|
a |
|
b/notebooks/XGBoost_training.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"attachments": {}, |
|
|
5 |
"cell_type": "markdown", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"# XGBoost training for lung cancer risk prediction\n", |
|
|
9 |
"\n", |
|
|
10 |
"P. Benveniste $^1$, J. Alberge $^1$\n", |
|
|
11 |
"\n", |
|
|
12 |
"$^1$ Ecole Normale Supérieure Paris-Saclay\n", |
|
|
13 |
"\n", |
|
|
14 |
"In this Notebook, we describe the training of the XGBoost model and hyperparameter optimisation for lung cancer risk prediction using the PLCO and NLST screening trials. " |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"attachments": {}, |
|
|
19 |
"cell_type": "markdown", |
|
|
20 |
"metadata": {}, |
|
|
21 |
"source": [ |
|
|
22 |
"## Library import\n", |
|
|
23 |
"\n", |
|
|
24 |
"**YOU NEED TO USE PYTHON 3.7-3.9**" |
|
|
25 |
] |
|
|
26 |
}, |
|
|
27 |
{ |
|
|
28 |
"cell_type": "code", |
|
|
29 |
"execution_count": 75, |
|
|
30 |
"metadata": {}, |
|
|
31 |
"outputs": [], |
|
|
32 |
"source": [ |
|
|
33 |
"import pandas as pd\n", |
|
|
34 |
"import matplotlib.pyplot as plt\n", |
|
|
35 |
"import pandas as pd\n", |
|
|
36 |
"import xgboost as xgb\n", |
|
|
37 |
"import time\n", |
|
|
38 |
"from time import time\n", |
|
|
39 |
"import shap\n", |
|
|
40 |
"import pickle\n", |
|
|
41 |
"import pprint\n", |
|
|
42 |
"import numpy as np\n", |
|
|
43 |
"\n", |
|
|
44 |
"# Model selection\n", |
|
|
45 |
"from sklearn.model_selection import StratifiedKFold\n", |
|
|
46 |
"from sklearn.model_selection import train_test_split\n", |
|
|
47 |
"\n", |
|
|
48 |
"# Metrics\n", |
|
|
49 |
"from sklearn.metrics import brier_score_loss, roc_auc_score, average_precision_score\n", |
|
|
50 |
"from sklearn.metrics import roc_curve, auc, f1_score, recall_score, precision_recall_curve, precision_score\n", |
|
|
51 |
"from sklearn.metrics import classification_report, confusion_matrix\n", |
|
|
52 |
"\n", |
|
|
53 |
"# Skopt functions\n", |
|
|
54 |
"from skopt import BayesSearchCV\n", |
|
|
55 |
"from skopt.callbacks import DeadlineStopper, DeltaYStopper\n", |
|
|
56 |
"from skopt.space import Real, Integer\n", |
|
|
57 |
"\n", |
|
|
58 |
"#Calibration\n", |
|
|
59 |
"from sklearn.calibration import calibration_curve\n", |
|
|
60 |
"from sklearn.calibration import CalibratedClassifierCV" |
|
|
61 |
] |
|
|
62 |
}, |
|
|
63 |
{ |
|
|
64 |
"attachments": {}, |
|
|
65 |
"cell_type": "markdown", |
|
|
66 |
"metadata": {}, |
|
|
67 |
"source": [ |
|
|
68 |
"# Useful functions" |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"execution_count": 76, |
|
|
74 |
"metadata": {}, |
|
|
75 |
"outputs": [], |
|
|
76 |
"source": [ |
|
|
77 |
"def report_perf(optimizer, X, y, title=\"model\", callbacks=None):\n", |
|
|
78 |
" \"\"\"\n", |
|
|
79 |
" A wrapper for measuring time and performances of different optmizers\n", |
|
|
80 |
" \n", |
|
|
81 |
" optimizer = a sklearn or a skopt optimizer\n", |
|
|
82 |
" X = the training set \n", |
|
|
83 |
" y = our target\n", |
|
|
84 |
" title = a string label for the experiment\n", |
|
|
85 |
" \"\"\"\n", |
|
|
86 |
" start = time()\n", |
|
|
87 |
"\n", |
|
|
88 |
" if callbacks is not None:\n", |
|
|
89 |
" optimizer.fit(X, y, callback=callbacks)\n", |
|
|
90 |
" else:\n", |
|
|
91 |
" optimizer.fit(X, y)\n", |
|
|
92 |
" \n", |
|
|
93 |
" d=pd.DataFrame(optimizer.cv_results_)\n", |
|
|
94 |
" best_score = optimizer.best_score_\n", |
|
|
95 |
" best_score_std = d.iloc[optimizer.best_index_].std_test_score\n", |
|
|
96 |
" best_params = optimizer.best_params_\n", |
|
|
97 |
" \n", |
|
|
98 |
" print((title + \" took %.2f seconds, candidates checked: %d, best CV score: %.3f \"\n", |
|
|
99 |
" + u\"\\u00B1\"+\" %.3f\") % (time() - start, \n", |
|
|
100 |
" len(optimizer.cv_results_['params']),\n", |
|
|
101 |
" best_score,\n", |
|
|
102 |
" best_score_std)) \n", |
|
|
103 |
" print('Best parameters:')\n", |
|
|
104 |
" pprint.pprint(best_params)\n", |
|
|
105 |
" print()\n", |
|
|
106 |
" return best_params" |
|
|
107 |
] |
|
|
108 |
}, |
|
|
109 |
{ |
|
|
110 |
"attachments": {}, |
|
|
111 |
"cell_type": "markdown", |
|
|
112 |
"metadata": {}, |
|
|
113 |
"source": [ |
|
|
114 |
"# Lung cancer risk estimation" |
|
|
115 |
] |
|
|
116 |
}, |
|
|
117 |
{ |
|
|
118 |
"attachments": {}, |
|
|
119 |
"cell_type": "markdown", |
|
|
120 |
"metadata": {}, |
|
|
121 |
"source": [ |
|
|
122 |
"In this notebook, we will try to predict lung cancer based on two datasets: \n", |
|
|
123 |
"- PLCO dataset: with 150 000 points and 219 descriptors for each point\n", |
|
|
124 |
"- NLST dataset : 50 000 points and 322 descriptors for each point" |
|
|
125 |
] |
|
|
126 |
}, |
|
|
127 |
{ |
|
|
128 |
"cell_type": "code", |
|
|
129 |
"execution_count": 77, |
|
|
130 |
"metadata": {}, |
|
|
131 |
"outputs": [ |
|
|
132 |
{ |
|
|
133 |
"name": "stdout", |
|
|
134 |
"output_type": "stream", |
|
|
135 |
"text": [ |
|
|
136 |
"(154887, 219)\n" |
|
|
137 |
] |
|
|
138 |
}, |
|
|
139 |
{ |
|
|
140 |
"name": "stderr", |
|
|
141 |
"output_type": "stream", |
|
|
142 |
"text": [ |
|
|
143 |
"Columns (99,248,249) have mixed types. Specify dtype option on import or set low_memory=False.\n" |
|
|
144 |
] |
|
|
145 |
}, |
|
|
146 |
{ |
|
|
147 |
"name": "stdout", |
|
|
148 |
"output_type": "stream", |
|
|
149 |
"text": [ |
|
|
150 |
"(53452, 324)\n" |
|
|
151 |
] |
|
|
152 |
} |
|
|
153 |
], |
|
|
154 |
"source": [ |
|
|
155 |
"plco_file = './package-plco-594/Lung/lung_data_nov18_d070819.csv'\n", |
|
|
156 |
"plco = pd.read_csv(plco_file)\n", |
|
|
157 |
"plco_nb_ini = len(plco)\n", |
|
|
158 |
"print(plco.shape)\n", |
|
|
159 |
"\n", |
|
|
160 |
"nlst_file = './package-nlst-814.2021-07-27/participant_data_d100517.csv'\n", |
|
|
161 |
"nlst = pd.read_csv(nlst_file)\n", |
|
|
162 |
"nlst_nb_ini = len(nlst)\n", |
|
|
163 |
"print(nlst.shape)" |
|
|
164 |
] |
|
|
165 |
}, |
|
|
166 |
{ |
|
|
167 |
"attachments": {}, |
|
|
168 |
"cell_type": "markdown", |
|
|
169 |
"metadata": {}, |
|
|
170 |
"source": [ |
|
|
171 |
"## Removal of non-smokers\n", |
|
|
172 |
"\n", |
|
|
173 |
"Because our target populations and because smoking is such a high contributing risk factor we decide to keep only the participants to PLCO who are smokers or former-smokers. Also, this removes a bias as our testing dataset NLST only contains smokers and former-smokers.\n", |
|
|
174 |
"\n", |
|
|
175 |
"`cig_stat == 1 or 2`" |
|
|
176 |
] |
|
|
177 |
}, |
|
|
178 |
{ |
|
|
179 |
"cell_type": "code", |
|
|
180 |
"execution_count": 78, |
|
|
181 |
"metadata": {}, |
|
|
182 |
"outputs": [ |
|
|
183 |
{ |
|
|
184 |
"name": "stdout", |
|
|
185 |
"output_type": "stream", |
|
|
186 |
"text": [ |
|
|
187 |
"Total number of participant to PLCO: 154887\n", |
|
|
188 |
"Numbers of smokers and former-smokers: 80668\n" |
|
|
189 |
] |
|
|
190 |
} |
|
|
191 |
], |
|
|
192 |
"source": [ |
|
|
193 |
"print(\"Total number of participant to PLCO:\",len(plco))\n", |
|
|
194 |
"plco = plco.loc[plco.cig_stat > 0]\n", |
|
|
195 |
"print(\"Numbers of smokers and former-smokers:\",len(plco))" |
|
|
196 |
] |
|
|
197 |
}, |
|
|
198 |
{ |
|
|
199 |
"attachments": {}, |
|
|
200 |
"cell_type": "markdown", |
|
|
201 |
"metadata": {}, |
|
|
202 |
"source": [ |
|
|
203 |
"## Censored data\n", |
|
|
204 |
"\n", |
|
|
205 |
"Both our dataset contains subjects who are not interesting to our study. We decided to remove:\n", |
|
|
206 |
"\n", |
|
|
207 |
"- Patients who died because of something else :\n", |
|
|
208 |
"\n", |
|
|
209 |
" Their case can add bias to the model as they might have been more susceptible of developping lung cancer because of having poor health\n", |
|
|
210 |
" \n", |
|
|
211 |
"- Remove all who have not been followed enough through the study\n", |
|
|
212 |
"\n", |
|
|
213 |
" We will explain how the minimum reauired time was computed" |
|
|
214 |
] |
|
|
215 |
}, |
|
|
216 |
{ |
|
|
217 |
"cell_type": "code", |
|
|
218 |
"execution_count": 79, |
|
|
219 |
"metadata": {}, |
|
|
220 |
"outputs": [ |
|
|
221 |
{ |
|
|
222 |
"name": "stdout", |
|
|
223 |
"output_type": "stream", |
|
|
224 |
"text": [ |
|
|
225 |
"---- PLCO ----\n", |
|
|
226 |
"Removed 24356\n", |
|
|
227 |
"Remaining 56312\n", |
|
|
228 |
"Removed 15.73 % of PLCO\n", |
|
|
229 |
"---- NLST ----\n", |
|
|
230 |
"Removed 2904\n", |
|
|
231 |
"Remaining 50548\n", |
|
|
232 |
"Removed 5.43 % of NLST\n" |
|
|
233 |
] |
|
|
234 |
} |
|
|
235 |
], |
|
|
236 |
"source": [ |
|
|
237 |
"#For PLCO\n", |
|
|
238 |
"plco_nb = len(plco)\n", |
|
|
239 |
"plco = plco.loc[plco['d_dthl']!=0]\n", |
|
|
240 |
"plco_nb_aft = len(plco)\n", |
|
|
241 |
"print(\"---- PLCO ----\")\n", |
|
|
242 |
"print(\"Removed \"+ str(plco_nb - plco_nb_aft ))\n", |
|
|
243 |
"print(\"Remaining \"+str(plco_nb_aft))\n", |
|
|
244 |
"print(\"Removed \" + str(round((((plco_nb - plco_nb_aft)/plco_nb_ini)*100),2)) + \" % of PLCO\")\n", |
|
|
245 |
"\n", |
|
|
246 |
"#For NLST\n", |
|
|
247 |
"nlst_nb = len(nlst)\n", |
|
|
248 |
"nlst = nlst.loc[nlst['finaldeathlc']!=0]\n", |
|
|
249 |
"nlst_nb_aft = len(nlst)\n", |
|
|
250 |
"print(\"---- NLST ----\")\n", |
|
|
251 |
"print(\"Removed \"+ str(nlst_nb - nlst_nb_aft ))\n", |
|
|
252 |
"print(\"Remaining \"+str(nlst_nb_aft))\n", |
|
|
253 |
"print(\"Removed \" + str(round((((nlst_nb - nlst_nb_aft)/nlst_nb_ini)*100),2)) + \" % of NLST\")\n" |
|
|
254 |
] |
|
|
255 |
}, |
|
|
256 |
{ |
|
|
257 |
"attachments": {}, |
|
|
258 |
"cell_type": "markdown", |
|
|
259 |
"metadata": {}, |
|
|
260 |
"source": [ |
|
|
261 |
"Let's look at the distribution of the length of study of the patients to select a length which is appropriate for everyone." |
|
|
262 |
] |
|
|
263 |
}, |
|
|
264 |
{ |
|
|
265 |
"cell_type": "code", |
|
|
266 |
"execution_count": 80, |
|
|
267 |
"metadata": {}, |
|
|
268 |
"outputs": [ |
|
|
269 |
{ |
|
|
270 |
"data": { |
|
|
271 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHNCAYAAAAAFUE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRrElEQVR4nO3deXxM9/4/8Ndkm6yThSyCJIpKYpf6MbXUkiYilEtb1L6WhisorttStL1Raim1dE97LS291VpDiEhVKEPUGlSIYhJFFkTWz+8Pj5yvQxKZSCSfeD0fj/No55z3fM7nTGaO13zOMhohhAARERGRRMwquwNEREREpmKAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJhwGGiIiIpMMAQ0RERNJhgJHA7NmzodFonsq6OnXqhE6dOimPY2NjodFo8OOPPz6V9Q8bNgw+Pj5PZV1ldfv2bYwaNQoeHh7QaDQIDw8vttbHxwfDhg17an0rq2HDhsHe3v6prOu///0vfH19YWlpCScnp6eyzrIoz7/dxYsXodFoEBkZWS7tkWn4+ldPDDBPWWRkJDQajTJZW1vD09MTwcHBWLp0KTIzM8tlPVevXsXs2bORkJBQLu2Vp6rct9L4z3/+g8jISIwbNw7//e9/MXjw4MruUqncvXsXs2fPRmxsbKX14cyZMxg2bBjq16+PL774Ap9//vkTtbdixYpn9h+lTp06qfYlLi4uaN26Nb7++msUFBQodaaE0z///BNvvvkmnnvuOVhbW0On06Fdu3b45JNPkJWVparNzc3F0qVL0bp1azg4OMDe3h6tW7fG0qVLkZubW67b+rQUfmHTaDQwGAyPLC/qtezUqROaNGny2Lb37duHkJAQ1K5dG9bW1vDy8kLPnj2xdu1ape0H/57FTTJ8IXpaLCq7A8+quXPnol69esjNzYXRaERsbCzCw8OxaNEibNq0Cc2aNVNq3333XfzrX/8yqf2rV69izpw58PHxQYsWLUr9vJ07d5q0nrIoqW9ffPGFaudbFcXExKBt27Z47733KrsrJrl79y7mzJkDAKpRtqcpNjYWBQUF+OSTT9CgQYMnbm/FihWoWbNmld+pe3t7IysrC5aWluXabp06dRAREQEAuH79Or777juMHDkSZ8+exbx580xqa+vWrXjttdeg1WoxZMgQNGnSBDk5Odi3bx+mTp2KkydPKoHzzp07CA0Nxd69e9GjRw8MGzYMZmZmiIqKwsSJE/HTTz9h69atsLOzK9ftfZpmz56NzZs3l0tbGzZsQL9+/dCiRQtMnDgRzs7OSEpKQlxcHL744gu88cYbePPNNxEYGKg8JykpCbNmzcKYMWPQoUMHZX79+vXLpU/VAQNMJQkJCcELL7ygPJ4xYwZiYmLQo0cPvPLKKzh9+jRsbGwAABYWFrCwqNg/1d27d2FrawsrK6sKXc/jlPcOviKkpqbC39+/srshpdTUVACo0oeOKkLhaGt5c3R0xKBBg5THb775Jho1aoRPP/0U77//fqk/T0lJSejfvz+8vb0RExODWrVqKcvCwsJw/vx5bN26VZk3efJk7N27F8uWLcP48eOV+ePGjcPy5csxfvx4vP3221i5cmU5bOXT16JFC2zZsgVHjhxBq1atnri92bNnw9/fHwcOHHhkH1v4mdDr9dDr9cr8w4cPY9asWdDr9aq/Mf0fHkKqQrp06YKZM2fi0qVLWL16tTK/qHNgoqOj0b59ezg5OcHe3h6NGjXCv//9bwD3v+W2bt0aADB8+HBl6LFwqL1wyNNgMKBjx46wtbVVnvvwOTCF8vPz8e9//xseHh6ws7PDK6+8gsuXL6tqijtn4ME2H9e3os6BuXPnDqZMmYK6detCq9WiUaNG+Pjjj/HwD6lrNBqMHz8eP//8M5o0aQKtVovGjRsjKiqq6Bf8IampqRg5ciTc3d1hbW2N5s2b49tvv1WWFw4vJyUlYevWrUrfL168WKr2C6WlpSE8PFzZngYNGuCjjz5SjTwVHrP/+OOP8fnnn6N+/frQarVo3bo1Dh069EibGzZsgL+/P6ytrdGkSRNs3LhR9VpevHgRrq6uAIA5c+YofZ89e7aqnStXrqB3796wt7eHq6sr3n77beTn55dqu1asWIHGjRtDq9XC09MTYWFhSEtLU5b7+Pgoo1aurq5Frv9BRqMRw4cPR506daDValGrVi306tVLeb19fHxw8uRJ7N27V9mewvdZceeNFR7CffBvJoTABx98gDp16sDW1hadO3fGyZMnVc+7cOECNBoNFi9e/Eib+/fvh0ajwbp164rdlqLOwSg8HPEkr/nDbG1t0bZtW9y5cwfXr18v9fPmz5+P27dv46uvvlKFl0INGjTAxIkTAQB//fUXvvrqK3Tp0kUVXgqFhYWhc+fO+PLLL/HXX3+VuN5ff/0Vr732Gry8vKDValG3bl1MmjTpkcNVprxWaWlpGDZsGBwdHeHk5IShQ4eq3oelMWHCBDg7O5f4/jTFn3/+idatWxf5BdHNza1c1vEs4ghMFTN48GD8+9//xs6dOzF69Ogia06ePIkePXqgWbNmmDt3LrRaLc6fP4/ffvsNAODn54e5c+c+Mvz44osvKm3cuHEDISEh6N+/PwYNGgR3d/cS+/Xhhx9Co9Fg+vTpSE1NxZIlSxAYGIiEhARlpKg0StO3Bwkh8Morr2DPnj0YOXIkWrRogR07dmDq1Km4cuXKI/+g7Nu3Dz/99BPeeustODg4YOnSpejbty+Sk5NRo0aNYvuVlZWFTp064fz58xg/fjzq1auHDRs2YNiwYUhLS8PEiRPh5+eH//73v5g0aRLq1KmDKVOmAIASDErj7t27eOmll3DlyhW8+eab8PLywv79+zFjxgxcu3YNS5YsUdWvXbsWmZmZePPNN6HRaDB//nz06dMHFy5cUL5db926Ff369UPTpk0RERGBW7duYeTIkahdu7bSjqurK1auXIlx48bhH//4B/r06QMAqkOV+fn5CA4ORps2bfDxxx9j165dWLhwIerXr49x48aVuF2zZ8/GnDlzEBgYiHHjxiExMRErV67EoUOH8Ntvv8HS0hJLlizBd999h40bN2LlypWwt7dXrf9hffv2xcmTJzFhwgT4+PggNTUV0dHRSE5Oho+PD5YsWYIJEybA3t4e77zzDgA89n1clFmzZuGDDz5A9+7d0b17dxw5cgRBQUHIyclRap577jm0a9cOa9aswaRJk1TPX7NmDRwcHNCrVy+T1/0kr3lxLly4AHNzc5NGuTZv3oznnnuu2M/hg7Zv3478/HwMGTKk2JohQ4Zgz549iIqKwqhRo4qt27BhA+7evYtx48ahRo0a+P3337Fs2TL89ddf2LBhg6q2NK+VEAK9evXCvn37MHbsWPj5+WHjxo0YOnRoKV+J+3Q6HSZNmoRZs2aVyyiMt7c3du/ejb/++gt16tR5orboAYKeqm+++UYAEIcOHSq2xtHRUbRs2VJ5/N5774kH/1SLFy8WAMT169eLbePQoUMCgPjmm28eWfbSSy8JAGLVqlVFLnvppZeUx3v27BEARO3atUVGRoYyf/369QKA+OSTT5R53t7eYujQoY9ts6S+DR06VHh7eyuPf/75ZwFAfPDBB6q6V199VWg0GnH+/HllHgBhZWWlmnfs2DEBQCxbtuyRdT1oyZIlAoBYvXq1Mi8nJ0fo9Xphb2+v2nZvb28RGhpaYnsP1j74mrz//vvCzs5OnD17VlX3r3/9S5ibm4vk5GQhhBBJSUkCgKhRo4a4efOmUvfLL78IAGLz5s3KvKZNm4o6deqIzMxMZV5sbKwAoHotr1+/LgCI995775F+Dh06VAAQc+fOVc1v2bKlCAgIKHEbU1NThZWVlQgKChL5+fnK/E8//VQAEF9//bUyr/C9XNJ7Vwghbt26JQCIBQsWlFjXuHFj1Xvr4fU8rPDzl5SUpOp7aGioKCgoUOr+/e9/CwCqv91nn30mAIjTp08r83JyckTNmjWLfN8/qPDv+eB7/klecyHuf658fX3F9evXxfXr18Xp06fFP//5TwFA9OzZU7UeOzu7YttJT08XAESvXr0eu04hhAgPDxcAxNGjR4utOXLkiAAgJk+eXGJbd+/efWReRESE0Gg04tKlS8q80r5WhfuL+fPnK/Py8vJEhw4dit3nPKhwf7dhwwaRlpYmnJ2dxSuvvKLqx8Ov5UsvvSQaN25cYrtfffWVsn/q3LmzmDlzpvj1119Vn5eHlbSfpPt4CKkKsre3L/FqpMJvVr/88kuZT3jVarUYPnx4qeuHDBkCBwcH5fGrr76KWrVqYdu2bWVaf2lt27YN5ubm+Oc//6maP2XKFAghsH37dtX8wMBA1UluzZo1g06nw4ULFx67Hg8PDwwYMECZZ2lpiX/+85+4ffs29u7dWw5bc/8bZ4cOHeDs7Iy///5bmQIDA5Gfn4+4uDhVfb9+/eDs7Kw8LhyxKtyeq1ev4vjx4xgyZIjq6oiXXnoJTZs2Nbl/Y8eOVT3u0KHDY1+7Xbt2IScnB+Hh4TAz+79dyujRo6HT6VTnTpSWjY0NrKysEBsbi1u3bpn8/NIq7PuECRNUh5yKujT+9ddfh7W1NdasWaPM27FjB/7+++8nOkehLK95oTNnzsDV1RWurq7w8/PDsmXLEBoaiq+//rrU68/IyAAA1ee7JIX7ppLqC5cVtl2cB0dv79y5g7///hsvvvgihBA4evToI/WPe622bdsGCwsL1eiVubk5JkyYUGI/iuLo6Ijw8HBs2rSpyL6YYsSIEYiKikKnTp2wb98+vP/+++jQoQMaNmyI/fv3P1HbzzIGmCro9u3bJe4c+vXrh3bt2mHUqFFwd3dH//79sX79epPCTO3atU06Ybdhw4aqxxqNBg0aNDD5/A9TXbp0CZ6eno+8Hn5+fsryB3l5eT3ShrOz82P/Ebx06RIaNmyo+ge4pPWU1blz5xAVFaX8o1M4FV59UHhCX6GHt6cwzBRuT2G/irqix9SrfKytrR85HFba1w4AGjVqpJpvZWWF5557rkyvnVarxUcffYTt27fD3d0dHTt2xPz582E0Gk1uqySFfXv4/e3q6qoKjsD9Lw4PXvYK3D98VLt2bXTp0qVM6y/ra17Ix8cH0dHR2LVrF/bt2wej0YgtW7agZs2ape6DTqcDgFLfwqHws1hSfWlCDgAkJydj2LBhcHFxUc5reemllwAA6enpqtrSvFaXLl1CrVq1HrnU+eH3ZmlNnDgRTk5O5XIuTHBwMHbs2IG0tDTExcUhLCwMly5dQo8ePR753FPp8ByYKuavv/5Cenp6if/42NjYIC4uDnv27MHWrVsRFRWFH374AV26dMHOnTthbm7+2PWYct5KaRV3s738/PxS9ak8FLce8dAJv5WloKAAL7/8MqZNm1bk8ueff171+Gluz9P6G5VWeHg4evbsiZ9//hk7duzAzJkzERERgZiYGLRs2bLE55b0XnwSQ4YMwYYNG7B//340bdoUmzZtwltvvfVI8C2tJ33N7ezsVJfeloVOp4OnpydOnDhRqvrCUP/HH38Ue4uGP/74AwBKvFovPz8fL7/8Mm7evInp06fD19cXdnZ2uHLlCoYNG/bIF7LKeH8WjsLMnj37iUdhCtna2qJDhw7o0KEDatasiTlz5mD79u0mn6dDHIGpcv773/8CuJ/WS2JmZoauXbti0aJFOHXqFD788EPExMRgz549AIrfgZfVuXPnVI+FEDh//rzqiiFnZ+ciz/Z/+Bu4KX3z9vbG1atXH/m2d+bMGWV5efD29sa5c+ce2WmW93rq16+P27dvIzAwsMipqBGkx/UbAM6fP//IsofnVdTdnAv7kJiYqJqfk5ODpKSkJ3rt6tevjylTpmDnzp04ceIEcnJysHDhQmV5cdtUOHry8Pvx4fdiYd8efn9fv369yFGQbt26wdXVFWvWrMHGjRtx9+5daW5kWJIePXrgzz//RHx8/GNrQ0JCYG5uruyrivLdd9/BwsIC3bp1K7bm+PHjOHv2LBYuXIjp06ejV69eCAwMhKenZ5m2Abj/97x27Rpu376tmv/we9MU4eHhcHJyUu6hVJ4Kb6Vx7dq1cm/7WcAAU4XExMTg/fffR7169TBw4MBi627evPnIvMJvQtnZ2QCg3EDK1MsHi/Pdd9+pQsSPP/6Ia9euISQkRJlXv359HDhwQHX1xpYtWx653NqUvnXv3h35+fn49NNPVfMXL14MjUajWv+T6N69O4xGI3744QdlXl5eHpYtWwZ7e3tlWPtJvf7664iPj8eOHTseWZaWloa8vDyT2vP09ESTJk3w3XffqXbae/fuxfHjx1W1tra2ynrKU2BgIKysrLB06VLVyNBXX32F9PR0hIaGmtzm3bt3ce/ePdW8+vXrw8HBQXmPA/ffS0VtT+F5UA+eU3Tnzh3VZfGFfbe0tMSyZctUfX/4arBCFhYWGDBgANavX4/IyEg0bdq0xCupZDFt2jTY2dlh1KhRSElJeWT5n3/+iU8++QQAULduXQwfPhy7du0q8j4vq1atQkxMDEaOHFniFTeFIyoPvu5CCGU9ZdG9e3fk5eWp+pWfn49ly5aVuc3CUZhffvmlzHcP3717d5HzC88hLOshrmcdDyFVku3bt+PMmTPIy8tDSkoKYmJiEB0dDW9vb2zatKnEm17NnTsXcXFxCA0Nhbe3N1JTU7FixQrUqVMH7du3B3B/B+7k5IRVq1bBwcEBdnZ2aNOmDerVq1em/rq4uKB9+/YYPnw4UlJSsGTJEjRo0EB1qfeoUaPw448/olu3bnj99dfx559/YvXq1Y/cOdKUvvXs2ROdO3fGO++8g4sXL6J58+bYuXMnfvnlF4SHh5fbXSnHjBmDzz77DMOGDYPBYICPjw9+/PFH/Pbbb1iyZEmpT3B8nKlTp2LTpk3K3UsDAgJw584dHD9+HD/++CMuXrxo0vkLwP2fNujVqxfatWuH4cOH49atW/j000/RpEkTVaixsbGBv78/fvjhBzz//PNwcXFBkyZNSnUb9JK4urpixowZmDNnDrp164ZXXnkFiYmJWLFiBVq3bl2mE1zPnj2Lrl274vXXX4e/vz8sLCywceNGpKSkoH///kpdQEAAVq5ciQ8++AANGjSAm5sbunTpgqCgIHh5eWHkyJGYOnUqzM3N8fXXX8PV1RXJycmqvr/99tuIiIhAjx490L17dxw9ehTbt28v9u8wZMgQLF26FHv27MFHH31k+gtWCXJzc/HBBx88Mt/FxQVvvfUW6tevj7Vr16Jfv37w8/NT3Yl3//79yi0FCi1evBhnzpzBW2+9haioKGWkZceOHfjll1/w0ksvqUbKiuLr64v69evj7bffxpUrV6DT6fC///3viU7a7tmzJ9q1a4d//etfuHjxIvz9/fHTTz89cj6NqSZOnIjFixfj2LFjRd5d+Pr160W+voVfRnv16oV69eqhZ8+eqF+/Pu7cuYNdu3Zh8+bNaN26NXr27PlE/XtmVdr1T8+owss4CycrKyvh4eEhXn75ZfHJJ5+oLtct9PAlobt37xa9evUSnp6ewsrKSnh6eooBAwY8cmnuL7/8Ivz9/YWFhYXqcrySLvsr7jLqdevWiRkzZgg3NzdhY2MjQkNDVZc5Flq4cKGoXbu20Gq1ol27duLw4cOPtFlS3x6+jFoIITIzM8WkSZOEp6ensLS0FA0bNhQLFixQXfYqxP3LqMPCwh7pU3GXdz8sJSVFDB8+XNSsWVNYWVmJpk2bFnkJ45NcRl24PTNmzBANGjQQVlZWombNmuLFF18UH3/8scjJyRFC/N9lt0VdRowiLoX+/vvvha+vr9BqtaJJkyZi06ZNom/fvsLX11dVt3//fhEQECCsrKxU7RR3qW1xlyMX5dNPPxW+vr7C0tJSuLu7i3Hjxolbt24V2d7jLqP++++/RVhYmPD19RV2dnbC0dFRtGnTRqxfv15VZzQaRWhoqHBwcBAAVO8zg8Eg2rRpI6ysrISXl5dYtGjRI5dRCyFEfn6+mDNnjqhVq5awsbERnTp1EidOnCjxfdO4cWNhZmYm/vrrr1K9NsVdRv0kr3lpLt8tXM+D+5wHp/r166tqz549K0aPHi18fHyElZWVcHBwEO3atRPLli0T9+7dU9VmZ2eLxYsXi4CAAGFnZydsbW1Fq1atxJIlS5T38eOcOnVKBAYGCnt7e1GzZk0xevRo5dYHZX2tbty4IQYPHix0Op1wdHQUgwcPFkePHjX5Muri1lXUZdTFvb5du3YVQgixbt060b9/f1G/fn1hY2MjrK2thb+/v3jnnXeK3OcLwcuoS0MjRBU5u5GIylWLFi3g6uqK6Ojoyu5KtdOyZUu4uLgUe2iAiCoez4Ehklxubu4j587Exsbi2LFjlfajjdXZ4cOHkZCQUOKdaImo4nEEhkhyFy9eRGBgIAYNGgRPT0+cOXMGq1atgqOjI06cOFHiTyhQ6Z04cQIGgwELFy7E33//jQsXLlTIDzQSUenwJF4iyTk7OyMgIABffvklrl+/Djs7O4SGhmLevHkML+Xoxx9/xNy5c9GoUSOsW7eO4YWoknEEhoiIiKTDc2CIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJhwGGiIiIpMMAQ0RERNJhgCEiIiLpMMAQERGRdBhgiIiISDoMMERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJx6KyO1BRCgoKcPXqVTg4OECj0VR2d4ieOUIIZGZmwtPTE2ZmcnxX4n6DqPKVdt9RbQPM1atXUbdu3cruBtEz7/Lly6hTp05ld6NUuN8gqjoet++otgHGwcEBwP0XQKfTVXJviJ49GRkZqFu3rvJZlAH3G0SVr7T7jmobYAqHf3U6HXdERJVIpkMx3G8QVR2P23fIcWCaiIiI6AEMMERERCQdBhgiIiKSDgMMERERScfkAHPlyhUMGjQINWrUgI2NDZo2bYrDhw8ry4UQmDVrFmrVqgUbGxsEBgbi3LlzqjZu3ryJgQMHQqfTwcnJCSNHjsTt27dVNX/88Qc6dOgAa2tr1K1bF/Pnzy/jJhIREVF1Y1KAuXXrFtq1awdLS0ts374dp06dwsKFC+Hs7KzUzJ8/H0uXLsWqVatw8OBB2NnZITg4GPfu3VNqBg4ciJMnTyI6OhpbtmxBXFwcxowZoyzPyMhAUFAQvL29YTAYsGDBAsyePRuff/55OWwyERERSU+YYPr06aJ9+/bFLi8oKBAeHh5iwYIFyry0tDSh1WrFunXrhBBCnDp1SgAQhw4dUmq2b98uNBqNuHLlihBCiBUrVghnZ2eRnZ2tWnejRo1K3df09HQBQKSnp5f6OURUfmT8DMrYZ6LqprSfQ5NGYDZt2oQXXngBr732Gtzc3NCyZUt88cUXyvKkpCQYjUYEBgYq8xwdHdGmTRvEx8cDAOLj4+Hk5IQXXnhBqQkMDISZmRkOHjyo1HTs2BFWVlZKTXBwMBITE3Hr1q0i+5adnY2MjAzVRERVw8qVK9GsWTPl/ip6vR7bt29Xlt+7dw9hYWGoUaMG7O3t0bdvX6SkpKjaSE5ORmhoKGxtbeHm5oapU6ciLy9PVRMbG4tWrVpBq9WiQYMGiIyMfBqbR0SVwKQAc+HCBaxcuRINGzbEjh07MG7cOPzzn//Et99+CwAwGo0AAHd3d9Xz3N3dlWVGoxFubm6q5RYWFnBxcVHVFNXGg+t4WEREBBwdHZWJtwMnqjrq1KmDefPmwWAw4PDhw+jSpQt69eqFkydPAgAmTZqEzZs3Y8OGDdi7dy+uXr2KPn36KM/Pz89HaGgocnJysH//fnz77beIjIzErFmzlJqkpCSEhoaic+fOSEhIQHh4OEaNGoUdO3Y89e2lypGfn4/Y2FisW7cOsbGxyM/Pr+wuUUUyZVjH0tJS6PV61bwJEyaItm3bCiGE+O233wQAcfXqVVXNa6+9Jl5//XUhhBAffviheP755x9p29XVVaxYsUIIIcTLL78sxowZo1p+8uRJAUCcOnWqyL7du3dPpKenK9Ply5c5FExUiR43DOzs7Cy+/PJLkZaWJiwtLcWGDRuUZadPnxYARHx8vBBCiG3btgkzMzNhNBqVmpUrVwqdTqccap42bZpo3Lixah39+vUTwcHB5dZnqrr+97//CR8fHwFAmXx8fMT//ve/yu4amahCDiHVqlUL/v7+qnl+fn5ITk4GAHh4eADAI0O/KSkpyjIPDw+kpqaqlufl5eHmzZuqmqLaeHAdD9NqtcrwNG8DTlR15efn4/vvv8edO3eg1+thMBiQm5urOvTs6+sLLy8v1aHnpk2bqkZmg4ODkZGRoYzixMfHq9oorClsg6qvn376Ca+++iqaNGmC5cuX4+uvv8by5cvRpEkTvPrqq/jpp58qu4tUAUz6LaR27dohMTFRNe/s2bPw9vYGANSrVw8eHh7YvXs3WrRoAeD+FUUHDx7EuHHjAAB6vR5paWkwGAwICAgAAMTExKCgoABt2rRRat555x3k5ubC0tISABAdHY1GjRqprngiInkcP34cer0e9+7dg729PTZu3Ah/f38kJCTAysoKTk5OqvqHDz0/7rBycTUZGRnIysqCjY3NI33Kzs5Gdna28pjnzsknPz8fU6ZMQUBAAI4fP44tW7Yoy7y9vREQEIC3334bvXr1grm5eSX2lMqbSQFm0qRJePHFF/Gf//wHr7/+On7//Xd8/vnnyuXNGo0G4eHh+OCDD9CwYUPUq1cPM2fOhKenJ3r37g3g/ohNt27dMHr0aKxatQq5ubkYP348+vfvD09PTwDAG2+8gTlz5mDkyJGYPn06Tpw4gU8++QSLFy8u362nSnP37l2cOXOmxJqsrCxcvHgRPj4+Rf7jU8jX1xe2trbl3UUqZ40aNUJCQgLS09Px448/YujQodi7d2+l9ikiIgJz5syp1D7Qk/n1119x8eJFXLx4ET179sT333+PJk2a4MSJE/jPf/6DzZs3K3WdOnWq3M5S+TL12NTmzZtFkyZNhFarFb6+vuLzzz9XLS8oKBAzZ84U7u7uQqvViq5du4rExERVzY0bN8SAAQOEvb290Ol0Yvjw4SIzM1NVc+zYMdG+fXuh1WpF7dq1xbx580zqJ49lV20Gg0F1rPpJJoPBUNmbQ0V43Gewa9euYsyYMWL37t0CgLh165ZquZeXl1i0aJEQQoiZM2eK5s2bq5ZfuHBBABBHjhwRQgjRoUMHMXHiRFXN119/LXQ6XbF95Llz8lu9erUAIEJCQkR+fr5qWX5+vggJCREAxOrVqyuph2Sq0v77bdIIDAD06NEDPXr0KHa5RqPB3LlzMXfu3GJrXFxcsHbt2hLX06xZM/z666+mdo8k4evrC4PBUGLN6dOnMWjQIKxevRp+fn4ltkXyKSgoQHZ2NgICAmBpaYndu3ejb9++AIDExEQkJydDr9cDuH9Y+cMPP0RqaqpyFWN0dDR0Op1yXp5er8e2bdtU64iOjlbaKIpWq4VWq62IzaOn5Pr16wCAPn36wMxMfVqnmZkZevfuje3btyt1VH2YHGCIyoOtrS1atWpVqlo/P79S11LVNGPGDISEhMDLywuZmZlYu3YtYmNjsWPHDjg6OmLkyJGYPHkyXFxcoNPpMGHCBOj1erRt2xYAEBQUBH9/fwwePBjz58+H0WjEu+++i7CwMCWAjB07Fp9++immTZuGESNGICYmBuvXr8fWrVsrc9Opgrm6ugK4fyLviBEjVCGmoKAAP//8s6qOqg/+mCMRVbjU1FQMGTIEjRo1QteuXXHo0CHs2LEDL7/8MgBg8eLF6NGjB/r27YuOHTvCw8NDdeWIubk5tmzZAnNzc+j1egwaNAhDhgxRjfTWq1cPW7duRXR0NJo3b46FCxfiyy+/RHBw8FPfXnp6ateuDQCIiopC7969ER8fj8zMTMTHx6N3796IiopS1VH1oRFCiMruREXIyMiAo6Mj0tPTeUm1pI4cOYKAgAAYDAaOwEhIxs+gjH1+1uXn56NBgwaoWbMm/v77b1y8eFFZVq9ePdSoUQM3btzAuXPneBWSJEr7OeQhJCIikpa5uTkWLlyIV199FaGhoXj77bdhY2ODrKwsREVFYevWrfjxxx8ZXqohBhgiIpJGUbdg8PHxwfz587F48WLVfWBq166N+fPnw8fHB0eOHHmkLd6CQW4MMEREJI0zZ84oN0F9nCtXrmDq1KnFLufhabkxwBARkTQedwuG0t5+obAtkhcDDBERSaO0t2Dg7ReqP15GTURERNJhgCEiIiLpMMAQERGRdBhgiIiISDoMMERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJhwGGiIiIpMMAQ0RERNJhgCEiIiLpMMAQERGRdBhgiIiISDoMMERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHYvK7gAREVGhc+fOITMzs8zPP336tOq/ZeXg4ICGDRs+URtUwYQJ3nvvPQFANTVq1EhZnpWVJd566y3h4uIi7OzsRJ8+fYTRaFS1cenSJdG9e3dhY2MjXF1dxdtvvy1yc3NVNXv27BEtW7YUVlZWon79+uKbb74xpZtCCCHS09MFAJGenm7yc6lqMBgMAoAwGAyV3RUqAxk/gzL2uTo5e/bsI//GVOZ09uzZyn5Jnkml/RyaPALTuHFj7Nq1S3lsYfF/TUyaNAlbt27Fhg0b4OjoiPHjx6NPnz747bffAAD5+fkIDQ2Fh4cH9u/fj2vXrmHIkCGwtLTEf/7zHwBAUlISQkNDMXbsWKxZswa7d+/GqFGjUKtWLQQHB5vaXSIikkThyMvq1avh5+dXpjaysrJw8eJF+Pj4wMbGpkxtnD59GoMGDXqikSCqeCYHGAsLC3h4eDwyPz09HV999RXWrl2LLl26AAC++eYb+Pn54cCBA2jbti127tyJU6dOYdeuXXB3d0eLFi3w/vvvY/r06Zg9ezasrKywatUq1KtXDwsXLgQA+Pn5Yd++fVi8eDEDDBHRM8DPzw+tWrUq8/PbtWtXjr2hqsrkk3jPnTsHT09PPPfccxg4cCCSk5MBAAaDAbm5uQgMDFRqfX194eXlhfj4eABAfHw8mjZtCnd3d6UmODgYGRkZOHnypFLzYBuFNYVtFCc7OxsZGRmqiYiqhoiICLRu3RoODg5wc3ND7969kZiYqKrp1KkTNBqNaho7dqyqJjk5GaGhobC1tYWbmxumTp2KvLw8VU1sbCxatWoFrVaLBg0aIDIysqI3j4gqgUkBpk2bNoiMjERUVBRWrlyJpKQkdOjQAZmZmTAajbCysoKTk5PqOe7u7jAajQAAo9GoCi+FywuXlVSTkZGBrKysYvsWEREBR0dHZapbt64pm0ZEFWjv3r0ICwvDgQMHEB0djdzcXAQFBeHOnTuqutGjR+PatWvKNH/+fGVZ4SHonJwc7N+/H99++y0iIyMxa9YspabwEHTnzp2RkJCA8PBwjBo1Cjt27Hhq20pET4dJh5BCQkKU/2/WrBnatGkDb29vrF+/vszHGsvLjBkzMHnyZOVxRkYGQwxRFREVFaV6HBkZCTc3NxgMBnTs2FGZb2trW+QhagA8BE1EKk90GbWTkxOef/55nD9/Hi+//DJycnKQlpamGoVJSUlRdkgeHh74/fffVW2kpKQoywr/WzjvwRqdTldiSNJqtdBqtU+yOVTOqsLlkLwUsmpKT08HALi4uKjmr1mzBqtXr4aHhwd69uyJmTNnwtbWFkDxh6DHjRuHkydPomXLlsUegg4PDy+yH9nZ2cjOzlYe89AzkTyeKMDcvn0bf/75JwYPHoyAgABYWlpi9+7d6Nu3LwAgMTERycnJ0Ov1AAC9Xo8PP/wQqampcHNzAwBER0dDp9PB399fqdm2bZtqPdHR0UobJIdz587h+eefL5e2Bg0a9ETPP3v2LENMFVJQUIDw8HC0a9cOTZo0Uea/8cYb8Pb2hqenJ/744w9Mnz4diYmJ+OmnnwCUzyHoh78ERUREYM6cOeW+jURU8UwKMG+//TZ69uwJb29vXL16Fe+99x7Mzc0xYMAAODo6YuTIkZg8eTJcXFyg0+kwYcIE6PV6tG3bFgAQFBQEf39/DB48GPPnz4fRaMS7776LsLAwZfRk7Nix+PTTTzFt2jSMGDECMTExWL9+PbZu3Vr+W08VpipcDslLIaumsLAwnDhxAvv27VPNHzNmjPL/TZs2Ra1atdC1a1f8+eefqF+/foX0hYeeieRlUoD566+/MGDAANy4cQOurq5o3749Dhw4AFdXVwDA4sWLYWZmhr59+yI7OxvBwcFYsWKF8nxzc3Ns2bIF48aNg16vh52dHYYOHYq5c+cqNfXq1cPWrVsxadIkfPLJJ6hTpw6+/PJLHr+WFC+HpAeNHz8eW7ZsQVxcHOrUqVNibZs2bQAA58+fR/369SvkEDQPPRPJy6QA8/3335e43NraGsuXL8fy5cuLrfH29n7kENHDOnXqhKNHj5rSNSKqwoQQmDBhAjZu3IjY2FjUq1fvsc9JSEgAANSqVQsAD0ETkRp/zJGIKlxYWBhWr16NtWvXwsHBAUajEUajUbk1wp9//on3338fBoMBFy9exKZNmzBkyBB07NgRzZo1A6A+BH3s2DHs2LGjyEPQFy5cwLRp03DmzBmsWLEC69evx6RJkypt24moYjDAEFGFW7lyJdLT09GpUyfUqlVLmX744QcAgJWVFXbt2oWgoCD4+vpiypQp6Nu3LzZv3qy0UXgI2tzcHHq9HoMGDcKQIUOKPAQdHR2N5s2bY+HChTwETVRN8deoiajCCSFKXF63bl3s3bv3se3wEHT1psm7h5YeZrBJOwtcrbzv1zZpZ9HSwwyavHuV1gd6PAYYIiKqEqxvJ+PIm/ZA3JtAXOX1ww/AkTftcfp2MoAXK68jVCIGGCIiqhLu2Xuh1We3sWbNGvj5+lZaP06fOYOBAwfiq+5eldYHejwGGCIiqhKEhTWOGguQ5fQ84Nmi0vqRZSzAUWMBhIV1pfWBHo8n8RIREZF0GGCIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJhwGGiIiIpMMAQ0RERNJhgCEiIiLpMMAQERGRdBhgiIiISDoMMERERCQd/hYSERFVCXfv3gUAHDlypMxtZGVl4eLFi/Dx8YGNjU2Z2jh9+nSZ109PDwMMERFVCWfOnAEAjB49upJ7cp+Dg0Nld4FKwABDRERVQu/evQEAvr6+sLW1LVMbp0+fxqBBg7B69Wr4+fmVuS8ODg5o2LBhmZ9PFY8BhoiIqoSaNWti1KhR5dKWn58fWrVqVS5tUdXEk3iJiIhIOgwwREREJB0GGCIiIpIOz4GhCqHJu4eWHmawSTsLXK2cnGyTdhYtPcygybtXKesnIqKKwwBDFcL6djKOvGkPxL0JxFVOH/wAHHnTHqdvJwN4sXI6QUREFYIBhirEPXsvtPrsNtasWQM/X99K6cPpM2cwcOBAfNXdq1LWT0REFYcBhiqEsLDGUWMBspyeBzxbVEofsowFOGosgLCwrpT1ExFRxeFJvERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpLOEwWYefPmQaPRIDw8XJl37949hIWFoUaNGrC3t0ffvn2RkpKiel5ycjJCQ0Nha2sLNzc3TJ06FXl5eaqa2NhYtGrVClqtFg0aNEBkZOSTdJWIiIiqkTIHmEOHDuGzzz5Ds2bNVPMnTZqEzZs3Y8OGDdi7dy+uXr2KPn36KMvz8/MRGhqKnJwc7N+/H99++y0iIyMxa9YspSYpKQmhoaHo3LkzEhISEB4ejlGjRmHHjh1l7S4RERFVI2UKMLdv38bAgQPxxRdfwNnZWZmfnp6Or776CosWLUKXLl0QEBCAb775Bvv378eBAwcAADt37sSpU6ewevVqtGjRAiEhIXj//fexfPly5OTkAABWrVqFevXqYeHChfDz88P48ePx6quvYvHixeWwyUT0tEVERKB169ZwcHCAm5sbevfujcTERFUNR2+JyBRlCjBhYWEIDQ1FYGCgar7BYEBubq5qvq+vL7y8vBAfHw8AiI+PR9OmTeHu7q7UBAcHIyMjAydPnlRqHm47ODhYaaMo2dnZyMjIUE1EVDXs3bsXYWFhOHDgAKKjo5Gbm4ugoCDcuXNHqeHoLRGZwsLUJ3z//fc4cuQIDh069Mgyo9EIKysrODk5qea7u7vDaDQqNQ+Gl8LlhctKqsnIyEBWVhZsbGweWXdERATmzJlj6uYQ0VMQFRWlehwZGQk3NzcYDAZ07NhRGb1du3YtunTpAgD45ptv4OfnhwMHDqBt27bK6O2uXbvg7u6OFi1a4P3338f06dMxe/ZsWFlZqUZvAcDPzw/79u3D4sWLERwc/NS3m4gqjkkjMJcvX8bEiROxZs0aWFtbV1SfymTGjBlIT09XpsuXL1d2l4ioGOnp6QAAFxcXAJU3esuRWyJ5mRRgDAYDUlNT0apVK1hYWMDCwgJ79+7F0qVLYWFhAXd3d+Tk5CAtLU31vJSUFHh4eAAAPDw8HjmuXfj4cTU6na7I0RcA0Gq10Ol0qomIqp6CggKEh4ejXbt2aNKkCYCnN3r7sIiICDg6OipT3bp1y2UbiajimRRgunbtiuPHjyMhIUGZXnjhBQwcOFD5f0tLS+zevVt5TmJiIpKTk6HX6wEAer0ex48fR2pqqlITHR0NnU4Hf39/pebBNgprCtsgInmFhYXhxIkT+P777yu7Kxy5JZKYSefAODg4KN+YCtnZ2aFGjRrK/JEjR2Ly5MlwcXGBTqfDhAkToNfr0bZtWwBAUFAQ/P39MXjwYMyfPx9GoxHvvvsuwsLCoNVqAQBjx47Fp59+imnTpmHEiBGIiYnB+vXrsXXr1vLYZiKqJOPHj8eWLVsQFxeHOnXqKPM9PDyU0dsHR2EeHr39/fffVe096eitVqtV9jtEJJdyvxPv4sWL0aNHD/Tt2xcdO3aEh4cHfvrpJ2W5ubk5tmzZAnNzc+j1egwaNAhDhgzB3LlzlZp69eph69atiI6ORvPmzbFw4UJ8+eWXPAmPSFJCCIwfPx4bN25ETEwM6tWrp1oeEBDA0VsiMo2optLT0wUAkZ6eXtldeSYZDAYBQBgMhme6D8+yBz+D48aNE46OjiI2NlZcu3ZNme7evavUjx07Vnh5eYmYmBhx+PBhodfrhV6vV5bn5eWJJk2aiKCgIJGQkCCioqKEq6urmDFjhlJz4cIFYWtrK6ZOnSpOnz4tli9fLszNzUVUVJTJfSY58XMvv9J+DvlbSERU4VauXIn09HR06tQJtWrVUqYffvhBqeHoLT2p+Ph4BAQEALg/qlfSvcNIfibfB4aIyFRCiMfWWFtbY/ny5Vi+fHmxNd7e3ti2bVuJ7XTq1AlHjx41uY8kN41G88i8F198EUDp3n8kHwYYqhB3794FABw5cqTMbWRlZeHixYvw8fEp9vL5kpw+fbrM6yYieRQVXh5ezhBT/TDAUIU4c+YMAGD06NGV3JP7V88RUfVU2sNE8fHxPJm7mmGAoQrRu3dvAPfvpmpra1umNk6fPo1BgwZh9erV8PPzK1MbDg4OaNiwYZmeS0RVz927d5UvSMD/HSZ6nBdffBEGg0E170n2T1T5GGCoQtSsWROjRo0ql7b8/PzQqlWrcmmLiOR25swZ5URdUz38PIPBwH2LxBhgiIhIGr6+vqqRFFPCTFEjMCQvBhgiIpKGra1tmUdNONpSvfA+MERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJhwGGiIiIpMMAQ0RERNJhgCEiIiLpMMAQERGRdBhgiIiISDoMMERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIumYFGBWrlyJZs2aQafTQafTQa/XY/v27crye/fuISwsDDVq1IC9vT369u2LlJQUVRvJyckIDQ2Fra0t3NzcMHXqVOTl5alqYmNj0apVK2i1WjRo0ACRkZFl30IiIiKqdkwKMHXq1MG8efNgMBhw+PBhdOnSBb169cLJkycBAJMmTcLmzZuxYcMG7N27F1evXkWfPn2U5+fn5yM0NBQ5OTnYv38/vv32W0RGRmLWrFlKTVJSEkJDQ9G5c2ckJCQgPDwco0aNwo4dO8ppk4noaYuLi0PPnj3h6ekJjUaDn3/+WbV82LBh0Gg0qqlbt26qmps3b2LgwIHQ6XRwcnLCyJEjcfv2bVXNH3/8gQ4dOsDa2hp169bF/PnzK3rTiKiyiCfk7OwsvvzyS5GWliYsLS3Fhg0blGWnT58WAER8fLwQQoht27YJMzMzYTQalZqVK1cKnU4nsrOzhRBCTJs2TTRu3Fi1jn79+ong4GCT+pWeni4AiPT09LJuGlUyg8EgAAiDwVDZXaEyePAzuG3bNvHOO++In376SQAQGzduVNUOHTpUdOvWTVy7dk2Zbt68qarp1q2baN68uThw4ID49ddfRYMGDcSAAQNU63N3dxcDBw4UJ06cEOvWrRM2Njbis88+K1OfSQ4ASj2RHEr7ObQoa/DJz8/Hhg0bcOfOHej1ehgMBuTm5iIwMFCp8fX1hZeXF+Lj49G2bVvEx8ejadOmcHd3V2qCg4Mxbtw4nDx5Ei1btkR8fLyqjcKa8PDwEvuTnZ2N7Oxs5XFGRkZZN42IyllISAhCQkJKrNFqtfDw8Chy2enTpxEVFYVDhw7hhRdeAAAsW7YM3bt3x8cffwxPT0+sWbMGOTk5+Prrr2FlZYXGjRsjISEBixYtwpgxY8p9m4iocpl8Eu/x48dhb28PrVaLsWPHYuPGjfD394fRaISVlRWcnJxU9e7u7jAajQAAo9GoCi+FywuXlVSTkZGBrKysYvsVEREBR0dHZapbt66pm0ZElSg2NhZubm5o1KgRxo0bhxs3bijL4uPj4eTkpIQXAAgMDISZmRkOHjyo1HTs2BFWVlZKTXBwMBITE3Hr1q2ntyFE9FSYHGAaNWqEhIQEHDx4EOPGjcPQoUNx6tSpiuibSWbMmIH09HRlunz5cmV3iYhKqVu3bvjuu++we/dufPTRR9i7dy9CQkKQn58P4P4XGzc3N9VzLCws4OLiYtIXpIdlZ2cjIyNDNRGRHEw+hGRlZYUGDRoAAAICAnDo0CF88skn6NevH3JycpCWlqYahUlJSVGGhT08PPD777+r2iu8SunBmoevXEpJSYFOp4ONjU2x/dJqtdBqtaZuDhFVAf3791f+v2nTpmjWrBnq16+P2NhYdO3atcLWGxERgTlz5lRY+0RUcZ74PjAFBQXIzs5GQEAALC0tsXv3bmVZYmIikpOTodfrAQB6vR7Hjx9HamqqUhMdHQ2dTgd/f3+l5sE2CmsK2yCi6u+5555DzZo1cf78eQD3v9g8uN8AgLy8PNy8efOxX34KlxWFI7dE8jIpwMyYMQNxcXG4ePEijh8/jhkzZiA2NhYDBw6Eo6MjRo4cicmTJ2PPnj0wGAwYPnw49Ho92rZtCwAICgqCv78/Bg8ejGPHjmHHjh149913ERYWpoyejB07FhcuXMC0adNw5swZrFixAuvXr8ekSZPKf+uJqEr666+/cOPGDdSqVQvA/S82aWlpMBgMSk1MTAwKCgrQpk0bpSYuLg65ublKTXR0NBo1agRnZ+ci16PVapX7WhVORCQJUy5tGjFihPD29hZWVlbC1dVVdO3aVezcuVNZnpWVJd566y3h7OwsbG1txT/+8Q9x7do1VRsXL14UISEhwsbGRtSsWVNMmTJF5Obmqmr27NkjWrRoIaysrMRzzz0nvvnmG1O6KYTg5ZDVAS+jltuDn8HMzExx9OhRcfToUQFALFq0SBw9elRcunRJZGZmirffflvEx8eLpKQksWvXLtGqVSvRsGFDce/ePaW9bt26iZYtW4qDBw+Kffv2iYYNG6ouo05LSxPu7u5i8ODB4sSJE+L7778Xtra2vIy6mgMvo652Svs5rLZ/Ue6I5McAI7cHP4N79uwp8h+UoUOHirt374qgoCDh6uoqLC0thbe3txg9erTqflFCCHHjxg0xYMAAYW9vL3Q6nRg+fLjIzMxU1Rw7dky0b99eaLVaUbt2bTFv3rwy95nkwABT/VT4fWCIiEqrU6dOEEIUu7w0d9p2cXHB2rVrS6xp1qwZfv31V5P7R0Ty4Y85EhERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJhwGGiIikpdFoyrWO5MEAQ0RE0hJClGsdyYMBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJhwGGiIiIpMMAQ0RERNJhgCEiIiLpMMAQERGRdBhgqErKycnBmjVrAABr1qxBTk5OJfeIiIiqEgYYqnKmTZsGrVaLRYsWAQAWLVoErVaLadOmVXLPiIioqmCAoSpl2rRpWLBgQZHLFixYwBBDREQAGGCoCsnJySk2vBRasGABDycREREsKrsD9Gy6e/cuzpw5o5r3xRdflOq5EydOxOjRo5XHvr6+sLW1Ldf+ERFR1cYAQ5XizJkzCAgIKNNzV61ahVWrVimPDQYDWrVqVV5dIyIiCTDAUKXw9fWFwWBQzTMl0Dz4XF9f33LrFxERyYEBhiqFra3tE42acMSFiOjZxpN4iYiISDomBZiIiAi0bt0aDg4OcHNzQ+/evZGYmKiquXfvHsLCwlCjRg3Y29ujb9++SElJUdUkJycjNDQUtra2cHNzw9SpU5GXl6eqiY2NRatWraDVatGgQQNERkaWbQuJiIio2jEpwOzduxdhYWE4cOAAoqOjkZubi6CgINy5c0epmTRpEjZv3owNGzZg7969uHr1Kvr06aMsz8/PR2hoKHJycrB//358++23iIyMxKxZs5SapKQkhIaGonPnzkhISEB4eDhGjRqFHTt2lMMmExERkfTEE0hNTRUAxN69e4UQQqSlpQlLS0uxYcMGpeb06dMCgIiPjxdCCLFt2zZhZmYmjEajUrNy5Uqh0+lEdna2EEKIadOmicaNG6vW1a9fPxEcHFzqvqWnpwsAIj09vczbR08XgFJPVPU9+Bncu3ev6NGjh6hVq5YAIDZu3KiqLSgoEDNnzhQeHh7C2tpadO3aVZw9e1ZVc+PGDfHGG28IBwcH4ejoKEaMGCEyMzNVNceOHRPt27cXWq1W1KlTR3z00Udl7jPJgfuN6qe0n8MnOgcmPT0dAODi4gLg/pUhubm5CAwMVGp8fX3h5eWF+Ph4AEB8fDyaNm0Kd3d3pSY4OBgZGRk4efKkUvNgG4U1hW0QkVzu3LmD5s2bY/ny5UUunz9/PpYuXYpVq1bh4MGDsLOzQ3BwMO7du6fUDBw4ECdPnkR0dDS2bNmCuLg4jBkzRlmekZGBoKAgeHt7w2AwYMGCBZg9ezY+//zzCt8+Inr6ynwVUkFBAcLDw9GuXTs0adIEAGA0GmFlZQUnJydVrbu7O4xGo1LzYHgpXF64rKSajIwMZGVlwcbG5pH+ZGdnIzs7W3mckZFR1k0jonIWEhKCkJCQIpcJIbBkyRK8++676NWrFwDgu+++g7u7O37++Wf0798fp0+fRlRUFA4dOoQXXngBALBs2TJ0794dH3/8MTw9PZUf/fz6669hZWWFxo0bIyEhAYsWLVIFHSKqHso8AhMWFoYTJ07g+++/L8/+lFlERAQcHR2VqW7dupXdJSIqhaSkJBiNRtWoq6OjI9q0aaMauXVyclLCCwAEBgbCzMwMBw8eVGo6duwIKysrpSY4OBiJiYm4detWkevOzs5GRkaGaiIiOZQpwIwfPx5btmzBnj17UKdOHWW+h4cHcnJykJaWpqpPSUmBh4eHUvPwVUmFjx9Xo9Ppihx9AYAZM2YgPT1dmS5fvlyWTSOip6xw5LWoUdcHR2Xd3NxUyy0sLODi4mLS6O7D+MWHSF4mBRghBMaPH4+NGzciJiYG9erVUy0PCAiApaUldu/ercxLTExEcnIy9Ho9AECv1+P48eNITU1VaqKjo6HT6eDv76/UPNhGYU1hG0XRarXQ6XSqiYioJPziQyQvk86BCQsLw9q1a/HLL7/AwcFB+Vbj6OgIGxsbODo6YuTIkZg8eTJcXFyg0+kwYcIE6PV6tG3bFgAQFBQEf39/DB48GPPnz4fRaMS7776LsLAwaLVaAMDYsWPx6aefYtq0aRgxYgRiYmKwfv16bN26tZw3n4gqW+HIa0pKCmrVqqXMT0lJQYsWLZSaB7/0AEBeXh5u3rxp0ujuw7RarbLfISLJmHJpE4q5NO2bb75RarKyssRbb70lnJ2dha2trfjHP/4hrl27pmrn4sWLIiQkRNjY2IiaNWuKKVOmiNzcXFXNnj17RIsWLYSVlZV47rnnVOsoDV4OKZ/i3l9FTVT1FfcZxEOXURcUFAgPDw/x8ccfq56r1WrFunXrhBBCnDp1SgAQhw8fVmp27NghNBqNuHLlihBCiBUrVghnZ2eRk5Oj1MyYMUM0atToiftMVRf3G9VPaT+HGiGEqOiQVBkyMjLg6OiI9PR0Hk6ShEajKXVtNX3bVisPfgbNzMxw/vx5AEDLli2xaNEidO7cGS4uLvDy8sJHH32EefPm4dtvv0W9evUwc+ZM/PHHHzh16hSsra0B3L+SKSUlBatWrUJubi6GDx+OF154AWvXrgVw/7YOjRo1QlBQEKZPn44TJ05gxIgRWLx4camvQuJ+Qz7cb1Q/pf4cPoUwVSn4TUo+4DepauXBz+CePXuK/DsOHTpUCPF/N7Jzd3cXWq1WdO3aVSQmJqrau3HjhhgwYICwt7cXOp1ODB8+vMQb2dWuXVvMmzevzH0mOXC/Uf1wBIbfpKTDb1LVi4yfQRn7/KzjfqP6Ke3nkL9GTURERNJhgCEiIiLpMMAQERGRdBhgiIiISDoMMERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpIOAwwRERFJhwGGiIiIpMMAQ0RERNJhgCEiIiLpMMAQERGRdBhgiIiISDoMMERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOiYHmLi4OPTs2ROenp7QaDT4+eefVcuFEJg1axZq1aoFGxsbBAYG4ty5c6qamzdvYuDAgdDpdHBycsLIkSNx+/ZtVc0ff/yBDh06wNraGnXr1sX8+fNN3zoiIiKqlkwOMHfu3EHz5s2xfPnyIpfPnz8fS5cuxapVq3Dw4EHY2dkhODgY9+7dU2oGDhyIkydPIjo6Glu2bEFcXBzGjBmjLM/IyEBQUBC8vb1hMBiwYMECzJ49G59//nkZNpGIqrrZs2dDo9GoJl9fX2X5vXv3EBYWhho1asDe3h59+/ZFSkqKqo3k5GSEhobC1tYWbm5umDp1KvLy8p72phDR0yKeAACxceNG5XFBQYHw8PAQCxYsUOalpaUJrVYr1q1bJ4QQ4tSpUwKAOHTokFKzfft2odFoxJUrV4QQQqxYsUI4OzuL7OxspWb69OmiUaNGpe5benq6ACDS09PLunn0lAEo9URVnymfwffee080btxYXLt2TZmuX7+uLB87dqyoW7eu2L17tzh8+LBo27atePHFF5XleXl5okmTJiIwMFAcPXpUbNu2TdSsWVPMmDGjwvpMVQP3G9VPaT+H5XoOTFJSEoxGIwIDA5V5jo6OaNOmDeLj4wEA8fHxcHJywgsvvKDUBAYGwszMDAcPHlRqOnbsCCsrK6UmODgYiYmJuHXrVnl2mYiqCAsLC3h4eChTzZo1AQDp6en46quvsGjRInTp0gUBAQH45ptvsH//fhw4cAAAsHPnTpw6dQqrV69GixYtEBISgvfffx/Lly9HTk5OZW4WEVWQcg0wRqMRAODu7q6a7+7uriwzGo1wc3NTLbewsICLi4uqpqg2HlzHw7Kzs5GRkaGaiEge586dg6enJ5577jkMHDgQycnJAACDwYDc3FzVFyNfX194eXmpvhg1bdpUtd8IDg5GRkYGTp48Wew6ud8gkle1uQopIiICjo6OylS3bt3K7hIRlVKbNm0QGRmJqKgorFy5EklJSejQoQMyMzNhNBphZWUFJycn1XMe/mJk6pcegPsNIpmVa4Dx8PAAgEdOrktJSVGWeXh4IDU1VbU8Ly8PN2/eVNUU1caD63jYjBkzkJ6erkyXL19+8g0ioqciJCQEr732Gpo1a4bg4GBs27YNaWlpWL9+fYWul/sNInmVa4CpV68ePDw8sHv3bmVeRkYGDh48CL1eDwDQ6/VIS0uDwWBQamJiYlBQUIA2bdooNXFxccjNzVVqoqOj0ahRIzg7Oxe5bq1WC51Op5qISE5OTk54/vnncf78eXh4eCAnJwdpaWmqmoe/GJn6pQfgfoNIZiYHmNu3byMhIQEJCQkA7p+4m5CQgOTkZGg0GoSHh+ODDz7Apk2bcPz4cQwZMgSenp7o3bs3AMDPzw/dunXD6NGj8fvvv+O3337D+PHj0b9/f3h6egIA3njjDVhZWWHkyJE4efIkfvjhB3zyySeYPHlyuW04EVVdt2/fxp9//olatWohICAAlpaWqi9GiYmJSE5OVn0xOn78uGp0Nzo6GjqdDv7+/k+9/0T0FJh6edOePXuKvDxt6NChQoj7l1LPnDlTuLu7C61WK7p27SoSExNVbdy4cUMMGDBA2NvbC51OJ4YPHy4yMzNVNceOHRPt27cXWq1W1K5dW8ybN8+kfvJySPkU9b4qbqKqz5TP4JQpU0RsbKxISkoSv/32mwgMDBQ1a9YUqampQoj7l1F7eXmJmJgYcfjwYaHX64Ver1eeX3gZdVBQkEhISBBRUVHC1dWVl1E/A7jfqH5K+znUCCHEU8hJT11GRgYcHR2Rnp7OYWFJaDSaUtdW07dttWLKZ7B///6Ii4vDjRs34Orqivbt2+PDDz9E/fr1Ady/kd2UKVOwbt06ZGdnIzg4GCtWrFAdHrp06RLGjRuH2NhY2NnZYejQoZg3bx4sLCwqpM9UNXC/Uf2U9nPIAENVBndE1YuMn0EZ+/ys436j+int57DaXEZNREREzw4GGCIiIpIOAwwRERFJhwGGiIiIpMMAQ0RERNJhgCEiIiLpMMAQERGRdBhgiIiISDoMMERERCQdBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBGRtMzNzcu1juTBAENERNKys7Mr1zqSBwMMERFJKzMzs1zrSB4MMEREJC0hRLnWkTwYYIiISFoajaZc60geDDBERCQtBphnFwMMERFJq6CgoFzrSB4MMERERCQdBhgiIpKWjY1NudaRPBhgiIhIWh4eHuVaR/JggCEiImlZW1uXax3JgwGGiIikdefOnXKtI3kwwBARkbSysrLKtY7kwQBDRETSSk9PL9c6kgcDDBERSSs3N7dc60geDDBERCQt/hbSs4sBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBERCQtCwuLcq0jeTDAEBGRtLRabbnWkTwYYIiIiEg6DDBERCQt/pjjs4sBhoiIiKTDAENERETSYYAhIiJpmZubl2sdyYMBhoiIpMUA8+xigCEiImnl5eWVax3JgwGGiIikVVBQUK51JI8qHWCWL18OHx8fWFtbo02bNvj9998ru0tEJAHuO4iqvyobYH744QdMnjwZ7733Ho4cOYLmzZsjODgYqampld01IqrCuO8gejZU2QCzaNEijB49GsOHD4e/vz9WrVoFW1tbfP3115XdNSKqwrjvIHo2VMkAk5OTA4PBgMDAQGWemZkZAgMDER8fX+RzsrOzkZGRoZqI6Nli6r6D+w0ieVXJAPP3338jPz8f7u7uqvnu7u4wGo1FPiciIgKOjo7KVLdu3afRVSKqQkzdd3C/QSSvKhlgymLGjBlIT09XpsuXL1d2l4ioiuN+g0heFpXdgaLUrFkT5ubmSElJUc1PSUmBh4dHkc/RarX8uXSiZ5yp+w7uN+TXrl07/Pbbb6Wqo+qlSo7AWFlZISAgALt371bmFRQUYPfu3dDr9ZXYM6pIQohyraNnD/cdz559+/aVax3Jo0qOwADA5MmTMXToULzwwgv4f//v/2HJkiW4c+cOhg8fXtldowokhIBGoylxOVFJuO949nC/8WyqsgGmX79+uH79OmbNmgWj0YgWLVogKirqkZPzqPopbmfEnRCVBvcdzyYhBNq3b686nNSuXTuOvFRjGlFN/1XIyMiAo6Mj0tPTodPpKrs7RM8cGT+DMvaZqLop7eewSp4DQ0RERFQSBhgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYAhIiIi6TDAEBERkXQYYIiIiEg6DDBEREQknSr7UwJPqvAGwxkZGZXcE6JnU+FnT6abfXO/QVT5SrvvqLYBJjMzEwBQt27dSu4J0bMtMzMTjo6Old2NUuF+g6jqeNy+o9r+FlJBQQGuXr0KBweHEn+llKqujIwM1K1bF5cvX+bv0khICIHMzEx4enrCzEyOo9Xcb8iP+w35lXbfUW0DDMmPP6xHRKbifuPZIcfXIiIiIqIHMMAQERGRdBhgqMrSarV47733oNVqK7srRCQJ7jeeHTwHhoiIiKTDERgiIiKSDgMMERERSYcBhoiIiKTDAENERETSYYChKicuLg49e/aEp6cnNBoNfv7558ruEhFVcdxvPHsYYKjKuXPnDpo3b47ly5dXdleISBLcbzx7qu2POZK8QkJCEBISUtndICKJcL/x7OEIDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0eBUSVTm3b9/G+fPnlcdJSUlISEiAi4sLvLy8KrFnRFRVcb/x7OGvUVOVExsbi86dOz8yf+jQoYiMjHz6HSKiKo/7jWcPAwwRERFJh+fAEBERkXQYYIiIiEg6DDBEREQkHQYYIiIikg4DDBEREUmHAYaIiIikwwBDRERE0mGAISIiIukwwBAREZF0GGCIiIhIOgwwREREJB0GGCIiIpLO/wdKex9FRxlLLgAAAABJRU5ErkJggg==", |
|
|
272 |
"text/plain": [ |
|
|
273 |
"<Figure size 640x480 with 2 Axes>" |
|
|
274 |
] |
|
|
275 |
}, |
|
|
276 |
"metadata": {}, |
|
|
277 |
"output_type": "display_data" |
|
|
278 |
} |
|
|
279 |
], |
|
|
280 |
"source": [ |
|
|
281 |
"fig, (ax1, ax2) = plt.subplots(1, 2)\n", |
|
|
282 |
"fig.suptitle('Distribution of length of study in PLCO and NLST ')\n", |
|
|
283 |
"ax1.boxplot(plco['lung_exitdays'])\n", |
|
|
284 |
"ax2.boxplot(nlst['fup_days'])\n", |
|
|
285 |
"plt.show()" |
|
|
286 |
] |
|
|
287 |
}, |
|
|
288 |
{ |
|
|
289 |
"attachments": {}, |
|
|
290 |
"cell_type": "markdown", |
|
|
291 |
"metadata": {}, |
|
|
292 |
"source": [ |
|
|
293 |
"We only keep participant who were studied longer than 2100 days (5.75 years) if they were never diagnosed with cancer and those who were diagnosed with cancer when ever. On the other hand, we don't mind keeping participants who stayed longer as they bring more information to the study. " |
|
|
294 |
] |
|
|
295 |
}, |
|
|
296 |
{ |
|
|
297 |
"cell_type": "code", |
|
|
298 |
"execution_count": 81, |
|
|
299 |
"metadata": {}, |
|
|
300 |
"outputs": [ |
|
|
301 |
{ |
|
|
302 |
"name": "stdout", |
|
|
303 |
"output_type": "stream", |
|
|
304 |
"text": [ |
|
|
305 |
"---- PLCO ----\n", |
|
|
306 |
"Removed 1151\n", |
|
|
307 |
"Remaining 55161\n", |
|
|
308 |
"Removed 0.74 % of PLCO\n", |
|
|
309 |
"---- NLST ----\n", |
|
|
310 |
"Removed 1953\n", |
|
|
311 |
"Remaining 48595\n", |
|
|
312 |
"Removed 3.65 % of NLST\n" |
|
|
313 |
] |
|
|
314 |
} |
|
|
315 |
], |
|
|
316 |
"source": [ |
|
|
317 |
"plco_nb2 = len(plco)\n", |
|
|
318 |
"plco = plco[((plco['lung_exitstat']!=1) & (plco['lung_exitdays']>2100)) | (plco['lung_exitstat']==1)]\n", |
|
|
319 |
"plco_nb_final = len(plco)\n", |
|
|
320 |
"print(\"---- PLCO ----\")\n", |
|
|
321 |
"print(\"Removed \"+ str(plco_nb2 - plco_nb_final ))\n", |
|
|
322 |
"print(\"Remaining \"+str(plco_nb_final))\n", |
|
|
323 |
"print(\"Removed \" + str(round((((plco_nb2 - plco_nb_final)/plco_nb_ini)*100),2)) + \" % of PLCO\")\n", |
|
|
324 |
"\n", |
|
|
325 |
"nlst_nb2 = len(nlst)\n", |
|
|
326 |
"nlst = nlst[((nlst['scr_group']!=1) & (nlst['fup_days']>2100)) | (nlst['scr_group']==1)]\n", |
|
|
327 |
"nlst_nb_final = len(nlst)\n", |
|
|
328 |
"print(\"---- NLST ----\")\n", |
|
|
329 |
"print(\"Removed \"+ str(nlst_nb2 - nlst_nb_final ))\n", |
|
|
330 |
"print(\"Remaining \"+str(nlst_nb_final))\n", |
|
|
331 |
"print(\"Removed \" + str(round((((nlst_nb2 - nlst_nb_final)/nlst_nb_ini)*100),2)) + \" % of NLST\")\n" |
|
|
332 |
] |
|
|
333 |
}, |
|
|
334 |
{ |
|
|
335 |
"attachments": {}, |
|
|
336 |
"cell_type": "markdown", |
|
|
337 |
"metadata": { |
|
|
338 |
"tags": [] |
|
|
339 |
}, |
|
|
340 |
"source": [ |
|
|
341 |
"## Pre-Processing\n", |
|
|
342 |
"\n", |
|
|
343 |
"\n", |
|
|
344 |
"We first extract the same features from both dataset and keep only those which we have seen are risk factors related to lung cancer.\n", |
|
|
345 |
"\n", |
|
|
346 |
"In both dataset, we can find different informations but the dataset may be not be in the same format or described the same descriptors. In the following we will use the name of the PLCO features.\n", |
|
|
347 |
"\n", |
|
|
348 |
"\n", |
|
|
349 |
"For the race feature, On the PLCO dataset, we have: \n", |
|
|
350 |
"\n", |
|
|
351 |
"`\n", |
|
|
352 |
"1=\"White, Non-Hispanic\" \n", |
|
|
353 |
"2=\"Black, Non-Hispanic\" \n", |
|
|
354 |
"3=\"Hispanic\"\n", |
|
|
355 |
"4=\"Asian\"\n", |
|
|
356 |
"5=\"Pacific Islander\" \n", |
|
|
357 |
"6=\"American Indian\" \n", |
|
|
358 |
"7=\"Missing\"\n", |
|
|
359 |
"`\n", |
|
|
360 |
"\n", |
|
|
361 |
"And, for the NLST dataset, we have: \n", |
|
|
362 |
"\n", |
|
|
363 |
"`\n", |
|
|
364 |
"1=\"White\"\n", |
|
|
365 |
"2=\"Black or African-American\"\n", |
|
|
366 |
"3=\"Asian\"\n", |
|
|
367 |
"4=\"American Indian or Alaskan Native\"\n", |
|
|
368 |
"5=\"Native Hawaiian or Other Pacific Islander\" \n", |
|
|
369 |
"6=\"More than one race\"\n", |
|
|
370 |
"7=\"Participant refused to answer\"\n", |
|
|
371 |
"95=\"Missing data form - form is not expected to ever be completed\"\n", |
|
|
372 |
"96=\"Missing - no response\"\n", |
|
|
373 |
"98=\"Missing - form was submitted and the answer was left blank\"\n", |
|
|
374 |
"99=\"Unknown/ decline to answer\"\n", |
|
|
375 |
"`\n", |
|
|
376 |
"\n", |
|
|
377 |
"So, we will keep: \n", |
|
|
378 |
"\n", |
|
|
379 |
"`\n", |
|
|
380 |
"1=\"White or hispanic\" \n", |
|
|
381 |
"2=\"Black\" \n", |
|
|
382 |
"4=\"Asian\"\n", |
|
|
383 |
"5=\"Pacific Islander\" \n", |
|
|
384 |
"6=\"American Indian\" \n", |
|
|
385 |
"7=\"Missing\"\n", |
|
|
386 |
"`" |
|
|
387 |
] |
|
|
388 |
}, |
|
|
389 |
{ |
|
|
390 |
"cell_type": "code", |
|
|
391 |
"execution_count": 82, |
|
|
392 |
"metadata": {}, |
|
|
393 |
"outputs": [ |
|
|
394 |
{ |
|
|
395 |
"name": "stdout", |
|
|
396 |
"output_type": "stream", |
|
|
397 |
"text": [ |
|
|
398 |
"(55161, 21)\n", |
|
|
399 |
"(48595, 21)\n" |
|
|
400 |
] |
|
|
401 |
}, |
|
|
402 |
{ |
|
|
403 |
"name": "stderr", |
|
|
404 |
"output_type": "stream", |
|
|
405 |
"text": [ |
|
|
406 |
"\n", |
|
|
407 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", |
|
|
408 |
"Try using .loc[row_indexer,col_indexer] = value instead\n", |
|
|
409 |
"\n", |
|
|
410 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
|
|
411 |
"\n", |
|
|
412 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", |
|
|
413 |
"Try using .loc[row_indexer,col_indexer] = value instead\n", |
|
|
414 |
"\n", |
|
|
415 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
|
|
416 |
"\n", |
|
|
417 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", |
|
|
418 |
"Try using .loc[row_indexer,col_indexer] = value instead\n", |
|
|
419 |
"\n", |
|
|
420 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
|
|
421 |
"\n", |
|
|
422 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n", |
|
|
423 |
"Try using .loc[row_indexer,col_indexer] = value instead\n", |
|
|
424 |
"\n", |
|
|
425 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n" |
