|
a |
|
b/app.R |
|
|
1 |
library(shiny) |
|
|
2 |
library(shinydashboard) |
|
|
3 |
library(plotly) |
|
|
4 |
library(reshape2) |
|
|
5 |
library(survminer) |
|
|
6 |
library(survival) |
|
|
7 |
library(data.table) |
|
|
8 |
library(dplyr) |
|
|
9 |
library(scales) |
|
|
10 |
|
|
|
11 |
load("LungDemoData.Rdata") |
|
|
12 |
load("Results.Rdata") |
|
|
13 |
load("Means.Rdata") |
|
|
14 |
|
|
|
15 |
ui <- dashboardPage( |
|
|
16 |
dashboardHeader(title = "Prognostic models in metastatic lung adenocarcinoma (BETA)",titleWidth = 400), |
|
|
17 |
|
|
|
18 |
dashboardSidebar(width = 200, |
|
|
19 |
sidebarMenu( |
|
|
20 |
menuItem("Dashboard", tabName = "fixed", icon = icon("bar-chart")), |
|
|
21 |
menuItem("Risk Group Stratification", tabName = "strat", icon = icon("scissors")), |
|
|
22 |
menuItem("Gene View", tabName = "gene", icon = icon("gears")), |
|
|
23 |
menuItem("Patient View", tabName = "patient", icon = icon("user-circle-o")), |
|
|
24 |
menuItem("Generate Risk Score", tabName = "risk", icon = icon("gears")) |
|
|
25 |
) |
|
|
26 |
), |
|
|
27 |
|
|
|
28 |
dashboardBody( |
|
|
29 |
tabItems( |
|
|
30 |
# First tab content |
|
|
31 |
tabItem(tabName = "fixed", |
|
|
32 |
sidebarLayout( |
|
|
33 |
sidebarPanel( |
|
|
34 |
width=12, |
|
|
35 |
h2("Prognostic Performance") |
|
|
36 |
# selectInput("StudyName", "Choose a Study :", |
|
|
37 |
# choices = c("Lung" |
|
|
38 |
# )), |
|
|
39 |
# checkboxInput("AddCNV", "Include copy number data", FALSE), |
|
|
40 |
# checkboxInput("OnlyCNV", "Consider only copy number data", FALSE), |
|
|
41 |
# |
|
|
42 |
# selectInput("Method", "Choose a Method :", |
|
|
43 |
# choices = c("Penalized regression"="LASSO")), |
|
|
44 |
# submitButton("Submit") |
|
|
45 |
), |
|
|
46 |
mainPanel(width=12, |
|
|
47 |
#htmlOutput("VariableHeader"), |
|
|
48 |
htmlOutput("RiskHeader"), |
|
|
49 |
plotOutput("RiskHistogram"), |
|
|
50 |
tableOutput("RiskSummary"), |
|
|
51 |
htmlOutput("CIHeader"), |
|
|
52 |
tableOutput("CI"), |
|
|
53 |
htmlOutput("RefitHeader"), |
|
|
54 |
tableOutput("RefitRisk"), |
|
|
55 |
htmlOutput("CommentPval"), |
|
|
56 |
tableOutput("ClinRefit")#, |
|
|
57 |
#htmlOutput("EffectHeader"), |
|
|
58 |
#htmlOutput("FreqHeader")#, |
|
|
59 |
#plotOutput("influencePlot"), |
|
|
60 |
) |
|
|
61 |
) |
|
|
62 |
), |
|
|
63 |
# First tab content |
|
|
64 |
tabItem(tabName = "strat", |
|
|
65 |
# |
|
|
66 |
# sidebarPanel( width = 12, |
|
|
67 |
# checkboxInput("ShowVolvano", "Show Volcano Plot", TRUE), |
|
|
68 |
# checkboxInput("ShowPies", "Show Pie Charts", TRUE), |
|
|
69 |
# submitButton("Submit") |
|
|
70 |
# ), |
|
|
71 |
sidebarLayout( |
|
|
72 |
sidebarPanel(width = 12, |
|
|
73 |
h2("Risk Group Stratification") |
|
|
74 |
), |
|
|
75 |
mainPanel(width = 12, |
|
|
76 |
htmlOutput("predRiskText"), |
|
|
77 |
htmlOutput("KMText"), |
|
|
78 |
plotOutput("KM"), |
|
|
79 |
tableOutput("SurvSum"), |
|
|
80 |
htmlOutput("MutGroupText"), |
|
|
81 |
htmlOutput("MutBPText"), |
|
|
82 |
plotOutput("Mut") |
|
|
83 |
) |
|
|
84 |
) |
|
|
85 |
), |
|
|
86 |
|
|
|
87 |
