409 lines (408 with data), 40.6 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 16,
"id": "a88627c9-d738-4ff7-9304-f536a676a8e2",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"import matplotlib.pyplot as plt\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "02b2c845-1d12-4a24-9165-009d2bf38140",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 4959 files belonging to 2 classes.\n",
"Found 589 files belonging to 2 classes.\n",
"Found 14 files belonging to 2 classes.\n"
]
}
],
"source": [
"Train = keras.utils.image_dataset_from_directory(\n",
" directory='Project Output/Project Output/train',\n",
" labels=\"inferred\",\n",
" label_mode=\"categorical\",\n",
" batch_size=32,\n",
" image_size=(256, 256))\n",
"Test = keras.utils.image_dataset_from_directory(\n",
" directory='Project Output/Project Output/test',\n",
" labels=\"inferred\",\n",
" label_mode=\"categorical\",\n",
" batch_size=32,\n",
" image_size=(256, 256))\n",
"Validation = keras.utils.image_dataset_from_directory(\n",
" directory='Project Output/Project Output/val',\n",
" labels=\"inferred\",\n",
" label_mode=\"categorical\",\n",
" batch_size=32,\n",
" image_size=(256, 256))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "7a81af0e-2248-4ddf-b7f7-d3598fdc5167",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"19\n"
]
}
],
"source": [
"print(len(Test))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "b6fb8896-cf54-45a9-9719-0752640f0910",
"metadata": {
"id": "b6fb8896-cf54-45a9-9719-0752640f0910",
"outputId": "b5d81636-2fb2-4a9e-ee64-d229b98011cb"
},
"outputs": [],
"source": [
"from tensorflow import keras\n",
"from keras import layers\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense\n",
"from tensorflow.keras.layers import Conv2D, MaxPooling2D\n",
"from tensorflow.keras.utils import image_dataset_from_directory\n",
"from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img\n",
"from tensorflow.keras.preprocessing import image_dataset_from_directory\n",
"\n",
"\n",
"model = tf.keras.models.Sequential([\n",
" layers.Conv2D(32, (3, 3), activation='relu', input_shape=(256, 256, 3)),\n",
" layers.MaxPooling2D(2, 2),\n",
" layers.Conv2D(64, (3, 3), activation='relu'),\n",
" layers.MaxPooling2D(2, 2),\n",
" layers.Conv2D(64, (3, 3), activation='relu'),\n",
" layers.MaxPooling2D(2, 2),\n",
" layers.Conv2D(64, (3, 3), activation='relu'),\n",
" layers.MaxPooling2D(2, 2),\n",
" \n",
" layers.Flatten(),\n",
" layers.Dense(512, activation='relu'),\n",
" layers.BatchNormalization(),\n",
" layers.Dense(512, activation='relu'),\n",
" layers.Dropout(0.1),\n",
" layers.BatchNormalization(),\n",
" layers.Dense(512, activation='relu'),\n",
" layers.Dropout(0.2),\n",
" layers.BatchNormalization(),\n",
" layers.Dense(512, activation='relu'),\n",
" layers.Dropout(0.2),\n",
" layers.BatchNormalization(),\n",
" layers.Dense(2, activation='sigmoid')\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "42831410-16b4-4a37-a7bd-a68d955e41ca",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_2\"</span>\n",
"</pre>\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential_2\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param # </span>┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ conv2d_8 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">254</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">254</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">32</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">896</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ max_pooling2d_8 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">127</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">127</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">32</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ conv2d_9 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">125</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">125</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">18,496</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ max_pooling2d_9 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">62</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">62</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ conv2d_10 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">60</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">60</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">36,928</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ max_pooling2d_10 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ conv2d_11 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Conv2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">36,928</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ max_pooling2d_11 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">MaxPooling2D</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">14</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">14</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ flatten_2 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Flatten</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">12544</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_10 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">6,423,040</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ batch_normalization_8 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">2,048</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">BatchNormalization</span>) │ │ │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_11 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">262,656</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dropout_6 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ batch_normalization_9 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">2,048</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">BatchNormalization</span>) │ │ │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_12 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">262,656</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dropout_7 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ batch_normalization_10 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">2,048</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">BatchNormalization</span>) │ │ │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_13 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">262,656</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dropout_8 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ batch_normalization_11 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">512</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">2,048</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">BatchNormalization</span>) │ │ │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_14 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">2</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">1,026</span> │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