|
|
426 |
] |
|
|
427 |
} |
|
|
428 |
], |
|
|
429 |
"source": [ |
|
|
430 |
"#For PLCO\n", |
|
|
431 |
"plco = plco[[\"age\", \"sex\", \"height_f\", \"weight_f\", \"race7\", \"ssmokea_f\", \"cig_stat\", \"cigar\", \"pipe\", \"pack_years\", \"smokea_f\", \"cigpd_f\",\"cig_years\", \"bronchit_f\",\n", |
|
|
432 |
" \"diabetes_f\", \"emphys_f\", \"hearta_f\", \"hyperten_f\", \"stroke_f\", \"lung_fh\",\"lung_cancer\"\n", |
|
|
433 |
" ]]\n", |
|
|
434 |
"plco[\"race7\"] = plco[\"race7\"].replace(3,1)\n", |
|
|
435 |
"plco[\"lung_fh\"] = plco[\"lung_fh\"].replace(9,0)\n", |
|
|
436 |
"\n", |
|
|
437 |
"print(plco.shape)\n", |
|
|
438 |
"\n", |
|
|
439 |
"#For NLST\n", |
|
|
440 |
"nlst2 = nlst[[\"age\", \"gender\", \"height\", \"weight\", \"race\", \"age_quit\", \"cigsmok\", \"cigar\", \"pipe\", \"pkyr\", \"smokeage\", \"smokeday\", \"smokeyr\", \"agechro\", \"diagdiab\",\n", |
|
|
441 |
" \"diagemph\", \"diaghear\", \"diaghype\", \"diagstro\",\n", |
|
|
442 |
" ]]\n", |
|
|
443 |
"nlst2[\"lung_fh\"] = nlst[[\"famfather\",\"fammother\", \"famchild\", \"famsister\", \"fambrother\"]].max(axis=1)\n", |
|
|
444 |
"nlst2[\"can_scr\"] = 1 * (nlst[\"can_scr\"] > 0)\n", |
|
|
445 |
"nlst2[\"race\"] = nlst2[\"race\"].replace([3,4,6,95,96,98,99],[4,6,7,7,7,7,7])\n", |
|
|
446 |
"nlst2['cigsmok'] = nlst2[\"cigsmok\"].replace(0,2)\n", |
|
|
447 |
"nlst=nlst2\n", |
|
|
448 |
"print(nlst.shape)" |
|
|
449 |
] |
|
|
450 |
}, |
|
|
451 |
{ |
|
|
452 |
"attachments": {}, |
|
|
453 |
"cell_type": "markdown", |
|
|
454 |
"metadata": {}, |
|
|
455 |
"source": [ |
|
|
456 |
"Now we change the column names to have two matching datasets." |
|
|
457 |
] |
|
|
458 |
}, |
|
|
459 |
{ |
|
|
460 |
"cell_type": "code", |
|
|
461 |
"execution_count": 83, |
|
|
462 |
"metadata": {}, |
|
|
463 |
"outputs": [], |
|
|
464 |
"source": [ |
|
|
465 |
"change_columns = {\n", |
|
|
466 |
" \"age\": \"age\",\n", |
|
|
467 |
" \"gender\": \"sex\", \n", |
|
|
468 |
" \"height\": \"height_f\",\n", |
|
|
469 |
" \"weight\": \"weight_f\",\n", |
|
|
470 |
" \"race\": \"race7\",\n", |
|
|
471 |
" \"age_quit\": \"ssmokea_f\",\n", |
|
|
472 |
" \"cigsmok\": \"cig_stat\",\n", |
|
|
473 |
" \"cigar\": \"cigar\",\n", |
|
|
474 |
" \"pipe\": \"pipe\",\n", |
|
|
475 |
" \"pkyr\": \"pack_years\",\n", |
|
|
476 |
" \"smokeage\": \"smokea_f\",\n", |
|
|
477 |
" \"smokeday\": \"cigpd_f\",\n", |
|
|
478 |
" \"smokeyr\": \"cig_years\",\n", |
|
|
479 |
" \"agechro\": \"bronchit_f\",\n", |
|
|
480 |
" \"diagdiab\": \"diabetes_f\",\n", |
|
|
481 |
" \"diagemph\": \"emphys_f\",\n", |
|
|
482 |
" \"diaghear\": \"hearta_f\",\n", |
|
|
483 |
" \"diaghype\": \"hyperten_f\",\n", |
|
|
484 |
" \"diagstro\": \"stroke_f\",\n", |
|
|
485 |
" \"can_scr\": \"lung_cancer\",\n", |
|
|
486 |
" \"lung_fh\": \"lung_fh\"\n", |
|
|
487 |
"}\n", |
|
|
488 |
"nlst = nlst.rename(columns=change_columns)" |
|
|
489 |
] |
|
|
490 |
}, |
|
|
491 |
{ |
|
|
492 |
"attachments": {}, |
|
|
493 |
"cell_type": "markdown", |
|
|
494 |
"metadata": {}, |
|
|
495 |
"source": [ |
|
|
496 |
"We add the `bmi` column by computing it from other columns. " |
|
|
497 |
] |
|
|
498 |
}, |
|
|
499 |
{ |
|
|
500 |
"cell_type": "code", |
|
|
501 |
"execution_count": 84, |
|
|
502 |
"metadata": {}, |
|
|
503 |
"outputs": [], |
|
|
504 |
"source": [ |
|
|
505 |
"plco.loc[:, 'bmi'] = plco['weight_f'] / plco['height_f']**2 * 703\n", |
|
|
506 |
"nlst['bmi'] = nlst['weight_f'] / nlst['height_f']**2 * 703" |
|
|
507 |
] |
|
|
508 |
}, |
|
|
509 |
{ |
|
|
510 |
"attachments": {}, |
|
|
511 |
"cell_type": "markdown", |
|
|
512 |
"metadata": {}, |
|
|
513 |
"source": [ |
|
|
514 |
"Finally, we extract the feature columns and the output column for both the training and testing sets." |
|
|
515 |
] |
|
|
516 |
}, |
|
|
517 |
{ |
|
|
518 |
"cell_type": "code", |
|
|
519 |
"execution_count": 85, |
|
|
520 |
"metadata": {}, |
|
|
521 |
"outputs": [], |
|
|
522 |
"source": [ |
|
|
523 |
"x_plco = plco.drop(columns= ['lung_cancer'])\n", |
|
|
524 |
"y_plco = plco['lung_cancer']\n", |
|
|
525 |
"x_nlst = nlst.drop(columns=['lung_cancer'])\n", |
|
|
526 |
"y_nlst = nlst['lung_cancer']" |
|
|
527 |
] |
|
|
528 |
}, |
|
|
529 |
{ |
|
|
530 |
"attachments": {}, |
|
|
531 |
"cell_type": "markdown", |
|
|
532 |
"metadata": { |
|
|
533 |
"id": "tdVqaDadXROT" |
|
|
534 |
}, |
|
|
535 |
"source": [ |
|
|
536 |
"# MODEL \n", |
|
|
537 |
"\n", |
|
|
538 |
"To build a machine learning model able to predict the risk of lung cancer, we train an XGBoost on the pre-processed PLCO dataset. \n", |
|
|
539 |
"We then test the model on an external dataset: the NLST dataset.\n", |
|
|
540 |
"\n", |
|
|
541 |
"Column to predict : lung_cancer\n", |
|
|
542 |
"\n", |
|
|
543 |
"**Optimization**\n", |
|
|
544 |
"\n", |
|
|
545 |
"Instead of doing a Grid Search to optimize our parameters, we will use a Package from scikit-learn named skopt. \n", |
|
|
546 |
"\n", |
|
|
547 |
"**Calibration**\n", |
|
|
548 |
"\n", |
|
|
549 |
"To see if our models are calibrated, we will use a CVcalibration from the scikit learn package.\n", |
|
|
550 |
"\n", |
|
|
551 |
"**Interpretability**\n", |
|
|
552 |
"\n", |
|
|
553 |
"After doing all of this, we will try to interpret our model by looking at the Shapley Values. These will give us an idea of which features are the most important ones. \n" |
|
|
554 |
] |
|
|
555 |
}, |
|
|
556 |
{ |
|
|
557 |
"cell_type": "code", |
|
|
558 |
"execution_count": 86, |
|
|
559 |
"metadata": {}, |
|
|
560 |
"outputs": [], |
|
|
561 |
"source": [ |
|
|
562 |
"x_train, x_val, y_train, y_val = train_test_split(x_plco, y_plco, test_size=0.3)\n", |
|
|
563 |
"x_test,y_test = x_nlst, y_nlst" |
|
|
564 |
] |
|
|
565 |
}, |
|
|
566 |
{ |
|
|
567 |
"cell_type": "code", |
|
|
568 |
"execution_count": 87, |
|
|
569 |
"metadata": {}, |
|
|
570 |
"outputs": [ |
|
|
571 |
{ |
|
|
572 |
"name": "stdout", |
|
|
573 |
"output_type": "stream", |
|
|
574 |
"text": [ |
|
|
575 |
"---------- VALIDATION DATASET ------------\n", |
|
|
576 |
" precision recall f1-score support\n", |
|
|
577 |
"\n", |
|
|
578 |
" 0 0.95 0.99 0.97 15749\n", |
|
|
579 |
" 1 0.40 0.07 0.12 800\n", |
|
|
580 |
"\n", |
|
|
581 |
" accuracy 0.95 16549\n", |
|
|
582 |
" macro avg 0.68 0.53 0.55 16549\n", |
|
|
583 |
"weighted avg 0.93 0.95 0.93 16549\n", |
|
|
584 |
"\n", |
|
|
585 |
"ROC AUC score validation 0.790324385675281\n", |
|
|
586 |
"F_1 score 0.11914893617021277\n", |
|
|
587 |
"Precision score 0.4\n", |
|
|
588 |
"Recall score 0.07\n", |
|
|
589 |
"PR AUC score 0.07295739923862468\n", |
|
|
590 |
"---------- TESTING DATASET ------------\n", |
|
|
591 |
" precision recall f1-score support\n", |
|
|
592 |
"\n", |
|
|
593 |
" 0 0.97 0.96 0.97 47084\n", |
|
|
594 |
" 1 0.08 0.11 0.09 1511\n", |
|
|
595 |
"\n", |
|
|
596 |
" accuracy 0.93 48595\n", |
|
|
597 |
" macro avg 0.52 0.53 0.53 48595\n", |
|
|
598 |
"weighted avg 0.94 0.93 0.94 48595\n", |
|
|
599 |
"\n", |
|
|
600 |
"ROC AUC score validation 0.6582187468321258\n", |
|
|
601 |
"F_1 score 0.08927568781583378\n", |
|
|
602 |
"Precision score 0.07752315943442223\n", |
|
|
603 |
"Recall score 0.10522832561217736\n", |
|
|
604 |
"PR AUC score 0.03597942462891982\n" |
|
|
605 |
] |
|
|
606 |
} |
|
|
607 |
], |
|
|
608 |
"source": [ |
|
|
609 |
"model_all_features = xgb.XGBClassifier(random_state=0, \n", |
|
|
610 |
" booster='gbtree', \n", |
|
|
611 |
" objective='binary:logistic', \n", |
|
|
612 |
" eval_metric='aucpr',\n", |
|
|
613 |
" tree_method='exact')\n", |
|
|
614 |
"model_all_features.fit(x_train, y_train)\n", |
|
|
615 |
"\n", |
|
|
616 |
"y_val_pred = model_all_features.predict(x_val)\n", |
|
|
617 |
"y_val_prob_pred = model_all_features.predict_proba(x_val)\n", |
|
|
618 |
"print(\"---------- VALIDATION DATASET ------------\")\n", |
|
|
619 |
"print(classification_report(y_val,y_val_pred))\n", |
|
|
620 |
"print(\"ROC AUC score validation\", roc_auc_score(y_val, y_val_prob_pred[:, 1]))\n", |
|
|
621 |
"print(\"F_1 score \", f1_score(y_val, y_val_pred))\n", |
|
|
622 |
"print(\"Precision score \", precision_score(y_val, y_val_pred))\n", |
|
|
623 |
"print(\"Recall score \", recall_score(y_val, y_val_pred))\n", |
|
|
624 |
"print(\"PR AUC score \", average_precision_score(y_val, y_val_pred))\n", |
|
|
625 |
"\n", |
|
|
626 |
"y_test_pred = model_all_features.predict(x_test)\n", |
|
|
627 |
"y_test_prob_pred = model_all_features.predict_proba(x_test)\n", |
|
|
628 |
"print(\"---------- TESTING DATASET ------------\")\n", |
|
|
629 |
"print(classification_report(y_test,y_test_pred))\n", |
|
|
630 |
"print(\"ROC AUC score validation\", roc_auc_score(y_test, y_test_prob_pred[:, 1]))\n", |
|
|
631 |
"print(\"F_1 score \", f1_score(y_test, y_test_pred))\n", |
|
|
632 |
"print(\"Precision score \", precision_score(y_test, y_test_pred))\n", |
|
|
633 |
"print(\"Recall score \", recall_score(y_test, y_test_pred))\n", |
|
|
634 |
"print(\"PR AUC score \", average_precision_score(y_test, y_test_pred))\n" |
|
|
635 |
] |
|
|
636 |
}, |
|
|
637 |
{ |
|
|
638 |
"attachments": {}, |
|
|
639 |
"cell_type": "markdown", |
|
|
640 |
"metadata": {}, |
|
|
641 |
"source": [ |
|
|
642 |
"We look at which features are important:" |
|
|
643 |
] |
|
|
644 |
}, |
|
|
645 |
{ |
|
|
646 |
"cell_type": "code", |
|
|
647 |
"execution_count": 88, |
|
|
648 |
"metadata": {}, |
|
|
649 |
"outputs": [ |
|
|
650 |
{ |
|
|
651 |
"name": "stderr", |
|
|
652 |
"output_type": "stream", |
|
|
653 |
"text": [ |
|
|
654 |
"ntree_limit is deprecated, use `iteration_range` or model slicing instead.\n" |
|
|
655 |
] |
|
|
656 |
}, |
|
|
657 |
{ |
|
|
658 |
"data": { |
|
|
659 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAOsCAYAAADX7yC0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC30ElEQVR4nOzdeXyNd/7//+fJHpEIoSZi31vLWI6ibYitNAtFqig10SK2apV+OnSx9duaUbUTaldDbY2oMDpF1YxELG1VWzWoJbSCbCKR5fz+6M+ZHokluZKchMf9dstt5H293+/rdZ3OH3me9/W+LpPFYrEIAAAAAAxwsHcBAAAAAEo/ggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMILFQ2Dx4sXKzMy0dxkAAAB4gBEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgmMlisVjsXQSKlmlGlr1LAAAAgAGWcU72LuGeWLEAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGldhgERUVJbPZrLi4OHuXAgAAAOAeSmywAAAAAFB6lNg3b2dnZysrK0vOzs5ycCD/GMGbtwEAAEo33rxtgKOjo1xdXR/aUHH9+nV7lwAAAADcN7tEn8zMTK1du1Y7d+7UL7/8IicnJ1WvXl3BwcF6/vnnJf2+x2Ly5MlatGiRzGazdWx8fLw++ugjxcbGSpJatmyp119/XeHh4fL19dXixYvvu45+/fopOTlZUVFRuQLMF198oTfffFOTJk1ScHCwJMlisWjTpk367LPPdPr0aTk4OOixxx7TkCFDbGqUpA0bNmjPnj06deqUrl27pnLlyunxxx/X8OHDVaVKFZu+ZrNZwcHBCgwMVEREhE6cOKFHH31UixcvVlJSkj7++GN99dVXunz5stzd3eXr66unn35aL7744v1/6AAAAEARKvZgkZmZqVGjRunQoUNq06aNnnnmGbm4uOjkyZPavXu3NVjkJTExUUOGDNGVK1fUu3dv1apVS0eOHFF4eLhu3LiR71qeffZZ/f3vf1dMTIzatm1rcywyMlJly5ZV586drW3vvPOOdu7cqU6dOikkJESZmZmKjo7WyJEj9be//U3t27e39l2zZo0aN26s559/XuXKldN///tfffbZZzp48KDWrVsnb29vm/MdP35cX375pZ599llrkJGkN998U4cPH1bv3r1Vr149ZWRk6PTp0zp06BDBAgAAACVGsQeLtWvX6tChQwoLC9PIkSNtjuXk5Nx17MqVK/Xrr79q6tSpeuaZZyRJoaGhmj17tlavXp3vWgIDAzVnzhxFRkbaBItLly4pJiZGvXr1kpubmyRp9+7dio6O1oQJE9SrVy9r3759+yosLEwffvih2rVrJ5PJJElat26d3N3dbc7Xrl07jRgxQpGRkRo0aJDNsVOnTmn+/Plq3bq1tS01NVUHDx5UaGio3njjjXxfHwAAAFBcin0Dw44dO+Tl5aWXX345dzH32E+xb98+VaxYUV27drVpHzhwYIFq8fT0VJcuXbR3714lJiZa26OiopSTk6MePXpY27Zv3y4PDw8FBAQoMTHR+pOamip/f3/Fx8fr7Nmz1v63QkVOTo5SU1OVmJio+vXrq2zZsjp27FiuWurXr28TKiTJ1dVVLi4uOnbsmOLj4wt0jQAAAEBxKPYVi7Nnz6pBgwZydXXN99j4+Hg1atQoVwCpUKGCPD09C1RPz549tW3bNm3fvl39+/eXxWJRVFSU6tevr0cffdTa78yZM7p+/bqefvrpO8519epV1ahRQ5J08OBBLVmyRN9//70yMjJs+qWkpOQaW7169Vxtzs7OGjt2rD788EN1795dtWvXltlsVkBAgB5//PECXS8AAABQFEr+c6uK2J///GfVqVNHkZGR6t+/v2JjYxUfH5/r1iOLxaLy5ctr2rRpd5yrTp06kqTvv/9eo0aNUtWqVTVq1ChVqVJFrq6uMplMmjBhQp63fN265ep2oaGhCggI0Ndff61Dhw7pX//6lz799FN16dJF77//voErBwAAAApPsQeLGjVq6MyZM7p586ZcXFzyNdbX11fnzp1TTk6OzarF1atX81wFuF89e/bUjBkzdOzYMUVGRsrV1dW6h+OWatWq6ezZs2rSpInKlClz1/l27Nih7OxszZkzR35+ftb2GzduFKjOihUr6tlnn9Wzzz6r7Oxs6ybyAQMGqFGjRvmeDwAAAChsxb7Holu3bkpOTtbSpUtzHbvXu/ratWunhIQE7dy506a9IBu3/ygwMFCurq5avXq19uzZo44dO+a6tSooKEg5OTmaN29ennNcuXLF+m9HR0dJua9n2bJl99yg/kfp6elKT0+3aXN0dFS9evUkScnJyfc9FwAAAFCUin3Fol+/ftq3b5+WLl2q48ePq3Xr1nJ1ddWpU6f0yy+/aMGCBXccO2jQIO3YsUOTJ0/W999/r5o1a+rIkSP69ttv5e3tbX0iU355eXmpY8eOio6OliSbTdu3dO7cWSEhIfr000/1448/yt/fX97e3vrtt9/07bff6vz584qMjJQkBQQEaO3atRozZox69uwpZ2dnxcTE6OTJk7keM3s3v/zyi4YOHaoOHTqoTp068vT01JkzZ7Rx40b5+fmpefPmBbpeAAAAoLAVe7BwdnbWvHnztGbNGu3cuVMLFiyQi4uLqlevrpCQkLuO9fb21scff6xZs2Zp69atMplMatmypRYtWqQXX3yxQBvCb+nVq5eio6NVrVo1tWzZMs8+7777rsxms7Zs2aIVK1YoMzNTPj4+atiwoc2jc5s1a6a//e1v+vjjj7Vo0SK5urrq8ccf1+LFizVkyJD7rqly5crq3r27Dh06pD179igzM1OVKlVSz549NWjQoDvuywAAAACKm8lyr/uPSoHExER17txZvXr10oQJEwo0x7Fjx/SXv/xFI0eOVFhYWCFXaF+mGVn2LgEAAAAGWMaV/GcuFfseC6Nu33Mg/f7iPEm53gORH59++qmcnJzuuWoCAAAAILeSH31uM2bMGPn6+qphw4bKycnRwYMHtW/fPjVt2lQBAQGSpKSkJGVmZt51Hjc3Nzk6Ouqrr77SqVOnFB0drZ49e6pixYrFcBUAAADAg6XUBQt/f399/vnn2r17tzIyMlS5cmUNGDBAQ4YMsT6Nafz48Tp8+PBd5wkODtbQoUM1ceJElSlTRp06ddIrr7xSHJcAAAAAPHAeiD0Wt/vhhx/u+SjWSpUqqXbt2sVUkX2xxwIAAKB0Kw17LEp+hQXw6KOP2rsEAAAA4KFS6jZvAwAAACh5HsgVC9iK8FqmsLAwOTs727sUAAAAPKBYsQAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhpksFovF3kWgaJlmZNm7BAAAUApYxjnZuwSUYqxYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAw0pdsAgJCdHQoUPtXQYAAACAPyh1wQIAAABAyUOwAAAAAGAYwaIEysrKUkZGhr3LAAAAAO6bU34HREVFafLkyZo/f76OHj2qqKgoXblyRTVq1FBYWJi6du1q7XvgwAFFRkbq+PHjSkhIkLOzsxo1aqTBgwerZcuWueY+d+6cli1bppiYGF29elXe3t567LHHNGTIED366KN3rOnChQsaPXq00tLSNGfOHNWvX/+e17F7926NHz9eEydOVM+ePXMd79Onj27evKktW7bIZDJJks6ePaslS5YoNjZWSUlJqlSpkjp37qyhQ4fK3d3dOvbMmTNat26dDh8+rEuXLik7O1u1atVSaGionn32WZvzREREaMmSJVq/fr0iIyP1xRdfKCEhQQsWLJDZbNbXX3+tVatW6b///a/S09Otn8moUaNUo0aNe14nAAAAUBzyHSxumTt3rm7cuKHQ0FBJvweOiRMn6ubNmwoJCbG2JSUlKTAwUJUrV9Zvv/2myMhIjRgxQosWLVLz5s2t8x0/flzDhw9XVlaWevTooTp16ig5OVmHDx/WN998c8dg8eOPP2rMmDHy9PTU8uXL5evre1/1+/v7y8fHR1u3bs0VLL777judOnVKI0aMsIaKH374QeHh4fL09FSvXr30yCOP6MSJE1q3bp2++eYbLV68WE5Ov3+ccXFxOnz4sJ566ilVqVJF6enp+uKLLzRt2jRdu3ZNYWFhuep5++235erqqhdeeEEmk0kVK1bUoUOHNHbsWNWpU0dhYWEqW7asEhISFBsbq3PnzhEsAAAAUGIUOFgkJiZq3bp1Klu2rCQpNDRUffv21UcffaQuXbrIzc1Nb731ls03+ZLUu3dv9enTR8uXL7cGC4vFokmTJikzM1MrV65UvXr1rP3DwsKUk5OTZw0HDhzQG2+8obp162rmzJny9va+7/qdnJzUvXt3LV++XKdOnVLt2rWtxyIjI+Xo6GgNSJI0ZcoUVaxYUatWrZKHh4e1/fHHH9f48eMVHR1t7R8UFGQNXLf0799f4eHhWrFihQYOHGgNIbeULVtWCxYssGnfvHmzcnJyNH/+fFWoUMHa/vLLL9/3dQIAAADFocB7LEJDQ62hQvr9D+PevXsrOTlZhw4dkiSbUJGWlqbExEQ5OjqqcePG+v77763HfvrpJ506dUohISE2ocJapEPuMrdv365XX31VZrNZCxYsyFeouOXZZ5+VyWRSZGSkte3GjRvatWuXnnjiCVWqVEmSdPLkSf3888/q1q2bMjMzlZiYaP1p1qyZ3N3ddeDAAescf7zujIwMJSYmKjk5WW3atNH169d15syZXLX0798/z7AhSV9++aWysrLyfX0AAABAcSnwikXNmjVztdWqVUvS73seJOn8+fOaP3++Dhw4oJSUFJu+t24xkn7fWyFJDRo0uK9z//jjj3r33XfVtm1b/f3vf5ejo2NBLkF+fn56/PHHtX37do0ePVpOTk7atWuXrl+/rh49elj7nT59WtLv+yEiIiLynOvq1avWf6elpWnx4sXatWuXfv3111x9k5OTc7VVr149V1ufPn20d+9effDBB5o7d67+/Oc/64knnlDXrl1Vvnz5fF8vAAAAUFQKHCzuJS0tTUOGDNGNGzfUr18/1a1bVx4eHjKZTFqxYoUOHjxY4LmrVasmJycnxcXF6T//+Y+eeuqpAs/Vs2dPvfnmm9q7d686deqkyMhI+fj42MxpsVgkSQMGDFDbtm3znMfLy8v674kTJ+rrr79Wz5491aJFC5UrV04ODg7av3+/1q5dm+etXW5ubrnavL29tWrVKh05ckQxMTE6cuSIZs6cqYiICM2ePVtNmzYt8HUDAAAAhanAwSKv23lufbPv5+en2NhYXb58We+88466d+9u02/hwoU2v9/6tv7EiRP3dW4PDw/NnDlTr7zyisaPH6/3339fAQEB+b8ISQEBAapQoYIiIyNVp04dffPNNxo0aJDNbUm36nNwcFDr1q3vOl9KSoq+/vprBQYGasKECTbHYmNj812fo6OjzGazzGazJOnnn3/WgAEDtHTpUs2ePTvf8wEAAABFocB7LDZu3KjU1FTr76mpqdq0aZM8PT3VsmVL6+1Jt77tv+XAgQM6duyYTVv9+vVVu3Ztbd26Vf/9739znev2OaTf9x/MmzdPjRs31ptvvql//etfBboOJycnBQcH68CBA1qyZIkk2dwGJf1+i1adOnW0adMmnT9/PtccWVlZSkpKkvS//SC315yQkKDPPvssX7UlJibmaqtZs6bc3NzyvJ0KAAAAsJcCr1h4e3tr0KBBNo+WvXTpkt566y25ubmpWbNm8vHx0axZs3Tx4kXr41m3b9+uunXr6uTJk9a5TCaT3n33XY0YMUKDBg2yPm42JSVFhw8fVtu2bdW3b99cNZQpU0Zz5szRa6+9pgkTJmjq1Kl6+umn830tPXv21OrVq7Vz5061aNEi134Hk8mkKVOmaPjw4erXr5+6d++u2rVrKz09XefPn9eXX36pUaNGKSQkRB4eHmrTpo2io6Pl6uqqRo0a6eLFi9q8ebP8/PysAeR+TJs2Tb/99ptat24tX19fZWRkWPeABAUF5fs6AQAAgKJS4GAxevRoHT16VBs2bNDVq1dVvXp1TZs2Td26dZMkeXp6at68eZozZ47Wr1+v7OxsNWzYULNnz1ZkZKRNsJCkRo0aaeXKlVq6dKm++OILbdq0Sd7e3mrUqJGaNWt2xzrc3d01a9YsjRs3Tm+//bays7P1zDPP5OtaqlWrJrPZrIMHD+ZarbilQYMG+uSTT7R8+XJ99dVX2rRpkzw8POTr66uQkBC1atXK2nfq1KmaO3eu9u3bp88//1zVqlXTiBEj5OTkpMmTJ993XYGBgYqKitLnn3+ua9euycPDQ7Vr19b06dPVqVOnfF0jAAAAUJRMlrzuM7qLW2/eXrRokfW+/wfBK6+8ou+++07R0dF5bqQuzUwzeFQtAAC4N8u4InuuDx4CBd5j8SA5d+6cDhw4oGeeeeaBCxUAAABAcXjgYmlmZuZ97WMoX768fvjhB50+fVrr1q2Ts7OzBgwYUAwVAgAAAA+eBy5YfPPNNwoPD79nv61bt2rjxo36/PPP5efnp6lTp6pKlSrFUCEAAADw4Mn3HouSLjk5WT/88MM9+zVr1kyurq7FUJH9sccCAADcD/ZYwIgH7v89Xl5e93yJHQAAAIDCxeZtAAAAAIYRLAAAAAAY9sDdCoXcIryWKSwsTM7OzvYuBQAAAA8oViwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEmi8VisXcRKFqmGVn2LgEAAEMs45zsXQKAe2DFAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAY5mTvAkqz69eva+XKlYqJidH58+eVlpamypUrq1OnThoyZIjc3NysfRMTEzV79mx99dVXunnzpho1aqRXX31VM2fO1MWLFxUVFWUz9/Hjx7Vs2TIdOXJEaWlp8vX1VVBQkAYNGiQnJ/6zAQAAoGThL1QDLl++rMjISHXs2FHdunWTo6OjDh8+rFWrVumnn37SvHnzJEk3b97UiBEjdOLECYWEhKhRo0b6+eefNXLkSHl5eeWa9+uvv9b48eNVrVo1DRgwQF5eXvruu+8UERGhEydOaPr06cV9qQAAAMBdESwM8PPz0+eff26zgtCnTx8tXLhQS5cu1bFjx9S4cWNFRkbqxIkTGj58uF566SVr37p162r69Ony9fW1tmVkZGjq1Klq3LixFi5caJ27d+/eqlevnj766CPFxcXJbDYX34UCAAAA98AeCwOcnZ2tf/hnZWUpOTlZiYmJevzxxyVJx44dkyTt27dPjo6O6tevn834Z599VmXLlrVpi4mJ0ZUrVxQSEqLU1FQlJiZaf5588klrHwAAAKAkYcXCoA0bNmjTpk06deqUcnJybI6lpKRIki5cuKCKFSuqTJkyNsednZ1VpUoVaz9JOn36tCRpypQpdzznlStXCqt8AAAAoFAQLAxYs2aNZs2apTZt2qhv376qWLGinJ2ddfnyZU2aNClX0LgfFotFkjRmzBjVr18/zz6VKlUyVDcAAABQ2AgWBmzfvl1VqlTRnDlz5ODwv7vK/v3vf9v0q1KlimJjY5WWlmazapGVlaX4+Hh5enpa26pXry5Jcnd3V+vWrYv4CgAAAIDCwR4LAxwdHWUymayrDNLvYWHFihU2/fz9/ZWdna1//OMfNu1btmxRamqqTVvbtm1VoUIFrVixQklJSbnOmZ6eruvXrxfeRQAAAACFgBULAzp16qR58+bplVdeUYcOHXT9+nXt3Lkz13smnn32WW3evFkLFy7U+fPnrY+b/eKLL1StWjVlZ2db+7q7u2vy5MkaN26cevfure7du6tatWpKSUnRmTNntHv3bv3973/nqVAAAAAoUQgWBgwcOFAWi0WRkZH68MMP5ePjoy5duqh79+567rnnrP1cXFy0cOFCzZ49W3v37tWuXbvUuHFjLViwQNOmTVN6errNvG3bttXKlSu1cuVKRUdH69q1a/Ly8lLVqlX1wgsvqF69esV9qQAAAMBdmSx/vI8HxSo7O1udO3dW48aNNXfu3CI7j2lGVpHNDQBAcbCM47tQoKRjj0UxuX1VQpI2bdqklJQUNmkDAACg1CP+F5P33ntPGRkZatq0qVxcXPTdd99px44dqlatmnr27Gnv8gAAAABDCBbFpHXr1tqwYYOWLl2qtLQ0+fj46Nlnn1V4eLg8PDzsXR4AAABgCHssHgLssQAAlHbssQBKPvZYAAAAADCMYAEAAADAMNYVHwIRXssUFhYmZ2dne5cCAACABxQrFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMNMFovFYu8iULRMM7LsXQKAImYZ52TvEgAADzlWLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMFCUnx8vMxmsyIiIuxdyl3l5OQoIiJCPXr0UOvWrWU2m+1dEgAAACBJ4sHnpci2bdu0ZMkSde/eXS1atJCDA7kQAAAAJQPBohSJiYlR2bJl9fbbb8tkMtm7HAAAAMCKr7xLkStXrsjT05NQAQAAgBKnUFcsMjIytGLFCu3cuVO//vqrnJ2dVblyZT3xxBMaM2aMJOnrr7/WqlWr9N///lfp6eny9vbWY489plGjRqlGjRqSpEmTJmnbtm364osvNGvWLO3bt0+ZmZlq1aqV/vrXv6pixYravHmz1q5dq/j4ePn6+mr06NEKCAiwqScrK0tr1qzR559/rgsXLsjd3V3NmzdXeHi46tate8/r+c9//qP/+7//U/369TVz5kx5eXnp5s2bWrNmjXbs2KHz58/LxcVFzZs317Bhw9SwYUPr2JycHC1fvlwHDhzQ2bNnlZSUJB8fHz311FMaPny4vL297/tzjYuLU3h4uPX3W3srgoODNWnSpPueBwAAACgqhRospk+frq1btyooKEgvvPCCsrOzde7cOR08eFCSdOjQIY0dO1Z16tRRWFiYypYtq4SEBMXGxurcuXPWYHHLK6+8okceeUTh4eE6d+6c1q9fr/Hjx6tDhw7asmWLevToIRcXF61fv17/93//p82bN8vPz886/u2339auXbvUunVr9e7dW1euXNGGDRsUFhamJUuW2ASB223btk1Tp05Vu3btNG3aNLm6uiorK0ujR4/Wt99+q8DAQPXp00epqanasmWLXnrpJS1ZskSPPfaYJCkzM1OrV69Wx44d1b59e7m5uen48eOKjIzU0aNHtWbNGjk7O9/X51qrVi1NmTJFy5YtU2JiosaOHStJqlq1ar7++wAAAABFpVCDxZ49e/TEE09o8uTJeR7fu3evcnJyNH/+fFWoUMHa/vLLL+fZv1GjRvq///s/m7a1a9fqt99+0/r161W2bFlJUqtWrdSvXz9t2bJFo0aNkiQdOHBAu3btUpcuXfT//t//s94+1KVLFw0cOFAzZszQxx9/nOd5ly9frvnz5ys0NFRvvPGGdZP0+vXrdejQIc2dO1dt27a19g8NDdXzzz+vWbNmafHixZIkFxcX7dixQ25ubjZzN23aVNOmTdOePXvUpUuXvD/I2/j4+CgwMFCfffaZMjIyFBgYeF/jAAAAgOJSqHssypYtq1OnTunkyZN3PC5JX375pbKysu45X79+/Wx+b968uSQpKCjIOpck1atXTx4eHjp79qy1bc+ePZKkwYMH2+xJqF+/vvz9/XX06FFdu3bNZn6LxaLp06dr/vz5Cg8P15tvvmnz5KXo6GjVrFlTjz76qBITE60/WVlZat26tb755hulp6dLkkwmkzVUZGdnKyUlRYmJiWrVqpUk6dixY/e8fgAAAKC0KNQVi7Fjx+rdd99V37595efnJ7PZLH9/f7Vr104ODg7q06eP9u7dqw8++EBz587Vn//8Zz3xxBPq2rWrypcvn2u+P97WJEmenp6SpCpVquTq6+XlpaSkJOvv8fHxcnBwUK1atXL1rV27tvbs2aMLFy7YnPcf//iHrl+/rhEjRmjw4MG5xp0+fVoZGRnq3LnzHT+DxMRE/elPf5Ik7dq1S2vWrNFPP/2UK0glJyffcQ4AAACgtCnUYBEQEKCtW7dq//79Onz4sGJjYxUZGanmzZtrwYIF8vb21qpVq3TkyBHFxMToyJEjmjlzpiIiIjR79mw1bdrUZj5HR8c8z3OndovFYqj+xx9/XEeOHNGWLVv09NNP57mHoW7dunrttdfuOMetoPLll1/qr3/9qxo1aqRx48apcuXKcnFxUU5OjkaPHm24VgAAAKAkKfT3WJQrV06BgYEKDAyUxWLR3LlztWrVKu3du1edO3eWo6OjzGaz9clGP//8swYMGKClS5dq9uzZhVaHn5+fcnJydPr0adWrV8/m2OnTp619/qhu3boKDw/X8OHDNWzYMC1cuFDVq1e3Hq9WrZquXbumVq1a3fPldNu3b5erq6siIiJs9lmcOXPG4JUBAAAAJU+h7bG4tY/gj0wmkxo0aCBJSkpKUmJiYq5xNWvWlJubW6HfGtS+fXtJv2/E/uPqwMmTJ/XVV1+pWbNmed5+VadOHS1evFjZ2dkaOnSoTRAICgrSlStX9Mknn+R5zitXrlj/fSt45OTkWNssFouWLl1q6LoAAACAkqjQVizS0tLUrVs3tWvXTg0aNFD58uUVHx+vjRs3ysvLy/rY1t9++02tW7eWr6+vMjIytGvXLl2/fl1BQUGFVYokqU2bNurSpYv++c9/KiUlRU899ZT1cbMuLi4aN27cHcfWrFlTixcvtq5cLFiwQHXq1FG/fv0UExOj2bNn6+DBg2rVqpU8PDx06dIlHTx4UC4uLoqIiJAkderUSV9++aXCw8MVFBSkrKws7d2717q5GwAAAHiQFFqwcHNzU79+/RQbG6vY2FilpaWpYsWKateuncLCwlSpUiUFBgYqKipKn3/+ua5duyYPDw/Vrl1b06dPV6dOnQqrFKupU6eqQYMG2rZtm2bNmiV3d3e1aNFCw4cPv+cL8qpXr66IiAgNHz5c4eHhWrBggerVq6dZs2Zp48aN2r59uzVEVKpUSY0aNVJwcLB1fNeuXZWWlqa1a9dq9uzZ8vT0VLt27TRq1KgiuVYAAADAnkwWdhE/8Ewz7v1oXwClm2VcoW+ZAwAgXwr1PRYAAAAAHk58xWVn165dU3Z29l37lClTRmXKlCmmigAAAID8I1jY2YsvvqiLFy/etc+QIUM0bNiwYqoIAAAAyD+ChZ1NnTpVGRkZd+1z+/s2AAAAgJKGYGFnzZo1s3cJAAAAgGFs3gYAAABgGMECAAAAgGHcCvUQiPBaprCwMDk7O9u7FAAAADygWLEAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIaZLBaLxd5FoGiZZmTZuwQAf2AZ52TvEgAAKHSsWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgZERUXJbDYrLi6uWM4XFxcns9msqKioYjkfAAAAcL8IFgAAAAAM4/WvpUiLFi20f/9+OTnxnw0AAAAlC3+hliIODg5ydXW1dxkAAABALtwKVQiys7MVERGh4OBgtW3bVn379tXOnTtt+oSEhGjo0KE6ceKERowYIX9/f3Xp0kUfffSRsrKylJGRoVmzZumZZ57RE088oSFDhuj06dM2c7DHAgAAACUVKxaFYO7cubpx44ZCQ0Ml/b6pe+LEibp586ZCQkKs/X777TeNHDlSXbp0UceOHRUTE6NPPvlEjo6OOnXqlDIyMjRo0CAlJSVp9erVev3117Vx40Y5OJD/AAAAULIRLApBYmKi1q1bp7Jly0qSQkND1bdvX3300Ufq0qWL3NzcJEnnz5/XBx98oM6dO1v7DRgwQKtXr5a/v78WLFggk8kkSSpXrpxmzJihmJgYtW3b1j4XBgAAANwnvgovBKGhodZQIUlly5ZV7969lZycrEOHDlnbH3nkEWuouKVZs2ayWCx6/vnnraHiVrsknT17tmiLBwAAAAoBwaIQ1KxZM1dbrVq1JEkXLlywtlWpUiVXP09PT0mSn5+fTbuXl5ckKSkpqbDKBAAAAIoMwaIY3W2vxJ2OWSyWoioHAAAAKDQEi0Jw5syZXG23nuh0+0oEAAAA8CAiWBSCjRs3KjU11fp7amqqNm3aJE9PT7Vs2dKOlQEAAADFg6dCFQJvb28NGjTI+mjZqKgoXbp0SW+99Zb1iVAAAADAg4xgUQhGjx6to0ePasOGDbp69aqqV6+uadOmqVu3bvYuDQAAACgWJgu7gx94phlZ9i4BwB9YxvGdDgDgwcMeCwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYxjMPHwIRXssUFhYmZ2dne5cCAACABxQrFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMNMFovFYu8iULRMM7LsXQJKMcs4J3uXAAAASgFWLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABg2EMbLKKiomQ2mxUXF1fgOcxmsyZNmlR4Rd3DTz/9pOHDh6tDhw4ym82KiIgotnMDAAAAd8MD6ovJnj179NNPP2nYsGEFGp+VlaU33nhDWVlZCg8Pl6enp+rVq1fIVQIAAAAF89AGi8DAQD399NNydnYulvPt2bNH27ZtK3CwuHDhgi5cuKBXX31Vzz//fCFXBwAAABjz0AYLR0dHOTo62ruM+3blyhVJUrly5excCQAAAJBbidtjcfHixTz3D4waNUpms1mffPKJTfugQYMUGhpq/T0hIUHvv/++goKC1KZNG3Xr1k3vvfeerl69ajPuTnss4uPjNX78eLVv317t27fX2LFjdeHCBYWEhGjo0KF51vztt99q6NCheuqpp9SpUydNnTpVaWlp1uNDhw7Vtm3bJP2+L+PWT1RU1H19JkOHDrWee/Lkydbx8fHx9zUeAAAAKGolbsXC19dXfn5+OnjwoPW2oczMTB09elQODg6Ki4vTCy+8IElKTU3Vjz/+qF69ekmSLl26pLCwMGVmZqpHjx6qWrWqzp07p02bNikuLk6rV69W2bJl73juxMREDRkyRFeuXFHv3r1Vq1YtHTlyROHh4bpx40aeY06cOKHXXntNISEh6tq1qw4dOqTIyEg5ODho4sSJkqTBgwfLYrHoyJEjmjJlinVs06ZN7+szGTx4sP785z9r+fLl6tmzp5o3by5JKl++/H2NBwAAAIpaiQsWktSqVStt27ZN6enpcnNz03fffaf09HQ988wz+uqrr5SVlSUnJycdPnxY2dnZMpvNkqS//e1vysrK0ieffKLKlStb5+vcubPCwsL0ySef3HWPw8qVK/Xrr79q6tSpeuaZZyRJoaGhmj17tlavXp3nmJ9//lnLly9X48aNJUm9e/fW9evXtXXrVr322msqU6aM2rRpox07dujIkSMKDAzM9+fRpk0bOTk5afny5WratGmB5gAAAACKUom7FUr6/XahrKwsHTlyRJJ08OBBVahQQf369dP169d1/PhxSVJcXJxMJpPMZrNSU1P19ddfq127dnJ1dVViYqL1p0qVKqpatapiYmLuet59+/apYsWK6tq1q037wIED7zimSZMm1lBxS6tWrZSdnc2tSgAAAHholNgVC+n3QNG2bVvFxcWpZcuWatiwoby8vHTw4EE1bdpUcXFxqlevnsqVK6djx44pJydHkZGRioyMzHNePz+/u543Pj5ejRo1koODbd6qUKGCPD0973vOWxusk5KS7nmtAAAAwIOgRAYLHx8f1a5dW3FxcUpPT9exY8c0fvx4OTg4qEWLFjp48KB69+6tn3/+Wf3797cZ+8wzzyg4ODjPeV1dXQu91rs9WcpisRT6+QAAAICSqEQGC+n326E2btyor776SpmZmXr88ccl/b6aMXv2bP373/+WxWKxrm5UrVpVJpNJWVlZat26dYHO6evrq3PnziknJ8dm1eLq1atKSUkxdD0mk8nQeAAAAKAkK5F7LKTfA0ROTo6WLFmiP/3pT6pataq1/ebNm1qxYoUcHR2tT0jy9vbWk08+qS+//FLfffddrvksFouuXbt213O2a9dOCQkJ2rlzp037nTZu54e7u7skbo8CAADAg6nErli0bNlSDg4OOn36tEJCQqzttWvXlo+Pj06dOqUmTZrIw8PDeuzNN9/Uyy+/rCFDhigoKEgNGjRQTk6OLly4oK+++kqBgYF3fSrUoEGDtGPHDk2ePFnff/+9atasqSNHjujbb7+Vt7e3oVWHJk2a6NNPP9UHH3ygp556Sk5OTmrcuPE9930AAAAApUGJDRZeXl6qX7++fvzxR+vjZG9p1aqVduzYkav9T3/6k9asWaOVK1dq7969io6OlouLiypXrix/f3916dLlruf09vbWxx9/rFmzZmnr1q0ymUxq2bKlFi1apBdffNHQHo2uXbvqp59+0j//+U/961//Uk5Ojt59912CBQAAAB4IJgs7jO8pMTFRnTt3Vq9evTRhwgR7l5NvphlZ9i4BpZhlXIn9/gEAAJQgJXaPhb2kp6fnalu5cqUkFXhTOAAAAPCg46vI24wZM0a+vr5q2LChcnJydPDgQe3bt09NmzZVQEBAoZ4rPT1dqamp9+xXsWLFQj0vAAAAUNgIFrfx9/fX559/rt27dysjI0OVK1fWgAEDNGTIkLu+s6Igdu3apcmTJ9+zX1xcXKGeFwAAAChs7LGwo4SEBP33v/+9Zz+jt2CxxwJGsMcCAADcD/5isKOKFStymxMAAAAeCGzeBgAAAGAYwQIAAACAYdwK9RCI8FqmsLAwOTs727sUAAAAPKBYsQAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhpksFovF3kWgaJlmZNm7BBQDyzgne5cAAAAeYqxYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBaFKCMjQxEREerVq5eefPJJBQQE6Pnnn9fs2bNt+sXExGjkyJEKCAjQE088ob59+2rjxo02ff7617/q8ccfV1xcnE37f/7zH7Vq1UrvvPNOkV8PAAAAcL9MFovFYu8iHhRTpkzR1q1bFRQUpKZNmyo7O1vnzp3TkSNHtGbNGknS5s2b9f7776tJkyYKCAiQu7u7YmJitGfPHg0cOFBjxoyRJKWmpuqFF15QZmam1q5dK29vbyUkJKh///4qW7as1qxZozJlytxXXaYZWUV2zSg5LOOc7F0CAAB4iBEsClHHjh3VuHFjzZkzJ8/jCQkJ6t69uzp06KD33nvP5tiMGTP06aefavPmzapataok6dixY3r55ZfVtm1bffjhhxo1apSOHDmi5cuXq2HDhvddF8Hi4UCwAAAA9sStUIWobNmyOnXqlE6ePJnn8S+++EI3b95Ujx49lJiYaPPj7++vnJwcxcbGWvs3btxYw4cP1759+zRkyBDFxsZq1KhR+QoVAAAAQHHgK85CNHbsWL377rvq27ev/Pz8ZDab5e/vr3bt2snBwUFnzpyRJI0YMeKOc1y9etXm9xdffFFff/21jhw5ojZt2qh///5FeQkAAABAgRAsClFAQIC2bt2q/fv36/Dhw4qNjVVkZKSaN2+uBQsW6NZdZ5MnT1bFihXznMPPz8/m9/j4eP3888+SpHPnziktLU0eHh5FeyEAAABAPhEsClm5cuUUGBiowMBAWSwWzZ07V6tWrdLevXtVrVo1SZK3t7dat259z7mysrI0ceJEZWdna9y4cfrwww/1wQcfaOrUqUV9GQAAAEC+sMeikGRnZyslJcWmzWQyqUGDBpKkpKQkdenSRS4uLoqIiFB6enquOVJTU3Xz5k3r7wsXLtSxY8f0xhtvqG/fvhowYICio6O1bdu2or0YAAAAIJ94KlQhSUlJUbdu3dSuXTs1aNBA5cuXV3x8vDZu3CiLxaL169erUqVK2rp1q6ZNm6bKlSsrMDBQvr6+unbtmk6ePKk9e/Zow4YNqlKlig4cOKDRo0era9eumjZtmqTfVzAGDx6sM2fOaM2aNapevfp91cZToR4OPBUKAADYE8GikGRmZioiIkKxsbG6cOGC0tLSVLFiRZnNZoWFhdmEgKNHj2rNmjX65ptvlJKSIm9vb9WoUUP+/v567rnndP36dfXr10/u7u765JNPbPZUnD9/Xi+88IKqV6+uZcuWydnZ+Z61ESweDgQLAABgTwSLhwDB4uFAsAAAAPbEHgsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGMbzKR8CEV7LFBYWdl/vvAAAAAAKghULAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYSaLxWKxdxEoWqYZWfYuAffBMs7J3iUAAAAUGCsWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYCEpIiJCZrNZ8fHx9i7lri5cuKDXX39dnTt3ltls1qRJk+xdEgAAACBJ4sH5pcjkyZP1888/a/DgwfLx8VHVqlXtXRIAAAAgiWBRaty8eVNHjhxRnz59NHDgQHuXAwAAANjgVqhS4urVq7JYLPLy8rJ3KQAAAEAuxb5ikZGRoRUrVmjnzp369ddf5ezsrMqVK+uJJ57QmDFjJElms1nBwcEKCgrSggULdOLECZUrV059+vTRX/7yFyUnJ2vWrFnat2+f0tLS1KpVK02cOFGVKlWyOVd8fLwWLlyomJgYpaSk6JFHHtHTTz+tl156SW5ubnetMzs7W9OnT9eWLVs0atQoDRo0SJJ09uxZLVmyRLGxsUpKSlKlSpXUuXNnDR06VO7u7tbxZ86c0bp163T48GFdunRJ2dnZqlWrlkJDQ/Xss8/m6zObNGmStm3bJklasmSJlixZIklatGiRzGZzvuYCAAAAikKxB4vp06dr69atCgoK0gsvvKDs7GydO3dOBw8etOn3008/ad++ferZs6eCgoK0a9cuzZs3T66urtq2bZuqVKmioUOH6ty5c1q/fr3effddLViwwDr+4sWLGjRokFJTUxUaGqrq1avr0KFDWr58ub755hstWLBATk55X356eromTpyo/fv3a/LkyQoMDJQk/fDDDwoPD5enp6d69eqlRx55RCdOnNC6dev0zTffaPHixdY54+LidPjwYT311FOqUqWK0tPT9cUXX2jatGm6du2awsLC7vsz69Wrl+rXr6+ZM2eqQ4cO6tChgySpVq1a+frsAQAAgKJS7MFiz549euKJJzR58uS79jt58qSWL1+uxo0bS5J69Oih4OBgzZw5U3369NH48eNt+q9du1ZnzpxRzZo1JUnz58/XtWvXNGvWLD311FOSpOeee06zZ8/W6tWrtW3btjxXDpKSkvTaa6/p5MmTmjVrltq0aWM9NmXKFFWsWFGrVq2Sh4eHtf3xxx/X+PHjFR0drZCQEElSUFCQQkNDbebu37+/wsPDtWLFCg0cOPCOweZ2TZs2VcWKFTVz5kzVrVvXGnQAAACAkqLY91iULVtWp06d0smTJ+/ar0mTJtZQIUnOzs5q1KiRLBaL+vbta9O3efPmkqRz585JknJycvTVV1+pQYMG1lBxy1/+8hc5ODhoz549uc558eJFvfTSS7pw4YIWL15sEypOnjypn3/+Wd26dVNmZqYSExOtP82aNZO7u7sOHDhg7f/H26IyMjKUmJio5ORktWnTRtevX9eZM2fu/kEBAAAApUixr1iMHTtW7777rvr27Ss/Pz+ZzWb5+/urXbt2cnD4X87x8/PLNfbWxuUqVarYtHt6ekr6fbVBkq5du6a0tDTVrl071xzlypVTxYoVdeHChTxry8rK0rp161StWjWbY6dPn5b0+zsvIiIi8ry2q1evWv+dlpamxYsXa9euXfr1119z9U1OTs5zDgAAAKA0KvZgERAQoK1bt2r//v06fPiwYmNjFRkZqebNm2vBggVydnaWJDk6Ot5xjjsds1gshmrr2rWrNm/erKVLl+qdd96xCTq35h4wYIDatm2b5/g/PrFp4sSJ+vrrr9WzZ0+1aNFC5cqVk4ODg/bv36+1a9cqJyfHUK0AAABASWKX91iUK1dOgYGBCgwMlMVi0dy5c7Vq1Srt3btXnTt3Njx/+fLl5eHhoVOnTuU6lpycrISEBNWvXz/Xsb/85S+qWrWq5syZo+zsbE2aNMkaYqpXry5JcnBwUOvWre96/pSUFH399dcKDAzUhAkTbI7FxsYW9LIAAACAEqtY91hkZ2crJSXFps1kMqlBgwaS/ncrk1EODg7y9/fXTz/9pH//+982x1asWKGcnBwFBATkOfbFF1/U2LFjFR0drbfeektZWVmSpAYNGqhOnTratGmTzp8/n2tcVlaWtf5bKx23r6AkJCTos88+M3h1AAAAQMlTrCsWaWlp6tatm9q1a6cGDRqofPnyio+P18aNG+Xl5aV27doV2rlGjhypmJgYjRs3TqGhoapWrZoOHz6sXbt2qUWLFgoODr7j2P79+8vZ2Vl/+9vflJWVpffff19OTk6aMmWKhg8frn79+ql79+6qXbu20tPTdf78eX355ZcaNWqUQkJC5OHhoTZt2ig6Olqurq5q1KiRLl68qM2bN8vPz6/QAhQAAABQUhRrsHBzc1O/fv0UGxur2NhYpaWlqWLFimrXrp3CwsJyveDOCF9fX61YsUKLFi1SdHS0UlJSVLlyZYWFhemll16656Nen3vuOTk5Oen//b//pzfeeEPTp09XgwYN9Mknn2j58uX66quvtGnTJnl4eMjX11chISFq1aqVdfzUqVM1d+5c7du3T59//rmqVaumESNGyMnJ6Z6P2gUAAABKG5PF6I5nlHimGVn2LgH3wTLOLlueAAAACkWxv8cCAAAAwIOHr0jtKDMz8772W5QvX/6uj98FAAAA7I1gYUfffPONwsPD79lv69atuV4KCAAAAJQkBAs7ql+/vubPn3/Pfj4+PsVQDQAAAFBwBAs78vLyuufL9gAAAIDSgM3bAAAAAAwjWAAAAAAwjFuhHgIRXssUFhYmZ2dne5cCAACABxQrFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMJPFYrHYuwgULdOMLHuXgHuwjHOydwkAAACGsGIBAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMK/XBIi4uTmazWVFRUfYupUBycnIUERGhHj16qHXr1jKbzZKkoUOHKiQkxM7VAQAAAPeHt3LZ2bZt27RkyRJ1795dLVq0kINDqc96AAAAeAgRLOwsJiZGZcuW1dtvvy2TyWTvcgAAAIAC4etxO7ty5Yo8PT0JFQAAACjVHrhgERUVJbPZrLi4uFzH8tq3EBISoqFDh+rMmTMaM2aM2rVrp/bt2+uNN95QQkJCrjl+/vlnjRw5Uk899ZQ6deqkd999V4mJiTKbzZo0adJ913lrb0hcXJwuXrwos9mc5xyXL1/WhAkT1KFDBz355JMaNWqUfvnll/s+DwAAAFAcuBVKv//xPmzYMAUEBOiVV17Rzz//rM2bN+v69euaP3++td/Zs2f18ssvy2KxqG/fvqpUqZL279+v0aNH5/uctWrV0pQpU7Rs2TIlJiZq7NixkqSqVata+9y4cUNDhgxRkyZNNHLkSF24cEHr1q3T66+/rvXr18vR0dH4xQMAAACFgGAh6dy5c3r//ffVpUsXa5uDg4M2bNigM2fOqGbNmpKkBQsW6Pr16/r444/VrFkzSdLzzz+vv/71r/rhhx/ydU4fHx8FBgbqs88+U0ZGhgIDA3P1SUxM1MCBAzVo0CBrW/ny5TVnzhzFxsaqbdu2+b9YAAAAoAg8cLdCFUSlSpVsQoUk62Nfz507J0nKzs7W/v371ahRI2uouOWFF14okrocHBzUt29fm7ZWrVpJ+n31BAAAACgpCBaS/Pz8crWVK1dOkpSUlCRJunbtmm7cuKEaNWrk6ntrRaOwVapUSa6urnetCwAAACgJHrhgcbenK2VnZ+fZfrd3R1gsFsM1FVRJrQsAAAC43QMXLLy8vCRJycnJuY7Fx8cXeN7y5cvL3d09zycynTlzpsDzAgAAAA+CBy5YVK9eXZIUGxtr075jxw5dvny5wPM6OjrqiSee0Pfff6+jR4/aHPvkk08KPC8AAADwIHjgngpVs2ZNPf7449q8ebMsFovq16+vEydOaM+ePapWrZqysrIKPPfw4cN14MABvfLKK+rTp48eeeQRff3110pMTJR099uwAAAAgAfZA7diIUlTpkxRhw4dtGPHDs2aNUsXL17UokWLVKlSJUPz1qxZU4sXL1bjxo31j3/8Q4sWLZK3t7fef/99Scq10RoAAAB4WJgs7AI27IcfftDAgQM1atQo/eUvf7F3ObmYZhR8lQbFwzLugVs8BAAAD5kHcsWiKKWnp9v8brFYtGrVKklS69at7VESAAAAYHd8TZpP/fv3V6tWrVS3bl3duHFD+/bt05EjR9SlSxc9+uijkn5/58WdHm17S5kyZVSmTJniKBkAAAAocgSLfGrfvr327dun7du3Kzs7W1WqVFF4eLjNLVAvvviiLl68eNd5hgwZomHDhhVxtQAAAEDxYI9FETh69KgyMjLu2sfPz09Vq1YtlnrYY1HysccCAACUdvw1UwSaNWtm7xIAAACAYsXmbQAAAACGsWLxEIjwWqawsDA5OzvbuxQAAAA8oFixAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGGayWCwWexeBomWakWXvEh46lnFO9i4BAACgWLFiAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDSkWwiIqKktlsVlxcXKHOO3ToUIWEhBR4fFHVdTcbNmxQ79691bZtW5nNZsXHxxfbuQEAAIA74WH7xSgiIkINGjRQQEBAgcbHxcVp+vTpat++vQYNGiQnJyeVL1++cIsEAAAACuChDhbz589Xcb4fcMmSJQoODi5wsIiJiZEkvfPOOypXrlwhVgYAAAAY81AHC2dnZ3uXkC8JCQmSRKgAAABAiVMq9ljcYrFYtHr1avXo0UNt27ZVr169tG3btlz9YmJiNHLkSAUEBOiJJ55Q3759tXHjxlz97rTH4l//+pf69eunJ554QkFBQVq8eLFiYmJkNpsVFRWV77ri4+NlNpslSdu2bZPZbLb+3I9b42+d+9bYoUOH3td4AAAAoKiVqhWL+fPnKyMjQ7169ZKLi4s2btyoSZMmqWrVqmrWrJkkafPmzXr//ffVpEkTDR48WO7u7oqJidEHH3ygCxcuaMyYMXc9xz//+U9NnDhRVatW1ZAhQ+To6Kht27Zp3759Ba6rfPnymjJlit555x01b95cPXv2zNd13xq/ZcsWHTlyRFOmTJEkVahQIV/zAAAAAEWlVAWLmzdvatWqVdZbmDp16qQePXro008/VbNmzZSQkKAZM2bo6aef1nvvvWcd99xzz2nGjBn65JNP1Lt3b1WtWjXP+bOysvTRRx+pfPnyWrlypby8vCRJoaGh6tevX4Hrcnd3V2BgoN555x35+fkpMDAwX9d9a3xsbKyOHDmS7/EAAABAUStVt0I999xzNvsiHnnkEVWvXl3nzp2TJH3xxRe6efOmevToocTERJsff39/5eTkKDY29o7z//jjj7p8+bKCg4OtoUKSypQpo169ehW4LgAAAOBBV6pWLPz8/HK1lStXTpcuXZIknTlzRpI0YsSIO85x9erVOx67cOGCJKlGjRq5juXVdr91AQAAAA+6UhUsHBzyXmC59cjYW/87efJkVaxYMc++eYWAoq4LAAAAeNCVqmBxL9WqVZMkeXt7q3Xr1vkeX6VKFUnSL7/8kutYXm0AAAAAfleq9ljcS5cuXeTi4qKIiAilp6fnOp6amqqbN2/ecfyjjz6qihUratu2bUpOTra2p6WlafPmzYbrK1OmjJKSkgzPAwAAAJQ0D9SKReXKlfXmm29q2rRpeu655xQYGChfX19du3ZNJ0+e1J49e7RhwwbrysTtnJyc9Oqrr+qtt97SoEGD1KNHDzk6OioqKkrlypXThQsXZDKZClxf48aNFRsbqxUrVuhPf/qTTCaTunbtWuD5AAAAgJLigQoWktS9e3dVr15da9as0ebNm5WSkiJvb2/VqFFDw4cPl4+Pz13Hd+vWTU5OTvr4448VERGhChUqqEePHqpXr57Gjx8vV1fXAtf25ptvavr06Vq+fLmuX78uSQQLAAAAPBBMFnYY35c1a9Zo1qxZWr58uZo0aWLvcvLFNCPL3iU8dCzjHrjMDgAAcFcP1B6LwpCZmans7GybtrS0NG3YsEHlypVTw4YN7VQZAAAAUHLxteptLly4oFdeeUVPP/20qlSpooSEBH3++ee6cOGC3nzzTZsX4RWGpKQkZWZm3rWPm5ubypYtW6jnBQAAAAoTweI23t7eaty4saKjo3Xt2jU5Ojqqbt26GjVqlLp06VLo5xs/frwOHz581z7BwcGaNGlSoZ8bAAAAKCzssbCzH374webRtnmpVKmSateuXeBzsMei+LHHAgAAPGz468fOHn30UXuXAAAAABjG5m0AAAAAhhEsAAAAABjGrVAPgQivZQoLCyv0J1oBAAAAt7BiAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMM1ksFou9i0DRMs3IsncJJYZlnJO9SwAAAHggsWIBAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gUUFRUlMxms+Li4uxdCgAAAGB3BAsAAAAAhvHm7QLKzs5WVlaWnJ2d5eBQsvMZb97+H968DQAAUDRK9l/EJZijo6NcXV3tGiquX79ut3MDAAAAf8TXt3nIzMzU2rVrtXPnTv3yyy9ycnJS9erVFRwcrOeff17S73ssJk+erEWLFslsNlvHxsfH66OPPlJsbKwkqWXLlnr99dcVHh4uX19fLV682Nr3n//8p6Kjo3XixAldvXpVZcqUUbNmzRQeHq569erZ1BQSEiJfX1+NHTtW8+bN03fffady5cpp69atxfCJAAAAAHdHsLhNZmamRo0apUOHDqlNmzZ65pln5OLiopMnT2r37t3WYJGXxMREDRkyRFeuXFHv3r1Vq1YtHTlyROHh4bpx40au/p9++qnKlSunnj17qmLFijp//ry2bNmil156SWvWrFH16tVt+v/6668aPny4OnfurI4dOyotLa3Qrx8AAAAoCILFbdauXatDhw4pLCxMI0eOtDmWk5Nz17ErV67Ur7/+qqlTp+qZZ56RJIWGhmr27NlavXp1rv5z586Vu7u7TVtQUJD69++vtWvX6s0337Q5duHCBb311lt69tlnC3BlAAAAQNFhj8VtduzYIS8vL7388su5jt1rP8W+fftUsWJFde3a1aZ94MCBefa/FSosFotSU1OVmJio8uXLq0aNGjp27Fiu/uXKlVNISMj9XgoAAABQbFixuM3Zs2fVoEEDubq65ntsfHy8GjVqlCuAVKhQQZ6enrn6//jjj1q0aJEOHTqU61YpPz+/XP39/Pzk6OiY77oAAACAokawsJNLly5p6NCh8vDw0EsvvaSaNWvKzc1NJpNJH374YZ57Mtzc3OxQKQAAAHBvBIvb1KhRQ2fOnNHNmzfl4uKSr7G+vr46d+6ccnJybFYtrl69qpSUFJu+u3fvVlpammbOnGnzVClJSkpKyve5AQAAAHtij8VtunXrpuTkZC1dujTXsXu9S7Bdu3ZKSEjQzp07bdrz2rh9K3jcPueWLVt05cqV/JYNAAAA2BUrFrfp16+f9u3bp6VLl+r48eNq3bq1XF1dderUKf3yyy9asGDBHccOGjRIO3bs0OTJk/X999+rZs2aOnLkiL799lt5e3vLZDJZ+z755JOaO3eu3nnnHfXp00eenp765ptv9O9//1tVq1ZVdnZ2cVwuAAAAUChYsbiNs7Oz5s2bp+HDh+vXX3/VggULNH/+fH3//ffq0KHDXcd6e3vr448/lr+/v7Zu3aq5c+fqxo0bWrRokSwWi82G8KpVq2rOnDmqUqWKli9frnnz5ik5OVkRERF65JFHivoyAQAAgEJlstzr/h4YlpiYqM6dO6tXr16aMGFCsZ/fNCOr2M9ZUlnGsUgHAABQFFixKGTp6em52lauXClJat26dXGXAwAAABQLvr4tZGPGjJGvr68aNmyonJwcHTx4UPv27VPTpk0VEBBg7/IAAACAIkGwKGT+/v76/PPPtXv3bmVkZKhy5coaMGCAhgwZwsvtAAAA8MBij8VDgD0W/8MeCwAAgKLBHgsAAAAAhhEsAAAAABjGfSEPgQivZQoLC5Ozs7O9SwEAAMADihULAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYSaLxWKxdxEoWqYZWfYuodBZxjnZuwQAAAD8ASsWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADDsgQwWUVFRMpvNiouLs3cpAAAAwEPhgQwWJUlcXJwiIiKUkpJiaJ6ffvpJERERio+PL6TKAAAAgMLzQAaLwMBA7d+/Xy1atLB3KTp06JCWLFliOFicOHFCS5YsIVgAAACgRHogX1/s6OgoR0dHe5cBAAAAPDRMFovFYu8i8iMzM1Nr167Vzp079csvv8jJyUnVq1dXcHCwnn/+eUm/77GYPHmyFi1aJLPZbB0bHx+vjz76SLGxsZKkli1b6vXXX1d4eLh8fX21ePHifNXyzTffaOnSpfrpp5+UkpKicuXKqV69ehoyZIiaNGmiSZMmadu2bbnGDRkyRMOGDdPly5e1Zs0aHTx4UBcvXlRGRob8/PwUFBSkgQMHWsNRRESElixZkmue4OBgTZo06Z51mmZk5eu6SgPLuAcyEwMAAJRapeqvs8zMTI0aNUqHDh1SmzZt9Mwzz8jFxUUnT57U7t27rcEiL4mJiRoyZIiuXLmi3r17q1atWjpy5IjCw8N148aNfNdy5swZjRw5Uj4+Purbt68qVKigq1ev6ujRozpx4oSaNGmiXr166fr169q9e7fGjh0rb29vSVK9evUkST///LN2796tgIAAVa1aVVlZWfrPf/6jefPm6cKFC5o4caIkqWPHjkpISNCWLVsUFhamWrVqSZKqVq2a77oBAACAolCqgsXatWt16NAhhYWFaeTIkTbHcnJy7jp25cqV+vXXXzV16lQ988wzkqTQ0FDNnj1bq1evznctBw4cUHp6ut577z01btw4zz5NmzZV3bp1reGhSpUqNsdbtGihyMhImUwma1v//v319ttvKzIyUsOGDVPFihVVr149NW3aVFu2bFHr1q1tVmEAAACAkqBUbd7esWOHvLy89PLLL+c65uBw90vZt2+fKlasqK5du9q0Dxw4sEC1lC1bVpK0d+9eZWRkFGgONzc3a6jIzMxUUlKSEhMT1bZtW+Xk5Oj48eMFmhcAAAAobqVqxeLs2bNq0KCBXF1d8z02Pj5ejRo1yhVAKlSoIE9Pz3zP9/TTT2v79u1avny51q5dqyZNmqhNmzbq2rWrfH1972uOrKwsrVixQtu3b9e5c+d0+3aX5OTkfNcFAAAA2EOpChYliYuLixYsWKBjx47pwIEDOnz4sHWT9bRp09ShQ4d7zvHRRx9p/fr16tKliwYPHqzy5cvLyclJP/74o+bOnZsraAAAAAAlVakKFjVq1NCZM2d08+ZNubi45Gusr6+vzp07p5ycHJtVi6tXrxp6x0Tjxo2teywuXbqkF154QQsXLrQGiz/un7jd9u3b1aJFC73//vs27efOncvV927zAAAAAPZWqvZYdOvWTcnJyVq6dGmuY/f6dr9du3ZKSEjQzp07bdoLsnFb+v0pU7erXLmyypcvr6SkJGtbmTJlJOV9W5ODg0Ouum/cuKG1a9fm6uvu7n7HeQAAAAB7K1UrFv369dO+ffu0dOlSHT9+XK1bt5arq6tOnTqlX375RQsWLLjj2EGDBmnHjh2aPHmyvv/+e9WsWVNHjhzRt99+K29v73yvCCxdulQHDhzQU089JT8/P1ksFu3bt09nzpzRiy++aO13azVjzpw51sfj1qlTR3Xr1lWnTp20efNm/fWvf9Xjjz+uK1euKCoqSuXKlct1vlv7Q5YtW6bk5GS5u7vLz8/vjk+kAgAAAIpTqQoWzs7OmjdvntasWaOdO3dqwYIFcnFxUfXq1RUSEnLXsd7e3vr44481a9Ysbd26VSaTSS1bttSiRYv04osv5ntDePv27ZWQkKAvvvhCV69elaurq6pVq6a33npLPXr0sPZr1qyZRo8erc2bN2vatGnKzs7WkCFDVLduXY0dO1YeHh7atWuX9u7dq8qVK6tnz5567LHHNGLECJvz/elPf9I777yjlStX6oMPPlBWVpaCg4MJFgAAACgRSt2btwtbYmKiOnfurF69emnChAn2LqdI8OZtAAAAFLVStcfCqPT09FxtK1eulCS1bt26uMsBAAAAHhgP1de+Y8aMka+vrxo2bKicnBwdPHhQ+/btU9OmTRUQECBJSkpKUmZm5l3ncXNzs74gDwAAAMBDFiz8/f31+eefa/fu3crIyFDlypU1YMAADRkyRI6OjpKk8ePH6/Dhw3edJzg4WJMmTSqGigEAAIDS4aHfY3G7H3744Z6PdK1UqZJq165dTBUZxx4LAAAAFDX+OrvNo48+au8SAAAAgFLnodq8DQAAAKBoECwAAAAAGMatUA+BCK9lCgsLk7Ozs71LAQAAwAOKFQsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYJjJYrFY7F0EipZpRpa9SyhUlnFO9i4BAAAAt2HFAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEaw+P/FxcXJbDYrKirK3qXc1RdffKF+/frpySeflNlsVlxcnL1LAgAAAMSbxkqRX375RRMnTlTTpk01fvx4ubi4qFatWvYuCwAAACBYlCaHDh1Sdna2Xn/9dTVs2NDe5QAAAABW3ApVily5ckWS5OXlZedKAAAAAFvFumJx8+ZNrVmzRjt27ND58+fl4uKi5s2ba9iwYTbfwMfFxSk8PFzvvvuu0tPT9Y9//EOXLl1StWrVNGrUKPn7++vkyZOaPXu2vv32Wzk5Oalbt2567bXX5OT0v0saOnSoLl68qIULF2rmzJk6dOiQJKlVq1Z69dVXVbVq1Tzr3Lp1q9asWaNz587Jx8dHzz33nAYNGmQ93q9fPyUnJysqKkoODrbZ7IsvvtCbb76pSZMmKTg4WDk5OVq3bp22bt2q+Ph4mUwm+fj4qFmzZpowYYJNvXdjNput/+7evbskydfXt8TvCQEAAMDDodiCRVZWlkaPHq1vv/1WgYGB6tOnj1JTU7Vlyxa99NJLWrJkiR577DGbMRs2bFBycrKeffZZubi4aP369Ro3bpymT5+uadOmqWvXrmrfvr1iYmK0fv16lS9fXi+//LLNHDdu3NCwYcPUuHFjjRo1SmfPntXGjRv13Xff6ZNPPlHFihVt+m/atElXr15V9+7d5enpqejoaM2dO1eVK1dWt27dJEnPPvus/v73vysmJkZt27a1GR8ZGamyZcuqc+fOkqRly5Zp0aJF8vf3V+/eveXg4KD4+Hh99dVXunnz5n0HiylTpmj37t3avXu3xo4dK29vb5UpUyZf/w0AAACAolJswWL9+vU6dOiQ5s6da/PHeGhoqJ5//nnNmjVLixcvthlz+fJlbdiwQWXLlpX0+0pDv379NH78eE2fPl0dO3a0zjFgwABt2LAhV7BITExUv3799Prrr1vbWrRoofHjx2vx4sWaMGGCTf9Lly5p48aN1nP26NFDwcHBWr9+vTVYBAYGas6cOYqMjLS5lkuXLikmJka9evWSm5ubJGn37t2qVauWPvroI5vzjB49Ol+fX2BgoM6dO6fdu3crICBAVapUydd4AAAAoCgV2x6L6Oho1axZU48++qgSExOtP1lZWWrdurW++eYbpaen24wJDg62/oEvSfXq1ZOHh4cqVapkDRW3NGvWTFeuXFFaWlquc//xNiZJ6tChg2rUqKG9e/fm6hsSEmJzTjc3NzVp0kRnz561tnl6eqpLly7au3evEhMTre1RUVHKyclRjx49rG1ly5bVb7/9pqNHj979AwIAAABKsWJbsTh9+rQyMjKstwjlJTExUX/605+sv/v5+eXq4+XlpcqVK+dq9/T0lCQlJSXZ3CLk6emZ63YnSapVq5b27NmjGzduyN3d/a7nLFeunJKSkmzaevbsqW3btmn79u3q37+/LBaLoqKiVL9+fT366KPWfiNHjtS4ceP08ssvq1KlSmrZsqWeeuopderUSc7Oznf8LAAAAIDSpFg3b9etW1evvfbaHY+XL1/e5ndHR8c8+92+YfqPLBZLwYq7xzlv9+c//1l16tRRZGSk+vfvr9jYWMXHx+uNN96w6de0aVN99tln+s9//qO4uDgdOnRIO3bs0NKlS/Xxxx+rXLlyhuoFAAAASoJiCxbVqlXTtWvX1KpVq7sGg8KWkpKihISEXKsWp0+fVoUKFWxWK/KrZ8+emjFjho4dO6bIyEi5urrqmWeeydWvTJky6tSpkzp16iTp903p06dPV2RkpF588cUCnx8AAAAoKYrtL/ygoCBduXJFn3zySZ7Hb72joSisXLnS5vfdu3frl19+Ufv27Q3NGxgYKFdXV61evVp79uxRx44drbdk3fLHPRi33Hq0bnJysqHzAwAAACVFsa1Y9OvXTzExMZo9e7YOHjyoVq1aycPDQ5cuXdLBgwfl4uKiiIiIQj+vt7e3vvzyS12+fFktW7a0Pm7Wx8dHw4YNMzS3l5eXOnbsqOjoaEmy2bR9S2hoqJo0aaJGjRqpUqVKSkhI0JYtW+Ts7Kynn37a0PkBAACAkqLYgoWTk5NmzZqljRs3avv27dYQUalSJTVq1EjBwcFFcl53d3frC/LmzZsni8Witm3b6rXXXstzU3d+9erVS9HR0apWrZpatmyZ6/iAAQO0f/9+rV+/XqmpqapQoYIaN26ssLAw1a9f3/D5AQAAgJLAZDG627kEu/Xm7aJ8O/WxY8f0l7/8RSNHjlRYWFiRnccI04wse5dQqCzjivWZAwAAALgPxbeL+gH16aefysnJSSEhIfYuBQAAALAbvvotgBs3buirr77SqVOnFB0drZ49exb4tqrU1NRcLwa8nbOzM4+lBQAAQIlGsCiAa9euaeLEidbHyL7yyisFnmvGjBnatm3bXfu0aNFCixcvLvA5AAAAgKL2QO+xKA1OnTqly5cv37WPl5eXzdu884s9FgAAAChq/IVmZ7Vr11bt2rXtXQYAAABgCJu3AQAAABjGisVDIMJrmcLCwuTs7GzvUgAAAPCAYsUCAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgmMlisVjsXQSKlmlGlr1LKDDLOCd7lwAAAID7wIoFAAAAAMMIFgAAAAAMI1gAAAAAMIxgAQAAAMAwggUAAAAAwwgWAAAAAAwr0cEiKipKZrNZcXFx9i6lRMjJyVFERIR69Oih1q1by2w227skAAAAQJLESwIMiI+PV1RUlAICAtSgQYMiP9+2bdu0ZMkSde/eXS1atJCDQ4nOhQAAAHiIECwMiI+P15IlS1SlSpViCRYxMTEqW7as3n77bZlMpiI/HwAAAHC/+Mq7AK5fv26X8165ckWenp6ECgAAAJQ4pWLFwmKxaPXq1dq4caN+++03+fr6avDgwQoODrbpFxMTo1WrVun777/XzZs3Vb16dYWGhio0NNSm34EDBxQZGanjx48rISFBzs7OatSokQYPHqyWLVva9B06dKguXryohQsXas6cOYqLi1NycrLeffddTZ48WZI0efJk679btGihxYsXKycnR8uXL9eBAwd09uxZJSUlycfHR0899ZSGDx8ub2/v+77+uLg4hYeHW3+/tbciODhYkyZNuu95AAAAgKJSKoLF/PnzlZGRoV69esnFxUUbN27UpEmTVLVqVTVr1kyStHnzZr3//vtq0qSJBg8eLHd3d8XExOiDDz7QhQsXNGbMGOt8UVFRSkpKUmBgoCpXrqzffvtNkZGRGjFihBYtWqTmzZvbnD8tLU3Dhg1T06ZNNWLECF29elXNmzdXWFiYli9frp49e1rHVKhQQZKUmZmp1atXq2PHjmrfvr3c3Nx0/PhxRUZG6ujRo1qzZo2cnZ3v6/pr1aqlKVOmaNmyZUpMTNTYsWMlSVWrVjX60QIAAACFolQEi5s3b2rVqlXWP8Q7deqkHj166NNPP1WzZs2UkJCgGTNm6Omnn9Z7771nHffcc89pxowZ+uSTT9S7d2/rH+JvvfWW3N3dbc7Ru3dv9enTR8uXL88VLJKSktS7d2+NGDHCpr1169Zavny5mjZtqsDAQJtjLi4u2rFjh9zc3GzamzZtqmnTpmnPnj3q0qXLfV2/j4+PAgMD9dlnnykjIyPXuQAAAAB7KxV7LJ577jmbb/cfeeQRVa9eXefOnZMkffHFF7p586Z69OihxMREmx9/f3/l5OQoNjbWOv6PoSItLU2JiYlydHRU48aN9f333+dZw8CBA/NVs8lksoaK7OxspaSkKDExUa1atZIkHTt2LF/zAQAAACVZqVix8PPzy9VWrlw5Xbp0SZJ05swZScq1ovBHV69etf77/Pnzmj9/vg4cOKCUlBSbfnltjC5fvrw8PT3zXfeuXbu0Zs0a/fTTT8rKyrI5lpycnO/5AAAAgJKqVASLO72vwWKx2Pzv5MmTVbFixTz73gonaWlpGjJkiG7cuKF+/fqpbt268vDwkMlk0ooVK3Tw4MFcY2+/nel+fPnll/rrX/+qRo0aady4capcubJcXFyUk5Oj0aNHW2sGAAAAHgSlIljcS7Vq1SRJ3t7eat269V37xsbG6vLly3rnnXfUvXt3m2MLFy7M13nv9tjX7du3y9XVVRERETbB5NbqCgAAAPAgKRV7LO6lS5cucnFxUUREhNLT03MdT01N1c2bNyVJjo6OkpRrxeDAgQP53vdQpkwZSb9v7r7drVWWnJwca5vFYtHSpUvzdQ4AAACgNHggViwqV66sN998U9OmTdNzzz2nwMBA+fr66tq1azp58qT27NmjDRs2qEqVKmrWrJl8fHw0a9YsXbx4UY888ohOnDih7du3q27dujp58uR9n7dWrVry8PDQxo0b5ebmJk9PT1WoUEGtWrVSp06d9OWXXyo8PFxBQUHKysrS3r178ww+AAAAQGn3QAQLSerevbuqV6+uNWvWaPPmzUpJSZG3t7dq1Kih4cOHy8fHR5Lk6empefPmac6cOVq/fr2ys7PVsGFDzZ49W5GRkfkKFm5ubnrvvfe0cOFCzZw5Uzdv3lSLFi3UqlUrde3aVWlpaVq7dq1mz54tT09PtWvXTqNGjVKnTp2K6mMAAAAA7MJkYRfxA880I+venUooy7gHJvsCAAA80B6IPRYAAAAA7Iuvg+3s2rVrys7OvmufMmXKWDeKAwAAACURwcLOXnzxRV28ePGufYYMGaJhw4YVU0UAAABA/hEs7Gzq1KnKyMi4a5+83jwOAAAAlCQECztr1qyZvUsAAAAADGPzNgAAAADDCBYAAAAADONWqIdAhNcyhYWFydnZ2d6lAAAA4AHFigUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMMxksVgs9i4CRcs0I8veJRSYZZyTvUsAAADAfWDFAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGGY4WERFRclsNisuLq4w6sFdxMXF6S9/+YvatWsns9msqKgoe5cEAAAASJJ4+9gfxMfHKyoqSgEBAWrQoIG9y7GRnJys8ePH65FHHtGrr74qNzc3NW3a1N5lAQAAAJIIFjbi4+O1ZMkSValSpcQFi+PHjyslJUVvv/22OnbsaO9yAAAAABvssZB0/fp1e5dwTwkJCZIkLy8vO1cCAAAA5FZowcJisWj16tXq0aOH2rZtq169emnbtm2SpMzMTHXu3FmDBw/Oc+yqVatkNpt1+PBhSf/btxETE6OIiAgFBwerbdu26tu3r3bu3JnnHMePH9e4cePUqVMn6/mXLl2qrKwsm35Dhw5VSEiIzp8/rzfeeEMdO3ZU+/btFRUVpfDwcEnS5MmTZTabZTabNXToUJtr3LhxowYMGKAnn3xS/v7+GjZsWK79JfHx8TKbzYqIiNC+ffv04osv6oknnlDXrl01e/bsXDXdS0hIiCZNmiRJCg8Pt9YGAAAAlBSFdivU/PnzlZGRoV69esnFxUUbN27UpEmTVLVqVTVr1kzBwcFas2aNzpw5o5o1a9qM3bp1q6pXr64WLVrYtM+dO1c3btxQaGiopN8Dx8SJE3Xz5k2FhIRY+3399dcaP368qlWrpgEDBsjLy0vfffedIiIidOLECU2fPt1m3rS0NA0bNkxNmzbViBEjdPXqVTVv3lxhYWFavny5evbsqebNm0uSKlSoYB33zjvvaOfOnerUqZNCQkKUmZmp6OhojRw5Un/729/Uvn17m/Ps379fGzduVO/evdW9e3ft3btXq1evlqen5x1DVl5ef/117d+/X1u2bFFYWJhq1ap132MBAACA4lBoweLmzZtatWqVnJ2dJUmdOnVSjx499Omnn6pZs2bq2bOn1qxZo8jISI0ZM8Y67ujRozpz5oxGjx6da87ExEStW7dOZcuWlSSFhoaqb9+++uijj9SlSxe5ubkpIyNDU6dOVePGjbVw4UI5Of1+Sb1791a9evX00UcfKS4uzuYb/qSkJPXu3VsjRoywOV/r1q21fPlyNW3aVIGBgTbHdu/erejoaE2YMEG9evWytvft21dhYWH68MMP1a5dO5lMJuuxU6dO6dNPP1WVKlWsNT3//PNav359voJFQECAUlJStGXLFrVu3ZrVCgAAAJQ4hXYr1HPPPWcNFZL0yCOPqHr16jp37pwkqUaNGmrRooW2b99ucytQZGSkHB0dFRwcnGvO0NBQa6iQpLJly6p3795KTk7WoUOHJEkxMTG6cuWKQkJClJqaqsTEROvPk08+ae1zu4EDB+br+rZv3y4PDw8FBATYnCM1NVX+/v6Kj4/X2bNnbcYEBARYQ4UkmUwmmc1mXblyRWlpafk6PwAAAFCSFdqKhZ+fX662cuXK6dKlS9bfe/Xqpbfeektff/21AgICdP36dX3xxRfy9/eXj49PrvG33zIlyXob0IULFyRJp0+fliRNmTLljrVduXLF5vfy5cvL09Pz3hf1B2fOnNH169f19NNP37HP1atXVaNGDevvd/pMpN9XTcqUKZOvGgAAAICSqtCChYND3osfFovF+u+OHTuqXLlyioyMVEBAgHbt2qUbN27o2WefLfB5b80/ZswY1a9fP88+lSpVsvndzc2tQOcpX768pk2bdsc+derUsfn9Tp/JrfkAAACAB0WxvsfCxcVFQUFBWr9+vS5fvqzIyEg98sgjatu2bZ79z5w5k6vt1grFrdWA6tWrS5Lc3d3VunVrQ/X9cX/E7apVq6azZ8+qSZMmrDQAAAAAtyn291j07NlT2dnZmjNnjr777jsFBwfL0dExz74bN25Uamqq9ffU1FRt2rRJnp6eatmypSSpbdu2qlChglasWKGkpKRcc6Snp9/3eypuBYa85gkKClJOTo7mzZuX59jbb7cCAAAAHibF/ubtWrVqqVmzZoqOjpbJZFL37t3v2Nfb21uDBg2yPlo2KipKly5d0ltvvWW9ncnd3V2TJ0/WuHHjrI91rVatmlJSUnTmzBnt3r1bf//73+/rSUq1atWSh4eHNm7cKDc3N3l6eqpChQpq1aqVOnfurJCQEH366af68ccf5e/vL29vb/3222/69ttvdf78eUVGRhbOhwQAAACUMsUeLKTfVy2OHj0qs9msqlWr3rHf6NGjdfToUW3YsEFXr15V9erVNW3aNHXr1s2mX9u2bbVy5UqtXLlS0dHRunbtmry8vFS1alW98MILqlev3n3V5ebmpvfee08LFy7UzJkzdfPmTbVo0UKtWrWSJL377rsym83asmWLVqxYoczMTPn4+Khhw4YaOXJkwT8QAAAAoJQzWeywi3jXrl3661//mmdIkH5fmZg8ebIWLVrEOxsKgWlG/t70XZJYxtkl+wIAACCfin2PhSRt2LBB3t7e6tixoz1ODwAAAKCQFdvXwVevXlVsbKyOHj2qw4cPa9SoUXJxcSmu05dIaWlp93xRnqOjo8qXL19MFQEAAAAFU2zB4tSpU3rrrbfk6emp3r17a8CAAcV16hJr9erVWrJkyV37+Pr6KioqqpgqAgAAAArGLnss8Lvz589b3yB+J66urmrWrJmh87DHAgAAAEWNv9rsqGrVqnd9KhYAAABQWthl8zYAAACABwsrFg+BCK9lCgsLk7Ozs71LAQAAwAOKFQsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGESwAAAAAGEawAAAAAGAYwQIAAACAYQQLAAAAAIYRLAAAAAAYRrAAAAAAYBjBAgAAAIBhJovFYrF3EShaphlZ9i6hQCzjnOxdAgAAAO4TKxYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMI1gAAAAAMIxgUQSGDh2qkJAQe5cBAAAAFBuCBQAAAADDeEFeEcjMzJTFYpGLi4u9S5HEC/IAAABQ9PjLrQg4OzvbuwQAAACgWHEr1H2KioqS2WxWTEyMIiIiFBwcrLZt26pv377auXOnTd+89ljcajt//rzGjh2r9u3bq3379ho3bpzOnz+f63wWi0UbN27UgAED9OSTT8rf31/Dhg1TXFxckV4nAAAAUBAEi3yaO3eu/vnPfyo0NFTDhg1TZmamJk6cqKioqHuOvXHjhoYNGyZnZ2eNGjVK3bt31/79+/XSSy8pISHBpu8777yjv/3tb6pWrZpeeeUVDRs2TKmpqRo5cqT27t1bVJcHAAAAFAi3QuVTYmKi1q1bp7Jly0qSQkND1bdvX3300Ufq0qWL3Nzc7jq2X79+ev31161tLVq00Pjx47V48WJNmDBBkrR7925FR0drwoQJ6tWrl7Vv3759FRYWpg8//FDt2rWTyWQqoqsEAAAA8ocVi3wKDQ21hgpJKlu2rHr37q3k5GQdOnTonuMHDRpk83uHDh1Uo0YNm1WI7du3y8PDQwEBAUpMTLT+pKamyt/fX/Hx8Tp79mzhXRQAAABgECsW+VSzZs1cbbVq1ZIkXbhw4a5jPT09VbFixTzH79mzRzdu3JC7u7vOnDmj69ev6+mnn77jXFevXlWNGjXyVzwAAABQRAgWJZDFYlH58uU1bdq0O/apU6dOMVYEAAAA3B3BIp/OnDmTq+306dOSJD8/v7uOTUlJUUJCQq5Vi9OnT6tChQpyd3eXJFWrVk1nz55VkyZNVKZMmcIpHAAAAChC7LHIp40bNyo1NdX6e2pqqjZt2iRPT0+1bNnynuNXrlxp8/vu3bv1yy+/qH379ta2oKAg5eTkaN68eXnOceXKlQJWDwAAABQNVizyydvbW4MGDbK+pyIqKkqXLl3SW2+9ddcnQt0a++WXX+ry5ctq2bKlzp49q40bN8rHx0fDhg2z9uvcubNCQkL06aef6scff5S/v7+8vb3122+/6dtvv9X58+cVGRlZpNcJAAAA5AfBIp9Gjx6to0ePasOGDbp69aqqV6+uadOmqVu3bvcc6+7uroULF2rmzJmaN2+eLBaL2rZtq9deey3X7VHvvvuuzGaztmzZohUrVigzM1M+Pj5q2LChRo4cWVSXBwAAABQIwSKfHB0dNWzYMJsVhtstXrz4jseqVq2qmTNn3te5goKCFBQUlO8aAQAAgOLGHgsAAAAAhhEsAAAAABhGsAAAAABgmMlisVjsXQSKlmlGlr1LKBDLOLYAAQAAlBasWAAAAAAwjGABAAAAwDCCBQAAAADDuIn9IRDhtUxhYWFydna2dykAAAB4QLFiAQAAAMAwggUAAAAAwwgWAAAAAAwjWAAAAAAwjGABAAAAwDCCBQAAAADDCBYAAAAADCNYAAAAADCMYAEAAADAMIIFAAAAAMMIFgAAAAAMM1ksFou9i0DRMs3IsncJ980yzsneJQAAAKAAWLEAAAAAYBjBAgAAAIBhBAsAAAAAhhEsAAAAABhGsAAAAABgGMECAAAAgGEECwAAAACGFWuwCAkJ0dChQ+/Zlh9Dhw5VSEiI0dJKjZ9++knDhw9Xhw4dZDabFRERYe+SAAAAAPE2sjtISUnR2rVr1bJlS5nNZnuXI0nKysrSG2+8oaysLIWHh8vT01P16tWzd1kAAACA/YPFpk2bZDKZ7F1GLikpKVqyZIkklZhgceHCBV24cEGvvvqqnn/+eXuXAwAAAFjZPVi4uLjYu4RS48qVK5KkcuXK2bkSAAAAwFaRBItLly5p1qxZ+s9//iNJatGihV5//fU8+4aEhMjX11eLFy+2th04cECRkZE6fvy4EhIS5OzsrEaNGmnw4MFq2bJlnvOcP39eM2fO1KFDhyRJrVq10quvvqqqVava9LNYLNq0aZM+++wznT59Wg4ODnrsscc0ZMgQ68pEXFycwsPDJUlLliyxrlz4+voqKirKOtc///lPrV+/Xj///LOys7NVt25dDRw4UJ07d7Y559dff61Vq1bpv//9r9LT0+Xt7a3HHntMo0aNUo0aNe7rMx06dKgOHz4sSZo8ebImT54sSdq6dauqVKlyX3MAAAAARaXQg0VKSoqGDh2qX3/9Vb169VLt2rV1+PBhDRs2TBkZGfc1R1RUlJKSkhQYGKjKlSvrt99+U2RkpEaMGKFFixapefPmNv1v3LihYcOGqXHjxho1apTOnj2rjRs36rvvvtMnn3yiihUrWvu+88472rlzpzp16qSQkBBlZmYqOjpaI0eO1N/+9je1b99etWrV0tixYzVz5kx16NBBHTp0kCSVKVPGOs+CBQu0bNkyPfHEEwoPD5eDg4N2796tN998U2+88Yb69OkjSTp06JDGjh2rOnXqKCwsTGXLllVCQoJiY2N17ty5+w4WgwcP1p///GctX75cPXv2tH4G5cuXv6/xAAAAQFEq9GCxatUqxcfH65133lH37t0lSc8995w+/PBD/eMf/7ivOd566y25u7vbtPXu3Vt9+vTR8uXLcwWLxMRE9evXz2ZVpEWLFho/frwWL16sCRMmSJJ2796t6OhoTZgwQb169bL27du3r8LCwvThhx+qXbt28vHxUUBAgGbOnKm6desqMDDQ5nw//vijli1bprCwMI0cOdJmntdff13z589XUFCQPDw8tHfvXuXk5Gj+/PmqUKGCte/LL798X5/FLW3atJGTk5OWL1+upk2b5qoJAAAAsKdCf9zsnj175OPjo6CgIJv2QYMG3fccfwwVaWlpSkxMlKOjoxo3bqzvv/8+zzG3z9+hQwfVqFFDe/futbZt375dHh4eCggIUGJiovUnNTVV/v7+io+P19mzZ+9ZX3R0tEwmk4KCgmzmSUxMVLt27XT9+nV99913kqSyZctKkr788ktlZWXd92cAAAAAlCaFvmJx4cIFPfbYY3J0dLRpr1ixojw9Pe9rjvPnz2v+/Pk6cOCAUlJSbI7l9QQpT09Pm9udbqlVq5b27NmjGzduyN3dXWfOnNH169f19NNP3/HcV69eveftSadPn5bFYlFoaOgd+9zaaN2nTx/t3btXH3zwgebOnas///nPeuKJJ9S1a1duYwIAAMADw+5PhbpdWlqahgwZohs3bqhfv36qW7euPDw8ZDKZtGLFCh08eLDAc1ssFpUvX17Tpk27Y586derc11wmk0lz5syRg0Peiz635vH29taqVat05MgRxcTE6MiRI5o5c6YiIiI0e/ZsNW3aNP8XAgAAAJQwhR4s/Pz8dO7cOWVnZ9usWiQkJORafchLbGysLl++bLNH45aFCxfmOSYlJUUJCQm5Vi1Onz6tChUqWG+tqlatms6ePasmTZrYbMTOy93erVGtWjX9+9//1p/+9CfVqlXrntfk6Ogos9lsferUzz//rAEDBmjp0qWaPXv2PccDAAAAJV2h77Fo3769rly5os8//9ymfeXKlfc1/lYYsVgsNu0HDhzQsWPH7jju9vl3796tX375Re3bt7e2BQUFKScnR/Pmzctzjlu3L0n/2+eRnJycq9+tjdPz589Xdnb2XedJTEzMdbxmzZpyc3PLc24AAACgNCr0FYsXX3xRO3bs0HvvvacffvhBderU0aFDh/Ttt9/K29v7nuObNWsmHx8fzZo1SxcvXtQjjzyiEydOaPv27apbt65OnjyZa4y3t7e+/PJLXb58WS1btrQ+btbHx0fDhg2z9uvcubNCQkL06aef6scff5S/v7+8vb3122+/6dtvv9X58+cVGRlpnbNatWr65z//qapVq1pXPtq1a6dGjRpp6NChWrx4sfr376/OnTurUqVKSkhI0A8//KD9+/frwIEDkqRp06bpt99+U+vWreXr66uMjAzt2rVL169fz7XBHQAAACitCj1YeHl56eOPP9bMmTO1fft2Sb8/+jUiIkLDhw+/53hPT0/NmzdPc+bM0fr165Wdna2GDRtq9uzZioyMzDNYuLu7a+HChZo5c6bmzZsni8Witm3b6rXXXst1e9S7774rs9msLVu2aMWKFcrMzJSPj48aNmxo8+hYSZo6dapmzpyp+fPnKz09Xb6+vmrXrp2k319Y99hjj2ndunX6xz/+oRs3bqhChQqqU6eOxo0bZ50jMDBQUVFR+vzzz3Xt2jV5eHiodu3amj59ujp16pTvzxcAAAAoiUyW2+85wgPHNKP0PObWMq7EPU8AAAAA96HQ91gAAAAAePjw9bCdpaenKzU19Z798npPBwAAAFBSECzsbNeuXZo8efI9+8XFxRVDNQAAAEDBECzsrG3btpo/f769ywAAAAAMIVjYWcWKFbnNCQAAAKUem7cBAAAAGMaKxUMgwmuZwsLC5OzsbO9SAOD/a+++w6K43reB30tZ6gKKqChSFBELKopi77EFK9ZoRGyxxRI1RY3BGmMj2LFQbL8Yo4aosYuJmljAXogxihWlKAKK1PP+4bv7dd0FYYcieH+uyyvh7JmZZ86cnd1n58wZIiIqpXjFgoiIiIiIJGNiQUREREREkjGxICIiIiIiyZhYEBERERGRZEwsiIiIiIhIMiYWREREREQkGRMLIiIiIiKSjIkFERERERFJxsSCiIiIiIgkY2JBRERERESSMbEgIiIiIiLJmFgQEREREZFkMiGEKO4gqHDJlmQWdwg5ElMNijsEIiIiIioAvGJBRERERESSMbEgIiIiIiLJmFgQEREREZFkTCyIiIiIiEgyJhZERERERCQZEwsiIiIiIpLsg0ks9uzZAw8PD0RERBR3KPDw8ICfn1++l8vOzkZgYCB69OgBT09PeHh4FHxwREREREQ64EMESpC9e/di/fr16N69Oxo0aAA9vQ8mLyQiIiKi99wHk1h07doVHTt2hKGhYXGHorMzZ87A3Nwc3377LWQyWXGHQ0RERESk8sEkFvr6+tDX1y/uMCRJSEiAQqFgUkFERERE751SkVhkZGRg27ZtOHjwIO7evQsDAwPY29vDy8sL/fv3B/D6HovZs2dj7dq1avcmPHr0CP7+/jh79iwAoGHDhpgyZQpGjx4NW1tbrFu3TlXXw8MDXl5e6NKlC9asWYN///0X5ubm+OijjzB27FiYmpqqxfXff//hxx9/xIULFyCXy9GsWTN88cUX+d6/iIgIjB49Wi0OAPDy8tLpXg0iIiIiooJW4hOLjIwMjB8/HpGRkWjSpAm6dOkCuVyOW7duITw8XJVYaJOYmIiRI0ciISEB3t7ecHJywoULFzB69GikpqZqXSYqKgpHjx5Fz5498fHHHyMiIgI//fQT/vvvP6xatUp138PDhw8xcuRIpKeno1+/fqhQoQJOnDiBzz//PN/76OTkhDlz5iAoKAiJiYmq5MTOzi7f6yIiIiIiKgwlPrHYtm0bIiMj4evri3Hjxqm9lp2dneuyoaGhePLkCebOnYsuXboAAPr06YOAgABs3rxZ6zK3bt3CkiVL0KZNGwBA3759sWTJEvz00084fPgwOnXqBABYvXo1kpKS1K6Q9OvXD9OmTcM///yTr320trZG165d8euvvyItLQ1du3bN1/JERERERIWtxE8rdODAAVhYWGDEiBEar71r1qQTJ06gXLlyqmRA6dNPP81xGQcHB1VSoTR06FAAwPHjxwG8TmhOnDiBWrVqqQ27kslkGDJkSK4xERERERGVRCU+sbh37x4cHR1hZGSU72UfPXqEKlWqaCQgZcuWhUKh0LqMk5OTRlm5cuWgUCjw8OFDAMDTp0/x8uVLODg4aNStWrVqvuMkIiIiInrflfjEgoiIiIiIil+JTywcHBwQHR2N9PT0fC9ra2uL+/fva9yL8fTpUyQnJ2td5s6dOxpl8fHxSE5ORuXKlQEAZcqUgampKe7evatR9/bt2/mOk4iIiIjofVfiE4vOnTsjKSkJGzdu1HhNCJHrsq1atUJ8fDwOHjyoVp7TjdsAcPfuXdW9FEqhoaEAgNatWwN4/cyMFi1a4Pr164iIiFCLZ9OmTbnGRERERERUEpX4WaEGDhyIEydOYOPGjbh+/To8PT1hZGSE27dv4+7du1i9enWOy/r4+ODAgQOYPXs2rl27BkdHR1y4cAGXL1+GlZWV1gfROTs749tvv0XPnj1hb2+PiIgIHD16FA0aNEDHjh1V9caOHYu//voLkyZNQv/+/VG+fHmcOHECz549K5R2ICIiIiIqTiX+ioWhoSFWrlyJMWPG4MmTJ1i9ejVWrVqFa9euoW3btrkua2VlhQ0bNqBly5b47bffsGLFCqSmpmLt2rUQQmi9IdzV1RVLlizB5cuXVQ+/69evH/z9/dVuArezs8OGDRtQr149bN++HYGBgbCyssKKFSsKvA2IiIiIiIqbTLxrvNAHKDExER06dEDv3r0xffp0Vbnyydsl7WnXsiWZxR1CjsTUEn/RjIiIiIhQCq5YSPXq1SuNMuU9E56enkUdDhERERFRifTB/1w8ceJE2NrawtXVFdnZ2Th37hxOnDiBunXrajwIrzA8e/YMWVlZudYxNTWFqalpocdCRERERKSrDz6xaNmyJfbt24fw8HCkpaWhQoUKGDx4MEaOHAl9ff1C3/6QIUMQExOTa52RI0fis88+K/RYiIiIiIh0xXssitnFixeRlpaWa53KlSvDzs5O523wHgsiIiIiKmz8VlfM6tevX9whEBERERFJ9sHfvE1ERERERNIxsSAiIiIiIsk4FOoDEGgRBF9fXxgaGhZ3KERERERUSvGKBRERERERScbEgoiIiIiIJGNiQUREREREkjGxICIiIiIiyZhYEBERERGRZEwsiIiIiIhIMiYWREREREQkGRMLIiIiIiKSjIkFERERERFJxsSCiIiIiIgkY2JBRERERESSyYQQoriDoMIlW5JZLNsVUw2KZbtEREREVPR4xYKIiIiIiCRjYkFERERERJIxsSAiIiIiIsmYWBARERERkWRMLIiIiIiISDImFkREREREJBkTCyIiIiIikoyJBRERERERScYnmL2HunXrhpiYmBxf79mzJ2bOnFmEERERERER5Y6JxXtoypQpePnypUb5jh07cOXKFbRs2bIYoiIiIiIiyplMCCGKO4j3RVZWFjIyMmBsbFzcoWh49eoVOnfuDGNjY+zduxcGBnnPCWVLMgsxspyJqcxbiYiIiD4UH+w3vz179mD27NlYtWoVrly5gj179uDx48eYOXMmbGxsEBYWhuvXryM+Ph6GhoaoXbs2hg0bhoYNG2qs6/79+wgKCsKZM2fw9OlTWFlZoVatWhg5ciRq1qypqnf9+nUEBQXhwoULePnyJWxtbfHxxx/Dx8fnnYnC0aNHkZKSgj59+uQrqSAiIiIiKgof/DfUgIAAZGZmolevXjAzM4ODgwO2b9+O58+fo2vXrqhQoQJiY2MRFhaGsWPHYu3atXB3d1ctf/36dYwZMwaZmZno0aMHqlWrhqSkJJw/fx6XLl1SJRYnT57EtGnTUKVKFQwePBgWFha4cuUKAgMDcfPmTfzwww+5xhkWFgaZTIYePXoUansQEREREenig08sXr16hW3btqkNf6pevTpMTEzU6nl7e6Nfv34IDg5WJRZCCPj5+SEjIwOhoaGoXr26qr6vry+ys7MBAGlpaZg7dy7q1KmDNWvWqK44eHt7o3r16vD390dERAQ8PDy0xnj//n1cuHABDRo0QJUqVQp0/4mIiIiICsIHP91snz59NO6peDOpePnyJRITE6Gvr486derg2rVrqtf++ecf3L59G926dVNLKpT09F4375kzZ5CQkIBu3bohJSUFiYmJqn/NmzdX1clJWFgYhBC8WkFERERE760P/oqFvb29RtmDBw+watUqnD59GsnJyWqvyWQy1f/fv38fAFCjRo1ct3Hnzh0AwJw5c3Ksk5CQoLU8KysLe/fuhUKhQPv27XPdDhERERFRcfngE4u3r1a8fPkSI0eORGpqKgYOHAhnZ2eYmZlBJpMhJCQE586dy/c2lBNvTZw4ES4uLlrr2NjYaC0/deoU4uPj0bdvXxgZGeV720REREREReGDTyzedvbsWcTFxWHWrFno3r272mtr1qxR+1t5tePmzZu5rlNZz8TEBJ6envmK59dffwXw+qF4RERERETvqw/+Hou36evrA/jfVQal06dP4+rVq2plLi4uqFq1Kn777Tf8999/GutSrqNp06YoW7YsQkJC8Pz5c416r169wosXLzTK4+PjcerUKbi6ur5zuBURERERUXHiFYu31K9fH9bW1vjxxx8RExOD8uXL4+bNm/j999/h7OyMW7duqerKZDJ89913GDt2LHx8fFTTzSYnJ+P8+fNo2rQpBgwYABMTE8yePRtTp06Ft7c3unfvjipVqiA5ORnR0dEIDw/H4sWLNWaF2rt3L7Kysni1goiIiIjee0ws3qJQKLBy5UosX74c27dvR1ZWFlxdXREQEICwsDC1xAIAateujdDQUGzcuBFHjhzBzp07YWVlhdq1a6N+/fqqek2bNkVoaChCQ0Oxf/9+PHv2DBYWFrCzs8OgQYO0zir122+/wcjICJ07dy7s3SYiIiIikkQm3h7zQ6WObElmsWxXTGXeSkRERPSh4D0WREREREQkGRMLIiIiIiKSjIkFERERERFJxsSCiIiIiIgkY2JBRERERESSMbEgIiIiIiLJOB/oByDQIgi+vr4wNDQs7lCIiIiIqJTiFQsiIiIiIpKMiQUREREREUnGxIKIiIiIiCRjYkFERERERJIxsSAiIiIiIsmYWBARERERkWRMLIiIiIiISDImFkREREREJBkTCyIiIiIikoyJBRERERERScbEgoiIiIiIJGNiQUREREREksmEEKK4g6DCJVuSWWTbElMNimxbRERERPT+4BULIiIiIiKSjIkFERERERFJxsSCiIiIiIgkY2JBRERERESSMbEgIiIiIiLJmFgQEREREZFkhZ5Y7NmzBx4eHoiIiCjsTRWqwMBAeHh44NGjR3mq7+HhAT8/vwKPY8eOHfD29kbTpk3zFQ8RERERUWHiQweKUGBgIGrUqIE2bdrotHxERAR++OEHtG7dGj4+PjAwMECZMmUKNkgiIiIiIh0wsSgkp06dgr6+vlrZ+vXr4eXlpXNicebMGQDArFmzYGlpKTVEIiIiIqIC897fY/HixYviDkEnRkZGMDAo2LwtPj4eAJhUEBEREdF7p8iuWGRlZSEwMBB79uxBQkICHBwc4Ovri06dOqnqdOvWDba2tvjiiy+wcuVKXLlyBZaWlvjtt98AAOfPn8eGDRtw7do1ZGZmwtHREX379kXPnj3VtjVq1CjExMQgKCgI/v7++Pvvv5Geng53d3dMmzYNDg4OavUzMjKwbds2HDx4EHfv3oWBgQHs7e3h5eWF/v37q9VNT0/HqlWrsG/fPjx79gyOjo4YN24cWrRooVbPw8MDXl5e8PPzw6NHj9C9e3cAwN69e7F3715Vvbzce/Lm8sp1A0CDBg2wbt26dy5PRERERFTYiiyxWLFiBVJTU9GnTx8Ar2/qnjFjBtLT09GtWzdVvSdPnmDMmDHo0KED2rVrh5cvXwIA/vzzT0ybNg3W1tYYPHgwTE1NcejQIcybNw8PHz7EuHHj1LaXmpqKkSNHws3NDePGjcPDhw/x008/YcqUKdi+fbtqmFJGRgbGjx+PyMhINGnSBF26dIFcLsetW7cQHh6ukVj4+fnBwMAAgwcPRkZGBv7v//4PU6dOxa5du1CpUiWt+16mTBnMmTMHs2bNgru7O3r16pWvtlMuv3v3bly4cAFz5swBAJQtWzZf6yEiIiIiKixFllgkJibip59+grm5OQCgT58+GDBgAPz9/fHRRx/B2NgYAPDw4UPMnDlT7SpEVlYWFi1aBBMTE4SGhsLGxgYA0K9fP3z22WcIDQ1Ft27dYG9vr7a9Tz/9FD4+PqqyMmXKYPny5Th79iyaNm0KANi2bRsiIyPh6+urkZxkZ2dr7IeVlRX8/f0hk8kAvL564OPjg127dmH8+PFa993ExARdu3bFrFmzULlyZXTt2jVfbadc/uzZs7hw4UK+lyciIiIiKmxFdo9Fnz59VEkFAJibm8Pb2xtJSUmIjIxUlVtaWqpdwQCAGzdu4PHjx+jevbsqqQAAQ0NDDBkyBNnZ2fjjjz/UltHT08OAAQPUyho1agQAuHfvnqrswIEDsLCwwIgRIzRi1tPTbJ4BAwaokgoAqF27NkxNTdXWSURERET0oSmyxMLR0VGjzMnJCcDrqxRKlStX1phNSfmshqpVq2qso1q1ahrrAAAbGxsYGRmplSlven7+/Lmq7N69e3B0dNSomxM7OzuNMktLS7V1EhERERF9aN67WaGUQ6Kk0na1QUkIUeDrlbJOIiIiIqKSrsgSi+joaI2yO3fuAHh9lSI3ytdv376t8Zqy7F3ryImDgwOio6ORnp6u0/JERERERFSEicUvv/yClJQU1d8pKSnYuXMnFAoFGjZsmOuyrq6uqFixIvbs2aN6lgMAZGZmYvPmzZDJZGjdurVOcXXu3BlJSUnYuHGjxmsFfRXC1NSUQ6aIiIiIqFQqslmhrKys4OPjo7oxe8+ePXj8+DFmzpz5zuFP+vr6+PLLLzFt2jT4+PigV69eMDU1xeHDh3HlyhX4+vqqzQiVHwMHDsSJEyewceNGXL9+HZ6enjAyMsLt27dx9+5drF69Wqf1alOnTh2cPXsWISEhqFixImQymdpzPIiIiIiISqoiSyw+//xzXLx4ETt27MDTp09hb2+PefPmoXPnznlavlWrVli9ejU2btyIzZs3IyMjA46OjhpT0+aXoaEhVq5ciS1btuDgwYNYvXo15HI57O3tNWankurrr7/GDz/8gODgYNUTxZlYEBEREVFpIBO867jUky3JLLJtialFlqsSERER0XvkvZsVioiIiIiISh7+vFzMnj9/joyMjFzrGBsbqz1ckIiIiIjofcPEophNmzYN58+fz7WOl5cX/Pz8iiYgIiIiIiIdMLEoZpMnT0ZSUlKudWxsbIooGiIiIiIi3TCxKGY1a9Ys7hCIiIiIiCTjzdtERERERCQZEwsiIiIiIpKMQ6E+AIEWQfD19YWhoWFxh0JEREREpRSvWBARERERkWRMLIiIiIiISDImFkREREREJBkTCyIiIiIikoyJBRERERERScbEgoiIiIiIJGNiQUREREREkjGxICIiIiIiyZhYEBERERGRZEwsiIiIiIhIMiYWREREREQkGRMLIiIiIiKSjIkFERERERFJxsSCiIiIiIgkY2JBRERERESSMbEgIiIiIiLJmFgQEREREZFkTCyIiIiIiEgyJhZERERERCQZEwsiIiIiIpKMiQUREREREUnGxIKIiIiIiCRjYkFERERERJIxsSAiIiIiIsmYWBARERERkWQGxR0AFS4hBFJTU5GUlARDQ8PiDoeIiIiISiCFQgGZTJZrHZkQQhRRPFQM4uPjYWNjU9xhEBEREVEJ9vz5c1hYWORah1csSjkjIyPUr18f+/btg7m5eXGH80FISUnBxx9/zDYvImzvosX2Llps76LF9i5abO+iJbW9FQrFO+swsSjlZDIZ9PX1YWFhwTdtEdHT02ObFyG2d9FiexcttnfRYnsXLbZ30SqK9ubN20REREREJBkTCyIiIiIikoyJRSknl8sxcuRIyOXy4g7lg8E2L1ps76LF9i5abO+ixfYuWmzvolUU7c1ZoYiIiIiISDJesSAiIiIiIsmYWBARERERkWScbrYEi46OxqJFi3D58mWYmZmha9euGDt27DufsC2EQGhoKHbs2IHExES4uLjgiy++gJubWxFFXjLp2t47duzAqVOncPXqVSQmJmLhwoXo0KFDEUVdsunS5vHx8di6dSvOnDmDBw8ewNzcHO7u7hg/fjxsbW2LMPqSR9c+/u233+Lq1auIi4uDoaEhnJ2dMXz4cDRp0qSIIi+ZdG3vN23btg3Lli1DixYt8OOPPxZesKWAru3drVs3xMTEaJSfOnUKRkZGhRVuiSelf8fGxmLVqlU4deoUUlNTYWtri+HDh6NLly5FEHnJpEt7R0REYPTo0Vpfc3BwwM6dO/MdBxOLEiopKQmjR4+Gvb09Fi9ejNjYWPj7++PVq1f46quvcl02NDQUgYGBGD9+PKpXr44dO3Zg/Pjx2Lp1K+zs7IpoD0oWKe29b98+AEDz5s1V/0/vpmub37hxA+Hh4ejevTvc3NyQmJiIDRs2wMfHB9u3b0eZMmWKcC9KDil9PCMjA4MGDUKVKlWQnp6OsLAwTJw4EWvXroW7u3sR7UHJIqW9leLj47F+/XqULVu2kKMt+aS2d/v27TF48GC1Mt5wnDMp7R0fHw9fX184ODhgxowZMDMzw+3bt5Genl5E0Zc8ura3q6srgoOD1cpevHiBCRMmoFmzZroFI6hECgoKEi1atBCJiYmqsp07d4rGjRuL2NjYHJd79eqVaNWqlVi5cqWqLD09XXh5eYnvv/++UGMuyXRtbyGEyMrKEkII8fDhQ9GwYUNx+PDhQo21tNC1zZOSkkRGRoZa2ePHj4WHh4fYvHlzocVb0knp42/LzMwUXbt2FfPmzSvoMEuNgmjvb7/9VsyaNUuMHDlSTJw4sZAiLR2ktLeXl5dYuHBhYYdYqkhp75kzZwpfX1+RmZlZ2GGWGgV5/v7tt99Ew4YNxdWrV3WKhfdYlFB//fUXGjduDEtLS1XZRx99hOzsbJw+fTrH5S5fvowXL16oDcUxNDRE27ZtcerUqUKNuSTTtb2B10+6pPzTtc0VCgUMDNQvxlaoUAFlypRBXFxcocVb0knp42/T19eHQqFARkZGQYdZakht74sXL+KPP/7A559/XphhlhoF2b/p3XRt75SUFBw5cgR9+/aFvr5+UYRaKhRk/z5w4ADs7e1Ru3ZtnWLhN54SKjo6Go6OjmplCoUC5cqVQ3R0dK7LAdBY1snJCY8fP8arV68KNtBSQtf2Jt0VZJvfvXsXT58+hZOTU8EFWMpIbW8hBDIzM5GYmIjNmzfj/v376N27d+EEWwpIae+srCwsWrQIvr6+KFeuXOEFWYpI7d8HDhxA06ZN0bJlS0yYMAG3bt0qnEBLCV3bOyoqChkZGTAwMMCoUaPg6emJTp06Yfny5cjMzCzcoEuwgvq8TEhIQEREBDp16qRzLLzHooRKSkqCQqHQKFcoFEhKSsp1OblcrnHDmUKhgBACycnJMDY2LvB4Szpd25t0V1BtLoTAkiVLYGNjI+lkWdpJbe+wsDDMmzcPAGBqaooFCxagbt26BR5naSGlvXfs2IHU1FQMGjSosMIrdaS0d6tWrVCnTh1UrFgRDx8+RFBQEIYPH877EnOha3snJCQAAObNm4eePXti1KhRuHr1KgIDA6Gnp4fx48cXWswlWUF9Xh4+fBhZWVno3LmzzrEwsSCiUm3dunU4e/YsVqxYARMTk+IOp9Rq06YNXFxckJiYiCNHjuCbb77B4sWL0bx58+IOrVR5+vQpAgMDMXv27HzNHkW6mzZtmur/3d3d0aRJE3h7e2PLli34+uuvizGy0kf8/2c2N27cGJMnTwYAeHh44OXLl9iyZQtGjBjBHz8L0f79+1GzZk04ODjovA4OhSqhLCwskJKSolGenJwMCwuLXJdLT09HWlqaxnIymUxrxku6tzfpriDafPfu3Vi/fj2mT5+Oxo0bF3SIpYrU9rayskKtWrXQrFkzzJo1C82aNUNAQEBhhFoq6Nrea9euRfXq1eHu7o7k5GQkJycjKysLWVlZSE5O5nCRHBTkObxcuXKoX78+bty4UVDhlTq6trfyO4iHh4daeePGjZGeno4HDx4UbKClREH07wcPHuDatWuSrlYAvGJRYjk6OmqMm0tJSUF8fLzGOLu3lwNejzl3cXFRlUdHR6NixYr8JSAHurY36U5qm4eHh2PhwoUYPXo0evToUThBliIF3cddXV3x119/FUxwpZCu7R0dHY3z58+jbdu2Gq+1bdsWy5cv132ayFKM5/CipWt7V61aNdf1vv2jKL1WEP37wIED0NPTkzxkmFcsSqhmzZrh7NmzSE5OVpUdOXIEenp6uT6Uqm7dujAzM8ORI0dUZZmZmQgPD+eQhVzo2t6kOyltHhERgRkzZqBnz54YMWJEYYdaKhR0H7906RIqV65ckCGWKrq295QpU7B27Vq1fy4uLnBzc8PatWt1nsmltCvI/h0XF4eLFy+iVq1aBR1mqaFre9va2sLZ2Rlnz55VKz9z5gyMjIzemXh8qAqifx88eBANGzaUPCEEr1iUUN7e3ti+fTumTJmCYcOGITY2FgEBAejduzdsbGxU9caMGYOYmBj8+uuvAAAjIyP4+vpi3bp1KFOmDJydnbFjxw48f/5c4+E/9D+6tjcAXL9+HY8ePUJiYiIA4OrVqwCAMmXKoGHDhkW5GyWKrm1+584dTJ06FVWqVEHXrl1x5coVVd0yZcrwZssc6NreJ0+exL59+9CiRQtUqFABSUlJOHDgAP7++2/Mnz+/mPbm/adre9eoUUNjXebm5jA1NdUYPkL/o2t7HzhwACdPnkTz5s1hY2ODBw8eICQkBPr6+vzMzIWUz8yxY8diypQpWLp0KZo3b47r169j8+bNGDJkCO+Ty4GU9gZez8Z1586dApkQgolFCWVhYYE1a9Zg8eLFmDJlCszMzNCzZ0+MHTtWrZ5y7O2bfHx8IITAli1b8OzZM7i4uGDFihX8wpULKe39888/Y+/evaq/t2zZAgBo0KAB1q1bV/jBl1C6tvnVq1eRkpKClJQUDB8+XK2ul5cX/Pz8iiL8EkfX9razs0N6ejpWrlyJxMREWFlZoXr16ggMDGTinAsp5xTKP13bu3LlyoiLi8PSpUuRnJwMhUKBRo0a4bPPPuMVuVxI6d+tWrXC/PnzsWHDBvzyyy8oV64cPvvsMwwdOrQI96BkkXo+OXjwIORyOdq3by85FplQ3oJPRERERESkI95jQUREREREkjGxICIiIiIiyZhYEBERERGRZEwsiIiIiIhIMiYWREREREQkGRMLIiIiIiKSjIkFERERERFJxsSCiIiIiIgkY2JBlE+xsbGwtLTE+vXr1cqHDh0KR0fH4gmqlPDz84NMJkN0dHSRbC8kJERje6mpqahUqRJmz56d7/Xl1DdId8pjdPz48eIOhYqZ1PMD+9KHKzo6GjKZDH5+fkW63ePHj0MmkyEkJESn5S9evAg9PT388ccfBRtYIWJiQZRPM2fOhI2NDXx9ffNU//Hjx5g6dSrq1KkDhUIBCwsLVK9eHQMGDMCuXbvU6rZp0wbm5uY5rkv5wRoREaH19WfPnsHExAQymQybN2/OcT2Ojo6QyWSqf3K5HI6OjhgxYgTu37+fp/0qrUxMTPD1119j8eLFiImJydey+e0b9GG7ePEi/Pz8iiyRpuIXHR0NPz8/XLx4sUi3y76mKTExEX5+fu91olm/fn307NkTU6ZMgRCiuMPJEyYWRPnw4MEDBAUF4fPPP4eBgcE769+9exf16tXDqlWr0KRJEyxcuBDff/89vLy8EBUVheDg4AKNb+vWrUhLS4OTkxOCgoJyrWtnZ4fNmzdj8+bNCAgIgKenJ4KCguDp6Yn4+PgCjaukGT58OGQyGZYtW5bnZfLbNyhvPv30U6SmpqJVq1bFHUqBu3jxImbPns0vex+Q6OhozJ49u1gSiw+5rzk4OCA1NRUzZ85UlSUmJmL27NnvdWIBAJMmTUJkZCR+//334g4lT/jpR5QPgYGBkMlkGDhwYJ7qL1myBLGxsfj111/Ro0cPjdcfP35coPFt3LgRbdu2RY8ePTBp0iTcvn0bVatW1VrX0tISgwcPVv09ZswYlC9fHitXrkRwcDCmTZtWoLGVJGZmZujduzdCQkIwb948GBkZvXOZ/PaN4paVlYW0tDSYmpoWdyi50tfXh76+fnGHQUQlmEwmg7GxcXGHoZOWLVvC0dERa9euxccff1zc4bwTr1hQoVKOaT169CjmzJkDBwcHmJiYwNPTE6dPnwYA/PHHH2jRogXMzMxga2uLuXPnal1XREQEevXqhXLlysHIyAg1atTA/PnzkZmZqVbv7NmzGDp0KFxcXGBqagqFQoHmzZtj9+7dGuscOnQoZDIZnj9/rvpibWxsjObNm+PMmTMa9Xfs2AEPDw+UL18+T/v/77//AgDat2+v9fWKFSvmaT15cf78eVy8eBE+Pj745JNPYGBg8M6rFm/r1KkTAODWrVs51tm/fz9kMhmWL1+u9fWmTZvCxsYGGRkZAPJ3PLRRHiNtZDIZhg4dqlG+fft2tGjRAgqFAqampvD09MQvv/ySp+0pdenSBfHx8QgPD89T/Zz6RnZ2NubPn49WrVqhYsWKkMvlsLe3x5gxY5CQkKCql5iYCGNjY/Tu3Vvr+r/55hvIZDK1XzqfP3+Or776Cs7OzjAyMoKNjQ0GDhyI27dvqy2rfB8eOXIEc+fORbVq1WBsbIyff/4ZAHDo0CH0798fVatWhYmJCaysrNCxY8ccx/Xu3LkT9erVg7GxMezt7TF79mwcOXJE61jitLQ0LFiwALVr14axsTGsrKzQrVs3XLhwIU/tqm1cfEGdVxwdHdGmTRucP38e7dq1g7m5OcqWLQsfHx/Exsaq1U1OTsbMmTPh6empOgc5Ozvj66+/xsuXLzXWLYTA+vXr4enpCXNzc5ibm8PNzQ2zZs0C8HpYo3LIXNu2bVXDErX157ddvnwZvXr1grW1NYyNjVGrVi0sWrQIWVlZavXye37TRjn88vr165g0aRJsbW1hamqK9u3b459//gEA7Nq1Cw0aNICJiQkcHR2xbt06revasGGDqp6lpSU6duyIkydPatTLzs7G999/DycnJxgbG6NOnTrYunVrjjHGxMRgzJgxsLe3h1wuR6VKlTBq1CiNY5hfeW3nNm3aaL2/7u1x/SEhIWjbti0AwNfXV3XM27RpA0B9PP6KFSvg4uICY2NjuLi4YMWKFRrrV/bft709rl/XvqbsPwkJCRg6dCjKlSsHhUKBnj17qn4UW7duHWrWrAljY2O4uroiLCxMYz2rV69Gx44dUblyZcjlctja2mLw4MFar55kZWVh7ty5cHBwgLGxMerWrYvt27drvb8mP/377WNx/PhxODk5AQBmz56tahPlcczt3oicPpPCwsLg7u4OY2NjVKlSBd9++63qc/Bt+TkvymQydOrUCQcOHEBKSorW9b1PeMWCisTXX3+NrKwsTJw4Eenp6Vi6dCk6duyITZs2Yfjw4Rg1ahQGDRqEn3/+GbNmzYKTk5Par+n79u1D79694ezsjClTpqBs2bL4+++/MWvWLFy8eBE7duxQ1d29ezeioqLQr18/ODg4ICEhAaGhoejduze2bt2KTz75RCO+Tp06wcbGBrNmzUJCQgKWLVuGjz/+GHfu3IFCoQAAPHnyBP/88w8mTJiQ5/2uVq0aAGD9+vWYNGlSjl+Q35bTUCRtX2CUNm7cCHNzc3h7e8PMzAxeXl4IDQ3FnDlzoKeXt98QlIlQuXLlcqzTsWNHVKxYEZs2bdJoi3///RenT5/GhAkTYGhoCEC34yHFzJkzMX/+fHTu3Blz586Fnp4edu/ejb59+2LlypUYN25cntbTtGlTAK8/YDp37pxr3dz6Rnp6OhYvXgxvb2/06NEDZmZmOHfuHDZu3IiTJ08iMjIScrkcVlZW6N69O8LCwvD06VOULVtWtY7s7Gxs3boVdevWRf369QG8TiqaNWuGe/fuYdiwYahduzZiYmKwevVqeHp6IiIiAg4ODmqxTJ06FRkZGRg5ciQsLCxQo0YNAK+/8Dx9+hRDhgyBnZ0dHj58iA0bNqB9+/YIDw9Hy5YtVevYvn07Bg4ciGrVquG7776DgYEBQkNDsWfPHo19z8jIQOfOnfHXX3/h008/xfjx4/H8+XOsX78ezZs3x59//gkPD488HQ9tpJ5XgNdD2Nq3bw9vb2/06dMH58+fR1BQECIiInDu3DnVFR1lm3h7e6sS9z/++AOLFi3ChQsXcPDgQbX1fvrpp9i6dSs8PT0xY8YMWFlZISoqCr/88gvmzJmD3r17IyYmBuvWrcP06dNRs2ZNAP87Z+QkIiICrVu3hqGhIcaNG4eKFStiz549+Oqrr3Dp0iWtX8Dzcn57Fx8fH5ibm2P69OmIi4vD0qVL0alTJ8ydOxdffvklxowZg2HDhmHjxo347LPPUKtWLbRo0UK1/FdffYVFixahcePGWLBgAZKTk7Fu3Tq0bdsWYWFh6Nq1q6ruF198gYCAALRq1QqTJ09GbGwsxo0bp/Xq671799C0aVOkp6dj+PDhqFatGm7duoU1a9YgPDwcERERsLS0zNM+Sm3nd2nVqhWmT5+OBQsWYNSoUar3VYUKFdTqrVixAo8fP8Znn30GhUKB//u//8OECRPw9OlTfPfdd/nerq59Talz586ws7PDnDlzcOvWLSxfvhy9evVC7969sW7dOgwfPhzGxsZYvnw5+vTpg5s3b6q+tAOvr9w3adIEEyZMQNmyZXH16lVs2LABx44dw5UrV2Btba2qO378eKxduxZt27bF1KlTERcXh7Fjx6qt72269O+aNWvC398fkydPVu0LgFzvcczN7t274e3tDUdHR8yaNQsGBgYIDg7Gvn37NOrqcl5s2rQpAgMDcfLkyXd+HhU7QVSIgoODBQDh7u4u0tLSVOVhYWECgDAwMBDnzp1TlaelpYmKFSuKJk2aqMpSU1NFhQoVRMuWLUVGRoba+pctWyYAiPDwcFVZSkqKRhwvXrwQLi4uombNmmrlPj4+AoAYM2aMWvnPP/8sAIi1a9eqyo4dOyYAiICAAK376uPjIxwcHNTK/vvvP2FhYSEAiCpVqohPPvlE+Pv7i4iICK3raN26tQDwzn9vtpmyjaysrISPj4+q7NdffxUAxO+//66xHQcHB+Hq6iri4uJEXFycuH37tggKChKWlpbCwMBAXLlyRWt8SlOnThUAxLVr19TKZ86cKQCIyMhIVVl+jsd3330nAIg7d+6oypTHSBsAavscGRkpAIhvvvlGo26PHj2EQqEQSUlJqjJl/3xze28yMDAQXl5eWl97U259Izs7W7x8+VKjfMOGDQKA2L59u6ps7969AoBYtWqVWt0jR44IAGLp0qWqsgkTJghjY2Nx8eJFtbrR0dFCoVCotYtyP11cXMSLFy80YtF2jB4/fiysra1Fly5dVGUZGRmiUqVKonz58uLp06eq8uTkZOHk5CQAiODgYFW58v154MABtXU/f/5cVKlSRbRu3Vpju29Txv7me7wgzitCvH4fABD+/v5q5cq4v//+e7V1pKena8Sn7PNnzpxRlW3fvl0AEIMHDxZZWVlq9d/8W9u+vUuzZs2Evr6+uHTpkqosOztb9O3bVwAQR44cUZXn5/yWE+V70svLS2RnZ6vKAwICBAChUCjEvXv3VOWxsbHCyMhIDBgwQFUWFRUlZDKZaN68udrxevjwobC0tBQODg4iMzNTrW67du1UZUK8fm/LZDKN92v37t2FjY2NuH//vlrc586dE/r6+uK7775TleWnvfPTzq1bt9Y49wshxJ07dwQAtRjCw8M13idvv2Zubq62P2lpaaJRo0bCwMBArdzBwUHre0jbNnTpa8r+M3bsWLXyyZMnqz7Tnj9/riq/dOmSACC+/vprtfrazi/Kc9oPP/ygKrt69aoAIDp16qT2Prl8+bLQ09PL8bMhL/1b27HQVqaU23F6+zMpMzNTVKlSRVhbW4u4uDhVeWJiorC3ty+Q8+KJEycEALFkyRKN1943HApFRWLMmDGQy+Wqv5W/1Hh6eqpl5nK5HI0bN1b9cg4Ahw8fxpMnT+Dr64vExETEx8er/il/5Tp06JCqvpmZmer/X758iYSEBLx8+RLt2rXDjRs3kJSUpBHf5MmT1f5u164dAKjFERcXBwBqvyS/S9WqVXHp0iXVr+Tbtm3D5MmT4eHhgbp16yIyMlJjGWNjYxw+fFjrv08//VTrdnbt2oXExET4+Pioyrp27QobG5sch0NFRUXBxsYGNjY2qFq1KoYNG4Zy5cohLCwMderUyXW/lNvZtGmTqkwIgS1btqBOnTpo0KCBqlyX46GrrVu3QiaTwcfHR62fxMfHo3v37khOTsbff/+d5/WVLVs2T8MpcusbMpkMJiYmAF5f5lf2YWUfe/OSfadOnVChQgW1dgVet7OBgQEGDRoE4HVbb926Fa1atULlypXV9tPMzAxNmjRRe08ojRkzRus9FW8eo5SUFCQkJEBfXx+enp5q8UVGRuLRo0cYOnQoypQpoyo3NzfH6NGjNda7ZcsWuLq6omHDhmoxpqen46OPPsLJkyeRmpqqpUXzRsp5RcnCwgJjx45VKxs7diwsLCzUhuvJ5XLVVbjMzEw8e/YM8fHx6NChAwD146j8NXvJkiUaVwvzevVQm9jYWPz111/o3r076tatqyqXyWSYMWMGAGgdYpiX89u7TJgwQe2Kq7Ktu3fvjipVqqjKbWxsUKNGDbV1h4WFQQiBL7/8Uu14VapUCb6+vrh7965qCIiy7hdffKF2b02DBg3w0UcfqcX0/Plz7N27F927d4exsbFaH3N0dISzs7PW98G76NrOBWXQoEGws7NT/S2XyzF58mRkZmZqvTJY2CZNmqT2t/LYDxkyBBYWFqryunXrwsLCQqNfKc8v2dnZeP78OeLj41GvXj1YWlqqvW/27t0LAJg4caLa+8TNzU01TFebgujfUkRGRuL+/fvw9fVVu9pvaWlZYOdF5VUdqcP7igKHQlGRePsStvJLibbLm2XKlFEbe37jxg0AwLBhw3Jc/5MnT1T/Hxsbi5kzZyIsLEzrmzAxMVHtZKgtPuWb+M04lB+qIp9Tvjk6OmLlypVYuXIlYmJicPLkSWzevBl79uyBl5cXrl27pvaFVF9fX/Vl5W3axiMDr4dB2djYwM7OTu3+iI4dO2LHjh2Ij4/XGN7k6Oioet6Cclyys7NznvZJmTxs3boVCxYsgJ6eHv78809ER0dj0aJFanV1OR66unHjBoQQcHV1zbHOm33lXYQQeRq+9q6+8fPPP2Pp0qW4cOGCxpjbZ8+eqf5fmTwsW7YMN2/ehIuLC168eIFdu3ahY8eOqiETcXFxSEhIwKFDh2BjY6N1m9q+wLq4uGit+99//2HGjBk4ePAgEhMTte4bANy5cwcAVEOo3qSt7MaNG0hNTc0xRuD1sL83v5jmh5TzypvrePPLLgAYGRmhatWqGveqrF69GmvXrsW1a9eQnZ2t9tqbx/Hff/+Fra2txhAXqZTtX7t2bY3XatasCT09PY2Ygbyd394lv2199+7dPMWtLLt9+zY8PDxU8Wt7D9eqVUstUfjnn3+QnZ2NjRs3YuPGjXmKOy90beeCohyq9KZatWoBQKFuNydS32fHjh3DnDlzcObMGbx69UrttTffN+86v+zfvz9P8enSv6V4V599my7nReVnS16HUxcnJhZUJHKa1SUvs70o31CLFy9WjS9/W6VKlVR1O3bsiBs3bmDixInw8PCApaUl9PX1ERwcjG3btml8Icgtjje/KCpPAk+fPn1nzDmxtbVF37590bdvXwwaNAjbtm3D77//rjHuOz/u3LmD8PBwCCFy/OK4ZcsWjV+dzMzMckxg8mLIkCGYNGkSjh07hg4dOmDTpk3Q19dX2xddj8ebcjqRvn3TvnJ7MpkM+/fvz/GYavuykJNnz57levJXyq1v7Nq1C/3790fjxo0REBCAKlWqwNjYGFlZWejcubPG/g8ZMgTLli3Dpk2bMG/ePOzatQspKSlqV6OU/bJDhw746quv8rw/2q5WpKSkoFWrVnjx4gUmTZoENzc3KBQK6Onp4fvvv8exY8fyvP63CSHg5uaW67S9eWnfnEg5r+TXsmXLMGXKFHTs2BETJkxApUqVIJfL8fDhQwwdOvSd/bg45eX8pus6CmLdulJuY/DgwWrvjzcprxYWpvyco0ridqUc+3PnzqFjx45wdnbGwoUL4eTkpHrW0oABAwrkfVMYfTC3L/BS21eX86Lys0XK+bKoMLGg91716tUB5O2L8OXLl3Hp0iXMmjVL48nJGzZskBSH8gtpQV1ebdKkCbZt24aHDx9KWk9wcLBqBhorKyuN12fOnImgoCCNxEKqTz75BNOmTcOmTZvQvHlz/PLLL/joo49ga2urqlMQx0N5NeftG5q1/XJXvXp1HDhwAPb29lp/9cuP6OhoZGZmvnNYGJB739i8eTOMjY0RHh6u9sU+KipK67rq1auHevXqYcuWLZg7dy42bdqkurFbycbGBlZWVkhKSpKUHALA0aNH8ejRIwQFBWk82O/NOd8BqGZMUc4G9CZtZdWrV0dcXBzatWsnaQhQYbp9+zbS09PVrlqkpaXh9u3bar9Abt68GY6Ojti/f7/avhw4cEBjnS4uLggLC8OTJ09yvWqR318flb8QX7t2TeO1qKgoZGdn6/QLfWFTxnTt2jWNG4avX7+uVkf536ioqBzrKjk7O0MmkyE9PV3y++BN+W3nsmXLah3Wqu0clZdjrrxK/6a320m5XW0/Zui63cKwbds2ZGVlYf/+/WpXOF68eKF2tQJQP7+83Y+1nV+kyq1N3vzcedvb7ftmn33b230W0O28qByJkJfPo+L2fp7pid7QqVMnlC9fHgsXLtT6Jk9NTUVycjKA//1y8fYvFVevXpU8JtbGxga1a9dWTWeZF8ePH9c6hjw7O1s1VlbbpdK8ys7ORkhICNzc3DBixAj06dNH49/AgQNx5coVnDt3TuftaGNjY4MuXbpg165d2Lp1K5KSkjR+NSyI46G8CnPkyBG18qVLl2rUVd6DMn36dI0pIYH8DYNSHufWrVu/s25ufUNfXx8ymUztlzkhBObNm5fj+nx8fHD37l1s27YNx44dQ//+/dXmYNfT08OgQYNw9uzZHKfRzetY3JyO0aFDhzSmbPTw8ICtrS1CQkLUvhSkpKRg7dq1GuseMmQIHj9+nOMvc/k5HoUlKSkJq1evVitbvXo1kpKS0LNnT1WZ8ji+2U6ZmZlYuHChxjqV98J8+eWXGr/Ivrm8cgaavF4FLV++PJo1a4Y9e/bg6tWrauv8/vvvAQC9evXK07qKUvfu3SGTybB48WK1oYAxMTEIDg6Gg4MD3N3d1eouW7ZM7T18/vx5jXOAtbU1unbtil27dml97wkhVPc/5Ud+29nFxQXJyck4e/asqiw7Oxv+/v4a687LMd+6dSsePHig+js9PR3+/v7Q19eHl5eX2najoqLUfpxKS0vDqlWrdNpuYcjp/LJgwQKN90a3bt0AAAEBAWqvXblyRWPWtYKQW5s4OTnBwMBAo8/99ddfGn2tYcOGsLOzQ3BwsNqMjklJSQV2Xjx9+jQMDAzQvHnzd+9YMeMVC3rvmZmZYdOmTejZsydq1KiBYcOGwdnZGYmJiYiKisKuXbuwe/dutGnTBjVr1kTt2rWxaNEivHz5EjVq1MDNmzcRGBgINzc3rb8q5Uffvn0xd+5cxMTEqP0yn5MlS5bg1KlT6NatGxo0aABLS0s8fvwYO3fuRGRkJNq2bSvpgTeHDh3C/fv3MXz48BzreHt7w8/PDxs3bkSjRo103pY2Pj4++O233zBlyhRYWlqqfREDUCDHY+DAgZg+fTpGjRqFqKgolC1bFgcOHNA6JW+jRo3g5+cHPz8/1K9fH3379kWlSpUQExOjenJpenp6nvbt999/R7ly5VTzzr9LTn2jT58+2LlzJ9q1a4chQ4YgIyMDv/76a65TBw8aNAhffvklxo4di+zsbK3DPObPn49Tp06hX79+6NevH5o0aQK5XI67d+/i999/R8OGDbXOwf62Fi1aoGLFipgyZQqio6NhZ2eHixcvYvPmzXBzc8OVK1dUdQ0MDLBkyRIMGjQIjRs3xvDhw2FgYICQkBBYW1vjzp07ar8CTpw4EYcPH8a0adNw7NgxtGvXDhYWFrh37x6OHj2qupJTnKpVq4bZs2fj6tWraNiwISIjIxEUFARXV1e16YP79OmDb775Bl26dEHv3r2RlJSEbdu2qW7oflPfvn3Rv39/bNq0Cf/++y+6d++OMmXK4ObNmzh48KDqy2qjRo2gp6eH+fPn49mzZzAzM4OTkxM8PT1zjDcgIACtW7dGy5YtVdOg7t27FwcPHsQnn3yS4zNzilONGjUwbdo0LFq0CK1atUL//v1V082mpKRg69atqi+grq6uGDduHFauXIl27drB29sbsbGxWLlyJerVq6cxz/+aNWvQokULtGrVCkOGDIG7uzuys7Nx+/ZthIWFYciQIapnF+RHftp51KhRWLp0KXr16oWJEydCLpfjl19+0TpkplatWlAoFFi9ejVMTU1hZWWF8uXLq244Bl4nDJ6enhg9ejQUCgW2bduGc+fO4dtvv1Ubdz9+/Hj89NNP6NChA0aPHo309HRs3rxZ65BHXfpaQejVqxf8/f3RtWtXjBo1CnK5HIcPH8bly5c17vurXbs2Ro0ahXXr1qFDhw7o1asX4uLisGrVKri7uyMyMrJAr7xYW1vD2dkZP/30E6pVq4YKFSrAzMwM3bp1g7m5OYYOHYoNGzZg4MCBaNOmDf79918EBwejbt26uHTpkmo9+vr68Pf3R79+/dC4cWOMHDlS9Rwpa2tr3Lt3T227+T0vCiFw4MABdO7cWefpcItUIc86RR+43Ka4w1tThSrlNL3olStXxKBBg0SlSpWEoaGhKF++vGjatKmYM2eOSEhIUNWLjo4Wffr0EeXKlRMmJiaiUaNGYteuXZKnMhXi9fSIBgYGWqd80zbd7N9//y2++OIL4eHhIcqXLy8MDAyEpaWlaNKkiVi6dKl49eqVWv3WrVsLMzMzrfEI8b+pH5VTafbp00cAEJcvX85xGSGEcHFxEZaWlqppTx0cHETt2rVzXSYv0tLSRNmyZQUAMWLECK118nM8tJUJIcTp06dFs2bNhJGRkbC2thYjR44Uz549y7EP7d27V3Ts2FGUKVNGyOVyYWdnJzp37izWrFmjVi+n6WZTUlKEmZmZmDp1ap7bIre+sW7dOlGzZk1hZGQkKlasKEaOHCkSEhJyjF8IIby8vAQAUb169Ry3+eLFCzFnzhxRp04dYWxsLMzNzYWrq6sYMWKEOH36tMZ+5jTV5KVLl0SnTp2ElZWVMDc3F61btxZ//vlnju+Pn3/+Wbi5uQm5XC6qVKki/Pz8xK5duzSmzxXi9RS1AQEBwsPDQ5iamgpTU1Ph7OwsPvnkE3Hw4MEc9y232AvqvKKcrjMyMlK0bdtWmJqaCisrKzF48GDx+PFjtbqZmZliwYIFolq1akIulwt7e3sxbdo0cf36da1TVmZlZYmVK1cKd3d3YWJiIszNzYWbm5vw8/NTqxcSEiJq1qwpDA0Nc+0Pb7p48aLo0aOHqn+7urqKH374QW161pz2+V3t9Lac3pO5TdWZ0/Sr69atE/Xr1xdGRkZCoVCIDh06iD///FOjXlZWlpg3b56wt7cXcrlc1K5dW2zZsiXHWOLi4sTUqVNF9erVhZGRkbC0tBR16tQREyZMUJsSO79Trua1nYUQYt++faJevXpCLpcLW1tb8eWXX4qoqCitbbRv3z7h7u4ujIyMBADV9KJvTnEaEBAgnJ2dhVwuF87OzuLHH3/UGmNISIhwcXERhoaGwtHRUfzwww/i6NGjWqdKzW9fy6n/5DYVq7YpcHfv3i0aNGggTE1NhbW1tejfv7+4e/eu1rqZmZnCz89PVKlSRcjlcuHm5ia2b98upkyZIgCIJ0+evDM+ITT7d0799cyZM6JZs2bC1NRUAFDrt8nJyWL48OGibNmywsTERLRo0UKcOnUqx+3u3LlT1Qfs7OzEzJkzxaFDh7S2VX7Oi8ePHxcAxN69e7Xu6/tGJkQR3GFFVIqMHj0ahw4dwj///KP2a+XQoUNx/PhxrU8TpfdTSEgIfH19cefOHbUn5wYEBGDGjBmq2X3yKqe+8SFYunQppk6dir///htNmjQp7nDyxNHREY6OjmpP9SYqLsePH0fbtm0RHBycpyewf0i6deuGY8eOISkpqVAmZ3if9erVC/fv38e5c+dKxKxQvMeCKJ/mzJmDhIQEBAcHF3coVAhSU1OxcOFCTJs2LV9JBfBh9I309HSN+1dSUlKwatUqWFtbqz3DhIgoP7Tdk3j58mXs378f7dq1++CSigsXLiAsLAxLly4tEUkFwHssiPKtfPnyeP78eXGHQYXExMQEMTExOi37IfSN27dvo0uXLhgwYACcnJwQExOD0NBQ3LlzB2vWrNF4JgQRUV6FhoZi06ZN+Pjjj2FjY4OoqCisW7cOcrkcc+bMKe7wipzynqGShIkFERHlmY2NDZo0aYKtW7ciNjYWBgYGcHNzw8KFC9GvX7/iDo+ISrAGDRpg9+7dWL58OZ4+fQqFQoF27drhu+++U80cRu833mNBRERERESS8R4LIiIiIiKSjIkFERERERFJxsSCiIiIiIgkY2JBRERERESSMbEgIiIiIiLJmFgQEREREZFkTCyIiIiIiEgyJhZERERERCQZEwsiIiIiIpLs/wGLve/ZyYuwjAAAAABJRU5ErkJggg==", |
|
|
660 |
"text/plain": [ |
|
|
661 |
"<Figure size 800x950 with 1 Axes>" |
|
|
662 |
] |
|
|
663 |
}, |
|
|
664 |
"metadata": {}, |
|
|
665 |
"output_type": "display_data" |
|
|
666 |
} |
|
|
667 |
], |
|
|
668 |
"source": [ |
|
|
669 |
"#To see importance over the entire dataset\n", |
|
|
670 |
"shap_values = shap.Explainer(model_all_features).shap_values(x_train)\n", |
|
|
671 |
"shap.summary_plot(shap_values, x_train, plot_type=\"bar\")" |
|
|
672 |
] |
|
|
673 |
}, |
|
|
674 |
{ |
|
|
675 |
"attachments": {}, |
|
|
676 |
"cell_type": "markdown", |
|
|
677 |
"metadata": {}, |
|
|
678 |
"source": [ |
|
|
679 |
"We then select the features to extract:" |
|
|
680 |
] |
|
|
681 |
}, |
|
|
682 |
{ |
|
|
683 |
"cell_type": "code", |
|
|
684 |
"execution_count": 89, |
|
|
685 |
"metadata": {}, |
|
|
686 |
"outputs": [], |
|
|
687 |
"source": [ |
|
|
688 |
"#Feature selection\n", |
|
|
689 |
"columns_to_keep = ['age', 'ssmokea_f', 'cig_stat', 'pack_years', 'smokea_f', \n", |
|
|
690 |
" 'cig_years', 'lung_fh', 'bmi'] \n", |
|
|
691 |
"x_plco = x_plco[columns_to_keep]\n", |
|
|
692 |
"x_nlst = x_nlst[columns_to_keep]\n", |
|
|
693 |
"\n", |
|
|
694 |
"x_train, x_val, y_train, y_val = train_test_split(x_plco, y_plco, test_size=0.3)\n", |
|
|
695 |
"x_test,y_test = x_nlst, y_nlst" |
|
|
696 |
] |
|
|
697 |
}, |
|
|
698 |
{ |
|
|
699 |
"attachments": {}, |
|
|
700 |
"cell_type": "markdown", |
|
|
701 |
"metadata": {}, |
|
|
702 |
"source": [ |
|
|
703 |
"We now save the pre-processed data for further data analysis for the sake of the writing of the article. " |
|
|
704 |
] |
|
|
705 |
}, |
|
|
706 |
{ |
|
|
707 |
"cell_type": "code", |
|
|
708 |
"execution_count": 90, |
|
|
709 |
"metadata": {}, |
|
|
710 |
"outputs": [ |
|
|
711 |
{ |
|
|
712 |
"name": "stdout", |
|
|
713 |
"output_type": "stream", |
|
|
714 |
"text": [ |
|
|
715 |
"Pre-processed data sets exported and saved!\n" |
|
|
716 |
] |
|
|
717 |
} |
|
|
718 |
], |
|
|
719 |
"source": [ |
|
|
720 |
"#For PLCO\n", |
|
|
721 |
"final_plco = x_plco.copy()\n", |
|
|
722 |
"final_plco['lung_cancer'] = y_plco.copy()\n", |
|
|
723 |
"final_plco.to_csv('./preprocessed_plco.csv') \n", |
|
|
724 |
"#For NLST\n", |
|
|
725 |
"final_nlst = x_nlst.copy()\n", |
|
|
726 |
"final_nlst['lung_cancer'] = y_nlst.copy()\n", |
|
|
727 |
"final_nlst.to_csv('./preprocessed_nlst.csv') \n", |
|
|
728 |
"\n", |
|
|
729 |
"print(\"Pre-processed data sets exported and saved!\")" |
|
|
730 |
] |
|
|
731 |
}, |
|
|
732 |
{ |
|
|
733 |
"attachments": {}, |
|
|
734 |
"cell_type": "markdown", |
|
|
735 |
"metadata": {}, |
|
|
736 |
"source": [ |
|
|
737 |
"We now optimize the XGBoost model (commented in this case because already done)" |
|
|
738 |
] |
|
|
739 |
}, |
|
|
740 |
{ |
|
|
741 |
"cell_type": "code", |
|
|
742 |
"execution_count": 91, |
|
|
743 |
"metadata": {}, |
|
|
744 |
"outputs": [], |
|
|
745 |
"source": [ |
|
|
746 |
"#######\n", |
|
|
747 |
"# Uncomment the following to perform hyperparameter optimisation\n", |
|
|
748 |
"#######\n", |
|
|
749 |
"\n", |
|
|
750 |
"# # Setting the basic regressor\n", |
|
|
751 |
"# reg = xgb.XGBClassifier(random_state=0, \n", |
|
|
752 |
"# booster='gbtree', \n", |
|
|
753 |
"# objective='binary:logistic', \n", |
|
|
754 |
"# eval_metric='aucpr',\n", |
|
|
755 |
"# tree_method='exact')\n", |
|
|
756 |
"\n", |
|
|
757 |
"# # Setting the validation strategy\n", |
|
|
758 |
"# skf = StratifiedKFold(n_splits=7,\n", |
|
|
759 |
"# shuffle=True, \n", |
|
|
760 |
"# random_state=0)\n", |
|
|
761 |
"\n", |
|
|
762 |
"# cv_strategy = list(skf.split(x_train, y_train))\n", |
|
|
763 |
"\n", |
|
|
764 |
"# search_spaces = {'learning_rate': Real(0.01, 1.0, 'uniform'),\n", |
|
|
765 |
"# 'max_depth': Integer(2, 10),\n", |
|
|
766 |
"# 'subsample': Real(0.1, 1.0, 'uniform'),\n", |
|
|
767 |
"# 'colsample_bytree': Real(0.1, 1.0, 'uniform'),\n", |
|
|
768 |
"# 'n_estimators': Integer(50, 1000),\n", |
|
|
769 |
"# 'reg_alpha': Real(0.001, 100., 'uniform'), \n", |
|
|
770 |
"# }\n", |
|
|
771 |
"\n", |
|
|
772 |
"\n", |
|
|
773 |
"# opt = BayesSearchCV(estimator=reg, \n", |
|
|
774 |
"# search_spaces=search_spaces, \n", |
|
|
775 |
"# cv=cv_strategy, \n", |
|
|
776 |
"# n_iter=300, # max number of trials\n", |
|
|
777 |
"# n_points=1, # number of hyperparameter sets evaluated at the same time\n", |
|
|
778 |
"# n_jobs=1, # number of jobs\n", |
|
|
779 |
"# iid=False, # if not iid it optimizes on the cv score\n", |
|
|
780 |
"# return_train_score=False, \n", |
|
|
781 |
"# refit=False, \n", |
|
|
782 |
"# optimizer_kwargs={'base_estimator': 'GP'}, # optmizer parameters: we use Gaussian Process (GP)\n", |
|
|
783 |
"# random_state=0) # random state for replicability\n", |
|
|
784 |
"\n", |
|
|
785 |
"# # Running the optimizer\n", |
|
|
786 |
"# overdone_control = DeltaYStopper(delta=0.0001) # We stop if the gain of the optimization becomes too small\n", |
|
|
787 |
"# time_limit_control = DeadlineStopper(total_time=60*60*3) # We impose a time limit (5 hours)\n", |
|
|
788 |
"\n", |
|
|
789 |
"# best_params = report_perf(opt, x_train, y_train,'XGBoost_regression', \n", |
|
|
790 |
"# callbacks=[overdone_control, time_limit_control])\n", |
|
|
791 |
"\n", |
|
|
792 |
"\n", |
|
|
793 |
"\n", |
|
|
794 |
"#######\n", |
|
|
795 |
"# Comment the following to perform hyperparameter optimisation (this is the result of our optimisation)\n", |
|
|
796 |
"#######\n", |
|
|
797 |
"\n", |
|
|
798 |
"best_params = {'colsample_bytree': 0.3092626254072385,\n", |
|
|
799 |
" 'learning_rate': 0.25090257611371497,\n", |
|
|
800 |
" 'max_depth': 8,\n", |
|
|
801 |
" 'n_estimators': 321,\n", |
|
|
802 |
" 'reg_alpha': 18.11046009958031,\n", |
|
|
803 |
" 'subsample': 0.3282432744048327\n", |
|
|
804 |
"}" |
|
|
805 |
] |
|
|
806 |
}, |
|
|
807 |
{ |
|
|
808 |
"attachments": {}, |
|
|
809 |
"cell_type": "markdown", |
|
|
810 |
"metadata": {}, |
|
|
811 |
"source": [ |
|
|
812 |
"Now we train the model on the reduced list of features:" |
|
|
813 |
] |
|
|
814 |
}, |
|
|
815 |
{ |
|
|
816 |
"cell_type": "code", |
|
|
817 |
"execution_count": 92, |
|
|
818 |
"metadata": {}, |
|
|
819 |
"outputs": [ |
|
|
820 |
{ |
|
|
821 |
"name": "stdout", |
|
|
822 |
"output_type": "stream", |
|
|
823 |
"text": [ |
|
|
824 |
"[0]\tvalidation_0-aucpr:0.05140\tvalidation_1-aucpr:0.05248\n", |
|
|
825 |
"[1]\tvalidation_0-aucpr:0.11519\tvalidation_1-aucpr:0.11218\n", |
|
|
826 |
"[2]\tvalidation_0-aucpr:0.17062\tvalidation_1-aucpr:0.16237\n" |
|
|
827 |
] |
|
|
828 |
}, |
|
|
829 |
{ |
|
|
830 |
"name": "stdout", |
|
|
831 |
"output_type": "stream", |
|
|
832 |
"text": [ |
|
|
833 |
"[3]\tvalidation_0-aucpr:0.18303\tvalidation_1-aucpr:0.17115\n", |
|
|
834 |
"[4]\tvalidation_0-aucpr:0.19606\tvalidation_1-aucpr:0.18545\n", |
|
|
835 |
"[5]\tvalidation_0-aucpr:0.19793\tvalidation_1-aucpr:0.18583\n", |
|
|
836 |
"[6]\tvalidation_0-aucpr:0.20432\tvalidation_1-aucpr:0.19319\n", |
|
|
837 |
"[7]\tvalidation_0-aucpr:0.20480\tvalidation_1-aucpr:0.19465\n", |
|
|
838 |
"[8]\tvalidation_0-aucpr:0.21262\tvalidation_1-aucpr:0.19805\n", |
|
|
839 |
"[9]\tvalidation_0-aucpr:0.21399\tvalidation_1-aucpr:0.19905\n", |
|
|
840 |
"[10]\tvalidation_0-aucpr:0.21977\tvalidation_1-aucpr:0.20373\n", |
|
|
841 |
"[11]\tvalidation_0-aucpr:0.22132\tvalidation_1-aucpr:0.20826\n", |
|
|
842 |
"[12]\tvalidation_0-aucpr:0.22260\tvalidation_1-aucpr:0.21062\n", |
|
|
843 |
"[13]\tvalidation_0-aucpr:0.22339\tvalidation_1-aucpr:0.21096\n", |
|
|
844 |
"[14]\tvalidation_0-aucpr:0.22471\tvalidation_1-aucpr:0.21515\n", |
|
|
845 |
"[15]\tvalidation_0-aucpr:0.22504\tvalidation_1-aucpr:0.21424\n", |
|
|
846 |
"[16]\tvalidation_0-aucpr:0.22510\tvalidation_1-aucpr:0.21369\n", |
|
|
847 |
"[17]\tvalidation_0-aucpr:0.22523\tvalidation_1-aucpr:0.21345\n", |
|
|
848 |
"[18]\tvalidation_0-aucpr:0.22574\tvalidation_1-aucpr:0.21162\n", |
|
|
849 |
"[19]\tvalidation_0-aucpr:0.22569\tvalidation_1-aucpr:0.21105\n", |
|
|
850 |
"[20]\tvalidation_0-aucpr:0.22643\tvalidation_1-aucpr:0.21243\n", |
|
|
851 |
"[21]\tvalidation_0-aucpr:0.22619\tvalidation_1-aucpr:0.21166\n", |
|
|
852 |
"[22]\tvalidation_0-aucpr:0.22650\tvalidation_1-aucpr:0.21413\n", |
|
|
853 |
"[23]\tvalidation_0-aucpr:0.22737\tvalidation_1-aucpr:0.21466\n", |
|
|
854 |
"[24]\tvalidation_0-aucpr:0.22863\tvalidation_1-aucpr:0.21444\n", |
|
|
855 |
"[25]\tvalidation_0-aucpr:0.23048\tvalidation_1-aucpr:0.21396\n", |
|
|
856 |
"[26]\tvalidation_0-aucpr:0.23092\tvalidation_1-aucpr:0.21430\n", |
|
|
857 |
"[27]\tvalidation_0-aucpr:0.23081\tvalidation_1-aucpr:0.21416\n", |
|
|
858 |
"[28]\tvalidation_0-aucpr:0.23163\tvalidation_1-aucpr:0.21426\n", |
|
|
859 |
"[29]\tvalidation_0-aucpr:0.23157\tvalidation_1-aucpr:0.21413\n", |
|
|
860 |
"[30]\tvalidation_0-aucpr:0.23146\tvalidation_1-aucpr:0.21408\n", |
|
|
861 |
"[31]\tvalidation_0-aucpr:0.23183\tvalidation_1-aucpr:0.21374\n", |
|
|
862 |
"[32]\tvalidation_0-aucpr:0.23183\tvalidation_1-aucpr:0.21374\n", |
|
|
863 |
"[33]\tvalidation_0-aucpr:0.23231\tvalidation_1-aucpr:0.21401\n", |
|
|
864 |
"[34]\tvalidation_0-aucpr:0.23279\tvalidation_1-aucpr:0.21421\n", |
|
|
865 |
"[35]\tvalidation_0-aucpr:0.23308\tvalidation_1-aucpr:0.21400\n", |
|
|
866 |
"[36]\tvalidation_0-aucpr:0.23325\tvalidation_1-aucpr:0.21458\n", |
|
|
867 |
"[37]\tvalidation_0-aucpr:0.23357\tvalidation_1-aucpr:0.21502\n", |
|
|
868 |
"[38]\tvalidation_0-aucpr:0.23364\tvalidation_1-aucpr:0.21502\n", |
|
|
869 |
"[39]\tvalidation_0-aucpr:0.23373\tvalidation_1-aucpr:0.21489\n", |
|
|
870 |
"[40]\tvalidation_0-aucpr:0.23547\tvalidation_1-aucpr:0.21556\n", |
|
|
871 |
"[41]\tvalidation_0-aucpr:0.23622\tvalidation_1-aucpr:0.21606\n", |
|
|
872 |
"[42]\tvalidation_0-aucpr:0.23639\tvalidation_1-aucpr:0.21730\n", |
|
|
873 |
"[43]\tvalidation_0-aucpr:0.23643\tvalidation_1-aucpr:0.21735\n", |
|
|
874 |
"[44]\tvalidation_0-aucpr:0.23643\tvalidation_1-aucpr:0.21736\n", |
|
|
875 |
"[45]\tvalidation_0-aucpr:0.23658\tvalidation_1-aucpr:0.21752\n", |
|
|
876 |
"[46]\tvalidation_0-aucpr:0.23758\tvalidation_1-aucpr:0.21846\n", |
|
|
877 |
"[47]\tvalidation_0-aucpr:0.23769\tvalidation_1-aucpr:0.21845\n", |
|
|
878 |
"[48]\tvalidation_0-aucpr:0.23772\tvalidation_1-aucpr:0.21852\n", |
|
|
879 |
"[49]\tvalidation_0-aucpr:0.23833\tvalidation_1-aucpr:0.21946\n", |
|
|
880 |
"[50]\tvalidation_0-aucpr:0.23850\tvalidation_1-aucpr:0.21892\n", |
|
|
881 |
"[51]\tvalidation_0-aucpr:0.23853\tvalidation_1-aucpr:0.21867\n", |
|
|
882 |
"[52]\tvalidation_0-aucpr:0.23842\tvalidation_1-aucpr:0.21847\n", |
|
|
883 |
"[53]\tvalidation_0-aucpr:0.23859\tvalidation_1-aucpr:0.21871\n", |
|
|
884 |
"[54]\tvalidation_0-aucpr:0.23887\tvalidation_1-aucpr:0.21953\n", |
|
|
885 |
"[55]\tvalidation_0-aucpr:0.23909\tvalidation_1-aucpr:0.22025\n", |
|
|
886 |
"[56]\tvalidation_0-aucpr:0.23926\tvalidation_1-aucpr:0.22021\n", |
|
|
887 |
"[57]\tvalidation_0-aucpr:0.23932\tvalidation_1-aucpr:0.22054\n", |
|
|
888 |
"[58]\tvalidation_0-aucpr:0.23904\tvalidation_1-aucpr:0.22076\n", |
|
|
889 |
"[59]\tvalidation_0-aucpr:0.23911\tvalidation_1-aucpr:0.22058\n", |
|
|
890 |
"[60]\tvalidation_0-aucpr:0.23911\tvalidation_1-aucpr:0.22059\n", |
|
|
891 |
"[61]\tvalidation_0-aucpr:0.23959\tvalidation_1-aucpr:0.22110\n", |
|
|
892 |
"[62]\tvalidation_0-aucpr:0.23982\tvalidation_1-aucpr:0.22098\n", |
|
|
893 |
"[63]\tvalidation_0-aucpr:0.23973\tvalidation_1-aucpr:0.22092\n", |
|
|
894 |
"[64]\tvalidation_0-aucpr:0.23997\tvalidation_1-aucpr:0.22097\n", |
|
|
895 |
"[65]\tvalidation_0-aucpr:0.24004\tvalidation_1-aucpr:0.22111\n", |
|
|
896 |
"[66]\tvalidation_0-aucpr:0.24027\tvalidation_1-aucpr:0.22214\n", |
|
|
897 |
"[67]\tvalidation_0-aucpr:0.24050\tvalidation_1-aucpr:0.22271\n", |
|
|
898 |
"[68]\tvalidation_0-aucpr:0.24061\tvalidation_1-aucpr:0.22218\n", |
|
|
899 |
"[69]\tvalidation_0-aucpr:0.24083\tvalidation_1-aucpr:0.22224\n", |
|
|
900 |
"[70]\tvalidation_0-aucpr:0.24091\tvalidation_1-aucpr:0.22203\n", |
|
|
901 |
"[71]\tvalidation_0-aucpr:0.24152\tvalidation_1-aucpr:0.22183\n", |
|
|
902 |
"[72]\tvalidation_0-aucpr:0.24175\tvalidation_1-aucpr:0.22197\n", |
|
|
903 |
"[73]\tvalidation_0-aucpr:0.24221\tvalidation_1-aucpr:0.22259\n", |
|
|
904 |
"[74]\tvalidation_0-aucpr:0.24223\tvalidation_1-aucpr:0.22261\n", |
|
|
905 |
"[75]\tvalidation_0-aucpr:0.24235\tvalidation_1-aucpr:0.22201\n", |
|
|
906 |
"[76]\tvalidation_0-aucpr:0.24251\tvalidation_1-aucpr:0.22253\n", |
|
|
907 |
"[77]\tvalidation_0-aucpr:0.24267\tvalidation_1-aucpr:0.22257\n", |
|
|
908 |
"[78]\tvalidation_0-aucpr:0.24267\tvalidation_1-aucpr:0.22257\n", |
|
|
909 |
"[79]\tvalidation_0-aucpr:0.24295\tvalidation_1-aucpr:0.22247\n", |
|
|
910 |
"[80]\tvalidation_0-aucpr:0.24294\tvalidation_1-aucpr:0.22164\n", |
|
|
911 |
"[81]\tvalidation_0-aucpr:0.24297\tvalidation_1-aucpr:0.22139\n", |
|
|
912 |
"[82]\tvalidation_0-aucpr:0.24304\tvalidation_1-aucpr:0.22132\n", |
|
|
913 |
"[83]\tvalidation_0-aucpr:0.24306\tvalidation_1-aucpr:0.22140\n", |
|
|
914 |
"[84]\tvalidation_0-aucpr:0.24311\tvalidation_1-aucpr:0.22173\n", |
|
|
915 |
"[85]\tvalidation_0-aucpr:0.24309\tvalidation_1-aucpr:0.22167\n", |
|
|
916 |
"[86]\tvalidation_0-aucpr:0.24305\tvalidation_1-aucpr:0.22178\n", |
|
|
917 |
"[87]\tvalidation_0-aucpr:0.24332\tvalidation_1-aucpr:0.22302\n", |
|
|
918 |
"[88]\tvalidation_0-aucpr:0.24339\tvalidation_1-aucpr:0.22293\n", |
|
|
919 |
"[89]\tvalidation_0-aucpr:0.24357\tvalidation_1-aucpr:0.22292\n", |
|
|
920 |
"[90]\tvalidation_0-aucpr:0.24357\tvalidation_1-aucpr:0.22293\n", |
|
|
921 |
"[91]\tvalidation_0-aucpr:0.24350\tvalidation_1-aucpr:0.22251\n", |
|
|
922 |
"[92]\tvalidation_0-aucpr:0.24371\tvalidation_1-aucpr:0.22252\n", |
|
|
923 |
"[93]\tvalidation_0-aucpr:0.24342\tvalidation_1-aucpr:0.22314\n", |
|
|
924 |
"[94]\tvalidation_0-aucpr:0.24339\tvalidation_1-aucpr:0.22289\n", |
|
|
925 |
"[95]\tvalidation_0-aucpr:0.24343\tvalidation_1-aucpr:0.22290\n", |
|
|
926 |
"[96]\tvalidation_0-aucpr:0.24347\tvalidation_1-aucpr:0.22257\n", |
|
|
927 |
"[97]\tvalidation_0-aucpr:0.24358\tvalidation_1-aucpr:0.22281\n", |
|
|
928 |
"[98]\tvalidation_0-aucpr:0.24343\tvalidation_1-aucpr:0.22301\n", |
|
|
929 |
"[99]\tvalidation_0-aucpr:0.24343\tvalidation_1-aucpr:0.22301\n", |
|
|
930 |
"[100]\tvalidation_0-aucpr:0.24340\tvalidation_1-aucpr:0.22301\n", |
|
|
931 |
"[101]\tvalidation_0-aucpr:0.24344\tvalidation_1-aucpr:0.22312\n", |
|
|
932 |
"[102]\tvalidation_0-aucpr:0.24356\tvalidation_1-aucpr:0.22287\n", |
|
|
933 |
"[103]\tvalidation_0-aucpr:0.24361\tvalidation_1-aucpr:0.22226\n", |
|
|
934 |
"[104]\tvalidation_0-aucpr:0.24365\tvalidation_1-aucpr:0.22257\n", |
|
|
935 |
"[105]\tvalidation_0-aucpr:0.24380\tvalidation_1-aucpr:0.22326\n", |
|
|
936 |
"[106]\tvalidation_0-aucpr:0.24404\tvalidation_1-aucpr:0.22257\n", |
|
|
937 |
"[107]\tvalidation_0-aucpr:0.24405\tvalidation_1-aucpr:0.22272\n", |
|
|
938 |
"[108]\tvalidation_0-aucpr:0.24405\tvalidation_1-aucpr:0.22272\n", |
|
|
939 |
"[109]\tvalidation_0-aucpr:0.24413\tvalidation_1-aucpr:0.22260\n", |
|
|
940 |
"[110]\tvalidation_0-aucpr:0.24434\tvalidation_1-aucpr:0.22240\n", |
|
|
941 |
"[111]\tvalidation_0-aucpr:0.24445\tvalidation_1-aucpr:0.22216\n", |
|
|
942 |
"[112]\tvalidation_0-aucpr:0.24445\tvalidation_1-aucpr:0.22216\n", |
|
|
943 |
"[113]\tvalidation_0-aucpr:0.24484\tvalidation_1-aucpr:0.22251\n", |
|
|
944 |
"[114]\tvalidation_0-aucpr:0.24494\tvalidation_1-aucpr:0.22259\n", |
|
|
945 |
"[115]\tvalidation_0-aucpr:0.24487\tvalidation_1-aucpr:0.22249\n", |
|
|
946 |
"[116]\tvalidation_0-aucpr:0.24511\tvalidation_1-aucpr:0.22332\n", |
|
|
947 |
"[117]\tvalidation_0-aucpr:0.24523\tvalidation_1-aucpr:0.22292\n", |
|
|
948 |
"[118]\tvalidation_0-aucpr:0.24513\tvalidation_1-aucpr:0.22336\n", |
|
|
949 |
"[119]\tvalidation_0-aucpr:0.24519\tvalidation_1-aucpr:0.22323\n", |
|
|
950 |
"[120]\tvalidation_0-aucpr:0.24528\tvalidation_1-aucpr:0.22326\n", |
|
|
951 |
"[121]\tvalidation_0-aucpr:0.24528\tvalidation_1-aucpr:0.22326\n", |
|
|
952 |
"[122]\tvalidation_0-aucpr:0.24536\tvalidation_1-aucpr:0.22333\n", |
|
|
953 |
"[123]\tvalidation_0-aucpr:0.24579\tvalidation_1-aucpr:0.22389\n", |
|
|
954 |
"[124]\tvalidation_0-aucpr:0.24579\tvalidation_1-aucpr:0.22392\n", |
|
|
955 |
"[125]\tvalidation_0-aucpr:0.24577\tvalidation_1-aucpr:0.22388\n", |
|
|
956 |
"[126]\tvalidation_0-aucpr:0.24578\tvalidation_1-aucpr:0.22386\n", |
|
|
957 |
"[127]\tvalidation_0-aucpr:0.24587\tvalidation_1-aucpr:0.22379\n", |
|
|
958 |
"[128]\tvalidation_0-aucpr:0.24588\tvalidation_1-aucpr:0.22343\n", |
|
|
959 |
"[129]\tvalidation_0-aucpr:0.24588\tvalidation_1-aucpr:0.22343\n", |
|
|
960 |
"[130]\tvalidation_0-aucpr:0.24593\tvalidation_1-aucpr:0.22339\n", |
|
|
961 |
"[131]\tvalidation_0-aucpr:0.24636\tvalidation_1-aucpr:0.22376\n", |
|
|
962 |
"[132]\tvalidation_0-aucpr:0.24639\tvalidation_1-aucpr:0.22347\n", |
|
|
963 |
"[133]\tvalidation_0-aucpr:0.24638\tvalidation_1-aucpr:0.22330\n", |
|
|
964 |
"[134]\tvalidation_0-aucpr:0.24644\tvalidation_1-aucpr:0.22332\n", |
|
|
965 |
"[135]\tvalidation_0-aucpr:0.24658\tvalidation_1-aucpr:0.22368\n", |
|
|
966 |
"[136]\tvalidation_0-aucpr:0.24662\tvalidation_1-aucpr:0.22368\n", |
|
|
967 |
"[137]\tvalidation_0-aucpr:0.24664\tvalidation_1-aucpr:0.22365\n", |
|
|
968 |
"[138]\tvalidation_0-aucpr:0.24633\tvalidation_1-aucpr:0.22429\n", |
|
|
969 |
"[139]\tvalidation_0-aucpr:0.24636\tvalidation_1-aucpr:0.22423\n", |
|
|
970 |
"[140]\tvalidation_0-aucpr:0.24640\tvalidation_1-aucpr:0.22434\n", |
|
|
971 |
"[141]\tvalidation_0-aucpr:0.24644\tvalidation_1-aucpr:0.22395\n", |
|
|
972 |
"[142]\tvalidation_0-aucpr:0.24637\tvalidation_1-aucpr:0.22430\n", |
|
|
973 |
"[143]\tvalidation_0-aucpr:0.24637\tvalidation_1-aucpr:0.22430\n", |
|
|
974 |
"[144]\tvalidation_0-aucpr:0.24649\tvalidation_1-aucpr:0.22452\n", |
|
|
975 |
"[145]\tvalidation_0-aucpr:0.24652\tvalidation_1-aucpr:0.22433\n", |
|
|
976 |
"[146]\tvalidation_0-aucpr:0.24659\tvalidation_1-aucpr:0.22414\n", |
|
|
977 |
"[147]\tvalidation_0-aucpr:0.24695\tvalidation_1-aucpr:0.22398\n", |
|
|
978 |
"[148]\tvalidation_0-aucpr:0.24694\tvalidation_1-aucpr:0.22401\n", |
|
|
979 |
"[149]\tvalidation_0-aucpr:0.24694\tvalidation_1-aucpr:0.22402\n", |
|
|
980 |
"[150]\tvalidation_0-aucpr:0.24714\tvalidation_1-aucpr:0.22381\n", |
|
|
981 |
"[151]\tvalidation_0-aucpr:0.24713\tvalidation_1-aucpr:0.22429\n", |
|
|
982 |
"[152]\tvalidation_0-aucpr:0.24719\tvalidation_1-aucpr:0.22429\n", |
|
|
983 |
"[153]\tvalidation_0-aucpr:0.24719\tvalidation_1-aucpr:0.22429\n", |
|
|
984 |
"[154]\tvalidation_0-aucpr:0.24719\tvalidation_1-aucpr:0.22431\n", |
|
|
985 |
"[155]\tvalidation_0-aucpr:0.24695\tvalidation_1-aucpr:0.22470\n", |
|
|
986 |
"[156]\tvalidation_0-aucpr:0.24695\tvalidation_1-aucpr:0.22470\n", |
|
|
987 |
"[157]\tvalidation_0-aucpr:0.24695\tvalidation_1-aucpr:0.22468\n", |
|
|
988 |
"[158]\tvalidation_0-aucpr:0.24700\tvalidation_1-aucpr:0.22499\n", |
|
|
989 |
"[159]\tvalidation_0-aucpr:0.24735\tvalidation_1-aucpr:0.22472\n", |
|
|
990 |
"[160]\tvalidation_0-aucpr:0.24748\tvalidation_1-aucpr:0.22502\n", |
|
|
991 |
"[161]\tvalidation_0-aucpr:0.24748\tvalidation_1-aucpr:0.22502\n", |
|
|
992 |
"[162]\tvalidation_0-aucpr:0.24749\tvalidation_1-aucpr:0.22479\n", |
|
|
993 |
"[163]\tvalidation_0-aucpr:0.24720\tvalidation_1-aucpr:0.22384\n", |
|
|
994 |
"[164]\tvalidation_0-aucpr:0.24733\tvalidation_1-aucpr:0.22380\n", |
|
|
995 |
"[165]\tvalidation_0-aucpr:0.24721\tvalidation_1-aucpr:0.22363\n", |
|
|
996 |
"[166]\tvalidation_0-aucpr:0.24725\tvalidation_1-aucpr:0.22364\n", |
|
|
997 |
"[167]\tvalidation_0-aucpr:0.24723\tvalidation_1-aucpr:0.22375\n", |
|
|
998 |
"[168]\tvalidation_0-aucpr:0.24818\tvalidation_1-aucpr:0.22439\n", |
|
|
999 |
"[169]\tvalidation_0-aucpr:0.24824\tvalidation_1-aucpr:0.22428\n", |
|
|
1000 |
"[170]\tvalidation_0-aucpr:0.24830\tvalidation_1-aucpr:0.22448\n", |
|
|
1001 |
"[171]\tvalidation_0-aucpr:0.24829\tvalidation_1-aucpr:0.22469\n", |
|
|
1002 |
"[172]\tvalidation_0-aucpr:0.24848\tvalidation_1-aucpr:0.22364\n", |
|
|
1003 |
"[173]\tvalidation_0-aucpr:0.24855\tvalidation_1-aucpr:0.22356\n", |
|
|
1004 |
"[174]\tvalidation_0-aucpr:0.24844\tvalidation_1-aucpr:0.22373\n", |
|
|
1005 |
"[175]\tvalidation_0-aucpr:0.24852\tvalidation_1-aucpr:0.22378\n", |
|
|
1006 |
"[176]\tvalidation_0-aucpr:0.24852\tvalidation_1-aucpr:0.22378\n", |
|
|
1007 |
"[177]\tvalidation_0-aucpr:0.24864\tvalidation_1-aucpr:0.22405\n", |
|
|
1008 |
"[178]\tvalidation_0-aucpr:0.24859\tvalidation_1-aucpr:0.22461\n", |
|
|
1009 |
"[179]\tvalidation_0-aucpr:0.24859\tvalidation_1-aucpr:0.22461\n", |
|
|
1010 |
"[180]\tvalidation_0-aucpr:0.24859\tvalidation_1-aucpr:0.22424\n", |
|
|
1011 |
"[181]\tvalidation_0-aucpr:0.24862\tvalidation_1-aucpr:0.22423\n", |
|
|
1012 |
"[182]\tvalidation_0-aucpr:0.24864\tvalidation_1-aucpr:0.22413\n", |
|
|
1013 |
"[183]\tvalidation_0-aucpr:0.24864\tvalidation_1-aucpr:0.22413\n", |
|
|
1014 |
"[184]\tvalidation_0-aucpr:0.24861\tvalidation_1-aucpr:0.22437\n", |
|
|
1015 |
"[185]\tvalidation_0-aucpr:0.24873\tvalidation_1-aucpr:0.22438\n", |
|
|
1016 |
"[186]\tvalidation_0-aucpr:0.24871\tvalidation_1-aucpr:0.22439\n", |
|
|
1017 |
"[187]\tvalidation_0-aucpr:0.24889\tvalidation_1-aucpr:0.22487\n", |
|
|
1018 |
"[188]\tvalidation_0-aucpr:0.24892\tvalidation_1-aucpr:0.22499\n", |
|
|
1019 |
"[189]\tvalidation_0-aucpr:0.24908\tvalidation_1-aucpr:0.22529\n", |
|
|
1020 |
"[190]\tvalidation_0-aucpr:0.24908\tvalidation_1-aucpr:0.22546\n", |
|
|
1021 |
"[191]\tvalidation_0-aucpr:0.24908\tvalidation_1-aucpr:0.22546\n", |
|
|
1022 |
"[192]\tvalidation_0-aucpr:0.24924\tvalidation_1-aucpr:0.22550\n", |
|
|
1023 |
"[193]\tvalidation_0-aucpr:0.24925\tvalidation_1-aucpr:0.22541\n", |
|
|
1024 |
"[194]\tvalidation_0-aucpr:0.24925\tvalidation_1-aucpr:0.22541\n", |
|
|
1025 |
"[195]\tvalidation_0-aucpr:0.24930\tvalidation_1-aucpr:0.22562\n", |
|
|
1026 |
"[196]\tvalidation_0-aucpr:0.24943\tvalidation_1-aucpr:0.22666\n", |
|
|
1027 |
"[197]\tvalidation_0-aucpr:0.24932\tvalidation_1-aucpr:0.22664\n", |
|
|
1028 |
"[198]\tvalidation_0-aucpr:0.24955\tvalidation_1-aucpr:0.22612\n", |
|
|
1029 |
"[199]\tvalidation_0-aucpr:0.24981\tvalidation_1-aucpr:0.22624\n", |
|
|
1030 |
"[200]\tvalidation_0-aucpr:0.24981\tvalidation_1-aucpr:0.22624\n", |
|
|
1031 |
"[201]\tvalidation_0-aucpr:0.24981\tvalidation_1-aucpr:0.22624\n", |
|
|
1032 |
"[202]\tvalidation_0-aucpr:0.24983\tvalidation_1-aucpr:0.22606\n", |
|
|
1033 |
"[203]\tvalidation_0-aucpr:0.24995\tvalidation_1-aucpr:0.22589\n", |
|
|
1034 |
"[204]\tvalidation_0-aucpr:0.25006\tvalidation_1-aucpr:0.22555\n", |
|
|
1035 |
"[205]\tvalidation_0-aucpr:0.25016\tvalidation_1-aucpr:0.22524\n", |
|
|
1036 |
"[206]\tvalidation_0-aucpr:0.25018\tvalidation_1-aucpr:0.22498\n", |
|
|
1037 |
"[207]\tvalidation_0-aucpr:0.25020\tvalidation_1-aucpr:0.22490\n", |
|
|
1038 |
"[208]\tvalidation_0-aucpr:0.25011\tvalidation_1-aucpr:0.22492\n", |
|
|
1039 |
"[209]\tvalidation_0-aucpr:0.25020\tvalidation_1-aucpr:0.22490\n", |
|
|
1040 |
"[210]\tvalidation_0-aucpr:0.25018\tvalidation_1-aucpr:0.22489\n", |
|
|
1041 |
"[211]\tvalidation_0-aucpr:0.24998\tvalidation_1-aucpr:0.22551\n", |
|
|
1042 |
"[212]\tvalidation_0-aucpr:0.25000\tvalidation_1-aucpr:0.22552\n", |
|
|
1043 |
"[213]\tvalidation_0-aucpr:0.24980\tvalidation_1-aucpr:0.22552\n", |
|
|
1044 |
"[214]\tvalidation_0-aucpr:0.24996\tvalidation_1-aucpr:0.22530\n", |
|
|
1045 |
"[215]\tvalidation_0-aucpr:0.24996\tvalidation_1-aucpr:0.22530\n", |
|
|
1046 |
"[216]\tvalidation_0-aucpr:0.25061\tvalidation_1-aucpr:0.22504\n", |
|
|
1047 |
"[217]\tvalidation_0-aucpr:0.25075\tvalidation_1-aucpr:0.22548\n", |
|
|
1048 |
"[218]\tvalidation_0-aucpr:0.25075\tvalidation_1-aucpr:0.22548\n", |
|
|
1049 |
"[219]\tvalidation_0-aucpr:0.25073\tvalidation_1-aucpr:0.22524\n", |
|
|
1050 |
"[220]\tvalidation_0-aucpr:0.25078\tvalidation_1-aucpr:0.22530\n", |
|
|
1051 |
"[221]\tvalidation_0-aucpr:0.25078\tvalidation_1-aucpr:0.22530\n", |
|
|
1052 |
"[222]\tvalidation_0-aucpr:0.25083\tvalidation_1-aucpr:0.22536\n", |
|
|
1053 |
"[223]\tvalidation_0-aucpr:0.25078\tvalidation_1-aucpr:0.22566\n", |
|
|
1054 |
"[224]\tvalidation_0-aucpr:0.25079\tvalidation_1-aucpr:0.22551\n", |
|
|
1055 |
"[225]\tvalidation_0-aucpr:0.25076\tvalidation_1-aucpr:0.22562\n", |
|
|
1056 |
"[226]\tvalidation_0-aucpr:0.25099\tvalidation_1-aucpr:0.22562\n", |
|
|
1057 |
"[227]\tvalidation_0-aucpr:0.25103\tvalidation_1-aucpr:0.22581\n", |
|
|
1058 |
"[228]\tvalidation_0-aucpr:0.25113\tvalidation_1-aucpr:0.22556\n", |
|
|
1059 |
"[229]\tvalidation_0-aucpr:0.25126\tvalidation_1-aucpr:0.22542\n", |
|
|
1060 |
"[230]\tvalidation_0-aucpr:0.25126\tvalidation_1-aucpr:0.22542\n", |
|
|
1061 |
"[231]\tvalidation_0-aucpr:0.25135\tvalidation_1-aucpr:0.22521\n", |
|
|
1062 |
"[232]\tvalidation_0-aucpr:0.25135\tvalidation_1-aucpr:0.22521\n", |
|
|
1063 |
"[233]\tvalidation_0-aucpr:0.25139\tvalidation_1-aucpr:0.22526\n", |
|
|
1064 |
"[234]\tvalidation_0-aucpr:0.25139\tvalidation_1-aucpr:0.22539\n", |
|
|
1065 |
"[235]\tvalidation_0-aucpr:0.25133\tvalidation_1-aucpr:0.22525\n", |
|
|
1066 |
"[236]\tvalidation_0-aucpr:0.25133\tvalidation_1-aucpr:0.22525\n", |
|
|
1067 |
"[237]\tvalidation_0-aucpr:0.25167\tvalidation_1-aucpr:0.22550\n", |
|
|
1068 |
"[238]\tvalidation_0-aucpr:0.25194\tvalidation_1-aucpr:0.22525\n", |
|
|
1069 |
"[239]\tvalidation_0-aucpr:0.25206\tvalidation_1-aucpr:0.22495\n", |
|
|
1070 |
"[240]\tvalidation_0-aucpr:0.25203\tvalidation_1-aucpr:0.22505\n", |
|
|
1071 |
"[241]\tvalidation_0-aucpr:0.25203\tvalidation_1-aucpr:0.22505\n", |
|
|
1072 |
"[242]\tvalidation_0-aucpr:0.25215\tvalidation_1-aucpr:0.22489\n", |
|
|
1073 |
"[243]\tvalidation_0-aucpr:0.25237\tvalidation_1-aucpr:0.22412\n", |
|
|
1074 |
"[244]\tvalidation_0-aucpr:0.25243\tvalidation_1-aucpr:0.22412\n", |
|
|
1075 |
"[245]\tvalidation_0-aucpr:0.25248\tvalidation_1-aucpr:0.22415\n", |
|
|
1076 |
"[246]\tvalidation_0-aucpr:0.25248\tvalidation_1-aucpr:0.22415\n", |
|
|
1077 |
"[247]\tvalidation_0-aucpr:0.25248\tvalidation_1-aucpr:0.22415\n", |
|
|
1078 |
"[248]\tvalidation_0-aucpr:0.25249\tvalidation_1-aucpr:0.22414\n", |
|
|
1079 |
"[249]\tvalidation_0-aucpr:0.25263\tvalidation_1-aucpr:0.22440\n", |
|
|
1080 |
"[250]\tvalidation_0-aucpr:0.25253\tvalidation_1-aucpr:0.22428\n", |
|
|
1081 |
"[251]\tvalidation_0-aucpr:0.25264\tvalidation_1-aucpr:0.22445\n", |
|
|
1082 |
"[252]\tvalidation_0-aucpr:0.25264\tvalidation_1-aucpr:0.22445\n", |
|
|
1083 |
"[253]\tvalidation_0-aucpr:0.25269\tvalidation_1-aucpr:0.22435\n", |
|
|
1084 |
"[254]\tvalidation_0-aucpr:0.25269\tvalidation_1-aucpr:0.22435\n", |
|
|
1085 |
"[255]\tvalidation_0-aucpr:0.25276\tvalidation_1-aucpr:0.22381\n", |
|
|
1086 |
"[256]\tvalidation_0-aucpr:0.25275\tvalidation_1-aucpr:0.22356\n", |
|
|
1087 |
"[257]\tvalidation_0-aucpr:0.25278\tvalidation_1-aucpr:0.22353\n", |
|
|
1088 |
"[258]\tvalidation_0-aucpr:0.25278\tvalidation_1-aucpr:0.22353\n", |
|
|
1089 |
"[259]\tvalidation_0-aucpr:0.25283\tvalidation_1-aucpr:0.22351\n", |
|
|
1090 |
"[260]\tvalidation_0-aucpr:0.25298\tvalidation_1-aucpr:0.22355\n", |
|
|
1091 |
"[261]\tvalidation_0-aucpr:0.25298\tvalidation_1-aucpr:0.22355\n", |
|
|
1092 |
"[262]\tvalidation_0-aucpr:0.25292\tvalidation_1-aucpr:0.22331\n", |
|
|
1093 |
"[263]\tvalidation_0-aucpr:0.25313\tvalidation_1-aucpr:0.22353\n", |
|
|
1094 |
"[264]\tvalidation_0-aucpr:0.25328\tvalidation_1-aucpr:0.22351\n", |
|
|
1095 |
"[265]\tvalidation_0-aucpr:0.25322\tvalidation_1-aucpr:0.22375\n", |
|
|
1096 |
"[266]\tvalidation_0-aucpr:0.25382\tvalidation_1-aucpr:0.22358\n", |
|
|
1097 |
"[267]\tvalidation_0-aucpr:0.25382\tvalidation_1-aucpr:0.22358\n", |
|
|
1098 |
"[268]\tvalidation_0-aucpr:0.25360\tvalidation_1-aucpr:0.22382\n", |
|
|
1099 |
"[269]\tvalidation_0-aucpr:0.25373\tvalidation_1-aucpr:0.22375\n", |
|
|
1100 |
"[270]\tvalidation_0-aucpr:0.25367\tvalidation_1-aucpr:0.22392\n", |
|
|
1101 |
"[271]\tvalidation_0-aucpr:0.25363\tvalidation_1-aucpr:0.22385\n", |
|
|
1102 |
"[272]\tvalidation_0-aucpr:0.25364\tvalidation_1-aucpr:0.22369\n", |
|
|
1103 |
"[273]\tvalidation_0-aucpr:0.25353\tvalidation_1-aucpr:0.22358\n", |
|
|
1104 |
"[274]\tvalidation_0-aucpr:0.25367\tvalidation_1-aucpr:0.22349\n", |
|
|
1105 |
"[275]\tvalidation_0-aucpr:0.25387\tvalidation_1-aucpr:0.22356\n", |
|
|
1106 |
"[276]\tvalidation_0-aucpr:0.25377\tvalidation_1-aucpr:0.22306\n", |
|
|
1107 |
"[277]\tvalidation_0-aucpr:0.25377\tvalidation_1-aucpr:0.22306\n", |
|
|
1108 |
"[278]\tvalidation_0-aucpr:0.25377\tvalidation_1-aucpr:0.22306\n", |
|
|
1109 |
"[279]\tvalidation_0-aucpr:0.25380\tvalidation_1-aucpr:0.22320\n", |
|
|
1110 |
"[280]\tvalidation_0-aucpr:0.25384\tvalidation_1-aucpr:0.22327\n", |
|
|
1111 |
"[281]\tvalidation_0-aucpr:0.25388\tvalidation_1-aucpr:0.22309\n", |
|
|
1112 |
"[282]\tvalidation_0-aucpr:0.25388\tvalidation_1-aucpr:0.22307\n", |
|
|
1113 |
"[283]\tvalidation_0-aucpr:0.25376\tvalidation_1-aucpr:0.22320\n", |
|
|
1114 |
"[284]\tvalidation_0-aucpr:0.25376\tvalidation_1-aucpr:0.22320\n", |
|
|
1115 |
"[285]\tvalidation_0-aucpr:0.25379\tvalidation_1-aucpr:0.22318\n", |
|
|
1116 |
"[286]\tvalidation_0-aucpr:0.25406\tvalidation_1-aucpr:0.22309\n", |
|
|
1117 |
"[287]\tvalidation_0-aucpr:0.25423\tvalidation_1-aucpr:0.22295\n", |
|
|
1118 |
"[288]\tvalidation_0-aucpr:0.25424\tvalidation_1-aucpr:0.22293\n", |
|
|
1119 |
"[289]\tvalidation_0-aucpr:0.25426\tvalidation_1-aucpr:0.22306\n", |
|
|
1120 |
"[290]\tvalidation_0-aucpr:0.25426\tvalidation_1-aucpr:0.22306\n", |
|
|
1121 |
"[291]\tvalidation_0-aucpr:0.25426\tvalidation_1-aucpr:0.22306\n", |
|
|
1122 |
"[292]\tvalidation_0-aucpr:0.25427\tvalidation_1-aucpr:0.22332\n", |
|
|
1123 |
"[293]\tvalidation_0-aucpr:0.25440\tvalidation_1-aucpr:0.22353\n", |
|
|
1124 |
"[294]\tvalidation_0-aucpr:0.25440\tvalidation_1-aucpr:0.22353\n", |
|
|
1125 |
"[295]\tvalidation_0-aucpr:0.25435\tvalidation_1-aucpr:0.22323\n", |
|
|
1126 |
"[296]\tvalidation_0-aucpr:0.25435\tvalidation_1-aucpr:0.22336\n", |
|
|
1127 |
"[297]\tvalidation_0-aucpr:0.25458\tvalidation_1-aucpr:0.22257\n", |
|
|
1128 |
"[298]\tvalidation_0-aucpr:0.25460\tvalidation_1-aucpr:0.22242\n", |
|
|
1129 |
"[299]\tvalidation_0-aucpr:0.25456\tvalidation_1-aucpr:0.22217\n", |
|
|
1130 |
"[300]\tvalidation_0-aucpr:0.25451\tvalidation_1-aucpr:0.22234\n", |
|
|
1131 |
"[301]\tvalidation_0-aucpr:0.25456\tvalidation_1-aucpr:0.22220\n", |
|
|
1132 |
"[302]\tvalidation_0-aucpr:0.25513\tvalidation_1-aucpr:0.22297\n", |
|
|
1133 |
"[303]\tvalidation_0-aucpr:0.25506\tvalidation_1-aucpr:0.22300\n", |
|
|
1134 |
"[304]\tvalidation_0-aucpr:0.25506\tvalidation_1-aucpr:0.22300\n", |
|
|
1135 |
"[305]\tvalidation_0-aucpr:0.25506\tvalidation_1-aucpr:0.22300\n", |
|
|
1136 |
"[306]\tvalidation_0-aucpr:0.25504\tvalidation_1-aucpr:0.22281\n", |
|
|
1137 |
"[307]\tvalidation_0-aucpr:0.25500\tvalidation_1-aucpr:0.22279\n", |
|
|
1138 |
"[308]\tvalidation_0-aucpr:0.25499\tvalidation_1-aucpr:0.22279\n", |
|
|
1139 |
"[309]\tvalidation_0-aucpr:0.25497\tvalidation_1-aucpr:0.22292\n", |
|
|
1140 |
"[310]\tvalidation_0-aucpr:0.25554\tvalidation_1-aucpr:0.22329\n", |
|
|
1141 |
"[311]\tvalidation_0-aucpr:0.25554\tvalidation_1-aucpr:0.22329\n", |
|
|
1142 |
"[312]\tvalidation_0-aucpr:0.25554\tvalidation_1-aucpr:0.22329\n", |
|
|
1143 |
"[313]\tvalidation_0-aucpr:0.25571\tvalidation_1-aucpr:0.22300\n", |
|
|
1144 |
"[314]\tvalidation_0-aucpr:0.25571\tvalidation_1-aucpr:0.22300\n", |
|
|
1145 |
"[315]\tvalidation_0-aucpr:0.25566\tvalidation_1-aucpr:0.22333\n", |
|
|
1146 |
"[316]\tvalidation_0-aucpr:0.25567\tvalidation_1-aucpr:0.22350\n", |
|
|
1147 |
"[317]\tvalidation_0-aucpr:0.25568\tvalidation_1-aucpr:0.22368\n", |
|
|
1148 |
"[318]\tvalidation_0-aucpr:0.25565\tvalidation_1-aucpr:0.22332\n", |
|
|
1149 |
"[319]\tvalidation_0-aucpr:0.25568\tvalidation_1-aucpr:0.22358\n", |
|
|
1150 |
"[320]\tvalidation_0-aucpr:0.25575\tvalidation_1-aucpr:0.22377\n" |
|
|
1151 |
] |
|
|
1152 |
}, |
|
|
1153 |
{ |
|
|
1154 |
"data": { |
|
|
1155 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmnklEQVR4nO3deXhTZaI/8O9J0iTd951Cy6KA0AIFanEBpVJwuaA4IjDDIhccB1DpMCL+HMBlpojooAMjo1eEuVcUcRRmXIpQKI5QAVlEVqECBbrRliZds53398dpU0IXmpI20H4/z5OH5pw357znkDbfvMs5khBCgIiIiOgmp3J3BYiIiIhcgaGGiIiIOgSGGiIiIuoQGGqIiIioQ2CoISIiog6BoYaIiIg6BIYaIiIi6hAYaoiIiKhD0Li7Au1FlmXk5eXB19cXkiS5uzpERETUAkIIlJeXIyoqCipV820xnSbU5OXlISYmxt3VICIiolY4f/48unTp0myZThNqfH19ASgnxc/Pz821ISIiopYwGo2IiYmxf443p9OEmrouJz8/P4YaIiKim0xLho5woDARERF1CAw1RERE1CEw1BAREVGHwFBDREREHQJDDREREXUIDDVERETUITDUEBERUYfAUENEREQdAkMNERERdQgMNURERNQhMNQQERFRh8BQQ0RERB1Cp7mhJRERETVPCIHTRRWoMFkBAJUmG47lG1BRY4UAIAsBWQBCKGVlISAEIAtlXc8wH/z69m5uqz9DDRERUQd2MPcydpwogq/eA3oPFdQqFTQqCWqVBI269l+VBLVKhfV7zmHHyUut3tfdt4Qy1BAREREgywKGassVLSLC3goiCwFjtRW5pVWQhYBGJcFDrYIkAUfzjDhdVAGVpAQUrUYFT60aBYYa/PtwHoRoeR081BLC/fQAAK1Ghd4Rvgjx0UElSZAkQIIElQSoVBIkAJKkPJckIDbYu21OTAsx1BAREV2lxmLDN8cKUWmyIsxXh/7R/ig0miAg4Kv3gK9eAyEAT60aXh5qnCutwpGLBhQaaxDmp4dWLcEm14cRs1VGjVWGyWKDySpDp1GhS6AXVBJglQXyyqqRdfISDp0vs3f9uNJ9fcPhpVXDbJVhlQVssqj9V4bVpvxslQXCfHV4LvVW9Ar3dXkd2gNDDRERdUpCCEiSBAAoqTDhYG4Zci5VQAD4dP8FnC6qaNF2tGoVzDbZ5fWTJEBlbwVR/vX0UKNrsDe0agkWmxJOLDYZMUFeGNg1ACpJgk0WMFlsqLbY4KnV4PbuQRjWI8Tl9bsRMdQQEdENqcZig7HaAkO1BSarEhrqulGMNRacLamEn94DKklCgbFGaYWwybDUftCXVVlQZbbau2+EEDBbBcqqzDhTXInSKjP0GjV0HiqUVVka7D/ER4cBMQE4XVSOsyVVCPHRwUMtobzG6tCaYrYpLS99Iv0QHeCJSxUm2GQBtSRBpQLUtd1EdfvSaVSoMttw4XI1JAnwUKngo9fgjp4hGNYjGD3DfKBRSfbARS3HUENERG5xtrgSB89fRl5ZDYQQUKtUsNhknCupwr6zpcgtrWrzOlTXtmgAwC3hPrg1wg8alYQgby1m39MTQd5aAIDJaoNOo7a/TpYFJAmoMFlxudKCqAA9NGpeJcXdWhVqVq1ahddffx0FBQVISEjAX//6VwwdOrTRsu+99x7+8Y9/4MiRIwCAxMRE/PnPf3YoP23aNKxbt87hdampqcjIyLA/Ly0txdy5c/Hvf/8bKpUK48ePx1tvvQUfH5/WHAIREblQhcmKi5erYZVlGKosKKu21A4iBYC6AaZKN8r50ips/jEPP54vu+Z2JQnwq521I12xHb1Wjdhgb5TXWCAEEOGvh95DDQ+1BI1KBY1agr+nB3x0GnsXjrp2ho+/pwe6Bnkh3E8Hk1VGjcWGYB+dPcA05spAAyiDZAHUjq/xaO1pIxdzOtRs2LABaWlpWL16NZKSkrBixQqkpqbi5MmTCAsLa1A+KysLEydOxLBhw6DX6/Haa69h1KhROHr0KKKjo+3lRo8ejQ8++MD+XKfTOWxn8uTJyM/Px9atW2GxWDB9+nTMmjUL69evd/YQiIioltUm4+fCCpwtqYTZKttn3dR115isMipMVnhrNfD0UNs/zA+dv4zj+eW4XGnG5SozLjfSfXMtapWEQV0D0DXIGxqVBJtQumyiAjzRv4sfBsYEwt/Tw75PomuRhHBmoheQlJSEIUOGYOXKlQAAWZYRExODuXPn4vnnn7/m6202GwIDA7Fy5UpMmTIFgNJSU1ZWhk2bNjX6muPHj6Nv377Yt28fBg8eDADIyMjA/fffjwsXLiAqKuqa+zUajfD394fBYICfn18Lj5aI6MZkkwUKjTU4X1qFPEM1qs0yLDYZQgiE+uphttlQVmWBVqPCLeG+iAtRptoG17ZG1Fhk5FyqwDMfH0TOpUqX1CnAywMeahX89BoEemkhSbUXaYMyKFf5F/DWqZHSJxwPxkch1Fd3rc1SJ+fM57dTLTVmsxn79+/HwoUL7ctUKhVSUlKQnZ3dom1UVVXBYrEgKCjIYXlWVhbCwsIQGBiIe++9F6+++iqCg4MBANnZ2QgICLAHGgBISUmBSqXCnj178PDDDzfYj8lkgslksj83Go3OHCoRUbuTZYECYw0AQKOS8N3pYuz8+RJ+uVQJmyzs04NrLDLyDdWw2Jz6TgoACPPVQRZAcUX930cfnQa3hPvAS6uBVNtNU9dl46FWwUurQZXZihqLDTah1DMuxBtD4oIQ5qt024T76uHvxW4Yci+nQk1xcTFsNhvCw8MdloeHh+PEiRMt2saCBQsQFRWFlJQU+7LRo0fjkUceQVxcHHJycvDCCy9gzJgxyM7OhlqtRkFBQYOuLY1Gg6CgIBQUFDS6n/T0dLz00kvOHB4RkUtYbTJUkoSzJZU4U1yJSrMNOUUVKK4w2VsrLlyuwoXL1TBZbDDbBMxWG2osslNTgzUqpaumS6AnvHUaaNUqCAgUGU3QalQI9Nai2mzD4QsGe4gpKjc5bOO+vuF4bXx8s+NJiG4W7Tr7aenSpfj444+RlZUFvV5vX/7444/bf+7fvz/i4+PRo0cPZGVlYeTIka3a18KFC5GWlmZ/bjQaERMT0/rKE1GHUVxhwuVKM6rMysyX8horjlw04GxJJSpqrAj11UGSJBiqzbDJAgWGGpRWmaHTqKFVK4NQ6+55c2X3CgCUVpobBAdnaGrHj1hlgX7Rfhh+SygGxARCq1EpU4QlwEOjQlSAJyL89FC3YLyJqK2r2Sbjp4sGaFQSeoT5QKtWQe+hvubriW4WToWakJAQqNVqFBYWOiwvLCxEREREs69dvnw5li5dim3btiE+Pr7Zst27d0dISAhOnz6NkSNHIiIiAkVFRQ5lrFYrSktLm9yvTqdrMNiYiOjNb07irztOO3XZ+NbSaVToGeYDb60GXYO9EB3gab/UfIiPDj1CveGpVUOrUSnXMfFQI7w2UNVYbPDWueZ7p1S7T71KjSGxQdd+AdFNyqnfGK1Wi8TERGRmZmLcuHEAlIHCmZmZmDNnTpOvW7ZsGf70pz9hy5YtDuNimnLhwgWUlJQgMjISAJCcnIyysjLs378fiYmJAIDt27dDlmUkJSU5cwhEdAOpqW0lkSRl4OvRPAPyymogSYDJIsNklWG2ypAkoFeYDxJiAiCgdO9YbAJniyvx6f4LOJZvRFF5Te24EyDCT4+7bwlFWZUZOo0K4f5Ky3BxuRn/PHABABDo5QEvrQZ6D2XMSM8wH/SJ9IWPzgNF5cq4liBvLSRJQpivDiE+WpitAjVWm3IlWihzi+umKddNX/bTeyA60BNCAP6eHtBqWnftElcFGqLOxOnZTxs2bMDUqVPx97//HUOHDsWKFSvwySef4MSJEwgPD8eUKVMQHR2N9PR0AMBrr72GRYsWYf369bjjjjvs2/Hx8YGPjw8qKirw0ksvYfz48YiIiEBOTg6ee+45lJeX46effrK3towZMwaFhYVYvXq1fUr34MGDWzylm7OfiFpHCIGLZdWoNiv3rDHbZFSarPjlUiWKK0yosdhgtsq4JcIXI24NgywLVJltqDJbYbbK0HmoofdQwWoTuHC5GmVVZpTXWJFzqQL/+jEPVWZbux/T/FG3YM69vdp9v0TkvDab/QQAEyZMwKVLl7Bo0SIUFBRgwIAByMjIsA8ezs3NhUpV/83knXfegdlsxqOPPuqwncWLF2PJkiVQq9U4fPgw1q1bh7KyMkRFRWHUqFF45ZVXHLqPPvzwQ8yZMwcjR460X3zv7bffdrb6RASgvMaC3NKq+ouZSYDFKnCpogZVZiWkWGwyKk02fPLDeZwoKG+XesWFeKNnmHJBTa1Guay8VqOC1SZjf+5lnCupUi45r5KgUavgo9Pg/v4RuLd3OLoEetpn7Rw6X4YDuZcR7qeHxSajyGiyX3ytb5Qf/ivh2peBIKKbj9MtNTcrttRQZyDLSqvKxbJq+Ht6QO+hhqH23jl1j7PFlfh4by4qnWgh8VBL8NFpoNWo7GGjW7A3ogKUq7hKErDz5CWcKCi3d+d4eqih06jsV2yVJCA60AvB3lr41l7HJPW2CNzeXRnjIQR4kTUiaqBNW2qI6MZQXGHC+j25OHyhDJerLPDSqnE8v9zh+iPNCfTygEatqh0wK6BWSQj11cFbWxte1EqA6RPphynJ3RDg1fyU34Vj+jjc9dhZvHcfEV0vhhqiG4wQAj8XViDnUgVqLDZ7S0eh0YT950pxprgKhmozrLJodAaPVq1CVIAehmoLzFYZ/p4e8PP0gL+nBwK8PBDgqcXIPmG4r2+4y+8CzLsKE5E7MdQQtZAsC+SWVqGk0oSjeUYUGGrg6aGGp1aN86VVOH+5Gsndg9EzzAcCAjYZqDJbcanchJJKM2KDvRDgpbW3jAih3ASwqNyES+UmGGssKKkw43i+scXXOYnv4o9HE7sgzFcHY40VXQI9MbhbUKtn3BAR3cwYaqjTulxpxrbjhThbUqncwE8W9guxlddYYbbJsNpk2GQBT60aR/OMuHSNsLH9RFGz61tK76HCbVH+8NKqodMos4d89R4Y2DUAfSP9EOSthUYtIdRHx9YRIqJaDDXUYdlkgb1nSmGoNqO00oLzl6vsLSoXSqtQUml2eps6jUq5aFqYD+KCvWC2yagy2xDopUVUgB7/OVUMQ7XFfu0SL60agV5aBHlrlavVmqzKxdegjCHRe6gR5qtHmJ8OAbXdRD3DfNA/2p9XeiUichJDDXU4BYYa7Py5CB/sOnvNqci9I3wxNC4IGpUKapUSMnz1GvjqPaDTqKBWSZAkCdVmKyL8PZHcPbjZrp1Zd/dw9eEQEVELMdRQhyCEQFmVBR/vO483vjkJq6yMoPXVa3BLuC/89BrEBHkhJtALMUGeys9BXvDT867CREQdBUMN3ZSKK0zYdboYR/OM+OVSJfadLYWh2mJfn9DFHyP7hGNqciz8vRhciIg6A4YaumFZbDIOnS/DpXITdBoV9p4tRW5JFc4UVzbZrRThp8e8+3rhscExHEBLRNTJMNSQW9RYbPjxfBlOFJTjUrkJvnoNRtwaBk8PNaotNuw4WYS/7TgNY421yW30ifTD0NhAdAv2VmYFRflBp+HgWiKizoqhhtpMSYUJ5y9Xw2yVEeqrg9kq44dzpdh+vAi7copRY5Edyqd/faLBNoK8tYgL8UZ5jQX9owMQ38Uf4X46DI4NQoiPrkF5IiLqvBhqyOX2ninFi5t+ws+FFc2WC/fToX90AKIC9DhbUoW9Z0qgliR4atUI8dFh5l3dMW5gNNS8HxAREbUAQw1dtwuXq7B8y0mcLKxAWZUZBcYa++X7o/z10GpUKDSa7HdIHn5LKO7tHYbeEb4c90JERC7DUEPXxVBlwZQ1e/HLpUqH5eMHdcEfH+xjvwli3c3gGWKIiKitMNRQi5TXWLBh33kcOl+GkgozLDYZJquMsyWVKK+xIspfj1fG9UOYrx5BPlpEB3g6vJ5hhoiI2hpDDV3TxbJqTP9gb5NjZEJ9dXh/2hD0ifRr55oRERHVY6ihZlltMn7z/h78cqkSYb46TL8jDtGBntCqJXioVYgK8ET3UG9OpSYiIrdjqKFmbT6Uh18uVSLIW4tNs+9A1FXdSkRERDcKhhpqoNpsw8WyKhSVm7Byx2kAwKy7uzPQEBHRDY2hhgAAZ4sr8f0vJdidU4ItRwtgstZfGC/QywO/ub2bG2tHRER0bQw1nZgQAluPFeKtzFM4mmd0WOer1yDMV4dQXx2euCMO3jq+VYiI6MbGT6pOxmKTcSzPiLJqC1Zn5SD7lxIAgFolYXC3QAzsGogx/SIQ38Wf07CJiOimwlDTgdlkgWUZJ7DlaAECvbUI89Xhx/MGFBhr7GW0GhX++844/Pdd3RHkrXVjbYmIiK4PQ00HY7bK2Lj/PHacuARDtRn7zl4GAJwtqbKX8ff0QKCXBwZ1C0TafbegS6CXu6pLRETkMgw1HYjZKuPR1btx+ILBvkyjkvDS2NsQ7K1DobEGwT5a3Nc3nNeVISKiDoehpgP51495OHzBAF+9Bk/e3R2SJOGuXiGI7xLg7qoRERG1OYaaDkKWBf6+MwcAMPuenvjt8B5urhEREVH7Urm7AuQa3xwrwKmiCvjqNJiU1NXd1SEiImp3DDUdQFmVGYs2HwUATBnWDX56DzfXiIiIqP0x1NzkbLLA8//8CUXlJnQP9cbce3u5u0pERERu0apQs2rVKsTGxkKv1yMpKQl79+5tsux7772Hu+66C4GBgQgMDERKSopDeYvFggULFqB///7w9vZGVFQUpkyZgry8PIftxMbGQpIkh8fSpUtbU/2b3k8XDNjzSwkullUj7ZNDyDhaAI1Kwhu/SoDeg7OaiG5aNiuw/U/A/40H/jkTyDsECAFYqusfsnzNzRB1Vk4PFN6wYQPS0tKwevVqJCUlYcWKFUhNTcXJkycRFhbWoHxWVhYmTpyIYcOGQa/X47XXXsOoUaNw9OhRREdHo6qqCgcOHMAf//hHJCQk4PLly3jmmWfwX//1X/jhhx8ctvXyyy9j5syZ9ue+vr6tOOSbU3mNBedKqpCdU4I/f30cQtSvU6sk/HXiQAzsGui+ChLR9fvmRWDPO/XPj3wKaDwBS2X9Mq0PEJkARA4Aet4LdL8HULXDlxmbFRA2QKNTgpWwARWFQOExIKQXEBTX9nUgugZJiCs/Hq8tKSkJQ4YMwcqVKwEAsiwjJiYGc+fOxfPPP3/N19tsNgQGBmLlypWYMmVKo2X27duHoUOH4ty5c+jaVRn0Ghsbi2effRbPPvusM9W1MxqN8Pf3h8FggJ+fX6u20Z7MVhnFFSZcKjdhz5kSrNx+GsYaq329r06DcpMVg7oG4OmRvTDi1oaBkqjTEAKw1gCQAA+9u2vTkLkK+DkDOLcbKP4ZgAAkNaDSKIFEUgPGC0D+j0r5e14ELh0Hjvzz2tv2jQISHgduexiI6A9cfXuT6jJg6x+B3O8BISsP/y5Al6GARg+E3wZUXgJ+/BiwVgN+0UDX25Vy5iolUJUXAD9vAcwVgE+4Ul62Ou7Hv6sSbjQ6IKArEBGvBB+rCagoAox5QEAM4BWsbC83WynX57+AHvcqZc1VgEYL6P1dcdapg3Dm89upUGM2m+Hl5YVPP/0U48aNsy+fOnUqysrKsHnz5mtuo7y8HGFhYdi4cSMefPDBRsts27YNo0aNQllZmf0AYmNjUVNTA4vFgq5du2LSpEmYN28eNJrGG5tMJhNMJpP9udFoRExMzA0fakorzXh9y0n869BFVJptDuv8PT2g1agw667umHFnHCrNVvhyUDDdLGQbUHIa8AkDPJ1sVZRl4NQW4OKB2hCgUgJC/o9AlyFAaY6ybQAI7qV8yN+ZBqiu0cNuNSnbzD+kfLCG3tp82VNblQ/2oO7Kfpu7P5qpHNj1NnBsM3D5DGAzt+BAJSBlMXDnPOVp6S/KsfuGK+sgAMMFIO8gcH6Psu3qy/Uv1/kB3iFKWIKknKfKIqCqpAX7bgVJrZyLy2cahhxnqDSOr/eNAoY8Adw1v/lzLISyXojaoGVTApGWV0nvSJwJNU51PxUXF8NmsyE8PNxheXh4OE6cONGibSxYsABRUVFISUlpdH1NTQ0WLFiAiRMnOlT+6aefxqBBgxAUFITdu3dj4cKFyM/Px5tvvtnodtLT0/HSSy+18MhuDEIIzP3oAHadVv4AeaglBHpp0T3UGw8lROHxIV2hVtX/gjPQUKuZK4HSM8qHnqRSvl3rfJWHRuf89qxmYOdS5UPfw1P5Zu4VDNw6GsjZoTyvLAJqaq92HdwTiE5UHt6hgM0CyBZledFx4MA65Vt7XcuCqVx5fWNObXF8XnIK2P6K8mE/YiGg9a7/YLRZgax0YN97SjdOZTFgq/3y4xUCzMpSWhOuPrZfspTWjktX/J0LuUVptfAKUl5rNQG5u4Gy80qrg7hq7EtAN6D3g0pritpD+QAWNuXDXLYBej+g6zDAL7L+NUHdGx5vWB/lMWASMGYZcPJr4PAnQM52wGRUHlcLjAVG/Un5P4EACo8CRccASw1w7jslOCXNUo6p8AhQcERpxdF6AR5eSliKu1vZjjFPCVlab6VrzEOv/L8W/KS8p2SL0iVVclp5L2l0gD5AaQEy5Cr/lx7eQNck5f/6+L8B40XH+pbnAdtfBc7vqz0Hova9UPsvhLKvc7uUEGMz17+3AEDnD6g1QJ+HgJGLlf+j62WuVM6FMU/pdvMKAvy6KPshhc2qhH7PALdVwamWmry8PERHR2P37t1ITk62L3/uueewc+dO7Nmzp9nXL126FMuWLUNWVhbi4+MbrLdYLBg/fjwuXLiArKysZhPZmjVr8OSTT6KiogI6XcM/wjdjS83He3Px/Gc/Qe+hwntTBuPOniG8U3ZnZCpXPnBb839vru0qCO4BlOQA5flKE79sqx9oWnQM2LoIqC5tfBtdhipdGVpvJfCc/FppyYi9E+gxUhk7YcwDDq0Hys4BKg+gpgwwnL92/TT62m6iVtD5A30fAtRaJQgEdFVCwMUfAJ8IoNd9ygfe4U+ALQvrX+cZpHSLCBm4fK5hOPIOVbZpvKhsM7y/0kVUeUkJKjZTfUDxCgEi+gG5e5SummsJ6gHc84LSqhPQtXX/py1lqQHKcpVWmbowKGSlZStq0I3beiEEcPms0nrnGaC8/w9vAL56Tgl9zpBUDcOkhzfQfbgSQlSa+odsUwIYoIRrISthTMjAhX3K/39YH+X3oOAnpdXs6u2rPJTftZBeSmgTshLihj7ZMBxXlykf+H7R9e8DSw2UrkhVfVdkc6rLgDPfKl131hrALwroNQowVQDhfZ1vAW2MEMqxWmrf3xq9coySpJyzc7uBi/uVvwnGvNrfOwBndiqtnrc9DIxbdf31uMIN2f20fPlyvPrqq9i2bRsGDx7cYL3FYsFjjz2GX375Bdu3b0dwcHCzdTl69Cj69euHEydO4NZbm2kyrnWjj6nZfqIQT/3fAZisMl58oA/++65GvqGRoxqj8ge8uQGKNgtgqVJCwtV/MOqarlvq1FZgz9+Vb7sensoylQbo/QDQfQRw9jtg22IAEhAzVNlftzuVb5pnvwXO7qrtKhDKHwdjnvJh2nMkkDwH8I0AslcC25YoH0IP/kX51i1blW+6Qd0BnU/Deona7ZXnA/8Yq3TFhPYGLp1U9tUUnb8yfkGuHfdw5WDU1vAMBO57RWlx8ApWukfO7gLi7lKCks4HCLtNOaaLB5Q/jHkHlD/Iag/l/yL/sHLe7nhGGQxb15IkqYGw3kpLUkvseVc5j40dk84PuH+58odaH6D8azgPvHsPUFXc+Pa8w5Q/1iOeVz4cq0qVVgKrSWntqS5V6hkRD0TGK+8LSaWEoGt1gVHjcvco45AA5b0hqWDvUpMk5f+u+3Dl/0BSKe95dW3ArixWAt6W/6eMTXIlSa200FWXNh3QNZ5ASE/lZ5tF+V2va0HTByhdhKZypcWnfsPKcp8IpSXMM0h5XV0LlGxVwnZTQc8zEJi0EYgZ0nBdzg7g0IfKuRKy8jsvSUpoC+iqHJMkAYaLSstZ4U+Or/fvCoTeooS+8ryG279S1CBg1o7myzipzUINoAwUHjp0KP76178CUAYKd+3aFXPmzGlyoPCyZcvwpz/9CVu2bMHtt9/eYH1doDl16hR27NiB0NDQa9bjww8/xJQpU1BcXIzAwGun0xs51OzOKcaU9/fCKguk9AnD338z2KGbiRpx9HPgy98roWbAr5XBjp4BQNdkpYlcyMCut4Cdy5Rv1L5RwO1PKa0Ll88qzdXCpnz4dhsGPPR2803UhgvA35Ibb9oHlD8o1WVoNkQ0xzNICWcX9zdTSFI+6OPuBqIGKPs7tF7pSrBWK98a67551vHvqoQdjU75xuXhpXzz7DdeCQ4abX1Z2aa08vy4XgkXNotynkJ6KS00Z3Yq32DL85Vvv71SlOV1LQLRidffzO9s0LzWtsyVygeB4bzywecbqYybaSwcVVyq78IJigP8Y+rPm3cYw8nNSJaVFoW6lg25rrvPqnyQqz2UFolzu5UgGj1ICdUhtwCBcUp3o82itIh0G6aEAs8A5UuNLCuDuy+dVLrayguUbeRmK4G3MVePHWqN4F5Aj3tqvzjsVQaAa7TKFyaVRgl33e5Q6nz5DKDWKd2tV7dgNUetrW/1qTE4hjfPQOVvUOQA5Vwc26z8Xel1n/L3N+RWl/+utGmo2bBhA6ZOnYq///3vGDp0KFasWIFPPvkEJ06cQHh4OKZMmYLo6Gikp6cDAF577TUsWrQI69evxx133GHfjo+PD3x8fGCxWPDoo4/iwIED+OKLLxzG6wQFBUGr1SI7Oxt79uzBPffcA19fX2RnZ2PevHkYM2YM1q1b5/KT0p4qTFak/uVbXCyrxgP9I7Hi8QHwUPOPZ7P2rwP+/XTT630ilA/jprpXGhPRH3jgTeUXVe2h/IH6aaPyx0rrrTT5Fh5R1t82TvlDByhdFj9+XP9LP/DXSqtE8c/KB+qxzcq/MUPrxyQAACTl21hVCfDdX+pnvag8gOELgJ+/VgaDBnRVPlQri5tuRbhScC/g4dVKF1PUQOW4iKj9CKG0RNbUDuCW1ErA8I9RQselE0o3lEav/D2oG19lNSktNxWFyt+fqhLldV7B9UE/uKfyN+Fq5krg0yfqW7Ya0+9RZVZb3Ww7m1n5u1NZXPvFxKb87YyMB/r/qv4LirkKOPsfpXXSM1AJVK0Zd3cd2jTUAMDKlSvx+uuvo6CgAAMGDMDbb7+NpKQkAMCIESMQGxuLtWvXAlBmLZ07d67BNhYvXowlS5bg7NmziItrvPtgx44dGDFiBA4cOIDf/e53OHHiBEwmE+Li4vCb3/wGaWlpjY6nacyNGmoWbT6Cf2SfQ5dAT2x59m546zrxoLMrv6WXFwI/vK98q/GNVGbMWM1KyPjPcmV50lNK188PawAIpan24oH61gqtLzA6Heg7Vhkc+uPHwKApwODpyh8USQ0UnwQ2TnccZ9FYiwegfBt58j/1zcp1qi8DxnzlW4tflOO6uut5qJsZ1G01Kd1aKg3Q7xGlGwpQBt1dOQjRmK+EqzM7lUGSKrXSddXnv5TBklWlShcVBy4SdT5CKGPc8n8ETmcqLSzBPZSA1GUwkDi9bcd0taE2DzU3oxsx1JwqLEfqim8hC2D9fydhWM8Qd1ep/disyiwVmwU4/i/gZAZQdFQZWOkXpbRSNNXVAwC3PQI8uqbhL6m5Svml9vBUuhnqxr40pyQH2PEn4PQ2xxkU0YOV0GCpVvrQbxndMNAQEVGbarMp3eRa6V+fgCyA0bdFdK5Ac/kc8NFEJcRcreSU8gCU7pPowcoYjspipcnTN0IZuzFoauPfOrReQLfkhsubE9xDCUiyrAwyNFcqA/ZaEoiIiOiGwVDjJjmXKrD9RBE0KgkLxvR2d3Vcq+w88PmTSn9xyhKl66hO/mHg/x5Rpktq9Mogti6DlYulRScqrSYmo9J3231E+1z+vY5KVXvNERdc04KIiNodQ42b/FxQDgDoF+2PuBBvN9fGBYpOKGNLzBVAxvPK2Jdzu5RZSrF3KgEFAHa+pnTxhPcHJn2sXK79SsE92r3qRETUMTDUuMkvxcr1M7rf7IFGCOUmfNkrHZf7dVG6cPIPAae+UR51YpKAyRt5fxciInIphho3OVMbam66Vpri08pl1SsvKeNcSs/UX6Y+qLsyQyiou9LtFBinjJv5JQv4ZacybbBnCpA47ca9uikREd20GGrcxB5qQm+iUHPxAPD+qManO6f+GUie3XB5RH/lMWxu29ePiIg6NYYaN7npWmos1crgX9kChPdTrmjrHao8IuKVS+ETERG5EUONG5RVmVFaaQYAxAbfBKHmlyzgy/nKVGufcGDqvzlDiIiIbjgMNW5Q10oT7qdreAXhvEPA9leAO+cps4baW/Vl5Qq9ZbnKdGshA/v+B4BQbs736BoGGiIiuiEx1LhBs11Pu/+qXNn29DbgiW+ArknNb6zwGPD1c8pNDWOSgKEzlZvxnd+nXJlXtihdR0HdlVDiFeR47RdzlXIvEv8uypV9t70MmAwN9zNoKjDqFc5YIiKiGxZDjRucLqoAAMSF+DRcmXeg/ud1DwJ3/R4YMKnxm5hd+hl47576myn+/LXyaI5nkHJ/Ic9A4Fw2cP77hneNDeur3C/JUq3csPGW0UD/R504QiIiovbHUNPOSipMWL83FwAwIOaqVg9ThTJFGgCiBikBJytdedz9HHDv/3Msf/AfSqCJTgRSXgJOfKl0FclWIHqQcoNDjV65vUDpGaUFprq0tjvpCp6BSreTRq9sZ+gsl986noiIqK0x1LSzP315HGVVFvSJ9MMjg666mm7BYQAC8I0CZm4HjvwT2PsucH4P8N2byh2mA2KA0l8AtRY48pnyujueVWYfxd0F3P0Hpcup7k7PV7JZgZztSteWbAFCblFaYQJj60MNrx9DREQ3KYaadmSy2rDp0EUAwJ8e7gcP9VWtIXkHlX+jByk3a+z/qPJY9xBw5lvg+78pwebvw5XWGGEDtL5Ar/vqt+Ed3HQF1BrgllHK42oc/EtERDc59jG0o0KDCbIAdBoVBsYENCxwsXY8TdQAx+V3zlP+3b8W+PQJwGZSAg0A9HmQd5MmIiICQ027yjdUAwAi/fWQJMlx5U+fAr/sUH6OGuS4rvs9QOxdgKUKKDoGeHgDCZOUmUhDZ7ZDzYmIiG587H5qRwVGZZZShL/eccXRz4F/zlB+1vsDXQY7rpckYPKnyoDhg/+nTK0eMEm5meTV4YiIiKiTYqhpR/kGJdRE+l/VXbR/rfJv/ATgviauBeOhB+57SXnUYaAhIiKyY/dTOyowNNJSY8xT7mANAPe8APiGu6FmRERENz+GmnZ05Zgau582AhBA12RlajURERG1CkNNO7K31PhdEWqOf6H8G/+YG2pERETUcTDUtKMGY2pkG1Dwk/Jz7F1uqhUREVHHwFDTTiw2GZcqTACuGFNTkgNYqwEPL+WGk0RERNRqDDXtpKjcBCEAD7WEYG+tsrDgsPJvWF/HO2cTERGR0xhq2klB7SDhcD89VKraqdiFR5R/I/q7qVZEREQdB0NNOxBCYM+ZUgBXzXyqG0/DUENERHTdePG9drBsy0m8k5UDAOgV7lu/ooAtNURERK7CUNMOPj+g3Jl7+h2xmD/qVmVhRRFQUQBAUsbUEBER0XVh91Mbq7HY7Pd8evreXvDW1ebIuq6n4B6AzsdNtSMiIuo4GGra2IXLVQAAX50GAV4e9SvqBgmH93NDrYiIiDqeVoWaVatWITY2Fnq9HklJSdi7d2+TZd977z3cddddCAwMRGBgIFJSUhqUF0Jg0aJFiIyMhKenJ1JSUnDq1CmHMqWlpZg8eTL8/PwQEBCAGTNmoKKiojXVb1fnSpRQ0zXYC9KVN6DkIGEiIiKXcjrUbNiwAWlpaVi8eDEOHDiAhIQEpKamoqioqNHyWVlZmDhxInbs2IHs7GzExMRg1KhRuHjxor3MsmXL8Pbbb2P16tXYs2cPvL29kZqaipqaGnuZyZMn4+jRo9i6dSu++OILfPvtt5g1a1YrDrl95ZbWhpogL8cV9lAT3841IiIi6qCEk4YOHSpmz55tf26z2URUVJRIT09v0eutVqvw9fUV69atE0IIIcuyiIiIEK+//rq9TFlZmdDpdOKjjz4SQghx7NgxAUDs27fPXubrr78WkiSJixcvtmi/BoNBABAGg6FF5V1lyb+OiG4LvhB//vJY/UJzlRBLAoVY7CeEoWX1JyIi6oyc+fx2qqXGbDZj//79SElJsS9TqVRISUlBdnZ2i7ZRVVUFi8WCoKAgAMCZM2dQUFDgsE1/f38kJSXZt5mdnY2AgAAMHjzYXiYlJQUqlQp79uxpdD8mkwlGo9Hh4Q65V3Q/2RUdB4QN8AoGfCPdUi8iIqKOxqlQU1xcDJvNhvDwcIfl4eHhKCgoaNE2FixYgKioKHuIqXtdc9ssKChAWFiYw3qNRoOgoKAm95ueng5/f3/7IyYmpkX1c7VGu5+uHE9z5TgbIiIiarV2nf20dOlSfPzxx/j888+h1+uv/YLrsHDhQhgMBvvj/Pnzbbq/xgghGoYamwU4vEH5mTOfiIiIXMapi++FhIRArVajsLDQYXlhYSEiIiKafe3y5cuxdOlSbNu2DfHx9YNj615XWFiIyMj6rpjCwkIMGDDAXubqgchWqxWlpaVN7len00Gn07X42NpCUbkJJqsMtUpCVICnsvDr54BzuwAPb2Dgb9xaPyIioo7EqZYarVaLxMREZGZm2pfJsozMzEwkJyc3+bply5bhlVdeQUZGhsO4GACIi4tDRESEwzaNRiP27Nlj32ZycjLKysqwf/9+e5nt27dDlmUkJSU5cwjt6sC5ywCA6ABPeKhVQGUx8MMaZeWja4Cw3m6sHRERUcfi9G0S0tLSMHXqVAwePBhDhw7FihUrUFlZienTpwMApkyZgujoaKSnpwMAXnvtNSxatAjr169HbGysfQyMj48PfHx8IEkSnn32Wbz66qvo1asX4uLi8Mc//hFRUVEYN24cAKBPnz4YPXo0Zs6cidWrV8NisWDOnDl4/PHHERUV5aJT4Xrv/ecXAMCD8bUtUGe/U/4N6wvcOtpNtSIiIuqYnA41EyZMwKVLl7Bo0SIUFBRgwIAByMjIsA/0zc3NhUpV3wD0zjvvwGw249FHH3XYzuLFi7FkyRIAwHPPPYfKykrMmjULZWVluPPOO5GRkeEw7ubDDz/EnDlzMHLkSKhUKowfPx5vv/12a465XfxwthQHcsugVaswbVissrAu1MTe5bZ6ERERdVSSEEK4uxLtwWg0wt/fHwaDAX5+fm2+v4WfHcZHe89jwuAYvPZo7RiiVUnApRPAY/8L9P2vNq8DERHRzc6Zz2/e+6mNFBpNAIBB3QKUBRVFSqABgNg73VMpIiKiDoyhpo0Yqi0AAH/P2ptYnt6m/BveD/AKclOtiIiIOi6GmjZSVmUGAPh5egCWamCHMnAafce6sVZEREQdF0NNGzFUWwHUttTs/itgyAX8ugDJc9xcMyIioo6JoaYNCCFgrO1+CvDSAoc/UVaM/COg9WrmlURERNRaDDVtoMYiw2yTAQD+eg1gqL1FQ8yNe6FAIiKimx1DTRsoq1bG06hVErxtBsBaA0AC/G7cCwUSERHd7Bhq2sCVM58kwwVloU8YoHHvvaiIiIg6MoaaNmCoqh1P4+kB1IUa/y5urBEREVHHx1DTBupaavwYaoiIiNoNQ00bKLvywnt1g4T9Y9xYIyIioo6PoaYNGK8MNcaLykK21BAREbUphpo24HCLhLruJ79oN9aIiIio42OoaQMG+4X3OKaGiIiovTDUtIGy2tlPgToA5QXKQo6pISIialMMNW2grqUmxvILAAGodYB3iHsrRURE1MEx1LQBQ7UFj6i+Rcp3k5QFQd0BSXJvpYiIiDo4hpo2YKy2YKT6ACTIQJchwMPvuLtKREREHR5DTRsoq7bAD1XKkyH/DUQNdG+FiIiIOgGGGhcTQsBQbYGvVBtq9P7urRAREVEnwVDjYpVmG2yygC+qlQU6P/dWiIiIqJNgqHEx+4X37C01DDVERETtgaHGxcqqzADA7iciIqJ2xlDjYoZqC3QwQwelxYbdT0RERO2DocbFjNWW+vE0AKDzdV9liIiIOhGGGhdzmPmk8wNUavdWiIiIqJNgqHGxsioLfHFFqCEiIqJ2wVDjYoZqC/w484mIiKjdMdS4mKH6ipYaznwiIiJqNww1LtZgTA0RERG1i1aFmlWrViE2NhZ6vR5JSUnYu3dvk2WPHj2K8ePHIzY2FpIkYcWKFQ3K1K27+jF79mx7mREjRjRY/9vf/rY11W9Thivv+8TuJyIionbjdKjZsGED0tLSsHjxYhw4cAAJCQlITU1FUVFRo+WrqqrQvXt3LF26FBEREY2W2bdvH/Lz8+2PrVu3AgB+9atfOZSbOXOmQ7lly5Y5W/02x/s+ERERuYfToebNN9/EzJkzMX36dPTt2xerV6+Gl5cX1qxZ02j5IUOG4PXXX8fjjz8OnU7XaJnQ0FBERETYH1988QV69OiB4cOHO5Tz8vJyKOfnd+O1hDi01LD7iYiIqN04FWrMZjP279+PlJSU+g2oVEhJSUF2drZLKmQ2m/F///d/eOKJJyBJksO6Dz/8ECEhIejXrx8WLlyIqqqqJrdjMplgNBodHu2Bs5+IiIjcQ+NM4eLiYthsNoSHhzssDw8Px4kTJ1xSoU2bNqGsrAzTpk1zWD5p0iR069YNUVFROHz4MBYsWICTJ0/is88+a3Q76enpeOmll1xSp5aSZaF0P2nY/URERNTenAo17eH999/HmDFjEBUV5bB81qxZ9p/79++PyMhIjBw5Ejk5OejRo0eD7SxcuBBpaWn250ajETExMW1XcQDlJiuEQP1tEtj9RERE1G6cCjUhISFQq9UoLCx0WF5YWNjkIGBnnDt3Dtu2bWuy9eVKSUlJAIDTp083Gmp0Ol2TY3jairFauYmlv4otNURERO3NqTE1Wq0WiYmJyMzMtC+TZRmZmZlITk6+7sp88MEHCAsLwwMPPHDNsocOHQIAREZGXvd+XcVQF2o4+4mIiKjdOd39lJaWhqlTp2Lw4MEYOnQoVqxYgcrKSkyfPh0AMGXKFERHRyM9PR2AMvD32LFj9p8vXryIQ4cOwcfHBz179rRvV5ZlfPDBB5g6dSo0Gsdq5eTkYP369bj//vsRHByMw4cPY968ebj77rsRHx/f6oN3tbIqJdT4StWAALufiIiI2pHToWbChAm4dOkSFi1ahIKCAgwYMAAZGRn2wcO5ublQqeobgPLy8jBw4ED78+XLl2P58uUYPnw4srKy7Mu3bduG3NxcPPHEEw32qdVqsW3bNnuAiomJwfjx4/Hiiy86W/02pbTUCHiLSmUBZz8RERG1G0kIIdxdifZgNBrh7+8Pg8HQZte3Wb8nF3/6fC+O6mcoC17IA7TebbIvIiKizsCZz2/e+8mFymssCJXKlCce3gw0RERE7YihxoWsskAYypQnvuHNliUiIiLXYqhxIatNIKyupcbn+qe4ExERUcsx1LiQTZbrQw1baoiIiNoVQ40LWWW21BAREbkLQ40L2WSBUOmy8oQtNURERO2KocaFHAYKs6WGiIioXTHUuJDtyu4nttQQERG1K4YaF7JxTA0REZHbMNS4kLCaEChVKE98GWqIiIjaE0ONC3mZiwEANskD8Ax0c22IiIg6F4YaF/KuDTVV2mBAktxcGyIios6FocaFfCwlAIAqXaiba0JERNT5MNS4kLdFaamp0TPUEBERtTeGGhfSWqsAABaP5m+NTkRERK7HUONCkrApP6g07q0IERFRJ8RQ40KSbFF+YKghIiJqdww1LiQJq/IDQw0REVG7Y6hxIUmuDTVqhhoiIqL2xlDjQvVjajzcWxEiIqJOiKHGhVSyEmokldrNNSEiIup8GGpcyD6mRs2WGiIiovbGUONCqtpQI3FMDRERUbtjqHGhujE1Emc/ERERtTuGGhdSs/uJiIjIbRhqXEhV21KjYvcTERFRu2OocSEVW2qIiIjchqHGhVT2MTUMNURERO2NocaF2P1ERETkPgw1LqRG3ZRuttQQERG1t1aFmlWrViE2NhZ6vR5JSUnYu3dvk2WPHj2K8ePHIzY2FpIkYcWKFQ3KLFmyBJIkOTx69+7tUKampgazZ89GcHAwfHx8MH78eBQWFram+m2GLTVERETu43So2bBhA9LS0rB48WIcOHAACQkJSE1NRVFRUaPlq6qq0L17dyxduhQRERFNbve2225Dfn6+/fHdd985rJ83bx7+/e9/Y+PGjdi5cyfy8vLwyCOPOFv9NqUGQw0REZG7OB1q3nzzTcycORPTp09H3759sXr1anh5eWHNmjWNlh8yZAhef/11PP7449DpdE1uV6PRICIiwv4ICQmxrzMYDHj//ffx5ptv4t5770ViYiI++OAD7N69G99//72zh9Bm1HUtNRqtm2tCRETU+TgVasxmM/bv34+UlJT6DahUSElJQXZ29nVV5NSpU4iKikL37t0xefJk5Obm2tft378fFovFYb+9e/dG165dm9yvyWSC0Wh0eLS1upYaScOWGiIiovbmVKgpLi6GzWZDeHi4w/Lw8HAUFBS0uhJJSUlYu3YtMjIy8M477+DMmTO46667UF5eDgAoKCiAVqtFQEBAi/ebnp4Of39/+yMmJqbV9WupujE1ag4UJiIianc3xOynMWPG4Fe/+hXi4+ORmpqKr776CmVlZfjkk09avc2FCxfCYDDYH+fPn3dhjRsSQkBTN6ZGw1BDRETU3pzqJwkJCYFarW4w66iwsLDZQcDOCggIwC233ILTp08DACIiImA2m1FWVubQWtPcfnU6XbNjeFzNJl8RajhQmIiIqN051VKj1WqRmJiIzMxM+zJZlpGZmYnk5GSXVaqiogI5OTmIjIwEACQmJsLDw8NhvydPnkRubq5L93s9rFeGGg4UJiIiandONymkpaVh6tSpGDx4MIYOHYoVK1agsrIS06dPBwBMmTIF0dHRSE9PB6AMLj527Jj954sXL+LQoUPw8fFBz549AQDz58/HQw89hG7duiEvLw+LFy+GWq3GxIkTAQD+/v6YMWMG0tLSEBQUBD8/P8ydOxfJycm4/fbbXXIirpdNFtBIHFNDRETkLk6HmgkTJuDSpUtYtGgRCgoKMGDAAGRkZNgHD+fm5kKlqm8AysvLw8CBA+3Ply9fjuXLl2P48OHIysoCAFy4cAETJ05ESUkJQkNDceedd+L7779HaGio/XV/+ctfoFKpMH78eJhMJqSmpuJvf/tba4/b5ayygBoyAEDNMTVERETtThJCCHdXoj0YjUb4+/vDYDDAz8/P5dsvrTTDtqwHQiUj5N/uhiriNpfvg4iIqLNx5vP7hpj91BFYZRma2pYaFbufiIiI2h1DjYvYZGG/+B5UavdWhoiIqBNiqHERq03Aoy7UsKWGiIio3THUuIhjSw2vU0NERNTeGGpcxGqToZUYaoiIiNyFocZFbDZb/ROGGiIionbHUOMiss1S/4ShhoiIqN0x1LiIbL0i1HCgMBERUbtjqHERm9Vc/4QtNURERO2OocZFZJu1/glDDRERUbtjqHERW233kw0qQJLcXBsiIqLOh6HGReoGCtvAqwkTERG5A0ONizDUEBERuRdDjYvUzX6ySQw1RERE7sBQ4yJ1A4XZUkNEROQeDDUuImpbamS21BAREbkFQ42L2FtqJE7nJiIicgeGGhcRtQOFZXY/ERERuQVDjYvYZz+xpYaIiMgtGGpcRMhK9xPH1BAREbkHQ42L2LufGGqIiIjcgqHGRYStrqWG3U9ERETuwFDjIvWhhi01RERE7sBQ4yq13U+CLTVERERuwVDjIvUDhRlqiIiI3IGhxlVqQ41QsfuJiIjIHRhqXKV2TI3gmBoiIiK3YKhxFbluSje7n4iIiNyBocZV7N1PDDVERETuwFDjKgw1REREbtWqULNq1SrExsZCr9cjKSkJe/fubbLs0aNHMX78eMTGxkKSJKxYsaJBmfT0dAwZMgS+vr4ICwvDuHHjcPLkSYcyI0aMgCRJDo/f/va3ral+m6ib/cQp3URERO7hdKjZsGED0tLSsHjxYhw4cAAJCQlITU1FUVFRo+WrqqrQvXt3LF26FBEREY2W2blzJ2bPno3vv/8eW7duhcViwahRo1BZWelQbubMmcjPz7c/li1b5mz124xUG2rA2U9ERERu4XSzwptvvomZM2di+vTpAIDVq1fjyy+/xJo1a/D88883KD9kyBAMGTIEABpdDwAZGRkOz9euXYuwsDDs378fd999t325l5dXk8HI7ezdTx5urggREVHn5FRLjdlsxv79+5GSklK/AZUKKSkpyM7OdlmlDAYDACAoKMhh+YcffoiQkBD069cPCxcuRFVVVZPbMJlMMBqNDo+2xJYaIiIi93Kqpaa4uBg2mw3h4eEOy8PDw3HixAmXVEiWZTz77LO444470K9fP/vySZMmoVu3boiKisLhw4exYMECnDx5Ep999lmj20lPT8dLL73kkjq1CMfUEBERudUN9wk8e/ZsHDlyBN99953D8lmzZtl/7t+/PyIjIzFy5Ejk5OSgR48eDbazcOFCpKWl2Z8bjUbExMS0Wb3tLTVqdj8RERG5g1OhJiQkBGq1GoWFhQ7LCwsLXTLWZc6cOfjiiy/w7bffokuXLs2WTUpKAgCcPn260VCj0+mg0+muu04tJtuUf9n9RERE5BZOjanRarVITExEZmamfZksy8jMzERycnKrKyGEwJw5c/D5559j+/btiIuLu+ZrDh06BACIjIxs9X5dSSXqxtTccI1fREREnYLTn8BpaWmYOnUqBg8ejKFDh2LFihWorKy0z4aaMmUKoqOjkZ6eDkAZXHzs2DH7zxcvXsShQ4fg4+ODnj17AlC6nNavX4/NmzfD19cXBQUFAAB/f394enoiJycH69evx/3334/g4GAcPnwY8+bNw9133434+HiXnIjrVT9QmN1PRERE7uB0qJkwYQIuXbqERYsWoaCgAAMGDEBGRoZ98HBubi5UqvoGoLy8PAwcOND+fPny5Vi+fDmGDx+OrKwsAMA777wDQLnA3pU++OADTJs2DVqtFtu2bbMHqJiYGIwfPx4vvviis9VvM5Lg7CciIiJ3koQQwt2VaA9GoxH+/v4wGAzw8/Nz+fZ3Lp+A4RUZ+Kn3M+j/+Msu3z4REVFn5MznN+/95CKq2oHCEsfUEBERuQVDjYvYu5/UDDVERETuwFDjIipR11LDgcJERETuwFDjImypISIici+GGhdR17bUqDimhoiIyC0YalzEfvE93iaBiIjILRhqXKRuTI2KoYaIiMgtGGpcxD5QmGNqiIiI3IKhxkXsLTUattQQERG5A0ONi6jBG1oSERG5E0ONi6g5poaIiMitGGpcRAWOqSEiInInhhoXUddO6WZLDRERkXsw1LiIGjIADhQmIiJyF4YaF1Hbu5/Ubq4JERFR58RQ4yL1t0nQurkmREREnRNDjYvUtdSo2FJDRETkFgw1LsIxNURERO7FUOMidVO61ZzSTURE5BYMNS4ghICmtqVGYksNERGRWzDUuIAs6sfUaDimhoiIyC0YalzAKsv2MTUSL75HRETkFgw1LiDL9QOFNRqOqSEiInIHhhoXsMoyPKTai+/xLt1ERERuwVDjArJNtv+s5kBhIiIit2CocQGr1Wz/mVO6iYiI3IOhxgVsNov9ZxVDDRERkVsw1LiAbLPVP+GYGiIiIrdgqHEBm7W+pYahhoiIyD0YalxA2Kz1T1S8+B4REZE7tCrUrFq1CrGxsdDr9UhKSsLevXubLHv06FGMHz8esbGxkCQJK1asaNU2a2pqMHv2bAQHB8PHxwfjx49HYWFha6rvcjarEmpskABJcnNtiIiIOienQ82GDRuQlpaGxYsX48CBA0hISEBqaiqKiooaLV9VVYXu3btj6dKliIiIaPU2582bh3//+9/YuHEjdu7ciby8PDzyyCPOVr9NyLLS/WQDW2mIiIjcRRJCCGdekJSUhCFDhmDlypUAAFmWERMTg7lz5+L5559v9rWxsbF49tln8eyzzzq1TYPBgNDQUKxfvx6PPvooAODEiRPo06cPsrOzcfvtt1+z3kajEf7+/jAYDPDz83PmkK8p5+ej6LF+GGqghX7JJZdum4iIqDNz5vPbqZYas9mM/fv3IyUlpX4DKhVSUlKQnZ3dqsq2ZJv79++HxWJxKNO7d2907dq11ft1JZusdD9Z2VJDRETkNk5N1SkuLobNZkN4eLjD8vDwcJw4caJVFWjJNgsKCqDVahEQENCgTEFBQaPbNZlMMJlM9udGo7FV9WsJUTumRmaoISIicpsOO/spPT0d/v7+9kdMTEyb7Uu21Q0U7rCnk4iI6Ibn1KdwSEgI1Gp1g1lHhYWFTQ4CdsU2IyIiYDabUVZW1uL9Lly4EAaDwf44f/58q+rXEnWhRpbYUkNEROQuToUarVaLxMREZGZm2pfJsozMzEwkJye3qgIt2WZiYiI8PDwcypw8eRK5ublN7len08HPz8/h0VbYUkNEROR+Tl/+Ni0tDVOnTsXgwYMxdOhQrFixApWVlZg+fToAYMqUKYiOjkZ6ejoAZSDwsWPH7D9fvHgRhw4dgo+PD3r27Nmibfr7+2PGjBlIS0tDUFAQ/Pz8MHfuXCQnJ7do5lNbEzLH1BAREbmb06FmwoQJuHTpEhYtWoSCggIMGDAAGRkZ9oG+ubm5UKnqWyzy8vIwcOBA+/Ply5dj+fLlGD58OLKyslq0TQD4y1/+ApVKhfHjx8NkMiE1NRV/+9vfWnvcLsXuJyIiIvdz+jo1N6u2vE7Nwf98iYGZk3Be1QUxi466dNtERESdWZtdp4YaV3fvJyHxdBIREbkLP4VdQK4dU2Nj9xMREZHbMNS4gLDZlH85UJiIiMhtGGpcQNTd0JItNURERG7DUOMCHFNDRETkfvwUdgEhK91PnNJNRETkPgw1LlB/8T2nL/tDRERELsJQ4wq13U9g9xMREZHb8FPYBYRg9xMREZG7MdS4Qt1AYRVDDRERkbsw1LgAb2hJRETkfgw1rlA7+4ktNURERO7DUOMCdVO6hcTZT0RERO7CUOMKMi++R0RE5G78FHaF2pYaqNhSQ0RE5C4MNa5QN1CYU7qJiIjchqHGFeS6i+8x1BAREbkLQ40rCFn5h7OfiIiI3IahxgUke0sNx9QQERG5C0ONK8i8ojAREZG7MdS4gqx0P3FMDRERkfsw1LiAJGq7nzilm4iIyG0YalxB8DYJRERE7sZQ4wJ1A4Uldj8RERG5DUONC0j2lhp2PxEREbkLQ40LSLW3SZDY/UREROQ2DDUuwJYaIiIi92OocQXBlhoiIiJ3Y6hxARVDDRERkdsx1LhA3XVq2P1ERETkPq0KNatWrUJsbCz0ej2SkpKwd+/eZstv3LgRvXv3hl6vR//+/fHVV185rJckqdHH66+/bi8TGxvbYP3SpUtbU32Xk2pvaCmpGWqIiIjcxelQs2HDBqSlpWHx4sU4cOAAEhISkJqaiqKiokbL7969GxMnTsSMGTNw8OBBjBs3DuPGjcORI0fsZfLz8x0ea9asgSRJGD9+vMO2Xn75ZYdyc+fOdbb6baJu9hNvaElEROQ+ToeaN998EzNnzsT06dPRt29frF69Gl5eXlizZk2j5d966y2MHj0af/jDH9CnTx+88sorGDRoEFauXGkvExER4fDYvHkz7rnnHnTv3t1hW76+vg7lvL29na1+m1BB6X5SqTmmhoiIyF2cCjVmsxn79+9HSkpK/QZUKqSkpCA7O7vR12RnZzuUB4DU1NQmyxcWFuLLL7/EjBkzGqxbunQpgoODMXDgQLz++uuwWq3OVL/N1HU/8d5PRERE7uPUp3BxcTFsNhvCw8MdloeHh+PEiRONvqagoKDR8gUFBY2WX7duHXx9ffHII484LH/66acxaNAgBAUFYffu3Vi4cCHy8/Px5ptvNrodk8kEk8lkf240Gq95fK1ln/2k9mizfRAREVHzbrimhTVr1mDy5MnQ6/UOy9PS0uw/x8fHQ6vV4sknn0R6ejp0Ol2D7aSnp+Oll15q8/oCV07p5mQyIiIid3Eq1ISEhECtVqOwsNBheWFhISIiIhp9TURERIvL/+c//8HJkyexYcOGa9YlKSkJVqsVZ8+exa233tpg/cKFCx2CkNFoRExMzDW32xoSW2qIqIOTZRlms9nd1aAOyMPDA2oXjUl1KtRotVokJiYiMzMT48aNA6C80TMzMzFnzpxGX5OcnIzMzEw8++yz9mVbt25FcnJyg7Lvv/8+EhMTkZCQcM26HDp0CCqVCmFhYY2u1+l0jbbgtAUV6lpqbriGLyKi62Y2m3HmzBnIsuzuqlAHFRAQgIiICEiSdF3bcfpTOC0tDVOnTsXgwYMxdOhQrFixApWVlZg+fToAYMqUKYiOjkZ6ejoA4JlnnsHw4cPxxhtv4IEHHsDHH3+MH374Ae+++67Ddo1GIzZu3Ig33nijwT6zs7OxZ88e3HPPPfD19UV2djbmzZuHX//61wgMDGzNcbsUryhMRB2VEAL5+flQq9WIiYmBit3s5EJCCFRVVdkvCxMZGXld23M61EyYMAGXLl3CokWLUFBQgAEDBiAjI8M+GDg3N9fhTT9s2DCsX78eL774Il544QX06tULmzZtQr9+/Ry2+/HHH0MIgYkTJzbYp06nw8cff4wlS5bAZDIhLi4O8+bNc+hecidV7ewnFbufiKiDsVqtqKqqQlRUFLy8vNxdHeqAPD09AQBFRUUICwu7rq4oSQghXFWxG5nRaIS/vz8MBgP8/Pxcuu0zL/dHnJyLI/f9H/rd8ZBLt01E5E41NTU4c+YMYmNj7R8+RK5WXV2Ns2fPIi4ursFEIWc+v9mO6ALq2u4nNcfUEFEHdb1jHYia46r3F0ONC6jAez8RERG5G0ONC9TNflJpOKaGiKgjio2NxYoVK1pcPisrC5IkoaysrM3q1JS1a9ciICCg3fd7I2CocQE1Zz8REd1QRowY4XApkeu1b98+zJo1q8Xlhw0bhvz8fPj7+7usDm3J2dB2o2J/iQuw+4mI6OYjhIDNZoNGc+2/3aGhoU5tW6vVNnlRWmo7bKlxAXVt95OaU7qJiNxu2rRp2LlzJ9566y1IkgRJknD27Fl7l9DXX3+NxMRE6HQ6fPfdd8jJycHYsWMRHh4OHx8fDBkyBNu2bXPY5tUtGZIk4X/+53/w8MMPw8vLC7169cK//vUv+/qru5/quoS2bNmCPn36wMfHB6NHj0Z+fr79NVarFU8//TQCAgIQHByMBQsWYOrUqfaL3TZl7dq16Nq1K7y8vPDwww+jpKTEYf21jm/EiBE4d+4c5s2bZz9fAFBSUoKJEyciOjoaXl5e6N+/Pz766CNn/ivaHUONC9SFGpWLLvNMRHSjEkKgymx1y6OlVyB56623kJycjJkzZyI/Px/5+fkOt8l5/vnnsXTpUhw/fhzx8fGoqKjA/fffj8zMTBw8eBCjR4/GQw89hNzc3Gb389JLL+Gxxx7D4cOHcf/992Py5MkoLS1tsnxVVRWWL1+O//3f/8W3336L3NxczJ8/377+tddew4cffogPPvgAu3btgtFoxKZNm5qtw549ezBjxgzMmTMHhw4dwj333INXX33Vocy1ju+zzz5Dly5d8PLLL9vPF6BM509MTMSXX36JI0eOYNasWfjNb36DvXv3Nlsnd2J/iQuohQxIvPgeEXV81RYb+i7a4pZ9H3s5FV7aa39s+fv7Q6vVwsvLq9EuoJdffhn33Xef/XlQUJDD7XleeeUVfP755/jXv/7V5C2AAKVFqO6CsX/+85/x9ttvY+/evRg9enSj5S0WC1avXo0ePXoAAObMmYOXX37Zvv6vf/0rFi5ciIcffhgAsHLlSnz11VfNHutbb72F0aNH47nnngMA3HLLLdi9ezcyMjLsZRISEpo9vqCgIKjVavj6+jqcr+joaIfQNXfuXGzZsgWffPIJhg4d2my93IUtNS5QN6aGoYaI6MY3ePBgh+cVFRWYP38++vTpg4CAAPj4