tabItem(tabName = "gene", |
|
|
88 |
h2("Exploratory interactive gene plots"), |
|
|
89 |
# sidebarPanel( width = 12, |
|
|
90 |
# checkboxInput("ShowVolvano", "Show Volcano Plot", TRUE), |
|
|
91 |
# checkboxInput("ShowPies", "Show Pie Charts", TRUE), |
|
|
92 |
# submitButton("Submit") |
|
|
93 |
# ), |
|
|
94 |
sidebarLayout( |
|
|
95 |
sidebarPanel(width = 12, |
|
|
96 |
textInput("GeneListRisk", |
|
|
97 |
"Find gene(s) : ", |
|
|
98 |
value = ""), |
|
|
99 |
submitButton("Submit")), |
|
|
100 |
mainPanel( |
|
|
101 |
htmlOutput("VolcanoHeader"),width = 12, |
|
|
102 |
plotlyOutput("effectPlot"), |
|
|
103 |
htmlOutput("profiletext"), |
|
|
104 |
plotlyOutput("ProfilePie")#, width="800px", height="400px") |
|
|
105 |
) |
|
|
106 |
) |
|
|
107 |
), |
|
|
108 |
|
|
|
109 |
tabItem(tabName = "patient", |
|
|
110 |
h2("Predicting survival for an incoming patient"), |
|
|
111 |
sidebarLayout( |
|
|
112 |
sidebarPanel(width = 12, |
|
|
113 |
textInput("GeneList", |
|
|
114 |
"Names of the genes you wish to use to create predictive risk : example STK11,KEAP1,KRAS", |
|
|
115 |
value = ""), |
|
|
116 |
##### FOR LUNG ONLY ##### |
|
|
117 |
checkboxGroupInput(inputId = "Demographics", label = "Choose demographic variables :", |
|
|
118 |
choices = c("Male" = "Sex", |
|
|
119 |
"Smoker" = "Smoker", |
|
|
120 |
"Age > 65" = "Age"), |
|
|
121 |
inline = TRUE), |
|
|
122 |
submitButton("Submit") |
|
|
123 |
), |
|
|
124 |
mainPanel(width = 12, |
|
|
125 |
htmlOutput("predtext"), |
|
|
126 |
plotlyOutput("IndSurvKM"), |
|
|
127 |
tableOutput("IndPredTable") |
|
|
128 |
) |
|
|
129 |
) |
|
|
130 |
), |
|
|
131 |
tabItem(tabName = "risk", |
|
|
132 |
h2("Generate risk score in a new cohort"), |
|
|
133 |
# sidebarPanel( width = 12, |
|
|
134 |
# checkboxInput("ShowVolvano", "Show Volcano Plot", TRUE), |
|
|
135 |
# checkboxInput("ShowPies", "Show Pie Charts", TRUE), |
|
|
136 |
# submitButton("Submit") |
|
|
137 |
# ), |
|
|
138 |
sidebarLayout( |
|
|
139 |
sidebarPanel(width = 12, |
|
|
140 |
fileInput(inputId = "File1", label = "Choose your dataset (.csv file)", |
|
|
141 |
accept = c(".csv") |
|
|
142 |
|
|
|
143 |
)#, |
|
|
144 |
# textInput("OutName", |
|
|
145 |
# "Name or the output risk file :", |
|
|
146 |
# value = "")#, |
|
|
147 |
#submitButton("Submit") |
|
|
148 |
), |
|
|
149 |
mainPanel( |
|
|
150 |
width = 12, |
|
|
151 |
plotOutput("RiskHistogram.new"), |
|
|
152 |
downloadLink("downloadData", "Download") |
|
|
153 |
) |
|
|
154 |
) |
|
|
155 |
) |
|
|
156 |
|
|
|
157 |
) |
|
|
158 |
) |
|
|
159 |
) |
|
|
160 |
|
|
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
|
164 |
# Define server logic required to draw a histogram |
|
|
165 |
server <- function(input, output) { |
|
|
166 |
|
|
|
167 |
# load functions of interest |
|
|
168 |
source("./Scripts/GetResultsVarSelect.R") |
|
|
169 |
source("./Scripts/MakeKM.R") |
|
|
170 |
source("./Scripts/GetKMStuff.R") |
|
|
171 |
# source("./Scripts/PlotTree.R") |
|
|
172 |
source("./Scripts/PredictIncoming.R") |
|
|
173 |
|
|
|
174 |
# load("FirstRun.Rdata") |
|
