnTt3ir2q48ePR+vWrWFmZobOnTtDSUkJly5dwuXLlzFlyhR4eHjA0tISvXv3xsyZM/Hq1SvxYrTP9fQGBQXB19cXurq6aNmyJdLT03H27Fm8ePECw4cPR/fu3TFr1iy0a9cOkyZNQoUKFRAXF4ctW7bg999/lxqukV+cdYGIflhqShKoKytBXVkJakoFP+VHRN+u7t27Y+zYsRg5ciRq1aqFe/fuwcfHB+rq6gXaTkhICHr16oURI0bAxsYGbdu2xenTp2FmZpbrOkeOHIG2tjZq164tltnZ2UFTUxMjRoxAzZo1Ua9ePWzatAkrV64Ue51Lly6NtWvXYteuXbC3t8f69evlTk1pZWWFjh07olWrVmjevDmqV68uM02XPO7u7jA1NYW9vT3GjBkDW1tbXLp0CW5ubmIdT09P7NixA/v370edOnVQr149zJ07VxyCoaysjIiICLx+/Rp16tRBv3798McffwDAZ49tv379sHLlSoSGhsLe3h4uLi4IDQ0Vh01oamri6NGjqFixIjp27AhbW1v88ssvePv2baF7eNmjS4XGsbb0vatdpmhOjRF9777leb7l9WgCgKurq9R4Vh8fH/j4+EjVCQwMRGBgoPjaw8ND6pS8vG3Pnz9f6nWpUqUwceJETJw4UW4c8trdtm0b2rRpI1VWuXJl/PXXX3K3kVP79u1lbkuc8+KtnPOy//bbb5/dHgCYm5sXaEozT09PeHp65rq8atWqOHbsmPj6+PHjACAe27za8/b2hre3d67bNjExEacbKwpMdKnQONaWSLHwFtGkSNLS0rBs2TJ4enpCWVkZ69evx4EDB7B///5ib7t69eqoX79+sbdTUrZu3QptbW1UqVIFt2/fhp+fHxo2bAhLS8uSDk0GE10iIgLAW0STYpFIJNi1axemTJmC9PR02NjYYPPmzXB3dy/2tgcMGFDsbZSkV69eYdSoUXj48CHKlCkDd3d3zJkzp6TDkouJLhERESkcDQ0NqYvBqOj06tULvXr1Kukw8oUXoxERERGRQmKPLhF9Vmm1D3KfExERfcuY6BLRZ41zfFnSIRARERUYhy4QERERkUJioktEREREComJLhEREREpJCa6RERERKSQmOgSERERkUJioktEREREConTixFRsRE0BLnPiYiIvgYmugomq5SW3OdEJSGjSUZJh0BERD8wJroK5rVNy5IO4ZuipiRB9gidj8+JiIjoR8FElxRa7TK6JR0CERERlRAmulSsjjRxkSl7p6IMSD72rr5LSJBbx+XokWKPjYiIiBQbE13Kt4aLGkq9VktVgwQfE9aE1ASZ5QAQzLcYERERlRBmIQQAKK32Qe5zIiIiou8V59H9jKNHj6JNmzYoV64cJBIJIiIipJYLgoCgoCCUK1cOGhoacHV1xdWrV0sm2C8wzvElZtdLxux6yRjn+LKkwyEiIiL6Ykx0P+PNmzeoUaMGFi9eLHf5zJkzMXfuXCxevBjR0dEwMTGBh4cHXr169ZUjJSIiIqKcOHThM1q2bImWLeVP2SUIAubPn4+AgAB07NgRABAWFgZjY2OsW7cOv/7669cMlYqQn58fkpKSAABGRkZYsGBBCUdEREREBcUe3S9w7949JCQkoHnz5mKZmpoaXFxccOLEiVzXS09PR2pqqtSDvi1JSUlITExEYmKimPASERHR94WJ7hdISEgAABgbG0uVGxsbi8vkmTZtGvT09MSHmZlZscZJRERE9CNiolsEJBLpO24JgiBTltPYsWORkpIiPh4+fFjcIRJ9N3QFQE8QoCcI0BVKOhoiIvqecYzuFzAxMQHwsWfX1NRULH/69KlML29OampqUFNTK/b46OvK+Tfl37fw+nzg9HZERFQ0mOh+AQsLC5iYmGD//v1wdHQEAGRkZODIkSOYMWNGCUdHX1uNGjVKOgQiIiLKgYnuZ7x+/Rq3b98WX9+7dw8xMTEoXbo0KlasCH9/fwQHB6NKlSqoUqUKgoODoampCW9v7xKMmoiIiIiY6H7G2bNn4ebmJr4ePnw4AKB3794IDQ3FqFGj8PbtWwwaNAgvXryAs7Mz9u3bBx0dnZIKmYiIiIjARPezXF1dIQi5XxEjkUgQFBSEoKCgrxfUD2DxiO0yZa+ep0k9l1eHiIiIKBtnXSAiIiIihcREl4iIiIgUEhNdIiIiIlJIHKNLREQEYGqPn6RepzxLyfE8SWY5AHS0HVTscRFR4THRpUITNAS5z4mIiIi+BUx0qdAymmSUdAhEREREuWKiS0RUQPpqOnKfExHRt4WJLhFRAQ2v3bukQyAionzgrAtEREREpJCY6BIRERGRQuLQBfrqdAUAEHI8JyIiIip6THTpq+vz4UNJh0BEREQ/AA5dICIiIiKFxESXiIiIiBQSE10iIiIiUkgco0s/vNiph2TK3qe8k3ourw4RERF925joEhERFSHeOY/o28FEl4iIqAjxznlE3w4mukRE9N3w8/NDUlISAMDIyAgLFiwo4YiI6FvGRJeIiL4bSUlJSExMLOkwiOg7wVkXiIiIiEghsUeXiOgrUVNTk/v8RyVoCHKfExEVFSa6RERfSY0aNUo6hG9KRpOMkg6BiBQchy4QERERkUJioktEREREComJLhEREREpJI7RJSKFoK6qI/c5ERH9uJjoEpFCcKnSpaRDICKibwyHLhARERGRQmKiS0REREQKiYkuERERESkkjtGl7wYvNiIiIqKCYKJL3w1ebEREREQFwaELRERERKSQmOgSERERkUJioktEREREComJLhEREREpJF6MRiSHvpqO3OdERET0/WCiSyTH8Nq9SzoEIiIi+kIcukBEREREComJLhEREREpJCa6RERERKSQmOgSERERkULixWhERERyqClJkN0f9PE5EX1vmOgSERHJUbuMbkmHQERfiEMXiIiIiEghMdElIiIiIoXEoQtERPRNOtLERabsnYoyIPk4XvZdQoLcOqgzsrhDI6LvBHt0iYiIiEghMdElIiIiIoXERJeIiIiIFBITXSIiIiJSSEx0iYiIiEghMdElIiIiIoXERJeIiIiIFBITXSIiIiJSSEx0iYiIiEghMdElIiIiIoXERJeIiIiIFBITXSIiIiJSSEx0iYiIiEghMdElIiIiIoXERJeIiIiIFBITXSIiIiJSSEx0iYiIiEghMdElIiIiIoXERJeIiIiIFBITXSIiIiJSSEx0iYiIiEghMdElIiIiIoXERJeIiIiIFBITXSIiIiJSSEx0iYiIiEghMdElIiIiIoXERJeIiIiIFJJKSQdARESUX7oCAAg5nhMR5Y6JLhERfTf6fPhQ0iEQ0XeEQxeIiIiISCEx0SUiIiIihcREt4gsWbIEFhYWUFdXR+3atfHff/+VdEhEREREPzQmukVg48aN8Pf3R0BAAC5cuIDGjRujZcuWiIuLK+nQiIiIiH5YTHSLwNy5c9G3b1/069cPtra2mD9/PszMzLB06dKSDo2IiIjoh8VZF75QRkYGzp07hzFjxkiVN2/eHCdOnJC7Tnp6OtLT08XXKSkpAIDU1NQCtf0h/W0Bo/3oVanCXbWc+TazwOu8KfgqAIC36WkFXufd+/eFauv1uzeFWi89M/3zlT5R0L/xl+D7Q1Zh3iOK+v4ACvce4ftD2td8fwCFf4/o6OhAIpEUal2i75lEEATORPgFnjx5gvLly+P48eNo0KCBWB4cHIywsDDcuHFDZp2goCBMnDjxa4ZJREQ/sJSUFOjq6pZ0GERfHXt0i8inv5QFQcj11/PYsWMxfPhw8XVWVhaeP38OQ0ND/uLGxx4LMzMzPHz4kP+YSQbfH5QXvj/k09HRKekQiEoEE90vVKZMGSgrKyMhIUGq/OnTpzA2Npa7jpqaGtTU1KTK9PX1iyvE75auri6/qChXfH9QXvj+ICKAF6N9MVVVVdSuXRv79++XKt+/f7/UUAYiIiIi+rrYo1sEhg8fjp49e8LJyQn169fHX3/9hbi4OAwcOLCkQyMiIiL6YTHRLQJdu3ZFcnIyJk2ahPj4eFSvXh27du1CpUqVSjq075KamhomTJggM7yDCOD7g/LG9wcR5cRZF4iIiIhIIXGMLhEREREpJCa6RERERKSQmOgSERERkUJioktEheLq6gp/f/8865ibm2P+/Pl51pFIJIiIiAAA3L9/HxKJBDExMUUSY0mIioqCRCLBy5cvSzqUH1ZB33dEpLiY6NIXEwQB7u7u8PT0lFm2ZMkS6OnpIS4urgQio4Ly8fGBRCKROzXeoEGDIJFI4OPjAwDYsmULJk+e/JUjLJgBAwZAWVkZGzZsKOlQqIg8fPgQffv2Rbly5aCqqopKlSrBz88PycnJJR0aEX2D/q+9+4+mKuv/AP6+uLnkV34kGUqUWEoJJVOimlu3MYmmUk1EmGqqqUdjlCn11DRTzzMzVvq11uiiwegJ/ZAfZQbThAxDrcJVIpoRTaxCyI/9/cO3szpd/Xzq0ejzWuuu5eyzzz6fc+5e7ufus8+5lOiS/5pAIIBUKsWFCxdw6NAhrryyshJBQUEICwuDsbFxH0ZIXoSRkRF+/PFHtLa2cmVtbW2Ii4vjvY/a2tpv9M+K3r9/H/Hx8di4cSMiIiL6OhzyCly/fh22trYoLy9HXFwcrl27hoMHD+Knn36Cg4MDGhoa+jpEQsgbhhJd8koYGRkhLCwMgYGBqKysBGMMvr6+mD59OkxMTGBvbw9lZWUYGBjg888/R2dnJ7dtb5cZx40bh9DQUG5ZIBDg+++/x7x586CqqoqRI0fi5MmTvG1OnjyJkSNHQkVFBc7OzoiKiqJLyC/BxsYGxsbGSExM5MoSExNhZGSE8ePHc2WPT12or6+Hq6srVFRUYGJigpiYGLm2r169iqlTp0IkEsHS0lLuFwV7U1JSAolEAjU1Nejr6+Ojjz7CX3/99czt/vOf/8DS0hLBwcE4f/48qqqqeOs7Ozuxdu1aaGlpQUdHB0FBQfDy8oKbmxtXhzGG3bt3Y8SIEVBRUYG1tTWOHTvGayclJQWjRo3i+t3j+yGvzurVqzFgwACcOXMGTk5OMDY2xuzZs5GRkYE//vgDmzdv7nW7l+l3hJD+gRJd8sp4eXlh+vTpWL58OcLDw3H58mWEhYVBIpHAzs4OFy9exIEDBxAREYEdO3a8cPvbtm3DggULcOnSJUgkEixZsoQbwamqqsL8+fPh5uaG4uJiBAQEPPFDjzzb8uXLIZVKueXDhw/Dx8fnqdt4e3ujqqoKP//8M44dO4b9+/ejvr6eW9/d3Q13d3coKioiLy8PBw8eRFBQ0FPbrK2thZOTE8aNG4eCggKkpaWhrq4OCxYseOYxREREYOnSpdDU1IREIuEdDwB8/fXXiImJgVQqxfnz53Hv3j25OZshISGQSqU4cOAArly5gvXr12Pp0qXIzs4G0HMZ3d3dHRKJBMXFxVixYgU+//zzZ8ZGXlxDQwPS09OxatUqqKio8NYNGTIES5YsQXx8PB5/NPzL9DtCSD/CCHmF6urqmJ6eHlNQUGCJiYls06ZNzNzcnHV3d3N19u3bx9TU1FhXVxdjjLFhw4axb7/9lteOtbU127p1K7cMgIWEhHDLzc3NTCAQsNTUVMYYY0FBQczKyorXxubNmxkA1tjY+GoPsh/z8vJic+fOZbdv32bKysqssrKSVVVVMZFIxG7fvs3mzp3LvLy8GGOMOTk5sXXr1jHGGJPJZAwAy8vL49oqLS1lALj3Nj09nSkqKrKamhquTmpqKgPAkpKSGGOMVVZWMgCsqKiIMcbYF198wd577z1ejDU1NQwAk8lkTzyO8vJyJhQK2e3btxljjCUlJTEjIyOuzzHGmL6+PtuzZw+33NnZyYyNjdncuXMZYz19TCQSsZycHF7bvr6+zNPTkzHGWHBwMLOwsOD176CgIOp3r0FeXh6vrzzum2++YQBYXV0d73/K8/Q7Qkj/RSO65JUaPHgw/P39YWFhgXnz5qG0tBQODg4QCARcHUdHRzQ3N+PmzZsv1PbYsWO5vwcOHAh1dXVuxFAmk8HOzo5X397e/r84krebrq4u5syZg6ioKEilUsyZMwe6urpPrF9aWgolJSXY2tpyZaNHj4aWlhavjrGxMd555x2uzMHB4alxFBYWIjMzE2pqatxr9OjRAICKigrExMTw1p07dw5Az2iuWCzmYpZIJGhpaUFGRgYA4O7du6irq+P1EUVFRUyYMIFbLikpQVtbG2bOnMnbR3R0NCoqKrhjmjRpEq9/P+uYyOvB/n8k99H3Ani5fkcI6T+U+joA0v8oKSlBSamnazHG5D54Hv9AUlBQkLvc2NHRIdeuUCjkLQsEAnR3dz9zP+Tl+Pj44JNPPgEA7Nu376l1n5Rk9FbnUU+rD/RcdnZ1dcXXX38tt87AwADd3d2YOHEiV2ZoaIiuri5ER0fj1q1bXD8EgK6uLkREROC999574v4fjfFh3zp9+jQMDQ159ZSVlZ94TOT1MDMzg0AgQElJCW8e9UNlZWUYNGiQ3Beyl+l3hJD+gxJd8lpZWloiISGBl4jm5ORAXV2dSx709PRQW1vLbXPv3j1UVla+0H5Gjx6NlJQUXllBQcF/Gf3bbdasWXjw4AEA9ProuEdZWFigs7MTBQUF3CipTCbj3QhoaWmJ6upq/Pnnnxg6dCgAIDc396nt2tjYICEhAcOHD+clrY96/MkPp06dQlNTE4qKiqCoqMiVl5WVYcmSJbhz5w50dHSgr6+P/Px8TJkyBUBPIlxUVIRx48Zx8SorK6O6uhpOTk697tvS0lJuXm9eXt5Tj4m8HB0dHcycORP79+/H+vXrefN0b926hZiYGCxbtkwuiX2ZfkcI6T9o6gJ5rVatWoWamhqsWbMGZWVlOHHiBLZu3YoNGzZAQaGn+7m4uODIkSM4d+4cLl++DC8vL16C8jwCAgJQVlaGoKAglJeX4+jRo4iMjARAozcvS1FREaWlpSgtLX3m+2Fubo5Zs2bBz88PFy5cQGFhIVasWMFLRmbMmAFzc3MsW7YMFy9exLlz5555w+Dq1avR0NAAT09P5Ofn4/r16zhz5gx8fHzQ1dXV6zYRERGYM2cOrK2tYWVlxb08PDygp6eHH374AQCwZs0a7Nq1CydOnIBMJsO6devQ2NjI9Rd1dXUEBgZi/fr1iIqKQkVFBYqKirBv3z5ERUUBAD7++GNUVFRgw4YNkMlkiI2N5fodefXCw8PR3t4OsViMX375BTU1NUhLS8PMmTNhaGiInTt3ym3zMv2OENJ/UKJLXitDQ0OkpKQgPz8f1tbW+Pjjj+Hr64uQkBCuTnBwMKZOnYr3338fEokEbm5uMDU1faH9mJiY4NixY0hMTMTYsWNx4MAB7sPs4WVm8uI0NDSgoaHxXHWlUimMjIzg5OQEd3d3+Pv7Y/Dgwdx6BQUFJCUlob29Hfb29lixYkWvicmjhg4divPnz6OrqwtisRhWVlZYt24dNDU1uS9Kj6qrq8Pp06fh4eEht04gEMDd3Z17pm5QUBA8PT2xbNkyODg4QE1NDWKxGCKRiNvmn//8J7Zs2YJdu3bBwsICYrEYp06dgomJCQDA2NgYCQkJOHXqFKytrXHw4EF8+eWXz3W+yIsbOXIkCgoKYGpqioULF8LU1BT+/v5wdnZGbm4utLW15bZ5mX5HCOk/BIwmmZF+aufOnTh48CBqamr6OhTyN9Dd3Q0LCwssWLDgjf/FN0IIIc+H5uiSfmP//v2ws7ODjo4Ozp8/jz179nA3UxHyuBs3bnA/PNDe3o7w8HBUVlZi8eLFfR0aIYSQV4QSXdJvXL16FTt27EBDQwOMjY3xj3/8A8HBwX0dFnlDKSgoIDIyEoGBgWCMwcrKChkZGbCwsOjr0AghhLwiNHWBEEIIIYT0S3QzGiGEEEII6Zco0SWEEEIIIf0SJbqEEEIIIaRfokSXEEIIIYT0S5ToEkLeKDKZDEOGDEFTU1OfxhEaGsr9HPDzioyMhJaW1muJpzfh4eH44IMP/mf7I4SQvxtKdAn5m8jJyYGioiJmzZrV16G8sGnTpuHTTz99rrqbN2/G6tWroa6ujubmZgiFQsTHx/PqLFy4EAKBABUVFbxyU1NTbNq06VWF/cbz8/PDb7/9hl9//bWvQyGEkDcSJbqE/E0cPnwYa9aswa+//orq6uq+Due1uHnzJk6ePInly5cDANTU1GBra4vMzExevezsbBgZGfHKb968ievXr8PZ2fl/GnNfUlZWxuLFi7F3796+DoUQQt5IlOgS8jfQ0tKCo0ePYuXKlXj//fcRGRnJW5+VlQWBQID09HSMHz8eKioqcHFxQX19PVJTU2FhYQENDQ14enri/v373Hbt7e1Yu3YtBg8eDJFIhHfffRe//fYbt763S/HHjx+HQCDglh9e4j9y5AiGDx8OTU1NLFq0iJt64O3tjezsbISFhUEgEEAgEKCqqqrX4zx69Cisra3xzjvvcGXOzs7IysrilktLS9Ha2opVq1bxyjMzMyEUCuHo6AgAOHXqFCZMmACRSIQRI0Zg27Zt6Ozs5OrfvXsX/v7+GDx4MDQ0NODi4oKLFy8+8T2orKyEmZkZVq5cie7ubu78GBsbQ1VVFfPmzcOdO3d421RUVGDu3LnQ19eHmpoa7OzskJGRwa3fvn07xowZI7evCRMmYMuWLQB63lt7e3sMHDgQWlpacHR0xI0bN7i6H3zwAY4fP47W1tYnxk4IIW8rSnQJ+RuIj4+Hubk5zM3NsXTpUkilUvT2Wy+hoaEIDw9HTk4OampqsGDBAnz33XeIjY3F6dOncfbsWd7o32effYaEhARERUXh999/h5mZGcRiMRoaGl4ovoqKChw/fhzJyclITk5GdnY2vvrqKwBAWFgYHBwc4Ofnh9raWtTW1sLIyKjXdn755RfY2tryypydnSGTyVBbWwugJ6GdMmUKXFxc5BLdiRMnQlVVFenp6Vi6dCnWrl2LkpISHDp0CJGRkdi5cycAgDGGOXPm4NatW0hJSUFhYSFsbGwwffr0Xo/98uXLcHR0xIcffogDBw5AQUEBFy5cgI+PD1atWoXi4mI4Oztjx44dvO2am5shkUiQkZGBoqIiiMViuLq6ciPyPj4+KCkp4X25uHTpEoqKiuDt7Y3Ozk64ubnByckJly5dQm5uLvz9/XlfNGxtbdHR0YH8/PznfbsIIeTtwQghb7zJkyez7777jjHGWEdHB9PV1WVnz57l1mdmZjIALCMjgyvbtWsXA8AqKiq4soCAACYWixljjDU3NzOhUMhiYmK49Q8ePGBDhw5lu3fvZowxJpVKmaamJi+WpKQk9ui/jq1btzJVVVV27949rmzjxo1s4sSJ3LKTkxNbt27dM4/T2tqabd++nVfW0tLChEIhi42NZYwx9uGHH7Ldu3ezjo4OpqamxsrLyxljjJmYmLAvvviCMcbYlClT2Jdffslr58iRI8zAwIAxxthPP/3ENDQ0WFtbG6+OqakpO3ToEHdc1tbWLCcnh2lra7M9e/bw6np6erJZs2bxyhYuXCh3vh5naWnJ9u7dyy3Pnj2brVy5klv+9NNP2bRp0xhjjN25c4cBYFlZWU9tc9CgQSwyMvKpdQgh5G1EI7qEvOFkMhny8/OxaNEiAICSkhIWLlyIw4cPy9UdO3Ys97e+vj5UVVUxYsQIXll9fT2AnlHYjo4O7lI/AAiFQtjb26O0tPSFYhw+fDjU1dW5ZQMDA24/L6K1tRUikYhXpqqqCnt7e270Njs7G9OmTYOSkhIcHR2RlZWF6upqVFZWwsXFBQBQWFiI7du3Q01NjXs9HFG+f/8+CgsL0dzcDB0dHV6dyspK3g1u1dXVmDFjBkJCQhAYGMiLq7S0FA4ODryyx5dbWlrw2WefwdLSElpaWlBTU0NZWRlvjrWfnx/i4uLQ1taGjo4OxMTEwMfHBwCgra0Nb29vbiQ4LCyMG9l+lIqKCm9KCiGEkB5KfR0AIeTpIiIi0NnZCUNDQ66MMQahUIjGxkYMGjSIKxcKhdzfAoGAt/yw7OH8Uvb/Ux8evQz+sPxhmYKCgtwUiY6ODrkYn7afF6Grq4vGxka5cmdnZ8THx+PKlStobW2FjY0NAMDJyQmZmZkYMGAARCIRJk2aBADo7u7Gtm3b4O7uLteWSCRCd3c3DAwMeFMfHnp0TrKenh6GDh2KH3/8Eb6+vtDQ0ODWPX5eerNx40akp6fjX//6F8zMzKCiooL58+fjwYMHXB1XV1coKysjKSkJysrKaG9vh4eHB7deKpVi7dq1SEtLQ3x8PEJCQnD27FnuWAGgoaEBenp6z4yHEELeNjSiS8gbrLOzE9HR0fj3v/+N4uJi7nXx4kUMGzYMMTExL922mZkZBgwYwHs0VUdHBwoKCmBhYQGgJ9FrampCS0sLV6e4uPiF9zVgwAB0dXU9s9748eNRUlIiV+7s7IyrV68iNjYW7777LhQVFQH0JLpZWVnIysqCg4MDNxpsY2MDmUwGMzMzuZeCggJsbGxw69YtKCkpya3X1dXl9quiooLk5GSIRCKIxWLes30tLS2Rl5fHi/Px5XPnzsHb2xvz5s3DmDFjMGTIELkb8ZSUlODl5QWpVAqpVIpFixZBVVVV7rwEBwcjJycHVlZWiI2N5dZVVFSgra0N48ePf+b5JYSQtw0luoS8wZKTk9HY2AhfX19YWVnxXvPnz0dERMRLtz1w4ECsXLkSGzduRFpaGkpKSuDn54f79+/D19cXALibuzZt2oRr164hNjZW7okPz2P48OG4cOECqqqq8Ndffz1xtFcsFiM3N1cuKZ48eTKUlZWxd+9eODk5ceV2dna4e/cuEhISeI8V27JlC6KjoxEaGoorV66gtLSUGw0FgBkzZsDBwQFubm5IT09HVVUVcnJyEBISgoKCArnzdPr0aSgpKWH27Nlobm4GAG6Udffu3SgvL0d4eDjS0tJ425qZmSExMZH7crJ48eJej33FihX4+eefkZqayk1bAHqe9BAcHIzc3FzcuHEDZ86cQXl5OfdFBOhJpkeMGAFTU9OnvgeEEPI2okSXkDdYREQEZsyYAU1NTbl1Hh4eKC4uxu+///7S7X/11Vfw8PDARx99BBsbG1y7dg3p6encdAhtbW388MMPSElJwZgxYxAXF4fQ0NAX3k9gYCAUFRVhaWkJPT29Jz4HWCKRQCgU8h7BBYCbltDU1IRp06Zx5UKhEA4ODmhqauIlumKxGMnJyTh79izs7OwwadIkfPPNNxg2bBiAnqkVKSkpmDp1Knx8fDBq1CgsWrQIVVVV0NfXl4tLTU0NqampYIxBIpGgpaUFkyZNwvfff4+9e/di3LhxOHPmDJdIP/Ttt99i0KBBmDx5MlxdXSEWi7lpF48aOXIkJk+eDHNzc0ycOJErV1VVRVlZGTw8PDBq1Cj4+/vjk08+QUBAAFcnLi4Ofn5+Tzn7hBDy9hKw55loRggh/yP79+/HiRMnkJ6e3teh/M8wxjB69GgEBARgw4YNz73d5cuXMX36dJSXl/f6ZYgQQt52dDMaIeSN4u/vj8bGRjQ1NfGe5NBf1dfX48iRI/jjjz+4X4R7Xn/++Seio6MpySWEkCegEV1CCOlDAoEAurq6CAsLw+LFi/s6HEII6VdoRJcQQvoQjTUQQsjrQzejEUIIIYSQfokSXUIIIYQQ0i9RoksIIYQQQvolSnQJIYQQQki/RIkuIYQQQgjplyjRJYQQQggh/RIluoQQQgghpF+iRJcQQgghhPRLlOgSQgghhJB+6f8AAP3fVI8O4eEAAAAASUVORK5CYII=",
2890
      "text/plain": [
2891
       "<Figure size 682.125x500 with 1 Axes>"
2892
      ]
2893
     },
2894
     "metadata": {},
2895
     "output_type": "display_data"
2896
    }
2897
   ],
2898
   "source": [
2899
    "#Bar plot for age, amt_weekends, highest_qualification\n",
2900
    "sns.catplot(data=smokers,\n",
2901
    "                 x='age',\n",
2902
    "                 y='amt_weekdays',\n",
2903
    "                 hue='highest_qualification',\n",
2904
    "                 kind=\"bar\")\n",
2905
    "plt.title('Figure 15: Bar plot for Amount (Weekdays), Age, Highest Qualification')\n",
2906
    "plt.xlabel('Amount (Weekdays)')\n",
2907
    "plt.ylabel('Age')"
2908
   ]
2909
  },
2910
  {
2911
   "cell_type": "code",
2912
   "execution_count": 54,
2913
   "id": "d9b09dc5",
2914
   "metadata": {},
2915
   "outputs": [
2916
    {
2917
     "data": {
2918
      "text/plain": [
2919
       "Text(51.78546571180556, 0.5, 'Age')"
2920
      ]
2921
     },
2922
     "execution_count": 54,
2923
     "metadata": {},
2924
     "output_type": "execute_result"
2925
    },
2926
    {
2927
     "data": {
2928
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAroAAAH+CAYAAABz3K3+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACca0lEQVR4nOzdd1QU19sH8O8CsnRQpKkICKKiYEOxAwpi7xULGDXFAlhiIygqiL3HEhsYscaI2Dsao0bAhopdYwkoNlBUisz7hy/zc9mlKUXX7+ecPWf3zp17nxl22Wfv3JmRCIIggIiIiIhIyaiUdgBERERERMWBiS4RERERKSUmukRERESklJjoEhEREZFSYqJLREREREqJiS4RERERKSUmukRERESklJjoEhEREZFSYqJLREREREqpUIluaGgoJBKJwsfYsWNx7949SCQShIaGFlO4xevVq1cYN24cWrduDSMjI0gkEgQGBuZaPyMjA/Pnz4e9vT00NTVhYGCAJk2a4NSpU5/Uf/b++/ihp6eH2rVrY+HChXj//v0nblnxcXFxgYuLyyetO2PGDERERBS4/r1799C+fXuUK1cOEokEfn5+n9RvYWVkZMDU1BQSiQR//PFHifRZkv777z8EBgbiwoULhVpv/fr1MDIywqtXrwAAtWrVQo0aNeTq7dixAxKJBI0bN5Zb9vvvv0MikSAyMvKTYs+PRCLBiBEjiqXtwvrU/48tWrQo0vd6t27dvqj9kpOlpSU6dOigcFlMTIzcPsz+Xrp3716h+4qKiiqVz/XGjRuxcOHCQq2TkZGB5cuXo3HjxtDX14empibs7OwwadIkvHjxongCzSHnd2L2/ouKipKpt2TJEtjY2EBdXR0SiQQvX76Et7c3LC0tiy22vXv35vp9bWlpCW9v72Lrm75snzSiu27dOpw+fVrm4ePjAzMzM5w+fRrt27cv6jhLxLNnz/Dbb78hLS0NXbp0ybPu+/fv0bVrV0ybNg19+/bFvn37EB4ejjZt2iA1NfWz4hg5cqS4X7du3YqmTZti1KhRGDdu3Ge1+6UpbKI7atQo/PPPP1i7di1Onz6NUaNGFV9wH9m9ezceP34MAFizZk2J9FmS/vvvP0ydOrVQie6bN28wadIkjB8/Hrq6ugAAV1dXXLt2DYmJiTJ1o6KioK2tjZiYGDEp/niZiooKWrRo8dnboaymT5+OZcuW4fr165/d1pMnT7B7924AQHh4ON69e/fZbZa29u3b4/Tp0zAzMyvtUAqssInumzdv4O7ujpEjR6Ju3brYtGkT9u7di/79+2PFihWoV68ebt++XXwB56JevXo4ffo06tWrJ5ZduHABPj4+cHV1xdGjR3H69Gno6uoiICAAO3bsKLZY9u7di6lTpypctmPHDgQEBBRb3/RlU/uUlWrVqgVHR0eFyxo1avRZAX2qN2/eQEtL67PasLCwwIsXLyCRSPD06VOsXr0617pLlizBvn378Pfff8tsc1Ek+ZUrV5Zps02bNrh8+TI2bdqEefPmfXb7QNHsr5J2+fJlNGzYMN8fIQX1/v17ZGZmQiqV5llvzZo1UFdXh7OzMw4ePIiHDx+iUqVKRRLD1yosLAzPnj3DkCFDxDJXV1csXboUUVFR6NOnj1geFRWFIUOGYNmyZTh58iTatm0rs6xu3bowMDAoyfC/Ks7OzqhWrRrmzZuH33777bPaWr9+PTIyMtC+fXvs2bMHf/75Jzw9PYso0tJhZGQEIyOj0g6jWI0aNQrHjx/H5s2b0bt3b7Hc1dUVPXr0QMOGDdGjRw/ExsZCRaXkZiTq6enJfedfuXIFADB06FA0bNhQLLe2ti6xuHKqW7duqfVNpa9IPxG5HZrbuXMnHBwcIJVKUaVKFSxatAiBgYGQSCT5rgvIHy7JXvfcuXPo0aMHypYtK36IBEHAsmXLUKdOHWhqaqJs2bLo0aMH7ty5k2/82dMFCmLRokVo0aJFiSX2+vr6KFOmjEzZli1b0Lp1a5iZmUFTUxM1atTAhAkT5EaUvb29oaOjg7i4OLRu3Rq6urpo1apVrn1l79/z58+jW7du0NPTg76+Pvr374+kpKR8Y33+/DmGDRuGihUrQl1dHVWqVIG/vz/S0tLEOhKJBKmpqQgLCxP3e25TILIPj926dQv79u0T62cfqrx//z769+8PY2NjSKVS1KhRA/PmzUNWVpbYRvb7a/bs2QgKCoKVlRWkUimOHTuW57b8999/2L9/Pzp27Iiff/4ZWVlZCt+j2fv42rVr8PDwgLa2NszMzDBz5kwAwJkzZ9CsWTNoa2vD1tYWYWFhcm1cvnwZnTt3RtmyZaGhoYE6derI1cvtMK2iQ4guLi6oVasWoqOj0bx5c2hpaaFKlSqYOXOmuG+ioqLQoEEDAMCgQYPEfZvXlB0AWL58OTp27CiToLq4uMjF8OzZM8TFxaF9+/aoX7++zP5+8OAB7ty5A1dXV7Hs5s2b8PT0lPlb/vrrr3L9p6SkYOzYsbCysoK6ujoqVqwIPz+/fI+mCIKASZMmoUyZMli1apVYvmXLFjRu3Bja2trQ0dGBh4cHzp8/L7Nu9t/41q1baNeuHXR0dGBubo4xY8bIvLeBD++bXr16QVdXF/r6+ujdu7fcSDcA3LlzB3369EGFChUglUphYmKCVq1ayY2uDxgwABs3bpQbES+stWvXwsTEBGFhYdDU1MTatWsV1jt58iQaN24MDQ0NVKxYEQEBAVi9erXC915B9l1xUvSZEAQBM2bMgIWFBTQ0NODo6IhDhw7lOtUqIyMD/v7+qFChAvT09ODm5qZwBP3w4cNo1aoV9PT0oKWlhaZNm+LIkSMydZKSkvD999/D3NwcUqkURkZGaNq0KQ4fPgzgw+dkz549+Pfff2WmqeUmMTERa9euhYeHh0ySm83W1hbjx4/HhQsXxNF6QP57M1vOw/hJSUkYNmwY7OzsoKOjA2NjY7Rs2RJ//fVXrjFly/l/x8XFBf379wcAODk5QSKRiH0pmrqQlZWFJUuWiN/XBgYGaNSokcxUpoJ8z3l7e4v/Jz7ep9nvCUVTFwrzvTF37lzMnz8fVlZW0NHRQePGjXHmzJl89w99GT4p0c0eCfv4kZv9+/ejW7duMDQ0xJYtWzB79mxs2rRJ4Rd9YXXr1g02NjbYtm0bVqxYAQD44Ycf4OfnBzc3N0RERGDZsmW4cuUKmjRpIh5+/lwPHjzAvXv3YG9vj0mTJsHExARqamqoWbOmwu3KTgAKKisrS9yvz549w9q1a7F//34MGDBApt7NmzfRrl07rFmzBvv374efnx+2bt2Kjh07yrWZnp6OTp06oWXLlti5c2euh3g+1rVrV9jY2OCPP/5AYGAgIiIi4OHhgYyMjFzXeffuHVxdXbF+/XqMHj0ae/bsQf/+/TF79mx069ZNrHf69GloamqiXbt24jSNZcuWKWwz+/CYqakpmjZtKtY3MzNDUlISmjRpgoMHD2L69OmIjIyEm5sbxo4dq3AO4uLFi3H06FHMnTsX+/btQ/Xq1fPcB6GhoXj//j2+++47uLm5wcLCAmvXroUgCHJ1MzIy0K1bN7Rv3x47d+5E27ZtMXHiREyaNAleXl747rvvsGPHDlSrVg3e3t6IjY0V171+/TqaNGmCK1euYPHixfjzzz9hZ2cHb29vzJ49O88Y85KYmIh+/fqhf//+iIyMFGPasGGDuG/XrVsHAPjll1/EffvxSG1ODx8+RFxcnEyCCgDlypWDg4ODTDJ7/PhxqKqqokmTJnB2dpZJgrPrZbdz9epVNGjQAJcvX8a8efOwe/dutG/fHj4+PjLv1zdv3sDZ2RlhYWHw8fHBvn37MH78eISGhqJTp04K/zYAkJaWBk9PTyxduhS7du3C0KFDAXyYQtO3b1/Y2dlh69at+P333/Hq1Ss0b94cV69elWkjIyMDnTp1QqtWrbBz50589913WLBgAWbNmiXWefv2Ldzc3HDw4EGEhIRg27ZtMDU1VZiktGvXDrGxsZg9ezYOHTqE5cuXo27dunj58qVMPRcXF6SmpsrNhSyMU6dOIT4+HgMHDoShoSG6d++Oo0eP4u7duzL1Ll26BHd3d7x58wZhYWFYsWIFzp07h+DgYLk2C7PvCkMQBLnvmMzMzAKfp+Dv7w9/f3+0adMGO3fuxI8//oghQ4bgxo0bCutPmjQJ//77L1avXo3ffvsNN2/eRMeOHWX627BhA1q3bg09PT2EhYVh69atKFeuHDw8PGSS3QEDBiAiIgKTJ0/GwYMHsXr1ari5ueHZs2cAgGXLlqFp06YwNTWVmf6Xm2PHjiEzMzPPI1nZyw4cOFCg/fOx58+fAwCmTJmCPXv2YN26dahSpQpcXFwK/X5btmwZfvnlFwD/m+KY15QBb29v+Pr6okGDBtiyZQs2b96MTp06yfxoKcj3XEBAAHr06AEAMvs0t+kshf3e+PXXX3Ho0CEsXLgQ4eHhSE1NRbt27ZCcnFyo/UOlRCiEdevWCQAUPjIyMoS7d+8KAIR169aJ6zRo0EAwNzcX0tLSxLJXr14JhoaGwsfdK1o3GwBhypQp4uspU6YIAITJkyfL1Dt9+rQAQJg3b55M+YMHDwRNTU1h3LhxBd7WpKQkuX5z9qOnpyfY2dkJW7duFQ4cOCD06NFDACD89ttvMvVbtmwpqKqq5ttn9j5Q9PD29hYyMzNzXTcrK0vIyMgQjh8/LgAQLl68KC7z8vISAAhr164t0LZn799Ro0bJlIeHhwsAhA0bNohlzs7OgrOzs/h6xYoVAgBh69atMuvOmjVLACAcPHhQLNPW1ha8vLwKFJMgCIKFhYXQvn17mbIJEyYIAIR//vlHpvynn34SJBKJcP36dUEQ/rdvra2thfT09AL1l5WVJdjY2AgVK1YU9332vjly5IhM3ex9vH37drEsIyNDMDIyEgAI586dE8ufPXsmqKqqCqNHjxbL+vTpI0ilUuH+/fsy7bZt21bQ0tISXr58KQjC/z6Dd+/elal37NgxAYBw7NgxsczZ2VnhvrGzsxM8PDzE19HR0bl+9hTZsmWLAEA4c+aM3DI/Pz8BgPDff/8JgiAII0eOFBo1aiQIgiDs3btXUFVVFZKTkwVBEIRBgwYJqqqqQkpKiiAIguDh4SFUqlRJXJ5txIgRgoaGhvD8+XNBEAQhJCREUFFREaKjo2Xq/fHHHwIAYe/evWIZAGH48OHCs2fPhGbNmgkVK1YULly4IC6/f/++oKamJowcOVKmrVevXgmmpqZCr169xLLsv3HO93a7du2EatWqia+XL18uABB27twpU2/o0KEy+/np06cCAGHhwoVy+zGn9PR0QSKRCOPHj8+3bm6+++47AYAQHx8vCML/3jMBAQEy9Xr27Cloa2sLSUlJYtn79+8FOzs7mfdeYfZdYVhYWOT6fzD78fF7Nedn4vnz54JUKhV69+4t0272/+2P/19l74N27drJ1N26dasAQDh9+rQgCIKQmpoqlCtXTujYsaNMvffv3wu1a9cWGjZsKJbp6OgIfn5+eW5j+/btBQsLiwLtj5kzZwoAhP379+da5+3btwIAmf+PuX1/WVhY5Pl/NzMzU8jIyBBatWoldO3aVWZZzjYV/d/J/nvk/Hx6eXnJbPOJEycEAIK/v3+useSU1/fc8OHDZXKKj+Xc5sJ+b9jb28t8/549e1YAIGzatKnAsVPp+aQR3fXr1yM6OlrmoaYmP903NTUVMTEx6NKlC9TV1cVyHR0dhaOOhdW9e3eZ17t374ZEIkH//v1lRgFMTU1Ru3btzxoN+Vj2oY13795h79696NmzJ1q3bo2tW7eiXr16mDZtmkz9I0eO5DnqnZOvr6+4X48dO4YZM2Zg69at6Nu3r0y9O3fuwNPTE6amplBVVUWZMmXg7OwMAIiPj5drN+f+yk+/fv1kXvfq1Qtqamp5Hu4/evQotLW1xV/X2bIPG+U8zPe5jh49Cjs7O5m5YNn9CYKAo0ePypR36tRJbgpIbo4fP45bt27By8sLqqqqAP53eF/RIV+JRIJ27dqJr9XU1GBjYwMzMzOZOWLlypWDsbEx/v33X5ntaNWqFczNzeW2482bN3mO+OTF1NRUbt84ODjI9F1Y//33HwDA2NhYbln26Gz2Zy0qKko8VNysWTMAwIkTJ8Rljo6O0NXVxbt373DkyBF07doVWlpaMp/fdu3a4d27d+Khwt27d6NWrVqoU6eOTD0PDw+FZ4DfvXsXjRs3RkpKCs6cOYPatWuLyw4cOIDMzEwMHDhQpi0NDQ25EWjgw9845/+unPvz2LFj0NXVRadOnWTq5ZwLW65cOVhbW2POnDmYP38+zp8/L3PY9GNlypSBgYEBHj16pHB5fl6/fo2tW7eiSZMm4lEMZ2dnWFtbIzQ0VKbf48ePo2XLlihfvrxYpqKigl69esm0Wdh9VxjNmjWT+46Jjo7G+vXr8133zJkzSEtLk4u3UaNGuZ71n/Nv5eDgAADi3/XUqVN4/vw5vLy8ZLY1KysLbdq0QXR0tHgovWHDhggNDUVQUBDOnDmT5xGwolaYI4cfyz6hTUNDA2pqaihTpgyOHDmi8HukqOzbtw8AMHz48DzrFfZ7riAK+73Rvn178TsAkH9/0Jftk05Gq1GjRq4no33sxYsXEAQBJiYmcssUlRVWzsMSjx8/zrU/AKhSpcpn9wkAhoaGAIDq1avDwsJCLJdIJPDw8EBISAiePHmiMBEoiEqVKsns3+ypDxMnTsSBAwfg4eGB169fo3nz5tDQ0EBQUBBsbW2hpaWFBw8eoFu3bnj79q1Mm1paWtDT0ytUHKampjKv1dTUYGhoKB6CU+TZs2fipbg+ZmxsDDU1tTzX/RTPnj1T+OVVoUIFcfnHCnNmdvYVFrp27SoeStbX10ezZs2wfft2LF26VGaOqpaWFjQ0NGTaUFdXR7ly5eTaVldXlznj/dmzZwpjy207Cir7vfoxqVQq9/4ojOx1c24r8CF5UlFRwbFjx9C6dWtcvnxZnHqhq6uLunXrIioqCg4ODrh79654OP/Zs2fIzMzEkiVLsGTJEoX9Pn36FMCHz/mtW7dy/cGSXS/b2bNn8fTpUwQHB8udRJg9nSl7nnJOOU/sUfQ3lkqlcn9LRf+Dcn6eJBIJjhw5gmnTpmH27NkYM2YMypUrh379+iE4OFi8mkU2DQ2NT/67bdmyBa9fv0avXr1kpkX06tULISEhOHToEDw8PPKMP2dZYfddYejr6xfoO0aR7M9KYb53cn5Osk9Qzd7f2dua8wf8x54/fw5tbW1s2bIFQUFBWL16NQICAqCjo4OuXbti9uzZcu+BgqhcuTIAyE0x+Vj2spw/lAti/vz5GDNmDH788UdMnz4d5cuXh6qqKgICAoo10U1KSoKqqmqe+6Sw33MFVdjvjfzeH/Rl+6REt6DKli0LiUSicG5szhMzsr88cp7UkdcXfM5kqnz58pBIJPjrr78Unkmf39n1BWVtbZ3rFQuE/58fWNRnvmb/grx48SI8PDxw9OhR/Pfff4iKihJ/3QKQm9uX7VN+6ScmJqJixYri6+w5w4qSp2yGhob4559/IAiCTJ9PnjxBZmamzChRUTA0NERCQoJcefaoY87+CrofkpOTsX37dgC5f5Fv3LgRw4YNK0y4uSroduT2OcmZ3BWn7FieP38ul5zr6+uLyWz2pcOaNm0qLnd2dsaxY8dgb28P4H8jwGXLloWqqioGDBiQ6wiPlZWV2H9eJ1Ll/Jv37t0bpqam8Pf3R1ZWljiH8OO6f/zxh8yP1s9haGiIs2fPypUrOhnNwsJC/EF148YNbN26FYGBgUhPTxfPO8j24sWLT/78ZPfh5+en8Jq8a9asERNdQ0PDAv3PLo59VxSy/z/ltg2fci3X7G1dsmRJricgZyfR5cuXx8KFC7Fw4ULcv38fkZGRmDBhAp48eYL9+/cXum9XV1eoqakhIiICP/74o8I62ZdpbNmypVgmlUrl/k8A8t+pGzZsgIuLC5YvXy5T/rknPubHyMgI79+/R2JiYq4DEIX9niuown5v0NetWK9Doq2tDUdHR0RERCA9PV0sf/36tczZocCHfxIaGhq4dOmSTPnOnTsL3F+HDh0gCAIePXoER0dHuUf2l+vnUlNTQ+fOnREfHy93pu/+/fthbW1d5B+U7LOws0eJsxO2nMn7ypUri6zP8PBwmddbt25FZmZmnjeIaNWqFV6/fi13fdzsQ44fX+3hc0cWs9u7evUqzp07J9efRCKRO2GqoDZu3Ii3b99i+vTpOHbsmNyjfPnyuSZan6JVq1biP/WPrV+/HlpaWuKXa/aXdM7PyefccKGwoxPZh75zu26nq6srbt68iY0bN6J+/foyI5POzs64cOECIiIiUKZMGTEJ1tLSgqurK86fPw8HBweFn9/sBKZDhw64ffs2DA0NFdZTlMj88ssvWLhwISZPnoyJEyeK5R4eHlBTU8Pt27cVtvUpo4qurq549eqV3N9k48aNea5na2uLX375Bfb29nLv5//++w/v3r2DnZ1doeOJj4/H6dOn0b17d4Xv5ewT67ITIGdnZxw9elTmx1NWVha2bdsm025x7Lui4OTkBKlUii1btsiUnzlz5pMPNTdt2hQGBga4evVqrtv68fS8bJUrV8aIESPg7u4u8zctzP8+U1NTDB48GAcOHJDbJuDDD6RZs2bBysoKnTt3FsstLS3l/k8cPXoUr1+/limTSCRy3yOXLl365OlSBZV9mcGcCXbO2ICCfc8V5v9YcX1v0JepWEd0AWDatGlo3749PDw84Ovri/fv32POnDnQ0dERz/YEIM6tXbt2LaytrVG7dm2cPXs23y+HjzVt2hTff/89Bg0ahJiYGLRo0QLa2tpISEjAyZMnYW9vj59++inPNvbt24fU1FTx1+zVq1fFu+a0a9dOHMmdPn069u3bhzZt2iAwMBB6enpYvXo1Ll68iK1bt8q02apVKxw/frzA83Tv378vzkdMTU3F6dOnERISAgsLC/HKBU2aNEHZsmXx448/YsqUKShTpgzCw8Nx8eLFAu+v/Pz5559QU1ODu7s7rly5goCAANSuXVtu7tvHBg4ciF9//RVeXl7ilSlOnjyJGTNmoF27dnBzcxPr2tvbIyoqCrt27YKZmRl0dXVRrVq1QsU4atQorF+/Hu3bt8e0adNgYWGBPXv2YNmyZfjpp59ga2v7Sdu+Zs0alC1bFmPHjlV4iH7gwIGYP38+Ll68KDPn81NNmTIFu3fvhqurKyZPnoxy5cohPDwce/bswezZs6Gvrw/gw+hytWrVMHbsWGRmZqJs2bLYsWMHTp48+cl9W1tbQ1NTE+Hh4ahRowZ0dHRQoUIF8TBeTk5OTtDU1MSZM2fk5jYCHxK9uXPnYseOHRg7dqzMsubNmwP48AO2SZMm0NbWFpctWrQIzZo1Q/PmzfHTTz/B0tISr169wq1bt7Br1y5x3pyfnx+2b9+OFi1aYNSoUXBwcEBWVhbu37+PgwcPYsyYMXBycpKLy9fXFzo6Ovj+++/x+vVrLF68GJaWlpg2bRr8/f1x584dtGnTBmXLlsXjx49x9uxZaGtrF+gKJR8bOHAgFixYgIEDByI4OBhVq1bF3r175c6Iv3TpEkaMGIGePXuiatWqUFdXx9GjR3Hp0iVMmDBBpm72/4OcX8DZSX1edwXLHs0dN26c3JxE4MPI3ZEjR7Bhwwb4+vrC398fu3btQqtWreDv7w9NTU2sWLFCnIOafbSqMPvu3r17sLKygpeXV7HfObNcuXIYPXo0QkJCULZsWXTt2hUPHz7E1KlTYWZm9klH23R0dLBkyRJ4eXnh+fPn6NGjB4yNjZGUlISLFy8iKSkJy5cvR3JyMlxdXeHp6Ynq1atDV1cX0dHR4tWHstnb2+PPP//E8uXLUb9+faioqOT5w2D+/Pm4du0a+vfvjxMnTqBjx46QSqU4c+YM5s6dCwDij8dsAwYMQEBAACZPngxnZ2dcvXoVS5cuFf+XZOvQoQOmT5+OKVOmwNnZGdevX8e0adNgZWVVqHNLCqt58+YYMGAAgoKC8PjxY3To0AFSqRTnz5+HlpYWRo4cWajvueyBrFmzZqFt27ZQVVWFg4ODwh8gxfW9QV+owpy5ltvZlNlyu3LCjh07BHt7e0FdXV2oXLmyMHPmTMHHx0coW7asTL3k5GRhyJAhgomJiaCtrS107NhRuHfvXq5XXfj4rOCPrV27VnBychK0tbUFTU1NwdraWhg4cKAQExOT7zbmdcZvzjPd4+LihPbt2wu6urqChoaG0KhRI2HXrl1ybWaf/Z4fRVdd0NDQEGxtbQU/Pz8hISFBpv6pU6eExo0bC1paWoKRkZEwZMgQ4dy5c3J/Ay8vL0FbWzvf/rNl79/Y2FihY8eOgo6OjqCrqyv07dtXePz4sdy2fXwWsyB8uKrAjz/+KJiZmQlqamqChYWFMHHiROHdu3cy9S5cuCA0bdpU0NLSkjsbWhFFV10QBEH4999/BU9PT8HQ0FAoU6aMUK1aNWHOnDnC+/fvxTrZ+3bOnDn5bv/FixcFAHmeOX3t2jUBgHjGeW772NnZWahZs2aBtiUuLk7o2LGjoK+vL6irqwu1a9dWeCWEGzduCK1btxb09PQEIyMjYeTIkcKePXsUXnVBUd85z34WBEHYtGmTUL16daFMmTK5nq39sQEDBgh2dnYKl6WkpAhqamoCAGH37t1yy+vUqZPr2dZ3794VvvvuO6FixYpCmTJlBCMjI6FJkyZCUFCQTL3Xr18Lv/zyi1CtWjVBXV1d0NfXF+zt7YVRo0YJiYmJYj38/1UXcm6rmpqaMGjQIPE9EhERIbi6ugp6enqCVCoVLCwshB49egiHDx+W2W+K/sbZn5ePPXz4UOjevbv42enevbtw6tQpmc/m48ePBW9vb6F69eqCtra2oKOjIzg4OAgLFiyQu8LKgAEDBHt7e7m+y5cvL17VQpH09HTB2NhYqFOnTq51MjMzhUqVKsm0/9dffwlOTk6CVCoVTE1NhZ9//lm8ckr2FUCyFWTfxcXFCQCECRMm5BpHttw+54Kg+Aohiq5EkpWVJQQFBQmVKlUS1NXVBQcHB2H37t1C7dq1Za4kkH3VgG3btsn0k9t32fHjx4X27dsL5cqVE8qUKSNUrFhRaN++vbj+u3fvhB9//FFwcHAQ9PT0BE1NTaFatWrClClThNTUVLGd58+fCz169BAMDAwEiURSoO+H9PR0YcmSJYKTk5Ogo6Mjfkc0adJEePjwoVz9tLQ0Ydy4cYK5ubmgqakpODs7CxcuXJC7AkFaWpowduxYoWLFioKGhoZQr149ISIiQuH/iZz/Gz7nqguC8OGqFQsWLBBq1aolfo4bN24s8z1a0O+5tLQ0YciQIYKRkZG4T7PfE4quNPG53xsF+T9JX4ZCJbpFJT09XbCzsxPc3d1Lo3vKR34/JIiyEw5FlxijopWcnCxoa2vLXbbwypUruf6YKA7u7u5C1apVP2ndX3/9VdDW1pb5EVLS7ty5I6irqwvBwcGlFkNRSk9PFzw8PARdXV1+DonyUOxTFwBg8ODBcHd3h5mZGRITE7FixQrEx8dj0aJFJdE9ERUxR0dH9OrVC9OnT5ebb09Fa8GCBahcuTIGDRokU37s2DE0bty4SG47ntPo0aNRt25dmJub4/nz5wgPD8ehQ4fEaRCFdezYMfj4+BTJ1XYK4uLFi9i0aROaNGkCPT09XL9+HbNnz4aenh4GDx5cIjEUtzJlyuCPP/6Aq6sr2rZti2PHjhXJNCoiZVMiie6rV68wduxYJCUloUyZMqhXrx727t0rM1+TiL4u8+bNw5o1a/Dq1Su5S2FR0dHT00NoaKjctcqHDx+e7zVIP9X79+8xefJkJCYmQiKRwM7ODr///rt4e9fCynkiW3HT1tZGTEwM1qxZg5cvX0JfXx8uLi4IDg4usWS7JOjo6CA6Orq0wyD6okkEIZf7ZRIRERERfcWK9fJiRERERESlhYkuERERESklJrpEREREpJSY6H4BBEFASkoKOF2aiIiIqOgw0f0CvHr1Cvr6+sV+b3EiIiKibwkTXSIiIiJSSkx0iYiIiEgpMdElIiIiIqXERJeIiIiIlBITXSIiIiJSSkx0iYiIiEgpMdElIiIiIqXERJeIiIiIlBITXSIiIiJSSkx0iYiIiEgpMdElIiIiIqXERJeIiIiIlBITXSIiIiJSSkx0iYiIiEgpMdElIiIiIqXERDcPy5cvh4ODA/T09KCnp4fGjRtj37594nJvb29IJBKZR6NGjUoxYiIiIiLKplbaAXzJKlWqhJkzZ8LGxgYAEBYWhs6dO+P8+fOoWbMmAKBNmzZYt26duI66unqpxEpEREREspjo5qFjx44yr4ODg7F8+XKcOXNGTHSlUilMTU1LIzwqAF9fXyQlJQEAjIyMsGjRolKOiIiIiEoKE90Cev/+PbZt24bU1FQ0btxYLI+KioKxsTEMDAzg7OyM4OBgGBsb59lWWloa0tLSxNcpKSnFFve3LikpCY8fPy7tMIiIiKgUcI5uPuLi4qCjowOpVIoff/wRO3bsgJ2dHQCgbdu2CA8Px9GjRzFv3jxER0ejZcuWMkmsIiEhIdDX1xcf5ubmJbEpRERERN8UiSAIQmkH8SVLT0/H/fv38fLlS2zfvh2rV6/G8ePHxWT3YwkJCbCwsMDmzZvRrVu3XNtUNKJrbm6O5ORk6OnpFct2fKs8PT3FEV0TExNs3LixlCMiIiKiksKpC/lQV1cXT0ZzdHREdHQ0Fi1ahJUrV8rVNTMzg4WFBW7evJlnm1KpFFKptFjiJSIiIqIPOHWhkARByHVqwrNnz/DgwQOYmZmVcFRERERElBNHdPMwadIktG3bFubm5nj16hU2b96MqKgo7N+/H69fv0ZgYCC6d+8OMzMz3Lt3D5MmTUL58uXRtWvX0g6diIiI6JvHRDcPjx8/xoABA5CQkAB9fX04ODhg//79cHd3x9u3bxEXF4f169fj5cuXMDMzg6urK7Zs2QJdXd3SDp2IiIjom8dENw9r1qzJdZmmpiYOHDhQgtEQERERUWFwji4RERERKSUmukRERESklJjoEhEREZFS4hxdIlIKvr6+SEpKAgAYGRlh0aJFpRwRERGVNia6RKQUkpKSxLvgERERAZy6QERERERKiokuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKSa20AyAi+lb4+voiKSkJAGBkZIRFixaVckRERMqNI7p5WL58ORwcHKCnpwc9PT00btwY+/btE5cLgoDAwEBUqFABmpqacHFxwZUrV0oxYiL6kiUlJeHx48d4/PixmPASEVHxYaKbh0qVKmHmzJmIiYlBTEwMWrZsic6dO4vJ7OzZszF//nwsXboU0dHRMDU1hbu7O169elXKkRMRERERE908dOzYEe3atYOtrS1sbW0RHBwMHR0dnDlzBoIgYOHChfD390e3bt1Qq1YthIWF4c2bN9i4cWNph05ERET0zWOiW0Dv37/H5s2bkZqaisaNG+Pu3btITExE69atxTpSqRTOzs44depUnm2lpaUhJSVF5kFERERERYuJbj7i4uKgo6MDqVSKH3/8ETt27ICdnR0SExMBACYmJjL1TUxMxGW5CQkJgb6+vvgwNzcvtviJiIiIvlVMdPNRrVo1XLhwAWfOnMFPP/0ELy8vXL16VVwukUhk6guCIFeW08SJE5GcnCw+Hjx4UCyxExEREX3LeHmxfKirq8PGxgYA4OjoiOjoaCxatAjjx48HACQmJsLMzEys/+TJE7lR3pykUimkUmnxBU1EREREHNEtLEEQkJaWBisrK5iamuLQoUPisvT0dBw/fhxNmjQpxQiJiIiICOCIbp4mTZqEtm3bwtzcHK9evcLmzZsRFRWF/fv3QyKRwM/PDzNmzEDVqlVRtWpVzJgxA1paWvD09Czt0ImIiIi+eUx08/D48WMMGDAACQkJ0NfXh4ODA/bv3w93d3cAwLhx4/D27VsMGzYML168gJOTEw4ePAhdXd1SjpyIiIiImOjmYc2aNXkul0gkCAwMRGBgYMkEREREREQFxjm6RERERKSUmOgSERERkVJioktERERESomJLhEREREpJSa6RERERKSUmOgSERERkVJioktERERESomJLhEREREpJSa6RERERKSUmOgSERERkVJioktERERESkmttAMgoi+fr68vkpKSAABGRkZYtGhRKUdERESUPya6RJSvpKQkPH78uLTDICIiKhROXSAiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhPdPISEhKBBgwbQ1dWFsbExunTpguvXr8vU8fb2hkQikXk0atSolCImIiIiomxMdPNw/PhxDB8+HGfOnMGhQ4eQmZmJ1q1bIzU1VaZemzZtkJCQID727t1bShETERERUTa10g7gS7Z//36Z1+vWrYOxsTFiY2PRokULsVwqlcLU1LSkwyOiz+Tr64ukpCQAgJGRERYtWlTKEX1buP9lfY37w8XFBXXq1MHChQsVLpdIJNixYwe6dOlSoPaioqLg6uqKFy9ewMDAoMji/Brcu3cPVlZWOH/+POrUqaNwX0RERGDs2LG4e/cuRo4ciTp16sDPzw8vX74s1tjy+zt/yZjoFkJycjIAoFy5cjLlUVFRMDY2hoGBAZydnREcHAxjY+Nc20lLS0NaWpr4OiUlpXgCJqI8JSUl4fHjx6UdxjeL+1+WMu6PhIQElC1btrTDkGFpaQk/Pz/4+fmVdih5atKkCRISEqCvry+W/fDDDxg0aBB8fHygq6sLNTU1tGvXrsj6zO2Hxp9//okyZcoUWT8liYluAQmCgNGjR6NZs2aoVauWWN62bVv07NkTFhYWuHv3LgICAtCyZUvExsZCKpUqbCskJARTp04tqdCJiIhKBY92fjp1dXWZ/ff69Ws8efIEHh4eqFChgliuqalZ7LHkHOD7mnCObgGNGDECly5dwqZNm2TKe/fujfbt26NWrVro2LEj9u3bhxs3bmDPnj25tjVx4kQkJyeLjwcPHhR3+ERERMUiKysL48aNQ7ly5WBqaorAwEBxmUQiQUREhPj61KlTqFOnDjQ0NODo6IiIiAhIJBJcuHBBps3Y2Fg4OjpCS0sLTZo0kTsRfNeuXahfvz40NDRQpUoVTJ06FZmZmeLywMBAVK5cGVKpFBUqVICPjw+AD4fg//33X4waNUo8gbwgQkNDUblyZWhpaaFr166YN2+ezIint7e33PQMPz8/uLi4iK/379+PZs2awcDAAIaGhujQoQNu376da59RUVGQSCR4+fIloqKioKurCwBo2bIlJBIJoqKiEBoaKjfFIzIyEo6OjtDQ0ED58uXRrVs3cdmGDRvg6OgIXV1dmJqawtPTE0+ePAHwYeqEq6srAKBs2bKQSCTw9vYW99vHI+AvXrzAwIEDUbZsWWhpaaFt27a4efOmzP4yMDDAgQMHUKNGDejo6IjnM5U0JroFMHLkSERGRuLYsWOoVKlSnnXNzMxgYWEh8wfPSSqVQk9PT+ZBRF8PX19feHp6wtPTE76+vqUdDlGpCgsLg7a2Nv755x/Mnj0b06ZNw6FDh+TqvXr1Ch07doS9vT3OnTuH6dOnY/z48Qrb9Pf3x7x58xATEwM1NTV899134rIDBw6gf//+8PHxwdWrV7Fy5UqEhoYiODgYAPDHH39gwYIFWLlyJW7evImIiAjY29sD+HAIvlKlSpg2bZp4Anl+/vnnH3z33XcYNmwYLly4AFdXVwQFBRV6P6WmpmL06NGIjo7GkSNHoKKigq5duyIrKyvfdT9O9rdv346EhAQ0adJErt6ePXvQrVs3tG/fHufPn8eRI0fg6OgoLk9PT8f06dNx8eJFRERE4O7du2Iya25uju3btwMArl+/joSEhFzniXt7eyMmJgaRkZE4ffo0BEFAu3btkJGRIdZ58+YN5s6di99//x0nTpzA/fv3MXbs2ALvr6LCqQt5EAQBI0eOxI4dOxAVFQUrK6t813n27BkePHgAMzOzEoiQiEqDMs6lJPpUDg4OmDJlCgCgatWqWLp0KY4cOQJ3d3eZeuHh4ZBIJFi1ahU0NDRgZ2eHR48eYejQoXJtBgcHw9nZGQAwYcIEtG/fHu/evYOGhgaCg4MxYcIEeHl5AQCqVKmC6dOnY9y4cZgyZQru378PU1NTuLm5oUyZMqhcuTIaNmwI4MMheFVVVXFEsyAWLVoEDw8PTJgwAQBga2uLU6dOyZ2wnp/u3bvLvF6zZg2MjY1x9epVmSmRiqirq4vn/mSPnCsSHByMPn36yEyPrF27tvj84x8MVapUweLFi9GwYUO8fv0aOjo64hSF7POOFLl58yYiIyPx999/i8l2eHg4zM3NERERgZ49ewIAMjIysGLFClhbWwP4cGR82rRpeW5nceCIbh6GDx+ODRs2YOPGjdDV1UViYiISExPx9u1bAB/my4wdOxanT5/GvXv3EBUVhY4dO6J8+fLo2rVrKUdPRERU/BwcHGRem5mZiYfDP3b9+nU4ODhAQ0NDLMtOQPNqM3vgKLvN2NhYTJs2DTo6OuJj6NChSEhIwJs3b9CzZ0+8ffsWVapUwdChQ7Fjxw6ZaQ2FFR8fj8aNG8uU5XxdELdv34anpyeqVKkCPT09cfDs/v37nxxbThcuXECrVq1yXX7+/Hl07twZFhYW0NXVFadWFCaG+Ph4qKmpwcnJSSwzNDREtWrVEB8fL5ZpaWmJSS6Q+/uiuDHRzcPy5cuRnJwMFxcXmJmZiY8tW7YAAFRVVREXF4fOnTvD1tYWXl5esLW1xenTp8W5NERERMos59n4EolE4eF4QRDk5sQKgpBvm9nrZLeZlZWFqVOn4sKFC+IjLi4ON2/ehIaGBszNzXH9+nX8+uuv0NTUxLBhw9CiRQuZw+qFkVuMH1NRUZGrl7O/jh074tmzZ1i1ahX++ecf/PPPPwA+TCcoKnmdmJaamorWrVtDR0cHGzZsQHR0NHbs2FHoGHLbHzn/voreFwXZl0WNUxfykN8fRFNTEwcOHCihaIiIiL5e1atXR3h4ONLS0sSrEsXExBS6nXr16uH69euwsbHJtY6mpiY6deqETp06Yfjw4ahevTri4uJQr149qKur4/379wXuz87ODmfOnJEpy/nayMgIly9flim7cOGCmOw9e/YM8fHxWLlyJZo3bw4AOHnyZIFjKCgHBwccOXIEgwYNklt27do1PH36FDNnzoS5uTkA+f2vrq4OAHnuHzs7O2RmZuKff/4Rpy48e/YMN27cQI0aNYpqU4oMR3SJiIio2Hl6eiIrKwvff/894uPjceDAAcydOxcACnz1AwCYPHky1q9fj8DAQFy5cgXx8fHYsmULfvnlFwAfzvhfs2YNLl++jDt37uD333+HpqYmLCwsAHy4ju6JEyfw6NEjPH36NN/+fHx8sH//fsyePRs3btzA0qVL5ebntmzZEjExMVi/fj1u3ryJKVOmyCS+ZcuWhaGhIX777TfcunULR48exejRowu8zQU1ZcoUbNq0CVOmTEF8fDzi4uIwe/ZsAEDlypWhrq6OJUuW4M6dO4iMjMT06dNl1rewsIBEIsHu3buRlJSE169fy/VRtWpVdO7cGUOHDsXJkydx8eJF9O/fHxUrVkTnzp2LfJs+FxNdIiIiKnZ6enrYtWsXLly4gDp16sDf3x+TJ08GAJl5u/nx8PDA7t27cejQITRo0ACNGjXC/PnzxUTWwMAAq1atQtOmTcURzl27dsHQ0BAAMG3aNNy7dw/W1tYwMjLKt79GjRph9erVWLJkCerUqYODBw+KSfXHMQUEBGDcuHFo0KABXr16hYEDB4rLVVRUsHnzZsTGxqJWrVoYNWoU5syZU+BtLigXFxds27YNkZGRqFOnDlq2bClOkTAyMkJoaCi2bdsGOzs7zJw5U/yhka1ixYqYOnUqJkyYABMTE4wYMUJhP+vWrUP9+vXRoUMHNG7cGIIgYO/evV/kTSUkQmlMmCAZKSkp0NfXR3JyMi81VsQ8PT3Fs+NNTEywcePGUo7o6/Q17MdPifFTt6uk11NW3B+yvsX9ER4ejkGDBiE5OblEbnxQVEJDQ0vk1rv0+ThHl4iIiErE+vXrUaVKFVSsWBEXL17E+PHj0atXr68qyaWvC6cuEBERUYlITExE//79UaNGDYwaNQo9e/bEb7/9VqoxtW3bVuZSZR8/ZsyYUaqx0efjiC4RERGViHHjxmHcuHGlHYaM1atXi9fHzyn7Bgo5eXt7i3cUoy8bE10iIqIi5Ovri6SkJAAfTgDK7Taq9GWoWLFiaYdAxYiJLhERURHiLaKJvhyco0tERERESomJLhEREREpJSa6RERERKSUmOgSERERkVJioktERERESolXXSAiIvrG1f95fYn1FTtnYIn19aWJioqCq6srXrx4AQMDA4W3Ev7tt98wffp0PHr0CPPnz8fLly8RERGBCxcuFGtslpaW8PPzg5+fX7H2U9I4oktERERfLG9vb0gkEsycOVOmPCIiAhKJ5LPbf/v2LaZMmYJq1apBKpWifPny6NGjB65cufLZbeend+/euHHjhvg6JSUFI0aMwPjx4/Ho0SN8//33GDt2LI4cOVJkfYaGhsLAwECuPDo6Gt9//32R9fOlYKJLREREXzQNDQ3MmjULL168KNJ209LS4ObmhrVr12L69Om4ceMG9u7di/fv38PJyQlnzpwp0v5y0tTUhLGxsfj6/v37yMjIQPv27WFmZgYtLS3o6OjA0NCwWOMAPtzcREtLq9j7KWlMdImIiOiL5ubmBlNTU4SEhORZb/v27ahZsyakUiksLS0xb968POsvXLgQp0+fxu7du9GrVy9YWFigYcOG2L59O2rUqIHBgwdDEAQAgIuLi9xh/S5dusjcCnjDhg1wdHSErq4uTE1N4enpiSdPnuTa/8ejq6GhobC3twcAVKlSBRKJBPfu3UNgYCDq1Kkjs97atWvF7TQzM8OIESPEZfPnz4e9vT20tbVhbm6OYcOG4fXr1wA+TJ0YNGgQkpOTIZFIIJFIEBgYCODD1IWFCxeK7dy/fx+dO3eGjo4O9PT00KtXL5kboWTH9fvvv8PS0hL6+vro06cPXr16lec+L2lMdImIiOiLpqqqihkzZmDJkiV4+PChwjqxsbHo1asX+vTpg7i4OAQGBiIgIAChoaG5trtx40a4u7ujdu3aMuUqKioYNWoUrl69iosXLxY4zvT0dEyfPh0XL15EREQE7t69K5MI56V37944fPgwAODs2bNISEiAubm5XL3ly5dj+PDh+P777xEXF4fIyEjY2NjIxL548WJcvnwZYWFhOHr0KMaNGwcAaNKkCRYuXAg9PT0kJCQgISEBY8eOletDEAR06dIFz58/x/Hjx3Ho0CHcvn0bvXv3lql3+/ZtREREYPfu3di9ezeOHz8uN8WktPFkNCXDe6wTEZEy6tq1K+rUqYMpU6ZgzZo1csvnz5+PVq1aISAgAABga2uLq1evYs6cObkmmzdu3ICrq6vCZTVq1BDr5BxRzc13330nPq9SpQoWL16Mhg0b4vXr19DR0clzXU1NTXGKgpGREUxNTRXWCwoKwpgxY+Dr6yuWNWjQQHz+8aizlZUVpk+fjp9++gnLli2Duro69PX1IZFIcm0fAA4fPoxLly7h7t27YrL9+++/o2bNmoiOjhb7y8rKQmhoKHR1dQEAAwYMwJEjRxAcHJzntpYkjugqmex7rD9+/FhMeImIiJTBrFmzEBYWhqtXr8oti4+PR9OmTWXKmjZtips3b+L9+/eF7it7yoK6unqB1zl//jw6d+4MCwsL6OrqwsXFBcCHaQBF4cmTJ/jvv//QqlWrXOscO3YM7u7uqFixInR1dTFw4EA8e/YMqampBe4nPj4e5ubmMiPKdnZ2MDAwQHx8vFhmaWkpJrkAYGZmludUjdLARJeIiIi+Ci1atICHhwcmTZokt0wQBLmrMGQnq7mpWrWqwqQZAK5duwbgw8gw8GFKQM72MjIyxOepqalo3bo1dHR0sGHDBkRHR2PHjh0APkxpKAqampp5Lv/333/Rrl071KpVC9u3b0dsbCx+/fVXuVjzo2hfKiovU6aMzHKJRIKsrKwC91MSmOgSgA9THjw9PeHp6SlzOISIiOhLMnPmTOzatQunTp2SKbezs8PJkydlyk6dOgVbW1uoqqoqbKtv3744fPiw3DzcrKwsLFiwAI6OjrCzswPwYTpBQkKCWOf9+/e4fPmy+PratWt4+vQpZs6ciebNm6N69epFPrqpq6sLS0vLXC83FhMTg8zMTMybNw+NGjWCra0t/vvvP5k66urq+Y5w29nZ4f79+3jw4IFYdvXqVSQnJ4tTOr4WTHQJAKc8EBHR18He3h79+vXDkiVLZMrHjBmDI0eOiJcJCwsLw9KlSxWebJVt1KhRaNiwITp27Iht27bh/v37iI6ORvfu3XHz5k2ZE9latmyJPXv2YM+ePbh27RqGDRsmc6OHypUrQ11dHUuWLMGdO3cQGRmJ6dOnF/XmIzAwEPPmzcPixYtx8+ZNnDt3TtwX1tbWyMzMFGP4/fffsWLFCpn1LS0t8fr1axw5cgRPnz7Fmzdv5Ppwc3ODg4MD+vXrh3PnzuHs2bMYOHAgnJ2d4ejoWOTbVJx4MhoREdE37mu7W9n06dOxdetWmbJ69eph69atmDx5MqZPnw4zMzNMmzYtz6seaGho4MiRIwgJCcHEiRPx77//IjMzEzY2Nrh8+TIqVaok1v3uu+9w8eJFDBw4EGpqahg1apTMiWxGRkYIDQ3FpEmTsHjxYtSrVw9z585Fp06dinTbvby88O7dOyxYsABjx44Vb3ABAHXq1MH8+fMxa9YsTJw4ES1atEBISAgGDvzf37dJkyb48ccf0bt3bzx79gxTpkwRLzGWTSKRICIiAiNHjkSLFi2goqKCNm3ayP24+BpIhPwmsFCxS0lJgb6+PpKTk6Gnp/dZbXl6eorXuTMxMcHGjRuLdb0vnbJuV0n7Gvbjp8RY0p+Xr2E/liRl3R98f3zd9u3bh65du2Lu3Lky16elrxOnLhARERH9v7Zt22Lfvn14/vw5nj59Wtrh0Gfi1AVSGsH9e8iVJT9N/uh5ksI6/hv+KNa4iIjo6+Lq6prr9XXp68IRXSIiIiJSSkx0iYiIiEgpceoCEcm4P81erizzpSEA1f9//p/COpUnxxV3aERERIXCEV0iIiIiUkpMdImIiIhIKTHRJSIiIiKlxDm6RPTVWTpml1zZq+dvZJ4rqjNiXsdijYuIiL4sTHSJiIi+cYpOMC0uPHGVShKnLhAREdEXLzExEb6+vrCxsYGGhgZMTEzQrFkzrFixAm/e/O+Izvnz59GzZ0+YmJhAQ0MDtra2GDp0KG7cuCHW2b59O5ycnKCvrw9dXV3UrFkTY8aMEZeHhoZCIpHIPTQ0NOTi8vb2xoQJE8TXx44dQ7t27WBoaAgtLS3Y2dlhzJgxePTokVhn5cqVqF27NrS1tWFgYIC6deti1qxZ4vLAwECF/VevXr3I9ue3giO6RERE9EW7c+cOmjZtCgMDA8yYMQP29vbIzMzEjRs3sHbtWlSoUAGdOnXC7t270b17d3h4eCA8PBzW1tZ48uQJtm3bhoCAAGzZsgWHDx9Gnz59MGPGDHTq1AkSiQRXr17FkSNHZPrU09PD9evXZcokEonM66ysLOzZsweRkZEAPiSww4YNg5eXF7Zv3w5LS0vcv38f69evx7x58zB//nysWbMGo0ePxuLFi+Hs7Iy0tDRcunQJV69elWm7Zs2aOHz4sEyZmhrTtsLiHiMiIqIv2rBhw6CmpoaYmBhoa2uL5fb29ujevTsEQcCbN28waNAgtGvXDjt27BDrWFlZwcnJCS9fvgQA7N69G82aNcPPP/8s1rG1tUWXLl1k+pRIJDA1Nc0zrr///hsqKipwcnLCw4cP4ePjAx8fHyxYsECsY2lpiRYtWoj979q1C7169cLgwYPFOjVr1pRrW01NLd/+KX9MdImIikFgYKBcWfYXXfbznHUUrUP0rXv27BkOHjyIGTNmyCS5H5NIJDhw4ACePn2KcePGKaxjYGAAADA1NcXGjRtx+fJl1KpV67Nii4yMRMeOHaGiooJt27YhPT29QP0fP34c//77LywsLD6rf8of5+gSERHRF+vWrVsQBAHVqlWTKS9fvjx0dHSgo6OD8ePH4+bNmwCQ7zzWkSNHokGDBrC3t4elpSX69OmDtWvXIi0tTaZecnKy2H72o3Xr1jJ1IiMj0blzZwDAzZs3oaenBzMzszz7nzJlCgwMDGBpaYlq1arB29sbW7duRVZWlky9uLg4uf6HDBmSZ9skjyO6RPTNCO7fQ+Z18tPkj54nyS0HAP8NfxR7XESUv5zzY8+ePYusrCz069cPaWlpEAShQO1oa2tjz549uH37No4dO4YzZ85gzJgxWLRoEU6fPg0tLS0AgK6uLs6dOyezrqampvg8Pj4eDx8+hJubGwBAEAS5GBUxMzPD6dOncfnyZRw/fhynTp2Cl5cXVq9ejf3790NF5cMYZLVq1cS5v9l0dXULtI30P0x0iYiI6ItlY2MDiUSCa9euyZRXqVIFwP+ST1tbWwDAtWvX0Lhx43zbtba2hrW1NYYMGQJ/f3/Y2tpiy5YtGDRoEABARUUFNjY2ua4fGRkJd3d3mf6Tk5ORkJCQ76guANSqVQu1atXC8OHDcfLkSTRv3hzHjx+Hq6srAEBdXT3P/qlgOHWBiIiIvliGhoZwd3fH0qVLkZqammu91q1bo3z58pg9e7bC5R/Pkc/J0tISWlpaebaf086dO9GpUyfxdY8ePaCurv5J/dvZ2QFAofqnguGILhEREX3Rli1bhqZNm8LR0RGBgYFwcHCAiooKoqOjce3aNdSvXx/a2tpYvXo1evbsiU6dOsHHxwc2NjZ4+vQptm7divv372Pz5s0IDAzEmzdv0K5dO1hYWODly5dYvHgxMjIy4O7uLvYpCAISExPlYjE2NsbTp08RHR2NiIgIsdzc3BwLFizAiBEjkJKSgoEDB8LS0hIPHz7E+vXroaOjg3nz5uGnn35ChQoV0LJlS1SqVAkJCQkICgqCkZGRzEh0ZmamXP8SiQQmJiZFv4OVGBNdIiKib9yXfrcya2trnD9/HjNmzMDEiRPx8OFDSKVS2NnZYezYsRg2bBgAoHPnzjh16hRCQkLg6emJlJQUmJubo2XLlggKCgIAODs749dff8XAgQPx+PFjlC1bFnXr1sXBgwdlTnhLSUlROAUhISEBe/bsgZOTE4yNjWWWDRs2DLa2tpg7dy66du2Kt2/fwtLSEh06dMDo0aMBAG5ubli7di2WL1+OZ8+eoXz58mjcuDGOHDkCQ0NDsa0rV67I9S+VSvHu3bui2anfCCa6RN8QX19fJCUlAQCMjIywaNGiUo6IiKhgzMzMsGTJEixZsiTPeo6Ojti+fXuuy11dXcV5sLnx9vaGt7d3rstzTlv4mJubm3iCmiLdu3dH9+7d8+w/MDCQlxssIkx0ib4hSUlJePz4cWmHQUT0VWvWrBn69u1b2mFQAfBktDyEhISgQYMG0NXVhbGxMbp06SJ3O0BBEBAYGIgKFSpAU1MTLi4uuHLlSilFTERERMVt3LhxMDc3L+0wqAA4opuH48ePY/jw4WjQoAEyMzPh7++P1q1b4+rVq+LdWWbPno358+cjNDQUtra2CAoKgru7O65fv87r3RERkUKfcue83NYjotwx0c3D/v37ZV6vW7cOxsbGiI2NRYsWLSAIAhYuXAh/f39069YNABAWFgYTExNs3LgRP/zwQ2mETaWE81+LBvcjEREVFSa6hZCc/OEuSuXKlQMA3L17F4mJiTK3BJRKpXB2dsapU6dyTXTT0tJkbjWYkpJSjFFTSeH816LB/Vh6+CODiJQNE90CEgQBo0ePRrNmzVCrVi0AEK9vl/OadiYmJvj3339zbSskJARTp04tvmCJiD6BsvzIWDpm1yetN2JexyKOhIhKG09GK6ARI0bg0qVL2LRpk9yynPe2zu9+1xMnTkRycrL4ePDgQZHHS0RERPSt44huAYwcORKRkZE4ceIEKlWqJJabmpoC+DCy+/FFnZ88eZLnnUukUimkUmnxBUxEREREHNHNiyAIGDFiBP78808cPXoUVlZWMsutrKxgamqKQ4cOiWXp6ek4fvw4mjRpUtLhEhEREdFHOKKbh+HDh2Pjxo3YuXMndHV1xTm5+vr60NTUhEQigZ+fH2bMmIGqVauiatWqmDFjBrS0tODp6VnK0RMRERVM0yVNS6yvv0f+XWJ9UcHdu3cPVlZWOH/+POrUqVPa4RQZjujmYfny5UhOToaLiwvMzMzEx5YtW8Q