+OD48ePXbKmJj4+3/+zt7Q0/Pz/75f4b4+XlZQ80gHJLgLryBoMBhYWFDmFBrVYjMTGx2TocP34cSUlJDsuuvrdia4/PZrPhlVdeQf/+/REUFAQfHx9s2bLlmq9zJ7bUuICmbkyNht1PRNSxeXqocezlVLft2xW8vb0dns+fPx9bt27F8uXL0bNnT3h6euLRRx+95l3JPTwcv8hKktTsTT8bK98eF/Vv7fG9/vrreOutt7BixQr0798f3t7eePbZZ2/ou7Uz1LiAfUyNii01RNSxSZLUoi4gd9NqtbDZbC0qu2vXLkybNs3e7VNRUYGzZ8+2Ye0a8vf3R3h4OPbt24e7774bgNJScuDAAQwYMKDJ1/Xp0wd79uxxWPb99987PG/J8TV2vnbt2oWxY8fi17/+NQBAlmX8/PPP6Nu3b2sOsV2w++l6CQG1pCRtiS01REQ3hNjYWOzZswdnz55FcXFxsy0ovXr1wmeffYZDhw7hxx9/xKRJk5ot31bmzp2L9PR0bN68GSdPnsQzzzyDy5cvN3sLgaeffhoZGRlYvnw5Tp06hZUrVzqMpwFadnyxsbH49ttvcfHiRRQXF9tft3XrVuzevRvHjx/Hk08+icLCQtcfuAsx1Fwn2Wa1/6zhmBoiohvC/PnzoVar0bdvX4SGhjY7DuTNN99EYGAghg0bhoceegipqakYNGhQO9ZWsWDBAkycOBFTpkxBcnIyfHx8kJqa2uAGj1e6/fbb8d577+Gtt95CQkICvvnmG7z44osOZVpyfC+//DLOnj2LHj162K/J8+KLL2LQoEFITU3FiBEjEBERcc3p5e7Gu3RfJ3NNFbRLIwEAhmfOwD8wyGXbJiJyt7q7dDd292RqW7Iso0+fPnjsscfwyiuvuLs6baq595kzn983fsfoDe7Klhq1B08nERG1zrlz5/DNN99g+PDhMJlMWLlyJc6cOYNJkya5u2o3DXY/XSer9YpQw+4nIiJqJZVKhbVr12LIkCG444478NNPP2Hbtm3o06ePu6t202DTwnWSbRb7z2re+4mIiFopJiYGu3btcnc1bmpsqblONoeWGs5+IiIicheGmutUN6bGItRQqZqedkdERERti6HmOtmsSveTDFWz1xIgIiKitsVQc51kWWmpsfJUEhERuRU/ia+TqO1+soHjaYiIiNyJoeY61Q0UlnkqiYiI3IqfxNepbqCwTWJLDRFRRxIbG4sVK1bYn0uShE2bNjVZ/uzZs5AkCYcOHbqu/bpqO60xbdq0G/5WCM1hqLlOMrufiIg6hfz8fIwZM8al22wsRMTExCA/Px/9+vVz6b7agjsDWGN4tbjrVHfxPXY/ERF1bBEREe2yH7Va3W776mj4SXydZJsNAFtqiIhuFO+++y6ioqIgy7LD8rFjx+KJJ54AAOTk5GDs2LEIDw+Hj48PhgwZgm3btjW73au7n/bu3YuBAwdCr9dj8ODBOHjwoEN5m82GGTNmIC4uDp6enrj11lvx1ltv2dcvWbIE69atw+bNmyFJEiRJQlZWVqOtHzt37sTQoUOh0+kQGRmJ559/3uE2PSNGjMDTTz+N5557DkFBQYiIiMCSJUuaPR6bzYa0tDQEBAQgODgYzz33HK6+x3VGRgbuvPNOe5kHH3wQOTk59vVxcXEAgIEDB0KSJIwYMQIAsG/fPtx3330ICQmBv78/hg8fjgMHDjRbH1dgqLlOQlZaamwSTyURdQJCAOZK9zyu+sBtyq9+9SuUlJRgx44d9mWlpaXIyMjA5MmTAQAVFRW4//77kZmZiYMHD2L06NF46KGHkJub26J9VFRU4MEHH0Tfvn2xf/9+LFmyBPPnz3coI8syunTpgo0bN+LYsWNYtGgRXnjhBXzyyScAgPnz5+Oxxx7D6NGjkZ+fj/z8fAwbNqzBvi5evIj7778fQ4YMwY8//oh33nkH77//Pl599VWHcuvWrYO3tzf27NmDZcuW4eWXX8bWrVubPIY33ngDa9euxZo1a/Ddd9+htLQUn3/+uUOZyspKpKWl4YcffkBmZiZUKhUefvhhe2Dcu3cvAGDbtm3Iz8/HZ599BgAoLy/H1KlT8d133+H7779Hr169cP/996O8vLxF57e12P10neq6nwRbaoioM7BUAX+Ocs++X8gDtN7XLBYYGIgxY8Zg/fr1GDlyJADg008/RUhICO655x4AQEJCAhISEuyveeWVV/D555/jX//6F+bMmXPNfaxfvx6yLOP999+HXq/HbbfdhgsXLuCpp56yl/Hw8MBLL71kfx4XF4fs7Gx88skneOyxx+Dj4wNPT0+YTKZmu5v+9re/ISYmBitXroQkSejduzfy8vKwYMECLFq0CCqV8qU6Pj4eixcvBgD06tULK1euRGZmJu67775Gt7tixQosXLgQjzzyCABg9erV2LJli0OZ8ePHOzxfs2YNQkNDcezYMfTr1w+hoaEAgODgYIdjuPfeex1e9+677yIgIAA7d+7Egw8+2OSxXi82L1wn2aakVc5+IiK6cUyePBn//Oc/YTKZAAAffvghHn/8cXsAqKiowPz589GnTx8EBATAx8cHx48fb3FLzfHjxxEfHw+9Xm9flpyc3KDcqlWrkJiYiNDQUPj4+ODdd99t8T6u3FdycrLDVevvuOMOVFRU4MKFC/Zl8fHxDq+LjIxEUVFRo9s0GAzIz89HUlKSfZlGo8HgwYMdyp06dQoTJ05E9+7d4efnh9jYWAC45jEUFhZi5syZ6NWrF/z9/eHn54eKigqnj91ZbKm5TnUX3+NAYSLqFDy8lBYTd+27hR566CEIIfDll19iyJAh+M9//oO//OUv9vXz58/H1q1bsXz5cvTs2ROenp549NFHYTabXVbdjz/+GPPnz8cbb7yB5ORk+Pr64vXXX8eePXtcto8reXh4ODyXJKnBuCJnPfTQQ+jWrRvee+89+zilfv36XfM8TZ06FSUlJXjrrbfQrVs36HQ6JCcnu/T8NqZVn8SrVq1CbGws9Ho9kpKS7H1qTdm4cSN69+4NvV6P/v3746uvvnJYP23aNPsgqbrH6NGjHcqUlpZi8uTJ8PPzQ0BAAGbMmIGKiorWVN+lzB5++M52G05qbnF3VYiI2p4kKV1A7ng4cX89vV6PRx55BB9++CE++ugj3HrrrRg0aJB9/a5duzBt2jQ8/PDD6N+/PyIiInD27NkWb79Pnz44fPgwampq7Mu+//57hzK7du3CsGHD8Lvf/Q4DBw5Ez549HQbZAoBWq4WtdsJJc/vKzs52GMS7a9cu+Pr6okuXLi2u85X8/f0RGRnpELCsViv2799vf15SUoKTJ0/ixRdfxMiRI9GnTx9cvny5Qf0BNDiGXbt24emnn8b999+P2267DTqdDsXFxa2qqzOcDjUbNmxAWloaFi9ejAMHDiAhIQGpqalNNnHt3r0bEydOxIwZM3Dw4EGMGzcO48aNw5EjRxzKXTlQKj8/Hx999JHD+smTJ+Po0aPYunUrvvjiC3z77beYNWuWs9V3OUNQf/za8v+wynuuu6tCRERXmDx5Mr788kusWbPGPkC4Tq9evfDZZ5/h0KFD+PHHHzFp0iSnWjUmTZoESZIwc+ZMHDt2DF999RWWL1/eYB8//PADtmzZgp9//hl//OMfsW/fPocysbGxOHz4ME6ePIni4mJYLJYG+/rd736H8+fPY+7cuThx4gQ2b96MxYsXIy0tzd6d1hrPPPMMli5dik2bNuHEiRP43e9+h7KyMvv6wMBABAcH491338Xp06exfft2pKWlOWwjLCwMnp6eyMjIQGFhIQwGg/3Y//d//xfHjx/Hnj17MHnyZHh6era6ri0mnDR06FAxe/Zs+3ObzSaioqJEenp6o+Ufe+wx8cADDzgsS0pKEk8++aT9+dSpU8XYsWOb3OexY8cEALFv3z77sq+//lpIkiQuXrzYonobDAYBQBgMhhaVb6mconLxesYJsXbXGZdul4joRlBdXS2OHTsmqqur3V0Vp9lsNhEZGSkAiJycHId1Z86cEffcc4/w9PQUMTExYuXKlWL48OHimWeesZfp1q2b+Mtf/mJ/DkB8/vnn9ufZ2dkiISFBaLVaMWDAAPHPf/5TABAHDx4UQghRU1Mjpk2bJvz9/UVAQIB46qmnxPPPPy8SEhLs2ygqKhL33Xef8PHxEQDEjh07xJkzZxy2I4QQWVlZYsiQIUKr1YqIiAixYMECYbFY7OuvrrsQQowdO1ZMnTq1yfNjsVjEM888I/z8/ERAQIBIS0sTU6ZMcfg83rp1q+jTp4/Q6XQiPj5eZGVlNTgP7733noiJiREqlUoMHz5cCCHEgQMHxODBg4Verxe9evUSGzdubHA+r9Tc+8yZz29JiBbOkQNgNpvh5eWFTz/91OEKiFOnTkVZWRk2b97c4DVdu3ZFWloann32WfuyxYsXY9OmTfjxxx8BKN1PmzZtglarRWBgIO699168+uqrCA4OBqCMtv7973/v0OxltVqh1+uxceNGPPzwww32azKZ7APEAMBoNCImJgYGgwF+fn4tPWQiok6tpqYGZ86cQVxcnMOgWCJXau59ZjQa4e/v36LPb6farYqLi2Gz2RAeHu6wPDw8HAUFBY2+pqCg4JrlR48ejX/84x/IzMzEa6+9hp07d2LMmDH2PrqCggKEhYU5bEOj0SAoKKjJ/aanp8Pf39/+iImJceZQiYiI6CZzQ8x+evzxx+0/9+/fH/Hx8ejRoweysrLs1xhw1sKFCx36/upaaoiIiKhjcqqlJiQkBGq1GoWFhQ7LCwsLm7xwUEREhFPlAaB79+4ICQnB6dOn7du4eiCy1WpFaWlpk9vR6XTw8/NzeBAREVHH5VSo0Wq1SExMRGZmpn2ZLMvIzMxs9KJDgHIxoivLA8DWrVubLA8AFy5cQElJCSIjI+3bKCsrc5hqtn37dsiy7HDhICIiIuq8nJ4LlpaWhvfeew/r1q3D8ePH8dRTT6GyshLTp08HAEyZMgULFy60l3/mmWeQkZGBN954AydOnMCSJUvwww8/2C9DXVFRgT/84Q/4/vvvcfbsWWRmZmLs2LHo2bMnUlNTAShz9EePHo2ZM2di79692LVrF+bMmYPHH38cUVFuulw3ERER3VCcHlMzYcIEXLp0CYsWLUJBQQEGDBiAjIwM+2Dg3Nxch3nzw4YNw/r16/Hiiy/ihRdeQK9evbBp0yb069cPgHKL9cOHD2PdunUoKytDVFQURo0ahVdeeQU6nc6+nQ8//BBz5szByJEjoVKpMH78eLz99tvXe/xERNQCTkyUJXLa9V75uI5TU7pvZs5MCSMiIoXNZsOpU6fg5eWF0NBQh/sPEV0vIQTMZjMuXboEm82GXr16NbigoDOf3zfE7CciIroxqdVqdOnSBRcuXHDqNgJEzvDy8kLXrl2v6wrJAEMNERFdg4+PD3r16tXoJfyJrpdarYZGo3FJKyBDDRERXZNarYZarXZ3NYiadX3tPEREREQ3CIYaIiIi6hAYaoiIiKhD6DRjaupmrhuNRjfXhIiIiFqq7nO7JVeg6TShpry8HAB4U0siIqKbUHl5Ofz9/Zst02kuvifLMvLy8uDr6+vyi0fV3QH8/PnzvLDfFXhemsZz0ziel6bx3DSO56VxHem8CCFQXl6OqKioa17HptO01KhUKnTp0qVN98G7gTeO56VpPDeN43lpGs9N43heGtdRzsu1WmjqcKAwERERdQgMNURERNQhMNS4gE6nw+LFix3uKk48L83huWkcz0vTeG4ax/PSuM56XjrNQGEiIiLq2NhSQ0RERB0CQw0RERF1CAw1RERE1CEw1BAREVGHwFBznVatWoXY2Fjo9XokJSVh79697q5Su1uyZAkkSXJ49O7d276+pqYGs2fPRnBwMHx8fDB+/HgUFha6scZt49tvv8VDDz2EqKgoSJKETZs2OawXQmDRokWIjIyEp6cnUlJScOrUKYcypaWlmDx5Mvz8/BAQEIAZM2agoqKiHY+ibVzr3EybNq3Be2j06NEOZTrauUlPT8eQIUPg6+uLsLAwjBs3DidPnnQo05LfndzcXDzwwAPw8vJCWFgY/vCHP8BqtbbnobhcS87NiBEjGrxnfvvb3zqU6Wjn5p133kF8fLz9gnrJycn4+uuv7es76/vlSgw112HDhg1IS0vD4sWLceDAASQkJCA1NRVFRUXurlq7u+2225Cfn29/fPfdd/Z18+bNw7///W9s3LgRO3fuRF5eHh555BE31rZtVFZWIiEhAatWrWp0/bJly/D2229j9erV2LNnD7y9vZGamoqamhp7mcmTJ+Po0aPYunUrvvjiC3z77beYNWtWex1Cm7nWuQGA0aNHO7yHPvroI4f1He3c7Ny5E7Nnz8b333+PrVu3wmKxYNSoUaisrLSXudbvjs1mwwMPPACz2Yzdu3dj3bp1WLt2LRYtWuSOQ3KZlpwbAJg5c6bDe2bZsmX2dR3x3HTp0gVLly7F/v378cMPP+Dee+/F2LFjcfToUQCd9/3iQFCrDR06VMyePdv+3GaziaioKJGenu7GWrW/xYsXi4SEhEbXlZWVCQ8PD7Fx40b7suPHjwsAIjs7u51q2P4AiM8//9z+XJZlERERIV5//XX7srKyMqHT6cRHH30khBDi2LFjAoDYt2+fvczXX38tJEkSFy9ebLe6t7Wrz40QQkydOlWMHTu2ydd0hnNTVFQkAIidO3cKIVr2u/PVV18JlUolCgoK7GXeeecd4efnJ0wmU/seQBu6+twIIcTw4cPFM8880+RrOsu5CQwMFP/zP//D90stttS0ktlsxv79+5GSkmJfplKpkJKSguzsbDfWzD1OnTqFqKgodO/eHZMnT0Zubi4AYP/+/bBYLA7nqXfv3ujatWunOk9nzpxBQUGBw3nw9/dHUlKS/TxkZ2cjICAAgwcPtpdJSUmBSqXCnj172r3O7S0rKwthYWG49dZb8dRTT6GkpMS+rjOcG4PBAAAICgoC0LLfnezsbPTv3x/h4eH2MqmpqTAajfZv7x3B1eemzocffoiQkBD069cPCxcuRFVVlX1dRz83NpsNH3/8MSorK5GcnMz3S61Oc0NLVysuLobNZnN4cwBAeHg4Tpw44aZauUdSUhLWrl2LW2+9Ffn5+XjppZdw11134ciRIygoKIBWq0VAQIDDa8LDw1FQUOCeCrtB3bE29n6pW1dQUICwsDCH9RqNBkFBQR3+XI0ePRqPPPII4uLikJOTgxdeeAFjxoxBdnY21Gp1hz83sizj2WefxR133IF+/foBQIt+dwoKChp9T9Wt6wgaOzcAMGnSJHTr1g1RUVE4fPgwFixYgJMnT+Kzzz4D0HHPzU8//YTk5GTU1NTAx8cHn3/+Ofr27YtDhw7x/QKGGnKBMWPG2H+Oj49HUlISunXrhk8++QSenp5urBndLB5//HH7z/3790d8fDx69OiBrKwsjBw50o01ax+zZ8/GkSNHHMaikaKpc3PleKr+/fsjMjISI0eORE5ODnr06NHe1Ww3t956Kw4dOgSDwYBPP/0UU6dOxc6dO91drRsGu59aKSQkBGq1usHI8sLCQkRERLipVjeGgIAA3HLLLTh9+jQiIiJgNptRVlbmUKaznae6Y23u/RIREdFgkLnVakVpaWmnOlcA0L17d4SEhOD06dMAOva5mTNnDr744gvs2LEDXbp0sS9vye9OREREo++punU3u6bOTWOSkpIAwOE90xHPjVarRc+ePZGYmIj09HQkJCTgrbfe4vulFkNNK2m1WiQmJiIzM9O+TJZlZGZmIjk52Y01c7+Kigrk5OQgMjISiYmJ8PDwcDhPJ0+eRG5ubqc6T3FxcYiIiHA4D0ajEXv27LGfh+TkZJSVlWH//v32Mtu3b4csy/Y/2J3FhQsXUFJSgsjISAAd89wIITBnzhx8/vnn2L59O+Li4hzWt+R3Jzk5GT/99JND4Nu6dSv8/PzQt2/f9jmQNnCtc9OYQ4cOAYDDe6YjnpurybIMk8nUqd8vDtw9Uvlm9vHHHwudTifWrl0rjh07JmbNmiUCAgIcRpZ3Br///e9FVlaWOHPmjNi1a5dISUkRISEhoqioSAghxG9/+1vRtWtXsX37dvHDDz+I5ORkkZyc7OZau155ebk4ePCgOHjwoAAg3nzzTXHw4EFx7tw5IYQQS5cuFQEBAWLz5s3i8OHDYuzYsSIuLk5UV1fbtzF69GgxcOBAsWfPHvHdd9+JXr16iYkTJ7rrkFymuXNTXl4u5s+fL7Kzs8WZM2fEtm3bxKBBg0SvXr1ETU2NfRsd7dw89dRTwt/fX2RlZYn8/Hz7o6qqyl7mWr87VqtV9OvXT4waNUocOnRIZGRkiNDQULFw4UJ3HJLLXOvcnD59Wrz88svihx9+EGfOnBGbN28W3bt3F3fffbd9Gx3x3Dz//PNi586d4syZM+Lw4cPi+eefF5IkiW+++UYI0XnfL1diqLlOf/3rX0XXrl2FVqsVQ4cOFd9//727q9TuJkyYICIjI4VWqxXR0dFiwoQJ4vTp0/b11dXV4ne/+50IDAwUXl5e4uGHHxb5+flurHHb2LFjhwDQ4DF16lQhhDKt+49//KMIDw8XOp1OjBw5Upw8edJhGyUlJWLixInCx8dH+Pn5ienTp4vy8nI3HI1rNXduqqqqxKhRo0RoaKjw8PAQ3bp1EzNnzmzw5aCjnZvGzgcA8cEHH9jLtOR35+zZs2LMmDHC09NThISEiN///vfCYrG089G41rXOTW5urrj77rtFUFCQ0Ol0omfPnuIPf/iDMBgMDtvpaOfmiSeeEN26dRNarVaEhoaKkSNH2gONEJ33/XIlSQgh2q9diIiIiKhtcEwNERERdQgMNURERNQhMNQQERFRh8BQQ0RERB0CQw0RERF1CAw1RERE1CEw1BAREVGHwFBDREREHQJDDREREXUIDDVERETUITDUEBERUYfAUENEREQdwv8HJVmcwG3sTlAAAAAASUVORK5CYII=", |
|
|
1156 |
"text/plain": [ |
|
|
1157 |
"<Figure size 640x480 with 1 Axes>" |
|
|
1158 |
] |
|
|
1159 |
}, |
|
|
1160 |
"metadata": {}, |
|
|
1161 |
"output_type": "display_data" |
|
|
1162 |
} |
|
|
1163 |
], |
|
|
1164 |
"source": [ |
|
|
1165 |
"model_final = xgb.XGBClassifier(random_state=0, \n", |
|
|
1166 |
" booster='gbtree', \n", |
|
|
1167 |
" objective='binary:logistic', \n", |
|
|
1168 |
" eval_metric='aucpr',\n", |
|
|
1169 |
" tree_method='exact',\n", |
|
|
1170 |
" **best_params)\n", |
|
|
1171 |
"model_final.fit(x_train, y_train, eval_set=[(x_train, y_train), (x_val, y_val)])\n", |
|
|
1172 |
"\n", |
|
|
1173 |
"train_history = model_final.evals_result()\n", |
|
|
1174 |
"\n", |
|
|
1175 |
"plt.plot(train_history[\"validation_0\"][\"aucpr\"], label=\"training data\")\n", |
|
|
1176 |
"plt.plot(train_history[\"validation_1\"][\"aucpr\"], label=\"validation data\")\n", |
|
|
1177 |
"plt.legend()\n", |
|
|
1178 |
"plt.show()" |
|
|
1179 |
] |
|
|
1180 |
}, |
|
|
1181 |
{ |
|
|
1182 |
"attachments": {}, |
|
|
1183 |
"cell_type": "markdown", |
|
|
1184 |
"metadata": {}, |
|
|
1185 |
"source": [ |
|
|
1186 |
"Let's look at the results of the model" |
|
|
1187 |
] |
|
|
1188 |
}, |
|
|
1189 |
{ |
|
|
1190 |
"cell_type": "code", |
|
|
1191 |
"execution_count": 93, |
|
|
1192 |
"metadata": {}, |
|
|
1193 |
"outputs": [ |
|
|
1194 |
{ |
|
|
1195 |
"name": "stdout", |
|
|
1196 |
"output_type": "stream", |
|
|
1197 |
"text": [ |
|
|
1198 |
"---------- VALIDATION DATASET ------------\n", |
|
|
1199 |
" precision recall f1-score support\n", |
|
|
1200 |
"\n", |
|
|
1201 |
" 0 0.95 1.00 0.97 15712\n", |
|
|
1202 |
" 1 0.52 0.02 0.03 837\n", |
|
|
1203 |
"\n", |
|
|
1204 |
" accuracy 0.95 16549\n", |
|
|
1205 |
" macro avg 0.73 0.51 0.50 16549\n", |
|
|
1206 |
"weighted avg 0.93 0.95 0.93 16549\n", |
|
|
1207 |
"\n", |
|
|
1208 |
"ROC AUC score validation 0.8217334056019097\n", |
|
|
1209 |
"F_1 score 0.03464203233256351\n", |
|
|
1210 |
"Precision score 0.5172413793103449\n", |
|
|
1211 |
"Recall score 0.017921146953405017\n", |
|
|
1212 |
"Brier score 0.043272204767465586\n", |
|
|
1213 |
"AUC-PR score 0.2924166006145023\n", |
|
|
1214 |
"TP: 15, FP: 14, TN: 15698, FN: 822\n", |
|
|
1215 |
"\n", |
|
|
1216 |
"---------- TESTING DATASET ------------\n", |
|
|
1217 |
" precision recall f1-score support\n", |
|
|
1218 |
"\n", |
|
|
1219 |
" 0 0.97 0.99 0.98 47084\n", |
|
|
1220 |
" 1 0.14 0.04 0.07 1511\n", |
|
|
1221 |
"\n", |
|
|
1222 |
" accuracy 0.96 48595\n", |
|
|
1223 |
" macro avg 0.56 0.52 0.52 48595\n", |
|
|
1224 |
"weighted avg 0.94 0.96 0.95 48595\n", |
|
|
1225 |
"\n", |
|
|
1226 |
"ROC AUC score validation 0.6951064998888732\n", |
|
|
1227 |
"F_1 score 0.0669371196754564\n", |
|
|
1228 |
"Precision score 0.14316702819956617\n", |
|
|
1229 |
"Recall score 0.04367968232958306\n", |
|
|
1230 |
"Brier score 0.0440149802097529\n", |
|
|
1231 |
"AUC-PR score 0.10829114001609227\n", |
|
|
1232 |
"TP: 66, FP: 395, TN: 46689, FN: 1445\n" |
|
|
1233 |
] |
|
|
1234 |
} |
|
|
1235 |
], |
|
|
1236 |
"source": [ |
|
|
1237 |
"y_val_pred = model_final.predict(x_val)\n", |
|
|
1238 |
"y_val_prob_pred = model_final.predict_proba(x_val)\n", |
|
|
1239 |
"print(\"---------- VALIDATION DATASET ------------\")\n", |
|
|
1240 |
"print(classification_report(y_val,y_val_pred))\n", |
|
|
1241 |
"print(\"ROC AUC score validation\", roc_auc_score(y_val, y_val_prob_pred[:, 1]))\n", |
|
|
1242 |
"print(\"F_1 score \", f1_score(y_val, y_val_pred))\n", |
|
|
1243 |
"print(\"Precision score \", precision_score(y_val, y_val_pred))\n", |
|
|
1244 |
"print(\"Recall score \", recall_score(y_val, y_val_pred))\n", |
|
|
1245 |
"print(\"Brier score \", brier_score_loss(y_val, y_val_prob_pred[:,1]))\n", |
|
|
1246 |
"precision, recall, _ = precision_recall_curve(y_val, y_val_pred)\n", |
|
|
1247 |
"print(\"AUC-PR score \", auc(recall, precision))\n", |
|
|
1248 |
"tn, fp, fn, tp = confusion_matrix(y_val, y_val_pred).ravel()\n", |
|
|
1249 |
"print(\"TP: \" + str(tp) + \", FP: \" + str(fp)+ \", TN: \" + str(tn) + \", FN: \" + str(fn) + \"\\n\")\n", |
|
|
1250 |
"\n", |
|
|
1251 |
"\n", |
|
|
1252 |
"y_test_pred = model_final.predict(x_test)\n", |
|
|
1253 |
"y_test_prob_pred = model_final.predict_proba(x_test)\n", |
|
|
1254 |
"print(\"---------- TESTING DATASET ------------\")\n", |
|
|
1255 |
"print(classification_report(y_test,y_test_pred))\n", |
|
|
1256 |
"print(\"ROC AUC score validation\", roc_auc_score(y_test, y_test_prob_pred[:, 1]))\n", |
|
|
1257 |
"print(\"F_1 score \", f1_score(y_test, y_test_pred))\n", |
|
|
1258 |
"print(\"Precision score \", precision_score(y_test, y_test_pred))\n", |
|
|
1259 |
"print(\"Recall score \", recall_score(y_test, y_test_pred))\n", |
|
|
1260 |
"print(\"Brier score \", brier_score_loss(y_test, y_test_prob_pred[:,1]))\n", |
|
|
1261 |
"precision, recall, _ = precision_recall_curve(y_test, y_test_pred)\n", |
|
|
1262 |
"print(\"AUC-PR score \", auc(recall, precision))\n", |
|
|
1263 |
"tn, fp, fn, tp = confusion_matrix(y_test, y_test_pred).ravel()\n", |
|
|
1264 |
"print(\"TP: \" + str(tp) + \", FP: \" + str(fp)+ \", TN: \" + str(tn) + \", FN: \" + str(fn))" |
|
|
1265 |
] |
|
|
1266 |
}, |
|
|
1267 |
{ |
|
|
1268 |
"cell_type": "code", |
|
|
1269 |
"execution_count": 94, |
|
|
1270 |
"metadata": {}, |
|
|
1271 |
"outputs": [ |
|
|
1272 |
{ |
|
|
1273 |
"data": { |
|
|
1274 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHHCAYAAACFl+2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADNvElEQVR4nOzdd1hT1xsH8G8SCGHvLQIOXDhx74EDV1ute2u11lEF3AtxT9BWq9U66qy7zp9171X3FhUV2SB7Zp3fHymBmLAUchnv53l4OPfcc2/eEHLz5p5zz+UxxhgIIYQQQkix4nMdACGEEEJIeUBJFyGEEEKIFlDSRQghhBCiBZR0EUIIIYRoASVdhBBCCCFaQEkXIYQQQogWUNJFCCGEEKIFlHQRQgghhGgBJV2EEEIIIVpASRcpdeRyOdzd3bF48WKtPaaLiwuGDx+utccjxePSpUvg8Xi4dOkS16GUaP3790ffvn25DoOQMqfYk67t27eDx+Mpf3R0dODo6Ijhw4cjLCxM4zaMMezcuROtW7eGmZkZDAwMULt2bSxYsACpqam5PtaRI0fg5eUFKysrCIVCODg4oG/fvrhw4UJxPb1Sq3HjxuDxeNiwYYPG9fPnzwePx0NsbKzG9e7u7mjbtq1afVJSEvz9/VG3bl0YGRlBX18f7u7umD59OsLDw4sk9r179+Ljx4+YMGGCsu7GjRuYP38+EhISiuQxuPTixQt06dIFRkZGsLCwwJAhQxATE1OgbTMyMrB06VLUrFkTBgYGcHR0RJ8+ffDs2TOVdleuXEHPnj3h5OQEkUgEOzs7dOnSBdevX1fbZ9u2bVXew1k/Xbp00RjD/fv30bNnT1hYWMDAwADu7u745ZdfCv+HKKHCwsLQt29fmJmZwcTEBN988w2Cg4MLtK1cLsfGjRtRr149GBkZwdbWFl5eXrhx44ZKu3///RcTJkxArVq1YGhoiIoVK6Jv374ICgpS2+edO3cwbtw4eHh4QFdXFzweT+Njf34s/vxn9+7dyrbTp0/HoUOH8OjRo0L8ZXI3bdo08Hg89OvXT+P6rGT44MGDGtdPmDBB4/OSyWTYtm0b2rZtCwsLC+jp6cHFxQUjRozA3bt384zp/fv3uf4tmjZtqtb+xIkT6NKlCywtLSESieDm5oYpU6bg06dPam2HDx+usj89PT24ublh3rx5yMjIyDOuLFnvux49euQa+6pVq5R1+f0Ns6SkpMDPzw/u7u4wNDSEpaUl6tWrh0mTJiE8PDzPv8vnP+/fvy/Qc8myZcsW1KhRAyKRCFWrVsWvv/5aqO0LcmyRSCTw9/dHpUqVoKenh0qVKmHRokWQSqUq7bL+Xpp+bt26pdL2zJkzGDVqFNzd3SEQCODi4lKouHPS+eItC2nBggVwdXVFRkYGbt26he3bt+PatWt4+vQpRCKRsp1MJsPAgQOxf/9+tGrVCvPnz4eBgQGuXr0Kf39/HDhwAOfOnYOtra1yG8YYRo4cie3bt6N+/frw8fGBnZ0dIiIicOTIEXTo0AHXr19H8+bNtfV0S7TXr1/j33//hYuLC3bv3o2ffvqpSPYbHBwMT09PhISEoE+fPhgzZgyEQiEeP36MLVu24MiRIxo/NApr5cqV6N+/P0xNTZV1N27cgL+/P4YPHw4zM7OvfozPvXr1Cnx+8Z8YDg0NRevWrWFqaoolS5YgJSUFq1atwpMnT3Dnzh0IhcI8tx80aBCOHTuG0aNHo0GDBggPD8f69evRrFkzPHnyBM7OzgCAoKAg8Pl8jB07FnZ2doiPj8euXbvQunVrnDx5Ui2hqlChApYuXapS5+DgoPb4Z86cQY8ePVC/fn3MnTsXRkZGePv2LUJDQ7/yL1MypKSkoF27dkhMTMSsWbOgq6uLwMBAtGnTBg8fPoSlpWWe20+dOhUBAQEYPHgwxo0bh4SEBPz+++9o06YNrl+/jsaNGwMAli9fjuvXr6NPnz6oU6cOIiMjsW7dOjRo0AC3bt2Cu7u7cp+nTp3CH3/8gTp16qBSpUq5vsdat26NnTt3qtUHBgbi0aNH6NChg7Kufv36aNiwIVavXo0dO3Z8yZ9KiTGGvXv3wsXFBcePH0dycjKMjY2/ap8AkJ6ejl69euH06dNo3bo1Zs2aBQsLC7x//x779+/Hn3/+iZCQEFSoUCHP/QwYMABdu3ZVqbO2tlZZnjJlClavXo26deti+vTpsLCwwP3797Fu3Tr89ddfOH/+PKpVq6ayjZ6eHv744w8AQGJiIo4ePYqFCxfi7du3Kglufk6cOIF79+7Bw8OjwNvkRiKRoHXr1nj58iWGDRuGiRMnIiUlBc+ePcOePXvw3XffoVGjRmr/J6tXr0ZoaCgCAwNV6j//O+Xl999/x9ixY9G7d2/4+Pjg6tWr+Pnnn5GWlobp06fnu31Bjy2DBw/GgQMHMHLkSDRs2BC3bt3C3LlzERISgk2bNqnt9+eff0ajRo1U6qpUqaKyvGfPHuzbtw8NGjTQeNwrFFbMtm3bxgCwf//9V6V++vTpDADbt2+fSv2SJUsYADZlyhS1fR07dozx+XzWpUsXlfqVK1cyAGzy5MlMLperbbdjxw52+/btIng2Xy4lJYXTx89p3rx5zMbGhh06dIjxeDz27t07tTZ+fn4MAIuJidG4j1q1arE2bdoolyUSCatbty4zMDBgV69eVWufmJjIZs2a9dWx379/nwFg586dU6nP+h/Q9Fw+J5PJWHp6+lfHUhx++uknpq+vzz58+KCsO3v2LAPAfv/99zy3DQ0N1fjeuXDhAgPAAgIC8tw+NTWV2drass6dO6vUt2nThtWqVSvf2BMTE5mtrS377rvvmEwmy7c9Fy5evMgAsIsXL37R9suXL2cA2J07d5R1L168YAKBgM2cOTPPbSUSCdPX12fff/+9Sn1wcDADwH7++Wdl3fXr11lmZqZKu6CgIKanp8cGDRqkUh8ZGcnS0tIYY4yNHz+eFeawnpaWxoyNjVnHjh3V1q1atYoZGhqy5OTkAu9Pk6z/vwsXLjBdXV22fft2tTZZr8uBAwc07kPT88qqCwwMVGsvlUrZypUr2cePH3ON6927dwwAW7lyZZ7x79mzhwFg/fr1Y1KpVGXd7du3mYGBAatduzaTSCTK+mHDhjFDQ0OVtnK5nDVt2pTxeDwWGRmZ52MypnjfVaxYkZmbm7MePXrkG3t+f0PGGNu/fz8DwHbv3q22Lj09nSUmJmrcrlu3bszZ2TnfmHOTlpbGLC0tWbdu3VTqBw0axAwNDVlcXFye2xf02HLnzh0GgM2dO1el3tfXl/F4PPbo0SNlXUH+XlnCwsKYWCxmjH3934KzMV2tWrUCALx9+1ZZl56ejpUrV8LNzU3tWzUA9OjRA8OGDcPp06eVp//S09OxdOlSVK9eHatWrdJ4CnrIkCHKb5C5kcvlWLt2LWrXrg2RSARra2t06dJFeYo665Tr9u3b1bbl8XiYP3++cjmra+758+cYOHAgzM3N0bJlS2V8Hz58UNvHzJkzIRQKER8fr6y7ffs2unTpAlNTUxgYGCi/DX+tPXv24Pvvv0f37t1hamqKPXv2fPU+s7oiZs+ejZYtW6qtNzExKZIxWH///TeEQiFat26trJs/fz6mTp0KAHB1dVU79c3j8TBhwgTs3r0btWrVgp6eHk6fPg0AWLVqFZo3bw5LS0vo6+vDw8ND4+n5z8d0ZXXVXL9+HT4+PrC2toahoSG+++47ta7AxMREvHz5EomJifk+v0OHDqF79+6oWLGiss7T0xNubm7Yv39/ntsmJycDgMpZYACwt7cHAOjr6+e5vYGBAaytrXPtopVKpUhJScl1+z179iAqKgqLFy8Gn89Hamoq5HJ5no+Zl7t374LH4+HPP/9UW/fPP/+Ax+PhxIkTAIAPHz5g3LhxqFatGvT19WFpaYk+ffoUqPsjLS0NL1++zLUrPaeDBw+iUaNGKt+Mq1evjg4dOuT7+kgkEqSnp6u9PjY2NuDz+SqvT/PmzdXOalatWhW1atXCixcvVOptbW3zfW1zk3XmadCgQWrrOnbsiNTUVJw9e/aL9p1l9+7dqFmzJtq1awdPT89CneXJTWhoKH7//Xd07NgRkydPVlsvEAgwZcqUfM9yFYS/vz/Mzc2xadMmCAQClXWNGzfG9OnT8eTJk3y79Xg8Hlq2bAnGWIG7o42NjeHt7Y3jx4/j/v37X/wcsmR93rZo0UJtnUgkgomJSaH2FxISgpcvX+bb7uLFi/j06RPGjRunUj9+/Hikpqbi5MmTeW5f0GPL1atXASjGJObUv39/MMawb98+jftPTk5W637MycHBAbq6unnGWFCcJV1ZB0Nzc3Nl3bVr1xAfH4+BAwdCR0dzz+fQoUMBQHmwvXbtGuLi4jBw4EC1N0RhjBo1CpMnT4aTkxOWL1+OGTNmQCQSqfXtFkafPn2QlpaGJUuWYPTo0ejbty94PJ7Gg/P+/fvRqVMn5d/jwoULaN26NZKSkuDn54clS5YgISEB7du3x507d744ptu3b+PNmzcYMGAAhEIhevXqVSQHwWPHjgFQJLgFkZaWhtjY2Hx/ciahgKIb0d3dXeUN0KtXLwwYMACAoqtk586d2Llzp8qp7wsXLsDb2xv9+vXD2rVrlX3ya9euRf369bFgwQIsWbIEOjo66NOnT74HgSwTJ07Eo0eP4Ofnh59++gnHjx9XGWsGKMYa1qhRA0eOHMlzX2FhYYiOjkbDhg3V1jVu3BgPHjzIc/vKlSujQoUKWL16NY4fP47Q0FDcuXMHY8eOhaurq9qBCFCMwYuNjcXLly8xa9YsPH36VKWbKUtQUBAMDQ1hbGwMOzs7zJ07FxKJRKXNuXPnYGJigrCwMFSrVg1GRkYwMTHBTz/9VOBxLDk1bNgQlSpV0vh+2bdvH8zNzdG5c2cAijFQN27cQP/+/fHLL79g7NixOH/+PNq2bYu0tLQ8H+fOnTuoUaMG1q1bl2c7uVyOx48f5/r6vH37Vpn4aqKvr48mTZpg+/bt2L17N0JCQvD48WMMHz4c5ubmGDNmTJ6PzxhDVFQUrKys8mxXGLt374a+vj569eqltq5mzZrQ19f/qi96mZmZOHTokPL9OWDAAFy4cAGRkZFfvE8A+N///gepVFrg401eNB2Lsv63X79+jVevXuGbb77JNSH5/DMpL5o+9/IzadIkmJubq3yx/1JZwwt27NgBxthX72/o0KGoUaNGvu2yjl2fv3c8PDzA5/PzPbYV9NiSmZkJQP0LpoGBAQDg3r17avseMWIETExMIBKJ0K5du3zHAn61Lz5HVkBZ3Yvnzp1jMTEx7OPHj+zgwYPM2tqa6enpqZz+XbNmDQPAjhw5kuv+4uLiGADWq1cvxhhja9euzXeb/GSd/s55ej9LVndl1uncbdu2qbUBwPz8/JTLWV1zAwYMUGvbrFkz5uHhoVKXdUp0x44dysesWrUq69y5s0p3aVpaGnN1ddXYFVBQEyZMYE5OTsr9njlzhgFgDx48UGlX2O7F+vXrM1NT0wLHkbX//H4+P41boUIF1rt3b7X95dW9CIDx+Xz27NkztXVZ3TJZxGIxc3d3Z+3bt1epd3Z2ZsOGDVMuZ/1fe3p6qrxG3t7eTCAQsISEBLW2mv53cvr3339V/g9ymjp1KgPAMjIy8tzH7du3WeXKlVX+hh4eHiwiIkJj+86dOyvbCYVC9uOPP6p1vY4cOZLNnz+fHTp0iO3YsYP17NmTAWB9+/ZVaVenTh1mYGDADAwM2MSJE9mhQ4fYxIkTGQDWv3//POPOzcyZM5murq5K90NmZiYzMzNjI0eOVNZ9/joyxtjNmzfV/p6auhez6nK+hzWJiYlhANiCBQvU1q1fv54BYC9fvsxzH69fv2YNGjRQeX0qVaqU73aMMbZz504GgG3ZsiXXNoXpXvz06RMTCoVqr2NObm5uzMvLq0D70+TgwYMMAHv9+jVjjLGkpCQmEonUugQL273o7e2t8bhVGFnHdE0/Wf8ff//9d65dmDmZmJiwBg0aKJezuhdjYmJYTEwMe/PmDVu1ahXj8XjM3d1d4zCYz+Xs1vf392cA2L1791RiL2z3YlpaGqtWrZry2Dp8+HC2ZcsWFhUVlWcsuXWptWnTpkD/b+PHj2cCgUDjOmtr63yPDwU9thw6dIgBYDt37lTZfuPGjQwAc3d3V9Zdv36d9e7dm23ZsoUdPXqULV26lFlaWjKRSMTu37+fayxf272otYH0np6eKssuLi7YtWuXyunfrG+JeQ2yzFqXlJSk8vtrBmYeOnQIPB4Pfn5+autyuxKoIMaOHatW169fP0yePBlv375F5cqVASi+tevp6eGbb74BADx8+BCvX7/GnDlz1K6M6dChA3bu3Am5XF7ogd1SqRT79u3DsGHDlM+rffv2sLGxwe7du1GvXr0veJYKSUlJhXoNhg4dqrEb8nOff2P59OlTob4lZmnTpg1q1qyZ5/7j4+Mhk8nQqlUr7N27t0D7HTNmjMr/SKtWrRAYGIgPHz6gTp06ABRXMhVkuon09HQAigG4n8u62CQ9PV3j+izm5uaoV68e+vTpg6ZNm+LNmzdYunQp+vTpg7Nnz6pctAIAy5Ytg6+vLz5+/Ig///wTYrFY7TT7li1bVJaHDBmCMWPGYPPmzfD29lZe6ZWSkoK0tDSMHTtWeUVRr169IBaL8fvvv2PBggWoWrVqvn+HnPr164elS5fi8OHDGDVqFADFgNqEhASVK+Fyvo4SiQRJSUmoUqUKzMzMcP/+/TzPiLRt27ZA3/oL+vrkxdjYGLVq1UKzZs3QoUMHREZGYtmyZfj2229x9erVXM9ivXz5EuPHj0ezZs0wbNiwfGMtiIMHD0IsFmvsWsxibm5eoG7X3OzevRsNGzZUDkw2NjZGt27dsHv3bo3dggVVFMf9LGPGjEGfPn1U6urWrQugYJ9JWeuzYsqSmpqqNtC8ZcuW+PPPPwv9uTJp0iSsWbMG/v7+OHr0aKG2zUlfXx+3b9/G4sWLsX//fmzfvh3bt28Hn8/HuHHjsGrVqjyPL58r6NQr6enpuV4EJBKJ8n3fFPTY0rVrVzg7O2PKlCkwMDCAh4cHbt++jdmzZ0NHR0flcZo3b65ycV3Pnj3x/fffo06dOpg5c6ZyCEpR01rStX79eri5uSExMRFbt27FlStX1F7crH/svE7Rf/4myDrlm9c2+Xn79i0cHBxgYWHxxfvQxNXVVa2uT58+8PHxwb59+zBr1iwwxnDgwAF4eXkpn8vr168BIM+Da2JiYqGTjzNnziAmJgaNGzfGmzdvlPXt2rXD3r17sXz58kIlcjkPHCYmJgUepwAAlSpVQqVKlQrcPqeCfEB+TtNrASi6BBYtWoSHDx8qT00DBU+2c469ArK7DT7vFi2IrMQhZxxZsk6h5zV2JzExEa1atcLUqVPh6+urrG/YsCHatm2Lbdu2qV2pmjPRHjx4MBo0aIDhw4fnOz7F19cXmzdvxrlz55RJV1ZsWV1JWQYOHIjff/8dN2/eLHTSVbduXVSvXh379u1TJl379u2DlZUV2rdvr2yXNbZz27ZtCAsLU/kfKchYuoL42tdHKpXC09MTbdu2VblU3tPTE7Vq1cLKlSuxfPlyte0iIyPRrVs3mJqa4uDBg181jCKn3bt3w8LCAl5eXrm2YYx98RfPhIQEnDp1ChMmTFA53rRo0QKHDh1CUFAQ3NzcvmjfRXHcz1K1alW1kwJZCvKZlLXexsZGpU4kEuH48eMAFGPQVqxYgejo6C8af2dqaorJkyfDz88PDx48+KIvnjn3tWLFCqxYsQIfPnzA+fPnsWrVKqxbtw6mpqZYtGjRF+87N/r6+hCLxRrXZWRk5Ps3KeixRSQS4eTJk+jbty969+4NQPElacWKFVi8eDGMjIzyfJwqVargm2++weHDhyGTyYrsvZaT1sZ0NW7cGJ6enujduzeOHTsGd3d3DBw4UGVgblbf8OPHj3PdT9a6rLMW1atXBwA8efKkuEIHkPuHsEwmy3UbTf9IDg4OaNWqlXKcyq1btxASEqLyrT1rgODKlStx9uxZjT/5/fNokjV2q2/fvqhataryZ9++fQgLC8Ply5eVbfP75p6WlqZy1qR69epITEzEx48fCxRLSkoKIiMj8/35fFC6paXlVyU0OV29ehU9e/aESCTCb7/9hlOnTuHs2bMYOHBggRO73N6UX5IYZg14j4iIUFsXERGhnIcoN4cOHUJUVBR69uypUt+mTRuYmJjkOzZHKBSiZ8+eOHz4cL7fPJ2cnAAAcXFxyrqsS6k1DRQHviwRBRRnuy5evIjY2FhkZmbi2LFj6N27t8q4z4kTJ2Lx4sXo27cv9u/fjzNnzuDs2bOwtLT8qsH8OWX9/XN7fQDN02hkuXLlCp4+far2+lStWhU1atTQ+PokJibCy8sLCQkJOH369Ndfrv6fkJAQXL16FX369MlzgHB8fPwXjyE7cOAAMjMzsXr1apXjjY+PDwCojCX9kuMNUPzH/YJ8Jn348AFJSUlqZ9IFAgE8PT3h6emJ4cOH4/z584iMjMSPP/74RbFMmjQJZmZm8Pf3/6LtNXF2dsbIkSNx/fp1mJmZFcn4Xk3s7e0hk8kQHR2tUi8Wi/Hp06d8/68Lc2ypVasWnj59iqdPn+Lq1asIDw/H6NGjERsbW6Ak38nJCWKxOM85Qb8GJwPpBQIBli5divDwcJXBqy1btoSZmRn27NmTazKTNWdM9+7dlduYm5tj7969eSZAealcuTLCw8NVPkA+l/XN4vMruzRdiZiffv364dGjR3j16hX27dsHAwMDlQnwsrodTUxMlG/az38KeyVFamoqjh49in79+uHAgQNqP/b29ipvuKwBl69evVLbV1paGj5+/KhsA0AZ/65duwoUz6pVq2Bvb5/vz+fzp1SvXh3v3r1T29+XfBs/dOgQRCIR/vnnH4wcORJeXl65fuPVBkdHR1hbW2scyHnnzp18u3+joqIAqH8RYIxBJpPleXVOlvT0dDDG8v1mn3VWM2f3SdY8Qp9Pepw1KW5h5vTJqV+/fpBKpTh06BD+97//ISkpSe2igIMHD2LYsGFYvXo1vv/+e3Ts2BEtW7Ys0sly+Xw+ateurfH1uX37NipVqpRnN1Rurw+g6BL9/PXJyMhAjx49EBQUhBMnTmjsHv9Se/fuBWMsz65FqVSKjx8/FmigtCa7d++Gu7u7xuONp6enylXTeR1vsupzHm+8vLwgEAgKfLz5Um5ubnBzc8Pff/+d63vi88+k3Njb2yuvRPySC7SyznYdPXo034HnhWVubo7KlStr/EJRFLKOXZ+/d+7evQu5XJ7vsa2wxxYej4datWqhZcuWsLCwwMWLFyGXywt0fA8ODoZIJPqiExsF8sWjwQoot3m6GGOscePGzNbWVmXg7qJFixgANn36dLX2J06cYHw+X20eoWXLljEAzNfXV+MAxZ07d+Y5T1dBBtIzxpiVlRX77rvvVNb7+vrmOpA+t0HoUVFRTCAQMD8/P+bg4KA2kFUmk7HKlSuzqlWrapwjJzo6OtfnkpusQbhXrlzRuH706NHMzMxMOVA7KiqKCYVC1qtXL7V5UQIDAxkA9vfffyvrxGIxq127NjM0NGQ3btxQ239SUpLKPF1v375lZ8+ezffn2rVrKvuZO3cu09XVVRtQvmHDhlwH1gJg48ePV6v38fFhBgYGLDU1VVn37t07ZmBgoDY4NLeB9J//X2saqJ2QkMBevHihMrg+N2PHjmX6+vosJCREWXfu3DkGgG3YsEFZJxaL2YsXL1h4eLiyLmvQ8ucDwrMGAy9btkxZp2ngbHx8PHNycmJOTk7KusTERLW/tVwuZ/369VMZ2MtY9hxqAwcOVGk/YMAApqOjw8LCwvJ9/rmpXbs2a9euHevfvz+zt7dX+5+0sLBgw4cPV6lbsWIFA6Dyuml6fVJTU9mLFy9yfb/mlHWsyfm6v3z5kgkEArVj1osXL1TmW7t7965aPIwxdu/ePcbn89nYsWOVdVKplPXs2ZPp6OiwkydP5htXloIOpK9Tpw6rWLFingO6Hz16xACwQ4cOFfjxs4SEhDAej6fxogPGGNu9ezcDwG7duqWsq1evHnN2dmbx8fEqbe/evcv4fD6bPHmySv3YsWMZAPbLL7+o7V8mk7FVq1YVyTxdu3btUv5ffz5P1927d5mhoSFzd3dXzuPEmOZ5uhhjLDY2lhkYGLBvvvkmz8dkTPP8eAkJCczMzIzVq1fviwbSP3z4UOP/+fv375m+vj6rU6eOxu1yGzz+4cMH9uLFi3yfS1paGrOwsGDdu3dXqR88eDAzMDBgnz59UtbFxMSwFy9eqByXv+bYkpaWxho0aMDs7e1ZUlKSsl7T5+jDhw+Zrq4u69mzZ677+9qB9JwmXQcOHFD7MJFKpax3794MAGvdujVbu3Yt27RpExs6dCjj8/msVq1aahPLyWQyNmTIEAaANWjQgC1ZsoRt3bqVLVmyhDVu3JgB0JgI5JS1vZeXF1u7di0LDAxkvXr1Yr/++quyzYwZMxgANmrUKLZhwwY2YMAA5uHhUeikizHGPD09mbGxca4HtYsXLzKRSMQqVqzI/Pz82KZNm5ifnx9r3bq12j8uAJUrCTXp0qULs7S0VDtoZDl+/LhaLFkJcIsWLdjy5cvZr7/+ygYMGMAAsE6dOql98L1+/Zo5OzszHR0dNnDgQLZ+/Xq2adMmNmnSJGZtbc3c3NzyjLEgsj64/vnnH5X6rCtAu3btynbs2MH27t2rnJA2t6Tr/PnzDABr1aoV27BhA/P392c2NjasTp06RZp0FfTqRcYUH1aWlpascuXK7JdffmFLlixh5ubmrHbt2irJT9YHRs6YMjMzWa1atRiPx2PDhw9nGzduZFOmTGEikYjZ29ur/D82aNCA9ezZky1evJht3ryZzZ07l1WoUIHx+XyVg/bFixeZnZ0d8/b2ZuvXr2erVq1iLVq0YADYmDFj1OIfOXKk8srG9evXsz59+jAAahOHZr1HCjpJ6aJFixifz1devfS5oUOHMoFAwCZNmsR+//13Nnz4cFahQgVmaWmZb9JV0KsXGVN8eahcuTKzsbFhK1asYIGBgczJyYk5ODioHcQ1vS87duzIALDvvvuObdiwgc2bN4+Zm5szQ0NDlSsYJ02axACwHj16sJ07d6r95PT+/Xu2cOFCtnDhQtakSRMGQLms6UrYJ0+eMABsxowZeT7XVatWMQMDA5UPKsYKdsVaVnL68OFDjevj4+OZjo6OymuZNXmqs7Mz8/PzY7///jubPHkyMzAwYI6OjmpfFFJTU5V/z7Zt27JVq1axLVu2MD8/P1azZk3G5/NZaGhorjEWNOliLPv1qFevHlu5ciX7448/2Lhx45hIJGKOjo5qV5/mlnQxpkiMeTwee/78eZ6PmdukxDmv/NaUdPXv31/5+uf8CQkJYStXrmQGBgasf//+bM2aNeyPP/5gs2bNYnZ2dozP57PDhw9rjOVrr15kLPsK3++//55t3ryZDR06lAFgixcv1vj8Pj82FPTY0qdPH+VxYOXKlaxGjRpMT09PbULtdu3asa5du7JFixaxTZs2Kf/XTE1N1V6bR48eKf+O1apVY2ZmZsrlY8eOFej5Z+E06co6o1O5cmWVZEAmk7Ft27axFi1aMBMTEyYSiVitWrWYv79/njO7Hzx4kHXq1IlZWFgwHR0dZm9vz/r168cuXbqUb5xZMxhXr16dCYVCZm1tzby8vFS+yaelpbFRo0YxU1NTZmxszPr27cuio6O/KOnavHkzA8CMjY1znR39wYMHrFevXszS0pLp6ekxZ2dn1rdvX3b+/Hllm+TkZLXLZj8XFRXFdHR02JAhQ3Jtk5aWxgwMDNTO5O3atYs1bdqUGRoaMj09PVa9enXm7++f69QF8fHxbN68eax27drMwMCAiUQi5u7uzmbOnJnrtAWFVadOHTZq1Ci1+oULFzJHR0fG5/MZkD19RG5JF2OMbdmyhVWtWlX53LZt26Z8/XLSVtLFGGNPnz5lnTp1YgYGBszMzIwNGjRI7YuGpqSLMcWUKt7e3szNzY3p6ekxKysr1r9/fxYcHKzSbt26daxly5bMysqK6ejoMGtra9ajRw+1M6HBwcGsT58+zMXFhYlEImZgYMA8PDzYxo0bNZ4lEYvFbP78+czZ2Znp6uqyKlWqaLzcPmuG6IJ8S2ZMkdBnfdB8fvaTMcX/3YgRI5iVlRUzMjJinTt3Zi9fvlR73b426WKMsY8fP7Lvv/+emZiYMCMjI9a9e3fllAg5aUq60tLS2IIFC1jNmjWZvr4+MzU1Zd27d1c7Q5v1YZbbT05Z8Wv60fRlLOvL4+PHj/N8nk2aNGGDBw9Wq/fw8GB2dnZ5blu7dm1WsWLFPNu0bduW2djYqMzkfuvWLda9e3dmbm7OdHR0mKOjI/vhhx9yTZ6kUin7448/WKtWrZipqakyaRsxYkS+00kUJuliTHHGuGPHjszc3Jzp6emxKlWqMF9fX43H+bySrrdv3zKBQKD23v1cbklXfHw8MzU1zTXpyu3n6tWrLDg4mM2bN481bdqU2djYKN/73bp1YxcuXMg1lqJIuhhjbNOmTaxatWpMKBSyypUrs8DAQLXjSG5JV0GPLcuXL2fVq1dnIpGImZubs549e2r8X1i7di1r3LixSr4wePBgje/lrGO4pp/8XsfP8RgrghnSCGdOnTqF7t2749GjR6hduzbX4WjFzp07MX78eISEhBTLfRZJ8WvcuDGcnZ1x4MABrkMhGjx8+BANGjTA/fv3VcbbJCcnw8LCAmvWrMH48eO5C5CQUoqSrlJu6tSpCAsLK5Jb+ZQWcrkcderUwYABAzB79myuwyGFlJSUBGtrazx8+PCLB2mT4tW/f3/I5XK1uwGcPHkS48ePR1BQUL43XyeEqKOkixBCCCFECzi79yIhhBBCSHlCSRchhBBCiBZQ0kUIIYQQogWUdBFCCCGEaIHWbnhdUsjlcoSHh8PY2PiLb+RKCCGEEO1i/92izMHBAXx+6TxnVO6SrvDwcOXNegkhhBBSunz8+BEVKlTgOowvUu6Srqwb0n78+BEmJiYcR0MIIYSQgkhKSoKTk1OeN5Yv6cpd0pXVpWhiYkJJFyGEEFLKlOahQaWzU5QQQgghpJShpIsQQgghRAso6SKEEEII0QJKugghhBBCtICSLkIIIYQQLaCkixBCCCFECyjpIoQQQgjRAkq6CCGEEEK0gJIuQgghhBAtoKSLEEIIIUQLOE26rly5gh49esDBwQE8Hg9///13vttcunQJDRo0gJ6eHqpUqYLt27cXe5yEEEIIIV+L06QrNTUVdevWxfr16wvU/t27d+jWrRvatWuHhw8fYvLkyfjhhx/wzz//FHOkhBBCCCFfh9MbXnt5ecHLy6vA7Tdu3AhXV1esXr0aAFCjRg1cu3YNgYGB6Ny5c3GFSQghhJAsjAGJoQAYGGOITI/Bp9RMSOUMAMB7+RYiF1dUq9ua2zhLIE6TrsK6efMmPD09Veo6d+6MyZMn57pNZmYmMjMzlctJSUnFFR4hhBCiXeI0QJYJxL8HxGn4mB6DoNRQ1TYxr4BPbwB983x3d1ochcS0WPB5fECcCjA5wP8sVZBLlcXrBvrKMo8x9LjNMOCSHC+ceXA79RQ8Pg0dz6lUJV2RkZGwtbVVqbO1tUVSUhLS09Ohr6+vts3SpUvh7++vrRAJIYSQPKVJ0pAk/u8EgEyad+PkMCAmCHhzHjC0xAdpKm4mvgb/02uVZpvNTGEolyM1ryQnJTT3dTnpAIAc0NfLpYGuWo1xGsPPx2WoG6xYFuvxwMRi8ESigj1mOVGqkq4vMXPmTPj4+CiXk5KS4OTkxGFEhBBCSg1pJvD6rKIc/UJxlocvUGv2XpKEYEmiSt3RqNvIFOiAB56yLpRl4j3L/HzzgknNUTYzVV+dI+GqL+XlWMMUz0PfDBAa5bp7BiApXYJYaQaaxlngA7ODHDxEMnPIPxsCngwDZP6XfA3iGWDAiWNgsTHg6enBdvYsVO/TBzweT8OjlG+lKumys7NDVFSUSl1UVBRMTEw0nuUCAD09Pejp5ZatE0IIKRdkEiAjEZDLgNhXim6z0LuA0BAAIGEyxEnTcTU1BJHiREV3Xfz7XHd3wMQIcgACBiQK+JBqSjB4AOS5h6TLWCGfBA/g8SGBHO11rWBnaA+YVQT0jMEA2Bs5oJVjK1Q0qQihQKhxD4lpEqSIpXgTnYINl97gw6c02JiI8Ohjgkq7Q//91tNRTbYypXJ0rW2HdtVs0LuePeI2b0bMr+vA5HIIXV3huCYQomrVCvm8yo9SlXQ1a9YMp06dUqk7e/YsmjVrxlFEhBBCip00U5EkfXqrGL/0udjXinUPdgGWlQHeZ11sKdF4nfAGiy3NYagh0cnk8XBbX0M3mLn62aT81NUxUX1oaQZG2KsOKOeDhxZ61rCwq6dImoztc9+hQAjo5X52CgBYjueUKZXjyqtYvIxMQlKGFKefRiIkLg22JnqIStJ8hi0iMUOtbsE3tTCkqXOuZ6uksbEIHTMGqTduAgBMv+kJu3nzwDc0zDPW8o7TpCslJQVv3rxRLr979w4PHz6EhYUFKlasiJkzZyIsLAw7duwAAIwdOxbr1q3DtGnTMHLkSFy4cAH79+/HyZMnuXoKhBBCvhRjigHej/cB6QlA6L+AaQVF+cM1wKISEBec5y4kAK4a6CPQ3AyfzAXQk6m3jzUSAEZ5JDY56IAHKRj6C6wUiZ6+GWBfT5H8fIbH46F31d7KxMTVxBW6AvXxTkXt9NNITN73ANXtTPDwszNUufk84RLq8CGWymFroodJHdxgY6wHAz0BajuawliU93NIvXULYVOnQhYTC55IBLt582DW67svfTrlCqdJ1927d9GuXTvlctbYq2HDhmH79u2IiIhASEiIcr2rqytOnjwJb29vrF27FhUqVMAff/xB00UQQkhJkpEIJIUDiWGK5Y+3FV16Mgnw6r/eCr4uIJeobxvxMLucI+EK0tVFhM5/Y6kMbQAAYgA+xqqbJ+cTWkPbhuhZuWeu65xMSuaY3+fhSZh39CnufohX1uWXcHk4m8PSUAg7UxE8a9jC0kgIPR0BKlsbftF4KyaTIXb9b4jdsAFgDHpVq8AxMBB6VaoUel/lFY+xQncql2pJSUkwNTVFYmIiTExM8t+AEELKM3GqYsqBsHuKQeQfbgDGdop1QacV0xBEPMqejiA9Pvd9aXBLpIcHov/G3drWBnT1AQNLgMkAoTEkuiJs/lCw3oxvq3yL792+h0ig+Yq5ymaVofP59AclRExyJq4ExeD621hIZQw3gz/B0UwxVjm35GpECxe0qGwFK2M9VLQwUNYb6gmgp6M+2P9rSKKiET51KtLu3AEAmPbuBbs5c8DPZTx1cSgLn98l87+PEEIId95eAB7vBx7tzb9twn+9EbklW9Y1AB4PSIkGrNyASm2RITLBtIR7uBX7EOk5x2iJPypOX6Vq3hUAuFu6q9X1rNITA6oPyD/WEoIxhtNPIxEan45/38fhzPMoje1iktXHYLlaGeKHVq74tp4jDPW08xGecu06wqdNgywuDjwDA9jP94NpT81nC0neKOkihJDyIDMF+HczcG4+YFEZiHtb+H0I9ADXVoqyQwPF74xEwKkxYOIAGFghQZyMOHkmzsc/g5wpLt27EnoF75J4MNCRADFnEZWmnmT0qtoLOjzNH0lyyFHJtBIGVh8IgYbpGkqyDIkMV1/H4p9nkTAR6eL00wiEaxi4nlOrqlaoamMMJwt9OJkrzmAZiXTQxNVCq9MwMKkUMb+uw6dNmxTdidWqKboTK7lqLYayhpIuQggpa2QSxXQIkY+B/01XJERJYdnrc0m4gnV1EK6T42PBzh1w8wIqNFSZlZwxht0vd0OPrweIAMRcBWKACx8v5BlWslh9xNXSVkvR3qk9DHQNNGxRuu29E4KZh5/k2eabeg6ITcnE8Oau6FjTNs+22iSJjESY7xSk37sHADDr3w+2M2aAT5OdfhVKugghpDRiTHF1Xfx74KNinA1O+gISDX1zORKuTB5wqUpLhDjUBoQGgJ4JToacw9vkDxoeJBoI+lPx8wVcTV3hYesBAJDIJOhZuSeM/pucU6QjgquJa5maQJMxhtD4dIzbfR9PwhLV1le2NkSnWnZISJPgpzaVUdGyZCaaKZcvI3z6DMgSEsA3NIT9wgUw6dqV67DKBEq6CCGktHi4F/h7LGBkB6REamwiB/BYT4i0HLOTv7KpitvmdojnA8/jXwHSECDHleGfq2FRI99QGBj4PD56V+2tUl/BqAKaOzYv2PMpA44+DENMcib+vPkeH+PSNbYZ26YyZnhV13JkhcckEkSvWYO4LVsBAKKaNeEYGAChszPHkZUdlHQRQkhJk5EIhN1XDEAPvauYxyo2KHv9fwlXKo8HKY+HZ0IhnukJsd7CDDKNO0wEEtXPvORMmCRyCfpW64talrVK7BV+XBJL5dh05S0OPwhDcEweI/3/Y6Sng4M/NUN1u9JxlZ0kLAxhPr5If/QIAGA+eDBspk0FX6h5ZnvyZeidRQghXEsMBW5tAGRi4M6mfJsnV/NCc/GzfNtVt8g+u/Ip/RN6VO6BCsYV0MqxFewM7b4q5PJk05W3WHLqZZ5tvq3nACsjPYxrVwUWhqUrUUk+fx7hs2ZDnpgIvrEx7BcvgkmnTlyHVSZR0kUIIdqQFA6E3FTMc5UYqhiYnhoLfLyV+zbGDopbwKTGAtbVwVpMwj9CYOqVqRqbd6/UHfaG9uheqTtcTcvWeCltyZDIEJ8mBgBcfR2LaQcfq7X5rr4jRrV0hb2pCDoCPkz1i38W+uLAxGJErVqF+B07AQCi2rUV3YkVKnAcWdlFSRchhBQlcSqQkaQoPz0EnJld8G0tqwDVvBTlFpMBQysAQGx6LJ7GPsXECxNVmuvwdXBjwA3o8nUh4AkoyfpCt4I/4UloIs69iMLtd3G5tjs9uVWp6S7Mj/jjR4R5+yDj6VMAgMWwYbDx9QGPuhOLFSVdhBDypT69BYL+AZLDgX+3AJK0/Lfh6wJmTkCj0YCuSDG9g5kzUMUTEGQfktMkaXgUfhNPYp/g1we/qu3m5/o/Y3Sd0UX5bMq8NLEUMcmZGPXnXbyJTsmzrVDAh4wxyOQMXWvbYXnvOvnek7C0SPrnDCJmz4Y8JQV8U1M4LF0C4/btuQ6rXKCkixBCCoIxxZmr99cAAwvg6uq82/MEilvZAIobJvf+A7CqmucmyeJkrPx3JY68OaJxfUXjimjm0Axzms75gidQ9kllctz7EI+7H+LxLDwRp55Ews5EBB4PiMhnQlIA6FbHHnweD7O6Voe9qfZub6Mt8sxMRC9fgfg9ewAA+vXqwTFgNXQdHDiOrPygpIsQQj7HGHB5BXB7g2Imd003Zs7J1Elxv0CH+kCltkCNHoCGmdOff3qOOxF3wOPx8C7xHU6/Pw0rfSvl+g9JmubKUozVal+xPTo6d/yaZ1XmpGRKcfFlNH7+6wFyu4twZJJ6ssXjAZaGQuz+oSksjYTgAbAwFJbp7lnx+/cI9fFB5vMXAADLH0bBetIk8HTLxtm70oKSLkIIkcuAA8MV9xzk8YHMpLzbO7cA7OoAiR+B734H9IwgkUvwNPYpksXJOHjJG/o6qmdKIlMjcT/6vtquUjVMZmqoa4j5zeajrVNb6An0ynQyUFiMMdx5F4dBf9yGVJ5LpgWggrk+HMz00bmWHRq7WAAA+Hygup0JBPzy9fdMPHkSkfP8IE9NhcDcHA7Ll8GodWuuwyqXKOkihJQvjAFRzxRJlpGNYrb2+Pe5t++0GLCtCWbphgwdXUBkguefnuNp7FPwUBPS1/ux4eEGZMjy777K0tmlM4R8ITJkGWjl2ArOJtmTT1Y0qahy9osAIZ/S8Me1YOy4qflMII8H1LAzwdJetVHNzhgi3dJ1f8biIs/IQNSSpUjYvx8AoN/QA46rV0PXtuTcbqi8oaSLEFK2MaY4g5USBfz9k+q6T6/V2/dYC7i0QoKuHu7Fv8Kxt8egFxqC/12bVOCHdDRyhL2hPdpXVB2czAMP7Su2h4MRjaEpiNRMKQZsvoXHoeoTuwKAgVCAsz5t4GhW9sZffa3M4GCETfZGZlAQwOPBcuyPsB4/Hjwd+tjnEv31CSFlz5tzwO6+inFVMnHu7QxtgLYzFF2Krq1xKe0jAu8FQvJhPz4mf8z3YbxcvMDn8yFnclQwqoBvq3yLiiYVi/CJlD+vo5Ix7+gziP8bFJ9TyypWaOhijgGNK8LWhG68nJvEo0cR4b8ALC0NAktLOKxYDqMWLbgOi4CSLkJIWRL1DNjYKvuqQdlnN8WxckOkLAMRPQMAA0scCDoIZLwFABw/EaBxl1b6VqhhUQNN7JuglmUt1LSsCUBxw2Y+j69xG1JwjDHMPPwEV4JikJguQapY842MLk1pCxcrQy1HV7rI09IQuWgxEg8fBgAYNGkCh5UroGtjw3FkJAslXYSQ0i2wtmJQT4KG8T4VGgPNJ0Lu1ATnPj3C09in2PZsG3DFJ89ddnTuiAHVB8DN3A2meqbFFDh5Hp6EoVvvIDYlU21dg4pm+LFNZVS3M4azJSVb+cl8/Rqh3t4Qv3kL8HiwGj8eVj+NBU9A49tKEkq6CCGljzhNcQPo7d0AcS6TXE68j1ChHo69PYYNh9VnhXc2cYacySGTyzCg+gAAgIORAzq50D3nitukvx7g6MNwtfqZXtVRz8kMDmb6cLIw4CCy0ocxhsTDhxG5cBFYRgYE1lZwXLkKhk2bcB0a0YCSLkJI6RB6F/ijQ+7rR/4DGFoDlpUBALOvzcaxt8fUmnV17Yrv3b5HI7tGxRUpyUV0UgYaLzmvVm9nIsKBsc0o0SokeWoqIvz9kXTsOADAsHlzOKxcAR1LS44jI7mhpIsQUjJ9uAFcWgroGgJB/8u9nX1dYPgpQM8Ib+LfYNPlafjfe9X2fB4fGz03oplDs2IOmmjyMS4NrVZcVKs/490abrbGHERU+mW8eoWwSZMhfv8e4PNh/fPPsBwzGjw+jTMsySjpIoRw78pK4MY6wLSCYjnqae5tXVoB3QIAyyqQ84CLHy8i5t0JfEz+iB3Pd6g1P9XrFJyMnYopcJKX+yHxOHA3FHvvhKjUi3T5eDK/M3QFlCAUFmMMCfv2I2rJEjCxGDq2tnBcvQoGDRtyHRopAEq6CCHaJZcDUU8USdbH26oD4DMS1NtX7w64dQaERpBU7YRXye/BWCbw6RkGnhqo8SEa2DRAF9cu6F21N4QCYfE8D5IrmZyh8qxTavXOlga44Nu23M0IX1RkKSmInDcPSacUZ3IN27SGw7Jl0DE35zgyUlCUdBFCip9MChyfBMS+AkL/zb1dp8WAbS1FWVcfsKsNCBVXrv1w5gfcvueX66YdnTtCwBNgQPUBaGDboCijJwUgkclx+VUMfr34Bo8+Jqis61DdBi2qWGFkS1dugisD0p89Q5iPDyQfQgAdHdh4T4bFiBHUnVjKUNJFCCk+jAG/1Afi32leb2AJNPoBqNgUqNROMfVDDjK5DIeDDmDBzQUq9XweH3YGdmBg4IGHk71OQodPhzMuMMYw68gT7L2jeTLZoEVeEOpQYvClGGOI370H0cuXg0kk0HGwh+Pq1TCoX5/r0MgXoKMUIaToSdKBs/OAO5vU13VZBlRqC1hXV0uyPud/0x9H3hxRqTvx3QmVexUS7fvwKRVtV10Cy+V+09bGeljdpy5au1lrN7AyRpaUhIg5c5F85gwAwKh9ezgsWQyBmRm3gZEvRkkXIaTovL8ObO+qed2424BNdY2rPiZ9xMbHG9XGX10Ovaws+zXzw/du3xdZqKRwGGN4GpaEHuuu5dpm7+imaFaZpisoCumPHyPM2weSsDBAVxe2U3xhPnQoePl8USElGyVdhJCvI5cBATWBlEjN67sFAI1GqVXHpsdi6P+GQpevi+DE4Dwf4mCPg6hmUa0ooiUFkJopxa3gT4hLFePeh3gkZ0hx8kmEWjt7U8X8WmYGQhjp0cdJUWCMIe7PPxG9OgCQSKBboQIcAwOgX7s216GRIkDvEkLIl5HLFQPjf2uqvs7KDRh1FtA3U1s14MQAPP2keUqIBjYN1ObSqmBcAW7mbkURMcmFXM5wKSgab6JTcOddPM69iMqzvZWREDdndqApH4qYLCEB4bNmI+XCBQCAcadOsF+0EAITE44jI0WFki5CSOHc2664ElGT0RcBR8WVg7Hpsbj+5ihkTIatT7fCRGgCGZPh+afnKptUt6iOifUnorZVbZiL6NJ3bbrzLg59f7+ZZ5vqdsYwNxDC1doQnjVs0L66rZaiK1/SHjxAmI8vpBER4OnqwmbGdJgPHEjdiWUMJV2EkPzJZcDqakBqjOb1Nb+FpPcfCE4MxvF/VyFDloF9r/bluctz35+DkdAIhrp0M2Nt+hiXhrXnXyMuVYwLL6PV1resYgU9HT7GtasCD2dKgosbk8sRt3UrogPXADIZdJ0rokJgIEQ1a3IdGikGlHQRQvL29gKw8zv1+nZzgGbj8ColFLOuzULQLs1zY9kZ2sHN3A36OvroUakHAKCaRTXYGtIZE207+zwKo3fcVavv27AC/HrUgiGNy9IqaXw8wqdPR+qVqwAAk65dYbfAHwIjI44jI8WF3mGEEM1iXwPrVG8t8kFHB3826oODkTfA3u+ATsgeSOVSlTa6fF3o8nUxrNYwOBk7oUflHtqMmnyGMYbAc69x5lkkXkYmK+sNhQKMaOGKRq4WaENTO2hd2t27CPOdAmlUFHh6erCdNQtmfftQd2IZR0kXIURV5FNgYwuVKjGAjXW9sDnpGRB5XVmfM+FqbNcY85rNozm0OBaZmIFWKy6gvpM57ryP09hm0xAPdKplp+XICKDoTvy0aRNifvkVkMshdHWF45pAiKrR1bnlASVdhJBsJ32Bf/9QqUrg89HKuQKQ9ExZ18SuCZo6NEX3St3BAw/6uvowEdIVVlxJTJNg1t9PcPJx9rQOmhKuES1cMLSZC1ytaBwdF6SxsQifNh2pN24AAEy/6Qm7efPAN6TXo7ygpIuQ8u7NOeCsHxCVPY1DrICPsVVqI15HF9FpqoOtd3jtQH0bugUJl+RyhhtvP+HPm+8RmZiBJ2GJam0cTEWY270mLI30UN3eGCYiXQ4iJVlSb91G2NQpkMXEgicSwW7uXJj2+o66E8sZSroIKa+u/wKcnatWvd3EGKstzQFxvKJf8T91retie5ftdI9Djt0PiUev325oXFfdzhiDmlRE30ZO0NMRaDkyogmTyRC7YSNif/tN0Z1YpTIqBAZCr2pVrkMjHKCjJyHlzbGfgft/qtfb1sYgK0M8TgtXVjmbOMPbwxuN7BpR9yGHEtLEuBUch923P+Dq61iVdZWsDTGihSu+qedAZ7NKGEl0NMKnTkPa7dsAANPevWA3Zw74+vocR0a4QkkXIeWBTAqc9Abu71CpfinUxVyXGngpSYC+jhjpadndVJs6blKbHZ5o3/SDj7Hv7ke1+j4eFbCkV22aFb6ESrl+HeHTpkP26RN4Bgaw95sH02++4ToswjFKuggpy+Ry4Px84PpatVXbPHohIO4uIEkAAKRL05Xrbgy4AWOhsZaCJJ/beesDDt79iEehqmO1zAx0ocPnYeNgDzR0seAoOpIXJpUiZt06fPp9E8AY9KpVg2NgAPQqVeI6NFICUNJFSFl1bQ1wzk+t+n2Xhej7dhfS47InyWzh0AITG0yEqdAUNgY2EAqEWgy0/EoXy3DicTg+xqXhwccEWBgKcfRhuMa2p35uhZoO1MVbkkkiIxE2ZQrS794DAJj16wfbmTPAF4k4joyUFJR0EVLWxAUDv6hfXXij+1L8EnkFz15tVqnf6bUT9WzqaSk4AgDbr7/D/OPP8203u2sN1HIwQbPKlnSVWwmXcvkywqfPgCwhAXxDQ9gt8Idpt25ch0VKGEq6CCkrUmMVUz883KVS/Uuzwdgdexdpzzao1A+qMQi+Hr7QFdDga23JkMhQfe5pjevauFnDwUyEytZGkMoZhjd3gUiXrkAs6ZhEgug1axC3ZSsAQK9mDVQIDITQmSYJJuoo6SKktMtMBrZ3AyIeqdYb2WJTR19sfrhOpXpYzWHwquSFWpa1tBhk+cUYQ1BUCsbtvoe3Makq62Z3rYFhzV0g1KHB8KWRJDwcYT6+SH/4EABgPmgQbKZNBV9Pj9vASIlFSRchpdWDXcDR8er1jh4IrtcXEz4ew8ccCdfebnvhauoKQ12a/bq4BUUl49C9UPx+JTjXNk/9O8OIbjBdaiVfuIDwmbMgT0wE39gY9osWwaRzJ67DIiUcveMJKW3kcmCBuXq9QwPc77YUs27NR9jz9SqrtnXeBncrdy0FWH6lZErh7vdPrusrWRnirzFNYWNCA6tLKyYWI3p1AOL+VMx1J6pdG44BqyF0cuI4MlIaUNJFSGnx93i18VoAEOtQF3vrdodcVw9/nButsq6xXWMsb70cVvpW2oqy3Hoalojuv15TqdMV8PBtPUf4dqoGO1NKtEo7cWgowrx9kPHkCQDAYthQ2Pj6giekq31JwVDSRUhJlxoLrKysUpXB4+GgdQWccq6NJ7FPgZc7Vda3d2qPuc3mUrKlBRkSGTqsvoywhOx5zmyM9XB7Vge64rAMSTpzBhGz50CenAy+qSkcli6Bcfv2XIdFShlKuggpqcSpwBIHter0rivQ+MV/Y7Vis29SrSfQQx+3PnAydsKA6gPoA18L4lPFqL/wrEpd51q22DjYg/7+ZYQ8MxPRK1YifvduAIB+vXpwXL0Kuo6OHEdGSiNKuggpaaSZwK0N6hOb8gSQzY1B4531VKpHuI9AM/tmaGrflD7otWjNuSCsOfdauWwgFOD+3I40zUMZIv7wAaHe3sh8/gIAYPnDKFhPmgSeLk2zQr4MJV2ElCRXVwPnF6hVy2ZH48i74/D/LOF6MuyJlgIjObVbdQnvYrOnf2jsaoH9P9J9KsuSpFOnEDF3HuSpqRCYmcFh+TIYtWnDdViklKOki5CSYr6pWlVMhzk4amaOtXsaqq27NfCWNqIi/wmNT8MfV9/hdXSySsK1qk9dfO9RgcPISFGSZ2QgaukyJOzbBwDQ9/BQdCfa2XEcGSkLKOkihEuZKcDaOkDaJ5VqNvQY/uGnY+rlqWqbjHQfiZ/r/wwBn7qxtOHa61j89W8ITjyOUFv3cmEX6k4sQzKD3yHM2xuZr14BPB4sfxwD6wkTwNOhj0pSNOg/iRCuSNKBpRoG4879hAa7G0HKpMoqB0MHeHt4o4trFy0GWL49CU1Ej3XX1OoNhQIMaFwRA5pUpISrDEk8dgwR8/3B0tIgsLCAw8oVMGrRguuwSBlDSRchXAh/AGxqq1IV890GHJTHI/Smn0rCtabtGnRw7qDlAMu3H3fexT/PolTq3B1NML5tFXjVtucoKlIc5OnpiFy0CImHDgMADJo0gcPKFdC1seE4MlIWUdJFiLY9OQgcGqVclICHqW2G4/zDpepNaaC8Vj38mIBv119XqePzgMfz6ZY9ZVHmmzcInTwZ4jdvAR4PVuPGwWrcT+AJ6AwmKR6c32V1/fr1cHFxgUgkQpMmTXDnzp08269ZswbVqlWDvr4+nJyc4O3tjYyMDC1FS8hXYAy4GqBMuGIEfGyu7IEGrk44H3Je2czO0A7fu32PrZ23chVpuRQck6KWcF2a0hbBS7tRwlXGMMaQcOgw3n3fB+I3byGwtkLFbVthPXECJVykWHF6JNm3bx98fHywceNGNGnSBGvWrEHnzp3x6tUr2Gg4tbtnzx7MmDEDW7duRfPmzREUFIThw4eDx+MhICCAg2dASAHlmFU+js/Hb+am2GdiDMhjVJpt77IdHrYeXERYbsnlDPUWnEFSRnaXbvvqNtg8tCEEfJr3rKyRp6YicsECJB49BgAwbN4cDiuWQ8eK7t5Aih+PMca4evAmTZqgUaNGWLdOMbu2XC6Hk5MTJk6ciBkzZqi1nzBhAl68eIHz57PPCvj6+uL27du4dk19wKsmSUlJMDU1RWJiIkxMTIrmiRCSl6AzwJ4+AAAxAA/XiiqrHY0c0cqxFSY2mAgTIf1PagtjDCceR2Di3gcq9TO9quPHNpVz2YqUZhmvXiHM2wfi4GCAz4f1zz/Dcsxo8Picd/qQAigLn9+cnekSi8W4d+8eZs6cqazj8/nw9PTEzZs3NW7TvHlz7Nq1C3fu3EHjxo0RHByMU6dOYciQIbk+TmZmJjIzM5XLSUlJRfckCMmLTAqc9wdu/KKsyplw2RjYYFWbVahvU5+L6Mo915mn1Ooe+XWCqT7NNl7WMMaQsP8AopYsAcvMhI6tLRxXr4JBQ/X57wgpTpwlXbGxsZDJZLC1tVWpt7W1xcuXLzVuM3DgQMTGxqJly5ZgjEEqlWLs2LGYNWtWro+zdOlS+Pv7F2nshOTr01vg1waQAkjh83HBQB/zrS1Vmpzvc17ztqRYMcbUEq75PWpieAtXjiIixUmWkoLIeX5IOqV4zQ1bt4LD8uXQMTfnODJSHpWqc6qXLl3CkiVL8Ntvv+H+/fs4fPgwTp48iYULF+a6zcyZM5GYmKj8+fjxoxYjJuWSXA7Zrw3ws40V6rtWRCvnCvCztkTOfvzbA29zFl55JpbK1RKu4CVdKeEqozKeP8e73r0VCZdAAJupU+C0cSMlXIQznJ3psrKygkAgQFSU6lw4UVFRsMvldgtz587FkCFD8MMPPwAAateujdTUVIwZMwazZ88GX0O/vJ6eHvT09Ir+CRCiCWPAAnO0cK6AVA3/j9MbTUevqr1goGvAQXDl2/qLb7Dyn1cqda8Xe4FPg+XLHMYY4vfsQfSy5WASCXTs7eEYsBoG9akrn3CLs6RLKBTCw8MD58+fx7fffgtAMZD+/PnzmDBhgsZt0tLS1BIrwX+X93J4PQAhgDgNOP4znr46ij+tLVUSrr+/+RsuJi7g8/jg8egDngt9f7+JO+/ilMuVrA1xwbctdwGRYiNLSkLE3HlI/ucfAIBR+/ZwWLIYAjMzbgMjBBxPGeHj44Nhw4ahYcOGaNy4MdasWYPU1FSMGDECADB06FA4Ojpi6VLFpJE9evRAQEAA6tevjyZNmuDNmzeYO3cuevTooUy+CNG6+A/A2jp4KhRigKPqWdrzfc7DxoBmtuZKcoYEteefUanb/UMTtKhC0wOURelPniDM2weS0FBAVxc2vj6wGDaMvuyQEoPTpKtfv36IiYnBvHnzEBkZiXr16uH06dPKwfUhISEqZ7bmzJkDHo+HOXPmICwsDNbW1ujRowcWL17M1VMg5dn9ncAxxVnZd7o6KglXC4cW8PbwpoSLI4npEqy78Bqbr75Tqb82vR0qmFPXblnDGEP8jh2IWrUakEig6+gIx8AA6Nepw3VohKjgdJ4uLpSFeT5ICZAQAqypDQAI0xGgi1P2jauH1RyGnxv8DKFAyFV05VrvDTdw70O8Wv2rRV2gp0NnxMsaWUICwmfPQcp/8zcad+wI+8WLIKDje5lTFj6/6d4WhBSGXAY82Akcn4RPfD7aOldQWe1o5IgpjaZwFFz5diUoBkO3qt9GzL9nLQxr7qL9gEixS3/4EKE+PpCGR4CnqwubGdNhPnAgdSeSEouSLkIK6tnfwIFhSOLzsMHCDLtMVb9puZq6YlvnbdzEVo49Dk3A7CNP8SQsUaX+xYIu0BfSma2yiMnliNu2DdGBawCpFLoVKyq6E2vV4jo0QvJESRch+Xl2BDg5BUGSRPT+7BY+AFDJtBIO9jgIXQHNZK5N519EYdSfd9XqO9a0xYredSjhKqOk8fGImDETKZcvAwBMunrBbsECCIyMOI6MkPxR0kVIbhgDVrgiPSMBLZwrQMJTH4C9q+su1LWuy0Fw5dfV1zEYskW9G7FjTVvM7loDLlaGHERFtCHt7l2E+U6BNCoKPKEQtrNnw6xvH+pOJKUGJV2E5EKyfyieyVMx0ckBkhwH9RYOLbC2/VroCWjSXW25HxKPXr/d0LjOs4YtlveuDUsjej3KKiaX49OmzYj59VdAJoPQxQWOa9dAVK0a16ERUiiUdBHyOXEacHAE/OL+xXEH1Xm3/h30L0Q6Io4CK5/SxTKNCVcTVwvsHNUEQp1SdTczUkjST58QPm06Uq9fBwCY9OwBez8/8A3pjCYpfSjpIiQnSQawxB4AcDzH+K261nWxqs0qSri0LDIxA02XZt8YvGklC/j3dIebrRF1KZUDqbfvIHzKFEhjYsATiWA3dw5Me/Wi156UWpR0EZLlzmbglGK6h39F2V1Vx749BldTuiGytjDGcOZ5FH7ceU+lvqGzOf4a04yjqIg2MZkMsRs2Iva33wC5HMIqlVEhMBB6VatyHRohX4WSLkIAIC1OmXAxACPtbZWrKhhVyGUjUpQYY9hx8wP8jj1TW9eskiX2jmnKQVRE26QxMQibOg1pt24BAEx79YLdnNngG9CdBEjpR0kXIb81B6IVH/SpPB6aujgpV81oPIOmgihmjDG8i01F91+vIU0sU1n3Y5tKGNu6MswNaXb/8iD1xg2ETZ0G2adP4BkYwN5vHky/+YbrsAgpMpR0kfLr4R7g75/wUUeA9daWuCPSQ4yO6ltiUI1BHAVXPtz7EIfeG26q1Y9o4YI53WpCwKexO+UBk0oRs24dPv2+CWAMem5ucFwTCL1KlbgOjZAiRUkXKX8YA/zNIAfwi7kptpiZqjURCUS4PuC69mMrJ6QyOU4+icCkvx6qrbsytR0qWlJXUnkhiYpCuO8UpN1VTHRr1rcvbGfNBF9EF62QsoeSLlI+MAa8OQfc3Qq8OgUAWPdZwlXLsha8XL3QrVI3WOlbcRVpmXftdSwGb7mtUrf4O3cMauLMUUSEKylXriB8+gzI4uPBNzCA3cIFMO3WjeuwCCk2lHSRsk8uBxaYq1QdMDbE5hwJ19bOW9HIrpG2Iyt3Nlx6i+WnX6rUre1fD9/Uc+QoIsIFJpEgZu1afPpjCwBAr2YNVAgIgNDFhdvACClmlHSRsi3+PbA2+zY95w30sc3KDo8E2QO2KeEqXjI5Q3BMCrzWXoVUzpT1vwyoj551HTiMjHBBEh6OMN8pSH/wAABgPnAgbKZPA1+P7ihAyj5KukjZlPoJ+LM7EP1cWfVaVxeTba0BUMKlLYFng7D2/Gu1+juzOsDGhMbslDfJFy4ifOZMyBMTwTcygv2iRTDp0pnrsAjRGkq6SNkjkwIrP7vqyaIyeplKlItj6oxB76q94WBEZ1qKg1zOMOiP27gZ/Emlvo9HBSz+rjbduqecYWIxogMCEbd9OwBA5O4Ox8AACJ2c8t6QkDKGki5Stjw5CBwapVo3/g6CdXWBo4r5fn6s8yMm1J/AQXDlA2MMlWadUqnbO7opGrta0BQQ5ZA4NBRhPr7IePwYAGAxbChsfH3BE9Lca6T8oaSLlB3HJwH3tmcvW1UDJtzBg+gHGHp0qLKaEq7ilfNeiQDweH4nmIhogtnyKOnMGUTMngN5cjL4JiZwWLoExh06cB0WIZyhpIuUDX/2BN5dzl5u/jPQbhbSpekY+r/shKuSKU22WJwWHH+OqKRM5fL7ZXT5f3kkF4sRvXwF4nfvBgDo160Lx4DV0HWkq1RJ+UZJFyn99g9VTbgm3AOsquBT+ie03d9WWT2k5hBMrD9R+/GVA2EJ6fhm3XXEpmQnXHdm0xmN8kj84QPCvH2Q8VxxEYvFqJGwmTwZPF0620kIJV2k9MpIBJZVVK2b/AQwq4iYtBi0P9BeWV3NvBqmNZqm5QDLtvhUMRaceI4jD8LU1m0c7AEbY7o6sbxJ+t//EDFnLuSpqRCYmcF+2VIYt23LdViElBiUdJHSKS4Y+KW+at3wU4CZIgnb+nSrsrp31d6Y33y+FoMr+wLOvMIvF96o1Ve2NsTvQzxQxcaYg6gIV+QZGYhatgwJf+0DAOh7eMBx9Sro2tlxHBkhJQslXaT0WeUGpERlL1tXB8bdAniKK+POh5zHrhe7AACORo6UcBWhj3FpaLXiolr9sl610dujAnQFNBVEeZMZ/A5h3t7IfPUK4PFgOWYMrCdOAE+HPl4I+Ry9K0jpcnCkasLVfCLQaZFyMT4jHpMvTlYuT26QXSZfJyFNrJZwnfy5JWo5qN8wnJQPicePI8JvPlhaGgQWFnBYsQJGLVtwHRYhJRYlXaT0uLUBeHooe3lODJhAFyfeHsfmJ5thrmeO+9H3lav9m/uji2sXDgIte7Zee4cFJ7Jn9/dyt8PKPnVhpEeHkPJInp6OyMWLkXhQ8X40aNwYDitXQtfWhuPICCnZ6IhJSgdxKnB6Rvay7ytAR4gZV6bj1DvFRJzv8E65upl9M/Sq2kvbUZZJ/zyLVEm4utW2x/pBDTiMiHAp880bRXfi6zcAjwerceNgNe4n8AQCrkMjpMSjpIuUfDIJsCTH7Xom3AWMFQN0sxIuABjhPgK1rWqjonFFVLOopu0oyxypTI5pBx/jcI6rEzcOboAu7vYcRkW4lHD4CCIXLgRLT4fA2gqOK1fCsGlTrsMipNSgpIuUbAdHqnYpVmgEWFVFmiQNLfZmjx3Z03UPalvX5iDAsun000iM3XVPpW5OtxqUcJVT8tRURC5YiMSjRwEAhs2bwWHFCuhYWXEcGSGlCyVdpOSa/9kAbacmwKgzAICFtxZCyqTKVZRwFY2XkUnosuaqWv2e0U3QvDJ9wJZHGa+CEObtDXFwMMDnw/rnibAcMwY8Pl2pSkhhUdJFSh6ZFFhoqVrXfy9QvSsAQCKX4ETwCeWqGwNuaDO6MitDIlNLuOb3qInhLVw5iohwiTGGhAMHELV4CVhmJnRsbOC4ehUMGjXiOjRCSi1KukjJkhwJrP5sPNbcWECguIVImiQNTfY0Ua5a03YNjIU0EefXyJTKUG3OaZW6b+o5YG3/+rlsQco6WUoqIv38kHTyJADAsFUrOCxfBh0LC44jI6R0o6SLlBwyqWrCZeIITH4K/NeN8TjmMQadGqRc3dS+KTo40/39voRczrDj5nvMP/5c43pKuMqvjOfPEertDcmHEEAggI33ZFiMHEndiYQUAUq6SMmQEgOsqpK9LDIFfLITAsaYSsJVz7oeNnfarM0Iy5QBm2/h9rs4lTpLQyGuz2gPkS5d+l8eMcYQv3cvopctBxOLoWNvD8fVq2HQgBJwQooKJV2Ee2fmAjd+yV4WmQIzQlSaLLqVPev8jMYzMKjGIJAvkyaWqiRco1q6YkqnatAXUrJVXsmSkxExZy6S//kHAGDUrh3slyyGjrk5x5ERUrZ8UdIllUpx6dIlvH37FgMHDoSxsTHCw8NhYmICIyOjoo6RlGVbvYCQHAPhq3YGBu1XaXL87XHsD8quo4Tr6/xyPvtG1We8W8PNlsbElWfpT54izNsbktBQQFcXNr4+sBg2DLz/7mVKCCk6hU66Pnz4gC5duiAkJASZmZno2LEjjI2NsXz5cmRmZmLjxo3FEScpaxgDFtsB0ozsuhGnAedmykWpXIptT7fhlwfZZ8G2d9muxSDLHsYYNl5+CwCwMBRSwlWOMcYQv3MnolauAiQS6Do6wjEwAPp16nAdGiFlVqGTrkmTJqFhw4Z49OgRLC2zL+v/7rvvMHr06CINjpRh/maqy5MeA+bOysWEjAS02tdKpcnvnr/Dw9ZDC8GVPamZUgzZchv3QxKUdf49a3EXEOGULDER4bNnI+XceQCAcceOsF+8CAITE44jI6RsK3TSdfXqVdy4cQNCoVCl3sXFBWFhYblsRUgOu/uoLvu8BExUZzo/F3JOdZOuu1HHmr6BF5ZMzlB51imN63rUddBYT8q29IcPEebjC0l4OHi6urCZPh3mgwZSdyIhWlDopEsul0Mmk6nVh4aGwtiYuipIPj7cBF6fyV6en6jWJE2SBv+b/gCAaubVcLDnQW1FV+ZoSrh+G9QAnWvZcRAN4RKTyxG3bTuiAwMBqRS6FSvCMSAA+u50xpMQbSl00tWpUyesWbMGmzZtAgDweDykpKTAz88PXbt2LfIASRnCGLCtS/by1LdqTaLTotHhQPbcW11cu6i1IfmTyRnc5vxPpS5okReEOjTXUnkkjY9HxIyZSLl8GQBg7NUF9gsXQkAXPhGiVYVOulavXo3OnTujZs2ayMjIwMCBA/H69WtYWVlh7969xREjKQtkEmBhjnv3NRwFGKreyy9NkqaScLlbumOk+0htRVhmfIxLQ6sVF1Xq3i/rxlE0hGtp9+4hzHcKpJGR4AmFsJ01C2b9+lJ3IiEcKHTSVaFCBTx69Aj79u3Do0ePkJKSglGjRmHQoEHQ19cvjhhJWbDws5sldw9QaxJwL7vum8rfYFHLRWptSP4Wn3yhsnx/bkeOIiFcYnI5Pm3+AzG//ALIZBC6uMBxTSBE1atzHRoh5RaPMcYKs8GVK1fQvHlz6Oio5mtSqRQ3btxA69atizTAopaUlARTU1MkJibChK7U0Y5/ZgM312Uvz/0ECFT/f6JSo+B50FO5/GTYE21FV6a8jUlBh9WKLqQqNkY459OG44gIF6SfPiF8+gykXrsGADDp0QN2fn4QGBlyHBkhX64sfH4X+kxXu3btEBERARsbG5X6xMREtGvXTuMge1KOXV6Zb8L1LPYZ+p/sr1wOaKt+FowUTFbCBQAbB9P0GuVR6p07CPedAmlMDHgiEezmzoFpr17UnUhICVDopIsxpvHN++nTJxga0rcokkNaHHAxRxfhsBNqCRcAjPhnhLLcrVI3dHSm7rAvUWveaWXZ1coQVWxokHR5wmQyxG7ciNj1vwFyOYSVK8MxMAAiNzeuQyOE/KfASVevXr0AKK5WHD58OPT09JTrZDIZHj9+jObNmxd9hKT0WuGaXf5s8tMsZz+cRbo0HQDQzqkdlrVapq3oyoyPcWnovOYK0sTZZ5nPeJfsbn5StKQxMQibOg1pt24BAEx79YLdnNngGxhwHBkhJKcCJ12mpqYAFGe6jI2NVQbNC4VCNG3alGakJ9kOfnbVoYaEizEGn0s+ymX/5v7FHVWZwhhD06XnEZWUqVL/dklXCPjUlVRepN64gbBp0yGLjQVPXx/28/1g+s03XIdFCNGgwEnXtm3bAChmnp8yZQp1JZLcnV8APD2UvTztncZm9XfWz27SaBrMRebFHVmZcfh+KHz2P1KpszcV4eBPzSnhKieYVIqY9evxaePvAGPQc3OD45pA6FWqxHVohJBcFHpMl5+fX3HEQcoKaSZwdXX28tCjgIGFWrMXn15AxrK7wwbVGKSN6Eo9xhh+/ushjj8KV6l/vqAzDISFfjuTUkoSFYVw3ylIu3sXAGDWpw9sZ88CXyTiODJCSF6+6Ch98OBB7N+/HyEhIRCLxSrr7t+/XySBkVJILgMW5biqtc+fQKW2Gptuf7ZdWb498Db4PJopPS+MMbyMTIbX2qsq9ZuGeKAT3dKnXEm5ehXh06ZDFh8PvoEB7BYsgGl3mvyWkNKg0J90v/zyC0aMGAFbW1s8ePAAjRs3hqWlJYKDg+Hl5VUcMZLSgDFgQY4zWjw+UOvbXJs/jnkMAHAydoKBLg32zYtczvD9xptqCdfuH5pQwlWOMIkE0asD8HH0GMji46FXowZcDx+ihIuQUqTQZ7p+++03bNq0CQMGDMD27dsxbdo0VKpUCfPmzUNcXFxxxEhKg/OfDYL3i8+1KWMMoSmhAIAuLnRvxdwwxjD90GPsvxuqUl/N1hj/0NWJ5YokIgJhPr5If/AAAGA+cABspk8HP8dV5ISQkq/QSVdISIhyagh9fX0kJycDAIYMGYKmTZti3bp1eW1OyqprgdnlOTF5Nj0RfEJZrm9TP4+W5VublZcQEpemUndxSlu4WtFFLOVJ8sWLiJgxE7LERPCNjGC/aBFMunTmOixCyBcodNJlZ2eHuLg4ODs7o2LFirh16xbq1q2Ld+/eoZB3FCJlxYNd2eWhxwAdYZ7N512fpyy3dGxZXFGVarOOPFFJuDYOboAu7vYcRkS0jYnFiA4IRNz27QAAkbs7HAMDIHRy4jYwQsgXK3TS1b59exw7dgz169fHiBEj4O3tjYMHD+Lu3bvKCVRJOXN0fHa5Ut73+vvjyR+QMikAoIl9E7o1iQYbL7/FntshyuVn/p1hqEdXJpYn4tAwhPn4IOOxYuyjxbChsPb1BV+Y9xcaQkjJVuiB9Js2bcLs2bMBAOPHj8fWrVtRo0YNLFiwABs2bCh0AOvXr4eLiwtEIhGaNGmCO3fu5Nk+ISEB48ePh729PfT09ODm5oZTp04V+nFJEbm4NLvcbnaeTdfeX4u199cqlxc0X1BcUZVaj0MTsOx/L5XLJya2pISrnEk6exbvevVCxuPH4JuYoML6dbCdOZMSLkLKgEIdzaVSKZYsWYKRI0eiQoUKAID+/fujf//++Wyp2b59++Dj44ONGzeiSZMmWLNmDTp37oxXr16p3VAbAMRiMTp27AgbGxscPHgQjo6O+PDhA8zMzL7o8clXur8DuJzjtj3NJuTaVCqX4o8nfyiXD/Y4CAcjh+KMrtRJypCg57rryuUVvevA3dGUw4iINsnFYkSvWIn4XYruev26deEYsBq6jo4cR0YIKSo8VsiBWEZGRnj69ClcXFy++sGbNGmCRo0aKQffy+VyODk5YeLEiZgxY4Za+40bN2LlypV4+fIldHV1v+gxk5KSYGpqisTERJiYmHxV/OXax3+BLZ7Zy2MuAQ6aB8WnSdIw8p+RePbpGQDg7PdnYWdIUx18zmXGSWW5Q3UbbBneiMNoiDaJQ0IQ5u2DjGeK94jFyJGw8Z4M3hce5wgpi8rC53ehuxc7dOiAy5cvf/UDi8Vi3Lt3D56e2R/cfD4fnp6euHnzpsZtjh07hmbNmmH8+PGwtbWFu7s7lixZAplMprE9AGRmZiIpKUnlhxSBnAlX3525JlyMMbTY20KZcAGghOszjDGVhEtPh48/hjXkMCKiTUmnT+Ndr97IePYMAjMzVNi4AbbTplLCRUgZVOjBIl5eXpgxYwaePHkCDw8PtXsw9uzZs0D7iY2NhUwmg62trUq9ra0tXr58qXGb4OBgXLhwAYMGDcKpU6fw5s0bjBs3DhKJJNfbEy1duhT+/nQj5SIVkeOef7X7AjVzf813PN+hHDgPKM5yEYWENDFWnwnCzlsfVOpfLuxCFxiUA/LMTEQtW4aEvX8BAPQbNFB0J9rRlxJCyqpCdy/y+bmfHOPxeHmedcopPDwcjo6OuHHjBpo1a6asnzZtGi5fvozbt2+rbePm5oaMjAy8e/cOAoEAABAQEICVK1ciIiJC4+NkZmYiMzNTuZyUlAQnJ6dSfXqSU3KZ6szzfglAHglC7T9rK8u3B96m2ef/03blRbz/lKZW/3JhF4h0BRxERLQp8907hHn7IPO/L5iWY8bA+ueJ4OnQRROE5KYsdC8W+h0ul8uL5IGtrKwgEAgQFRWlUh8VFQW7XL7p2dvbQ1dXV5lwAUCNGjUQGRkJsVgMoYare/T09KBHszYXncOjs8tVO+WZcEWmRirLK1uvpIQLQGKaBHUXnFGr9+9ZC0ObOdMZrnIg8fgJRPr5QZ6WBoGFBRyWL4dRK5qvjpDygLO7DAuFQnh4eOD8+fPKOrlcjvPnz6uc+cqpRYsWePPmjUriFxQUBHt7e40JFyli19YATw9lLw/Yl2tTOZOj48GOyuXOLjSDNgC1hOvlwi54v6wbhjV3oYSrjJOnpyNi7lyET50KeVoaDBo3huuRI5RwEVKOcJZ0AYCPjw82b96MP//8Ey9evMBPP/2E1NRUjBgxAgAwdOhQzJw5U9n+p59+QlxcHCZNmoSgoCCcPHkSS5Yswfjx43N7CFJUnh8FzuUYNzf2OpBHV/PD6IfKclXzqpRQALj6WvX2SO+XdaOuxHIi8+1bvO/bDwkHDgI8HqzGjUPFbVuha6s+NQ4hpOzidABBv379EBMTg3nz5iEyMhL16tXD6dOnlYPrQ0JCVMaQOTk54Z9//oG3tzfq1KkDR0dHTJo0CdOnT+fqKZQPchmwf2j2cv89gJ17nptsf7ZdWd7ffX8xBVZ6yOQMQ7ZkT/z7ciHd6Lu8SDjyNyIXLABLT4fAygqOq1bCsGlTrsMihHCg0APpS7uyMBBP625vAv43VVHuugpoPDrP5g+iH2Do/xRJWh3rOtjddXdxR1ji5ZwSorGLBfaP1dyFTsoOeVoaIv0XIPHoUQCAYfNmcFixAjpWVhxHRkjpVBY+v+lSGZK/s9k3qM4v4QpNDlUmXACwqMWi4oqq1MiZcAHAntFNOIqEaEvGqyCEeXtDHBwM8PmwnjgBlmPGgCeg7mRCyrMvGtP19u1bzJkzBwMGDEB0dDQA4H//+x+ePXuWz5ak1Lm/E5CmK8otJufZ9H3ie3gd9lIuT2k4Ba6mrsUYXMm367M5uN4v6wYdAadDKUkxYowh/sABvO/bF+LgYOjY2KDi9m2w+uknSrgIIYVPui5fvozatWvj9u3bOHz4MFJSUgAAjx49ynWCUlJKJYYCx3LcT7Gld57Nex3rpSx3dumMYbWGFVdkpUJwTArm/P1Uufx6sVcerUlpJ0tJRfjUaYicOw8sMxOGrVrB9e8jMGzcmOvQCCElRKGTrhkzZmDRokU4e/asyjQN7du3x61bt4o0OMKxozkSrhH/A/TNcm16P+o+JHIJAMBCZIGVrVcWc3AlV3yqGJP+eoD2q7Nvl3ViYkvo0hmuMivjxQu8790bSSdOAAIBrH194PT7RuhYWOS/MSGk3Cj0mK4nT55gz549avU2NjaIjY0tkqBICSBJB4IvKsp8HcC5eZ7Nh53OPqt1qOehcjtFxJWgGAzdekelbkonN7g7mnIUESlOjDEk/PUXopYuAxOLoWNnB8eA1TBo0IDr0AghJVChky4zMzNERETA1VV1rM6DBw/g6OhYZIERjh36Ibvc5888m76Of60s96vWD1b65fPqLHe/f5CSmX2fSaGAj1OTWqKKjTGHUZHiIktORsTceUg+fRoAYNS2LeyXLoGOuTnHkRFCSqpC93f0798f06dPR2RkJHg8HuRyOa5fv44pU6Zg6NCh+e+AlHxXVgEvT2Qv1+iea1OZXKYylmtO0znFGVmJ9e/7OJWEy7OGLZ74d6KEq4xKf/IU73r1ViRcOjqwmT4dFTb8RgkXISRPhT7TlTUDvJOTE2QyGWrWrAmZTIaBAwdizpzy+YFbpsikwIWF2ctjLufeFkCTPdnTH3hW9CyuqEq8fr/fVJYfzesEUwNdDqMhxYUxhviduxC1ciUgkUDXwQGOgQHQr1uX69AIIaVAoZMuoVCIzZs3Y+7cuXj69ClSUlJQv359VK1atTjiI9p2c112ue9OwKFerk1TxCnIlGUqlwPbBRZjYCVTYroEdf2z76f4c/sqlHCVUbLERETMmYPks+cAAMYdPWG/aBEEpjRejxBSMIVOuq5du4aWLVuiYsWKqFixYnHERLiU8/6KNXvm2XTihYnK8v3B94srohLr5ttPGLBZ9YrdiR3oy0dZlP7oEcK8fSAJDwdPVxc206bBfPCgcnvBCCHkyxQ66Wrfvj0cHR0xYMAADB48GDVr1iyOuAgXXv0vu9x6aq7Nlt9Zjl0vdimXLUWW0BWUn7M7cjlDt1+v4UVEkkp90CIvmhaijGGMIW7bdkQHBABSKXSdnOAYGAh991pch0YIKYUK/QkRHh4OX19fXL58Ge7u7qhXrx5WrlyJ0NDQ4oiPaAtjwN7+2cstJqk1kTM5Gu1qpJJw6evoY4fXDm1EWCJEJKaj0qxTKgmXZw1bPF/QGUIdSrjKEml8PEJ/GofoFSsAqRTGXl3gevgQJVyEkC/2VTe8fvfuHfbs2YO9e/fi5cuXaN26NS5cuFCU8RW5snDDzGIxP8e4lG83APUGqqxmjGHRrUXYH7RfWbe181bUsqwFA10DbUXJKcYYXGeeUql7saAL9IV0e5eyJu3+fYT5+EIaGQmeUAjbWTNh1q8fdScSwqGy8Pn9VTe8dnV1xYwZM1C3bl3MnTsXly/nfaUbKaEC3VWXP0u4AOBE8AmVhOv+kPvQ5ZefLsXPE666TmbYNaoxJVxlDJPL8emPLYhZuxaQySB0dobjmkCIatTgOjRCSBnwxUnX9evXsXv3bhw8eBAZGRn45ptvsHTp0qKMjWjD2XlA4sfs5Znq3cSpklTMujZLuXywx8Fyk3CliaUYse1f3H4Xp1J/dHwLjiIixUUaF4fw6TOQevUqAMCke3fYzZ8PgZEhx5ERQsqKQiddM2fOxF9//YXw8HB07NgRa9euxTfffAMDg/LRxVSmvDkPXF+bvTwrAhCqv44Lbi5Qlmc0noFqFtW0ER3nxFI5as77R63+5cIuHERDilPqnTsInzIV0uho8EQi2M2ZDdPevak7kRBSpAqddF25cgVTp05F3759YWVVPm/3Umbsyp5JHj8/1JhwAcCpd9ndagOrq3c9llWtVqiOTzw4thk8nM3pg7gMYTIZYn//HbHr1gNyOYSVK8MxMAAiNzeuQyOElEGFTrquX79eHHEQbYv/kF32WglYuGpsdiPshrK8vsP6cpNwyOUMUUnZE7++X9aNw2hIcZDGxCBs2jSk3VTMtWb63XewmzsHfDprTwgpJgVKuo4dOwYvLy/o6uri2LFjebbt2TPvCTVJCZFzEtQmYzQ2yZBm4MdzPyqXW1doXdxRlQjBMSlovzr7opA7szpwGA0pDqk3byJs6jTIYmPB09eHnd88mH37LddhEULKuAIlXd9++y0iIyNhY2ODb/M4MPF4PMhksqKKjRQXxoBnRxRl6+oam8iZHKPOjFIu96xcPpLpXbc+YM7fT5XL1e2MYWMi4jAiUpSYTIbY9b8hdsMGgDHoVa0KxzWB0KtcmevQCCHlQIGSLrlcrrFMSqn3V7PL3deorY5Nj0W7/e1U6uY3n1+8MZUAcjlTSbiaV7bErlFN8tiClCaSqGiET5mCtH//BQCY9ekD29mzwBdRUk0I0Y5CT6G9Y8cOZGZmqtWLxWLs2FF+ZiYvteRy4M8e2cvOzVRWy+QytYTrcM/D5WKKiGpzs2+DtGNkY+wZ3RR8fvkYw1bWpVy9hnfffou0f/8F38AADitXwn7hAkq4CCFaVeika8SIEUhMTFSrT05OxogRI4okKFKMFphnlxv/qLIqXZqOejvrKZdtDGzwZNgTVDUv+zdxfhOdAoks++YMrd2sOYyGFBUmlSJ6dQA+jh4NWXw89KpXh8uhgzDt0Z3r0Agh5VChr15kjGm8gi00NBSmpqYatiAlRsgt1eWuK1QWp12eprL8T2/1OarKooQ0MTwDsgfOBy/pymE0pKhIIiIQ5jsF6ffvAwDMBw6AzfTp4OvpcRwZIaS8KnDSVb9+ffB4PPB4PHTo0AE6OtmbymQyvHv3Dl260KSRJdrWztnl+apnKzOkGbgUekm5/GTYEy0Fxa2Zh59g750Q5XLLKlbUpVgGJF+6hIjpMyBLTATfyAj2ixbChI5PhBCOFTjpyrpq8eHDh+jcuTOMjIyU64RCIVxcXNC7d+8iD5AUEXFadrnJWLXVjXY3Upb3dN2jjYg4d+11rErC1byyJXb9QAPnSzMmkSA6IBBx27YBAES1asExMADCihU5jowQQgqRdPn5KeZ1cnFxQb9+/SCiAaily9m52eVOi1RWhSZn329RX0cfta1raysqzkQnZWDwltvK5SfzO8FYVPYvFijLxKFhCPP1QcajxwAA86FDYDNlCvhCIceREUKIQqHHdA0bNqw44iDF7d8/ssuC7OQiLiMOXoe9lMu3Bn427quMWn0mSFme060GJVylXPK5cwifNRvypCTwTUzgsGQxjD09uQ6LEEJUFCjpsrCwQFBQEKysrGBunve95+Li4oosOFJEXp7MLn/zm7L4LvEdev6dPelpE7sm4PMKfUFrqcMYw767HwEA+roC/NCqEscRkS8lF4sRvWoV4nfsBACI6taB4+oACCs4chwZIYSoK1DSFRgYCGNjY2W5vNx/r0xIiwP+ynGT6vqDlMVDQYeU5RoWNbCs9TJtRsaZ3bezx3H92IYSrtJK/PEjwiZ7I+PZMwCAxYgRsPGeDB51JxJCSqgCJV05uxSHDx9eXLGQ4nBnU3a5W4DKqtAUxViuWpa18Ff3v7QZFWc8Ay7jTXSKcnlCuyocRkO+VNLpfxAxZw7kKSkQmJrCftlSGLdrl/+GhBDCoUL3Jd2/fx9PnmRPJ3D06FF8++23mDVrFsRicZEGR4rApaWK30JjoNEolVXnQ84DAFxNXbUdFSfCEtJVEq4ZXtWhIyj73alliTwzExH+/gibPBnylBToN2gA17+PUMJFCCkVCv2J8+OPPyIoSDEIOTg4GP369YOBgQEOHDiAadOm5bM10aqwe9nlKh1UVl0Pu64s17Ssqa2IOPMuNhUtll1QLt+d44mxbegmx6WJ+P17vO8/AAl7FWdlLceMgfOf26Frb89xZIQQUjCFTrqCgoJQr149AMCBAwfQpk0b7NmzB9u3b8ehQ4fy3phojyQd2Nw+e7l7oMrqseey5+r6rsp32oqKM+1WXVKWp3auBisjmpW8NEk8cRLvevVG5osXEFhYwGnzZtj4eIOnS1edEkJKjy+6DZBcLgcAnDt3Dt27K+5h5uTkhNjY2KKNjny5yzlu8dPSBzCwUC7ufrFbWQ5oGwAjoRHKsqQMibJsbqCL8TSOq9SQZ2QgavFiJBw4CAAwaNQIDqtWQdfWhuPICCGk8AqddDVs2BCLFi2Cp6cnLl++jA0bNgAA3r17B1tb2yIPkHyhazkGzXv6qaz65f4vynJH547aiogTH+PS0GrFReXyv7Np7qbSIvPtW4RN9kbm69cAjwern36C1bifwNMp9GGLEEJKhEIfvdasWYNBgwbh77//xuzZs1GliuKswcGDB9G8efMiD5B8gTM5Zp//bpPKKsYY0qSKWwLNbjJbm1FpXbpYppJw1XMyo4HzpUTC338j0n8BWHo6BFZWcFy5AobNmnEdFiGEfJVCJ1116tRRuXoxy8qVKyEQCIokKPKVbmSfyULdfiqrHkQ/UJbr29TXVkScqDHvtLI8pKkzFn7rzmE0pCDkaWmIXLgIiUeOAAAMmjWF44oV0LG25jgyQgj5el98nv7evXt48eIFAKBmzZpo0KBBkQVFvkJyZHa5xy9qq+9H31eW3czdtBERJ9LFMpVlSrhKvoygIIR5+0D89i3A58NqwnhY/fgjePRljhBSRhQ66YqOjka/fv1w+fJlmJmZAQASEhLQrl07/PXXX7Cmb6Tc2to5u9xgqNpqmVyRjNgZ2pXJOwswxrD3zkfMOpJ9NjZokVceWxCuMcaQeOgQIhctBsvIgI6NDRxWrYRh48Zch0YIIUWq0ANcJk6ciJSUFDx79gxxcXGIi4vD06dPkZSUhJ9//rk4YiSFEf9e8VtoBGhIqu5E3gEAtHMqm5NJ9lh3TSXh6lXfEUIdGsdVUslSUhE+bToi5swFy8iAYcuWcP37CCVchJAyqdBnuk6fPo1z586hRo0ayrqaNWti/fr16NSpU5EGRwop6nl2efgJjU2yki6xrOzdPeDYo3A8DUtSLvv1qIkRLcrHbPulUcbLlwib7A3x+/eAQADrSZNg+cMo8PiUJBNCyqZCJ11yuRy6GiYk1NXVVc7fRThybEJ22UF9kPytiFvKcluntloISHsO3w+Fz/5HyuUn8zvBWEQTZ5ZEjDEk7NuHqCVLwcRi6NjZwTFgNQxoXCghpIwrdNLVvn17TJo0CXv37oWDgwMAICwsDN7e3ujQoUM+W5NiFfcu11USuQSjz4xWLreu0FobERW74JgUjN11D0FR2fdU/GtMU0q4SihZcjIi5s1D8v8UV5YatW0L+6VLoGNuznFkhBBS/AqddK1btw49e/aEi4sLnJycAAAfP36Eu7s7du3aVeQBkkJIj1P81nDVYvM92XOo+Tf3B59X+rtwPqVkov3qyyp1W4Y1RNNKlhxFRPKS/vQZwnx8IAkJAXR0YOPrC4vhw8rkBR2EEKJJoZMuJycn3L9/H+fPn1dOGVGjRg14etJM35ySZmaX7Wqrrc6QZSjLvar20kZExepFRBK81l5VLleyMsSvA+ujloMph1ERTRhjiN+1G9ErVoBJJNB1cIBjYAD069blOjRCCNGqQiVd+/btw7FjxyAWi9GhQwdMnDixuOIihfW/6dll+3oqq6JSo5TlK/2uaCmg4pUz4WpZxQq7fmjCYTQkN7LERETMmYPks+cAAEaeHeCweDEEppQcE0LKnwInXRs2bMD48eNRtWpV6Ovr4/Dhw3j79i1WrlxZnPGRgrq3Lbv82dVfC24tUJbNRaV/7ExCWvaVl9/Wc8Ca/mV7Zv3SKv3xY4R5+0ASFgbo6sJ26lSYDxlM3YmEkHKrwAN71q1bBz8/P7x69QoPHz7En3/+id9++604YyMF9fJUdrnzEpVVbxPe4kpo2Ti7laXegrPKcmC/etwFQjRijOHTtu14P3AQJGFh0HVygsuePbAYOoQSLkJIuVbgpCs4OBjDhg1TLg8cOBBSqRQRERHFEhgpILkc+GtA9nLTcSqr1z9cryzv8NqhraiKzeozr5RloYBPH+IljCwhAaHjxiN6+XJAKoVxly5wPXwI+rXpNkyEEFLg7sXMzEwYGhoql/l8PoRCIdLT04slMFJATw9ll3tvUZuFPjY9FgDQ1L5pqb/BdXRSBn698Ea5/HxB5zxaE21Lu/8AYb6+kEZEgCcUwnbmDJj170+JMSGE/KdQA+nnzp0LAwMD5bJYLMbixYthmmNQbEBAQNFFR/KXc0LU2t+rrX4Q/QAA0L1Sd21FVCzeRKfAMyB7eoh1A+tDR1D6p70oC5hcjk9btiBmzVpAJoPQ2RmOawIhynHXCkIIIYVIulq3bo1Xr16p1DVv3hzBwcHKZfpGq2WMAdL/poKorp5Uzbw6U1muZVlLW1EVuT9vvIffsWfK5TZu1uhex4HDiEgWaVwcwqfPQOpVxdWkJt27w27+fAiMDPPZkhBCyp8CJ12XLl0qxjDIFznnl13utFBlVYY0AyeCs++/WMW8iraiKlLRyRkqCVevBo4I6FuPu4CIUtq//yLMdwqk0dHg6enBbu4cmPbuTV++CCEkF4WeHJWUINfXZpctKqms+uncT8ryqV6nUFr1+PWasrxxcAN0cbfnMBoCAEwmw6dNmxDz6zpALoewUiVFd6KbG9ehEUJIiUZJV2n14UZ2uXZftdXhKeHKspOxkzYiKnKh8WmISlLMtO9opk8JVwkgjY1F+LRpSL1xEwBg+u23sJs3F/wcYz0JIYRoViJGIq9fvx4uLi4QiURo0qQJ7ty5U6Dt/vrrL/B4PHz77bfFG2BJtM0ru+y1XG11eKoi6fqp7k9q60qDdLEMLZdfVC4f/KkZh9EQAEi9dQvB336H1Bs3wdPXh/3SpXBYtpQSLkIIKSDOk659+/bBx8cHfn5+uH//PurWrYvOnTsjOjo6z+3ev3+PKVOmoFWrVlqKtISyqw0YWKhU3Yu6pyy3qdBG2xEViRrzTivLQ5s5w95Un8NoyjcmkyHml18RMmIkZLGx0KtaFa4H9sPsu2+5Do0QQkoVzpOugIAAjB49GiNGjEDNmjWxceNGGBgYYOvWrbluI5PJMGjQIPj7+6NSpUq5tiuzol9klwceUFmVkJGA4aeHK5drWZW+qxalMrnK8oJvaGJNrkiiohEyYiRif/sNYAxmfb6Hy/590KtSOi/MIIQQLn1R0nX16lUMHjwYzZo1Q1hYGABg586duHbtWj5bqhKLxbh37x48PT2zA+Lz4enpiZs3b+a63YIFC2BjY4NRo0Z9Sfil34Nd2WUT1XFO7Q60U5b7uqmP9SoNuucYPH9ters8WpLilHLtOt599x3S7twB38AADitXwn7hQvD16awjIYR8iUInXYcOHULnzp2hr6+PBw8eIDNTMdA5MTERS5YsyWdrVbGxsZDJZLC1tVWpt7W1RWRkpMZtrl27hi1btmDz5s0FeozMzEwkJSWp/JR6N9cpfptWVKlmjEEqlwIAzPXMMafpHG1H9tUYY3gZmaxcrmBO44W0jUmliA4IxMcffoAsLg561avD5dBBmPYo3RPsEkII1wqddC1atAgbN27E5s2boaurq6xv0aIF7t+/X6TBfS45ORlDhgzB5s2bYWVlVaBtli5dClNTU+WPk1PpvJJPKT0+u9xeNak6+yH7RtBHvz1aKudL6rnuurJMZ7m0TxIZiQ/DhuPTpk0AALMB/eGy7y/oubpyHBkhhJR+hZ4y4tWrV2jdurVavampKRISEgq1LysrKwgEAkRFRanUR0VFwc7OTq3927dv8f79e/To0UNZJ5crxv/o6Ojg1atXqFy5sso2M2fOhI+Pj3I5KSmpdCdeV3PcZqluP2WRMQbfy77KZXORuTajKhISmRxPwhKVy3SWS7uSL11CxIyZkCUkgG9kBPuFC2Di5ZX/hoQQQgqk0EmXnZ0d3rx5AxcXF5X6a9euFXpQu1AohIeHB86fP6+c9kEul+P8+fOYMGGCWvvq1avjyZMnKnVz5sxBcnIy1q5dqzGZ0tPTg56eXqHiKtFe/U9j9aWPl5TlFg4ttBNLEWKMoers7Od2e1YHDqMpX5hEgujANYj77+IVUa1acAwMgLBixXy2JIQQUhiFTrpGjx6NSZMmYevWreDxeAgPD8fNmzcxZcoUzJ07t9AB+Pj4YNiwYWjYsCEaN26MNWvWIDU1FSNGjAAADB06FI6Ojli6dClEIhHc3VWvZDMzMwMAtfoy69Nrxe+m41Sqf774s7L8a4dftRlRkXCdmT1rvrGeDmxNRBxGU35IwsIQ5uOL9EePAADmQ4bAZuoU8IVCjiMjhJCyp9BJ14wZMyCXy9GhQwekpaWhdevW0NPTw5QpUzBx4sRCB9CvXz/ExMRg3rx5iIyMRL169XD69Gnl4PqQkBDw+ZzPbFEypCdkl+sNUhYX31qsLLdybAVdvi5Kk1/Pv1ZZfuLfmaNIypfk8+cRPnMW5ElJ4JuYwH7xIph07Mh1WIQQUmbxGGPsSzYUi8V48+YNUlJSULNmTRgZGRV1bMUiKSkJpqamSExMhImJCdfhFM61Ndk3uZ6vGPsklonhsctD2eTBkAfQ4ZeOuztJZXJ473+E44+yb1n0cmEXiHQFHEZV9jGxGFGrViF+x04AgKhOHTgGBEBYwZHjyAghJHel+vP7P1/86SwUClGzZs2ijIXkJ/iSWlX7A+2V5SUtl5SahAsAqsxWHZ92wbcNJVzFTPzxI8K8fZDx9CkAwGLECNh4TwaPuhMJIaTYFfoTul27dnlORXDhwoWvCojkIfi/exHWHQAAiE2PRWJm9tV+ns6emrYqkQb/cVtlee/opqhkXTrOlpZWSaf/QcScOZCnpEBgagr7pUth3J6m5SCEEG0pdNJVr149lWWJRIKHDx/i6dOnGDZsWFHFRT737x/Z5Vq9AADt9md/YF7sexH6OiV/pnDGGLzWXlWZAPXJ/E4wFpWucWiliTwzE9HLlyN+z14AgH79+nAMWA1de/t8tiSEEFKUCp10BQYGaqyfP38+UlJSvjogkos7OWbgd+uElf+uVC56VvSElX7BJovl2vBt/6okXP9Mbk0JVzESv3+PUB8fZD5X3K/TcvRoWP88ETxd+psTQoi2FdllgYMHD87zJtXkK0jFQMxLRdljOBhj2PF8h3L1itYrOAqscNLEUlwOilEuP57fCdXsjDmMqGxLPHkS73r1RubzFxCYm8Np8ybY+PpQwkUIIRwpslHXN2/ehEhEcysVi6eHssvtZuNK6BXloq+HL3QFJftDVCKT49v11/EsPPu+l9uGN4IJneEqFvKMDEQtWYqE/fsBAAYNG8Jh9SrofnaPU0IIIdpV6KSrV69eKsuMMURERODu3btfNDkqKYBX2ROHwsgGf/+7VLk43H249uMppKqfXaVYz8kM7arbcBRN2ZYZHIywyd7IDAoCeDxY/TQWVuPGgadTeq5qJYSQsqrQR2JTU1OVZT6fj2rVqmHBggXo1KlTkQVGcnhxTPHbqSkA4FzIOQBANfNqXEVUYPOOPlVZvjqtHZws6J6KxSHh778R6b8ALD0dAisrOK5YDsPmzbkOixBCyH8KlXTJZDKMGDECtWvXhrl56buhcqn0YFd2udNCXA+7rlws6We5kjIk2HHzg3L53dKueU43Qr6MPC0NkQsXIfHIEQCAQdOmcFy5AjrW1hxHRgghJKdCJV0CgQCdOnXCixcvKOnSlqPjs8tOjTH2z9rKxe6VunMQUMG8i01Fu1WXlMtXp+U9vxv5MpmvXyPU2xviN28BPh9WE8bD6scfwRPQJLOEEFLSFPrqRXd3dwQHBxdHLORzUnF2udkE7H6xW7no6+HLQUAFk5QhUUm4TPV1qUuxiDHGkHDoEN716Qvxm7fQsbZGxW3bYD1uHCVchBBSQhV6TNeiRYswZcoULFy4EB4eHjA0NFRZX1rvh1Qi3d6QXfacj2W7GigXh9UquRPR1pl/RlluUNEMvw9pyGE0ZY88NRUR8/2RdPw4AMCwRQs4rFgOHUtLjiMjhBCSlwInXQsWLICvry+6du0KAOjZs6dKdxFjDDweDzKZrOijLK8uLsku55gW4ofaP5TYrrrTTyOVZQdTEQ6Pa8FhNGVPxsuXCJvsDfH794BAAOtJk2D5wyjw+EU25R4hhJBiUuCky9/fH2PHjsXFixeLMx6S5cVxQJqhKLeYhNDkUOWqXlV75bIRt2RyhrG77imXb8zswGE0ZQtjDAn79iNqyRIwsRg6dnZwXL0KBh4eXIdGCCGkgAqcdDHGAABt2rQptmBIDrd/VxZZ6+nw+qupctnRyJGLiPIUnpCO5suyb3a+tFftPFqTwpClpCBy3jwknVLMd2bUpg3sly2FDl3MQgghpUqhxnSV1C6tMun9VcXvRqNxOfpfZXULhxbg80pWV9LTsER0//WaSt2AxhU5iqZsSX/2DGHePpCEhAA6OrDx8YHF8GHUnUgIIaVQoZIuNze3fBOvuLi4rwqIAEiKyC5X74qg+CDl4gbPDRo24E5sSqZKwuViaYCLU9pyF1AZwRhD/O49iF6+HEwiga6DAxwDVkO/Xj2uQyOEEPKFCpV0+fv7q81IT4pBQPXscqV2+HXHJACAq6lriTvbuOL0S2W5Sy07/DaoQYmLsbSRJSUhYvYcJJ89CwAw8uwAh8WLIaD3HiGElGqFSrr69+8PGxu6Z16xkqRnl/VMcSn0snJxaM2hHASUO4lMjv13swf4bxxCg7q/Vvrjx4ruxLAwQFcXtlOnwnzIYEpkCSGkDChw0kUHfS2JeJRdnv4ea4/3Vi5+7/Y9BwFpJpXJVW5kvapPXQ6jKf0YY4j7809Erw4AJBLoOjnBMSAA+rXduQ6NEEJIESn01YukmIU/UPw2dsCdqLt4k/AGAODl6sVhUOo8Ay6rLH/vUYGjSEo/WUICwmfOQsp/07EYd+4M+0ULITA25jgyQgghRanASZdcLi/OOEiW0zMAAGlCA4w6M0pZ/VPdn7iKSM372FS8/5SmXH63tCuH0ZRuafcfIMzXF9KICPCEQtjOnAGz/v3pzDIhhJRBhb4NEClG8uzZ/P+wdwZSXwMARrqPhKupK1dRqZlyILsL9P7cjpQgfAEmlyNu61ZEB64BZDIInZ3huCYQoho1uA6NEEJIMaGkqyQJ+kdZjLN3B94oki5vD2+uIlKTKZXh7od4AED76jawMBRyHFHpI42LQ/iMGUi9opiLzaRbN9j5+0NgZJjPloQQQkozSrpKkhOTlcVDb44AAMbUGcNRMJp5LDynLC/vXYfDSEqntLt3EebjC2l0NHh6erCdMxtm339PZwsJIaQcoKSrJEmJAgCIbWsBSAYAGOuWnMHUGRIZUjKlymVrYz0OoyldmFyOT5s2IeaXXwG5HMJKleAYGAhRNTeuQyOEEKIldC+RkiIjUVm82XSEsjygxgAuolEjlzNUn3tauXx1WjsOoyldpLGx+PjDaMSsWQvI5TD95hu4HthPCRchhJQzdKarpMgxnmv/J8W0EQKeAHoC7s8myeUMlWadUi4bCgVwsjDgMKLSI/XWLYRNnQpZTCx4+vqwmzsXZr2+4zosQgghHKCkq6QIuan4rWuIK2GKAdaW+pYcBpQtZ8IFAM8WdOEoktKDyWSI/W0DYn/7DWAMelWrwDEwEHpVqnAdGiGEEI5Q0lVSPD8GAJBU6QBkPAQAjK83nsOAFH49/1pl+f2ybhxFUnpIoqMRPmUq0u7cAQCYft8bdrNng6+vz3FkhBBCuERJV0nAGJAWCwB4Y+sGfHgIAOhZuSeHQSlu9bP6bJBymRKu/KVcu47wadMgi4sDz8AA9v7zYdqjB9dhEUIIKQEo6SoJwu4pi3/rSJRlHT53L09imgR1F5xRLq/pV4+zWEoDJpUi5td1+LRpk6I7sXp1OAYGQM+15ExqSwghhFuUdJUEQdlXBe55q5ify0rfiqtoAEAl4QKAb+s7chRJySeJjETYlClIv6tIns3694PtzJng63F/EQQhhJCSg5KukuDWRgBAop07gCQAwILmCzgJhTGGVWdeqdS9WVyybrZdkqRcvozw6TMgS0gA39AQ9osWwsSL/l6EEELUUdLFNZkUECsmQt1r4wgkK5KuFo4tOAmnlt8/SBNn3wPy5cIu0BHQdG6fYxIJotesQdyWrQAAUc2acFwTCGHFihxHRgghpKSiT1OuXQtQFqUVmynLfJ72X5p7H+JUEq4j45pDpCvQehwlnSQ8HB+GDFUmXOaDB8P5r72UcBFCCMkTneni2pv/7mUo0MOR4BMAgH7V+mk9DMYYem+4qVwOWuQFoQ7l5J9LvnAB4TNnQZ6YCL6xMewXL4JJp05ch0UIIaQUoKSLax9vK343G4/osIMAADmTaz2MPXdClOWpnatRwvUZJhYjevVqxP25AwAgqlMHjgGrIaxQgePICCGElBb0ycqlpAhlUVqlo7Ls5ardgdjJGRLMPvJUuTy+Hc2anpM4NBTvBw1WJlwWw4fDZddOSrgIIYQUCp3p4tK5+criKVmsslzDooZWwxi4+bayvOL7Olp97JIu6Z8ziJgzB/LkZPBNTeGwdCmM29PNvgkhhBQeJV1cCrmhLB4KOqQsGwmNtBrGk7BEAICjmT76NnTS6mOXVPLMTEQvX4H4PXsAAPr168Nx9SroOjhwHBkhhJDSipIuLiX8N46q02Lcf/07AKCBTQOthjD5rwfK8pFxzbX62CWV+MMHhHp7I/P5CwCA5egfYP3zz+Dp6nIcGSGEkNKMxnRxJTNFWZTU+k5Z7uSivSvhIhLT8ffDcOWyjYlIa49dUiWePIl3vXoj8/kLCMzN4bR5E2x8fSnhIoQQ8tXoTBdXwrPPML2TZSdg31X5TlPrYtE58IqyfN63jdYetySSZ2Tg/+3de1zO5/8H8Nd9V/ehc5EOlEI6EEmYbMOwu5lmzPTFKGvMaQ7NcUwRaiQ5zpzKWhY2zG9Oc9zIOWJ0MJTQySGd6677vn5/xIdbB5W7++7wfj4e98PncH2uz/u+7nK/uz7X5/pkLAvEs127AADarq6wWBkMLVNTNUdGCCGksaCkS12u7+QWYx9d45a1tbRVcvqkx/nIKSoFAOgJNdHWRLXjyOqT4rtJeDhjBooTEwEeD80mfA2TyZPB06RfD0IIIcpD3yrqcjWi7F8Te0hlUgCAgdBAZafvG3yKWz4+s+n2cmXv3480/0VgBQXQaNYMLVcsh44bjW0jhBCifJR0qds7E5GSWzag3t3aXSWntJl3gFt272CGFnpNbyyXvLAQ6QFLkL1nDwBA+513YLH8B2i1aKHmyAghhDRWlHSpQ96jl8sOn+DX3WU9TdqadX9p8XFeMRh7ub5xdNc6P2d9U/zff3gwYwakt+8AfD6aT56E5hMmgKdBz5kkhBBSdyjpUof4/dzi3ZJn3LKFbt3PAeW65Bi3fHORpM7PV58wxpC9Zy/SAwLAioqgaWICi+Bg6PToru7QCCGENAGUdKnDUb+yf5u1Q0Z+Brd5WPthdXraT9ad4ZZb6AmhI2w6H788Px9pixYhZ///AQB0evWCxfIfoNmsmZojI0T15HI5pFKpusMgpByBQAA+v/HOZtV0vnXrC8YAaW7ZsmUPnEg5AQCw0rOCJr/uPo5fzt/D9QfZ3PqpWX3q7Fz1TVFiIh5OnwFpUhKgoQGTqVPRbNxX4DXiX2xCKiOVSpGUlAS5XK7uUAgph8/nw8bGBgKBQN2h1AlKulSt6GXiA8lSRO16HwBQWFpYZ6fsFXQCD5+9rP/id/2gLWj8Hz1jDM927UbG0qVgUik0TU3RMmQltLs2vXFshABlvxNpaWnQ0NCApaVlo+5RIA2PXC5Hamoq0tLSYGVlBR6Pp+6QlK7xf/PWNxk3ucXEwkxu2dfVt05OF3L0lkLCtWeSW5OYeV6Wl4f0hX7IOXgQAKDbuzfMgwKhaWSk5sgIUZ/S0lIUFBTAwsIC2tqqmROQkJowMTFBamoqSktLodUInwRCSZeqpb2YCJWHU/dPcZsHtRlUJ6dbc/w/bvnusoHg8xvfXw6vK4qLw4MZM1ByLwXQ1ESLGTNgPNabLieSJk8mkwFAo710Qxq+Fz+bMpmMki6iBC/uXGzhiGxp2aVGE7FJnZxq2isPs948xrXRJ1yMMWTt2IHMoB/ASkqgaWGOViEhEDs7qzs0QuqVxnjZhjQOjf1nk5IuVUs5V/avQUvEP4kHAPRv3V/pp8nMKcIfrzzMur9D4570U5aTg7QF3yP3r78AALr9+sFi6RJoGBqqNzBCCCHkuXpxvWX9+vWwtraGSCRCjx49cPHixUrLbt68Ge+99x6MjIxgZGSE/v37V1m+Xsl/zC2W9pyMyxmXAQBypvy7iLovO84tn/i2d6P+66Hw33+RNPSzsoRLSwum381Dq3VrKeEihNSJ5ORk8Hg8xMbGqi2GrVu34sMPP1Tb+asSFxeHVq1aIT8/X92h1DtqT7p27twJX19f+Pn54cqVK+jcuTMkEgkyMzMrLH/q1CmMGDECJ0+exLlz52BpaYkPP/wQDx8+VHHktfDfUW7xrNbLJGiE/Qilnubgv2ncspm+CG0a6cOsGWN4un07kkeOQsmDB9Bq1QrWOyJhPGZMo04yCWlKeDxelS9/f/+3qnvfvn1Ki7Uq3t7e+PTTT5VSV1FREb7//nv4+flx2/z9/cHj8TBhwgSFsrGxseDxeEhOTgbw5oRRJpMhKCgI9vb2EIvFMDY2Ro8ePbBlyxYA1fs8HB0d8c477yAkJEQp77cxUXvSFRISgnHjxmHs2LFwdHTExo0boa2tjW3btlVYPjIyEpMmTYKzszPs7e2xZcsWyOVyHD9+vMLy9UrqlbJ/xUaYfGIKt7mtYVulneK/jFxMirzCrTfW+bhkz57hweQpyAgMAkpKoCeRwGbvHoidnNQdGiFEidLS0rhXaGgo9PX1FbbNnDlT3SGq3G+//QZ9fX306tVLYbtIJMLWrVvx33//VXLkmy1atAirVq1CQEAA4uLicPLkSYwfPx7Pnj0DUP3PY+zYsfjxxx9RWlpa61gaI7UmXVKpFDExMejf/+WYJj6fj/79++PcuXPVqqOgoAAlJSUwNjauqzCVJ+k0ACDb2o3b9H6r95VWfWZuEQas+odbX/RJB4i0Gt/zBAuuXsXdoUORd+IEeFpaMF34PVqGroKGnp66QyOEKJmZmRn3MjAwAI/HU9gWFRUFBwcHiEQi2NvbY8OGDdyxUqkUU6ZMgbm5OUQiEVq3bo3AwEAAgLW1NQBgyJAh4PF43HpFLl68iC5dukAkEsHV1RVXr15V2C+TyeDj4wMbGxuIxWLY2dlh9erV3H5/f39s374df/zxB9cjdOrUKQDAnDlz0L59e2hra6NNmzb4/vvvUVJSUmWbREVFwcPDo9x2Ozs79O3bF/Pnz6/y+Krs378fkyZNwueffw4bGxt07twZPj4+XDL1ps9DV7fsysqAAQPw9OlT/P3337WOpTFS60D6x48fQyaTwdTUVGG7qakpEhISqlXHnDlzYGFhoZC4vaq4uBjFxcXcek5OTu0DfltPyv76OKSrCxSVbfrhvR+UVn33pS97+yb2aQsvN2ul1V0fMLkcT8PCkLkqFCgthVZrK7RatQoiR0d1h0ZIg8QYQ2GJTC3nFmtpvPUwgMjISCxcuBDr1q1Dly5dcPXqVYwbNw46Ojrw8vLCmjVrsH//fuzatQtWVla4f/8+7t+/DwC4dOkSWrRogbCwMLi7u0Ojkgfe5+XlYdCgQRgwYAB++eUXJCUlYdq0aQpl5HI5WrVqhd27d6NZs2Y4e/Ysxo8fD3NzcwwfPhwzZ85EfHw8cnJyEBYWBgBcR4Genh7Cw8NhYWGBf//9F+PGjYOenh5mz55d6fs+c+YMRo8eXeG+oKAgdOvWDZcvX4arq2uN29TMzAwnTpzApEmTYGJS+zvrBQIBnJ2dcfr0afTr16/W9TQ2DfruxaCgIERFReHUqVMQiSqe8DMwMBCLFi1ScWQVkJUC8rJu1nXPrnObdQXKH2/VXFeIOe72Sq9XnUqzspA6dy7y/y7rydP/+GOYLVoEDV0dNUdGSMNVWCKD48Ijajl33GLJWz8Zw8/PDytXrsTQoUMBADY2NoiLi8NPP/0ELy8vpKSkwNbWFu+++y54PB5at27NHfsioTA0NISZmVml59ixYwfkcjm2bt0KkUiEDh064MGDB5g4cSJXRktLS+F7xsbGBufOncOuXbswfPhw6OrqQiwWo7i4uNy5FixYwC1bW1tj5syZiIqKqjTpevbsGbKzs2FhYVHhfhcXFwwfPhxz5syp1bCbkJAQDBs2DGZmZujQoQPc3NwwePBgfPTRRzWuy8LCAvfu3avxcY2ZWi8vNm/eHBoaGsjIyFDYnpGRUeUvAQAEBwcjKCgIf/31Fzp16lRpuXnz5iE7O5t7vfgrR+Ue3+IWs0vL7ujoZtZNadVvOHWbW/7zm3eVVm99UHD5MpI+HYL8v/8BTyiE2eJFsAheQQkXIU1Yfn4+7ty5Ax8fH+jq6nKvJUuW4M6dOwDKBq/HxsbCzs4OU6dOxV/Pp5Spifj4eHTq1EnhD/uePXuWK7d+/Xp07doVJiYm0NXVxaZNm5CSkvLG+nfu3IlevXpxl+YWLFhQ5XGFhWVPGKmsowEAlixZgtOnT9fq/To6OuLGjRs4f/48vvzyS2RmZsLDwwNfffVVjesSi8UoKCio8XGNmVp7ugQCAbp27Yrjx49zd3W8GBQ/ZcqUSo9bvnw5li5diiNHjryx+1QoFEIoFCoz7Nq5Fw0AyH2lO32M4xilVC2XMyw/nMitmxk0jsf8MLkcTzZtxqO1awGZDAIbG7QMXQWRnZ26QyOkURBraSBusURt534beXl5AMqmEerRo4fCvheXCl1cXJCUlIRDhw7h2LFjGD58OPr374/ffvvtrc79uqioKMycORMrV65Ez549oaenhxUrVuDChQtVHnfu3DmMGjUKixYtgkQigYGBAaKiorBy5cpKj2nWrBl4PB6ysrIqLdO2bVuMGzcOc+fOxdatW2v8fvh8Prp164Zu3bph+vTp+OWXXzB69GjMnz8fNjY21a7n6dOnaNtWeTeKNQZqv7zo6+sLLy8vuLq6onv37ggNDUV+fj7Gjh0LABgzZgxatmzJDX784YcfsHDhQuzYsQPW1tZIT08HAO6vnHoru6yHbYuZJbepd6veSqn6293XuOU/JveqomTDUfrkCVJnzUb+2bMAAIPBn8Bs4ULwdah3ixBl4fF4b32JT11MTU1hYWGBu3fvYtSoUZWW09fXh6enJzw9PTFs2DC4u7vj6dOnMDY2hpaWFvdopMo4ODggIiICRUVFXO/S+fPnFcpER0fDzc0NkyZN4ra96G17QSAQlDvX2bNn0bp1a4WB72+6HCcQCODo6Ii4uLgq5+lauHAh2rZti6ioqCrrqw7H5+Nmazrv1o0bNzBs2LC3Pn9jovbfNk9PTzx69AgLFy5Eeno6nJ2dcfjwYW5wfUpKCvivPDPvxx9/hFQqLfdB+vn5vdV8LXUuuuxOloMiLQBld6YoYy6pQqkMe6++nKOss6XhW9epbvnnL+DhrJmQPXoMnkgEs4ULYTh0iLrDIoTUM4sWLcLUqVNhYGAAd3d3FBcX4/Lly8jKyoKvry9CQkJgbm6OLl26gM/nY/fu3TAzM4Ph84mTra2tcfz4cfTq1QtCoRBGRkblzjFy5EjMnz8f48aNw7x585CcnIzg4GCFMra2tvj5559x5MgR2NjYICIiApcuXVLoFbK2tsaRI0eQmJiIZs2awcDAALa2tkhJSUFUVBS6deuGAwcOYO/evW983xKJBGfOnMH06dMrLWNqagpfX1+sWLGiwv2JiYnltnXo0AEjRoxAr1694ObmBjMzMyQlJWHevHlo37497O2rP1Y4OTkZDx8+rPQmtyaLNTHZ2dkMAMvOzlbdSYtyGfPTZ8xPn70b4co6hndka66seetqU58VsNZz/uReF+4+UUKw6iMvLWWZa9exOAdHFmdnz+4MGsSK/vtP3WER0mgUFhayuLg4VlhYqO5QaiUsLIwZGBgobIuMjGTOzs5MIBAwIyMj9v7777M9e/YwxhjbtGkTc3Z2Zjo6OkxfX5/169ePXblyhTt2//79rF27dkxTU5O1bt260vOeO3eOde7cmQkEAubs7Mx+//13BoBdvXqVMcZYUVER8/b2ZgYGBszQ0JBNnDiRzZ07l3Xu3JmrIzMzkw0YMIDp6uoyAOzkyZOMMcZmzZrFmjVrxnR1dZmnpydbtWpVuff4ups3bzKxWMyePXvGbfPz81M4H2Nl33fNmzdnAFhSUhJjjLGkpCQGoMLX/fv32aZNm1jfvn2ZiYkJEwgEzMrKinl7e7Pk5ORqfR4vLFu2jEkkkirfR0Wq+hlVy/e3kvEYY0xN+Z5a5OTkwMDAANnZ2dDX11fNSa9EAPvLxqg52VgBAH7+6Gd0adGl1lVmF5ag8yLFQZLJQR/XPkY1K8nMROrsOSh43m1vMOwzmM2fD75YrObICGk8ioqKkJSUBBsbmyoHYpP67/PPP4eLiwvmzZun7lDKkUqlsLW1xY4dO8pN4PomVf2MquX7W8nUPiN9k/D0LgBgi8HLHxIjYflu7Jp4NeHqYKHfoBOuvOhoJA0ZioLz58HT1obFiuWwWLKEEi5CCKnEihUr6u045pSUFHz33Xc1TriaArWP6WoS/vsLT/h8rDY25DZZ6llWXv4Nfj6XrLB+YOp7ta5LnVhpKR6tW4cnP20CGIPQzg4tV62CsE31744hhJCmyNraGt988426w6hQu3bt0K5dO3WHUS9R0qUKeZlYb2TAre75ZA80+LW/XXrhHze55VtLaj5hXX1Qkp6OhzNnovByDADA8H+eMJ07F3y65EEIIaSRoqSrruVmAPmZuK9XNvuxSEMEWyPbWle3+Z+73PKaEV0g0Gx4V4jz/vkHqbPnQPbsGfg6OjAPWAz9gQPVHRYhhBBSpyjpqms3yibhK34+PcRwu+FvVd3Sg/Hc8iedK34MRH3FSkrwaPVqPNlSNlmfyNERLVeFQPDKozkIIYSQxoqSrrqW/i8AQPj8noW3Gcu15M84bnlC74Y1y29Jaioe+n6LwthYAIDRF1+gxexZ4AsE6g2MEEIIURFKuupaRtn4q/OisuTCUGhYq2ruPcnHljNJ3Poc94bzKJzcEyeQOu87yLOzwdfTg/nSJdCvYiZlQgghpDGipKuupV/HqxOhaWlo1aqa3itOccu/+PRQymz2dY1JpchcGYKn27cDAEROTmWXE1u1UnNkhBBCiOpR0lWXCp4CAGJELx+4/Y75OzWuplD68nld7U118a5t87ePrY5JHzzAQ99vUXT9OgDA2NsbLXxngEeXEwkhhDRRDe/Wt4Ykfj8AIEJfj9uko1XzBzY7LDzMLR+e9v7bx1XHcv76C0lDhqLo+nXwDQzQasMGmM6dQwkXIaTesLa2RmhoaIOplzQOlHTVJWnZE9kThGU9XfbG1X9Y6AtfR1xWWOfz6+9lRblUivSAJXg4dRrkubkQOzujzd490Pugr7pDI4Q0UDwer8qXv79/req9dOkSxo8fr9xgayE8PJx7ADdp/OjyYl1KPgMASNUsmwi1j2WfGh1+MiETR25mcOs3FkmUFpqySe/dw8MZviiKK7vDstlXPjCZNg08rdqNYSOEEABIS0vjlnfu3ImFCxciMTGR2/bqo3AYY5DJZNDUfPNXm4mJiXIDJaQaqKerLj27r7DasVnHah8a8GccxoZf4tavfD8AusL6mSPnHDyIpKGfoSguDhpGRrDc9BNazJxJCRch9R1jZT3y6ngx9ub4AJiZmXEvAwMD8Hg8bj0hIQF6eno4dOgQunbtCqFQiDNnzuDOnTsYPHgwTE1Noauri27duuHYsWMK9b5+GZDH42HLli0YMmQItLW1YWtri/3791cZW2ZmJjw8PCAWi2FjY4PIyMhyZUJCQuDk5AQdHR1YWlpi0qRJyMvLAwCcOnUKY8eORXZ2drmeu4iICLi6ukJPTw9mZmYYOXIkMjMzq9VmpP6qn9/ijUXGvyh45S7DdkbVfxbV1lemh1j5eWcY69S/8VDyoiJkBAbh2c6dAACxa1e0XLkSWqamao6MEFItJQXAMjVNsvxdKiCo+RjXisydOxfBwcFo06YNjIyMcP/+fQwcOBBLly6FUCjEzz//DA8PDyQmJsLKyqrSehYtWoTly5djxYoVWLt2LUaNGoV79+7B2Ni4wvLe3t5ITU3FyZMnoaWlhalTp5ZLjPh8PtasWQMbGxvcvXsXkyZNwuzZs7Fhwwa4ubkhNDRUoffuRc9dSUkJAgICYGdnh8zMTPj6+sLb2xsHDx5USpsR9aCkq66USgEA/2iLuU0WOtX7zy0s+mXCFTTUCZ91rX9TLBTfTcLDGTNQnJgI8HhoNuFrmEyeDF41uvUJIUSZFi9ejAEDBnDrxsbG6Ny5M7ceEBCAvXv3Yv/+/ZgyZUql9Xh7e2PEiBEAgGXLlmHNmjW4ePEi3N3dy5W9desWDh06hIsXL6Jbt24AgK1bt8LBwUGh3PTp07lla2trLFmyBBMmTMCGDRsgEAgUeu9e9eWXX3LLbdq0wZo1a9CtWzfk5eUpXFIlDQt9Q9aVm3sAAI81Xj7Yujpza0lL5Vj0fy9nnh9WDxOu7P37kea/CKygABrNmsFi+Q/Q7dVL3WERQmpKS7usx0ld51YSV1dXhfW8vDz4+/vjwIEDSEtLQ2lpKQoLC5GSklJlPZ06deKWdXR0oK+vX+klvfj4eGhqaqJr167cNnt7+3KD4o8dO4bAwEAkJCQgJycHpaWlKCoqQkFBAbS1K2+DmJgY+Pv749q1a8jKyoJcLgcApKSkwNHRscr3QeovSrrqypWfAQCJgrJxTQNtqvdA5/YLDnHLO77qAU2N+jPsTl5YiPQlS5D9e1lCqd2jByxWLIdWixZqjowQUis8ntIu8amTjo7ie5g5cyaOHj2K4OBgtGvXDmKxGMOGDYNUKq2yHq3XxqHyeDwu2amN5ORkDBo0CBMnTsTSpUthbGyMM2fOwMfHB1KptNKkKz8/HxKJBBKJBJGRkTAxMUFKSgokEskb3wOp3yjpqisaZWOw9umVdQM/Knz0xkO8tl3kljX5PLi1qz+ToBbfvl12OfG/2wCPh+aTJ6P5xAngvdKTRwgh9UF0dDS8vb0xZMgQAGU9X8nJyUo9h729PUpLSxETE8NdXkxMTMSzZ8+4MjExMZDL5Vi5ciX4/LI/oHft2qVQj0AggEwmU9iWkJCAJ0+eICgoCJaWZc/rvXxZcfog0jDVn26UxubuSYXVnuY9qyx+4e4T/H3rZWJ2a8lHdRJWbTzbsxdJwz5H8X+3oWHSHFZhYTCZMpkSLkJIvWRra4s9e/YgNjYW165dw8iRI9+qx6oidnZ2cHd3x9dff40LFy4gJiYGX331FcTil+N427Vrh5KSEqxduxZ3795FREQENm7cqFCPtbU18vLycPz4cTx+/BgFBQWwsrKCQCDgjtu/fz8CAgKUGj9RD0q66lDGK0nJSIeRVZY9Fv9yPq4L3/WrF5OgyvPzkTpnLtK++w6sqAg6vXqhzb590Hmnh7pDI4SQSoWEhMDIyAhubm7w8PCARCKBi4uL0s8TFhYGCwsL9O7dG0OHDsX48ePR4pXhFp07d0ZISAh++OEHdOzYEZGRkQgMDFSow83NDRMmTICnpydMTEywfPlymJiYIDw8HLt374ajoyOCgoIQHBys9PiJ6vEYq+ZkKY1ETk4ODAwMkJ2dDX19/To6SSoQ4oBIfV0ENSu71fhfr38rLc4Yg828stuA3do2w45xNX8+o7IVJd7CwxkzIL17F+DzYTJ1KpqNHwcen/J0QhqqoqIiJCUlwcbGBiKRSN3hEFJOVT+jKvn+rmM0pqsuPC2b8uHf54//4fOqTlReJFxAWdKlTowxPNu9GxlLl4EVF0PT1BQtVwZD+7W7gwghhBBSM5R01YXbRwEAB3TL7qjxtPOstGjosVsK61M+sK27uN5AlpeH9IV+yHk++Z5O7/dhERQETSMjtcVECCGENBaUdNUFDQFKX1nt3ap3pUVDj/3HLd9dVr1pJepCUVwcHsyYgZJ7KYCmJlrMmA7jsWPpciIhhBCiJJR01YXSYtwQvnxsT3fz7hUWk8lfDqcLGd5ZLYPnGWPI+vVXZAYGgZWUQNPCHC1XroR2ly4qj4UQQghpzCjpqgs5qdhm8HKQnxa/4gc/fx0Rwy0Pdm5Z52G9Tpabi7QF3yP3yBEAgO4HH8Bi2VJovDajMiGEEELeHiVddSHlPO7qlSVaHZt1rLDIjYfZCtNEaKi4l6vw33/xcIYvSh48ALS0YDrzWxiNGVOtRxURQgghpOYo6aoL2sa4p/UUANDXqm+FRWbuvsYt//nNuyoJC3h+OTEiAhkrgoGSEmi1aoWWq0IgdnJSWQyEEEJIU0RJVx1gWUmAuQEAoId5xROJJqTnAgB6tmmGji0NVBKX7NkzpM5fgLzjxwEAeh9+CPMlAdBooPOdEEIIIQ0J3ZpWB/595ek4NgY25faPeeUZi7Pc7VQREgpjY3F36FDkHT8OnpYWTL9fgJarQynhIoQ0CX369MH06dNrdIy/vz+cnZ3rJB7SNFHSpWyM4arGy2d86QvKJzX/vPKMRRerup0Di8nleLJ1G5K/GI3S1DRotbaC9c4oGI8aReO3CCH1noeHB9zd3Svcd/r0afB4PFy/fl3FUVWOx+Nh37596g6D1FOUdClbwVM8fv7MxU7NOpTbHZ+Wwy2fnl3xeC9lKc3KwoOJk5C5YgVQWgr9gQNh8/vvEDk61ul5CSFEWXx8fHD06FE8ePCg3L6wsDC4urqiU6dOaoiMkJqjpEvZch4iTbMs6TIWm5Tb/dHq09yypbF2nYVREBODpCFDkff33+AJhTBbtAgWK4OhoatbZ+ckhBBlGzRoEPcA6Ffl5eVh9+7d8PHxwZMnTzBixAi0bNkS2tracHJywq+//lrjcwUFBcHU1BR6enrw8fFBUVGRwv5Lly5hwIABaN68OQwMDNC7d29cuXKF229tbQ0AGDJkCHg8Hrd+584dDB48GKamptDV1UW3bt1w7NixGsdHGj5KupQtPxOJgrKJUU11TBV2Lf6/OG7ZwqBuHjbL5HI8/mkT7o3xQml6OgQ2NrDetRNGnsPpciIhRAFjDAUlBWp5McbeHCAATU1NjBkzBuHh4QrH7N69GzKZDCNGjEBRURG6du2KAwcO4MaNGxg/fjxGjx6NixcvVlGzol27dsHf3x/Lli3D5cuXYW5ujg0bNiiUyc3NhZeXF86cOYPz58/D1tYWAwcORG5u2Y1Rly5dAlDWA5eWlsat5+XlYeDAgTh+/DiuXr0Kd3d3eHh4ICUlpdrxkcaBx6r7k99I1PlTyqPXYPSNdYgVCTHZeTImdJ4AACiRyWE7/xBXLCHAHSItjcpqqZXSJ0+QOnsO8qOjAQAGgz+B2cKF4OvoKPU8hJCGqaioCElJSbCxsYFIJEJBSQF67Kj4Duu6dmHkBWhrVa+3PyEhAQ4ODjh58iT69OkDAHj//ffRunVrREREVHjMoEGDYG9vj+DgYABlA+mdnZ0RGhpaYXk3Nzd06dIF69ev57a98847KCoqQmxsbIXHyOVyGBoaYseOHRg0aBCAsjFde/fuxaefflrle+rYsSMmTJiAKVOmVFmuqXn9Z/RVdf79rQLU06VsuemIFQkBAA7GDtzm32Nejkc4ObOP0hOu/AsXkfTpEORHR4MnEsF86VKYBwVRwkUIafDs7e3h5uaGbdu2AQBu376N06dPw8fHBwAgk8kQEBAAJycnGBsbQ1dXF0eOHKlRT1J8fDx69FBMQHv27KmwnpGRgXHjxsHW1hYGBgbQ19dHXl7eG8+Tl5eHmTNnwsHBAYaGhtDV1UV8fDz1dDVBNE+Xsr3ygGixpphbnrvnXwCAJp8Hm+bKS4SYTIbHGzfi8foNgFwOQbu2aLVqFYS2tko7ByGkcRJrinFh5AW1nbsmfHx88M0332D9+vUICwtD27Zt0bt3bwDAihUrsHr1aoSGhsLJyQk6OjqYPn06pFKpUmP28vLCkydPsHr1arRu3RpCoRA9e/Z843lmzpyJo0ePIjg4GO3atYNYLMawYcOUHh+p/yjpUrKS5NNAWUcX2hq2BQBcScni9n/uaqm0c5U+eoSHs2aj4Px5AIDBZ0NhtmAB+OKa/WdGCGmaeDxetS/xqdvw4cMxbdo07NixAz///DMmTpzIjVONjo7G4MGD8cUXXwAou+x369YtONbgTm0HBwdcuHABY8aM4badf/5/6wvR0dHYsGEDBg4cCAC4f/8+Hj9+rFBGS0sLMpms3HHe3t4YMmQIgLKer+Tk5GrHRhoPuryoZLdFL3uxDIWGAIChG85y2wKHKudxO/lnz+Lup0NQcP48eNrasFj+AyyWLqWEixDSKOnq6sLT0xPz5s1DWloavL29uX22trY4evQozp49i/j4eHz99dfIyMiovLIKTJs2Ddu2bUNYWBhu3boFPz8/3Lx5U6GMra0tIiIiEB8fjwsXLmDUqFEQv/Z/rrW1NY4fP4709HRkZWVxx+3ZswexsbG4du0aRo4cCblcDtL0UNKlZNmpl7llDb4Gkh/nc+vKuKzISkuRuXo1Uny+guzJEwjt7GDz224YfPLJW9dNCCH1mY+PD7KysiCRSGBhYcFtX7BgAVxcXCCRSNCnTx+YmZm9cSD76zw9PfH9999j9uzZ6Nq1K+7du4eJEycqlNm6dSuysrLg4uKC0aNHY+rUqWjRooVCmZUrV+Lo0aOwtLREly5dAAAhISEwMjKCm5sbPDw8IJFI4OLiUrtGIA0a3b2oTLJS/BraGsuaG8NJzwY7hu6H9dwD3O6L3/VDC/3aTxVRkpGB1G9nouByWWJn6OkJ03lzwRfVzfQThJDGpao7wwipDxr73Ys0pkuZch5gWXNjAEBaSS7O3n55rd9UX/hWCVfe6dNInT0Hsqws8HV0YLZ4EQw+/vitQyaEEEKIalDSpUQs72WS1deqL0ZueXlXUPScD2pXZ0kJHq1ZgyebtwAAhI4OaLVqFQStW79dsIQQQghRKRrTpURZOS/nXJnoNINbbtNcB5oaNW/qktRU3BvjxSVcRqNGwfrXXynhIoQQQhog6ulSopKCR9xyxLk0bvngtPdqXFfuiZNImzcPsuxs8PX0YL5kCfQlHyolTkIIIYSoHiVdSiQtKLu8KAYfa47/x22vyezzTCpFZsgqPH3+cFeRkxNahqyEwFJ583sRQgghRPUo6VKimGdlidars6+EejpX+3jpgwd46Pstiq5fBwAYe3mhxbe+4D1/gDYhhBBCGi5KupSpOK/sn1fSrsHOFpWVVpBz9CjSvpsPeW4u+AYGsAhcBr0Pajf4nhBCCCH1DyVdSiSV5gIA7GQWeDFF6ovHVFRGLpUic/kKZP3yCwBA7OyMliuDodWyZV2GSgghhBAVo6RLieKy7wK6IuSXlDVrdxvjKstLU1LwcIYvip4/aqLZVz4wmTYNPC2tOo+VEEIIIapFU0YokaFm2eSnz+SFAABJB7NKy+YcOoSkIUNRdPMmNAwNYfnTRrSYOZMSLkIIUTNvb+8aP0ZIFfr06YPp06er5Fw8Hg/79u3j1hMSEvDOO+9AJBLB2dkZycnJ4PF4iI2NVUk8jQX1dCnRWU0GgAd+YdmlwQ8dTcuVkRcXIyMwEM+idgIAxF27ll1ONKs8QSOEEEJUKS0tDUZGRty6n58fdHR0kJiYCF1dXRgaGiItLQ3NmzdXY5QNDyVdSsSXlQCaApQ8H8ZlaaytsL84KQkPZ/iiOCEB4PHQ7OvxMJkyBTxN+hgIIaS6pFIpBHRXd50ye60j4M6dO/j444/R+pXJuV8vU1NN8XOky4vKwhhuCst+eDTyrfGerWL2n/1//4ekz4ahOCEBGsbGsNyyGS2mT6eEixBC3qBPnz6YMmUKpk+fjubNm0MikQAAQkJC4OTkBB0dHVhaWmLSpEnIy8vjjgsPD4ehoSGOHDkCBwcH6Orqwt3dHWlpLyevlslk8PX1haGhIZo1a4bZs2eDMaZw/uLiYkydOhUtWrSASCTCu+++i0uXLnH7T506BR6PhyNHjqBLly4Qi8X44IMPkJmZiUOHDsHBwQH6+voYOXIkCgoKqnyv0dHR6NOnD7S1tWFkZASJRIKsrKwKy0ZERMDV1RV6enowMzPDyJEjkZmZye3PysrCqFGjYGJiArFYDFtbW4SFhQEoS3imTJkCc3NziEQitG7dGoGBgdyxr15e5PF4iImJweLFi8Hj8eDv71/h5cUbN27go48+gq6uLkxNTTF69Gg8fvzy8XiVfY5NCSVdyiKTQl8mAwDkyfUxrZ8tAEBeWIjUBQuQOms2WEEBtHv0gM2+vdDt1Uud0RJCCBhjkBcUqOX1emLzJtu3b4dAIEB0dDQ2btwIAODz+VizZg1u3ryJ7du348SJE5g9e7bCcQUFBQgODkZERAT++ecfpKSkYObMmdz+lStXIjw8HNu2bcOZM2fw9OlT7N27V6GO2bNn4/fff8f27dtx5coVtGvXDhKJBE+fPlUo5+/vj3Xr1uHs2bO4f/8+hg8fjtDQUOzYsQMHDhzAX3/9hbVr11b6HmNjY9GvXz84Ojri3LlzOHPmDDw8PCB7/t3yupKSEgQEBODatWvYt28fkpOT4e3tze3//vvvERcXh0OHDiE+Ph4//vgjdzlwzZo12L9/P3bt2oXExERERkbC2tq6wvOkpaWhQ4cO+Pbbb5GWlqbQfi88e/YMH3zwAbp06YLLly/j8OHDyMjIwPDhwxXKVfQ5NiXUzaIsJYXI0SibeV5aagR7c30U376NhzNmoPi/2wCPh+aTJ6P5xAngaVR/hnpCCKkrrLAQiS5d1XJuuysx4Glrv7ngc7a2tli+fLnCtlcHlVtbW2PJkiWYMGECNmzYwG0vKSnBxo0b0bZtWwDAlClTsHjxYm5/aGgo5s2bh6FDhwIANm7ciCNHjnD78/Pz8eOPPyI8PBwfffQRAGDz5s04evQotm7dilmzZnFllyxZgl7P/6D28fHBvHnzcOfOHbRp0wYAMGzYMJw8eRJz5syp8D0uX74crq6uCvF36NCh0jb58ssvueU2bdpgzZo16NatG/Ly8qCrq4uUlBR06dIFrq6uXBu9kJKSAltbW7z77rvg8XgKlw1fZ2ZmBk1NTejq6nKXFF/twQKAdevWoUuXLli2bBm3bdu2bbC0tMStW7fQvn17ABV/jk1JvejpWr9+PaytrSESidCjRw9cvHixyvK7d++Gvb09RCIRnJyccPDgQRVFWrmC3IfcslQuQumB/0PS58NR/N9taJg0h1VYGEymTKaEixBCaqFr1/LJ4bFjx9CvXz+0bNkSenp6GD16NJ48eaJwCU9bW5tLuADA3NycuwSXnZ2NtLQ09OjRg9uvqanJJSlA2VimkpISLpkCAC0tLXTv3h3x8fEK8XTq1IlbNjU1hba2Npdwvdj26uW/173o6aqumJgYeHh4wMrKCnp6eujduzeAsoQKACZOnIioqCg4Oztj9uzZOHv2LHest7c3YmNjYWdnh6lTp+Kvv/6q9nkrcu3aNZw8eRK6urrcy97eHkBZG75Q0efYlKi9p2vnzp3w9fXFxo0b0aNHD4SGhkIikSAxMREtWrQoV/7s2bMYMWIEAgMDMWjQIOzYsQOffvoprly5go4dO6rhHZR59Pxh10Ipw/KkM0j77W8AgI6bGyyW/wBNusODEFLP8MRi2F2JUdu5a0JHR0dhPTk5GYMGDcLEiROxdOlSGBsb48yZM/Dx8YFUKoX28140rdem4eHxeDW+tFldr56Lx+NVeG65XP76YRxxDdokPz8fEokEEokEkZGRMDExQUpKCiQSCaRSKQDgo48+wr1793Dw4EEcPXoU/fr1w+TJkxEcHAwXFxckJSXh0KFDOHbsGIYPH47+/fvjt99+q+G7LpOXlwcPDw/88MMP5faZm5tzy69/jk2N2nu6QkJCMG7cOIwdOxaOjo7YuHEjtLW1sW3btgrLr169Gu7u7pg1axYcHBwQEBAAFxcXrFu3TsWRK8rOz4VlJkNguAzWMX8DfD5Mpk+H5ZbNlHARQuolHo8Hvra2Wl5velrHm8TExEAul2PlypV455130L59e6SmptaoDgMDA5ibm+PChQvcttLSUsTEvExE27Zty41BeqGkpASXLl2Co6PjW72H13Xq1AnHjx+vVtmEhAQ8efIEQUFBeO+992Bvb19hL5qJiQm8vLzwyy+/IDQ0FJs2beL26evrw9PTE5s3b8bOnTvx+++/lxunVl0uLi64efMmrK2t0a5dO4VXU0+0XqXWpEsqlSImJgb9+/fntvH5fPTv3x/nzp2r8Jhz584plAcAiURSafni4mLk5OQovOrC/SPRCNwuQ6sngKapKVr/vB3NJ3wNHl/teS0hhDQ67dq1Q0lJCdauXYu7d+8iIiKiVgOzp02bhqCgIOzbtw8JCQmYNGkSnj17xu3X0dHBxIkTMWvWLBw+fBhxcXEYN24cCgoK4OPjo8R3BMybNw+XLl3CpEmTcP36dSQkJODHH38sN34KAKysrCAQCLj3v3//fgQEBCiUWbhwIf744w/cvn0bN2/exJ9//gkHBwcAZR0ev/76KxISEnDr1i3s3r0bZmZmMDQ0rFXskydPxtOnTzFixAhcunQJd+7cwZEjRzB27NhKbwRoitSaETx+/BgymQympoqTiJqamiI9Pb3CY9LT02tUPjAwEAYGBtzL0tJSOcG/hmfTAlJNIN6GB5t9e6H9ypgAQgghytW5c2eEhITghx9+QMeOHREZGakw5UF1ffvttxg9ejS8vLzQs2dP6OnpYciQIQplgoKC8Nlnn2H06NFwcXHB7du3ceTIEYXJQ5Whffv2+Ouvv3Dt2jV0794dPXv2xB9//AHNCqYWMjExQXh4OHbv3g1HR0cEBQUhODhYoYxAIMC8efPQqVMnvP/++9DQ0EBUVBQAQE9Pjxu4361bNyQnJ+PgwYPg17KjwMLCAtHR0ZDJZPjwww/h5OSE6dOnw9DQsNZ1NkY8VlcXt6shNTUVLVu2xNmzZ9GzZ09u++zZs/H3338rdPm+IBAIsH37dowYMYLbtmHDBixatAgZGRnlyhcXF6O4uJhbz8nJgaWlJbKzs6Gvr6/U91OclARB69bUu0UIqZeKioqQlJQEGxsbiEQidYdDSDlV/Yzm5OTAwMCgTr6/VUWtA+mbN28ODQ2NcslSRkZGpTPdmpmZ1ai8UCiEUChUTsBvILSxUcl5CCGEENLwqLVLRiAQoGvXrgoDB+VyOY4fP67Q8/Wqnj17lhtoePTo0UrLE0IIIYTUB2qfMsLX1xdeXl5wdXVF9+7dERoaivz8fIwdOxYAMGbMGLRs2ZK7Vj9t2jT07t0bK1euxMcff4yoqChcvnxZ4Y4MQgghhJD6Ru1Jl6enJx49eoSFCxciPT0dzs7OOHz4MDdYPiUlRWEQnpubG3bs2IEFCxbgu+++g62tLfbt26fWOboIIYQQQt5ErQPp1aExDMQjhJDaoIH0pL5r7APp6TY7QghpYprY39qkAWnsP5uUdBFCSBOh8fzZry8eE0NIffPiZ1OjkT6nWO1jugghhKiGpqYmtLW18ejRI2hpadGklaRekcvlePToEbS1tSucELYxaJzvihBCSDk8Hg/m5uZISkrCvXv31B0OIeXw+XxYWVm99bM56ytKugghpAkRCASwtbWlS4ykXhIIBI26B5aSLkIIaWL4fD7dvUiIGjTedJIQQgghpB6hpIsQQgghRAUo6SKEEEIIUYEmN6brxcRrOTk5ao6EEEIIIdX14nu7IU+g2uSSrtzcXACApaWlmiMhhBBCSE3l5ubCwMBA3WHUSpN79qJcLkdqair09PSUPg9ITk4OLC0tcf/+/Qb7XKiGgNpZNaidVYPaWXWorVWjrtqZMYbc3FxYWFg02GklmlxPF5/PR6tWrer0HPr6+vQLrQLUzqpB7awa1M6qQ22tGnXRzg21h+uFhpkqEkIIIYQ0MJR0EUIIIYSoACVdSiQUCuHn5wehUKjuUBo1amfVoHZWDWpn1aG2Vg1q58o1uYH0hBBCCCHqQD1dhBBCCCEqQEkXIYQQQogKUNJFCCGEEKIClHQRQgghhKgAJV01tH79elhbW0MkEqFHjx64ePFileV3794Ne3t7iEQiODk54eDBgyqKtGGrSTtv3rwZ7733HoyMjGBkZIT+/fu/8XMhZWr68/xCVFQUeDwePv3007oNsJGoaTs/e/YMkydPhrm5OYRCIdq3b0//d1RDTds5NDQUdnZ2EIvFsLS0xIwZM1BUVKSiaBumf/75Bx4eHrCwsACPx8O+ffveeMypU6fg4uICoVCIdu3aITw8vM7jrLcYqbaoqCgmEAjYtm3b2M2bN9m4ceOYoaEhy8jIqLB8dHQ009DQYMuXL2dxcXFswYIFTEtLi/37778qjrxhqWk7jxw5kq1fv55dvXqVxcfHM29vb2ZgYMAePHig4sgblpq28wtJSUmsZcuW7L333mODBw9WTbANWE3bubi4mLm6urKBAweyM2fOsKSkJHbq1CkWGxur4sgblpq2c2RkJBMKhSwyMpIlJSWxI0eOMHNzczZjxgwVR96wHDx4kM2fP5/t2bOHAWB79+6tsvzdu3eZtrY28/X1ZXFxcWzt2rVMQ0ODHT58WDUB1zOUdNVA9+7d2eTJk7l1mUzGLCwsWGBgYIXlhw8fzj7++GOFbT169GBff/11ncbZ0NW0nV9XWlrK9PT02Pbt2+sqxEahNu1cWlrK3Nzc2JYtW5iXlxclXdVQ03b+8ccfWZs2bZhUKlVViI1CTdt58uTJ7IMPPlDY5uvry3r16lWncTYm1Um6Zs+ezTp06KCwzdPTk0kkkjqMrP6iy4vVJJVKERMTg/79+3Pb+Hw++vfvj3PnzlV4zLlz5xTKA4BEIqm0PKldO7+uoKAAJSUlMDY2rqswG7zatvPixYvRokUL+Pj4qCLMBq827bx//3707NkTkydPhqmpKTp27Ihly5ZBJpOpKuwGpzbt7ObmhpiYGO4S5N27d3Hw4EEMHDhQJTE3FfQ9qKjJPfC6th4/fgyZTAZTU1OF7aampkhISKjwmPT09ArLp6en11mcDV1t2vl1c+bMgYWFRblfdPJSbdr5zJkz2Lp1K2JjY1UQYeNQm3a+e/cuTpw4gVGjRuHgwYO4ffs2Jk2ahJKSEvj5+aki7AanNu08cuRIPH78GO+++y4YYygtLcWECRPw3XffqSLkJqOy78GcnBwUFhZCLBarKTL1oJ4u0qgEBQUhKioKe/fuhUgkUnc4jUZubi5Gjx6NzZs3o3nz5uoOp1GTy+Vo0aIFNm3ahK5du8LT0xPz58/Hxo0b1R1ao3Lq1CksW7YMGzZswJUrV7Bnzx4cOHAAAQEB6g6NNGLU01VNzZs3h4aGBjIyMhS2Z2RkwMzMrMJjzMzMalSe1K6dXwgODkZQUBCOHTuGTp061WWYDV5N2/nOnTtITk6Gh4cHt00ulwMANDU1kZiYiLZt29Zt0A1QbX6ezc3NoaWlBQ0NDW6bg4MD0tPTIZVKIRAI6jTmhqg27fz9999j9OjR+OqrrwAATk5OyM/Px/jx4zF//nzw+dQnoQyVfQ/q6+s3uV4ugHq6qk0gEKBr1644fvw4t00ul+P48ePo2bNnhcf07NlToTwAHD16tNLypHbtDADLly9HQEAADh8+DFdXV1WE2qDVtJ3t7e3x77//IjY2lnt98skn6Nu3L2JjY2FpaanK8BuM2vw89+rVC7dv3+aSWgC4desWzM3NKeGqRG3auaCgoFxi9SLRZfRIYqWh78HXqHskf0MSFRXFhEIhCw8PZ3FxcWz8+PHM0NCQpaenM8YYGz16NJs7dy5XPjo6mmlqarLg4GAWHx/P/Pz8aMqIaqhpOwcFBTGBQMB+++03lpaWxr1yc3PV9RYahJq28+vo7sXqqWk7p6SkMD09PTZlyhSWmJjI/vzzT9aiRQu2ZMkSdb2FBqGm7ezn58f09PTYr7/+yu7evcv++usv1rZtWzZ8+HB1vYUGITc3l129epVdvXqVAWAhISHs6tWr7N69e4wxxubOnctGjx7NlX8xZcSsWbNYfHw8W79+PU0ZQapv7dq1zMrKigkEAta9e3d2/vx5bl/v3r2Zl5eXQvldu3ax9u3bM4FAwDp06MAOHDig4ogbppq0c+vWrRmAci8/Pz/VB97A1PTn+VWUdFVfTdv57NmzrEePHkwoFLI2bdqwpUuXstLSUhVH3fDUpJ1LSkqYv78/a9u2LROJRMzS0pJNmjSJZWVlqT7wBuTkyZMV/n/7om29vLxY7969yx3j7OzMBAIBa9OmDQsLC1N53PUFjzHqRyWEEEIIqWs0posQQgghRAUo6SKEEEIIUQFKugghhBBCVICSLkIIIYQQFaCkixBCCCFEBSjpIoQQQghRAUq6CCGEEEJUgJIuQkiFwsPDYWhoqO4wao3H42Hfvn1VlvH29sann36qkngIIYSSLkIaMW9vb/B4vHKv27dvqzs0hIeHc/Hw+Xy0atUKY8eORWZmplLqT0tLw0cffQQASE5OBo/HQ2xsrEKZ1atXIzw8XCnnU7ZTp06Bx+Ph2bNn6g6FEKIkmuoOgBBSt9zd3REWFqawzcTERE3RKNLX10diYiLkcjmuXbuGsWPHIjU1FUeOHHnrus3MzN5YxsDA4K3PU1NSqZQeXE1IE0U9XYQ0ckKhEGZmZgovDQ0NhISEwMnJCTo6OrC0tMSkSZOQl5dXaT3Xrl1D3759oaenB319fXTt2hWXL1/m9p85cwbvvfcexGIxLC0tMXXqVOTn51cZG4/Hg5mZGSwsLPDRRx9h6tSpOHbsGAoLCyGXy7F48WK0atUKQqEQzs7OOHz4MHesVCrFlClTYG5uDpFIhNatWyMwMFCh7heXF21sbAAAXbp0AY/HQ58+fQAoXl7ctGkTLCwsIJfLFWIcPHgwvvzyS279jz/+gIuLC0QiEdq0aYNFixahtLS00vf44hxLly6FhYUF7OzsAAARERFwdXWFnp4ezMzMMHLkSK6XLzk5GX379gUAGBkZgcfjwdvbGwAgl8sRGBgIGxsbiMVidO7cGb/99luV7UwIqR8o6SKkieLz+VizZg1u3ryJ7du348SJE5g9e3al5UeNGoVWrVrh0qVLiImJwdy5c6GlpQUAuHPnDtzd3fHZZ5/h+vXr2LlzJ86cOYMpU6bUKCaxWAy5XI7S0lKsXr0aK1euRHBwMK5fvw6JRIJPPvkE//33HwBgzZo12L9/P3bt2oXExERERkbC2tq6wnovXrwIADh27BjS0tKwZ8+ecmU+//xzPHnyBCdPnuS2PX36FIcPH8aoUaMAAKdPn8aYMWMwbdo0xMXF4aeffkJ4eDiWLl1a5fs6fvw4EhMTcfToUfz5558AgJKSEgQEBODatWvYt28fkpOTucTK0tISv//+OwAgMTERaWlpWL16NQAgMDAQP//8MzZu3IibN29ixowZ+OKLL/D3339Xs5UJIWqj7iduE0LqjpeXF9PQ0GA6Ojrca9iwYRWW3b17N2vWrBm3HhYWxgwMDLh1PT09Fh4eXuGxPj4+bPz48QrbTp8+zfh8PissLKzwmNfrv3XrFmvfvj1zdXVljDFmYWHBli5dqnBMt27d2KRJkxhjjH3zzTfsgw8+YHK5vML6AbC9e/cyxhhLSkpiANjVq1cVynh5ebHBgwdz64MHD2Zffvklt/7TTz8xCwsLJpPJGGOM9evXjy1btkyhjoiICGZubl5hDC/OYWpqyoqLiystwxhjly5dYgBYbm4uY4yxkydPMgAsKyuLK1NUVMS0tbXZ2bNnFY718fFhI0aMqLJ+Qoj60ZguQhq5vn374scff+TWdXR0AJT1+gQGBiIhIQE5OTkoLS1FUVERCgoKoK2tXa4eX19ffPXVV4iIiED//v3x+eefo23btgDKLj1ev34dkZGRXHnGGORyOZKSkuDg4FBhbNnZ2dDV1YVcLkdRURHeffddbNmyBTk5OUhNTUWvXr0Uyvfq1QvXrl0DUHbZbsCAAbCzs4O7uzsGDRqEDz/88K3aatSoURg3bhw2bNgAoVCIyMhI/O9//wOfz+feZ3R0tELPlkwmq7LdAMDJyancOK6YmBj4+/vj2rVryMrK4i5rpqSkwNHRscJ6bt++jYKCAgwYMEBhu1QqRZcuXWr9vgkhqkFJFyGNnI6ODtq1a6ewLTk5GYMGDcLEiROxdOlSGBsb48yZM/Dx8YFUKq0wefD398fIkSNx4MABHDp0CH5+foiKisKQIUOQl5eHr7/+GlOnTi13nJWVVaWx6enp4cqVK+Dz+TA3N4dYLAYA5OTkvPF9ubi4ICkpCYcOHcKxY8cwfPhw9O/f/63GN3l4eIAxhgMHDqBbt244ffo0Vq1axe3Py8vDokWLMHTo0HLHikSiSut9kei+kJ+fD4lEAolEgsjISJiYmCAlJQUSiQRSqbTSel6MuTtw4ABatmypsE8oFFbrPRJC1IeSLkKaoJiYGMjlcqxcuZLrxdm1a9cbj2vfvj3at2+PGTNmYMSIEQgLC8OQIUPg4uKCuLi4csndm/D5/AqP0dfXh4WFBaKjo9G7d29ue3R0NLp3765QztPTE56enhg2bBjc3d3x9OlTGBsbK9T3opdJJpNVGY9IJMLQoUMRGRmJ27dvw87ODi4uLtx+FxcXJCYm1vh9vi4hIQFPnjxBUFAQLC0tAUDhpoTKYnZ0dIRQKERKSopCuxBCGgZKughpgtq1a4eSkhKsXbsWHh4eiI6OxsaNGystX1hYiFmzZmHYsGGwsbHBgwcPcOnSJXz22WcAgDlz5uCdd97BlClT8NVXX0FHRwdxcXE4evQo1q1bV6sYZ82aBT8/P7Rt2xbOzs4ICwtDbGwsdwkzJCQE5ubm6NKlC/h8Pnbv3g0zM7MKJ3Rt0aIFxGIxDh8+jFatWkEkElU6XcSoUaMwaNAg3Lx5E1988YXCvoULF2LQoEGwsrLCsGHDwOfzce3aNdy4cQNLliyp9nuzsrKCQCDA2rVrMWHCBNy4cQMBAQEKZVq3bg0ej4c///wTAwcOhFgshp6eHmbOnIkZM2ZALpfj3XffRXZ2NqKjo6Gvrw8vL69qx0AIUQN1DyojhNSd1weKvyokJISZm5szsVjMJBIJ+/nnnxUGbr860L24uJj973//Y5aWlkwgEDALCws2ZcoUhUHyFy9eZAMGDGC6urpMR0eHderUqdxA+Fe9PpD+dTKZjPn7+7OWLVsyLS0t1rlzZ3bo0CFu/6ZNm5izszPT0dFh+vr6rF+/fuzKlSvcfrwykJ4xxjZv3swsLS0Zn89nvXv3rrR9ZDIZMzc3ZwDYnTt3ysV1+PBh5ubmxsRiMdPX12fdu3dnmzZtqvR9VPYZ7Nixg1lbWzOhUMh69uzJ9u/fX26w/+LFi5mZmRnj8XjMy8uLMcaYXC5noaGhzM7OjmlpaTETExMmkUjY33//XWkMhJD6gccYY+pN+wghhBBCGj+ap4sQQgghRAUo6SKEEEIIUQFKugghhBBCVICSLkIIIYQQFaCkixBCCCFEBSjpIoQQQghRAUq6CCGEEEJUgJIuQgghhBAVoKSLEEIIIUQFKOkihBBCCFEBSroIIYQQQlSAki5CCCGEEBX4f+N8DfVCBOUDAAAAAElFTkSuQmCC", |
|
|
1275 |
"text/plain": [ |
|
|
1276 |
"<Figure size 640x480 with 1 Axes>" |
|
|
1277 |
] |
|
|
1278 |
}, |
|
|
1279 |
"metadata": {}, |
|
|
1280 |
"output_type": "display_data" |
|
|
1281 |
} |
|
|
1282 |
], |
|
|
1283 |
"source": [ |
|
|
1284 |
"y_train_pred = model_final.predict_proba(x_train)\n", |
|
|
1285 |
"y_val_pred = model_final.predict_proba(x_val)\n", |
|
|
1286 |
"y_test_pred = model_final.predict_proba(x_test)\n", |
|
|
1287 |
"\n", |
|
|
1288 |
"fpr_test, tpr_test, _ = roc_curve(y_test, y_test_pred[:, 1])\n", |
|
|
1289 |
"fpr_val, tpr_val, _ = roc_curve(y_val, y_val_pred[:, 1])\n", |
|
|
1290 |
"fpr_train, tpr_train, _ = roc_curve(y_train, y_train_pred[:, 1])\n", |
|
|
1291 |
"\n", |
|
|
1292 |
"auc_test = auc(fpr_test, tpr_test)\n", |
|
|
1293 |
"auc_val = auc(fpr_val, tpr_val)\n", |
|
|
1294 |
"auc_train = auc(fpr_train, tpr_train)\n", |
|
|
1295 |
"\n", |
|
|
1296 |
"plt.title(f\"ROC curve, AUC=(train: {auc_train:.4f}, val: {auc_val:.4f}), AUC FOR NLST: {auc_test:.4f}\")\n", |
|
|
1297 |
"plt.plot(fpr_test, tpr_test, label=\"Test data (NLST)\")\n", |
|
|
1298 |
"plt.plot(fpr_train, tpr_train, label=\"Train data\")\n", |
|
|
1299 |
"plt.plot(fpr_val, tpr_val, label=\"Val data\")\n", |
|
|
1300 |
"plt.plot([0, 1], [0,1], label=\"random classifier\")\n", |
|
|
1301 |
"plt.legend()\n", |
|
|
1302 |
"plt.xlabel(\"False Positive rate\")\n", |
|
|
1303 |
"plt.ylabel(\"True Positive rate\")\n", |
|
|
1304 |
"plt.show()" |
|
|
1305 |
] |
|
|
1306 |