|
175 |
# load("RiskGroupsResults.Rdata") |
|
|
176 |
|
|
|
177 |
output$VariableHeader <- renderText({ paste("<h3> <u> <font color=\"black\"><b>","Prognostic performance", "</b></font> </u> </h3>") }) |
|
|
178 |
output$RiskHeader <- renderText({paste("<h4> <u> <font color=\"black\"><b>","Histogram of predicted risk score", "</b></font> </u> </h4>")}) |
|
|
179 |
output$CIHeader <- renderText({paste("<h4> <u> <font color=\"black\"><b>","Concordance index in predicting overall survival", "</b></font> </u> </h4>")}) |
|
|
180 |
output$RefitHeader <- renderText({paste("<h4> <u> <font color=\"black\"><b>","Cox regression estimates and significance P-values", "</b></font> </u> </h4>")}) |
|
|
181 |
output$EffectHeader <- renderText({ paste("<h3> <u> <font color=\"black\"><b>","Individual gene effect size and relative importance", "</b></font> </u> </h3>") }) |
|
|
182 |
output$FreqHeader <- renderText({paste("<h4> <u> <font color=\"black\"><b>","Gene selection frequency", "</b></font> </u> </h4>")}) |
|
|
183 |
output$VolcanoHeader <- renderText({paste("<h4> <u> <font color=\"black\"><b>","Interactive Volcano plot", "</b></font> </u> </h4>")}) |
|
|
184 |
output$CommentPval <- renderText({paste("<font color=\"black\">","*Note that the pvalue is 0 here because it goes beyond the precision of the machine.", "</font>")}) |
|
|
185 |
|
|
|
186 |
output$RiskHistogram <- renderPlot({FirstRun$RiskHistogram}) |
|
|
187 |
output$RiskSummary <- renderTable({FirstRun$RiskScoreSummary}, rownames = TRUE) |
|
|
188 |
output$CI <- renderTable({FirstRun$ciSummary}, rownames = TRUE) |
|
|
189 |
output$RefitRisk <- renderTable({FirstRun$RiskRefit}, rownames = TRUE) |
|
|
190 |
output$ClinRefit <- renderTable({FirstRun$ClinRefitTable}, rownames = TRUE) |
|
|
191 |
output$influencePlot <- renderPlot({FirstRun$inflPlot}) |
|
|
192 |
|
|
|
193 |
output$predRiskText <- renderText({ paste("<h3> <u> <font color=\"black\"><b>","Risk group stratification", "</b></font> </u> </h3>") }) |
|
|
194 |
GetResultsReactive <- reactive({getResults(studyType = "Lung", |
|
|
195 |
method="LASSO", |
|
|
196 |
geneList = unlist(strsplit(input$GeneListRisk, split ="," )))}) |
|
|
197 |
|
|
|
198 |
output$effectPlot <- renderPlotly({GetResultsReactive()$selectInflPlot}) |
|
|
199 |
#output$effectPlot <- renderPlotly({FirstRun$selectInflPlot}) |
|
|
200 |
|
|
|
201 |
|
|
|
202 |
KMStuffReactive <- reactive({ |
|
|
203 |
KMStuff(FirstRun$data.out,FirstRun$average.risk, |
|
|
204 |
FirstRun$topHits,4, |
|
|
205 |
c(0.25,0.75,0.9), |
|
|
206 |
geneList=unlist(strsplit(input$GeneListRisk, split ="," ))) |
|
|
207 |
}) |
|
|
208 |
output$KMText <- renderText({ paste("<h4> <u> <font color=\"black\"><b>","Kaplan-Meier plot of overall survival", "</b></font> </u> </h4>") }) |
|
|
209 |
|
|
|
210 |
output$KM <- renderPlot(FirstRun$KM_Plot) |
|
|
211 |
output$SurvSum <- renderTable(FirstRun$SurvSum,rownames = TRUE) |
|
|
212 |
|
|
|
213 |
output$MutGroupText <- renderText({ paste("<h3> <u> <font color=\"black\"><b>","Mutation profiles by risk groups", "</b></font> </u> </h3>") }) |