648aNg5+fH4YNGwZHR0c8evQIBw8e5DV0iYiIikhiYiJ8fX1hY2MDDQ0NmJiYoFmzZlixYgXevHkjU/f8+fPo2bMnTExMoKGhAVtbWwwdOhQ3btwQ62zfvh1OTk7Q19eHrq4uatasiTFjxojLQ0NDIZFI5B4aGhpysXl7e2PChAni6927d8PFxQW6urrQ0tJCgwYNEBoamu82uri4wM/Pr/A7h/LEEd08CIKQbx2JRMJ7UhMRERWTO3fuoGnTpjAwMMCMGTNgb2+PzMxM3LhxA2vXrkWFChXQqVMnAB+SzO7du8PDwwPh4eGwtrbGkydPsG3bNgQEBGDLli04fPgw+vTpgxkzZqBTp06QSCS4evUqjhw5ItOvnp6e3N1Qc55onpWVhT179iAyMhIAsGTJEvj5+WH8+PFYtmwZ1NXVsXPnTvz444+4fPky5s6dW4x7ihRhoktERERfrGHDhkFNTQ0xMTHiXUkBwN7eHt27dxcHpd68eYNBgwahXbt22LFjh1jPysoKTk5O4p3ndu/ejWbNmuHnn38W69ja2qJLly4y/UokEvGk89z8/fffUFFRgZOTEx48eIAxY8aIUxqzjRkzBurq6vDx8UHPnj3h5OT0Sfvh1KlTmDBhAqKjo1G+fHl07doVISEh0NbWxsSJE3Hs2DGcOXNGZh0HBwd07dpVvKTpunXrMHv2bNy9exeWlpbw8fHBsGHDPimer4VST11IT0/H9evXkZmZWdqhEBERUSE9e/YMBw8exPDhw2WS3I9lj7IeOHAAT58+xbhx4xTWMzAwAPDhiklXrlzB5cuXPzu+yMhIdOzYESoqKvjjjz+QkZGBsWPHytX74YcfoKOjo/ASpQURFxcHDw8PdOvWDZcuXcKWLVtw8uRJjBgxAgDQr18//PPPP7h9+7a4zpUrVxAXF4d+/foBAFatWgV/f38EBwcjPj4eM2bMQEBAAMLCwj4ppq+FUia6b968weDBg6GlpYWaNWvi/v37AAAfHx/MnDmzlKMjIiKigrh16xYEQUC1atVkysuXLw8dHR3o6Ohg/PjxAICbN28CAKpXr55nmyNHjkSDBg1gb28PS0tL9OnTB2vXrpW5Yynw4W6o2X1kPz6+EyrwIdHt3LkzAODGjRvQ19eXudxoNnV1dVSpUkVmnnBhzJkzB56envDz80PVqlXRpEkTLF68GOvXr8e7d+9Qq1YtODg4YOPGjeI64eHhaNCgAWxtbQEA06dPx7x589CtWzdYWVmhW7duGDVqFFauXPlJMX0tlDLRnThxIi5evIioqCiZieNubm4yJ5IRERHRly/n3NizZ8/iwoULqFmzppigFuS8GgDQ1tbGnj17cOvWLfzyyy/Q0dHBmDFj0LBhQ5kT23R1dXHhwgWZx7p168Tl8fHxePjwIdzc3ArUb343k8pLbGwsQkNDZZJuDw8PZGVl4e7duwA+jOqGh4eLfW3atEkczU1KSsKDBw8wePBgmTaCgoJkRoGVkVLO0Y2IiMCWLVvQqFEjmTeVnZ2d0v9BiYiIlIWNjQ0kEgmuXbsmU16lShUAgKampliWPXJ57do1NG7cON+2ra2tYW1tjSFDhsDf3x+2trbYsmULBg0aBABQUVGBjY1NrutHRkbC3d1djMHW1hbJycn477//UKFCBZm66enpuHPnDlq2bFmArZaXlZWFH374AT4+PnLLKleuDADw9PTEhAkTcO7cObx9+xYPHjxAnz59xPWBD9MXcs4RVlVV/aSYvhZKOaKblJQEY2NjufLU1NRP/jVFREREJcvQ0BDu7u5YunQpUlNT86zbunVrlC9fHrNnz1a4PPtkNEUsLS2hpaWVbx8f27lzp3i1BwDo3r071NTUMG/ePLm6K1asQGpqKvr27Vvg9j9Wr149XLlyBTY2NnIPdXV1AEClSpXQokULhIeHIzw8HG5ubuJdWk1MTFCxYkXcuXNHbv2cN8NSNko5otugQQPs2bMHI0eOBPC/Qx6rVq0q0K88Kl6+vr5ISkoCABgZGWHRokWlHBEREX2pli1bhqZNm8LR0RGBgYFwcHCAiooKoqOjce3aNdSvXx/AhykJq1evRs+ePdGpUyf4+PjAxsYGT58+xdatW3H//n1s3rwZgYGBePPmDdq1awcLCwu8fPkSixcvRkZGBtzd3cV+BUEQbxT1MWNjYzx9+hTR0dGIiIgQyytXrozZs2dj7Nix0NDQwIABA1CmTBns3LkTkyZNwpgxY/K94kJSUhIuXLggU2Zqaorx48ejUaNGGD58OIYOHQptbW3Ex8fj0KFDWLJkiVi3X79+CAwMRHp6OhYsWCDTTmBgIHx8fKCnp4e2bdsiLS0NMTExePHiBUaPHl3QP8dXRykT3ZCQELRp0wZXr15FZmYmFi1ahCtXruD06dM4fvx4aYdX6u5Ps5cry3xpCED1/5//p7BO5clxRdJ/UlISHj9+XCRtERHR5/uS71ZmbW2N8+fPY8aMGZg4cSIePnwIqVQKOzs7jB07VubyWJ07d8apU6cQEhICT09PpKSkwNzcHC1btkRQUBAAwNnZGb/++isGDhyIx48fo2zZsqhbty4OHjwoc9JbSkqKwhPLEhISsGfPHjg5OckdPR41ahSsra0xd+5cLFq0CO/fv0fNmjWxfPlycUpEXjZu3ChzQhkATJkyBYGBgTh+/Dj8/f3RvHlzCIIAa2tr9O7dW6Zuz549MXLkSKiqqspdLm3IkCHQ0tLCnDlzMG7cOGhra8Pe3l7pb1KhlIlukyZN8Pfff2Pu3LmwtrbGwYMHUa9ePZw+fRr29vIJHBEREX25zMzMsGTJEpnRy9w4Ojpi+/btuS53dXWFq6trnm14e3vD29s71+U5py18rFOnTrkuy0tUVFSeyxs0aICDBw/mWcfAwADv3r3Ldbmnpyc8PT0VLrO0tCzwCX1fE6VMdIEPF5JW9mvDERERUclr1qzZJ8+3pZKllIluSkqKwnKJRAKpVCpO3CYiIiIqrNxuSkFfHqVMdA0MDPK8ukKlSpXg7e2NKVOmQEVFKS88QfRF4ImHRERUmpQy0Q0NDYW/vz+8vb3RsGFDCIKA6OhohIWF4ZdffkFSUhLmzp0LqVSKSZMmlXa4REqLJx4SEVFpUspENywsDPPmzUOvXr3Esk6dOsHe3h4rV67EkSNHULlyZQQHBzPRJSpFx1s4y5W9U1MF/v+IzLvERIV10ED+XvJEREQ5KWWie/r0aaxYsUKuvG7dujh9+jSADxPJ79+/X9KhFan6P6+XK9N78Vq8C0jCi9cK6+zQLebA6IvA9wcREX3rlHKCaqVKlbBmzRq58jVr1sDc3BwA8OzZM5QtW7akQyMiIiKiEqKUI7pz585Fz549sW/fPjRo0AASiQTR0dGIj48Xr60XHR0td6FlIiIiIlIeSpnodurUCTdu3MDy5ctx48YNCIKAtm3bIiIiQrzX9U8//VS6QRIRfYUU3TWxIIrqzopERIWhlIkuAFhYWGDmzJkAgJcvXyI8PBzdu3fHhQsX8P79+1KOjoiI6Muh8KTPYuJ84niJ9UWklHN0sx09ehT9+/dHhQoVsHTpUrRt2xYxMTGlHRYREREV0oMHDzB48GBUqFAB6urqsLCwgK+vL549eybWcXFxgUQiwebNm2XWXbhwISwtLWXK0tPTMXv2bNSuXRtaWlooX748mjZtinXr1iEjI0Omrre3NyZMmADgw82nsh9qamqoXLkyRo8ejbS0NJkYcntkx5FbvR9//FGm72PHjqFdu3YwNDSElpYW7OzsMGbMGDx69KgodqvSU7pE9+HDhwgKCkKVKlXQt29flC1bFhkZGdi+fTuCgoJQt27d0g6RiIiICuHOnTtwdHTEjRs3sGnTJty6dQsrVqzAkSNH0LhxYzx//lysq6GhgV9++UUuWf1Yeno6PDw8MHPmTHz//fc4deoUzp49i+HDh2PJkiW4cuWKWDcrKwt79uxB586dxbJ169YhISEBd+/exbJly/D7778jKCgIAPDnn38iISEBCQkJOHv2LADg8OHDYll0dLTYztChQ8Xy7Mfs2bPF5StXroSbmxtMTU2xfft2XL16FStWrEBycjLmzZv3+Tv2G6BUUxfatWuHkydPokOHDliyZAnatGkDVVVVhZcaIyIioq/D8OHDoa6ujoMHD0JTUxMAULlyZdStWxfW1tbw9/fH8uXLAQB9+/bFrl27sGrVKgwbNkxhewsXLsSJEycQExMjMwBWpUoV9OzZE+np6WLZ33//DRUVFTg5OYllBgYGMDU1BQCYm5ujU6dOOHfuHACgXLlyYr13794BAAwNDcX6H9PS0lJYDnwYuPPx8YGPjw8WLFgglltaWqJFixbiOUeUN6Ua0T148CCGDBmCqVOnon379lBVVS3tkIiIiOgzPH/+HAcOHMCwYcPEJDebqakp+vXrhy1btkAQBACAnp4eJk2ahGnTpiE1NVVhm+Hh4XBzc1N4lLdMmTLQ1tYWX0dGRqJjx45QUVGcMt24cQPHjh2TSYSLwrZt25Ceno5x48YpXG5gYFCk/SkrpRrR/euvv7B27Vo4OjqievXqGDBgAC8hRkSfJT74qFxZRvI7meeK6hBR0bh58yYEQUCNGjUULq9RowZevHiBpKQksWzYsGFYtGgR5s+fj4CAAIVturi4FKj/yMhIzJ07V6asb9++UFVVRWZmJtLS0tChQwdMnDix4Bv1/5YtW4bVq1fLlP3666/w8vLCzZs3oaenBzMzs0K3S/+jVCO6jRs3xqpVq5CQkIAffvgBmzdvRsWKFZGVlYVDhw7h1atXpR0iEX1BpCoSaKiqQENVBVIVSWmHQ0SfIHskVyL532dYKpVi2rRpmDNnDp4+fapwnY/r5yY+Ph4PHz6Em5ubTPmCBQtw4cIFXLx4Ebt378aNGzcwYMCAQsfer18/XLhwQebRtWvXQsVIeVOqRDeblpYWvvvuO5w8eRJxcXEYM2YMZs6cCWNjY3Tq1Km0wyOiL0T98npoYqyPJsb6qF9er7TDISIFbGxsIJFIcPXqVYXLr127hrJly6J8+fIy5f3794elpaV4ktjHbG1tER8fn2/fkZGRcHd3VzhlwsbGBtWqVUP79u0xdepUbNmyBbdu3SrElgH6+vqwsbGReejp6YkxJicnIyEhoVBtkiylTHQ/Vq1aNcyePRsPHz7Epk2bSjscIiIiKgRDQ0O4u7tj2bJlePv2rcyyxMREhIeHo3fv3nKjnyoqKggJCcHy5ctx7949mWWenp44fPgwzp8/L9dfZmamOLd3586dBRogyz4nKGd8n6NHjx5QV1eXuQrDx3gyWsEo1RzdvKiqqqJLly7o0qVLaYdCRPRFqP/zepnXei9ei6MfCS9eyy0HgB26JRAYUQ5Lly5FkyZN4OHhgaCgIFhZWeHKlSv4+eefUbFiRQQHBytcr3379nBycsLKlSthYmIilvv5+WHPnj1o1aoVpk+fjmbNmkFXVxcxMTGYNWsW1qxZgwoVKiA6OhoRERFy7b58+RKJiYnIysrCzZs3MW3aNNja2uY6jzg3b968QWJiokyZVCpF2bJlYW5ujgULFmDEiBFISUnBwIEDYWlpiYcPH2L9+vXQ0dHhJcYK4JtJdImIiEixL/1uZVWrVkVMTAwCAwPRu3dvPHv2DKampujSpQumTJkic0mvnGbNmoUmTZrIlEmlUhw6dAgLFizAypUrMXbsWGhpaaFGjRrw8fFBrVq1EBYWBicnJxgbG8u1OWjQIAAf5gWbmpqiRYsWmDFjBtTUCpdWrVq1CqtWrZIp8/DwwP79+wF8OKnO1tYWc+fORdeuXfH27VtYWlqiQ4cOGD16dKH6+lYx0SUiIqIvnoWFBdatW5dnnaioKLmyxo0biyesfUwqlWLChAniHc9yym3agqK2cmNpaZlrfUWxKuLm5iZ3MhwVnNLP0SUiIiIqrGbNmqFv376lHQZ9Jo7oEhERKeDr6ytem9XIyAiLFi0q5YioJOV2owb6ujDRJSIiUiApKQmPHz8u7TCI6DMw0aVPxtEOIiIi+pIx0aVPxtEOIiIi+pLxZDQiIiIiUkpMdImIiIhIKTHRJSIiIiKlxESX6BuSVUYbWer//yijXdrhEBEprXv37kEikeDChQulHco3jSejEX2iwMBAmdcvX76UeZ5zuaJ1Strram1LtX8i+jItHbOrxPoaMa/jJ6136tQpNG/eHO7u7uItcvPi4uKCOnXqYOHChZ/UHykHJrpERFTsmi5pKlcmTZFCAgkAIDElUa7O3yP/LpHY6Ouwdu1ajBw5EqtXr8b9+/dRuXLl0g6JvgKcukDF6ngLZ7nHu8REcfm7xESFdYiIvjVSqVTmQf+TmpqKrVu34qeffkKHDh0QGhr62W2eOnUKLVq0gKamJszNzeHj44PU1FQAwMSJE9GoUSO5dRwcHDBlyhTx9bp161CjRg1oaGigevXqWLZsWa79vXjxAv369YORkRE0NTVRtWpVrFu37rO3g/LGRJeIiOgLULt2bTRs2BANGzZE7dq1SzucL8qWLVtQrVo1VKtWDf3798e6desgCMIntxcXFwcPDw9069YNly5dwpYtW3Dy5EmMGDECANCvXz/8888/uH37trjOlStXEBcXh379+gEAVq1aBX9/fwQHByM+Ph4zZsxAQEAAwsLCFPYZEBCAq1evYt++fYiPj8fy5ctRvnz5T94GKhhOXSCiIvEph6Zn8F8QERXAmjVr0L9/fwBAmzZt8Pr1axw5cgRubm6f1N6cOXPg6ekJPz8/AEDVqlWxePFiODs7Y/ny5ahVqxYcHBywceNGBAQEAADCw8PRoEED2NraAgCmT5+OefPmoVu3bgAAKysrXL16FStXroSXl5dcn/fv30fdunXh6OgIALC0tPyk2KlwOKJLREREX6zr16/j7Nmz6NOnDwBATU0NvXv3xtq1az+5zdjYWISGhkJHR0d8eHh4ICsrC3fv3gXwYVQ3PDwcACAIAjZt2iSO5iYlJeHBgwcYPHiwTBtBQUEyo8Af++mnn7B582bUqVMH48aNw6lTpz45fio4DqcQERHRF2vNmjXIzMxExYoVxTJBEFCmTBm8ePECZcuWLXSbWVlZ+OGHH+Dj4yO3LPskN09PT0yYMAHnzp3D27dv8eDBAzHZzsrKAvBh+oKTk5PM+qqqqgr7bNu2Lf7991/s2bMHhw8fRqtWrTB8+HDMnTu30PFTwTHRJSIioi9SZmYm1q9fj3nz5qF169Yyy7p3747w8HBxXm1h1KtXD1euXIGNjU2udSpVqoQWLVogPDwcb9++hZubG0xMTAAAJiYmqFixIu7cuSOO8haEkZERvL294e3tjebNm+Pnn39molvMmOjm48SJE5gzZw5iY2ORkJCAHTt2oEuXLuJyb29vuYnnTk5OOHPmTAlHSkREpFx2796NFy9eYPDgwdDX15dZ1qNHD6xZsybPRDcpKUnuhg2mpqYYP348GjVqhOHDh2Po0KHQ1tZGfHw8Dh06hCVLloh1+/Xrh8DAQKSnp2PBggUy7QQGBsLHxwd6enpo27Yt0tLSEBMTgxcvXmD06NFysUyePBn169dHzZo1kZaWht27d6NGjRqfsFeoMDhHNx+pqamoXbs2li5dmmudNm3aICEhQXzs3bu3BCMkKn7lpO9h+P+PctL3pR0OEX0j1qxZAzc3N7kkF/gwonvhwgWcO3cu1/U3btyIunXryjxWrFgBBwcHHD9+HDdv3kTz5s1Rt25dBAQEwMzMTGb9nj174tmzZ3jz5o3MIBcADBkyBKtXr0ZoaCjs7e3h7OyM0NBQWFlZKYxFXV0dEydOhIODA1q0aAFVVVVs3ry58DuFCoUjuvlo27Yt2rbN+25SUqkUpqamJRQRUcmbVPdlaYdARMXoU+9WVtx27cr9jm316tXL8xJjUVFRebbdoEEDHDx4MM86BgYGePfuXa7LPT094enpqXCZpaWlTHy//PILfvnllzz7o6LHRLcIREVFwdjYGAYGBnB2dkZwcDCMjY1LOyyl4+vri6SkJAAf5jktWrSolCMiIiKiLxkT3c/Utm1b9OzZExYWFrh79y4CAgLQsmVLxMbG5npnm7S0NKSlpYmvU1JSSircr1pSUhIeP35c2mEQERHRV4KJ7mfq3bu3+LxWrVpwdHSEhYUF9uzZI15EOqeQkBBMnTq1pEIskI/nXXIOJhERESkDJrpFzMzMDBYWFrh582audSZOnChzRmZKSgrMzc1LIrxccQ4mfSn0BAAQPnpORET0aZjoFrFnz57hwYMHcmdufkwqleY6rYHoWzfoPY8oEBFR0WCim4/Xr1/j1q1b4uu7d+/iwoULKFeuHMqVK4fAwEB0794dZmZmuHfvHiZNmoTy5cuja9eupRg1ERERETHRzUdMTAxcXV3F19lTDry8vLB8+XLExcVh/fr1ePnyJczMzODq6ootW7ZAV1e3tEImIiIiIjDRzZeLi0ue1+k7cOBACUZDRERERAXFO6MRERERkVJioktERERKKzQ0FAYGBqUdRqFERUVBIpHg5cuXpR3KV49TF4iICACQVUZb4XNSfsH9e5RYX/4b/ij0Og8ePEBgYCD27duHp0+fwszMDF26dMHkyZNhaGgo1rO0tISfnx/8/PyKMOL8RUVFoW/fvvjvv/+QlJSEgIAA7Nu3D48fP0bZsmVRu3ZtBAYGonHjxsUah6WlJf79918AgIaGBkxMTNCwYUP8+OOPaNmyZbH2/aVioksF1nRJU5nX0hQpJJAAABJTEuWWA8AMvsWIvhqvq7Ut7RCI5Ny5cweNGzeGra0tNm3aBCsrK1y5cgU///wz9u3bhzNnzqBcuXIlHldGRgbKlCkDAIiMjESnTp0gkUjQvXt3ZGRkICwsDFWqVMHjx49x5MgRPH/+vETimjZtGoYOHYr09HTcu3cPGzZsgJubG6ZPnw5/f/9i7Ts9PR3q6urF2kdhceoCERERfbGGDx8OdXV1HDx4EM7OzqhcuTLatm2Lw4cP49GjR2Ly5uLign///RejRo2CRCKBRCKRaefAgQOoUaMGdHR00KZNGyQkJMgsX7duHWrUqAENDQ1Ur14dy5YtE5fdu3cPEokEW7duhYuLCzQ0NLBhwwZxeXai+/LlS5w8eRKzZs2Cq6srLCws0LBhQ0ycOBHt27eXaevChQvi+i9fvoREIkFUVJRMTH///Tdq164NDQ0NODk5IS4uLt/9paurC1NTU1SuXBktWrTAb7/9hoCAAEyePBnXr18X6129ehXt2rWDjo4OTExMMGDAADx9+lRc/urVK/Tr1w/a2towMzPDggUL4OLiIjNabmlpiaCgIHh7