}, |
|
|
1307 |
{ |
|
|
1308 |
"attachments": {}, |
|
|
1309 |
"cell_type": "markdown", |
|
|
1310 |
"metadata": {}, |
|
|
1311 |
"source": [ |
|
|
1312 |
"We now look at the precision recall curve on the entirety of PLCO. " |
|
|
1313 |
] |
|
|
1314 |
}, |
|
|
1315 |
{ |
|
|
1316 |
"cell_type": "code", |
|
|
1317 |
"execution_count": 95, |
|
|
1318 |
"metadata": {}, |
|
|
1319 |
"outputs": [ |
|
|
1320 |
{ |
|
|
1321 |
"data": { |
|
|
1322 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQG0lEQVR4nO3dd1gU1/4G8HdpSy9KU0QRsHdRERtqUBQ10XijUa81lkRNjNyYiCaisWDXJPZu7k1iiyZGUaPYYouJLcZgBewgqHRpu+f3hz9WV5ZlQXYXhvfzPDwPe+bM7HeHhX05c2ZGJoQQICIiIpIIE2MXQERERFSaGG6IiIhIUhhuiIiISFIYboiIiEhSGG6IiIhIUhhuiIiISFIYboiIiEhSGG6IiIhIUhhuiIiISFIYbqhcGzZsGLy8vIq1ztGjRyGTyXD06FG91FSedOzYER07dlQ9jouLg0wmw6ZNm4xWE5WcTCbD9OnTS7Sul5cXhg0bVqr1vA6+F+l1MNxQsWzatAkymUz1ZWlpidq1a2P8+PFISEgwdnlEZVpkZGSJwwfp7tSpU5g+fTqSk5ONXQoAYMWKFQxpBmZm7AKofPryyy9Rs2ZNZGVl4cSJE1i5ciUiIyPx999/w9ra2mB1rF27FkqlsljrdOjQAc+ePYOFhYWeqiLSLDIyEsuXL9dbwHn27BnMzEr2Z/3atWswMZHG/7unTp3CjBkzMGzYMDg6Ohq7HKxYsQLOzs5lamRM6hhuqES6d++OFi1aAABGjhyJypUrY/Hixfj5558xYMAAjetkZGTAxsamVOswNzcv9jomJiawtLQs1TpKSgiBrKwsWFlZGbuUMiczM9OgQbmsycvLg1KpLFYIf533tVwuL/G6RGWNNGI6GV3nzp0BALGxsQCez4WxtbXFrVu3EBISAjs7OwwaNAgAoFQqsXTpUjRo0ACWlpZwc3PDmDFj8PTp0wLb3bdvHwIDA2FnZwd7e3u0bNkS33//vWq5pjk3W7ZsgZ+fn2qdRo0a4auvvlItL2zOzfbt2+Hn5wcrKys4Ozvj3//+N+7fv6/WJ/913b9/H71794atrS1cXFzwySefQKFQFLmfvLy80LNnTxw4cAAtWrSAlZUVVq9eDQBITk7Gxx9/DE9PT8jlcvj6+mLevHkFRqaUSiW++uorNGrUCJaWlnBxcUG3bt3w559/qvps3LgRnTt3hqurK+RyOerXr4+VK1cWWV9xJCcnY+LEifDy8oJcLke1atUwZMgQJCUlAXhxCDMuLk5tPU37v2PHjmjYsCHOnTuHDh06wNraGlOmTEHPnj3h7e2t8fkDAgJUATvf//73P9XPsFKlSnj33Xdx9+5dnV7PhQsX0L17d9jb28PW1hZvvPEGzpw5o9Yn/zWdPHkSoaGhcHFxgY2NDfr06YPExESt2x82bBiWL18OAGqHdoEX80sWLlyIpUuXwsfHB3K5HP/88w9ycnIwbdo0+Pn5wcHBATY2Nmjfvj2OHDlS4DlenXMzffp0yGQy3Lx5UzWK4eDggOHDhyMzM1Nt3Vfn3BTntSqVSkyfPh1Vq1aFtbU1OnXqhH/++UfneTzJyckYNmwYHBwc4OjoiKFDh2o8pPTXX39h2LBh8Pb2hqWlJdzd3TFixAg8fvxY7TVPmjQJAFCzZk3Vfs5/H+r6u/Hnn38iODgYzs7OsLKyQs2aNTFixIgCr7uov2VeXl64cuUKjh07pqrl5XlupB8cuaFScevWLQBA5cqVVW15eXkIDg5Gu3btsHDhQtV/4WPGjMGmTZswfPhwfPTRR4iNjcWyZctw4cIFnDx5UjUas2nTJowYMQINGjRAWFgYHB0dceHCBezfvx8DBw7UWMfBgwcxYMAAvPHGG5g3bx4AIDo6GidPnsSECRMKrT+/npYtWyIiIgIJCQn46quvcPLkSVy4cEFtaFuhUCA4OBj+/v5YuHAhDh06hEWLFsHHxwcffPBBkfvq2rVrGDBgAMaMGYNRo0ahTp06yMzMRGBgIO7fv48xY8agevXqOHXqFMLCwvDw4UMsXbpUtf57772HTZs2oXv37hg5ciTy8vLw22+/4cyZM6oP+5UrV6JBgwZ48803YWZmhl9++QVjx46FUqnEuHHjiqyxKOnp6Wjfvj2io6MxYsQING/eHElJSdi9ezfu3bsHZ2fnYm/z8ePH6N69O9599138+9//hpubG/z8/DBkyBD88ccfaNmyparv7du3cebMGSxYsEDVNnv2bHzxxRfo168fRo4cicTERHzzzTfo0KFDgZ/hq65cuYL27dvD3t4en376KczNzbF69Wp07NgRx44dg7+/v1r/Dz/8EE5OTggPD0dcXByWLl2K8ePHY+vWrYU+x5gxY/DgwQMcPHgQ//3vfzX22bhxI7KysjB69GjI5XJUqlQJqampWLduHQYMGIBRo0YhLS0N69evR3BwMM6ePYumTZsWuW/79euHmjVrIiIiAufPn8e6devg6uqq+h3RRpfXGhYWhvnz56NXr14IDg7GpUuXEBwcjKysrCK3L4TAW2+9hRMnTuD9999HvXr1sGvXLgwdOrRA34MHDyImJgbDhw+Hu7s7rly5gjVr1uDKlSs4c+YMZDIZ3n77bVy/fh0//PADlixZonovuri4ANDtd+PRo0fo2rUrXFxcMHnyZDg6OiIuLg47d+5Uq0eXv2VLly7Fhx9+CFtbW0ydOhUA4ObmVuR+odckiIph48aNAoA4dOiQSExMFHfv3hVbtmwRlStXFlZWVuLevXtCCCGGDh0qAIjJkyerrf/bb78JAOK7775Ta9+/f79ae3JysrCzsxP+/v7i2bNnan2VSqXq+6FDh4oaNWqoHk+YMEHY29uLvLy8Ql/DkSNHBABx5MgRIYQQOTk5wtXVVTRs2FDtufbs2SMAiGnTpqk9HwDx5Zdfqm2zWbNmws/Pr9DnzFejRg0BQOzfv1+tfebMmcLGxkZcv35drX3y5MnC1NRU3LlzRwghxOHDhwUA8dFHHxXY9sv7JTMzs8Dy4OBg4e3trdYWGBgoAgMDVY9jY2MFALFx40atr2PatGkCgNi5c2ehdeS/V2JjY9WWv7r/8+sAIFatWqXWNyUlRcjlcvGf//xHrX3+/PlCJpOJ27dvCyGEiIuLE6ampmL27Nlq/S5fvizMzMwKtL+qd+/ewsLCQty6dUvV9uDBA2FnZyc6dOigast/TUFBQWr7e+LEicLU1FQkJydrfZ5x48YJTX928/e7vb29ePTokdqyvLw8kZ2drdb29OlT4ebmJkaMGKHWDkCEh4erHoeHhwsABfr16dNHVK5cWa2tRo0aYujQocV+rfHx8cLMzEz07t1bbXvTp08XANS2qclPP/0kAIj58+erveb27dsXeC9qel//8MMPAoA4fvy4qm3BggUa33uFbePV341du3YJAOKPP/4otG5d/5YJIUSDBg3Ufs9I/3hYikokKCgILi4u8PT0xLvvvgtbW1vs2rULHh4eav1eHcnYvn07HBwc0KVLFyQlJam+/Pz8YGtrqxpqP3jwINLS0jB58uQC8wjyh/I1cXR0REZGBg4ePKjza/nzzz/x6NEjjB07Vu25evTogbp162Lv3r0F1nn//ffVHrdv3x4xMTE6PV/NmjURHBys1rZ9+3a0b98eTk5OavslKCgICoUCx48fBwD8+OOPkMlkCA8PL7Ddl/fLy3N4UlJSkJSUhMDAQMTExCAlJUWnOrX58ccf0aRJE/Tp00drHcUhl8sxfPhwtTZ7e3t0794d27ZtgxBC1b5161a0bt0a1atXBwDs3LkTSqUS/fr1U9t/7u7uqFWrlsZDOPkUCgV+/fVX9O7dW+0QWJUqVTBw4ECcOHECqampauuMHj1a7XW2b98eCoUCt2/fLtFrz9e3b1/VCEM+U1NT1bwbpVKJJ0+eIC8vDy1atMD58+d12q6m9+vjx48LvC5NinqtUVFRyMvLw9ixY9XW+/DDD3WqLTIyEmZmZmp/K0xNTTWu//L7OisrC0lJSWjdujUA6LwvdPndyB/l27NnD3JzczVuR9e/ZWQcPCxFJbJ8+XLUrl0bZmZmcHNzQ506dQqcaWFmZoZq1aqptd24cQMpKSlwdXXVuN1Hjx4BeHGYq2HDhsWqa+zYsdi2bRu6d+8ODw8PdO3aFf369UO3bt0KXSf/j3SdOnUKLKtbty5OnDih1pY/z+VlTk5OGucMaVKzZs0CbTdu3MBff/1VYLv5Xt4vVatWRaVKlbQ+x8mTJxEeHo7Tp08XmFuRkpICBwcHnWotzK1bt9C3b9/X2sarPDw8NE6e7d+/P3766SecPn0abdq0wa1bt3Du3Dm1Q3U3btyAEAK1atXSuG1tE88TExORmZmp8edfr149KJVK3L17Fw0aNFC154eqfE5OTgCg83ugMJreGwCwefNmLFq0CFevXlX7sC2s/6u01Wtvb1/idYEXvz++vr5q/SpVqqTqq83t27dRpUoV2NraqrVr+nk8efIEM2bMwJYtW1S/E/l0De26/G4EBgaib9++mDFjBpYsWYKOHTuid+/eGDhwoGrita5/y8g4GG6oRFq1alVgMuer5HJ5gcCjVCrh6uqK7777TuM6hX2468rV1RUXL17EgQMHsG/fPuzbtw8bN27EkCFDsHnz5tfadj5TU9PXWl/TmVFKpRJdunTBp59+qnGd2rVr67z9W7du4Y033kDdunWxePFieHp6wsLCApGRkViyZEmxT50vqcJGcAqbeF3YGWO9evWCtbU1tm3bhjZt2mDbtm0wMTHBO++8o+qjVCohk8mwb98+jT+fVz84X1dh74GXR5dKQtM++N///odhw4ahd+/emDRpElxdXWFqaoqIiAjVPwH6rFdfr7Uk+vXrh1OnTmHSpElo2rQpbG1toVQq0a1bN53e17r+bshkMuzYsQNnzpzBL7/8ggMHDmDEiBFYtGgRzpw5o3peff4to9fDcEMG5ePjg0OHDqFt27ZaT3/28fEBAPz9998F/iMsioWFBXr16oVevXpBqVRi7NixWL16Nb744guN26pRowaA5xN988/6ynft2jXVcn3y8fFBeno6goKCiux34MABPHnypNDRm19++QXZ2dnYvXu32n/dpTlM7uPjg7///ltrn/z/2l8966W4h25sbGzQs2dPbN++HYsXL8bWrVvRvn17VK1aVa0eIQRq1qxZrCAIPP8Qsra2xrVr1wosu3r1KkxMTODp6VmsbRamJIfsduzYAW9vb+zcuVNtfU2HJo0h//fj5s2baiNJjx8/1mkkq0aNGoiKikJ6erpaCH315/H06VNERUVhxowZmDZtmqr9xo0bBbZZ2H4u7u9G69at0bp1a8yePRvff/89Bg0ahC1btmDkyJE6/y3TVg/pD+fckEH169cPCoUCM2fOLLAsLy9P9UHYtWtX2NnZISIiosAZF9r+Y3z5lFDg+TVtGjduDADIzs7WuE6LFi3g6uqKVatWqfXZt28foqOj0aNHD51e2+vo168fTp8+jQMHDhRYlpycjLy8PADP52QIITBjxowC/fL3S/5/2i/vp5SUFGzcuLHU6u3bty8uXbqEXbt2FVpHfkDNny8EPB+1WbNmTbGfr3///njw4AHWrVuHS5cuoX///mrL3377bZiammLGjBkF3h9CiALvi5eZmpqia9eu+Pnnn9VOW09ISMD333+Pdu3aFXnoRlf513kqzpVzNf08f//9d5w+fbpUanpdb7zxBszMzAqcTr1s2TKd1g8JCUFeXp7a+gqFAt98841aP037AYDa4cl8he1nXX83nj59WuB58s9Ky/8boevfsvx6ysrVkisKjtyQQQUGBmLMmDGIiIjAxYsX0bVrV5ibm+PGjRvYvn07vvrqK/zrX/+Cvb09lixZgpEjR6Jly5YYOHAgnJyccOnSJWRmZhZ6iGnkyJF48uQJOnfujGrVquH27dv45ptv0LRpU9SrV0/jOubm5pg3bx6GDx+OwMBADBgwQHUquJeXFyZOnKjPXQIAmDRpEnbv3o2ePXti2LBh8PPzQ0ZGBi5fvowdO3YgLi4Ozs7O6NSpEwYPHoyvv/4aN27cUA3H//bbb+jUqRPGjx+Prl27qkavxowZg/T0dKxduxaurq54+PBhqdW7Y8cOvPPOOxgxYgT8/Pzw5MkT7N69G6tWrUKTJk3QoEEDtG7dGmFhYaqRpi1btqiCWnHkXyvpk08+gampaYH5Pj4+Ppg1axbCwsIQFxeH3r17w87ODrGxsdi1axdGjx6NTz75pNDtz5o1CwcPHkS7du0wduxYmJmZYfXq1cjOzsb8+fOLXW9h/Pz8AAAfffQRgoODYWpqinfffVfrOj179sTOnTvRp08f9OjRA7GxsVi1ahXq16+P9PT0UqutpNzc3DBhwgQsWrQIb775Jrp164ZLly5h3759cHZ2LnLUolevXmjbti0mT56MuLg41K9fHzt37iwwh8be3h4dOnTA/PnzkZubCw8PD/z666+qa2u9LH8/T506Fe+++y7Mzc3Rq1cvnX83Nm/ejBUrVqBPnz7w8fFBWloa1q5dC3t7e4SEhADQ/W9Zfj0rV67ErFmz4OvrC1dX1wKjxFTKDH5+FpVr+aeHajtFUojnp0zb2NgUunzNmjXCz89PWFlZCTs7O9GoUSPx6aefigcPHqj12717t2jTpo2wsrIS9vb2olWrVuKHH35Qe56XTwXfsWOH6Nq1q3B1dRUWFhaievXqYsyYMeLhw4eqPppORRZCiK1bt4pmzZoJuVwuKlWqJAYNGqQ6tb2o15V/ym1RatSoIXr06KFxWVpamggLCxO+vr7CwsJCODs7izZt2oiFCxeKnJwcVb+8vDyxYMECUbduXWFhYSFcXFxE9+7dxblz59T2W+PGjYWlpaXw8vIS8+bNExs2bChwemxJTwUXQojHjx+L8ePHCw8PD2FhYSGqVasmhg4dKpKSklR9bt26JYKCgoRcLhdubm5iypQp4uDBgxpPBW/QoIHW5xs0aJDq1OTC/Pjjj6Jdu3bCxsZG2NjYiLp164px48aJa9euFfl6zp8/L4KDg4Wtra2wtrYWnTp1EqdOnVLrU9j7v7D31Kvy8vLEhx9+KFxcXIRMJlO9Z/L3+4IFCwqso1QqxZw5c0SNGjWEXC4XzZo1E3v27Cnw3hei8FPBExMTNb6Ol98LhZ0KrstrzcvLE1988YVwd3cXVlZWonPnziI6OlpUrlxZvP/++1r3iRDP30uDBw8W9vb2wsHBQQwePFhcuHChwHvx3r17ok+fPsLR0VE4ODiId955Rzx48KDA6xbi+eUVPDw8hImJidpr1eV34/z582LAgAGievXqQi6XC1dXV9GzZ0/x559/Fqhdl79l8fHxokePHsLOzk4A4GnhBiATwgizwoiISNKSk5Ph5OSEWbNmqS5eR2QonHNDRESv5dmzZwXa8ufC8FYDZAycc0NERK9l69at2LRpE0JCQmBra4sTJ07ghx9+QNeuXdG2bVtjl0cVEMMNERG9lsaNG8PMzAzz589HamqqapLxrFmzjF0aVVCcc0NERESSwjk3REREJCkMN0RERCQpFW7OjVKpxIMHD2BnZ8dLYhMREZUTQgikpaWhatWqBe5b+KoKF24ePHhQaveJISIiIsO6e/cuqlWrprVPhQs3dnZ2AJ7vnNK6XwwRERHpV2pqKjw9PVWf49pUuHCTfyjK3t6e4YaIiKic0WVKCScUExERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQw3BAREZGkMNwQERGRpDDcEBERkaQYNdwcP34cvXr1QtWqVSGTyfDTTz8Vuc7Ro0fRvHlzyOVy+Pr6YtOmTXqvk4iIiMoPo4abjIwMNGnSBMuXL9epf2xsLHr06IFOnTrh4sWL+PjjjzFy5EgcOHBAz5USERFReWHUG2d2794d3bt317n/qlWrULNmTSxatAgAUK9ePZw4cQJLlixBcHCwvsrUSXaeAolp2QAAZ1s5LM1NjVoPERFRRVWu7gp++vRpBAUFqbUFBwfj448/LnSd7OxsZGdnqx6npqbqpbYrD1Lx9opTAIDKNhY4Oqkj7CzN9fJcREREVLhyNaE4Pj4ebm5uam1ubm5ITU3Fs2fPNK4TEREBBwcH1Zenp6deapMBkJs9352PM3JwP1lzPURERKRf5SrclERYWBhSUlJUX3fv3tXL8zSr7oRrs7rD2Vaul+0TERGRbsrVYSl3d3ckJCSotSUkJMDe3h5WVlYa15HL5ZDLGTiIiIgqinI1chMQEICoqCi1toMHDyIgIMBIFREREVFZY9Rwk56ejosXL+LixYsAnp/qffHiRdy5cwfA80NKQ4YMUfV///33ERMTg08//RRXr17FihUrsG3bNkycONEY5RMREVEZZNRw8+eff6JZs2Zo1qwZACA0NBTNmjXDtGnTAAAPHz5UBR0AqFmzJvbu3YuDBw+iSZMmWLRoEdatW2f008CJiIio7DDqnJuOHTtCCFHock1XH+7YsSMuXLigx6qIiIioPCtXc26IiIiIisJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBTypLSswEAaVl5Rq6EiIioYmK40ZPlR24auwQiIqIKieFGTx6lZhu7BCIiogqJ4UZPrC1MjV0CERFRhcRwoydWDDdERERGwXCjJ218nI1dAhERUYXEcFPKGlS1BwBUc7IyciVEREQVE8NNKbO3NDd2CURERBUaww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDTSl7mpkDAPj7foqRKyEiIqqYGG5K2dX4NADA6uMxRq6EiIioYmK4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG4ISIiIklhuCEiIiJJYbghIiIiSWG40RMzE5mxSyAiIqqQGG5K2ZSQugCALvXdjFwJERFRxWT0cLN8+XJ4eXnB0tIS/v7+OHv2rNb+S5cuRZ06dWBlZQVPT09MnDgRWVlZBqq2aJbmpgAAGQduiIiIjMKo4Wbr1q0IDQ1FeHg4zp8/jyZNmiA4OBiPHj3S2P/777/H5MmTER4ejujoaKxfvx5bt27FlClTDFw5ERERlVVGDTeLFy/GqFGjMHz4cNSvXx+rVq2CtbU1NmzYoLH/qVOn0LZtWwwcOBBeXl7o2rUrBgwYUORoDxEREVUcRgs3OTk5OHfuHIKCgl4UY2KCoKAgnD59WuM6bdq0wblz51RhJiYmBpGRkQgJCTFIzURERFT2mRnriZOSkqBQKODmpj7x1s3NDVevXtW4zsCBA5GUlIR27dpBCIG8vDy8//77Wg9LZWdnIzs7W/U4NTW1dF4AERERlUlGn1BcHEePHsWcOXOwYsUKnD9/Hjt37sTevXsxc+bMQteJiIiAg4OD6svT09OAFRMREZGhGW3kxtnZGaampkhISFBrT0hIgLu7u8Z1vvjiCwwePBgjR44EADRq1AgZGRkYPXo0pk6dChOTglktLCwMoaGhqsepqakMOERERBJmtJEbCwsL+Pn5ISoqStWmVCoRFRWFgIAAjetkZmYWCDCmps9PvRZCaFxHLpfD3t5e7YuIiIiky2gjNwAQGhqKoUOHokWLFmjVqhWWLl2KjIwMDB8+HAAwZMgQeHh4ICIiAgDQq1cvLF68GM2aNYO/vz9u3ryJL774Ar169VKFHCIiIqrYjBpu+vfvj8TEREybNg3x8fFo2rQp9u/fr5pkfOfOHbWRms8//xwymQyff/457t+/DxcXF/Tq1QuzZ8821ksgIiKiMkYmCjueI1GpqalwcHBASkqKXg5RfXs6DtN+voKQRu5YMciv1LdPRERUERXn87tcnS1FREREVBSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbPUnOzMXiX68hNinD2KUQERFVKAw3enLq1mN8ffgm3l5x0tilEBERVSgMN3r2NDPX2CUQERFVKAw3BpCdpzB2CURERBUGw40BfHfmjrFLICIiqjAYbkpZUlp2gbYnGTlGqISIiKhiYrgpZRtPxRVos7U0M3whREREFRTDTSnLyVMWaLNjuCEiIjIYhptSlqsoGG5s5Qw3REREhsJwU8qUomAbww0REZHhMNwYgIlMZuwSiIiIKgyGGyIiIpIUhptSVq+KvbFLICIiqtAYbkrZpODaxi6BiIioQmO4KWWW5qbGLoGIiKhCY7ghIiIiSWG4ISIiIklhuCEiIiJJYbgxgNuPM/A4veANNYmIiKj0MdwYwPRf/oHfrEM4cvWRsUshIiKSPIYbA1p66LqxSyAiIpI8hhsDcrKxMHYJREREksdwY0CVrBluiIiI9I3hxoA4ckNERKR/DDcGVInhhoiISO8YbkpZWlZeocts5WYGrISIiKhiYrgpZbcfZxS6TCYzYCFEREQVFMNNKcvJUxq7BCIiogqN4aaU5SiEsUsgIiKq0BhuSlmu4sXIzf/e88fUkHqqx/eTnxmjJCIiogqF4aaUvXxYytnOAqM6eKserz4WY4ySiIiIKhSGm1L28siNhSl3LxERkaHx07eUdajlovpebm5qxEqIiIgqJoabUtbY00H1PUduiIiIDI+fvqUs96WzpeTmhe/emMR0TN99BQ9TOMmYiIioNDHclLLsXIXq+/yRmw87+xbo13nRMWw6FYeAiMMGq42IiKgi4P0ASpn5S4ei8sONt4uNqi05Mwfb/rxr8LqIiIgqCoabUuZZyRrjOvnAydoCJibP77fwOD1HtVyhFJgTedVY5REREUkew40eTAquq/b4ccaLcJOQmm3ocoiIiCoUo8+5Wb58Oby8vGBpaQl/f3+cPXtWa//k5GSMGzcOVapUgVwuR+3atREZGWmgakvmcfqLQBPy9W9GrISIiEj6jBputm7ditDQUISHh+P8+fNo0qQJgoOD8ejRI439c3Jy0KVLF8TFxWHHjh24du0a1q5dCw8PDwNXXjwBPpWNXQIREVGFYdRws3jxYowaNQrDhw9H/fr1sWrVKlhbW2PDhg0a+2/YsAFPnjzBTz/9hLZt28LLywuBgYFo0qSJgSsvnl6Nqxq7BCIiogrDaOEmJycH586dQ1BQ0ItiTEwQFBSE06dPa1xn9+7dCAgIwLhx4+Dm5oaGDRtizpw5UCgUGvsDQHZ2NlJTU9W+DM1EJit0mUwGKJW8kzgREVFpKdGEYoVCgU2bNiEqKgqPHj2CUqlUW374cNHXbklKSoJCoYCbm5tau5ubG65e1Xw2UUxMDA4fPoxBgwYhMjISN2/exNixY5Gbm4vw8HCN60RERGDGjBk6vjLDEwK4+zQTNSrbFN2ZiIiIilSicDNhwgRs2rQJPXr0QMOGDSHTMjJRmpRKJVxdXbFmzRqYmprCz88P9+/fx4IFCwoNN2FhYQgNDVU9Tk1Nhaenp0Hq1WbFoOYI23kZKc9ykceRGyIiolJTonCzZcsWbNu2DSEhISV+YmdnZ5iamiIhIUGtPSEhAe7u7hrXqVKlCszNzWFq+uKGlPXq1UN8fDxycnJgYWFRYB25XA65XF7iOkvDq9nPx8UGIY2qIGznZeMUREREJGElmnNjYWEBX9+CtxQo7jb8/PwQFRWlalMqlYiKikJAQIDGddq2bYubN2+qHQa7fv06qlSpojHYlBWvjmzdSswwUiVERETSV6Jw85///AdfffUVhHi9wymhoaFYu3YtNm/ejOjoaHzwwQfIyMjA8OHDAQBDhgxBWFiYqv8HH3yAJ0+eYMKECbh+/Tr27t2LOXPmYNy4ca9VBxEREUlHiQ5LnThxAkeOHMG+ffvQoEEDmJubqy3fuXOnTtvp378/EhMTMW3aNMTHx6Np06bYv3+/apLxnTt3YGLyIn95enriwIEDmDhxIho3bgwPDw9MmDABn332WUleBhEREUlQicKNo6Mj+vTpUyoFjB8/HuPHj9e47OjRowXaAgICcObMmVJ5bmNZ2r8pACDlWS4AIFeh1NKbiIiIiqNE4Wbjxo2lXYfk/TCqNQasPQNnWwv0aqJ+Ub9d5+8jLMTeSJURERFJy2vdODMxMRHXrl0DANSpUwcuLi6lUpQUBfhURsyc52eX5d8tPN+z3MIvQkhERETFU6IJxRkZGRgxYgSqVKmCDh06oEOHDqhatSree+89ZGZmlnaNkmFiIisQbADg29O3cSsx3QgVERERSU+Jwk1oaCiOHTuGX375BcnJyUhOTsbPP/+MY8eO4T//+U9p1yhZzrYvTl8P+5HXvCEiIioNJTos9eOPP2LHjh3o2LGjqi0kJARWVlbo168fVq5cWVr1SVpSeo7q+2sJaUashIiISDpKNHKTmZlZ4J5QAODq6srDUiXkbm+p+j47j3NwiIiISqpE4SYgIADh4eHIyspStT179gwzZswo9OrCpF3+yM1f95LRMPwAFv96zcgVERERlU8lOiz11VdfITg4GNWqVUOTJk0AAJcuXYKlpSUOHDhQqgVWJEIIjP3uPHIVAl8fvokmno54o17BETIiIiIqnEyU8B4KmZmZ+O6773D16lUAz29gOWjQIFhZWZVqgaUtNTUVDg4OSElJgb29ca8ts/DANSw7clNrn7i5PQxUDRERUdlVnM/vEoeb8qoshRsAqD9tPzJzCp9j42Inx4ahLdGomoMBqyIiIipbivP5rfNhqd27d6N79+4wNzfH7t27tfZ98803dd1shfdBoA8WHbxe6PLEtGz0WnaCIzhEREQ60jnc9O7dG/Hx8XB1dUXv3r0L7SeTyaBQ8GwfXXVt4K413BAREVHx6BxulEqlxu/p9fi42Bi7BCIiIkkp0angmiQnJ5fWpioUM1MTHJvUEfWqPD9+WM3JCt+P8jdyVUREROVXicLNvHnzsHXrVtXjd955B5UqVYKHhwcuXbpUasVVFDUq22DfhPaIm9sDJz7rjDY+zjjxWSfUdbczdmlERETlTonCzapVq+Dp6QkAOHjwIA4dOoT9+/eje/fumDRpUqkWWFFVc7LGdyM5gkNERFRcJbqIX3x8vCrc7NmzB/369UPXrl3h5eUFf39+IOvDiRtJaOzpAFsLM413FiciIqLnSjRy4+TkhLt37wIA9u/fj6CgIADPr7DLM6X049/rf0fj6b+iw4Ijxi6FiIioTCvRyM3bb7+NgQMHolatWnj8+DG6d+8OALhw4QJ8fX1LtcCKzERWcITm3tNnSHmWCwcrcyNUREREVPaVaORmyZIlGD9+POrXr4+DBw/C1tYWAPDw4UOMHTu2VAusyJxsLDS2h3z1m4ErISIiKj94+4Uy7kHyM7SZe1itza+GE378oI2RKiIiIjI83n5BQqo6WsGzkhXuPnmmajt3+6kRKyIiIirbdB65MTExUd1+wcSk8KNZZf32C+Vt5AYA7jzOxLk7TzBx64trCPFeU0REVJEU5/Nb5zk3SqUSrq6uqu8L+yrLwaa8ql7ZGn2aVUOlQubgEBER0QuldvsF0r9vR7QydglERERlXonCzUcffYSvv/66QPuyZcvw8ccfv25NVAhLc1PV9zl5vHkpERGRJiUKNz/++CPatm1boL1NmzbYsWPHaxdFmlmav/hx/fpPvBErISIiKrtKFG4eP34MBweHAu329vZISkp67aJIs2pO1qrvx39/wYiVEBERlV0lCje+vr7Yv39/gfZ9+/bB29v7tYsiIiIiKqkS3X4hNDQU48ePR2JiIjp37gwAiIqKwqJFi7B06dLSrI+IiIioWEoUbkaMGIHs7GzMnj0bM2fOBAB4eXlh5cqVGDJkSKkWSOrGBHpj9bEYY5dBRERUZr327RcSExNhZWWlur9UWVceL+L3susJaei65Dgq2Vjg/BddjF0OERGRQejlIn6vysvLw6FDh7Bz507k56MHDx4gPT29pJskIiIiem0lOix1+/ZtdOvWDXfu3EF2dja6dOkCOzs7zJs3D9nZ2Vi1alVp10lERESkkxKN3EyYMAEtWrTA06dPYWVlpWrv06cPoqKiSq04KtyTjBx8vIWngxMREb2qROHmt99+w+effw4LC/V7HXl5eeH+/fulUhgV7aeLD/Ash/fyIiIielmJwk1hN8i8d+8e7OzsXrsoKtyrt1248iAF2XkKbD4Vx1syEBERoYThpmvXrmrXs5HJZEhPT0d4eDhCQkJKqzbSoF4Ve7TzdVY9/teq06jz+X6E776C2p/vwx9xT4xYHRERkfGV6FTwu3fvolu3bhBC4MaNG2jRogVu3LgBZ2dnHD9+HK6urvqotVSU91PBASBXoUStqfsKXR43t4cBqyEiItK/4nx+l+hsKU9PT1y6dAlbt27FpUuXkJ6ejvfeew+DBg1Sm2BM+mFuqn3ALfznv5GWnYe5bzeGhZn2vmlZuVh66Aa6NXRHS69KpVkmERGRURR75CY3Nxd169bFnj17UK9ePX3VpTdSGLkBgKPXHmHYxj+09ulc1xXrhrSAiYkMAPAg+Rn2/PUAA/1rwFZuhgfJz9Bm7mFV/0nBdTCuk69e6yYiIioJvV7Ez9zcHFlZWSUujkqHj8uLK0LP7tMQ/59f1By++gjeUyIRk5iO5Uduos3cw5gTeRUNww/g/ivBBgAWHLim77KJiIj0rkRzbubMmYPr169j3bp1MDMr0ZEto5HKyA0AnL/zFG72lvBwtEJ2ngJz9kZj8+nbr7XN/3SpjfGdfSGTaUhLRERERlKcz+8ShZv8i/XZ2tqiUaNGsLGxUVu+c+fO4m7SYKQUbl6lUAp0XnQUtx9nFmu96C+7od60/arHByd2QC03ntJPRERlh94nFDs6OqJv374lKo70x9REhmOTOgEAHqY8Q0CE+mGnsO51seTQdWTlvrgeztWZ3Qpsp8uS44iNCOHoDRERlUvFCjdKpRILFizA9evXkZOTg86dO2P69Ok8Q6oMquJghRlvNkD47isAgEOhgfB1tcWo9t74+vANBNZ2QbPqTgAAIQSszE3xLPfFhRnP3X6KFjx7ioiIyqFiHZaaOXMmpk+fjqCgIFhZWeHAgQMYMGAANmzYoM8aS5WUD0u9rp7f/Ia/76eqHr/b0hNz+zY2YkVERETP6e1sqW+//RYrVqzAgQMH8NNPP+GXX37Bd999B6WSl/2Xgj0ftld7vOWPu1h17BbiU3h2HBERlR/FCjd37txRu71CUFAQZDIZHjx4UOqFUdkwd99VtI6IglJZ7HnnRERERlGscJOXlwdLS0u1NnNzc+Tm5pZqUWQ8Jz7rhC713Qq0H776yAjVEBERFV+xJhQLITBs2DDI5XJVW1ZWFt5//32108HL8qngpF01J2usHdICSqXAG4uPITYpAwCQmJ5t5MqIiIh0U6wJxcOHD9ep38aNG0tckL5xQnHxeE3eq/r+dFhnVHHgmXFERGR4ervOTVkOLaR/7645o7qODhERUVlV7HtLUcUyKbiO6vviXvmYiIjIGBhuSKtxnXyx6J0mqscPU54ZsRoiIqKiMdxQkTrVdVV9v/nU692Yk4iISN8YbqhIlWwsVN+vOnYLeQpetJGIiMouhhsqNt+p+5DyjNc2IiKisonhhnTy6t3Dj/CifkREVEYx3JBOLM1N0by6o+rxx1sv4q1lJ4xXEBERUSHKRLhZvnw5vLy8YGlpCX9/f5w9e1an9bZs2QKZTIbevXvrt0ACAOwc21bt8aV7KdhwIhbA87OocjkXh4iIygCjh5utW7ciNDQU4eHhOH/+PJo0aYLg4GA8eqT9sEdcXBw++eQTtG/fXms/Kl0Xp3VRe/zlnn/Q65sTCIg4jE93/GWkqoiIiF4werhZvHgxRo0aheHDh6N+/fpYtWoVrK2tsWHDhkLXUSgUGDRoEGbMmAFvb28DVkuO1ha4NSdEre3y/RQAwK4L941REhERkRqjhpucnBycO3cOQUFBqjYTExMEBQXh9OnTha735ZdfwtXVFe+9916Rz5GdnY3U1FS1L3o9piYybH8/QOOy1CyeRUVERMZl1HCTlJQEhUIBNzc3tXY3NzfEx8drXOfEiRNYv3491q5dq9NzREREwMHBQfXl6en52nUT0KKGk+r7cZ18VN+v+y3WGOUQERGpGP2wVHGkpaVh8ODBWLt2LZydnXVaJywsDCkpKaqvu3fv6rnKikEmkyFubg/Eze2BScF1Ve1fR91AMW40T0REVOqKdVfw0ubs7AxTU1MkJCSotSckJMDd3b1A/1u3biEuLg69evVStSmVz8/QMTMzw7Vr1+Dj46O2jlwuh1wu10P19DIPRyvcT35+36maYZE48VkneDhaQSaTGbkyIiKqaIw6cmNhYQE/Pz9ERUWp2pRKJaKiohAQUHBOR926dXH58mVcvHhR9fXmm2+iU6dOuHjxIg85GdHJyZ3VHrebdwQ1wyKRlaswUkVERFRRGf2wVGhoKNauXYvNmzcjOjoaH3zwATIyMjB8+HAAwJAhQxAWFgYAsLS0RMOGDdW+HB0dYWdnh4YNG8LCwkLbU5Ge/TyubYG2ul/s553EiYjIoIx6WAoA+vfvj8TEREybNg3x8fFo2rQp9u/fr5pkfOfOHZiYGD2DkQ6aeDoiNiIEHRcexe3Hmar2gIjDAIC4uT2MVRoREVUgMlHBZn+mpqbCwcEBKSkpsLe3N3Y5kjV99xVsOhWn1rZxWEt0qutqnIKIiKhcK87nN4dESC+mv9kAm4a3RGBtF1Xb8E1/ICM7z4hVERFRRcBwQ3rTsY4rNo9opdZ2KDoBQgieLk5ERHrDw1JkEF6T92ps/6JnfbzXrqaBqyEiovKGh6WozPFwtNLYPnPPP1h2+IaBqyEiIiljuCGD6N2saqHLFv56HS1mHTRgNUREJGU8LEUGo1QKmJjIkJmTh8jL8Vj3WwyuxqeplpvIgJgIni5OREQF8bAUlUkmJs9vxWBtYYZ/+VXD/o87wN3eUrVcKQAhBBJSs6BQVqjMTUREpYgjN2R0e/96iHHfn9e4rJVXJWwZ3VoVjIiIqGLiyA2VKyGNCt4kNd/ZuCfwnhKJe08zC+1DRET0MoYbMjqZTIYmno5a+7SbdwSX76UYpiAiIirXeFiKygwhBGSyF4efvj0dh2k/XynQ77uR/mjr62zI0oiIyMh4WIrKpZeDDQAMCfDC+S+6FOg3aN3vSMvKNVRZRERUznDkhsq8+JQstI6I0riseXVH7Bzb1sAVERGRoXHkhiTF3cESt+aE4O8ZwQWWnb+TjEbTDxihKiIiKqsYbqhcMDWRwVZuhr0ftSuwLC0rD3/EPTFCVUREVBbxsBSVW+duP0XflacKXf52Mw8s7t/UcAUREZHe8LAUVQh+NZy0Lt954T5m7/3HQNUQEVFZwXBD5dqxSR1R192u0OVrf4vFxpOxBqyIiIiMjYelSJI+3XEJ2/68p9b24wcB8KtRyUgVERHR6yjO57eZgWoiMqj5/2qC6IdpuHz/xVWN+648DeD54az/vtcK1hZ8+xMRSREPS5Fk/fJhO7TxqVyg/dztp6g/7QDuPnl+v6pnOQpeFJCISEJ4WIoqhHW/xWDW3ugi+33Y2RehXWoXuFoyEREZV3E+vxluqEL5+34Ken5zosh+MXNCYGLCgENEVFbwVHCiQjT0cMDN2d3haidXtb3VtGqBft5TIrH/74dISM3C04wcQ5ZIRESviSM3RAAUSoGsXAUahGu+lYO3sw0OhQZyNIeIyEg4ckNUTKYmMtjIzRAbEaJxeUxSBrynRMJr8l78eiUeWbkKA1dIRES6YrgheolMJkPc3B7oWMcFADC4dY0CfUb/9xzqfrEfA9eewZGrj/AoNcvQZRIRkRY8LEVUBCEEhmw4i99uJGntN7ajD95u7gFf18KvmExERCXDs6W0YLih1/E4PRuf/fgXDkU/KtZ6Yd3rYnQHb55iTkRUQgw3WjDcUGnIUyiRkaNA6rNctJ9/pFjrHgoNhK+rrZ4qIyKSJoYbLRhuSF8S07Lx9/0UfPf7baQ+y8PZuCda+3/5VgPUdrPD4/QcvFHPFZbmpgaqlIio/GG40YLhhgwtNSsXEZFX8cPZO0X2jf6yG6wsGHKIiF7FcKMFww0Z01vLT+LS3WStfT7s7IuWXpXQzteZ19UhIvp/DDdaMNxQWfD3/RTUqGyN7Dwl0rPy0HHh0UL7jungjbCQeoYrjoioDOJF/IjKuIYeDrCzNIezrRxezjaIjQhBp/+/ts6rVh+PwU8X7hu4QiKi8svM2AUQ0fOLB24c3gq5CiVSnuWixaxDass/3noRuQol3mnhaaQKiYjKDx6WIirDPvrhAnZfeqDe1tkXw9vWhJONhZGqIiIyPM650YLhhsoTpVLAe0pkocuvzeoGuRnPriIi6WO40YLhhsqjrFwF6n6xX+OyLvXdMLytFwK8K/MKyEQkWQw3WjDcUHmmVApcuJuMvitPFdpnXCcfTAqua8CqiIj0j+FGC4YbkgKlUqDpl78iNSuvyL68MCARSQHDjRYMNyQ1QgisOR6DjSfjEJ+apbGPnaUZfF1tsX5oSzhamfPigERU7jDcaMFwQ1J281E6vtzzD45fT9R5naaejnC2lWPZwGa8vxURlVkMN1ow3FBF8SxHgXrTNE9C1gXvXk5EZQnDjRYMN1RR5SmUiE3KwK//JGDBgWs6r7f3o3ZoUNVBj5URERWN4UYLhhuigv66l4w3l53U2iekkTvm9W0MO0tzA1VFRPQCw40WDDdERXucng2/V24B8bIBraqja303dKrrasCqiKgiY7jRguGGSDdCCAxefxYnbiZp7bf9/QC09KpkoKqIqKJiuNGC4YaoZFYdu4W5+64WuvzoJx3h5WxjwIqIqCJhuNGC4Ybo9d17mol2847o3L96JWt8N9IfnpWs9VgVEUkZw40WDDdEpUMIgXfXnMHvsU9KtL6vqy1CGrpjRLuacLTmHc6JSDuGGy0YbohKX65CiV8uPcCJm0m4cCcZ7Xyd0bJmJXz0wwWdt7FrbBuYmshQycYC1Zw4wkNE6hhutGC4ITK87DwFvv/9DtYej8GDFM23iHhZh9ou+HZEKwNURkTlBcONFgw3RGVHVHQC3tv8Z5H9TE1kGBJQA1ND6sHM1MQAlRFRWcNwowXDDVHZo1QKyGTA9YR0BC89rrXvh5198UY9N9jKzeBobQ4ZgEo2FpDJeDNQIiljuNGC4Yao7Ntx7h42nYrF3/dTS7R+xNuNMKBV9VKuioiMieFGC4YbovInT6GE79R9xV7vyoxgmJrI8CQjB1UcLDm6Q1SOMdxowXBDJA1CCGTlKhGTlA5TExkOX32E+fuLviFoU09HzOvbGHXc7QxQJRGVFoYbLRhuiKQtIzsPDcIP6NS3jU9lrBjUnNfZISoHGG60YLghqjgep2cDAG4/ycTbK04V2s/C1AR/Te8KS3NTQ5VGRMVUnM/vMnFO5fLly+Hl5QVLS0v4+/vj7NmzhfZdu3Yt2rdvDycnJzg5OSEoKEhrfyKquCrbylHZVo7m1Z0QN7cH4ub2QGxECN7xq6bWL0ehRN0v9sNnSiQepjwzUrVEVFqMPnKzdetWDBkyBKtWrYK/vz+WLl2K7du349q1a3B1dS3Qf9CgQWjbti3atGkDS0tLzJs3D7t27cKVK1fg4eFR5PNx5IaI8v0e8xj915zRuKydrzN6NK6Ctj7O8HCygqkJJyMTGVO5Oizl7++Pli1bYtmyZQAApVIJT09PfPjhh5g8eXKR6ysUCjg5OWHZsmUYMmRIkf0ZbojoVdfi04q8vs4fU4PgYic3UEVE9KrifH6bGagmjXJycnDu3DmEhYWp2kxMTBAUFITTp0/rtI3MzEzk5uaiUqVKGpdnZ2cjOztb9Tg1tWTXzSAi6arjboe4uT2QkpmLJl/+qrFPy9mHVN8721ogK1eJj4Nq4V9+1TghmaiMMWq4SUpKgkKhgJubm1q7m5sbrl69qtM2PvvsM1StWhVBQUEal0dERGDGjBmvXSsRSZ+DtTni5vZQPRZCoNWcKCSmZav1S0rPAQDM2huNWXujATyflFyjsjWmhNRDG9/KkJtxcjKRsRg13LyuuXPnYsuWLTh69CgsLS019gkLC0NoaKjqcWpqKjw9PQ1VIhGVYzKZDH9MDYIQArcS0zHq23OITcrQ2DdHocSNR+kYvukPAICDlTkuhXc1ZLlE9P+MGm6cnZ1hamqKhIQEtfaEhAS4u7trXXfhwoWYO3cuDh06hMaNGxfaTy6XQy7ncXIiKjmZTAZfVzsc+aSjWnv0w1TMiYxGnkLgr3vJyMhRqJalPMuF1+S9aFWzEraMag2ZDLxCMpGBlIkJxa1atcI333wD4PmE4urVq2P8+PGFTiieP38+Zs+ejQMHDqB169bFej5OKCYifUpIzYL/nCitfTrWccHKQX6wsuChKyJdlauzpbZu3YqhQ4di9erVaNWqFZYuXYpt27bh6tWrcHNzw5AhQ+Dh4YGIiAgAwLx58zBt2jR8//33aNu2rWo7tra2sLW1LfL5GG6IyBCOX0/EkA1FX4Orko0FPursC6UA6laxQ1NPR1hblOsZA0R6Ua7CDQAsW7YMCxYsQHx8PJo2bYqvv/4a/v7+AICOHTvCy8sLmzZtAgB4eXnh9u3bBbYRHh6O6dOnF/lcDDdEZEipWblIzsjFPw9TseFkLM7GPtF53a8HNMObTarqsTqi8qPchRtDYrghImO7+yQTEfuiEXk5vljrta/ljOWDmsNObsb5O1ThMNxowXBDRGWVEAKLfr2OZUdu6rxOxzouWD+0Ja+gTJLHcKMFww0RlQdCCJyJeYILd5/iyoNU7P3roU7rzXyrAf7dugZHdkhyGG60YLghovJKCIGnmbn47UYijl1LxM4L93Ve18xEhja+zlgz2I93P6dyieFGC4YbIpKSJxk5eJD8DB/+cKHQCwwW5teJHVDbzU5PlRGVLoYbLRhuiEjK0rJyEf0wDXefZCJXocTV+DRceZCCP+KeFrqOu70lxnf2xYBW1Tl3h8oshhstGG6IqKJKz87DmmO38PVh7ROWqzhYYsG/mqBdLWcDVUZUNIYbLRhuiIiez9/Zce4eNpyMQ/TDVK1993zYDg2q2nOSMhkVw40WDDdERAVl5uRh8o+XcSbmMR69chf0l1VzskJVRyvM79sYLnZy2Mh5NWUyDIYbLRhuiIiK9nvMY/Rfc0anvoG1XdChtgtGtPXi6A7pDcONFgw3RETFk56dh/Cfr+CXSw+Qo1AW2f/s1DfgamdpgMqoImG40YLhhojo9eXkKTHy2z9x/Hqi1n7D2nihoYcD3qjrCicbCwNVR1LEcKMFww0RUek7dTMJA9f9XmQ/O0szrB/aEq52cng52xigMpIKhhstGG6IiPRHCIEbj9Lx2Y9/4cKd5CL7f/VuU7zV1EP/hVG5x3CjBcMNEZFhZecpsPjX61h9PEZrvx6NquDrAc14IUHSiOFGC4YbIiLji4iM1hp2BvpXR8/GVVDbzQ7OtnIDVkZlFcONFgw3RERlx63EdMzbdxW//pOgU/8mno4Y29EHwQ3c9VwZlTUMN1ow3BARlU33k59h8PrfEZOo+w1Avx/ljwDvyry+TgXAcKMFww0RUflxPSENj9NzEBWdgB/P38PTzFyt/VcP9kOTao5wd+B1dqSG4UYLhhsiovItLikDnRcdhVKHT6+WXk7wcbFF42qOGOhfXf/Fkd4w3GjBcENEJB1ZuQpcupus860iAMDGwhTdGlZB+1rO8KvhBM9K1nqskEoLw40WDDdERNIlhMD2c/fwy6UHyFMICAiciXmi8/oRbzdC1/puqMwztMochhstGG6IiCqe248z8OuVBGw/dxfXE9J1Xq+tb2X8278GujV056RlI2O40YLhhoiI8iVn5uDw1Uf4dMdfyNNhEk9r70po5+uMvn7VUMXBygAVUj6GGy0YboiISJtLd5Ox49w97L70ACnPtJ+dBQD/e88f9avaoxJvDKpXDDdaMNwQEVFxPMtR4Iezd7DsyE0kZ+YUeZZWHTc7NK/hhEnBdRh4ShHDjRYMN0RE9DqUSoFf/nqACVsu6rxOXXc7zO7TCI08HGBhZqK/4iSM4UYLhhsiIipNQgg8zsjB1j/u4lp8GnZfeqDTerZyM/Rv6YnW3pXRobYz5Gameq60fGO40YLhhoiI9E0IgZuP0nEwOgHz91/Teb1GHg4YElADfZtXgwnvjq6G4UYLhhsiIjKGPIUSj9KyceTaI6z7LRaxSUXfQ8vcVIaxHX0xsUttA1RYtjHcaMFwQ0REZYlCKTAnMhq7LtzHk4ycQvtZmJpgXCdfTAiqZcDqyg6GGy0YboiIqCx7lqPA+hMxOH4jCWdjNV9duZVXJfi42uKTrrUrzNWUGW60YLghIqLyJCE1C1vO3sWSQ9e19uvZuAq8nW0wqHUNuNlL767oDDdaMNwQEVF59fPF+/jh7B2d7pflbGuB0R28MSTAC5bm5f9MLIYbLRhuiIhICoQQiE/Nwv/O3EZsUgYiL8dr7f9mk6r46t2m5fYeWQw3WjDcEBGRlN17mokVR2/h+9/vFNrnxw/awK+GkwGren0MN1ow3BARUUWhUAps+/MuwnZe1ri8Q20XRLzdCB6OZf8moAw3WjDcEBFRRZScmYNey07g7pNnGpebmchQt4od2tdywYQ3apW5eToMN1ow3BARUUW3+9IDfPTDhSL7eThaYff4tmXidHOGGy0YboiIiF74+34Kzt95iot3krHzwv1C+12c1gWO1sa7yznDjRYMN0RERIXTNk/HxU6Opf2boq2vs8HrYrjRguGGiIhIN08zctBs5kGNyxa90wRvN/cw2KnlDDdaMNwQEREVz90nmXhv8x+4npBeYNnHQbUw4Y1aeg85DDdaMNwQERGV3Lz9V7Hy6K0C7VdmBMNGbqa35y3O57eJ3qogIiIiyfmsW13ERoRgTKC3WnuD8ANYfPA6ysKYCUduiIiIqMTeWHQUtxIz1Nqi/hMIHxfbUn0ejtwQERGRQUT9pyPWD22h1vbGomNGquY5hhsiIiJ6LW/Uc0Pc3B5o5VUJANDau5JR69HfzB8iIiKqULa9H2DsEgBw5IaIiIgkhuGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJMXM2AUYmhACAJCammrkSoiIiEhX+Z/b+Z/j2lS4cJOWlgYA8PT0NHIlREREVFxpaWlwcHDQ2kcmdIlAEqJUKvHgwQPY2dlBJpOV6rZTU1Ph6emJu3fvwt7evlS3TS9wPxsG97NhcD8bDve1YehrPwshkJaWhqpVq8LERPusmgo3cmNiYoJq1arp9Tns7e35i2MA3M+Gwf1sGNzPhsN9bRj62M9Fjdjk44RiIiIikhSGGyIiIpIUhptSJJfLER4eDrlcbuxSJI372TC4nw2D+9lwuK8Noyzs5wo3oZiIiIikjSM3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN8W0fPlyeHl5wdLSEv7+/jh79qzW/tu3b0fdunVhaWmJRo0aITIy0kCVlm/F2c9r165F+/bt4eTkBCcnJwQFBRX5c6Hnivt+zrdlyxbIZDL07t1bvwVKRHH3c3JyMsaNG4cqVapALpejdu3a/Nuhg+Lu56VLl6JOnTqwsrKCp6cnJk6ciKysLANVWz4dP34cvXr1QtWqVSGTyfDTTz8Vuc7Ro0fRvHlzyOVy+Pr6YtOmTXqvE4J0tmXLFmFhYSE2bNggrly5IkaNGiUcHR1FQkKCxv4nT54UpqamYv78+eKff/4Rn3/+uTA3NxeXL182cOXlS3H388CBA8Xy5cvFhQsXRHR0tBg2bJhwcHAQ9+7dM3Dl5Utx93O+2NhY4eHhIdq3by/eeustwxRbjhV3P2dnZ4sWLVqIkJAQceLECREbGyuOHj0qLl68aODKy5fi7ufvvvtOyOVy8d1334nY2Fhx4MABUaVKFTFx4kQDV16+REZGiqlTp4qdO3cKAGLXrl1a+8fExAhra2sRGhoq/vnnH/HNN98IU1NTsX//fr3WyXBTDK1atRLjxo1TPVYoFKJq1aoiIiJCY/9+/fqJHj16qLX5+/uLMWPG6LXO8q64+/lVeXl5ws7OTmzevFlfJUpCSfZzXl6eaNOmjVi3bp0YOnQow40OirufV65cKby9vUVOTo6hSpSE4u7ncePGic6dO6u1hYaGirZt2+q1TinRJdx8+umnokGDBmpt/fv3F8HBwXqsTAgeltJRTk4Ozp07h6CgIFWbiYkJgoKCcPr0aY3rnD59Wq0/AAQHBxfan0q2n1+VmZmJ3NxcVKpUSV9llnsl3c9ffvklXF1d8d577xmizHKvJPt59+7dCAgIwLhx4+Dm5oaGDRtizpw5UCgUhiq73CnJfm7Tpg3OnTunOnQVExODyMhIhISEGKTmisJYn4MV7saZJZWUlASFQgE3Nze1djc3N1y9elXjOvHx8Rr7x8fH663O8q4k+/lVn332GapWrVrgF4peKMl+PnHiBNavX4+LFy8aoEJpKMl+jomJweHDhzFo0CBERkbi5s2bGDt2LHJzcxEeHm6IssudkuzngQMHIikpCe3atYMQAnl5eXj//fcxZcoUQ5RcYRT2OZiamopnz57ByspKL8/LkRuSlLlz52LLli3YtWsXLC0tjV2OZKSlpWHw4MFYu3YtnJ2djV2OpCmVSri6umLNmjXw8/ND//79MXXqVKxatcrYpUnK0aNHMWfOHKxYsQLnz5/Hzp07sXfvXsycOdPYpVEp4MiNjpydnWFqaoqEhAS19oSEBLi7u2tcx93dvVj9qWT7Od/ChQsxd+5cHDp0CI0bN9ZnmeVecffzrVu3EBcXh169eqnalEolAMDMzAzXrl2Dj4+Pfosuh0ryfq5SpQrMzc1hamqqaqtXrx7i4+ORk5MDCwsLvdZcHpVkP3/xxRcYPHgwRo4cCQBo1KgRMjIyMHr0aEydOhUmJvzfvzQU9jlob2+vt1EbgCM3OrOwsICfnx+ioqJUbUqlElFRUQgICNC4TkBAgFp/ADh48GCh/alk+xkA5s+fj5kzZ2L//v1o0aKFIUot14q7n+vWrYvLly/j4sWLqq8333wTnTp1wsWLF+Hp6WnI8suNkryf27Zti5s3b6rCIwBcv34dVapUYbApREn2c2ZmZoEAkx8oBW+5WGqM9jmo1+nKErNlyxYhl8vFpk2bxD///CNGjx4tHB0dRXx8vBBCiMGDB4vJkyer+p88eVKYmZmJhQsXiujoaBEeHs5TwXVQ3P08d+5cYWFhIXbs2CEePnyo+kpLSzPWSygXirufX8WzpXRT3P18584dYWdnJ8aPHy+uXbsm9uzZI1xdXcWsWbOM9RLKheLu5/DwcGFnZyd++OEHERMTI3799Vfh4+Mj+vXrZ6yXUC6kpaWJCxcuiAsXLggAYvHixeLChQvi9u3bQgghJk+eLAYPHqzqn38q+KRJk0R0dLRYvnw5TwUvi7755htRvXp1YWFhIVq1aiXOnDmjWhYYGCiGDh2q1n/btm2idu3awsLCQjRo0EDs3bvXwBWXT8XZzzVq1BAACnyFh4cbvvByprjv55cx3OiuuPv51KlTwt/fX8jlcuHt7S1mz54t8vLyDFx1+VOc/ZybmyumT58ufHx8hKWlpfD09BRjx44VT58+NXzh5ciRI0c0/r3N37dDhw4VgYGBBdZp2rSpsLCwEN7e3mLjxo16r1MmBMffiIiISDo454aIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiAiATCbDTz/9BACIi4uDTCbjHdCJyimGGyIyumHDhkEmk0Emk8Hc3Bw1a9bEp59+iqysLGOXRkTlEO8KTkRlQrdu3bBx40bk5ubi3LlzGDp0KGQyGebNm2fs0oionOHIDRGVCXK5HO7u7vD09ETv3r0RFBSEgwcPAnh+h+eIiAjUrFkTVlZWaNKkCXbs2KG2/pUrV9CzZ0/Y29vDzs4O7du3x61btwAAf/zxB7p06QJnZ2c4ODggMDAQ58+fN/hrJCLDYLghojLn77//xqlTp2BhYQEAiIiIwLfffotVq1bhypUrmDhxIv7973/j2LFjAID79++jQ4cOkMvlOHz4MM6dO4cRI0YgLy8PAJCWloahQ4fixIkTOHPmDGrVqoWQkBCkpaUZ7TUSkf7wsBQRlQl79uyBra0t8vLykJ2dDRMTEyxbtgzZ2dmYM2cODh06hICAAACAt7c3Tpw4gdWrVyMwMBDLly+Hg4MDtmzZAnNzcwBA7dq1Vdvu3Lmz2nOtWbMGjo6OOHbsGHr27Gm4F0lEBsFwQ0RlQqdOnbBy5UpkZGRgyZIlMDMzQ9++fXHlyhVkZmaiS5cuav1zcnLQrFkzAMDFixfRvn17VbB5VUJCAj7//HMcPXoUjx49gkKhQGZmJu7cuaP310VEhsdwQ0Rlgo2NDXx9fQEAGzZsQJMmTbB+/Xo0bNgQALB37154eHiorSOXywEAVlZWWrc9dOhQPH78GF999RVq1KgBuVyOgIAA5OTk6OGVEJGxMdwQUZljYmKCKVOmIDQ0FNevX4dcLsedO3cQGBiosX/jxo2xefNm5Obmahy9OXnyJFasWIGQkBAAwN27d5GUlKTX10BExsMJxURUJr3zzjswNTXF6tWr8cknn2DixInYvHkzbt26hfPnz+Obb77B5s2bAQDjx49Hamoq3n33Xfz555+4ceMG/vvf/+LatWsAgFq1auG///0voqOj8fvvv2PQoEFFjvYQUfnFkRsiKpPMzMwwfvx4zJ8/H7GxsXBxcUFERARiYmLg6OiI5s2bY8qUKQCAypUr4/Dhw5g0aRICAwNhamqKpk2bom3btgCA9evXY/To0WjevDk8PT0xZ84cfPLJJ8Z8eUSkRzIhhDB2EURERESlhYeliIiISFIYboiIiEhSGG6IiIhIUhhuiIiISFIYboiIiEhSGG6IiIhIUhhuiIiISFIYboiIiEhSGG6IiIhIUhhuiIiISFIYboiIiEhSGG6IiIhIUv4PDbd3aUCNgzcAAAAASUVORK5CYII=", |
|
|
1323 |
"text/plain": [ |
|
|
1324 |
"<Figure size 640x480 with 1 Axes>" |
|
|
1325 |
] |
|
|
1326 |
}, |
|
|
1327 |
"metadata": {}, |
|
|
1328 |
"output_type": "display_data" |
|
|
1329 |
} |
|
|
1330 |
], |
|
|
1331 |
"source": [ |
|
|
1332 |
"probs_plco = model_final.predict_proba(x_plco)[:, 1]\n", |
|
|
1333 |
"precision, recall, thresholds = precision_recall_curve(y_plco, probs_plco)\n", |
|
|
1334 |
"plt.plot(recall, precision)\n", |
|
|
1335 |
"plt.xlabel('Recall')\n", |
|
|
1336 |
"plt.ylabel('Precision')\n", |
|
|
1337 |
"plt.title(\"Precision recall curve on training dataset\")\n", |
|
|
1338 |
"plt.show()\n" |
|
|
1339 |
] |
|
|
1340 |
}, |
|
|
1341 |
{ |
|
|
1342 |
"attachments": {}, |
|
|
1343 |
"cell_type": "markdown", |
|
|
1344 |
"metadata": {}, |
|
|
1345 |
"source": [ |
|
|
1346 |
"We now select the precision value to compare with USPSTF at equal recall for PLCO. " |
|
|
1347 |
] |
|
|
1348 |
}, |
|
|
1349 |
{ |
|
|
1350 |
"cell_type": "code", |
|
|
1351 |
"execution_count": 96, |
|
|
1352 |
"metadata": {}, |
|
|
1353 |
"outputs": [ |
|
|
1354 |
{ |
|
|
1355 |
"name": "stdout", |
|
|
1356 |
"output_type": "stream", |
|
|
1357 |
"text": [ |
|
|
1358 |
" --- For PLCO ---\n", |
|
|
1359 |
"For recall = 0.765 precision is : 0.134\n", |
|
|
1360 |
"TP: 2106, FP: 13658, TN: 38751, FN: 646\n", |
|
|
1361 |
"\n" |
|
|
1362 |
] |
|
|
1363 |
} |
|
|
1364 |
], |
|
|
1365 |
"source": [ |
|
|
1366 |
"probs_plco = model_final.predict_proba(x_plco)[:, 1]\n", |
|
|
1367 |
"precision, recall, thresholds = precision_recall_curve(y_plco, probs_plco)\n", |
|
|
1368 |
"#Selection of precision for fixed recall and extraction of threshold\n", |
|
|
1369 |
"recall_value_plco = 0.765\n", |
|
|
1370 |
"df = pd.concat([pd.DataFrame(precision, columns=['precision']), \n", |
|
|
1371 |
" pd.DataFrame(recall,columns=['recall']), \n", |
|
|
1372 |
" pd.DataFrame(thresholds,columns=['thresholds'])], axis=1)\n", |
|
|
1373 |
"max_precision_plco = df.loc[df['recall'] >= recall_value_plco].precision.max() \n", |
|
|
1374 |
"\n", |
|
|
1375 |
"print(\" --- For PLCO ---\")\n", |
|
|
1376 |
"print(\"For recall = \" + str(round(recall_value_plco,3)) + \" precision is : \" + str(round(max_precision_plco,3)) )\n", |
|
|
1377 |
"\n", |
|
|
1378 |
"#Compute confusion matrix with these parameters:\n", |
|
|
1379 |
"threshold_plco = float(df.loc[df['precision'] == max_precision_plco].thresholds)\n", |
|
|
1380 |
"preds_thresh_plco = np.where(probs_plco >= threshold_plco, 1, 0)\n", |
|
|
1381 |
"tn_plco, fp_plco, fn_plco, tp_plco = confusion_matrix(y_plco, preds_thresh_plco).ravel()\n", |
|
|
1382 |
"print(\"TP: \" + str(tp_plco) + \", FP: \" + str(fp_plco)+ \", TN: \" + str(tn_plco) + \", FN: \" + str(fn_plco) + \"\\n\")" |
|
|
1383 |
] |
|
|
1384 |
}, |
|
|
1385 |
{ |
|
|
1386 |
"attachments": {}, |
|
|
1387 |
"cell_type": "markdown", |
|
|
1388 |
"metadata": {}, |
|
|
1389 |
"source": [ |
|
|
1390 |
"Now, we do the same for NLST." |
|
|
1391 |
] |
|
|
1392 |
}, |
|
|
1393 |
{ |
|
|
1394 |
"cell_type": "code", |
|
|
1395 |
"execution_count": 97, |
|
|
1396 |
"metadata": {}, |
|
|
1397 |
"outputs": [ |
|
|
1398 |
{ |
|
|
1399 |
"data": { |
|
|
1400 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABObElEQVR4nO3deVxU5f4H8M/swzYssimiKGruGyahKWYo4nKv5k1TS9QsS723pOxqi2impKVpuZCV2q9baZp5LU1T0swtc8Fb5o4KiiAoMKwDM/P8/jAmR0ABZxg4fN6vF6/k4TnnfM9hpvnwnOecIxNCCBARERFJhNzRBRARERHZEsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww0RERFJCsMNERERSQrDDREREUkKww1Jyrhx4xAUFFSlZfbs2QOZTIY9e/bYpaa6pE+fPujTp4/l+0uXLkEmk2Ht2rUOq4nsZ/bs2ZDJZI4uw8qdr0Gi6mC4ofuydu1ayGQyy5dWq0WrVq0wdepUpKenO7o8olpt27ZtmD17tl23UVBQgNmzZ0s+vNe2/Txw4ABmz56N7OxsR5dSLzHckE28+eab+Oyzz7Bs2TL06NEDK1euRFhYGAoKCmq0jo8++ghnzpyp0jK9e/dGYWEhevfubaeqiMq3bds2zJkzx67bKCgowJw5c8r90H/99ddRWFho1+3XlLvtpyMcOHAAc+bMYbhxEKWjCyBpiIqKQrdu3QAAEydORIMGDbB48WL897//xahRo8pdJj8/Hy4uLjatQ6VSVXkZuVwOrVZr0zqqSwiBoqIiODk5ObqUWqegoADOzs6OLkNSlEollEp+DJD0cOSG7KJv374AgIsXLwK4NRfG1dUVFy5cwMCBA+Hm5oYxY8YAAMxmM5YsWYJ27dpBq9XCz88PkyZNQlZWVpn1fv/99wgPD4ebmxt0Oh0efPBBfPHFF5aflzfnZt26dQgJCbEs06FDByxdutTy84rm3GzYsAEhISFwcnKCt7c3nnzySVy9etWqT+l+Xb16FUOHDoWrqyt8fHzw8ssvw2Qy3fM4BQUFYfDgwdixYwe6desGJycnfPjhhwCA7OxsvPjiiwgMDIRGo0GLFi2wYMECmM1mq3WYzWYsXboUHTp0gFarhY+PDwYMGIAjR45Y+qxZswZ9+/aFr68vNBoN2rZti5UrV96zvqrIzs7GtGnTEBQUBI1Gg8aNG2Ps2LHIzMwE8NcpzEuXLlktV97x79OnD9q3b4+jR4+id+/ecHZ2xquvvorBgwejefPm5W4/LCzMErBL/ec//7H8Dr28vPDEE08gJSWlUvtz/PhxREVFQafTwdXVFY8++igOHTpk1ad0n/bv34+YmBj4+PjAxcUFw4YNQ0ZGxl3XP27cOCxfvhwArE7tlqrs++LIkSOIjIyEt7c3nJyc0KxZM0yYMAHArTlTPj4+AIA5c+ZYtlF6Kqy8OTcymQxTp07F5s2b0b59e2g0GrRr1w7bt28vsw979uxBt27doNVqERwcjA8//LBK83hWrVqF4OBgODk5oXv37vj555/L9CkuLsasWbMQEhICd3d3uLi4oFevXti9e7elz73283//+x/GjRuH5s2bQ6vVwt/fHxMmTMCNGzestpWbm4sXX3zR8hr29fVFv379cOzYMat+v/zyCwYMGAB3d3c4OzsjPDwc+/fvt/x89uzZmD59OgCgWbNmlnrufO2T/TCyk11cuHABANCgQQNLm9FoRGRkJB5++GG8++67lr/CJ02ahLVr12L8+PH417/+hYsXL2LZsmU4fvw49u/fbxmNWbt2LSZMmIB27dph5syZ8PDwwPHjx7F9+3aMHj263Dp27tyJUaNG4dFHH8WCBQsAAKdOncL+/fvxwgsvVFh/aT0PPvgg4uLikJ6ejqVLl2L//v04fvw4PDw8LH1NJhMiIyMRGhqKd999F7t27cKiRYsQHByM559//p7H6syZMxg1ahQmTZqEZ555Bg888AAKCgoQHh6Oq1evYtKkSWjSpAkOHDiAmTNn4tq1a1iyZIll+aeffhpr165FVFQUJk6cCKPRiJ9//hmHDh2yfNivXLkS7dq1w9/+9jcolUp8++23mDx5MsxmM6ZMmXLPGu8lLy8PvXr1wqlTpzBhwgR07doVmZmZ2LJlC65cuQJvb+8qr/PGjRuIiorCE088gSeffBJ+fn4ICQnB2LFj8euvv+LBBx+09L18+TIOHTqEd955x9I2b948vPHGGxgxYgQmTpyIjIwMfPDBB+jdu3eZ3+GdTp48iV69ekGn0+GVV16BSqXChx9+iD59+uCnn35CaGioVf9//vOf8PT0RGxsLC5duoQlS5Zg6tSpWL9+fYXbmDRpElJTU7Fz50589tln5f78Xu+L69evo3///vDx8cGMGTPg4eGBS5cuYdOmTQAAHx8frFy5Es8//zyGDRuGxx57DADQsWPHux77ffv2YdOmTZg8eTLc3Nzw/vvvY/jw4UhOTra8p48fP44BAwagYcOGmDNnDkwmE958801LyLiXTz75BJMmTUKPHj3w4osvIikpCX/729/g5eWFwMBASz+9Xo+PP/4Yo0aNwjPPPIPc3Fx88skniIyMxOHDh9G5c+d77ufOnTuRlJSE8ePHw9/fHydPnsSqVatw8uRJHDp0yBLGnnvuOWzcuBFTp05F27ZtcePGDezbtw+nTp1C165dAQA//vgjoqKiEBISgtjYWMjlcssfDz///DO6d++Oxx57DGfPnsWXX36J9957z/L6r+yxIRsQRPdhzZo1AoDYtWuXyMjIECkpKWLdunWiQYMGwsnJSVy5ckUIIUR0dLQAIGbMmGG1/M8//ywAiM8//9yqffv27Vbt2dnZws3NTYSGhorCwkKrvmaz2fLv6Oho0bRpU8v3L7zwgtDpdMJoNFa4D7t37xYAxO7du4UQQhQXFwtfX1/Rvn17q2199913AoCYNWuW1fYAiDfffNNqnV26dBEhISEVbrNU06ZNBQCxfft2q/a5c+cKFxcXcfbsWav2GTNmCIVCIZKTk4UQQvz4448CgPjXv/5VZt23H5eCgoIyP4+MjBTNmze3agsPDxfh4eGW7y9evCgAiDVr1tx1P2bNmiUAiE2bNlVYR+lr5eLFi1Y/v/P4l9YBQMTHx1v1zcnJERqNRrz00ktW7QsXLhQymUxcvnxZCCHEpUuXhEKhEPPmzbPq99tvvwmlUlmm/U5Dhw4VarVaXLhwwdKWmpoq3NzcRO/evS1tpfsUERFhdbynTZsmFAqFyM7Ovut2pkyZIsr733Bl3xfffPONACB+/fXXCreRkZEhAIjY2NgyP4uNjS2zfQBCrVaL8+fPW9pOnDghAIgPPvjA0jZkyBDh7Owsrl69amk7d+6cUCqV5e7T7UrfY507dxYGg8HSvmrVKgHA6jVoNBqt+gghRFZWlvDz8xMTJkyo1H6W9/r/8ssvBQCxd+9eS5u7u7uYMmVKhXWbzWbRsmVLERkZWeb91axZM9GvXz9L2zvvvFPu651qBk9LkU1ERETAx8cHgYGBeOKJJ+Dq6opvvvkGAQEBVv3uHMnYsGED3N3d0a9fP2RmZlq+QkJC4Orqahl63rlzJ3JzczFjxowy82PuNgTu4eGB/Px87Ny5s9L7cuTIEVy/fh2TJ0+22tagQYPQunVrbN26tcwyzz33nNX3vXr1QlJSUqW216xZM0RGRlq1bdiwAb169YKnp6fVcYmIiIDJZMLevXsBAF9//TVkMhliY2PLrPf243L7HJ6cnBxkZmYiPDwcSUlJyMnJqVSdd/P111+jU6dOGDZs2F3rqAqNRoPx48dbtel0OkRFReGrr76CEMLSvn79ejz00ENo0qQJAGDTpk0wm80YMWKE1fHz9/dHy5YtrU5p3MlkMuGHH37A0KFDrU6BNWzYEKNHj8a+ffug1+utlnn22Wet9rNXr14wmUy4fPlytfa9su+L0tGn7777DiUlJdXaVnkiIiIQHBxs+b5jx47Q6XSW17TJZMKuXbswdOhQNGrUyNKvRYsWiIqKuuf6S99jzz33HNRqtaV93LhxcHd3t+qrUCgsfcxmM27evAmj0Yhu3bqVOV1Ukdtf/0VFRcjMzMRDDz0EAFbr8PDwwC+//ILU1NRy15OYmIhz585h9OjRuHHjhuX3kp+fj0cffRR79+4tc9qYHIOnpcgmli9fjlatWkGpVMLPzw8PPPAA5HLr7KxUKtG4cWOrtnPnziEnJwe+vr7lrvf69esA/jrN1b59+yrVNXnyZHz11VeIiopCQEAA+vfvjxEjRmDAgAEVLlP6gfTAAw+U+Vnr1q2xb98+q7bSeS638/T0LHfOUHmaNWtWpu3cuXP43//+V+Ew9u3HpVGjRvDy8rrrNvbv34/Y2FgcPHiwzBVsOTk5ZT5QqurChQsYPnz4fa3jTgEBAVYffKVGjhyJzZs34+DBg+jRowcuXLiAo0ePWp2qO3fuHIQQaNmyZbnrvtvE84yMDBQUFJT7+2/Tpg3MZjNSUlLQrl07S3tpqCrl6ekJAJV+Ddypsu+L8PBwDB8+HHPmzMF7772HPn36YOjQoRg9ejQ0Gk21tg2U3R/A+jV9/fp1FBYWokWLFmX6ldd2p9L32J2/H5VKVe6cqk8//RSLFi3C6dOnrUJcee+d8ty8eRNz5szBunXrLMeu1O3hfuHChYiOjkZgYCBCQkIwcOBAjB071lLTuXPnAADR0dEVbisnJ8fy+yfHYbghm+jevXuZyZx30mg0ZQKP2WyGr68vPv/883KXud9z1L6+vkhMTMSOHTvw/fff4/vvv8eaNWswduxYfPrpp/e17lIKheK+li/vyiiz2Yx+/frhlVdeKXeZVq1aVXr9Fy5cwKOPPorWrVtj8eLFCAwMhFqtxrZt2/Dee+/V2F+aFY3gVDTxuqIrxoYMGQJnZ2d89dVX6NGjB7766ivI5XI8/vjjlj5msxkymQzff/99ub8fV1fXauxBxSp6Ddw+ulQVlX1fyGQybNy4EYcOHcK3336LHTt2YMKECVi0aBEOHTpU7f209f7cj//85z8YN24chg4diunTp8PX1xcKhQJxcXGWP3ruZcSIEThw4ACmT5+Ozp07w9XVFWazGQMGDLB6/Y8YMQK9evXCN998gx9++AHvvPMOFixYgE2bNiEqKsrS95133kHnzp3L3ZatX1tUPQw35FDBwcHYtWsXevbsedfLn0uHyH///fdK/WV4O7VajSFDhmDIkCEwm82YPHkyPvzwQ7zxxhvlrqtp06YAbk30Lb3qq9SZM2csP7en4OBg5OXlISIi4p79duzYgZs3b1Y4evPtt9/CYDBgy5YtVn+R3+3UTHXq/f333+/ap/Sv2Tvv+1HVUzcuLi4YPHgwNmzYgMWLF2P9+vXo1auX1emR4OBgCCHQrFmzKgVB4FZwcHZ2Lvd+SadPn4ZcLrea8Ho/Kgp8lX1flHrooYfw0EMPYd68efjiiy8wZswYrFu3DhMnTrTLHYh9fX2h1Wpx/vz5Mj8rr+1Ope+hc+fOWb3HSkpKcPHiRXTq1MnStnHjRjRv3hybNm2y2pc7T8VWtJ9ZWVlISEjAnDlzMGvWLEt76SjMnRo2bIjJkydj8uTJuH79Orp27Yp58+YhKirK8v8hnU53z/dmbbvzc33DOTfkUCNGjIDJZMLcuXPL/MxoNFo+CPv37w83NzfExcWhqKjIqt/d/pq881JPuVxuuYLCYDCUu0y3bt3g6+uL+Ph4qz7ff/89Tp06hUGDBlVq3+7HiBEjcPDgQezYsaPMz7Kzs2E0GgEAw4cPhxCi3BvBlR6X0r/Cbz9OOTk5WLNmjc3qHT58OE6cOIFvvvmmwjpKPxhK5wsBt0ZtVq1aVeXtjRw5Eqmpqfj4449x4sQJjBw50urnjz32GBQKBebMmVPm9SGEKPO6uJ1CoUD//v3x3//+1+rS3fT0dHzxxRd4+OGHodPpqlxzeUrv83Rn4Kvs+yIrK6vM/pWOKJS+dkuvSrTlzeQUCgUiIiKwefNmq/kp58+fx/fff3/P5bt16wYfHx/Ex8ejuLjY0r527doydZb3+v3ll19w8OBBq34V7Wd5ywOwOo0J3Hot3jn/zNfXF40aNbIcy5CQEAQHB+Pdd99FXl5emf26/fL/in63VDM4ckMOFR4ejkmTJiEuLg6JiYno378/VCoVzp07hw0bNmDp0qX4xz/+AZ1Oh/feew8TJ07Egw8+iNGjR8PT0xMnTpxAQUFBhaeYJk6ciJs3b6Jv375o3LgxLl++jA8++ACdO3dGmzZtyl1GpVJhwYIFGD9+PMLDwzFq1CjLpeBBQUGYNm2aPQ8JAGD69OnYsmULBg8ejHHjxiEkJAT5+fn47bffsHHjRly6dAne3t545JFH8NRTT+H999/HuXPnLMPsP//8Mx555BFMnToV/fv3t4xeTZo0CXl5efjoo4/g6+uLa9eu2azejRs34vHHH8eECRMQEhKCmzdvYsuWLYiPj0enTp3Qrl07PPTQQ5g5c6ZlpGndunWWoFYVpfdKevnll6FQKMrM9wkODsZbb72FmTNn4tKlSxg6dCjc3Nxw8eJFfPPNN3j22Wfx8ssvV7j+t956Czt37sTDDz+MyZMnQ6lU4sMPP4TBYMDChQurXG9FQkJCAAD/+te/EBkZCYVCgSeeeKLS74tPP/0UK1aswLBhwxAcHIzc3Fx89NFH0Ol0GDhwIIBbp/fatm2L9evXo1WrVvDy8kL79u2rPH/tTrNnz8YPP/yAnj174vnnn4fJZMKyZcvQvn17JCYm3nVZlUqFt956C5MmTULfvn0xcuRIXLx4EWvWrCkz52bw4MHYtGkThg0bhkGDBuHixYuIj49H27ZtrQLG3fazd+/eWLhwIUpKShAQEIAffvjBcg+uUrm5uWjcuDH+8Y9/oFOnTnB1dcWuXbvw66+/YtGiRQBu/XH08ccfIyoqCu3atcP48eMREBCAq1evYvfu3dDpdPj222+tfrevvfYannjiCahUKgwZMsTmNy6lCjjgCi2SkNJLYe92KaoQty6ZdnFxqfDnq1atEiEhIcLJyUm4ubmJDh06iFdeeUWkpqZa9duyZYvo0aOHcHJyEjqdTnTv3l18+eWXVtu5/VLwjRs3iv79+wtfX1+hVqtFkyZNxKRJk8S1a9csfcq7FFkIIdavXy+6dOkiNBqN8PLyEmPGjLFc2n6v/SrvEtvyNG3aVAwaNKjcn+Xm5oqZM2eKFi1aCLVaLby9vUWPHj3Eu+++K4qLiy39jEajeOedd0Tr1q2FWq0WPj4+IioqShw9etTquHXs2FFotVoRFBQkFixYIFavXl3mUtXqXgouhBA3btwQU6dOFQEBAUKtVovGjRuL6OhokZmZaelz4cIFERERITQajfDz8xOvvvqq2LlzZ7mXgrdr1+6u2xszZozlMuyKfP311+Lhhx8WLi4uwsXFRbRu3VpMmTJFnDlz5p77c+zYMREZGSlcXV2Fs7OzeOSRR8SBAwes+lT0+q/oNXUno9Eo/vnPfwofHx8hk8nKvGbu9b44duyYGDVqlGjSpInQaDTC19dXDB48WBw5csRqPQcOHBAhISFCrVZbXS5d0aXg5V0O3bRpUxEdHW3VlpCQILp06SLUarUIDg4WH3/8sXjppZeEVqu9636XWrFihWjWrJnQaDSiW7duYu/evWVeg2azWcyfP180bdpUaDQa0aVLF/Hdd9+Vea/fbT+vXLkihg0bJjw8PIS7u7t4/PHHRWpqqlUfg8Egpk+fLjp16iTc3NyEi4uL6NSpk1ixYkWZuo8fPy4ee+wx0aBBA6HRaETTpk3FiBEjREJCglW/uXPnioCAACGXy3lZeA2TCeGAGWJERCRJQ4cOxcmTJyuc00JUEzjnhoiIquXOh26eO3cO27ZtQ58+fRxTENGfOHJDRETV0rBhQ8szmy5fvoyVK1fCYDDg+PHjFd5jiKgmcEIxERFVy4ABA/Dll18iLS0NGo0GYWFhmD9/PoMNORxHboiIiEhSOOeGiIiIJIXhhoiIiCSl3s25MZvNSE1NhZubG2+PTUREVEcIIZCbm4tGjRqVeU7hnepduElNTbXZc2GIiIioZqWkpKBx48Z37VPvwo2bmxuAWwfHVs+HISIiIvvS6/UIDAy0fI7fTb0LN6WnonQ6HcMNERFRHVOZKSWcUExERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESS4tBws3fvXgwZMgSNGjWCTCbD5s2b77nMnj170LVrV2g0GrRo0QJr1661e51ERERUdzg03OTn56NTp05Yvnx5pfpfvHgRgwYNwiOPPILExES8+OKLmDhxInbs2GHnSomIiKiucOiDM6OiohAVFVXp/vHx8WjWrBkWLVoEAGjTpg327duH9957D5GRkfYqs1IMRhMycg1QyuXwd9c6tBYiIqL6rE7NuTl48CAiIiKs2iIjI3Hw4MEKlzEYDNDr9VZf9nAyVY+HF+zGiA8rroWIiIjsr06Fm7S0NPj5+Vm1+fn5Qa/Xo7CwsNxl4uLi4O7ubvkKDAysiVKJiIjIQepUuKmOmTNnIicnx/KVkpLi6JKIiIjIjhw656aq/P39kZ6ebtWWnp4OnU4HJyencpfRaDTQaDQ1UR4RERHVAnVq5CYsLAwJCQlWbTt37kRYWJiDKiIiIqLaxqHhJi8vD4mJiUhMTARw61LvxMREJCcnA7h1Smns2LGW/s899xySkpLwyiuv4PTp01ixYgW++uorTJs2zRHlExERUS3k0HBz5MgRdOnSBV26dAEAxMTEoEuXLpg1axYA4Nq1a5agAwDNmjXD1q1bsXPnTnTq1AmLFi3Cxx9/7PDLwImIiKj2cOicmz59+kAIUeHPy7v7cJ8+fXD8+HE7VkVERER1WZ2ac0NERER0Lww3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkODzfLly9HUFAQtFotQkNDcfjw4bv2X7JkCR544AE4OTkhMDAQ06ZNQ1FRUQ1VS0RERLWdQ8PN+vXrERMTg9jYWBw7dgydOnVCZGQkrl+/Xm7/L774AjNmzEBsbCxOnTqFTz75BOvXr8err75aw5UTERFRbeXQcLN48WI888wzGD9+PNq2bYv4+Hg4Oztj9erV5fY/cOAAevbsidGjRyMoKAj9+/fHqFGj7jnaQ0RERPWHw8JNcXExjh49ioiIiL+KkcsRERGBgwcPlrtMjx49cPToUUuYSUpKwrZt2zBw4MAKt2MwGKDX662+iIiISLqUjtpwZmYmTCYT/Pz8rNr9/Pxw+vTpcpcZPXo0MjMz8fDDD0MIAaPRiOeee+6up6Xi4uIwZ84cm9ZOREREtZfDJxRXxZ49ezB//nysWLECx44dw6ZNm7B161bMnTu3wmVmzpyJnJwcy1dKSkoNVkxEREQ1zWEjN97e3lAoFEhPT7dqT09Ph7+/f7nLvPHGG3jqqacwceJEAECHDh2Qn5+PZ599Fq+99hrk8rJZTaPRQKPR2H4HiIiIqFZy2MiNWq1GSEgIEhISLG1msxkJCQkICwsrd5mCgoIyAUahUAAAhBD2K5aIiIjqDIeN3ABATEwMoqOj0a1bN3Tv3h1LlixBfn4+xo8fDwAYO3YsAgICEBcXBwAYMmQIFi9ejC5duiA0NBTnz5/HG2+8gSFDhlhCDhEREdVvDg03I0eOREZGBmbNmoW0tDR07twZ27dvt0wyTk5Othqpef311yGTyfD666/j6tWr8PHxwZAhQzBv3jxH7QIRERHVMjJRz87n6PV6uLu7IycnBzqdzmbrPZachcdWHEATL2fsfeURm62XiIiIqvb5XaeuliIiIiK6F4YbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSGGyIiIpIUhhsiIiKSFIYbIiIikhSHh5vly5cjKCgIWq0WoaGhOHz48F37Z2dnY8qUKWjYsCE0Gg1atWqFbdu21VC1REREVNspHbnx9evXIyYmBvHx8QgNDcWSJUsQGRmJM2fOwNfXt0z/4uJi9OvXD76+vti4cSMCAgJw+fJleHh41HzxREREVCs5NNwsXrwYzzzzDMaPHw8AiI+Px9atW7F69WrMmDGjTP/Vq1fj5s2bOHDgAFQqFQAgKCioJksmIiKiWs5hp6WKi4tx9OhRRERE/FWMXI6IiAgcPHiw3GW2bNmCsLAwTJkyBX5+fmjfvj3mz58Pk8lU4XYMBgP0er3VFxEREUmXw8JNZmYmTCYT/Pz8rNr9/PyQlpZW7jJJSUnYuHEjTCYTtm3bhjfeeAOLFi3CW2+9VeF24uLi4O7ubvkKDAy06X4QERFR7eLwCcVVYTab4evri1WrViEkJAQjR47Ea6+9hvj4+AqXmTlzJnJycixfKSkpNVgxERER1TSHzbnx9vaGQqFAenq6VXt6ejr8/f3LXaZhw4ZQqVRQKBSWtjZt2iAtLQ3FxcVQq9VlltFoNNBoNLYtnoiIiGoth43cqNVqhISEICEhwdJmNpuRkJCAsLCwcpfp2bMnzp8/D7PZbGk7e/YsGjZsWG6wISIiovrHoaelYmJi8NFHH+HTTz/FqVOn8PzzzyM/P99y9dTYsWMxc+ZMS//nn38eN2/exAsvvICzZ89i69atmD9/PqZMmeKoXSAiIqJaxqGXgo8cORIZGRmYNWsW0tLS0LlzZ2zfvt0yyTg5ORly+V/5KzAwEDt27MC0adPQsWNHBAQE4IUXXsC///1vR+0CERER1TIyIYRwdBE1Sa/Xw93dHTk5OdDpdDZb77HkLDy24gCaeDlj7yuP2Gy9REREVLXP72qN3JhMJqxduxYJCQm4fv261RwYAPjxxx+rs1oiIiKi+1atcPPCCy9g7dq1GDRoENq3bw+ZTGbruoiIiIiqpVrhZt26dfjqq68wcOBAW9dDREREdF+qdbWUWq1GixYtbF0LERER0X2rVrh56aWXsHTpUtSzuchERERUB1TrtNS+ffuwe/dufP/992jXrp3lCd2lNm3aZJPiiIiIiKqqWuHGw8MDw4YNs3UtRERERPetWuFmzZo1tq6DiIiIyCbu6w7FGRkZOHPmDADggQcegI+Pj02KIiIiIqquak0ozs/Px4QJE9CwYUP07t0bvXv3RqNGjfD000+joKDA1jUSERERVVq1wk1MTAx++uknfPvtt8jOzkZ2djb++9//4qeffsJLL71k6xqJiIiIKq1ap6W+/vprbNy4EX369LG0DRw4EE5OThgxYgRWrlxpq/qIiIiIqqRaIzcFBQWWJ3ffztfXl6eliIiIyKGqFW7CwsIQGxuLoqIiS1thYSHmzJmDsLAwmxVHREREVFXVOi21dOlSREZGonHjxujUqRMA4MSJE9BqtdixY4dNCyQiIiKqimqFm/bt2+PcuXP4/PPPcfr0aQDAqFGjMGbMGDg5Odm0QCIiIqKqqPZ9bpydnfHMM8/YshYiIiKi+1bpcLNlyxZERUVBpVJhy5Ytd+37t7/97b4LIyIiIqqOSoeboUOHIi0tDb6+vhg6dGiF/WQyGUwmky1qIyIiIqqySocbs9lc7r+JiIiIapNqXQpenuzsbFutioiIiKjaqhVuFixYgPXr11u+f/zxx+Hl5YWAgACcOHHCZsURERERVVW1wk18fDwCAwMBADt37sSuXbuwfft2REVFYfr06TYtkIiIiKgqqnUpeFpamiXcfPfddxgxYgT69++PoKAghIaG2rRAIiIioqqo1siNp6cnUlJSAADbt29HREQEAEAIwSuliIiIyKGqNXLz2GOPYfTo0WjZsiVu3LiBqKgoAMDx48fRokULmxZIREREVBXVCjfvvfcegoKCkJKSgoULF8LV1RUAcO3aNUyePNmmBRIRERFVRbXCjUqlwssvv1ymfdq0afddEBEREdH94OMXiIiISFL4+AUiIiKSFD5+gYiIiCTFZo9fICIiIqoNqhVu/vWvf+H9998v075s2TK8+OKL91sTERERUbVVK9x8/fXX6NmzZ5n2Hj16YOPGjfddFBEREVF1VSvc3LhxA+7u7mXadTodMjMz77soIiIiouqqVrhp0aIFtm/fXqb9+++/R/Pmze+7KCIiIqLqqtZN/GJiYjB16lRkZGSgb9++AICEhAQsWrQIS5YssWV9RERERFVSrXAzYcIEGAwGzJs3D3PnzgUABAUFYeXKlRg7dqxNCyQiIiKqimqFGwB4/vnn8fzzzyMjIwNOTk6W50sREREROVK173NjNBqxa9cubNq0CUIIAEBqairy8vJsVhwRERFRVVVr5Oby5csYMGAAkpOTYTAY0K9fP7i5uWHBggUwGAyIj4+3dZ1ERERElVKtkZsXXngB3bp1Q1ZWFpycnCztw4YNQ0JCgs2KIyIiIqqqao3c/Pzzzzhw4ADUarVVe1BQEK5evWqTwoiIiIiqo1ojN2azudwnf1+5cgVubm73XRQRERFRdVUr3PTv39/qfjYymQx5eXmIjY3FwIEDbVUbERERUZVV67TUu+++iwEDBqBt27YoKirC6NGjce7