|
|
214 |
output$MutBPText <- renderText({ paste("<h4> <u> <font color=\"black\"><b>","Barplot of mutation frequency", "</b></font> </u> </h4>") }) |
|
|
215 |
|
|
|
216 |
output$Mut <- renderPlot({ |
|
|
217 |
print(FirstRun$mut_Plot)}) |
|
|
218 |
|
|
|
219 |
## Tab 2 |
|
|
220 |
output$profiletext <- renderText({ paste("<h4> <u> <font color=\"black\"><b>","Piechart of most representative mutation profiles : ", |
|
|
221 |
KMStuffReactive()$GenesUsed, "</b></font> </u> </h4>") }) |
|
|
222 |
output$ProfilePie <- renderPlotly({ |
|
|
223 |
KMStuffReactive()$PieChart |
|
|
224 |
}) |
|
|
225 |
|
|
|
226 |
|
|
|
227 |
makePredictionsReactive <- reactive({ |
|
|
228 |
predictIncomingPatient(mutGenes = unlist(strsplit(input$GeneList, split =",")), |
|
|
229 |
clinical=c(input$Demographics), |
|
|
230 |
ClinRefit=FirstRun$ClinRefit, |
|
|
231 |
time.type=FirstRun$time.type, |
|
|
232 |
MD=FirstRun$MD, |
|
|
233 |
LassoFits=FirstRun$LassoFits, |
|
|
234 |
RiskScore=FirstRun$average.risk, |
|
|
235 |
means.train=means.train) |
|
|
236 |
}) |
|
|
237 |
|
|
|
238 |
output$IndSurvKM <- renderPlotly({makePredictionsReactive()$IndSurvKM}) |
|
|
239 |
output$IndPredTable <- renderTable({makePredictionsReactive()$IndPredTable},rownames = TRUE) |
|
|
240 |
#output$IndSurvKM <- renderPlotly({FirstRun$IndSurvKM}) |
|
|
241 |
# output$IndPredTable <- renderTable({FirstRun$IndPredTable},rownames = TRUE) |
|
|
242 |
|
|
|
243 |
|
|
|
244 |
### GENERATING THE RISK SCORE FOR NEW DATA ### |
|
|
245 |
|
|
|
246 |
### GENERATING THE RISK SCORE FOR NEW DATA ### |
|
|
247 |
|
|
|
248 |
dset <- reactive({ |
|
|
249 |
inFile <- input$File1 |
|
|
250 |
if(is.null(inFile)) return(NULL) |
|
|
251 |
|
|
|
252 |
LassoFits <- as.matrix(Results$LassoFits) |
|
|
253 |
ori.risk <- Results$ori.risk |
|
|
254 |
|
|
|
255 |
file.rename(inFile$datapath, paste0(inFile$datapath, ".csv")) |
|
|
256 |
in.data <- read.csv(paste0(inFile$datapath, ".csv"), header = T,row.names = 1) |
|
|
257 |
|
|
|
258 |
features <- colnames(LassoFits) |
|
|
259 |
features[match(c("alk","ros1","ret"),features)] <- paste0(features[match(c("alk","ros1","ret"),features)],".fusion") |
|
|
260 |
colnames(LassoFits)[match(c("alk","ros1","ret"),colnames(LassoFits))] <- paste0(colnames(LassoFits)[match(c("alk","ros1","ret"),colnames(LassoFits))],".fusion") |
|
|
261 |
|
|
|
262 |
# in.data <- as.data.frame(matrix(rbinom(1100,1,prob=0.5),ncol =11)) |
|
|
263 |
# colnames(in.data) <- c("KEAP1","STK11","TP53","EGFR","KRAS","SMARCA4","alk","ros1","BRCA1","AXIN1","noNameTest") |
|
|
264 |
|
|
|
265 |
if(!all(is.na(match(colnames(in.data),features)))){ |
|
|
266 |
matched.genes <- c(na.omit(match(colnames(in.data),features))) |
|
|
267 |
new.dat <- in.data[,which(!is.na(match(colnames(in.data),features)))] |
|
|
268 |
|
|
|
269 |
## ADD ALL MISSING GENES TO BE ALL zero ## |
|
|
270 |
missing <- features[which(is.na(match(features,colnames(new.dat))))] |
|
|
271 |
to.add <- as.data.frame(matrix(0L,nrow=nrow(new.dat),ncol=length(missing))) |
|
|
272 |