e0NfXx9Dhw4FAJw6dQotWrSApqYmzM3N4ePjg9TUVHG99PR0jBs3DhUrVoS2tjacnJzktr2oMNElIiKiL9Lz589x4MABDBs2DJqamjLLTE1N0a9fP2zZsgWCIODPP/9EpUqVMG3aNCQkJMgksm/evMHcuXPx+++/48SJE7h//z7Gjh0rLl+1ahX8/f0RHByM+Ph4zJgxAwEBAQgLC5Ppc/z48fDx8UF8fDw8PDwAAFeuXEFiYiJatWoFHR0d6OjoICIiAmlpaZ+9/T///DPmzp2L6OhoGBsbo1OnTsjIyCh0O76+vhAEATt37gQAJCQkwNnZGXXq1EFMTAz279+Px48fo1evXuI6o0ePxt9//43IyEgcOnQIf/31F86dOyfX9pw5c1CrVi3ExsYiICAAcXFx8PDwQLdu3XDp0iVs2bIFJ0+exIgRI8R1Bg0ahL///hubN2/GpUuX0LNnT7Rp0ybPu8p+Kh5XVjKcY0dERMri5s2bEAQBNWrUULi8Ro0aePHiBZKSkmBsbAxVVVVxRPNjGRkZWLFiBaytrQEAI0aMwLRp08Tl06dPx7x589CtWzcAgJWVFa5evYqVK1fCy8tLrOfn5yfWybZz5054eHhAQ0MDwIeT34YOHYoVK1agXr16cHZ2Rp8+feDg4FDo7Z8yZQrc3d0BAGFhYahUqRJ27Nghk5AWRLly5WBsbIx79+4BAJYvX4569ephxowZYp21a9fC3NwcN27cgJmZGcLCwrBx40a0atUKwIcR7woVKsi13bJlS5kfDQMHDoSnp6c48lu1alUsXrwYzs7OWL58OR49eoRNmzbh4cOHYntjx47F/v37sW7dOpmYigITXSXDOXZERPStyL7Ofc5pCjlpaWmJSS4AmJmZ4cmTJwCApKQkPHjwAIMHDxYPvQNAZmYm9PX1ZdpxdHSUa3vnzp0YNmyY+Lp79+5o3749/vrrL5w+fRr79+/H7NmzsXr1anh7exdq+z4+ea1cuXKoVq0a4uPjC9VGNkEQxP0UGxuLY8eOQUdHR67e7du38fbtW2RkZKBhw4Ziub6+PqpVqyZXP+c+iY2Nxa1btxAeHi7Td1ZWFu7evYvLly9DEATY2trKrJeWliZzYmFRYaJLREREXyQbGxtIJBJcvXoVXbp0kVt+7do1lC1bFuXLl8+zneyTxrJJJBIxSc7KygLwYfqCk5OTTD1VVVWZ19raskdKExMTce7cOXH+bTYNDQ24u7vD3d0dkydPxpAhQzBlyhR4e3tDReXDrNGPb0ZVmOkI+SX1ijx79gxJSUmwsrIC8GGbO3bsiFmzZsnVNTMzE6cQ5OxL0Q20cu6TrKws/PDDD/Dx8ZGrW7lyZVy6dAmqqqqIjY2V27+KEu/PxUSXiIiIvkiGhoZwd3fHsmXLMGrUKJl5uomJiQgPD8fAgQPFhExdXR3v378vVB8mJiaoWLEi7ty5g379+hVq3cjISDRu3DjfRNvOzg4REREAACMjIwAf5snWrVsXAGROTPvYmTNnULlyZQDAixcvcOPGDVSvXr1QMQLAokWLoKKiIv5YqFevHrZv3w5LS0uoqcmngtbW1ihTpgzOnj0Lc3NzAEBKSgpu3rwJZ2fnPPuqV68erly5AhsbG4XL69ati/fv3+PJkydo3rx5obelsHgyGhEREX2xli5dirS0NHh4eODEiRN48OAB9u/fD3d3d1SsWBHBwcFiXUtLS5w4cQKPHj2SuYJAfgIDAxESEoJFixbhxo0biIuLw7p16zB//vw814uMjETnzp3F18+ePUPLli2xYcMGXLp0CXfv3sW2bdswe/ZssZ6mpiYaNWqEmTNn4urVqzhx4gR++eUXhe1PmzYNR44cweXLl+Ht7Y3y5csrHNn+2KtXr5CYmIgHDx7gxIkT+P777xEUFITg4GAx+Rw+fDieP3+Ovn374uzZs7hz5w4OHjyI7777Du/fv4euri68vLzw888/49ixY7hy5Qq+++47qKio5DuiPH78eJw+fRrDhw/HhQsXcPPmTURGRmLkyJEAAFtbW/Tr1w8DBw7En3/+ibt37yI6OhqzZs3C3r1782z7UzDRJSIioi9W1apVERMTA2tra/Tu3RvW1tb4/vvv4erqitOnT8tcQ3fatGm4d+8erK2txZHTghgyZAhWr16N0NBQ2Nvbw9nZGaGhoeKhfkVSU1Nx5MgRdOrUSSzT0dGBk5MTFixYgBYtWqBWrVoICAjA0KFDsXTpUrHe2rVrkZGRAUdHR/j6+iIoKEhhHzNnzoSvry/q16+PhIQEREZG5nud2smTJ8PMzAw2NjYYMGAAkpOTceTIEYwfP16sU6FCBfz99994//49PDw8UKtWLfj6+kJfX1+cWjF//nw0btwYHTp0gJubG5o2bSpefi0vDg4OOH78OG7evInmzZujbt26CAgIgJmZmVhn3bp1GDhwIMaMGYNq1aqhU6dO+Oeff8TR46LEqQtERETfuE+5W1lJsrCwwLp16/Kt16hRI1y8eFGmzNvbW+4ksC5dusjNN/X09ISnp6fCdi0tLeXqHzhwAFZWVqhatapYJpVKERISgpCQkDzjrFGjBk6fPi1T9nH7Li4u4usOHTrk2dbHsq+qUBBVq1bFn3/+metyXV1dmRPKUlNTMXXqVHz//ff59tegQQMcPHgw17bLlCmDqVOnYurUqQWO91Mx0SUiIiIqJB0dHYUncymL8+fP49q1a2jYsCGSk5PFy7F9PFXja8BEl0qcngAAwkfPiYiIvi6tW7cu7RCK3dy5c3H9+nWoq6ujfv36+Ouvv/I98e5Lw0SXStygQp4RS0RERCWrbt26iI2NLe0wPhsTXSIqNoKmoPA5ERFRSWCiS0TFJr1FemmHQFSs4oOPypVlJL+Tea6oDhGVDF5ejIiIiIiUEkd0iYhKiFQqVficiIiKBxNdIqISUrt27dIOgYjom8KpC0RERESklJjoEhEREZFS4tQFIiKib1xJXhmihn/LQq/j7e2NsLAwAICamhrKlSsHBwcH9O3bF97e3lBR4bgdKcZ3BhEREX3x2rRpg4SEBNy7dw/79u2Dq6srfH190aFDB2RmZhZbv+npvEzi14yJLlERkUqlMg8iIio6UqkUpqamqFixIurVq4dJkyZh586d2LdvH0JDQwEAycnJ+P7772FsbAw9PT20bNkSFy9elGknKCgIxsbG0NXVxZAhQzBhwgTUqVNHXO7t7Y0uXbogJCQEFSpUgK2tLQDg0aNH6N27N8qWLQtDQ0N07twZ9+7dk2l73bp1qFGjBjQ0NFC9enUsW7asOHcJFQATXaIiUrt2bTRs2BANGzbk2fVERCWgZcuWqF27Nv78808IgoD27dsjMTERe/fuRWxsLOrVq4dWrVrh+fPnAIDw8HAEBwdj1qxZiI2NReXKlbF8+XK5do8cOYL4+HgcOnQIu3fvxps3b+Dq6godHR2cOHECJ0+ehI6ODtq0aSOO+K5atQr+/v4IDg5GfHw8ZsyYgYCAAHHKBZUOztElpSZVkSD799yH50REpEyqV6+OS5cu4dixY4iLi8OTJ0/Eo2pz585FREQE/vjjD3z//fdYsmQJBg8ejEGDBgEAJk+ejIMHD+L169cybWpra2P16tVQV1cHAKxduxYqKipYvXo1JJIP3yXr1q2DgYEBoqKi0Lp1a0yfPh3z5s1Dt27dAABWVla4evUqVq5cCS8vr5LaHZQDE136ZIKmoPB5UVg6Zpdc2avnb2SeK6qTU/3yekUaFxERfVkEQYBEIkFsbCxev34NQ0NDmeVv377F7du3AQDXr1/HsGHDZJY3bNgQR4/Knoxnb28vJrkAEBsbi1u3bkFXV1em3rt373D79m0kJSXhwYMHGDx4MIYOHSouz8zMhL6+fpFsJ30aJrr0ydJbcII+ERGVrvj4eFhZWSErKwtmZmaIioqSq2NgYCA+zx6RzSYI8gM12traMq+zsrJQv359hIeHy9U1MjLCu3fvAHyYvuDk5CSzXFVVtaCbQsWAiS4RERF9lY4ePYq4uDiMGjUKlSpVQmJiItTU1GBpaamwfrVq1XD27FkMGDBALIuJicm3n3r16mHLli3iSW456evro2LFirhz5w769ev3ydtDRY+JLhEREX3x0tLSkJiYiPfv3+Px48fYv38/QkJC0KFDBwwcOBAqKipo3LgxunTpglmzZqFatWr477//sHfvXnTp0gWOjo4YOXIkhg4dCkdHRzRp0gRbtmzBpUuXUKVKlTz77tevH+bMmYPOnTtj2rRpqFSpEu7fv48///wTP//8MypVqoTAwED4+PhAT08Pbdu2RVpaGmJiYvDixQuMHj26hPYS5cREl4iIiL54+/fvh5mZGdTU1FC2bFnUrl0bixcvhpeXl3jDiL1798Lf3x/fffcdkpKSYGpqihYtWsDExATAh4T1zp07GDt2LN69e4devXrB29sbZ8+ezbNvLS0tnDhxAuPHj0e3bt3w6tUrVKxYEa1atRJHeIcMGQItLS3MmTMH48aNg7a2Nuzt7eHn51es+4XyxkSXSAFfX18kJSUB+DD/atGiRaUcERFR8fmUu5WVpNDQUPFauXnR1dXF4sWLsXjx4lzrBAQEICAgQHzt7u4OGxsbmb4UMTU1zfdSYZ6envD09Mw3Tio5THSJFEhKSsLjx49LOwwiIipCb968wYoVK+Dh4QFVVVVs2rQJhw8fxqFDh0o7NComTHSJiIjomyCRSLB3714EBQUhLS0N1apVw/bt2+Hm5lbaoVExYaJLRERE3wRNTU0cPny4tMOgEsRbABMRERGRUmKiS0RERERKiYkuERERESklJrpEREREpJSY6BIRERGRUmKiS0RERERKiYkuERERffVCQ0NhYGBQqHW8vb3RpUuXYomnuAQGBqJOnTqlHcZXg9fRJSIi+sYFBgZ+sX15e3vj5cuXiIiIkCmPioqCq6srXrx4AQMDA/Tu3Rvt2rUrukCLSGBgIK5du4bNmzfj/PnzCAgIwNmzZ5GSkgJTU1M4OTnh119/Rfny5Ysthnv37sHKykp8raOjg8qVK8PFxQV+fn6oWrVqsfVd2jiiS0RERF89TU1NGBsbl3YYeP/+PbKyssTXkZGR6Ny5M548eQI3NzeUL18eBw4cQHx8PNauXQszMzO8efOmRGI7fPgwEhIScPHiRcyYMQPx8fGoXbs2jhw5Uux9Z2RkFHsfijDRJSIioq+eoqkLQUFBMDY2hq6uLoYMGYIJEyYoPOw/d+5cmJmZwdDQEMOHD5dJytLT0zFu3DhUrFgR2tracHJyQlRUlFy/u3fvhp2dHaRSKf79918AwIMHD3D58mW0bdsWp06dQkpKClavXo26devCysoKLVu2xMKFC1G5cuVctyEiIgISiUQu5pUrV8Lc3BxaWlro2bMnXr58me8+MjQ0hKmpKapUqYLOnTvj8OHDcHJywuDBg/H+/Xux3q5du1C/fn1oaGigSpUqmDp1KjIzM8Xl165dQ7NmzaChoQE7OzscPnwYEolEHHW/d+8eJBIJtm7dChcXF2hoaGDDhg0AgHXr1qFGjRrQ0NBA9erVsWzZMpkYHz16hN69e6Ns2bIwNDRE586dce/evXy3LTdMdPNx4sQJdOzYERUqVJD5I2YTBAGBgYGoUKECNDU14eLigitXrpROsERERAQACA8PR3BwMGbNmoXY2FhUrlwZy5cvl6t37Ngx3L59G8eOHUNYWBhCQ0MRGhoqLh80aBD+/vtvbN68GZcuXULPnj3Rpk0b3Lx5U6zz5s0bhISEYPXq1bhy5Yo4shwZGYkWLVrAwMAApqamyMzMxI4dOyAIwmdt261bt7B161bs2rUL+/fvx4ULFzB8+PBCt6OiogJfX1/8+++/iI2NBQAcOHAA/fv3h4+PD65evYqVK1ciNDQUwcHBAICsrCx06dIFWlpa+Oeff/Dbb7/B399fYfvjx4+Hj48P4uPj4eHhgVWrVsHf3x/BwcGIj4/HjBkzEBAQgLCwMAAf9qOrqyt0dHRw4sQJnDx5Ejo6OmjTpg3S09M/aV8x0c1HamoqateujaVLlypcPnv2bMyfPx9Lly5FdHQ0TE1N4e7ujlevXpVwpERUUgykuiinoY9yGvowkOqWdjhESm/37t3Q0dGRebRt2zbPdZYsWYLBgwdj0KBBsLW1xeTJk2Fvby9Xr2zZsli6dCmqV6+ODh06oH379uKh/Nu3b2PTpk3Ytm0bmjdvDmtra4wdOxbNmjXDunXrxDYyMjKwbNkyNGnSBNWqVYO2tjYAYOfOnejcuTMAoFGjRpg0aRI8PT1Rvnx5tG3bFnPmzMHjx48LvT/evXuHsLAw1KlTBy1atMCSJUuwefNmJCYmFrqt6tWrA4A4ahocHIwJEybAy8sLVapUgbu7O6ZPn46VK1cCAA4ePIjbt29j/fr1qF27Npo1ayYmwTn5+fmhW7dusLKyQoUKFTB9+nTMmzdPLOvWrRtGjRoltr1582aoqKhg9erVsLe3R40aNbBu3Trcv39fZhS9MHgyWj7atm2b64dJEAQsXLgQ/v7+6NatGwAgLCwMJiYm2LhxI3744YeSDJWISsjo+l6lHQLRN8XV1VVuNPaff/5B//79c13n+vXrGDZsmExZw4YNcfToUZmymjVrQlVVVXxtZmaGuLg4AMC5c+cgCAJsbW1l1klLS4OhoaH4Wl1dHQ4ODjJ1UlJScPz4caxatUosCw4OxujRo3H06FGcOXMGK1aswIwZM3DixAmFSXhuKleujEqVKomvGzdujKysLFy/fh2mpqYFbgeAOLqcPT0iNjYW0dHRMsnr+/fv8e7dO7x58wbXr1+Hubm5TD8NGzZU2Lajo6P4PCkpCQ8ePMDgwYMxdOhQsTwzMxP6+vpi37du3YKuruwAwrt373D79u1CbVc2Jrqf4e7du0hMTETr1q3FMqlUCmdnZ5w6dYqJLhERURHQ1taGjY2NTNnDhw/zXS/n3FZFUwbKlCkjt072yWRZWVlQVVVFbGysTDIMfLhyQTZNTU25vvbt24caNWrAwsJCptzQ0BA9e/ZEz549ERISgrp162Lu3LkICwuDioqKXIwFOYkru29Fc3nzEx8fDwDiVRmysrIwdepUcQDvYxoaGhAEocD9ZI9sZ7cLAKtWrYKTk5NMvex9m5WVhfr16yM8PFyuLSMjowL1mRMT3c+QfYjAxMREptzExESciK5IWloa0tLSxNcpKSnFEyAREdE3qlq1ajh79iwGDBgglsXExBSqjbp16+L9+/d48uQJmjdvXqh1d+7ciU6dOuVZR11dHdbW1khNTQXwIZl79eoVUlNTxSTxwoULcuvdv38f//33HypUqAAAOH36NFRUVORGnvOTlZWFxYsXw8rKCnXr1gUA1KtXD9evX5f7YZGtevXquH//Ph4/fizmP9HR0fn2ZWJigooVK+LOnTvo16+fwjr16tXDli1bYGxsDD09vUJtS26Y6BYBRb8Y8/q1ExISgqlTpxZ3WERERN+skSNHYujQoXB0dESTJk2wZcsWXLp0CVWqVClwG7a2tujXrx8GDhyIefPmoW7dunj69CmOHj0Ke3v7XK/bm5mZiX379uHw4cNi2e7du7F582b06dMHtra2EAQBu3btwt69e8X5vk5OTtDS0sKkSZMwcuRInD17VubEuGwaGhrw8vLC3LlzkZKSAh8fH/Tq1SvfaQvPnj1DYmIi3rx5g8uXL2PhwoU4e/Ys9uzZI46qTp48GR06dIC5uTl69uwJFRUVXLp0CXFxcQgKCoK7uzusra3h5eWF2bNn49WrV+LJaPmN9AYGBsLHxwd6enpo27Yt0tLSEBMTgxcvXmD06NHo168f5syZg86dO2PatGmoVKkS7t+/jz///BM///yzzHSNgmKi+xmy31CJiYkwMzMTy588eSI3yvuxiRMnYvTo0eLrlJQUmJubF1+gRESUr+D+PWReJz9N/uh5ktxyAOhWY5hcGX0Z+vXrhzt37mDs2LF49+4devXqBW9vb5w9e7ZQ7axbtw5BQUEYM2YMHj16BENDQzRu3DjPm1McP34cOjo6qF+/vlhmZ2cHLS0tjBkzBg8ePIBUKkXVqlWxevVqcdS5XLly2LBhA37++Wf89ttvcHNzQ2BgIL7//nuZ9m1sbNCtWze0a9cOz58/R7t27eQu06WIm5sbAEBLSwsWFhZwdXXFb7/9JjN66+Hhgd27d2PatGmYPXs2ypQpg+rVq2PIkCEAPkwziIiIwJAhQ9CgQQNUqVIFc+bMQceOHaGhoZFn/0OGDIGWlhbmzJmDcePGQVtbG/b29vDz8xPjOnHiBMaPH49u3brh1atXqFixIlq1avXJI7xMdD+DlZUVTE1NcejQIXHIPz09HcePH8esWbNyXU8qlUIqlZZUmETfBA11XYXPiSh/JXlntMJSNKIJAC4uLjLzWb29veHt7S1TJyAgAAEBAeJrd3d3maROUdsLFy6UeV2mTBlMnTo11yOxivrduXMnOnbsKFNWpUoV/Pbbbwrb+FiXLl3kbkv88clbgYGB4t/rp59+yrc9ALC0tCzUJc08PDzg4eGR6/Lq1avj5MmT4uu///4bAMR9m1d/np6e8PT0zLVtU1NT8XJjRYGJbj5ev36NW7duia/v3r2LCxcuoFy5cqhcuTL8/PwwY8YMVK1aFVWrVsWMGTOgpaWV5x+RiIqec9VepR0CEX1B3rx5gxUrVsDDwwOqqqrYtGkTDh8+jEOHDhV737Vq1ULjxo2LvZ/SsmPHDujo6KBq1aq4desWfH190bRpU1hbW5d2aHKY6OYjJiYGrq6u4uvsKQdeXl4IDQ3FuHHj8PbtWwwbNgwvXryAk5MTDh48KHdpDCIiIio5EokEe/fuRVBQENLS0lCtWjVs375dPHxfnHJONVA2r169wrhx4/DgwQOUL18ebm5umDdvXmmHpRAT3XzkPDSSk0QikTmMQERERKVPU1NT5mQwKjoDBw7EwIEDSzuMAuGd0YiIiIhIKTHRJSIiIiKlxESXiIiIiJQSE10iIiIiUkpMdImIiIhIKfGqC/TVKK4bAsQHH5Ury0h+J/NcUR0iIiL6sjHRpa8GbwhAREREhcGpC0RERESklJjoEhEREZFSYqJLREREREqJiS4RERERKSUmukRERESklJjoEhEREZFSYqJLREREREqJiS4RERERKSUmukRERESklJjoEhEREZFSYqJLREREREqJiS4RERERKSUmukRERESklJjoEhEREZFSYqJLREREREqJiS4RERERKSUmukRERESklJjoEhEREZFSYqJLREREREpJrbQDICIiKihfX18kJSUBAIyMjLBo0aJSjoiIvmRMdImI6KuRlJSEx48fl3YYRPSV4NQFIiIiIlJKHNElIqJSIWgKCp8TERUVJrpERFQq0lukl3YIRKTkOHWBiIiIiJQSE10iIiIiUkpMdImIiIhIKTHRJSIiIiKlxJPRiBQwkOoqfE5ERERfDya6RAqMru9V2iEQERHRZ+LUBSIiIiJSSkx0iYiIiEgpMdElIiIiIqXERJeIiIiIlBITXSIiIiJSSkx0iYiIiEgpMdElIiIiIqXERJeIiIiIlBITXSIiIiJSSkx0iYiIiEgpMdH9TIGBgZBIJDIPU1PT0g6LiIiI6JunVtoBKIOaNWvi8OHD4mtVVdVSjIaIiIiIACa6RUJNTY2juERERERfGE5dKAI3b95EhQoVYGVlhT59+uDOnTulHRIRERHRN48jup/JyckJ69evh62tLR4/foygoCA0adIEV65cgaGhocJ10tLSkJaWJr5OSUkpqXCJiIiIvhkc0f1Mbdu2Rffu3WFvbw83Nzfs2bMHABAWFpbrOiEhIdDX1xcf5ubmJRUuERER0TeDiW4R09bWhr29PW7evJlrnYkTJyI5OVl8PHjwoAQjJCIiIvo2cOpCEUtLS0N8fDyaN2+eax2pVAqpVFqCURERERF9ezii+5nGjh2L48eP4+7du/jnn3/Qo0cPpKSkwMvLq7RDIyIiIvqmcUT3Mz18+BB9+/bF06dPYWRkhEaNGuHMmTOwsLAo7dCIiIiIvmlMdD/T5s2bSzsEIiKldLyFs1zZOzVVQCL58DwxUWEdNBhb3KER0VeCUxeIiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKvGEEERGRAlIVCbLHgz48J6KvDRNdIiIiBeqX1yvtEIjoM3HqAhEREREpJSa6RERERKSUmOgSERERkVJioktERERESomJLhEREREpJSa6RERERKSUmOgSERERkVJioktERERESok3jCAiIipCBlJdhc+JqOQx0SUiIipCo+t7lXYIRPT/OHWBiIiIiJQSE10iIiIiUkpMdImIiIhIKTHRJSIiIiKlxESXiIiIiJQSE10iIiIiUkpMdImIiIhIKTHRJSIiIiKlxESXiIiIiJQS74xGRERfDT0BAISPnhMR5Y6JLhERfTUGvX9f2iEQ0VeEUxeIiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SUiIiIipcREl4iIiIiUEhNdIiIiIlJKTHSJiIiISCkx0SX6v/buPa6mfP8f+Gu127VLF6OSpEhInYgkNkMiNpkZ5DYdJEVuh1wi0Qxm3B0OD4TzOElMyKFcKpI55VKKUjwoG6kpM5FRky6ky+f3R1/rZ9m51GR2tvfz8diPR+tzW++19+fRfu+1P2ttQgghhKgkSnQJIYQQQohKokSXEEIIIYSoJEp0CSGEEEKISqJEt4kEBQXBwsICEokEvXr1wqVLl5QdEiGEEELIZ40S3SYQHh6OBQsWYMWKFUhPT8eAAQMwYsQI5OXlKTs0QgghhJDPFiW6TWDr1q3w9vbG9OnTYW1tjW3btsHMzAy7d+9WdmiEEEIIIZ8tdWUH8Kl7+fIl0tLSsGzZMkH5sGHDkJSUVG+fyspKVFZW8tslJSUAgGfPnjVo3zWVzxsYbZ1ScU2j+lU/r25wn/KGdwEAPK+saHCfF1VVjdpX2YvyRvWrrK58f6M3NPQ1/jNofihqzBxR1fkBNG6O0PwQ+ivnB9D4OaKrqwuO4xrVl5BPGccYY8oO4lP222+/wdTUFImJiejXrx9fvm7dOoSGhkIulyv0WbVqFVavXv1XhkkIIeQzVlJSAj09PWWHQchfjs7oNpE3Pykzxt766TkgIACLFi3it2tra1FUVAQDAwP6xI26MxZmZmbIz8+nf8xEAc0P8i40P+qnq6ur7BAIUQpKdP8kQ0NDiEQiPHr0SFBeWFgIY2PjevtoampCU1NTUNayZcuPFeInS09Pj96oyFvR/CDvQvODEALQxWh/moaGBnr16oW4uDhBeVxcnGApAyGEEEII+WvRGd0msGjRIkyZMgUODg6QSqX497//jby8PMyaNUvZoRFCCCGEfLYo0W0CEydOxNOnT/HDDz+goKAAtra2iImJQfv27ZUd2idJU1MTK1euVFjeQQhA84O8G80PQsjr6K4LhBBCCCFEJdEaXUIIIYQQopIo0SWEEEIIISqJEl1CCCGEEKKSKNElhDTKoEGDsGDBgne26dChA7Zt2/bONhzH4cSJEwCA3NxccByHjIyMJolRGRISEsBxHP744w9lh/LZaui8I4SoLkp0yZ/GGIOLiwtkMplCXVBQEPT19ZGXl6eEyEhDeXp6guO4em+NN2fOHHAcB09PTwBAREQEfvzxx784wobx8fGBSCTCkSNHlB0KaSL5+fnw9vZG27ZtoaGhgfbt28PX1xdPnz5VdmiEkGaIEl3yp3Ech5CQEKSkpGDv3r18eU5ODvz9/bF9+3aYm5srMULSEGZmZjhy5AieP3/Ol7148QKHDx8WvI6tWrVq1j8rWlFRgfDwcCxZsgTBwcHKDoc0gQcPHsDBwQF3797F4cOHcf/+fezZswc///wzpFIpioqKlB0iIaSZoUSXNAkzMzNs374dfn5+yMnJAWMM3t7eGDJkCCwsLODo6AhNTU2YmJhg2bJlqK6u5vvW9zVjjx49sGrVKn6b4zj85z//wZgxY6CtrY3OnTvj1KlTgj6nTp1C586doaWlBWdnZ4SGhtJXyI1gb28Pc3NzRERE8GUREREwMzNDz549+bI3ly4UFhbi66+/hpaWFiwsLBAWFqYw9r179zBw4EBIJBLY2Ngo/KJgfTIzM+Hq6godHR0YGxtjypQp+P3339/b77///S9sbGwQEBCAxMRE5ObmCuqrq6sxf/58tGzZEgYGBvD398fUqVMxevRovg1jDJs2bULHjh2hpaUFOzs7HDt2TDBOTEwMunTpws+7N/dDms7cuXOhoaGBc+fOwcnJCebm5hgxYgTOnz+PX3/9FStWrKi3X2PmHSFENVCiS5rM1KlTMWTIEEybNg07d+7ErVu3sH37dri6uqJ37964ceMGdu/ejeDgYKxZs6bB469evRoTJkzAzZs34erqikmTJvFncHJzczFu3DiMHj0aGRkZmDlz5lvf9Mj7TZs2DSEhIfz2vn374OXl9c4+np6eyM3Nxf/+9z8cO3YMQUFBKCws5Otra2vh5uYGkUiE5ORk7NmzB/7+/u8cs6CgAE5OTujRowdSU1Nx9uxZPH78GBMmTHjvMQQHB2Py5MnQ19eHq6ur4HgAYOPGjQgLC0NISAgSExPx7NkzhTWbgYGBCAkJwe7du3H79m0sXLgQkydPxoULFwDUfY3u5uYGV1dXZGRkYPr06Vi2bNl7YyMNV1RUhNjYWMyZMwdaWlqCujZt2mDSpEkIDw/Hm7eGb8y8I4SoEEZIE3r8+DEzMjJiampqLCIigi1fvpxZWVmx2tpavs2uXbuYjo4Oq6mpYYwx1r59e/avf/1LMI6dnR1buXIlvw2ABQYG8ttlZWWM4zh25swZxhhj/v7+zNbWVjDGihUrGABWXFzctAepwqZOncpGjRrFnjx5wjQ1NVlOTg7Lzc1lEomEPXnyhI0aNYpNnTqVMcaYk5MT8/X1ZYwxJpfLGQCWnJzMj5WVlcUA8K9tbGwsE4lELD8/n29z5swZBoBFRkYyxhjLyclhAFh6ejpjjLHvvvuODRs2TBBjfn4+A8Dkcvlbj+Pu3btMLBazJ0+eMMYYi4yMZGZmZvycY4wxY2NjtnnzZn67urqamZubs1GjRjHG6uaYRCJhSUlJgrG9vb2Zu7s7Y4yxgIAAZm1tLZjf/v7+NO8+guTkZMFcedPWrVsZAPb48WPB/5QPmXeEENVFZ3RJk2rdujV8fHxgbW2NMWPGICsrC1KpFBzH8W369++PsrIyPHz4sEFjd+/enf+7RYsW0NXV5c8YyuVy9O7dW9De0dHxTxzJ583Q0BAjR45EaGgoQkJCMHLkSBgaGr61fVZWFtTV1eHg4MCXde3aFS1bthS0MTc3R7t27fgyqVT6zjjS0tIQHx8PHR0d/tG1a1cAQHZ2NsLCwgR1ly5dAlB3Nlcmk/Exu7q6ory8HOfPnwcAlJSU4PHjx4I5IhKJ0KtXL347MzMTL168wNChQwX7OHDgALKzs/lj6tu3r2B+v++YyMfB/u9M7uuvBdC4eUcIUR3qyg6AqB51dXWoq9dNLcaYwhvPm29IampqCl83VlVVKYwrFosF2xzHoba29r37IY3j5eWFf/zjHwCAXbt2vbPt25KM+tq87l3tgbqvnb/++mts3LhRoc7ExAS1tbXo06cPX2ZqaoqamhocOHAAjx494uchANTU1CA4OBjDhg176/5fj/HV3IqOjoapqamgnaam5luPiXwcnTp1AsdxyMzMFKyjfuXOnTv44osvFD6QNWbeEUJUByW65KOysbHB8ePHBYloUlISdHV1+eTByMgIBQUFfJ9nz54hJyenQfvp2rUrYmJiBGWpqal/MvrP2/Dhw/Hy5UsAqPfWca+ztrZGdXU1UlNT+bOkcrlccCGgjY0N8vLy8Ntvv6Ft27YAgCtXrrxzXHt7exw/fhwdOnQQJK2ve/POD6dPn0ZpaSnS09MhEon48jt37mDSpEl4+vQpDAwMYGxsjKtXr2LAgAEA6hLh9PR09OjRg49XU1MTeXl5cHJyqnffNjY2Cut6k5OT33lMpHEMDAwwdOhQBAUFYeHChYJ1uo8ePUJYWBg8PDwUktjGzDtCiOqgpQvko5ozZw7y8/Mxb9483LlzBydPnsTKlSuxaNEiqKnVTb/Bgwfj4MGDuHTpEm7duoWpU6cKEpQPMXPmTNy5cwf+/v64e/cujh49iv379wOgszeNJRKJkJWVhaysrPe+HlZWVhg+fDhmzJiBlJQUpKWlYfr06YJkxMXFBVZWVvDw8MCNGzdw6dKl914wOHfuXBQVFcHd3R1Xr17FgwcPcO7cOXh5eaGmpqbePsHBwRg5ciTs7Oxga2vLP8aOHQsjIyP89NNPAIB58+Zh/fr1OHnyJORyOXx9fVFcXMzPF11dXfj5+WHhwoUIDQ1FdnY20tPTsWvXLoSGhgIAZs2ahezsbCxatAhyuRyHDh3i5x1pejt37kRlZSVkMhkuXryI/Px8nD17FkOHDoWpqSnWrl2r0Kcx844Qojoo0SUflampKWJiYnD16lXY2dlh1qxZ8Pb2RmBgIN8mICAAAwcOxFdffQVXV1eMHj0alpaWDdqPhYUFjh07hoiICHTv3h27d+/m38xefc1MGk5PTw96enof1DYkJARmZmZwcnKCm5sbfHx80Lp1a75eTU0NkZGRqKyshKOjI6ZPn15vYvK6tm3bIjExETU1NZDJZLC1tYWvry/09fX5D0qve/z4MaKjozF27FiFOo7j4Obmxt9T19/fH+7u7vDw8IBUKoWOjg5kMhkkEgnf58cff8T333+P9evXw9raGjKZDKdPn4aFhQUAwNzcHMePH8fp06dhZ2eHPXv2YN26dR/0fJGG69y5M1JTU2FpaYmJEyfC0tISPj4+cHZ2xpUrV9CqVSuFPo2Zd4QQ1cExWmRGVNTatWuxZ88e5OfnKzsU8gmora2FtbU1JkyY0Ox/8Y0QQsiHoTW6RGUEBQWhd+/eMDAwQGJiIjZv3sxfTEXIm3755Rf+hwcqKyuxc+dO5OTk4O9//7uyQyOEENJEKNElKuPevXtYs2YNioqKYG5ujsWLFyMgIEDZYZFmSk1NDfv374efnx8YY7C1tcX58+dhbW2t7NAIIYQ0EVq6QAghhBBCVBJdjEYIIYQQQlQSJbqEEEIIIUQlUaJLCCGEEEJUEiW6hBBCCCFEJVGiSwghhBBCVBIluoSQZkUul6NNmzYoLS1VahyrVq1Cjx49/vL9enp6YvTo0R/U1s/PD/Pnz/+4ARFCyCeMEl1CPhFJSUkQiUQYPny4skNpsEGDBmHBggUf1HbFihWYO3cudHV1UVZWBrFYjPDwcEGbiRMnguM4ZGdnC8otLS2xfPnypgq72Vu6dClCQkKQk5Oj7FAIIaRZokSXkE/Evn37MG/ePFy+fBl5eXnKDuejePjwIU6dOoVp06YBAHR0dODg4ID4+HhBuwsXLsDMzExQ/vDhQzx48ADOzs5/aczK1Lp1awwbNgx79uxRdiiEENIsUaJLyCegvLwcR48exezZs/HVV19h//79gvqEhARwHIfY2Fj07NkTWlpaGDx4MAoLC3HmzBlYW1tDT08P7u7uqKio4PtVVlZi/vz5aN26NSQSCb788ktcu3aNr9+/fz9atmwp2NeJEyfAcRy//eor/oMHD6JDhw7Q19fHt99+yy898PT0xIULF7B9+3ZwHAeO45Cbm1vvcR49ehR2dnZo164dX+bs7IyEhAR+OysrC8+fP8ecOXME5fHx8RCLxejfvz8A4PTp0+jVqxckEgk6duyI1atXo7q6mm9fUlICHx8ftG7dGnp6ehg8eDBu3Ljx1tcgJycHnTp1wuzZs1FbW4uXL19i6dKlMDU1RYsWLdCnTx9BPK+eu9jYWFhbW0NHRwfDhw9HQUEB36ampgaLFi1Cy5YtYWBggKVLl+LN3/A5duwYunXrBi0tLRgYGMDFxQXl5eV8/TfffIPDhw+/NW5CCPmcUaJLyCcgPDwcVlZWsLKywuTJkxESEqKQEAF1SefOnTuRlJSE/Px8TJgwAdu2bcOhQ4cQHR2NuLg47Nixg2+/dOlSHD9+HKGhobh+/To6deoEmUyGoqKiBsWXnZ2NEydOICoqClFRUbhw4QI2bNgAANi+fTukUilmzJiBgoICFBQUwMzMrN5xLl68CAcHB0GZs7Mz5HI5nyDGx8djwIABGDx4sEKi26dPH2hrayM2NhaTJ0/G/PnzkZmZib1792L//v1Yu3YtAIAxhpEjR+LRo0eIiYlBWloa7O3tMWTIkHqP/datW+jfvz/Gjx+P3bt3Q01NDdOmTUNiYiKOHDmCmzdvYvz48Rg+fDju3bvH96uoqMA///lPHDx4EBcvXkReXh78/Pz4+i1btmDfvn0IDg7G5cuXUVRUhMjISL6+oKAA7u7u8PLyQlZWFhISEuDm5iZ47R0dHZGfn49ffvnlQ18uQgj5fDBCSLPXr18/tm3bNsYYY1VVVczQ0JDFxcXx9fHx8QwAO3/+PF+2fv16BoBlZ2fzZTNnzmQymYwxxlhZWRkTi8UsLCyMr3/58iVr27Yt27RpE2OMsZCQEKavry+IJTIykr3+r2PlypVMW1ubPXv2jC9bsmQJ69OnD7/t5OTEfH1933ucdnZ27IcffhCUlZeXM7FYzA4dOsQYY2z8+PFs06ZNrKqqiuno6LC7d+8yxhizsLBg3333HWOMsQEDBrB169YJxjl48CAzMTFhjDH2888/Mz09PfbixQtBG0tLS7Z3717+uOzs7FhSUhJr1aoV27x5M9/u/v37jOM49uuvvwr6DxkyhAUEBDDG6p47AOz+/ft8/a5du5ixsTG/bWJiwjZs2MBvV1VVsXbt2rFRo0YxxhhLS0tjAFhubu5bn7OSkhIGgCUkJLy1DSGEfK7UlZlkE0LeTy6X4+rVq4iIiAAAqKurY+LEidi3bx9cXFwEbbt3787/bWxsDG1tbXTs2FFQdvXqVQB1Z2Grqqr4r/oBQCwWw9HREVlZWQ2KsUOHDtDV1eW3TUxMUFhY2KAxAOD58+eQSCSCMm1tbTg6OiIhIQHu7u64cOEClixZAnV1dfTv3x8JCQnQ1NRETk4OBg8eDABIS0vDtWvX+DO4QN0ygRcvXqCiogJpaWkoKyuDgYGBwv5fv8AtLy8PLi4uWLNmDRYuXMiXX79+HYwxdOnSRdC/srJSMKa2tjYsLS3rfV5KSkpQUFAAqVTK16urq8PBwYE/Y2tnZ4chQ4agW7dukMlkGDZsGMaNG4cvvviC76OlpQUAgiUphBBC6lCiS0gzFxwcjOrqapiamvJljDGIxWIUFxcLkh6xWMz/zXGcYPtVWW1tLT/Gq7LXMcb4MjU1NYUlElVVVQoxvms/DWFoaIji4mKFcmdnZ4SHh+P27dt4/vw57O3tAQBOTk6Ij4+HhoYGJBIJ+vbtCwCora3F6tWr4ebmpjCWRCJBbW0tTExMBEsfXnl9TbKRkRHatm2LI0eOwNvbG3p6evz4IpEIaWlpEIlEgv46Ojr83/U9L28+n+8iEokQFxeHpKQknDt3Djt27MCKFSuQkpICCwsLAOCXWhgZGX3wuIQQ8rmgNbqENGPV1dU4cOAAtmzZgoyMDP5x48YNtG/fHmFhYY0eu1OnTtDQ0MDly5f5sqqqKqSmpsLa2hpAXfJUWloquPgpIyOjwfvS0NBATU3Ne9v17NkTmZmZCuXOzs64d+8eDh06hC+//JJPLp2cnJCQkICEhARIpVL+bLC9vT3kcjk6deqk8FBTU4O9vT0ePXoEdXV1hXpDQ0N+v1paWoiKioJEIoFMJuMvsOvZsydqampQWFio0L9NmzYf9Jzo6+vDxMQEycnJfFl1dTXS0tIE7TiOQ//+/bF69Wqkp6dDQ0NDsI731q1bEIvF+Nvf/vZB+yWEkM8JJbqENGNRUVEoLi6Gt7c3bG1tBY9x48YhODi40WO3aNECs2fPxpIlS3D27FlkZmZixowZqKiogLe3NwDwF3ctX74c9+/fx6FDhxTu+PAhOnTogJSUFOTm5uL3339/69lemUyGK1euKCTF/fr1g6amJnbs2AEnJye+vHfv3igpKcHx48cFtxX7/vvvceDAAaxatQq3b99GVlYWwsPDERgYCABwcXGBVCrF6NGjERsbi9zcXCQlJSEwMBCpqakKz1N0dDTU1dUxYsQIlJWVoUuXLpg0aRI8PDwQERGBnJwcXLt2DRs3bkRMTMwHPy++vr7YsGEDIiMjcefOHcyZMwd//PEHX5+SkoJ169YhNTUVeXl5iIiIwJMnT/gPIgBw6dIlDBgwgF/CQAgh5P+jRJeQZiw4OBguLi7Q19dXqBs7diwyMjJw/fr1Ro+/YcMGjB07FlOmTIG9vT3u37+P2NhYfjlEq1at8NNPPyEmJgbdunXD4cOHsWrVqgbvx8/PDyKRCDY2NjAyMnrrfYBdXV0hFotx/vx5QfmrZQmlpaUYNGgQXy4WiyGVSlFaWipIdGUyGaKiohAXF4fevXujb9++2Lp1K9q3bw+g7ixpTEwMBg4cCC8vL3Tp0gXffvstcnNzYWxsrBCXjo4Ozpw5A8YYXF1dUV5ejpCQEHh4eGDx4sWwsrLCN998g5SUlLfeUaI+ixcvhoeHBzw9PSGVSqGrq4sxY8bw9Xp6erh48SJcXV3RpUsXBAYGYsuWLRgxYgTf5vDhw5gxY8YH75MQQj4nHGvIgjFCCPnIgoKCcPLkScTGxio7lGYvOjoaS5Yswc2bN6GuTpdcEELIm+g/IyGkWfHx8UFxcTFKS0sFd3Igil6dWaYklxBC6kdndAkhhBBCiEqiNbqEEEIIIUQlUaJLCCGEEEJUEiW6hBBCCCFEJVGiSwghhBBCVBIluoQQQgghRCVRoksIIYQQQlQSJbqEEEIIIUQlUaJLCCGEEEJUEiW6hBBCCCFEJf0/eRZcK7byLHYAAAAASUVORK5CYII=",
