51 lines (50 with data), 1.2 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"from sklearn.model_selection import train_test_split"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"D:/Studia/Semestr 4/WB/project/data/data.csv\")\n",
"learning_data, validation_data = train_test_split(df, test_size=0.3, random_state=42)\n",
"\n",
"learning_data.to_csv(\"D:/Studia/Semestr 4/WB/project/data/learning_data.csv\", index=False)\n",
"validation_data.to_csv(\"D:/Studia/Semestr 4/WB/project/validation_data/validation_data.csv\", index=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "DataFrames",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}