a b/notebooks/split_data.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 2,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import pandas as pd\n",
10
    "import warnings\n",
11
    "warnings.filterwarnings('ignore')\n",
12
    "from sklearn.model_selection import train_test_split"
13
   ]
14
  },
15
  {
16
   "cell_type": "code",
17
   "execution_count": 3,
18
   "metadata": {},
19
   "outputs": [],
20
   "source": [
21
    "df = pd.read_csv(\"D:/Studia/Semestr 4/WB/project/data/data.csv\")\n",
22
    "learning_data, validation_data = train_test_split(df, test_size=0.3, random_state=42)\n",
23
    "\n",
24
    "learning_data.to_csv(\"D:/Studia/Semestr 4/WB/project/data/learning_data.csv\", index=False)\n",
25
    "validation_data.to_csv(\"D:/Studia/Semestr 4/WB/project/validation_data/validation_data.csv\", index=False)"
26
   ]
27
  }
28
 ],
29
 "metadata": {
30
  "kernelspec": {
31
   "display_name": "DataFrames",
32
   "language": "python",
33
   "name": "python3"
34
  },
35
  "language_info": {
36
   "codemirror_mode": {
37
    "name": "ipython",
38
    "version": 3
39
   },
40
   "file_extension": ".py",
41
   "mimetype": "text/x-python",
42
   "name": "python",
43
   "nbconvert_exporter": "python",
44
   "pygments_lexer": "ipython3",
45
   "version": "3.12.2"
46
  }
47
 },
48
 "nbformat": 4,
49
 "nbformat_minor": 2
50
}