colnames(to.add) <- missing |
|
|
273 |
rownames(to.add) <- rownames(new.dat) |
|
|
274 |
new.dat <- as.data.frame(cbind(new.dat,to.add)) |
|
|
275 |
|
|
|
276 |
new.dat <- new.dat[,match(features,colnames(new.dat))] |
|
|
277 |
|
|
|
278 |
############################################# |
|
|
279 |
|
|
|
280 |
all.pred <- lapply(1:nrow(LassoFits),function(x){ |
|
|
281 |
|
|
|
282 |
### Subset to the coefs of that cv ### |
|
|
283 |
coefs <- LassoFits[x,LassoFits[x,] != 0] |
|
|
284 |
new.temp <- select(new.dat,names(coefs)) |
|
|
285 |
|
|
|
286 |
if(!all(is.na(match(c("alk","ros1","ret"),names(means.train[[x]]))))){ |
|
|
287 |
names(means.train[[x]])[na.omit(match(c("alk","ros1","ret"),names(means.train[[x]])))] <- |
|
|
288 |
paste0(names(means.train[[x]])[na.omit(match(c("alk","ros1","ret"),names(means.train[[x]])))],".fusion") |
|
|
289 |
} |
|
|
290 |
## substract mean mutation rate of TRAINING SET !!!### |
|
|
291 |
new.x <- new.temp - rep(means.train[[x]][match(names(coefs),names(means.train[[x]]))], each = nrow(new.temp)) |
|
|
292 |
cal.risk.test <- drop(as.matrix(new.x) %*% coefs) |
|
|
293 |
return(cal.risk.test) |
|
|
294 |
}) |
|
|
295 |
|
|
|
296 |
all.pred <- do.call("cbind",all.pred) |
|
|
297 |
Risk <- apply(all.pred,1,mean) |
|
|
298 |
names(Risk) <- rownames(new.dat) |
|
|
299 |
# Risk.all <- as.matrix(coefs) %*% as.matrix(t(new.dat)) |
|
|
300 |
# Risk <- apply(Risk.all,2,mean) |
|
|
301 |
#in.data$Risk <- Risk |
|
|
302 |
########################################## |
|
|
303 |
ori.risk.range <- range(ori.risk) |
|
|
304 |
in.data$OncoCastRiskScore <- rescale(Risk, to = c(0, 10), from = ori.risk.range) #WithOriginal |
|
|
305 |
#in.data$rescaledRisk <- rescale(in.data$Risk, to = c(0, 10), from = range(in.data$Risk, na.rm = TRUE, finite = TRUE)) |
|
|
306 |
RiskHistogram.new <- ggplot(in.data, aes(x = OncoCastRiskScore, y = ..density..)) + |
|
|
307 |
geom_histogram(show.legend = FALSE, aes(fill=..x..), |
|
|
308 |
breaks=seq(min(in.data$OncoCastRiskScore,na.rm = T), max(in.data$OncoCastRiskScore,na.rm = T), by=20/nrow(in.data))) + |
|
|
309 |
geom_density(show.legend = FALSE) + |
|
|
310 |
theme_minimal() + |
|
|
311 |
labs(x = "Average risk score", y = "Density") + |
|
|
312 |
scale_fill_gradient(high = "red", low = "green") |
|
|
313 |
|
|
|
314 |
return(list("RiskHistogram.new"=RiskHistogram.new,"out.data"=in.data)) |
|
|
315 |
|
|
|
316 |
} |
|
|
317 |
else{ |
|
|
318 |
stop("No gene in your dataset overlapped with the IMPACT platform. Please rename genes or check your dataset.") |
|
|
319 |
} |
|
|
320 |
|
|
|
321 |
}) |
|
|
322 |
|
|
|
323 |
output$RiskHistogram.new <- renderPlot(dset()$RiskHistogram.new) |
|
|
324 |
|
|
|
325 |
#data <- renderTable(dset()$out.data) |
|
|
326 |
output$downloadData <- downloadHandler( |
|
|
327 |
filename = function() { |
|
|
328 |
paste("NewRiskData.csv", sep="") |
|
|
329 |
}, |
|
|
330 |
content = function(file) { |
|
|
331 |
write.csv(dset()$out.data, file) |
|
|
332 |
} |
|
|
333 |
) |
|
|
334 |
|
|
|
335 |
} |
|
|
336 |
shinyApp(ui, server) |