"</pre>\n"
],
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ conv2d_8 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m254\u001b[0m, \u001b[38;5;34m254\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ max_pooling2d_8 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m127\u001b[0m, \u001b[38;5;34m127\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ conv2d_9 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m125\u001b[0m, \u001b[38;5;34m125\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ max_pooling2d_9 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m62\u001b[0m, \u001b[38;5;34m62\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ conv2d_10 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m60\u001b[0m, \u001b[38;5;34m60\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ max_pooling2d_10 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ conv2d_11 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m28\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ max_pooling2d_11 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m14\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ flatten_2 (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m12544\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_10 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m6,423,040\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ batch_normalization_8 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_11 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m262,656\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dropout_6 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ batch_normalization_9 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_12 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m262,656\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dropout_7 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ batch_normalization_10 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_13 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m262,656\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dropout_8 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ batch_normalization_11 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │\n",
"│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_14 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m) │ \u001b[38;5;34m1,026\u001b[0m │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">7,313,474</span> (27.90 MB)\n",
"</pre>\n"
],
"text/plain": [
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m7,313,474\u001b[0m (27.90 MB)\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">7,309,378</span> (27.88 MB)\n",
"</pre>\n"
],
"text/plain": [
"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m7,309,378\u001b[0m (27.88 MB)\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">4,096</span> (16.00 KB)\n",
"</pre>\n"
],
"text/plain": [
"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m4,096\u001b[0m (16.00 KB)\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "1ce20b7a-8b15-44f1-81f1-a82986fd43ed",
"metadata": {},
"outputs": [],
"source": [
"model.compile(\n",
"\t# specify the loss function to use during training\n",
"\tloss='binary_crossentropy',\n",
"\t# specify the optimizer algorithm to use during training\n",
"\toptimizer='adam',\n",
"\t# specify the evaluation metrics to use during training\n",
"\tmetrics=['accuracy']\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "5682f9ad-5d25-4848-8a21-35de9e7de02e",
"metadata": {
"id": "5682f9ad-5d25-4848-8a21-35de9e7de02e",
"outputId": "72841bd0-d382-4ab7-96ec-12d5937f0550"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m115s\u001b[0m 729ms/step - accuracy: 0.7955 - loss: 0.5153 - val_accuracy: 0.5000 - val_loss: 1.3895\n",
"Epoch 2/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m112s\u001b[0m 724ms/step - accuracy: 0.9112 - loss: 0.2352 - val_accuracy: 0.6429 - val_loss: 1.2596\n",
"Epoch 3/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m109s\u001b[0m 699ms/step - accuracy: 0.9195 - loss: 0.2014 - val_accuracy: 0.5000 - val_loss: 1.7827\n",
"Epoch 4/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m105s\u001b[0m 679ms/step - accuracy: 0.9280 - loss: 0.1800 - val_accuracy: 0.7143 - val_loss: 0.4219\n",
"Epoch 5/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m108s\u001b[0m 699ms/step - accuracy: 0.9360 - loss: 0.1595 - val_accuracy: 0.5714 - val_loss: 1.6498\n",
"Epoch 6/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m107s\u001b[0m 686ms/step - accuracy: 0.9500 - loss: 0.1290 - val_accuracy: 0.6429 - val_loss: 2.0239\n",
"Epoch 7/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m106s\u001b[0m 681ms/step - accuracy: 0.9626 - loss: 0.1070 - val_accuracy: 0.4286 - val_loss: 2.8786\n",
"Epoch 8/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m101s\u001b[0m 653ms/step - accuracy: 0.9700 - loss: 0.0871 - val_accuracy: 0.5714 - val_loss: 1.3579\n",
"Epoch 9/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m101s\u001b[0m 654ms/step - accuracy: 0.9615 - loss: 0.0961 - val_accuracy: 0.8571 - val_loss: 0.6821\n",
"Epoch 10/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m102s\u001b[0m 654ms/step - accuracy: 0.9767 - loss: 0.0629 - val_accuracy: 0.8571 - val_loss: 0.4115\n",
"Epoch 11/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m102s\u001b[0m 655ms/step - accuracy: 0.9660 - loss: 0.0846 - val_accuracy: 0.5714 - val_loss: 1.8358\n",
"Epoch 12/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m103s\u001b[0m 662ms/step - accuracy: 0.9805 - loss: 0.0468 - val_accuracy: 0.5714 - val_loss: 1.0624\n",
"Epoch 13/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m101s\u001b[0m 652ms/step - accuracy: 0.9818 - loss: 0.0512 - val_accuracy: 0.8571 - val_loss: 0.7154\n",
"Epoch 14/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m101s\u001b[0m 653ms/step - accuracy: 0.9810 - loss: 0.0451 - val_accuracy: 0.6429 - val_loss: 1.1183\n",
"Epoch 15/15\n",
"\u001b[1m155/155\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m101s\u001b[0m 649ms/step - accuracy: 0.9820 - loss: 0.0571 - val_accuracy: 0.7143 - val_loss: 1.2938\n"
]
}
],
"source": [
"history = model.fit(Train,\n",
"\t\tepochs=15,\n",
"\t\tvalidation_data=Validation)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "123531f4-3485-486a-97d4-ac145b9305c1",
"metadata": {
"id": "123531f4-3485-486a-97d4-ac145b9305c1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m19/19\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 147ms/step - accuracy: 0.7789 - loss: 1.2360\n",
"The accuracy of the model on test dataset is 81.0\n"
]
}
],
"source": [
"loss, accuracy = model.evaluate(Test)\n",
"print('The accuracy of the model on test dataset is',\n",
"\tnp.round(accuracy*100))\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}