2929
      "text/plain": [
2930
       "<Figure size 682.125x500 with 1 Axes>"
2931
      ]
2932
     },
2933
     "metadata": {},
2934
     "output_type": "display_data"
2935
    }
2936
   ],
2937
   "source": [
2938
    "#Bar plot for age, amt_weekdays, highest_qualification\n",
2939
    "sns.catplot(data=smokers,\n",
2940
    "                 x='age',\n",
2941
    "                 y='amt_weekends',\n",
2942
    "                 hue='highest_qualification',\n",
2943
    "                 kind=\"bar\")\n",
2944
    "plt.title('Figure 16: Bar plot for Amount (Weekends), Age, Highest Qualification')\n",
2945
    "plt.xlabel('Amount (Weekends)')\n",
2946
    "plt.ylabel('Age')"
2947
   ]
2948
  },
2949
  {
2950
   "cell_type": "markdown",
2951
   "id": "56a38050",
2952
   "metadata": {},
2953
   "source": [
2954
    "```Figure 12``` shows the scatter plot for amount (weekends), amount (weekdays), and gender. In this scatter plot, there is an uphill pattern observed for amount (weekends) and amount (weekdays). Since the pattern here is vague, there is no relationship existing between the variables. Based on the regression line, amounts for weekends and weekdays does not follow the line as they are scattered around the plot. ```Figure 13``` shows the violin plot for amount (weekends), age, and gender. The box plot element, which shows the median for amount (weekends) indicates that for the male young and middle-aged, the amount is more pronounced compared to other categories. ```Figure 14``` shows the violin plot for amount (weekdays), age, and gender. Similarly to ```Figure 13```, median amount (weekdays) are more pronounced for young and middle-aged groups. ```Figure 15``` shows the bar plot for amount (weekdays), age, and highest qualification. From this plot, the amount of smokers are not normally distributed for all ages and qualifications. The highest observations for amounts smoked on weekdays are contained within ages old and degree qualification. ```Figure 16``` shows the bar plot for amount (weekends), age, and highest qualification. Data here amongst the groups are not normally distributed. Highest observations for amounts smoked on weekdays are contained within ages young and other/ sub degree qualification. Although this is the highest observations, the max observations are almost equal for all age groups. \n",
2955
    "\n",
2956
    "***\n",
2957
    "\n",
2958
    "## 6.0 Summary and Conclusion <a class=\"anchor\" id=\"6\"></a>\n",
2959
    "\n",
2960
    "In the Phase 1 of the report, we have embarked on achieving our goals set for this report for obtaining a clean and tidy dataset, data exploration, and data visualization. Missing values were successfully dealt with, along with the removal of certain rows with unmeaningful data such as unknown values for highest qualification, ethnicity, and nationality. The exploration of the data provided meaningful insights such as that there are more female smokers than male smokers within the dataset. Furthermore, data visualization has shown that in the younger population, there were more smokers than other age groups. The dataset also gave us an insight that there are not as large population of smokers within the population. These insights will be very important and useful as the project heads into Phase 2. \n",
2961
    "\n",
2962
    "***\n",
2963
    "## 7.0 References <a class=\"anchor\" id=\"7\"></a>\n",
2964
    "\n",
2965
    "Bilano V, Golmour S, Moffiet T, d’Espaignet E, Stevens G, Commar A, Tuyl F, Hudson I, Shibuya K (2015) ‘Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control’, *The Lancet*, 385(9972), 966-976, doi: 10.1016/S0140-6736(15)60264-1.\n",
2966
    "\n",
2967
    "Bolego C, Poli A and Paoletti R (2002) ‘Smoking and Gender’, *Cardiovascular Research*, 53(3), 568-576, doi:10.1016/S0008-6363(01)00520-X.\n",
2968
    "\n",
2969
    "Britton J, Amos A, Arnott D, Ashcroft R, Collin J, Crossfield A, Edwards R, Gilmore A, Hammond D, Jarvis M, Joossens L, McNeill A, Rutter A, Sargent J, Wakefield M and West R (March 2012) ‘Fifty years since Smoking and health Progress, lessons and priorities for a smoke-free UK’ [conference presentation], London, accessed 15 April 2024, Royal College of Physicians.\n",
2970
    "\n",
2971
    "Carter B, Abnet C, Feskanich D, Freedman N, Hartge P, Lewis C, Ockene J, Prentice R, Speizer F, Thun M, Jacobs E (2015) ‘Smoking and Mortality — Beyond Established Causes’, *The New England Journal of Medicine*, 372(7), 631-640, doi:10.1056/NEJMsa1407211.\n",
2972
    "\n",
2973
    "Casetta B, Videla A, Bardach A, Morello P, Soto N, Lee K, Carnacho P, Moquilaza R, Ciapponi A (2017) ‘Association Between Cigarette Smoking Prevalence and Income Level: A Systematic Review and Meta-Analysis’, *Nicotine & Tobacco Research*, 19(12), 1401-1407, doi: 10.1093/ntr/ntw266.\n",
2974
    "\n",
2975
    "Chen, J, Lipkin S and Royle G (7-13 November 2022) ‘Risk and demographic factors examination models for lung cancer incidences in the United States’ [conference presentation], *Second International Conference on Biological Engineering and Medical Science (ICBioMed 2022)*, Oxford, accessed 15 April 2024, SPIE Digital Library.\n",
2976
    "\n",
2977
    "Chen-Sankey J, Mead-Morse E, Le D, Quisenberry A, Delnevo C and Choi K (2021) ‘Cigar-Smoking Patterns by Race/Ethnicity and Cigar Type: A Nationally Representative Survey Among U.S. Adults’, *American Journal of Preventive Medicine*, 60(1), 87-94, doi:10.1016/j.amepre.2020.07.005.\n",
2978
    "\n",
2979
    "Choquet H, Yin J and Jorgenson E (2021) ‘Cigarette smoking behaviors and the importance of ethnicity and genetic ancestry, *Transl Psychiatry*, 11(1), 1-10,doi: 10.1038/s41398-021-01244-7.\n",
2980
    "\n",
2981
    "Durmuşoğlu Z and Çiftçi P (6-9 December 2019) ‘Classification of smoking status: The case of Turkey’ [conference presentation], 2016 IEEE Symposium Series on Computational Intelligence (SSCI), *Athens*, accessed 15 April 2024, IEEE Xplore database.\n",
2982
    "\n",
2983
    "Farzana K, Sharmina A, Ehsanul H, Sharmin Z and Rezwanur R (2014) ‘Socio Demographic Factors Related to Smoking among Rural Adolescent’, Delta Medical College Journal, 2(2), 58-63, doi: 10.3329/dmcj.v2i2.20525.\n",
2984
    "Hosseinpoor A, Parker L, d’Espaignet E and Chatterji S (2012) ‘Socioeconomic Inequality in Smoking in Low-Income and Middle-Income Countries: Results from the World Health Survey’, *PLoS One*, 7(8), 1-8, doi: 10.1371/journal.pone.0042843.\n",
2985
    "\n",
2986
    "Kor L, Mitch R and Lazarevski S (16-17 July 2019) ‘Data Analytics: A Demographic and Socioeconomic Analysis of American Cigarette Smoking’ [conference presentation], *Computing Conference 2019*, London, accessed 15 April 2024, Leeds Beckett Repository.\n",
2987
    "\n",
2988
    "MacQuarrie M (2024) *UK Smoking Data* [data set], Kaggle website, accessed 10 April 2024. https://www.kaggle.com/datasets/mexwell/uk-smoking-data?resource=download \n",
2989
    "\n",
2990
    "Redgrave J, Lovett J and Rothwell P (2010) ‘Histological Features of Symptomatic Carotid Plaques in Relation to Age and Smoking’, *Stroke*, 41(10), 2288-2294, doi: 10.1161/STROKEAHA.110.587006.\n",
2991
    "\n",
2992
    "Revie L and Mais D (2023) *Adult smoking habits in the UK: 2022*, Office for National Statistics website, accessed 15 April 2024. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeexpectancies/bulletins/adultsmokinghabitsingreatbritain/2022#:~:text=Based%20on%20APS%20data%2C%20the,20.2%25%20of%20the%20population.\n",
2993
    "\n",
2994
    "Samarth V (2023) *Why Data Cleaning is a Significant Step for Accurate Data Analysis?*, Emeritus website, accessed 15 April 2024. https://emeritus.org/in/learn/data-science-data-cleaning/.\n",
2995
    "\n",
2996
    "Tattan-Birch H, Brown J, Shabab L, Beard E and Jackson S (16 January 2024) ‘How Have Trends in Vaping and Smoking Changed Since Disposable E-Cigarettes Started Becoming Popular? A Population Study in England, 2016-2023’ [conference presentation], London, accessed 15 April 2024, SSRN. \n",
2997
    "\n",
2998
    "Trinidad D, Pérez-Stable, Emery S, White M, Hrana R and Messer K (2009) ‘Intermittent and light daily smoking across racial/ethnic groups in the United States’, *Nicotine & Tobacco Research*, 11(2), 203-210, doi: 10.1093/ntr/ntn018.\n"
2999
   ]
3000
  }
3001
 ],
3002
 "metadata": {
3003
  "celltoolbar": "Edit Metadata",
3004
  "kernelspec": {
3005
   "display_name": "Python 3 (ipykernel)",
3006
   "language": "python",
3007
   "name": "python3"
3008
  },
3009
  "language_info": {
3010
   "codemirror_mode": {
3011
    "name": "ipython",
3012
    "version": 3
3013
   },
3014
   "file_extension": ".py",
3015
   "mimetype": "text/x-python",
3016
   "name": "python",
3017
   "nbconvert_exporter": "python",
3018
   "pygments_lexer": "ipython3",
3019
   "version": "3.11.7"
3020
  }
3021
 },
3022
 "nbformat": 4,
3023
 "nbformat_minor": 5
3024
}