cOXh7e+PLL7+0dY1ERERElVatcBMYGIgTJ05g/fr1OHHiBPLy8vD0009jzJgxVhOMiYiIiGpalcNNSUkJWrduje+++w5jxozBmDFj7FEXERERUbVUec6NSqVCUVGRPWohIiIium/VmlA8ZcoULFiwAEaj0db1EBEREd2Xas25+fXXX5GQkIAffvgBHTp0gIuLi9XPN23aZJPiiIiIiKqqWuHGw8MDw4cPt3UtRERERPetSuHGbDbjnXfewdmzZ1FcXIy+ffti9uzZvEKKiIiIao0qzbmZN28eXn31Vbi6uiIgIADvv/8+pkyZYq/aiIiIiKqsSuHm//7v/7BixQrs2LEDmzdvxrfffovPP/8cZrPZXvURERERVUmVwk1ycrLV4xUiIiIgk8mQmppq88KIiIiIqqNK4cZoNEKr1Vq1qVQqlJSU3FcRy5cvR1BQELRaLUJDQ3H48OFKLbdu3TrIZDIMHTr0vrZPRERE0lGlCcVCCIwbNw4ajcbSVlRUhOeee87qcvCqXAq+fv16xMTEID4+HqGhoViyZAkiIyNx5swZ+Pr6VrjcpUuX8PLLL6NXr15V2QUiIiKSuCqN3ERHR8PX1xfu7u6WryeffBKNGjWyaquKxYsX45lnnsH48ePRtm1bxMfHw9nZGatXr65wGZPJhDFjxmDOnDlo3rx5lbZHRERE0lalkZs1a9bYdOPFxcU4evQoZs6caWmTy+WIiIjAwYMHK1zuzTffhK+vL55++mn8/PPPNq2JiIiI6rZq3cTPVjIzM2EymeDn52fV7ufnh9OnT5e7zL59+/DJJ58gMTGxUtswGAwwGAyW7/V6fbXrJSIiotqvWs+WcpTc3Fw89dRT+Oijj+Dt7V2pZeLi4qxOmQUGBtq5SiIiInIkh47ceHt7Q6FQID093ao9PT0d/v7+ZfpfuHABly5dwpAhQyxtpffYUSqVOHPmDIKDg62WmTlzJmJiYizf6/V6BhwiIiIJc2i4UavVCAkJQUJCguVybrPZjISEBEydOrVM/9atW+O3336zanv99deRm5uLpUuXlhtaNBqN1dVdREREJG0ODTcAEBMTg+joaHTr1g3du3fHkiVLkJ+fj/HjxwMAxo4di4CAAMTFxUGr1aJ9+/ZWy3t4eABAmXYiIiKqnxwebkaOHImMjAzMmjULaWlp6Ny5M7Zv326ZZJycnAy5vE5NDSIiIiIHkgkhhKOLqEl6vR7u7u7IycmBTqez2XqPJWfhsRUH0MTLGXtfecRm6yUiIqKqfX5zSISIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheHGxtL0RZj6xTEcuXTT0aUQERHVSww3NlZsNOO7/13DP+IPOroUIiKieonhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkheGGiIiIJIXhhoiIiCSF4YaIiIgkpVaEm+XLlyMoKAharRahoaE4fPhwhX0/+ugj9OrVC56envD09ERERMRd+ztSblGJo0sgIiKqdxwebtavX4+YmBjExsbi2LFj6NSpEyIjI3H9+vVy++/ZswejRo3C7t27cfDgQQQGBqJ///64evVqDVd+b9M3/M/RJRAREdU7MiGEcGQBoaGhePDBB7Fs2TIAgNlsRmBgIP75z39ixowZ91zeZDLB09MTy5Ytw9ixY+/ZX6/Xw93dHTk5OdDpdPddf6ljyVl4bMWBMu2X3h5ks20QERHVV1X5/HboyE1xcTGOHj2KiIgIS5tcLkdERAQOHqzcs5kKCgpQUlICLy8ve5VJREREdYjSkRvPzMyEyWSCn5+fVbufnx9Onz5dqXX8+9//RqNGjawC0u0MBgMMBoPle71eX/2Cq0itdPhZPyIionqnTn/6vv3221i3bh2++eYbaLXacvvExcXB3d3d8hUYGFhj9RUbzThy6WaNbY+IiIgcHG68vb2hUCiQnp5u1Z6eng5/f/+7Lvvuu+/i7bffxg8//ICOHTtW2G/mzJnIycmxfKWkpNik9sr6R/xBpGYX1ug2iYiI6jOHhhu1Wo2QkBAkJCRY2sxmMxISEhAWFlbhcgsXLsTcuXOxfft2dOvW7a7b0Gg00Ol0Vl81rcfbP9b4NomIiOorh865AYCYmBhER0ejW7du6N69O5YsWYL8/HyMHz8eADB27FgEBAQgLi4OALBgwQLMmjULX3zxBYKCgpCWlgYAcHV1haurq8P2g4iIiGoHh4ebkSNHIiMjA7NmzUJaWho6d+6M7du3WyYZJycnQy7/a4Bp5cqVKC4uxj/+8Q+r9cTGxmL27Nk1WXqVFJWYoFUpHF0GERGR5Dn8Pjc1rabvc1Nq0eOdMDyksc22R0REVJ/Umfvc1CcqXhZORERUI/iJW0O8XdWOLoGIiKheYLipId+eSHV0CURERPUCw00N+fJwzd5fh4iIqL5iuKlB239Pg76oxNFlEBERSZrDLwWXqkAvJ6TctL4z8XP/OYpG7lr0ae2Ll/q1QgNXjYOqIyIiki6O3NjJ7pf6lNuemlOEL35JRp939tRoPURERPUFw42dKBVyHH7tUQzrElDuz3MNxhquiIiIqH5guLEjXzftXS8BN5nL3j/xur4IQTO2ImjGVpxNz7VneURERJLEOTcOtOtUOiLb+eNaTiHC4so+XLP/e3tx6e1BDqiMiIio7mK4caBJnx3Fo619kXD6eoV9ruUUoqG7Uw1WRUREVLfxtFQNmh75AA7M6GvVdrdgAwBhcT/iofkJyCnkJeRERESVwXBjZyWmv+bVdA70QCOPu4/CBHo5YULPZlZtafoizPn2pF3qIyIikhqelrKDl/u3svz7Yma+5d89ghsAAF7q1wqLdp61WiZxVj94ON+afHwzvxir91+0+vmmY1fxaGs/DOzgD5lMZq/SiYiI6jyO3NhBx8Yeln+fv55n+XdpKPnnoy2hkP8VUF4b2MYSbADAy0WN03MHlFnvlC+O4bXNv9uhYiIiIungyI0dyG8bWanocQu/vhaBrb9dw7AuAXDVlP01aFUKXHp7EIpKTGj9xnZL+xe/JGPW4LbQqhS2L5yIiEgCOHJjB7cNymDpE53RwEWNNeMetOrj5aLGUw81LTfY3E6rUmBsWFOrttvDDhEREVljuLGD2+fE9G3thyOvR+CR1r7VXt+bf2+PVU+FWLUFzdha7fURERFJGcONHdw+nwaATSYA923ti9BmXlZtFzLyKuhNRERUfzHc2IHcDhczKRVyrJ8UhsdDGlvaHl30E4JmbMV/E69CiLKPciAiIqqPGG7swJ6Xar/zeKcybS+sS0Szmdtw9HIW5n73B36/mmO37RMREdV2DDd2cOdpKVv79bWIctuHrzyAT/ZdxOAP9qHZzK04k8YHbxIRUf3DcGMHds428HHT4Py8KJybF1XmSqpSQgCvfvObfQshIiKqhXifGzuQ18AdhJWKW7n0zb+3x+uD2iJq6V44q5X47bZTUkcvZ2H8msNo5OGExJRsnEzVo5m3C358KZx3OSYiIsliuLGDms4NaqUcCS/1sXz/38SreGFdIgBg95kMq74XM/PRbOY2q7ZTbw6Ak1oBIQSSMvMR4OHEmwQSEVGdxXBjB/aec3Mvf+8cYAk3ldFm1na4O6msnjw+Kbw5Zka1sUN1RERE9sVwYwc1cVrqXkof3XAjvxi5RSVo7u2KSZ8dKTOSU+r2YAMAH/6UhA9/SsLXz4fh2OVszNt2Ci18XbF5Ss973lWZiIjIkfgpZQcOHrix0KoUCPBwAuAEAFgzvrvVz1NuFqDXwt2W7wd1aIitv12z6jN85UHLv89fz0P72B2YPaQtRj7YBE5qnroiIqLah+HGDmrDyE1lBHo542LcQJjMwjJBeTmAm/nF6Dp3Z4XLzf72D8z+9g8AwFMPNUXvVj5IuVmA0aFNOFeHiIgcjuHGDupKuAFu3XBQqbCu18tFjYtxA/HezrPQqBR4+uFmSM0uRN9FP5VZ/rNDl/HZocsAgDe/+wMbngtD1yaeDp93RERE9RfDjR3UpXBTEZlMhpj+D1i+b+7jiktvD0KJyYy/L9uPP67py13u8fhbp7GaNnDGwuEd8dvVHHz3v2sY3LEhJvZqXiO1ExFR/cZwYwcSyDYVUink2PZCLwBATkEJ9EUlCPBwQq+Fu3E1u9DS7/KNAoxcdcjyfWJKNt7aeuqu6+7f1g8NXDWY+/d2ltNkREREVcVwYwf15ZSMu7MK7s4qAMD+GX2RW1SCN7/9AxuOXqnW+n74Ix0A8OXhZADA+J5B8HHT4Fx6Hpp4OSO0mRd+T83BH6l6lJgEujfzwpMPNa03x5uIiCpHJurZ46T1ej3c3d2Rk5MDnU5ns/UeS87CYysOAAAOzXwU/u5am627LjKbBYpNZmhVCpjNAqt+TkJhsQn/OXQZcrkMPq4anL+eB6PZDLONX4FOKgUKS0yIaOOLo5ez0LaRDstGdYWni9q2GyIiohpTlc9vjtzYAQcSALlcBq1cYfn3c+HBAIBp/VrddbknVh3EoaSb97XtwhITAGDXqesAgP3nb6DLbVd/dQhwh1kINHDVYO/ZDDz1UFN0DvRAanYhgn1dcTEzH96uarhqVFDIgStZhcg3mOCklsNFo4RcJoOLRgkhBPx0WoQ09YSKp9GIiGoNhhs74HObqm/ds2GV7ntdX4T3fzyHG3nF2HcuEy39XJGaXYQ0fdFdl7v9+VuA9RVfttDS1xX+7lpolAqYhYCHkwr92/mhY2MPeLmooS8qgdkMlJjMKCoxIU1fdOvUmgBa+rnBy0UNuQwoNplxM78Yvm5annojIqoChhsbuf3kHj+IaoavTou3hna4Z798gxFLdp3Ffw4lo7DEBG9XNbxdNTidlnvPZb1d1cjMK65SXeeu5+Hc9Tyrtk3Hr1ZpHRVpH6CDXCaDRilHbpERGpUCjT2dMKxzALILS2A0meGn08LDWYWOjT34WiSieonhxkZun7rEz5PaxUWjxGuD2uK1QW1tvu6UmwXYcCQFbRrq8P6P5yGXAddyiqBRyuHprK7wkvnq+v1q2fWdSMnG1v9dK6f3LTqtEoUlJpSYBIZ1CcDx5Cy08HVFC183hDb3gpezGm5aJVQKOdydVcg3GGE03Xo95xYZUVhihFIuh76oBMVGM1w0Sng6q3Ej3wAIoMhoQktfNzR011Z4lZsQgiOaRFRjOKHYRn5JumG59PlEbH+4O6lstm6q+4QQMBjNMJSY4aq99TeFDLfmI93Z50pWAZTyW/N73LRK7DqVjt+u5ODyjQLkGYxQyGVo4KrGqWu5OHVND51WCX2R0UF7Vj0+bhr467Rw0yrR2NMJCrkcDd21aB+gg0ohR77BCJMZ8HfXQimXQaOSI6/o1r6bzAJeLmqY/5zzZDQJKBQy5BYZUVRiQonJDI3y1nyvQE+ncgMXwxZR3cMJxQ5g5mkpuguZTAatSnHXx1OU9mnh62bVPrhjIwzu2KhK28stKsG6wynILzaisaczfv9zntHecxnwcFLhWHJ2lffhdq4aJfIM1Q9UGbkGZOQa7qsGW3nAzw1n0nPh46ZBUYkJ+QYjJvZqjqz8Ymj/PO2nkMsQ7OuKFj6u0KjkkMtkMJsFTELASaWAhzOvxCOqTRhubISnpag2cdOq8Ezvv+4I/Y+QxvdcxmQWKPnz8v2qjmyU/Dn5OaugGCazgEYpR05hCdQKBdydVFAr5cgqKMbVrEL8npqD36/qcSPfAJVCjpv5xTh/2xylxp5OuJL11w0hNUo5DEaz3UaozqTfmnt1e9hatTep2utTymXo2tQTp1L18HBRwdNZjbScIrQPcEdiSjYe8HND8s0CaJRy+LhpENTABZ0CPeDjpkFBsRFuWiW0SgVyDUZ4uahRVGKCTquCXCZDMx8XuKgVHHUiugeelrKRfecy8eQnvwAATs8dwAdIEtmZEAK5BiM0SjmEuBWCbv/QLzGZcflGAYpKTHD781RgUYkZTioF0vRFOH89DzonJQwlZrg7qZBTWIIf/kiDq0aFSzfy4aRSICPXgGs5hbX6tJ9aKbec4mvi5Qw/nRbFJjO8XdQ4m56HJg2cUWw041pOIRq4atDY0wlZ+cVo0sAFzb1d4KJRoqDYCLVCjmKjGbkGIzyd1QjydoaHkxpqJW9zQLUDT0s5gOm2jMg/qojsTyaTQaeteG6bSiFHC1/Xcn/WpIEzujfzKtM+/B4jXEIIGM0CCpkM8j/n/+QXG3Fdb8Cx5CwUGIzQOamQrjdAo5RbJpgHeDohp6AEHs4q6IuMyDcYcTY9D7tO3bord5uGOpxO00MIoJm3C5JvFsD057nu0pGrihQbzUi+WQAAOJlq2wnspUrDn1ohR7HJjO5BXkjKzEewjwtu5BejbUMdUrML0a6RDrlFRnRo7A4fNw28/rxx5q2Aeet35aJWwsdNA09nFR+zQnbDcGMj5tvCjYLphkiSZDIZVIq/3t8K+a2ApdOqKgxStiKEgL7IiJv5xcjINSBNXwR9YQky8wy4klWIq1mF8HRRId9gQmNPJ5y/noc2DXVQK+VITM6GwWRGCx9XHE/OQnZhCW7mF8PbVYPMPAP8dBpoVQpcvlFQ7rZzCksA3Lr3EgAcvnTrRpuZebdO5ZWeVjxyOQtA9W99EOjlhGvZRWjooYWvmxZGs8BDzb2QmVuMYF8X5BTeepadr5sWPm4a+Lpp4KJRwkWjgFoh5+k6smC4sRHrOTd8gxGRbclkMrg7qeDupEIzbxe7b6+oxIQrWQUAZDAYTcgtMuJKViHUSjlu5hmgUMiRcrMAvm4anLiSA3cnJX69mIUSsxlJGfnQKOVo7OmECxn5CPBwwtXsQssIUEVSbhZa/lv67xMp2dWq302rRO6fpxPbNtThj2t6dGnigfPpt0LflawCNPdxRU5hCTxd1HB3UiEjtwgeTmq09HOFQi6Dq0YJf3ct8opuzX8qMQko5DKolTJ4OKvh6axGgIcTVAoZg1Utw3BjI6bbRo35Gieiuq68K/dsofQqs6yCYpSYBAqLTcjMM0Ahl+HUNT0Kik0oMBhxJj0XHk5qJGXmIaiBC35P1SM1uxA5hSVWwaUit/+89H5Tx/+8SrB05Ck1p/y7mW8/WfX9UitvzVkCgKYNnOHjqsFDzRvgem4RHvDXocRkhoeTCv7uWjRw0cDfXQtvVzVDkZ0w3NiI2WrODV+sRETlkctlkEMGX7e/Hi5cekrvwaCy86DupcRkRoHBhLziW3OZ8gxGqORy5Bmsb0CpUSqQlV8MjUpuuTKuoNgEIQAntRy/XdWjwGCEs0aJI5duQl9Ygk6BHjiWnIU2DXXQF5YgJasQctmt4JddYD0CVXzbvKjLNwpw+UaB5TTdvbhplMg1GC0jXA/4uaGBqxqt/XVwVissp+CUCjk8nVUwmQVctbeec6dVKaCUy6CQy+CsVlhGnOr75xDDjY3Us4vOiIhqhVt31r51d+2aZjIL6AtLkF9sRFGJGRm5Bhy5dBNJmflwd1LhZGoOXDRKXMzMh76wBM5qJa5mF5ZZT+6f94wq/dmZ9FwgHThw4YZN6vR108BNq0RRiRktfF3hqlWiTysf+LjdunrO21UDuVwGtUIumSt9GW5sxMxsQ0RUryjkMni6qOH551VhLXxdERbcoFLLFhQbka43wCwECgwmmIXAlaxCXMkqwLHkLKiVCqRmF0L/5xylyzcK4OOmwdXsQrhplJDLZcgpLIGzWoGCYtNdt3U914Drf45WlQaouz2yBbgViApLTHjAzw2XbuTD312LB4O8kFdkRGjzBlDKZQj0cka7RrpaGYgYbmzExHRDRESV5KxWopm39Udwp0CPaq9PCAGzgGXy97WcIuQWlcBoEtAXleC63oDMPAMSU7JhFgLHkrPv+rlVGoZKT61l5hVbnm234eiVMv1d1ArkF5vQ3NsF7QLcEezjghcjWlV7f+4Xw42NmHlaioiIHEQmk0EhuxWanNVK+Om0914It0KR6c9J3oXFJlzJKkRhiQmZuQYoFXIkZeThWk4RhBD4+Xwmmnu7IikzD0kZ+Vbryf9z9CgpMx9JmfkIaerJcCMFzDZERFTXyGQyKBUyKAFolOU9J82vwmWFEMjMK8a1nEJcvlGA5JsFcHdSodhohrebxq513wvDjY1w5IaIiOoTmUwGHzcNfNw06NjYw9HlWOG9r22Ec26IiIhqB4YbG+HADRERUe3AcGMjPC1FRERUOzDc2IiJ4YaIiKhWqBXhZvny5QgKCoJWq0VoaCgOHz581/4bNmxA69atodVq0aFDB2zbtq2GKq0Yp9wQERHVDg4PN+vXr0dMTAxiY2Nx7NgxdOrUCZGRkbh+/Xq5/Q8cOIBRo0bh6aefxvHjxzF06FAMHToUv//+ew1Xbo2PXyAiIqodHB5uFi9ejGeeeQbjx49H27ZtER8fD2dnZ6xevbrc/kuXLsWAAQMwffp0tGnTBnPnzkXXrl2xbNmyGq7cmplDN0RERLWCQ8NNcXExjh49ioiICEubXC5HREQEDh48WO4yBw8etOoPAJGRkRX2NxgM0Ov1Vl/2oJDX7yewEhER1RYODTeZmZkwmUzw87O+A6Kfnx/S0tLKXSYtLa1K/ePi4uDu7m75CgwMtE3xdxge0hhtGuowuU+wXdZPRERElePw01L2NnPmTOTk5Fi+UlJS7LIdZ7US37/QC68MaG2X9RMREVHlOPTxC97e3lAoFEhPT7dqT09Ph7+/f7nL+Pv7V6m/RqOBRuPYZ1wQERFRzXHoyI1arUZISAgSEhIsbWazGQkJCQgLCyt3mbCwMKv+ALBz584K+xMREVH94vAHZ8bExCA6OhrdunVD9+7dsWTJEuTn52P8+PEAgLFjxyIgIABxcXEAgBdeeAHh4eFYtGgRBg0ahHXr1uHIkSNYtWqVI3eDiIiIagmHh5uRI0ciIyMDs2bNQlpaGjp37ozt27dbJg0nJydDLv9rgKlHjx744osv8Prrr+PVV19Fy5YtsXnzZrRv395Ru0BERES1iEzUs7vP6fV6uLu7IycnBzqdztHlEBERUSVU5fNb8ldLERERUf3CcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREkuLwxy/UtNIbMuv1egdXQkRERJVV+rldmQcr1Ltwk5ubCwAIDAx0cCVERERUVbm5uXB3d79rn3r3bCmz2YzU1FS4ublBJpPZdN16vR6BgYFISUnhc6vsiMe5ZvA41wwe55rDY10z7HWchRDIzc1Fo0aNrB6oXZ56N3Ijl8vRuHFju25Dp9PxjVMDeJxrBo9zzeBxrjk81jXDHsf5XiM2pTihmIiIiCSF4YaIiIgkheHGhjQaDWJjY6HRaBxdiqTxONcMHueaweNcc3isa0ZtOM71bkIxERERSRtHboiIiEhSGG6IiIhIUhhuiIiISFIYboiIiEhSGG6qaPny5QgKCoJWq0VoaCgOHz581/4bNmxA69atodVq0aFDB2zbtq2GKq3bqnKcP/roI/Tq1Quenp7w9PRERETEPX8vdEtVX8+l1q1bB5lMhqFDh9q3QImo6nHOzs7GlClT0LBhQ2g0GrRq1Yr/76iEqh7nJUuW4IEHHoCTkxMCAwMxbdo0FBUV1VC1ddPevXsxZMgQNGrUCDKZDJs3b77nMnv27EHXrl2h0WjQokULrF271u51QlClrVu3TqjVarF69Wpx8uRJ8cwzzwgPDw+Rnp5ebv/9+/cLhUIhFi5cKP744w/x+uuvC5VKJX777bcarrxuqepxHj16tFi+fLk4fvy4OHXqlBg3bpxwd3cXV65cqeHK65aqHudSFy9eFAEBAaJXr17i73//e80UW4dV9TgbDAbRrVs3MXDgQLFv3z5x8eJFsWfPHpGYmFjDldctVT3On3/+udBoNOLzzz8XFy9eFDt27BANGzYU06ZNq+HK65Zt27aJ1157TWzatEkAEN98881d+yclJQlnZ2cRExMj/vjjD/HBBx8IhUIhtm/fbtc6GW6qoHv37mLKlCmW700mk2jUqJGIi4srt/+IESPEoEGDrNpCQ0PFpEmT7FpnXVfV43wno9Eo3NzcxKeffmqvEiWhOsfZaDSKHj16iI8//lhER0cz3FRCVY/zypUrRfPmzUVxcXFNlSgJVT3OU6ZMEX379rVqi4mJET179rRrnVJSmXDzyiuviHbt2lm1jRw5UkRGRtqxMiF4WqqSiouLcfToUURERFja5HI5IiIicPDgwXKXOXjwoFV/AIiMjKywP1XvON+poKAAJSUl8PLysleZdV51j/Obb74JX19fPP300zVRZp1XneO8ZcsWhIWFYcqUKfDz80P79u0xf/58mEymmiq7zqnOce7RoweOHj1qOXWVlJSEbdu2YeDAgTVSc33hqM/BevfgzOrKzMyEyWSCn5+fVbufnx9Onz5d7jJpaWnl9k9LS7NbnXVddY7znf7973+jUaNGZd5Q9JfqHOd9+/bhk08+QWJiYg1UKA3VOc5JSUn48ccfMWbMGGzbtg3nz5/H5MmTUVJSgtjY2Joou86pznEePXo0MjMz8fDDD0MIAaPRiOeeew6vvvpqTZRcb1T0OajX61FYWAgnJye7bJcjNyQpb7/9NtatW4dvvvkGWq3W0eVIRm5uLp566il89NFH8Pb2dnQ5kmY2m+Hr64tVq1YhJCQEI0eOxGuvvYb4+HhHlyYpe/bswfz587FixQocO3YMmzZtwtatWzF37lxHl0Y2wJGbSvL29oZCoUB6erpVe3p6Ovz9/ctdxt/fv0r9qXrHudS7776Lt99+G7t27ULHjh3tWWadV9XjfOHCBVy6dAlDhgyxtJnNZgCAUqnEmTNnEBwcbN+i66DqvJ4bNmwIlUoFhUJhaWvTpg3S0tJQXFwMtVpt15rrouoc5zfeeANPPfUUJk6cCADo0KED8vPz8eyzz+K1116DXM6//W2hos9BnU5nt1EbgCM3laZWqxESEoKEhARLm9lsRkJCAsLCwspdJiwszKo/AOzcubPC/lS94wwACxcuxNy5c7F9+3Z069atJkqt06p6nFu3bo3ffvsNiYmJlq+//e1veOSRR5CYmIjAwMCaLL/OqM7ruWfPnjh//rwlPALA2bNn0bBhQwabClTnOBcUFJQJMKWBUvCRizbjsM9Bu05Xlph169YJjUYj1q5dK/744w/x7LPPCg8PD5GWliaEEOKpp54SM2bMsPTfv3+/UCqV4t133xWnTp0SsbGxvBS8Eqp6nN9++22hVqvFxo0bxbVr1yxfubm5jtqFOqGqx/lOvFqqcqp6nJOTk4Wbm5uYOnWqOHPmjPjuu++Er6+veOuttxy1C3VCVY9zbGyscHNzE19++aVISkoSP/zwgwgODhYjRoxw1C7UCbm5ueL48ePi+PHjAoBYvHixOH78uLh8+bIQQogZM2aIp556ytK/9FLw6dOni1OnTonly5fzUvDa6IMPPhBNmjQRarVadO/eXRw6dMjys/DwcBEdHW3V/6uvvhKtWrUSarVatGvXTmzdurWGK66bqnKcmzZtKgCU+YqNja35wuuYqr6eb8dwU3lVPc4HDhwQoaGhQqPRiObNm4t58+YJo9FYw1XXPVU5ziUlJWL27NkiODhYaLVaERgYKCZPniyysrJqvvA6ZPfu3eX+/7b02EZHR4vw8PAyy3Tu3Fmo1WrRvHlzsWbNGrvXKROC429EREQkHZxzQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENERESSwnBDREREksJwQ0RERJLCcENEBEAmk2Hz5s0AgEuXLkEmk/EJ6ER1FMMNETncuHHjIJPJIJPJoFKp0KxZM7zyyisoKipydGlEVAfxqeBEVCsMGDAAa9asQUlJCY4ePYro6GjIZDIsWLDA0aURUR3DkRsiqhU0Gg38/f0RGBiIoUOHIiIiAjt37gRw6wnPcXFxaNasGZycnNCpUyds3LjRavmTJ09i8ODB0Ol0cHNzQ69evXDhwgUAwK+//op+/frB29sb7u7uCA8Px7Fjx2p8H4moZjDcEFGt8/vvv+PAgQNQq9UAgLi4OPzf//0f4uPjcfLkSUybNg1PPvkkfvrpJwDA1atX0bt3b2g0Gvz44484evQoJkyYAKPRCADIzc1FdHQ09u3bh0OHDqFly5YYOHAgcnNzHbaPRGQ/PC1FRLXCd999B1dXVxiNRhgMBsjlcixbtgwGgwHz58/Hrl27EBYWBgBo3rw59u3bhw8//BDh4eFYvnw53N3dsW7dOqhUKgBAq1atLOvu27ev1bZWrVoFDw8P/PTTTxg8eHDN7SQR1QiGGyKqFR555BGsXLkS+fn5eO+996BUKjF8+HCcPHkSBQUF6Nevn1X/4uJidOnSBQCQmJiIXr16WYLNndLT0/H6669jz549uH79OkwmEwoKCpCcnGz3/SKimsdwQ0S1gouLC1q0aAEAWL16NTp16oRPPvkE7du3BwBs3boVAQEBVstoNBoAgJOT013XHR0djRs3bmDp0qVo2rQpNBoNwsLCUFxcbIc9ISJHY7gholpHLpfj1VdfRUxMDM6ePQuNRoPk5GSEh4eX279jx4749NNPUVJSUu7ozf79+7FixQoMHDgQAJCSkoLMzEy77gMROQ4nFBNRrfT4449DoVDgww8/xMsvv4xp06bh008/xYULF3Ds2DF88MEH+PTTTwEAU6dOhV6vxxNPPIEjR47g3Llz+Oyzz3DmzBkAQMuWLfHZZ5/h1KlT+OWXXzBmzJh7jvYQUd3FkRsiqpWUSiWmTp2KhQsX4uLFi/Dx8UFcXBySkpLg4eGBrl274tVXXwUANGjQAD/++COmT5+O8PBwKBQKdO7cGT179gQAfPLJJ3j22WfRtWtXBAYGYv78+Xj55ZcduXtEZEcyIYRwdBFEREREtsLTUkRERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCkMN0RERCQpDDdEREQkKQw3REREJCn/D6R64PWnDHBAAAAAAElFTkSuQmCC", |
|
|
1401 |
"text/plain": [ |
|
|
1402 |
"<Figure size 640x480 with 1 Axes>" |
|
|
1403 |
] |
|
|
1404 |
}, |
|
|
1405 |
"metadata": {}, |
|
|
1406 |
"output_type": "display_data" |
|
|
1407 |
} |
|
|
1408 |
], |
|
|
1409 |
"source": [ |
|
|
1410 |
"probs_nlst = model_final.predict_proba(x_nlst)[:, 1]\n", |
|
|
1411 |
"precision, recall, thresholds = precision_recall_curve(y_nlst, probs_nlst)\n", |
|
|
1412 |
"plt.plot(recall, precision)\n", |
|
|
1413 |
"plt.xlabel('Recall')\n", |
|
|
1414 |
"plt.ylabel('Precision')\n", |
|
|
1415 |
"plt.title(\"Precision recall curve on testing dataset\")\n", |
|
|
1416 |
"plt.show()\n" |
|
|
1417 |
] |
|
|
1418 |
}, |
|
|
1419 |
{ |
|
|
1420 |
"attachments": {}, |
|
|
1421 |
"cell_type": "markdown", |
|
|
1422 |
"metadata": {}, |
|
|
1423 |
"source": [ |
|
|
1424 |
"We now select the precision value to compare with USPSTF at equal recall. " |
|
|
1425 |
] |
|
|
1426 |
}, |
|
|
1427 |
{ |
|
|
1428 |
"cell_type": "code", |
|
|
1429 |
"execution_count": 98, |
|
|
1430 |
"metadata": {}, |
|
|
1431 |
"outputs": [ |
|
|
1432 |
{ |
|
|
1433 |
"name": "stdout", |
|
|
1434 |
"output_type": "stream", |
|
|
1435 |
"text": [ |
|
|
1436 |
" --- For NLST --- \n", |
|
|
1437 |
"For recall = 0.989 precision is : 0.032\n", |
|
|
1438 |
"TP: 1495, FP: 44808, TN: 2276, FN: 16\n", |
|
|
1439 |
"\n" |
|
|
1440 |
] |
|
|
1441 |
} |
|
|
1442 |
], |
|
|
1443 |
"source": [ |
|
|
1444 |
"probs_nlst = model_final.predict_proba(x_nlst)[:, 1]\n", |
|
|
1445 |
"precision, recall, thresholds = precision_recall_curve(y_nlst, probs_nlst)\n", |
|
|
1446 |
"#Selection of precision for fixed recall\n", |
|
|
1447 |
"recall_value_nlst = 0.989\n", |
|
|
1448 |
"\n", |
|
|
1449 |
"df = pd.concat([pd.DataFrame(precision, columns=['precision']), \n", |
|
|
1450 |
" pd.DataFrame(recall,columns=['recall']), \n", |
|
|
1451 |
" pd.DataFrame(thresholds,columns=['thresholds'])], axis=1)\n", |
|
|
1452 |
"max_precision_nlst = df.loc[df['recall'] >= recall_value_nlst].precision.max()\n", |
|
|
1453 |
"\n", |
|
|
1454 |
"print(\" --- For NLST --- \")\n", |
|
|
1455 |
"print(\"For recall = \" + str(round(recall_value_nlst,3)) + \" precision is : \" + str(round(max_precision_nlst,3)) )\n", |
|
|
1456 |
"\n", |
|
|
1457 |
"#Compute confusion matrix with these parameters:\n", |
|
|
1458 |
"threshold_nlst = float(df.loc[df['precision'] == max_precision_nlst].thresholds)\n", |
|
|
1459 |
"preds_thresh_nlst = np.where(probs_nlst >= threshold_nlst, 1, 0)\n", |
|
|
1460 |
"tn_nlst, fp_nlst, fn_nlst, tp_nlst = confusion_matrix(y_nlst, preds_thresh_nlst).ravel()\n", |
|
|
1461 |
"print(\"TP: \" + str(tp_nlst) + \", FP: \" + str(fp_nlst)+ \", TN: \" + str(tn_nlst) + \", FN: \" + str(fn_nlst) + \"\\n\")" |
|
|
1462 |
] |
|
|
1463 |
}, |
|
|
1464 |
{ |
|
|
1465 |
"attachments": {}, |
|
|
1466 |
"cell_type": "markdown", |
|
|
1467 |
"metadata": {}, |
|
|
1468 |
"source": [ |
|
|
1469 |
"### Calibration\n", |
|
|
1470 |
"\n", |
|
|
1471 |
"Here we look at the calibration curve:" |
|
|
1472 |
] |
|
|
1473 |
}, |
|
|
1474 |
{ |
|
|
1475 |
"cell_type": "code", |
|
|
1476 |
"execution_count": 99, |
|
|
1477 |
"metadata": {}, |
|
|
1478 |
"outputs": [ |
|
|
1479 |
{ |
|
|
1480 |
"data": { |
|
|
1481 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjIElEQVR4nOzdd3wT9RvA8c8lTdK9dykto+w9ZQkIyFYUlOFPQBEXiIo4QGWp4GaqDAVcKIKAIogyZQ/ZG8oqo5PSPdIk9/ujNlJboIW26Xjer1dfNHffu3suTciT71RUVVURQgghhLARja0DEEIIIUTFJsmIEEIIIWxKkhEhhBBC2JQkI0IIIYSwKUlGhBBCCGFTkowIIYQQwqYkGRFCCCGETUkyIoQQQgibkmRECCGEEDYlyYgAoEOHDnTo0MH6+MKFCyiKwqJFi6zbhg4dirOzc8kH9x8TJ05EURRbhyFKif++dsuS0NBQhg4dWuLXVRSFiRMnWh8vWrQIRVG4cOHCbY8tjpiHDh1KaGhokZ5TlC2SjJRRZ8+e5ZlnnqFq1arY29vj6upKmzZtmDFjBunp6bYO766lpaUxceJENm/ebOtQxF06fvw4EydOLNAHnSi/rl69ysSJEzl48KCtQykW5f3+ipudrQMQhbd69WoeeeQRDAYDgwcPpl69ehiNRrZt28arr77KsWPHmDdv3l1dIyQkhPT0dHQ6XRFFXThpaWlMmjQJIM+33rfeeos33njDBlGJO3H8+HEmTZpEhw4diuXb759//lnk56xoHn/8cQYMGIDBYCi2a1y9epVJkyYRGhpKo0aNcu2bP38+Foul2K5dEm51f+L2JBkpY86fP8+AAQMICQlh48aNBAQEWPeNGDGC8PBwVq9efdfXURQFe3v7uz5PDpPJhMViQa/X3/W57OzssLMrny/d1NRUnJycbB2GzaiqSkZGBg4ODgU+piheUxWdVqtFq9Xa7Pq2+tIjSg9ppiljPvzwQ1JSUvjqq69yJSI5qlevzosvvmh9vHDhQu677z58fX0xGAzUqVOHL7744rbXya/PSI5z587RtWtXnJycCAwMZPLkydy4+HPOsR9//DHTp0+nWrVqGAwGjh8/jtFoZPz48TRt2hQ3NzecnJxo164dmzZtynW8j48PAJMmTUJRlFxt3Pn1GTGZTLzzzjvWa4WGhjJu3DgyMzNzlQsNDaVXr15s27aNFi1aYG9vT9WqVfnmm29u+5wAWCwWZsyYQf369bG3t8fHx4du3brx999/3/Z5+287fc59HD9+nEGDBuHh4UHbtm35+OOPURSFixcv5jnH2LFj0ev1XL9+3bpt9+7ddOvWDTc3NxwdHWnfvj3bt28v0P3ExMQwbNgw/Pz8sLe3p2HDhnz99de5ytz495w3b571OW7evDl79+695fkXLVrEI488AkDHjh2tf8uc5recv8cff/xBs2bNcHBwYO7cuUDBX7v/7TOyefNmFEXhp59+4r333qNSpUrY29vTqVMnwsPDb/ucXLx4keeff56aNWvi4OCAl5cXjzzySJ5mppx+Ftu3b2f06NH4+Pjg5OTEQw89RGxsbK6yqqry7rvvUqlSJRwdHenYsSPHjh27bSxZWVl4enryxBNP5NmXlJSEvb09Y8aMASjQe+tm8uszUtCY4+PjGTNmDPXr18fZ2RlXV1e6d+/OoUOHrGU2b95M8+bNAXjiiSesr4Oc90l+fUZSU1N55ZVXCA4OxmAwULNmTT7++GP+u9C8oiiMHDmSlStXUq9ePQwGA3Xr1mXt2rW3vW+AWbNmUbduXRwdHfHw8KBZs2YsXrw4V5krV67w5JNP4ufnZz3/ggULCnx/4vbK59fLcmzVqlVUrVqV1q1bF6j8F198Qd26dXnggQews7Nj1apVPP/881gsFkaMGFHo65vNZrp168Y999zDhx9+yNq1a5kwYQImk4nJkyfnKrtw4UIyMjJ4+umnMRgMeHp6kpSUxJdffsnAgQMZPnw4ycnJfPXVV3Tt2pU9e/bQqFEjfHx8+OKLL3juued46KGHePjhhwFo0KDBTeN66qmn+Prrr+nXrx+vvPIKu3fvZurUqZw4cYIVK1bkKhseHk6/fv0YNmwYQ4YMYcGCBQwdOpSmTZtSt27dW97/sGHDWLRoEd27d+epp57CZDKxdetWdu3aRbNmzQr9fAI88sgjhIWFMWXKFFRVpVevXrz22mv89NNPvPrqq7nK/vTTT9x///14eHgAsHHjRrp3707Tpk2ZMGECGo3G+iG+detWWrRocdPrpqen06FDB8LDwxk5ciRVqlRh6dKlDB06lISEhFxJLcDixYtJTk7mmWeeQVEUPvzwQx5++GHOnTt302+29957L6NGjWLmzJmMGzeO2rVrA1j/BTh16hQDBw7kmWeeYfjw4dSsWRO4+9fu+++/j0ajYcyYMSQmJvLhhx/y2GOPsXv37lset3fvXnbs2MGAAQOoVKkSFy5c4IsvvqBDhw4cP34cR0fHXOVfeOEFPDw8mDBhAhcuXGD69OmMHDmSJUuWWMuMHz+ed999lx49etCjRw/279/P/fffj9FovGUsOp2Ohx56iOXLlzN37txctUArV64kMzOTAQMGABTovVUYBY353LlzrFy5kkceeYQqVaoQHR3N3Llzad++PcePHycwMJDatWszefJkxo8fz9NPP027du0Abvr/mKqqPPDAA2zatIlhw4bRqFEj/vjjD1599VWuXLnCtGnTcpXftm0by5cv5/nnn8fFxYWZM2fSt29fIiIi8PLyuuk9zp8/n1GjRtGvXz9efPFFMjIyOHz4MLt372bQoEEAREdHc88991iTHh8fH37//XeGDRtGUlISL730UqHvT+RDFWVGYmKiCqgPPvhggY9JS0vLs61r165q1apVc21r37692r59e+vj8+fPq4C6cOFC67YhQ4aogPrCCy9Yt1ksFrVnz56qXq9XY2Njcx3r6uqqxsTE5LqOyWRSMzMzc227fv266ufnpz755JPWbbGxsSqgTpgwIU/8EyZMUG986R48eFAF1KeeeipXuTFjxqiAunHjRuu2kJAQFVC3bNli3RYTE6MaDAb1lVdeyXOtG23cuFEF1FGjRuXZZ7FYct37jc9bjv/eT859DBw4ME/ZVq1aqU2bNs21bc+ePSqgfvPNN9ZrhoWFqV27drVeX1Wz/+ZVqlRRu3Tpcsv7mT59ugqo3333nXWb0WhUW7VqpTo7O6tJSUm57snLy0uNj4+3lv3ll19UQF21atUtr7N06VIVUDdt2pRnX87fY+3atXn23elrd9OmTSqg1q5dO9drbcaMGSqgHjly5Jbx5nfdnTt35nruVVVVFy5cqAJq586dcz3/L7/8sqrVatWEhARVVbNfX3q9Xu3Zs2eucuPGjVMBdciQIbeM548//sj3ee7Ro0eu56Kg7y1VzftazLmX8+fPFzrmjIwM1Ww25zr/+fPnVYPBoE6ePNm6be/evTd9bwwZMkQNCQmxPl65cqUKqO+++26ucv369VMVRVHDw8Nz3Yter8+17dChQyqgzpo1K8+1bvTggw+qdevWvWWZYcOGqQEBAWpcXFyu7QMGDFDd3Nysr5db3Z+4PWmmKUOSkpIAcHFxKfAxN7a9JyYmEhcXR/v27Tl37hyJiYl3FMfIkSOtv+d8WzAajaxfvz5Xub59+1qbW3JotVrrtzuLxUJ8fDwmk4lmzZqxf//+O4pnzZo1AIwePTrX9ldeeQUgTx+aOnXqWL+5APj4+FCzZk3OnTt3y+v8/PPPKIrChAkT8uy7m6HGzz77bJ5t/fv3Z9++fZw9e9a6bcmSJRgMBh588EEADh48yJkzZxg0aBDXrl0jLi6OuLg4UlNT6dSpE1u2bLllp8A1a9bg7+/PwIEDrdt0Oh2jRo0iJSWFv/76K09MOTUygPU5vN3zdjtVqlSha9euebbf7Wv3iSeeyFWTUNB4b7xuVlYW165do3r16ri7u+f7Gn366adz/f3btWuH2Wy2NrOtX78eo9HICy+8kKvcSy+9dNt7ALjvvvvw9vbOVdNy/fp11q1bR//+/a3bivK9VZiYDQYDGk32R4nZbObatWs4OztTs2bNu3pPa7VaRo0alWv7K6+8gqqq/P7777m2d+7cmWrVqlkfN2jQAFdX19v+rd3d3bl8+fJNmxtVVeXnn3+md+/eqKpqfY/FxcXRtWtXEhMT7/geRW6SjJQhrq6uACQnJxf4mO3bt9O5c2ecnJxwd3fHx8eHcePGAdxRMqLRaKhatWqubTVq1ADI06ZepUqVfM/x9ddf06BBA+zt7fHy8sLHx4fVq1ffcXJ08eJFNBoN1atXz7Xd398fd3f3PH0vKleunOccHh4eufph5Ofs2bMEBgbi6el5R3HeTH7P0yOPPIJGo7F+AKmqytKlS+nevbv1dXDmzBkAhgwZgo+PT66fL7/8kszMzFs+pxcvXiQsLMz6QZIjpwnlds9bTmJyu+ftdm72Ornb1+6dxpuens748eOtfRW8vb3x8fEhISEh3+ve7jo5z2NYWFiucj4+PrmSu5uxs7Ojb9++/PLLL9Y+UMuXLycrKytXMgJF994qTMwWi4Vp06YRFhaW6/k6fPjwXb2nAwMD83zxKuhrEwr2nn799ddxdnamRYsWhIWFMWLEiFz9rWJjY0lISGDevHl53mM5/XhiYmLu6B5FbtJnpAxxdXUlMDCQo0ePFqj82bNn6dSpE7Vq1eLTTz8lODgYvV7PmjVrmDZtWrEPpctvRMR3333H0KFD6dOnD6+++iq+vr5otVqmTp2aqxbgThS0duJmowbU/3SMK8oYzGbzTY/J73kKDAykXbt2/PTTT4wbN45du3YRERHBBx98YC2T8/f76KOPbtofoCgnqSuu5y2/+y+K1+6dxvvCCy+wcOFCXnrpJVq1aoWbmxuKojBgwIB8r1ucr6ccAwYMYO7cufz+++/06dOHn376iVq1atGwYUNrmeJ8b93KlClTePvtt3nyySd555138PT0RKPR8NJLL5XYcN07/RvUrl2bU6dO8dtvv7F27Vp+/vlnPv/8c8aPH8+kSZOs8f/vf/9jyJAh+Z7jVn3ZRMFJMlLG9OrVi3nz5rFz505atWp1y7KrVq0iMzOTX3/9Ndc3h4L0rr8Zi8XCuXPnrLUhAKdPnwYo0BwSy5Yto2rVqixfvjzXB/d/mz4K0+wREhKCxWLhzJkzuTpGRkdHk5CQQEhISIHPdSvVqlXjjz/+ID4+/qa1IznfGhMSEnJtz29kzO3079+f559/nlOnTrFkyRIcHR3p3bt3rnggO0nt3Llzoc8fEhLC4cOHsVgsuWpHTp48ad1fFO6kCas4XrsFtWzZMoYMGcInn3xi3ZaRkZHnb1pQOc/jmTNnctUqxsbGFrhW6d577yUgIIAlS5bQtm1bNm7cyJtvvpkn7oK8t4o65mXLltGxY0e++uqrXNsTEhLw9va2Pi7se3r9+vUkJyfnqh0p6tcmgJOTE/3796d///4YjUYefvhh3nvvPcaOHYuPjw8uLi6YzebbvsdkVui7I800Zcxrr72Gk5MTTz31FNHR0Xn2nz17lhkzZgD/flu48dtBYmIiCxcuvKsYZs+ebf1dVVVmz56NTqejU6dOtz02v5h2797Nzp07c5XLGbFQkA+AHj16ADB9+vRc2z/99FMAevbsedtzFETfvn1RVdU6GduNcu7H1dUVb29vtmzZkmv/559/fkfX02q1/PDDDyxdupRevXrlmoOkadOmVKtWjY8//piUlJQ8x/93eOl/9ejRg6ioqFx9EUwmE7NmzcLZ2Zn27dsXOub85MRcmA/z4nrtFvTa//1GPWvWrFvWbt1K586d0el0zJo1K9d5//t6vRWNRkO/fv1YtWoV3377LSaTKU8TTUHfW0Udc37P19KlS7ly5UqubYV5HfTo0QOz2Zzr/xqAadOmoSgK3bt3L+Cd3Nq1a9dyPdbr9dSpUwdVVcnKykKr1dK3b19+/vnnfGukb3yP3cnrXPxLakbKmGrVqrF48WL69+9P7dq1c83AumPHDuvQTID7778fvV5P7969eeaZZ0hJSWH+/Pn4+voSGRl5R9e3t7dn7dq1DBkyhJYtW/L777+zevVqxo0bl6ezan569erF8uXLeeihh+jZsyfnz59nzpw51KlTJ9cHqoODA3Xq1GHJkiXUqFEDT09P6tWrR7169fKcs2HDhgwZMoR58+aRkJBA+/bt2bNnD19//TV9+vShY8eOd3Sv/9WxY0cef/xxZs6cyZkzZ+jWrRsWi4WtW7fSsWNHa8fep556ivfff5+nnnqKZs2asWXLFmvtUWH4+vrSsWNHPv30U5KTk/N8+Gg0Gr788ku6d+9O3bp1eeKJJwgKCuLKlSts2rQJV1dXVq1addPzP/3008ydO5ehQ4eyb98+QkNDWbZsGdu3b2f69OmF6ih9K40aNUKr1fLBBx+QmJiIwWCwzh9yM8Xx2i2oXr168e233+Lm5kadOnXYuXMn69evv+UQ0Vvx8fFhzJgxTJ06lV69etGjRw8OHDjA77//nqvm4Hb69+/PrFmzmDBhAvXr189VC5gTd0HeW0Udc69evZg8eTJPPPEErVu35siRI3z//fd5+pZVq1YNd3d35syZg4uLC05OTrRs2TLfPkO9e/emY8eOvPnmm1y4cIGGDRvy559/8ssvv/DSSy/l6qx6N+6//378/f1p06YNfn5+nDhxgtmzZ9OzZ0/r6//9999n06ZNtGzZkuHDh1OnTh3i4+PZv38/69evJz4+vtD3J/JRomN3RJE5ffq0Onz4cDU0NFTV6/Wqi4uL2qZNG3XWrFlqRkaGtdyvv/6qNmjQQLW3t1dDQ0PVDz74QF2wYEGuYXyqWvChvU5OTurZs2fV+++/X3V0dFT9/PzUCRMm5Bral3PsRx99lCdui8WiTpkyRQ0JCVENBoPauHFj9bfffssztE9VVXXHjh1q06ZNVb1en2so4n+H9qqqqmZlZamTJk1Sq1Spoup0OjU4OFgdO3ZsrudCVbOHkvbs2TNPXP+9/5sxmUzqRx99pNaqVUvV6/Wqj4+P2r17d3Xfvn3WMmlpaeqwYcNUNzc31cXFRX300UfVmJiYmw7tzRkSnZ/58+ergOri4qKmp6fnW+bAgQPqww8/rHp5eakGg0ENCQlRH330UXXDhg23vZ/o6Gj1iSeeUL29vVW9Xq/Wr18/z9DEW/09/3tPt7qPqlWrqlqtNtcw35v9PVT1zl+7OUN7ly5dmu993G7o5fXr163PibOzs9q1a1f15MmTakhISK4hrTnDYffu3Zvr+Jzr3ziU2Ww2q5MmTVIDAgJUBwcHtUOHDurRo0fznPNWLBaLGhwcnO+Q15z9BX1v/ffv9t+hvYWJOSMjQ33llVes5dq0aaPu3Lkz3/fUL7/8otapU0e1s7PL9bfIL8bk5GT15ZdfVgMDA1WdTqeGhYWpH330Ua6hxjn3MmLEiDzPR0Ge27lz56r33nuv9b1TrVo19dVXX1UTExNzlYuOjlZHjBihBgcHqzqdTvX391c7deqkzps3r0D3J25PUdUi7GUlhBBCCFFI0mdECCGEEDYlyYgQQgghbEqSESGEEELYlCQjQgghhLApSUaEEEIIYVOSjAghhBDCpsrEpGcWi4WrV6/i4uIiU+4KIYQQZYSqqiQnJxMYGJhnUc4blYlk5OrVqwQHB9s6DCGEEELcgUuXLlGpUqWb7i8TyUjOtLyXLl2yLp8uhBBCiNItKSmJ4ODg2y4vUSaSkZymGVdXV0lGhBBCiDLmdl0spAOrEEIIIWxKkhEhhBBC2JQkI0IIIYSwqTLRZ6QgzGYzWVlZtg5DlCFarRY7OzsZLi6EEDZWLpKRlJQULl++jKqqtg5FlDGOjo4EBASg1+ttHYoQQlRYZT4ZMZvNXL58GUdHR3x8fORbrigQVVUxGo3ExsZy/vx5wsLCbjkhjxBCiOJT5pORrKwsVFXFx8cHBwcHW4cjyhAHBwd0Oh0XL17EaDRib29v65CEEKJCKjdfBaVGRNwJqQ0RQgjbk/+JhRBCCGFTkowIIYQQwqYKnYxs2bKF3r17ExgYiKIorFy58rbHbN68mSZNmmAwGKhevTqLFi26g1DF7YSGhjJ9+nRbhyGEEKIERKVGsSdyD1GpUbYO5a4VOhlJTU2lYcOGfPbZZwUqf/78eXr27EnHjh05ePAgL730Ek899RR//PFHoYMtLxRFueXPxIkT7+i8e/fu5emnny7aYAth8+bNKIpCQkKCzWIQQoiKYPmZ5XT9uSvD/hxG15+7svzMcluHdFcKPZqme/fudO/evcDl58yZQ5UqVfjkk08AqF27Ntu2bWPatGl07do132MyMzPJzMy0Pk5KSipsmHcm8QrEnwXPauAWVGyXiYyMtP6+ZMkSxo8fz6lTp6zbnJ2drb+rqorZbMbO7vZ/Kh8fn6INVAghRKkTlRrFpJ2TsKgWACyqhUk7J9E6sDX+Tv42ju7OFHufkZ07d9K5c+dc27p27crOnTtveszUqVNxc3Oz/gQHBxf8gqoKxtTC/+yZD9Prwde9s//dM7/w5yjgpGv+/v7WHzc3NxRFsT4+efIkLi4u/P777zRt2hSDwcC2bds4e/YsDz74IH5+fjg7O9O8eXPWr1+f67z/baZRFIUvv/yShx56CEdHR8LCwvj1119vGdvnn39OWFgY9vb2+Pn50a9fP+s+i8XC1KlTqVKlCg4ODjRs2JBly5YBcOHCBTp27AiAh4cHiqIwdOjQAj0fQgghCi4iKcKaiOSwqBYuJV+yUUR3r9jnGYmKisLPzy/XNj8/P5KSkkhPT893bpCxY8cyevRo6+OkpKSCJyRZaTAl8K5iRrXAmjHZP4Ux7irone7u2v944403+Pjjj6latSoeHh5cunSJHj168N5772EwGPjmm2/o3bs3p06donLlyjc9z6RJk/jwww/56KOPmDVrFo899hgXL17E09MzT9m///6bUaNG8e2339K6dWvi4+PZunWrdf/UqVP57rvvmDNnDmFhYWzZsoX//e9/+Pj40LZtW37++Wf69u3LqVOncHV1lXlfhBCiGFR2rYyCgsq/X4A1ioZgl4J/cb8Ql8qX284xsXdd7LS2H8tSKic9MxgMGAwGW4dhU5MnT6ZLly7Wx56enjRs2ND6+J133mHFihX8+uuvjBw58qbnGTp0KAMHDgRgypQpzJw5kz179tCtW7c8ZSMiInBycqJXr164uLgQEhJC48aNgeymsylTprB+/XpatWoFQNWqVdm2bRtz586lffv21gTH19cXd3f3u34OhBBC5OXv5E/7Su3ZfHkzkJ2ITGg1ocBNNKsOXWXs8iOkZJrwcbbnxc5hxRhtwRR7MuLv7090dHSubdHR0cX3zVnnmF1DURhJV+GzFtk1IjkULYzYDa6FqGXRORbuurfQrFmzXI9TUlKYOHEiq1evJjIyEpPJRHp6OhEREbc8T4MGDay/Ozk54erqSkxMTL5lu3TpQkhICFWrVqVbt25069bN2sQTHh5OWlpargQJwGg0WhMWIYQQJSM+Ix6AoXWH8ljtxwqUiGRkmZn823EW787+3GgR6kn/5oXoBlGMij0ZadWqFWvWrMm1bd26ddZv10VOUQrfVOIdBr1nwKqXQDVnJyK9p2dvtxEnp9z3MGbMGNatW8fHH39M9erVcXBwoF+/fhiNxlueR6fT5XqsKAoWiyXfsi4uLuzfv5/Nmzfz559/Mn78eCZOnMjevXtJSUkBYPXq1QQF5e7cW9FrsYQQoiRdz7jOkbgjAPyv9v/wc/K7zRFwNjaFEd/v52RUMooCIzpU56XOYaWiiQbuIBlJSUkhPDzc+vj8+fMcPHgQT09PKleuzNixY7ly5QrffPMNAM8++yyzZ8/mtdde48knn2Tjxo389NNPrF69uujuoig0GQzVOkH8OfCsWqyjae7E9u3bGTp0KA899BCQ/Xe4cOFCkV/Hzs6Ozp0707lzZyZMmIC7uzsbN26kS5cuGAwGIiIiaN++fb7H5qx8azabizwuIYQQ2XZc3YGKSphHWIESkfXHoxn14wHSjGa8nfVM69+IdmGla/RloZORv//+2zpqArB2NB0yZAiLFi0iMjIyV9NBlSpVWL16NS+//DIzZsygUqVKfPnllzcd1mtTbkGlLgnJERYWxvLly+nduzeKovD222/ftIbjTv3222+cO3eOe++9Fw8PD9asWYPFYqFmzZq4uLgwZswYXn75ZSwWC23btiUxMZHt27fj6urKkCFDCAkJQVEUfvvtN3r06IGDg0OuYcpCCCHu3vYr2wFoG9S2QOVDvBxRVWhV1YsZAxrh61r6FgUtdDLSoUMH1FsMYc1vdtUOHTpw4MCBwl5K3ODTTz/lySefpHXr1nh7e/P6668X+fwr7u7uLF++nIkTJ5KRkUFYWBg//PADdevWBbI7zfr4+DB16lTOnTuHu7s7TZo0Ydy4cQAEBQUxadIk3njjDZ544gkGDx4ss+0KIUQRsqgWtl/NTkbaBbW7abnE9CzcHLKb6cP8XFj6bCtqB7ii1ZTORWUV9VaZRSmRlJSEm5sbiYmJuLq65tqXkZHB+fPnqVKliiwBLwpNXj9CiLLkWNwxBqwegJPOia39t6LT5u4XqKoqS/ddZvKq4yx8ojnNQ/NO41CSbvX5faNSObRXCCGEEHltvZI991NL/5Z5EpHUTBNvrzzK8gNXAFiy95LNk5GCkmRECCGEKCOs/UUq5e4vciIyiRGL93MuNhWNAq/cX5Pn2lezRYh3RJIRIYQQogxIzEzkcNxhANoGZicjqqryw55LTFp1jEyTBX9Xe2YObEyLKmWjRiSHJCNCCCFEGbDz6k4sqoVqbtUIcA4AYMuZOMatyJ5zpGNNHz55tBGeTnpbhnlHJBkRQgghyoBtV7YBuYf03hvmzQMNA6kb6MrwdlXRlNLRMrcjyYgQQghRyt04pNecWpOkjCxc7XUoisKMAY1QlLKZhOQoHfPACiGEEOKmTsWfIi49Dg0GvvjDwtifj1jn/CrriQhIMiKEEEKUekuPrwPAmFwVnUZH0xAPG0dUtKSZRgghhCilVFVlwfYLLDm6Ho0juKj1mP9saxoGu9s6tCIlNSNlWIcOHXjppZesj0NDQ5k+ffotj1EUhZUrV971tYvqPEIIIfKXmJbF09/u4501+1AcLgLwzcAh5S4RAUlGbKJ3795069Yt331bt25FURQOHz5c6PPu3buXp59++m7Dy2XixIk0atQoz/bIyEi6d+9epNcqagVJzoQQorQyWSwcvpyAvctZFMVCFbcq1PIOsXVYxUKSkRtEpUaxJ3IPUalRxXqdYcOGsW7dOi5fvpxn38KFC2nWrBkNGjQo9Hl9fHxwdHQsihBvy9/fH4PBUCLXEkKIiuLG5eK8nA18/lhT7m+WAECbwDY2iqr4lbtkRFVV0rLSCv3z48kf6bqsK8P+HEbXZV358eSPhT5HQdcc7NWrFz4+PnlWtE1JSWHp0qUMGzaMa9euMXDgQIKCgnB0dKR+/fr88MMPtzzvf2sCzpw5w7333ou9vT116tRh3bp1eY55/fXXqVGjBo6OjlStWpW3336brKwsIHsF5kmTJnHo0CEURUFRFGvM/22mOXLkCPfddx8ODg54eXnx9NNPk5KSYt0/dOhQ+vTpw8cff0xAQABeXl6MGDHCeq38HDp0iI4dO+Li4oKrqytNmzbl77//tu7ftm0b7dq1w8HBgeDgYEaNGkVqaiqQ3YR18eJFXn75ZWvsQghRmsWnGnly0V5+3vfvF9Umld05lrAHuPUqvWVduevAmm5Kp+Xilnd1DgsW3tv9Hu/tfq9Qx+0etBtH3e1rJuzs7Bg8eDCLFi3izTfftH5QLl26FLPZzMCBA0lJSaFp06a8/vrruLq6snr1ah5//HGqVatGixYtbn8PFgsPP/wwfn5+7N69m8TExFz9S3K4uLiwaNEiAgMDOXLkCMOHD8fFxYXXXnuN/v37c/ToUdauXcv69esBcHNzy3OO1NRUunbtSqtWrdi7dy8xMTE89dRTjBw5MlfCtWnTJgICAti0aRPh4eH079+fRo0aMXz48Hzv4bHHHqNx48Z88cUXaLVaDh48iE6XvTDU2bNn6datG++++y4LFiwgNjaWkSNHMnLkSBYuXMjy5ctp2LAhTz/99E3PL4QQpcWe8/GM+uEAUUkZHLyUQPf6/jjq7Th9/TQxaTHYa+1p6t/U1mEWm3KXjJQVTz75JB999BF//fUXHTp0ALKbaPr27Yubmxtubm6MGTPGWv6FF17gjz/+4KeffipQMrJ+/XpOnjzJH3/8QWBgIABTpkzJ08/jrbfesv4eGhrKmDFj+PHHH3nttddwcHDA2dkZOzs7/P39b3qtxYsXk5GRwTfffIOTkxMAs2fPpnfv3nzwwQf4+fkB4OHhwezZs9FqtdSqVYuePXuyYcOGmyYLERERvPrqq9SqVQuAsLAw676pU6fy2GOPWROssLAwZs6cSfv27fniiy/w9PREq9Xi4uJyy9iFEMKWLBaVL/46y6frTmO2qFT1ceKzQU1w1Gd/POfMutrcvzkGbfltGi93yYiDnQO7B+0u1DHRadH0WdkHCxbrNo2iYeWDK/Fz9CvUtQuqVq1atG7dmgULFtChQwfCw8PZunUrkydPBsBsNjNlyhR++uknrly5gtFoJDMzs8B9Qk6cOEFwcLA1EQFo1apVnnJLlixh5syZnD17lpSUFEwmE66urgW+j5xrNWzY0JqIALRp0waLxcKpU6esyUjdunXRarXWMgEBARw5cuSm5x09ejRPPfUU3377LZ07d+aRRx6hWrXsVSgPHTrE4cOH+f77763lVVXFYrFw/vx5ateuXah7EEKIkhaXksnLSw6y9UwcAA83DuKdPvVwMvz70Zwz6+qNU8CXR+Wuz4iiKDjqHAv1U8WtChNaT0CjZD8dGkXDhFYTqOJWpVDnKWy/hGHDhvHzzz+TnJzMwoULqVatGu3btwfgo48+YsaMGbz++uts2rSJgwcP0rVrV4xGY5E9Vzt37uSxxx6jR48e/Pbbbxw4cIA333yzSK9xo5wmlhyKomCxWG5SOnskz7Fjx+jZsycbN26kTp06rFixAsjuX/PMM89w8OBB68+hQ4c4c+aMNWERQojSKjkji14zt7H1TBz2Og0f9mvAJ482zJWIpBhTOBB9ACjf/UWgHNaM3KmHwx6mdWBrLiVfItglGH+n4q/af/TRR3nxxRdZvHgx33zzDc8995w1odm+fTsPPvgg//vf/4DsPiCnT5+mTp06BTp37dq1uXTpEpGRkQQEZK/uuGvXrlxlduzYQUhICG+++aZ128WLF3OV0ev1mM3m215r0aJFpKamWmtHtm/fjkajoWbNmgWK92Zq1KhBjRo1ePnllxk4cCALFy7koYceokmTJhw/fpzq1avf9NiCxC6EELbgYq/j4SZBrD8RzWeDmhDm55KnzO7I3ZhUEyGuIQS7BtsgypJT7mpG7oa/kz/N/ZuXSCIC4OzsTP/+/Rk7diyRkZEMHTrUui8sLIx169axY8cOTpw4wTPPPEN0dHSBz925c2dq1KjBkCFDOHToEFu3bs2VdORcIyIigh9//JGzZ88yc+ZMa81DjtDQUM6fP8/BgweJi4sjMzMzz7Uee+wx7O3tGTJkCEePHmXTpk288MILPP7449YmmsJKT09n5MiRbN68mYsXL7J9+3b27t1rbX55/fXX2bFjByNHjuTgwYOcOXOGX375hZEjR+aKfcuWLVy5coW4uLg7ikMIIYpKTHIGl6+nWR+P7lKDX0a0zTcRAdh6ZStQvof05pBkxMaGDRvG9evX6dq1a67+HW+99RZNmjSha9eudOjQAX9/f/r06VPg82o0GlasWEF6ejotWrTgqaee4r33co8OeuCBB3j55ZcZOXIkjRo1YseOHbz99tu5yvTt25du3brRsWNHfHx88h1e7OjoyB9//EF8fDzNmzenX79+dOrUidmzZxfuybiBVqvl2rVrDB48mBo1avDoo4/SvXt3Jk2aBECDBg3466+/OH36NO3ataNx48aMHz8+13M4efJkLly4QLVq1fDx8bnjWIQQ4m5tOxNHjxlbGfH9foym7OZpO60GB7023/KqqlaY/iIAilrQyTFsKCkpCTc3NxITE/N0rszIyOD8+fNUqVIFe3t7G0Uoyip5/QghipPJbGH6+jN8tjkcVYVa/i4seqIF/m63/v8m/Ho4D/36EAatgW0DtmFvVzb/f7rV5/eNpM+IEEIIUQyiEjMY9eMB9pyPB2BQy8qM71UHe13+tSE3yhnS28yvWZlNRApDkhEhhBCiiG06FcMrPx0iPtWIs8GOKQ/X54GGgbc/8B/brmYnIxWhiQYkGRFCCCGKlMWiMm3daeJTjdQNdOWzQU0I9Xa6/YH/SMtKY3/0fkCSESGEEELcAY1GYdbAxny36yKv3F+zQM0yN9oduZssSxaVnCsR4lo+V+n9LxlNI4QQQtyl9cejmfPXWevjEC8n3uxZsP4h/5XTX6RNUJsKs8in1IwIIYQQd8hosvDh2pN8ue08igJNQzxoHup5x+e7cUhve309UnftRh8agq6cr7ElyYgQQghxBy7FpzHyhwMcupQAwBOtq9CwkvtdnfN80nmupFyh82EF7/fHEaGqoNEQMHkS7v363X3QpZQkI0IIIUQhrT0ayavLDpOcYcLNQcfHjzSkS507m3H6Rtsub8MzSeWpNSbImQXMYiFy/ASc2rYttzUkkowIIYQQhTD19xPM/escAE0quzNzYGMqeRRsRfXb2X51OwHXVTT/nY7UYsF4MaLcJiPSgVUUytChQws1Lb0QQpQ31XycAXimfVWWPNOqyBKRdFM6f0f9TVZ+n8waDfqQykVyndJIkhEbGTp0KIqioCgKer2e6tWrM3nyZEwmEwCbN29GURQSEhJueo6kpCTefPNNatWqhb29Pf7+/nTu3Jnly5dz4yz/x44d49FHH8XHxweDwUCNGjUYP348aWlpNz13Ublw4QKKonDw4MFiv9aNFi1ahLu7e4leUwhRfiWkGa2/P9K0EqtHtWVs99rotEX3Mbo3ai9Gi5EHD+U0Wvzz/7hGIWDypHJbKwLSTJNLVlQUxgsXS6zncrdu3Vi4cCGZmZmsWbOGESNGoNPpGDt27G2PTUhIoG3btiQmJvLuu+/SvHlz7Ozs+Ouvv3jttde47777cHd3Z9euXXTu3JnOnTuzevVq/Pz82LNnD6+88gobNmxg06ZN6PX6Yr9XIYQoizKyzEz+7TibT8awelQ7PJz0KIpC3UC3Ir/W1stbCY5RaXYkE1CodG88Gq2K3lVF16VVkV+vNCl3NSOqqmJJSyv0T/zixYTf14mIoUMJv68T8YsXF/ochV1z0GAw4O/vT0hICM899xydO3fm119/LdCx48aN48KFC+zevZshQ4ZQp04datSowfDhwzl48CDOzs6oqsqwYcOoXbs2y5cvp0WLFoSEhPDII4+watUqdu7cybRp0256DbPZzOjRo3F3d8fLy4vXXnstzz2uXbuWtm3bWsv06tWLs2f/HWtfpUoVABo3boyiKHTo0AGAvXv30qVLF7y9vXFzc6N9+/bs37/fepyqqkycOJHKlStjMBgIDAxk1KhR1v2ZmZmMGTOGoKAgnJycaNmyJZs3bwaya5WeeOIJEhMTrbVPEydOLNDzKoQQOc7GptDns+0s3h1BZFIGf52OLdbrbb+6nQFbLCgouASn4xKYiZOfEZ1DFsSfK9Zr21q5qxlR09M51aTp3Z3EYiF68jtET36nUIfV3L8PxfHO2w4dHBy4du3abctZLBZ+/PFHHnvsMQID86514Oyc3Z554MABjh8/zuLFi9FocuedDRs2pHPnzvzwww+8/vrr+V7nk08+YdGiRSxYsIDatWvzySefsGLFCu677z5rmdTUVEaPHk2DBg1ISUlh/PjxPPTQQxw8eBCNRsOePXto0aIF69evp27dutZamOTkZIYMGcKsWbNQVZVPPvmEHj16cObMGVxcXPj555+ZNm0aP/74I3Xr1iUqKopDhw5Zrzty5EiOHz/Ojz/+SGBgICtWrKBbt24cOXKE1q1bM336dMaPH8+pU6dyPSdCCFEQKw9cYdyKI6QZzXg56Zk+oBHtwnyK7XoXky5ifyKC5mdUUFR86if9u1PRgmfVYrt2aVDukpGySFVVNmzYwB9//MELL7xw2/JxcXFcv36dWrVq3bLc6dOnAahdu3a++2vXrs22bdtuevz06dMZO3YsDz/8MABz5szhjz/+yFWmb9++uR4vWLAAHx8fjh8/Tr169fDxyX7zenl54X9D09eNCQ3AvHnzcHd356+//qJXr15ERERY+8DodDoqV65MixYtAIiIiGDhwoVERERYk7ExY8awdu1aFi5cyJQpU3Bzc0NRlFzXFEKI20k3mpn46zGW/H0JgFZVvZgxoBG+rsW7cu62y1sZ+JcFALcqaRhczdk7FC30ng5uQcV6fVsrd8mI4uBAzf37CnVMVnQ053r2Aovl340aDVVX/4bOr+DjxhUHh0Jd97fffsPZ2ZmsrCwsFguDBg0qUHNCYZuDClseIDExkcjISFq2bGndZmdnR7NmzXKd78yZM4wfP57du3cTFxeH5Z/nMCIignr16t30/NHR0bz11lts3ryZmJgYzGYzaWlpREREAPDII48wffp0qlatSrdu3ejRowe9e/fGzs6OI0eOYDabqVGjRq5zZmZm4uXlVeh7FUKIHJ+uO8WSvy+hKDDqvjBGdQpDqyn+KdkvbviVhyJULFoVn7rJ0G8hOPlk14iU80QEymMyoiiFbioxVKlCwORJRI6fkJ2Q/DPbneGf/g7FpWPHjnzxxRfo9XoCAwOxsyvYn8PHxwd3d3dOnjx5y3I5H9YnTpygcePGefafOHEizwd6YfXu3ZuQkBDmz59PYGAgFouFevXqYTQab3nckCFDuHbtGjNmzCAkJASDwUCrVq2sxwUHB3Pq1CnWr1/PunXreP755/noo4/466+/SElJQavVsm/fPrTa3Os+SHOMEOJujLwvjP0RCbzSpQatq3uXyDXTjWk0XH4MAG2NdHT174V6D5fItUuLcteB9U659+tH9Y0bqPz111TfuKFEpt11cnKievXqVK5cucCJCIBGo2HAgAF8//33XL16Nc/+lJQUTCYTjRo1olatWkybNs1aY5Hj0KFDrF+/noEDB+Z7DTc3NwICAti9e7d1m8lkYt++f2udrl27xqlTp3jrrbfo1KkTtWvX5vr167nOk9NHxGw259q+fft2Ro0aRY8ePahbty4Gg4G4uLhcZRwcHOjduzczZ85k8+bN7Ny5kyNHjtC4cWPMZjMxMTFUr149109Os4xer89zTSGE+K/UTBPf7rporfF1c9Cx7NlWJZaIABxZNo+qkRYydFCtZhLcN77Erl1alLuakbuh8/cvdeO4jxw5gouLi/Wxoig0bNiQ9957j82bN9OyZUvee+89mjVrhk6nY+vWrUydOpW9e/fi7u7OV199RZcuXejbty9jx47F39+f3bt388orr9CqVSteeumlm177xRdf5P333ycsLIxatWrx6aef5pr3xMPDAy8vL+bNm0dAQAARERG88cYbuc7h6+uLg4MDa9eupVKlStjb2+Pm5kZYWBjffvstzZo1IykpiVdffRWHG5q5Fi1ahNlspmXLljg6OvLdd9/h4OBASEgIXl5ePPbYYwwePJhPPvmExo0bExsby4YNG2jQoAE9e/YkNDSUlJQUNmzYQMOGDXF0dMTxLjoXCyHKn5NRSYz4fj9nY1PRKPBYyxCAEl0pVzWZYP4PAIQ3MtG4UQ+odJeDMMoitQxITExUATUxMTHPvvT0dPX48eNqenq6DSK7c0OGDFEffPDBm+7ftGmTSvaMN7l+tFqttUxCQoL6xhtvqGFhYaper1f9/PzUzp07qytWrFAtFou13OHDh9W+ffuqnp6eqk6nU6tVq6a+9dZbampq6i1jzMrKUl988UXV1dVVdXd3V0ePHq0OHjw4V9zr1q1Ta9eurRoMBrVBgwbq5s2bVUBdsWKFtcz8+fPV4OBgVaPRqO3bt1dVVVX379+vNmvWTLW3t1fDwsLUpUuXqiEhIeq0adNUVVXVFStWqC1btlRdXV1VJycn9Z577lHXr19vPafRaFTHjx+vhoaGqjqdTg0ICFAfeugh9fDhw9Yyzz77rOrl5aUC6oQJE/K9x7L6+hFC3DmLxaIu3n1RrfHmGjXk9d/Ulu+tV3efu2aTWK4vXaoer1lL3dWolrr+HX9VjTpmkziKy60+v2+kqOod9G4sYUlJSbi5uZGYmIirq2uufRkZGZw/f54qVapgb1+8vZ1F+SOvHyEqluSMLMatOMqqQ9lN3B1q+vDpo43wdCr5yR8tmZmc7tIZNSaO7+5TGNvpHpz7LijxOIrTrT6/byTNNEIIISqEY1cTGfH9fi5cS0OrUXita02Gt6uKpgRGy+Tn+g8/oMbEEecC0XVNOHd8yyZxlAaSjAghhKgQkjNMRMSnEehmz6xBTWga4mGzWMwpqVybOw+AZW013ONbq9xPbHYrkowIIYQot1RVtXZIvaeqF7MGNqFNdS/cHW27Jlf8okWYr18n0hM2N1B4/p7RNo3H1mRorxBCiHLp8OUEus/YSnhMinVbzwYBNk9ETNevE79wIQA/3qvBy86eGpXa2jQmWys3yUgZ6IcrSiF53QhR/qiqyoJt5+n7xQ5ORiXz/u+3niCypF2bOw9LaiqJ3hZ21VJoU/m+Eh1OXBqV+WaanBk4jUZjrnkqhCiItLQ0AHQ6nY0jEUIUhcS0LF5ddog/j0cD0K2uPx/0a2DjqP6VFRnJ9cWLAfj5XgVVUWgb0snGUdlemU9G7OzscHR0JDY2Fp1Ol2d1WiHyo6oqaWlpxMTE4O7unmdaeSFE2bM/4jovLD7AlYR09FoNb/aszeBWIaWq1iHu889RjUa0vkbW1nBAq2hpFdjK1mHZXJlPRhRFISAggPPnz3Px4kVbhyPKGHd3d1nZV4hyYM/5eAbN34XJohLi5chng5pQL8jN1mHlknn+PAnLVwBw+p4sUBxp6NMQV/3N59+oKMp8MgLZ65CEhYXddnE2IW6k0+mkRkSIcqJxZXcaBrsT4GbP1Ifr42Jf+ppeY2fOBLMZ58AM/qievcxHm6A2No6qdCgXyQhkLx4nM2gKIUTFcfhyArX8XdHbadBpNXz9ZAuc9NpS1SyTI/3YMZJ/XwuoeDRIYreDB1iyaBtUsUfR5JAOFkIIIcoUi0Xls03hPPT5Dj5c++9IGWeDXalMRABip88AwDUknWNhQaRbsvCy96KWZy0bR1Y6SDIihBCizIhLyWToor189McpzBaV+FQjFkvpHqKftncvqVu3gqLiUy+ZbVXvAbKbaDSKfAxDOWqmEUIIUb7tOneNUT8cICY5E3udhskP1OORZpVKbW0IZI/ci/l0GgDu1dLQV6vJtswYAGmiucEdpWSfffYZoaGh2Nvb07JlS/bs2XPL8tOnT6dmzZo4ODgQHBzMyy+/TEZGxh0FLIQQomIxW1RmrD/DoPm7iEnOJMzXmV9HtuXR5sGlOhEBSNm8mfQDB1C0Kt51k4lqM5LwxLNoFA2tA1vbOrxSo9A1I0uWLGH06NHMmTOHli1bMn36dLp27cqpU6fw9fXNU37x4sW88cYbLFiwgNatW3P69GmGDh2Koih8+umnRXITQgghyq/IxHTmbz2HRYVHmlZi0oN1cdSX/op91WKx9hXxDEtBV70x2+yzp6Kv710fN0PpGnpsS4X+a3766acMHz6cJ554AoA5c+awevVqFixYwBtvvJGn/I4dO2jTpg2DBg0CIDQ0lIEDB7J79+67DF0IIURFUMnDkQ/7NSAjy8zDTSrZOpwCS1q9hsxTp9DoLHjVToFO49l2cSUgQ3r/q1DNNEajkX379tG5c+d/T6DR0LlzZ3bu3JnvMa1bt2bfvn3Wppxz586xZs0aevTocdPrZGZmkpSUlOtHCCFExWAyW/jkz1NsOxNn3dajfkCZSkTUrCxiZ80CwKtWCtpa7cgKbcOuyF0AtAtqZ8vwSp1C1YzExcVhNpvx8/PLtd3Pz4+TJ/NfiGjQoEHExcXRtm1bVFXFZDLx7LPPMm7cuJteZ+rUqUyaNKkwoQkhhCgHohIzGPXjAfacj+cH50tsGtO+VE5gdjsJP/9MVkQEWoMZzxqpcN94DsYcJDUrFU97T+p41bF1iKVKsY8p2rx5M1OmTOHzzz9n//79LF++nNWrV/POO+/c9JixY8eSmJho/bl06VJxhymEEMLGNp+KocfMrew5H4+TXsv43nXKZCJiSU8n7rPPAfCum4KmXncIbs62K9sAaB3YWob0/kehaka8vb3RarVER0fn2h4dHX3T9T3efvttHn/8cZ566ikA6tevT2pqKk8//TRvvvlmvgvbGQwGDAZDYUITQghRRmWZLXzy52nm/HUWgDoBrnz2WBOqeDvZOLI7c/377zHFxqJzNOFeLQ06vglgTUakv0hehUrN9Ho9TZs2ZcOGDdZtFouFDRs20KpV/qsOpqWl5Uk4ctYDUdXSPVGNEEKI4pVmNDFg3i5rIjK4VQjLn29dZhMRc1IScfO/BMC7fjKaRv3Avx4xaTGcvn4aBYU2gZKM/FehR9OMHj2aIUOG0KxZM1q0aMH06dNJTU21jq4ZPHgwQUFBTJ06FYDevXvz6aef0rhxY1q2bEl4eDhvv/02vXv3lkXKhBCignPQaans6cjp6GQ+7NuA7vUDbB3SXbm2YAGWxET0rlm4hRqhw1gAtl/ZDkA973p42HvYMsRSqdDJSP/+/YmNjWX8+PFERUXRqFEj1q5da+3UGhERkasm5K233kJRFN566y2uXLmCj48PvXv35r333iu6uxBCCFFmGE0WMkxmXO11KIrCu33qMbpLDYI9HW0d2l0xxcUR/803APg0SEZp9jh4VQNg65WtgDTR3IyiloG2kqSkJNzc3EhMTMTV1dXW4QghhLhDl+LTGPnDAXyc9cwf3KzUz6BaGFHvvsf1777D3tNIaLdklBcPgFsQJouJe3+8l+SsZL7r8R0NfRraOtQSU9DP79I/hZ0QQohyYe3RKF5ddojkDBOu9nZcvJZGaBntG/JfxstXuL7kRwB8GyShtHwa3IIAOBx7mOSsZNwN7tTzqmfLMEstSUaEEEIUq0yTmalrTrJoxwUAGld2Z9bAxlTyKNvNMjeKmz0bskw4+mXiVFkPbV+27ssZRdMqsBVajfSVzI8kI0IIIYrNxWupjFx8gCNXEgF45t6qjOlaE522/MyzkRkeTuKvvwLZtSK0Gg1O3tb9OcmIrNJ7c5KMCCGEKBaqqvLsd/s5EZmEh6OOTx5tyH21/G5/YBkTO2MGWCy4VErHoZIztBph3ReXHseJ+BMAskrvLZSf1FQIIUSpoigKUx6qR+tqXqx5sV25TETSDx8med16UMCnfnJ284z9v6vx5gzpreNVB28H75udpsKTZEQIIUSRORebwu9HIq2PG1f24PunWhLg5mDDqIpPzLRpALiFpGEI8obmw3PtlyaagpFmGiGEEEVi5YErjFtxBLNFJdTbidoB2UM5y9Pw3Rul7thB2s5doFHxrpcM7d8G/b+dck0WEzuu7gAkGbkdSUaEEELclXSjmYm/HmPJ39mLmt5T1RNPJ72NoypeqqoSM206AB7VUtFXqgSNB+cqczTuKEnGJFz0LtT3rm+DKMsOSUaEEELcsTPRyYxYvJ/T0SkoCoy6L4xRncLQaspnbUiO5HXryDhyBMVOxbtuCnT8COxyJ2A3rtJrp5GP21uRZ0cIIcQd+XnfZd5aeZT0LDM+LgZm9G9E6+rlv5OmajYTO2MmAJ41UrALrgH1H8lTzrpKryyMd1uSjAghhLgjl6+nk55lpm11b6b1b4SPi8HWIZWIxF9+xXj2LFq9Ba9aKXDfW/CfycyupV/j2LVjgPQXKQhJRoQQQhSYxaKi+acJZuR91ank4cBDjYOs28o7i9FI7OxZAHjVTkYb2ghq9cpTLqfjai3PWvg4+pRkiGWSDO0VQghxW6qq8sOeCPrO2UFGlhkArUahb9NKFSYRAUj4cQmmq5HYOZjxCEuF+96GfEYLyZDewpGaESGEELeUkmli3PIj/HroKgBL9l5iSOtQ2wZlA5bUVOLmzAHAu24ymmptodp9ecqZLWZrzYj0FykYSUaEEELc1NEriYxcvJ8L19LQahTG3F+Tx+8JsXVYNhH/zTeY4+PROZtwr5oGnfKvFTl+7TgJmQk465xp6NvQBpGWPZKMCCGEyENVVb7bdZF3fjuB0Wwh0M2eWYMa0zTE09ah2YTp+nWufbUAyJ72XanZFSrfk2/ZG1fp1Wl0JRZjWSbJiBBCiDxmbghn2vrTAHSu7ctH/RriUc4nMruVa19+iSUlBYN7Fq6V07NH0NyEDOktPOnAKoQQIo9+zSrh7WzgrZ61mT+4WYVORLKio7n+3fcA+DRIQqn3MAQ0yLdsQkYCR+KOANAmSJKRgpKaESGEEKiqyt4L12lRJbsZJsjdgS2vdcBRLx8TcZ9/gZqZiYN3Js6BJuj45k3L7ri6AxWVMI8w/J38SzDKsk1qRoQQooJLTMvimW/38ejcnWw4EW3dLokIGC9eJOHnnwHwbZCM0ngQeFe/aXkZ0ntn5JUmhBAV2P6I67yw+ABXEtLRazXEpWTaOqRSJXbmLDCZcArIwDEAaP/6TctaVAvbr24HoG2gJCOFIcmIEEJUQBaLypfbzvHh2lOYLCohXo7MHtiE+pXcbB1aqZFx8iRJq1cD4NsgCZoNB/fgm5Y/EX+C+Ix4HO0caezbuKTCLBckGRFCiArmeqqRV5YeYuPJGAB6Nghg6sP1cbWXYag3ip02HQDXyunY+xqg3ehblt92ObuJ5p6Ae9Bp5bksDElGhBCigtl17hobT8agt9MwvlcdHmtZGSWfybsqsrT9+0n56y9QwKd+EtzzMjj73vIY65BeGUVTaJKMCCFEBdO9fgCju9SgU21f6gZKs8x/qapKzKefAuBeJRW9jzO0fuGWxyRmJnI47jAA7YLaFXuM5Y2MphFCiHIuLiWTl5ccJDb5386pozqFSSJyE6lbt5L+9z4ULXjXS4Y2L4GD+y2P2Rm5E4tqoZpbNQKcA0okzvJEakaEEKIc23XuGqN+OEBMcibJGVl8OaS5rUMq1VSLhZh/+op4VE9B5+MNLZ+57XE5/UVkSO+dkWRECCHKIbNFZfbGcGZsOI1Fheq+zrzatZatwyr1kteuJfPECTQ6Fa86KXDv26B3uuUxNw7plf4id0aSESGEKGdikjN4eclBtodfA6Bf00pMfrCuTGJ2G2pWFrEzZgLgWTMZO99K0HTIbY87ff00celxONg50NSvaXGHWS7JK1MIIcqR41eTGLxgD3EpmTjotLzbpx59m1aydVhlQsKKFRgvXkRrr+JZMxU6fAh2htselzOKpqV/S/TairuGz92QZEQIIcqRyl6OuNrb4e2sZ/agJlT3dbZ1SGWCJSODuM8+B8C7dhLagDBo0L9Ax269vBWQ/iJ3Q5IRIYQo466lZOLppEdRFJwNdix6ogW+rgbsdVpbh1ZmXF/8A6boaOwcLbhXT81eDE97+4/IJGMSh2IPAdJf5G7I0F4hhCjDNp+Kocu0LSzYfsG6rbKXoyQihWBOSeHavHkA+NRLRFOpIdR+oEDH7o7cjVk1E+oaSiUXaQ67U5KMCCFEGZRltvD+7ycZunAv8alGfj10FbNFtXVYZVL8goWYExLQu5pwC02H+8aDpmAfj7JKb9GQZhohhChjriak88IPB9h38ToAj98Twps9a6PVyJTuhWWKjyd+0SIge9p3JbQ1VO9UoGNVVZVkpIhIMiKEEGXI+uPRjFl2iIS0LFwMdrzftwE9G8iMn3fq2ty5WNLSsPfMwqVSBnR6Gwq4Ts+ZhDPEpMVgr7WnmX+zYo60fJNkRAghyoirCek89/0+sswq9YPcmD2oMSFet56QS9xc1tWrXF/8A/BPrUhYFwhpXeDjc2pFmvs3x6C9/RBgcXOSjAghRBkR6O7Aa11rcSUhnbE9amGwk06qdyP2s89Qs7Jw9M3EyT8T7nurUMdLE03RkWRECCFKsT+ORVHZ05HaAa4ADL+3qo0jKh8yz50jccVKAHwbJKHU7QOBjQp8fIoxhQPRBwBJRoqCJCNCCFEKZZrMTF1zkkU7LlDVx4lVI9viZJD/sotK7PQZYLHgHJSOg485e16RQtgdtRuTaqKyS2Uqu1YupigrDnllCyFEKXPxWiojFx/gyJVEADrV8kWnlZkYikr6kaMk//knAD71k6HhIPCpUahzSBNN0ZJkRAghSpHVhyN54+fDJGeacHfU8ckjDelU28/WYZUrsdOmAeAakoa9pwIdXi/U8TcO6ZVZV4uGJCNCCFEKGE0WJv92jO92RQDQLMSDmQMbE+juYOPIypfUXbtJ3bEDNP/UijR7CtwL18xyNuEsUalR6DV6mvs3L6ZIKxZJRoQQohTQahTOxaYC8HyHaozuUgM7aZopUqqqEjPtUwA8qqai9zBAu1cKfZ7tV7cD2UN6HewkWSwKkowIIYQNWSwqGo2CVqMwvX8jTkYlc28NH1uHVS6lbNxIxqHDKHbgVTcZWr4ELoVvAtt6RVbpLWqSjAghhA2kG81M/PUYOjuFd/vUB8DX1R5fV3sbR1Y+qWYzsdOnA+AZlozO3QXajCr0edKy0tgfvR+Q/iJFSZIRIYQoYeExyYz4/gCnopNRFBjSKpQwPxdbh1WuJf32G5lnwtHowat2CrR5Cxw8Cn2ePVF7yLJkEeQcRKhraNEHWkFJMiKEECVo2b7LvL3yKOlZZrydDcwY0EgSkWKmGo3EzpoNgFetJLQe3tDy2Ts6141DepUCrmEjbk+SESGEKAFpRhNvrTzK8v1XAGhT3Ytp/Rvh6yLNMsXt+tKlZF2+jNYBPGukQru3weBc6PPcOKS3XVC7og6zQpNkRAghipmqqgz+ag9/X7yORoGXOtdgRMfqaDXyzbq4WdLSiPtiDgDedRLQeAZBsyfu6Fznk85zJeUKOo1OhvQWMUlGhBCimCmKwtP3VuXSL0eZMaAx91T1snVIFUb8t99hjotD52zBo2oadPgQ7O5shd3tV7KH9Db1a4qjzrEow6zwJBkRQohikJJp4lxsCg0quQNwf11/2oX54KCXlXZLijkxkWtffQWAT91EFN/q0HDgHZ9PpoAvPjKjjhBCFLFjVxN5YNY2hizYQ2RiunW7JCIlJysqiqjJ72BJSsLgbsY1JD17MTztnX0HTzel83fU34AkI8VBakaEEKKIqKrKd7sjeOe34xhNFgLc7LmWYiTATWbpLEkJy5YROX4CWCwAOHqnowTWhzp97vice6P2YrQYCXAKoKpb1SKKVOSQZEQIIYpAUkYWY38+wuojkUD2SrsfP9IQDye9jSOrWLKionIlIgDXzzrh1WAUOs2dNwbIkN7iJcmIEELcpcOXExi5+AAR8WnYaRTe6F6LYW2ryIeWDWScPJkrEQFAVTCePYmu9Z2fV/qLFK87ShM/++wzQkNDsbe3p2XLluzZs+eW5RMSEhgxYgQBAQEYDAZq1KjBmjVr7ihgIYQobZbsvUREfBpB7g4sfbYVT7WrKomIDZiTkoidMSPvDkVFf3QmJF65o/NeTLrIpeRL2GnsaBnQ8i6jFPkpdM3IkiVLGD16NHPmzKFly5ZMnz6drl27curUKXx9ffOUNxqNdOnSBV9fX5YtW0ZQUBAXL17E3d29KOIXQgibe7tXHRx0Wl64Lww3R52tw6mQTNevc2nYU2SeOImiU1CzLIACikpAs0R0DlkQfw7cggp97pxakSa+TXDSORVx5ALuIBn59NNPGT58OE88kT1pzJw5c1i9ejULFizgjTfeyFN+wYIFxMfHs2PHDnS67DdpaGjo3UUthBA2dCDiOj/uucTUh+uj0SjY67S81auOrcOqsEzx8UQMfYLM06fR2qtU7hCDVm/BmGyH3sWEztECihY876zjqTTRFL9CNdMYjUb27dtH586d/z2BRkPnzp3ZuXNnvsf8+uuvtGrVihEjRuDn50e9evWYMmUKZrP5ptfJzMwkKSkp148QQtiaqqrM33KOR+bsZMnfl/h65wVbh1ThmWJiuPjoQ/8kImZCOsZiX7M2uk7P4+Rv/jcR6T39jmpFMkwZ7I3aC8gqvcWpUDUjcXFxmM1m/Pz8cm338/Pj5MmT+R5z7tw5Nm7cyGOPPcaaNWsIDw/n+eefJysriwkTJuR7zNSpU5k0aVJhQhNCiGJ1PdXImKWH2HAyBoCe9QPo27SSjaOq2LIO/EHE82MwXjdh52Cmci8Fw8Mzsic202jhnuezm2Y8q95RIgLwd/TfZJoz8XX0Jcw9rIjvQOQo9tE0FosFX19f5s2bh1arpWnTply5coWPPvropsnI2LFjGT16tPVxUlISwcHBxR2qEELk6+8L8Yz64QBXEzPQ22l4u1cd/teysnRStZXrF8haNo6Lc/eSlWKHnZOFkNf7oe/zJuhv6NPhFnTHSUiOnCng2wW1k793MSpUMuLt7Y1WqyU6OjrX9ujoaPz9/fM9JiAgAJ1Oh1b778yDtWvXJioqCqPRiF6fdwy+wWDAYLiztQOEEKIoLdkbwbgVRzFbVKp4OzF7UGPqBrrZOqyKKSMRtn6Ccf1cIta7kpVqh87TnpCFC9DVbFwsl5T+IiWjUH1G9Ho9TZs2ZcOGDdZtFouFDRs20KpVq3yPadOmDeHh4VhuGPd9+vRpAgIC8k1EhBCiNKkX5IZWo/Bgo0BWvdBWEhFbMGfBnvkwszHGtbO5+KcbWal26CsFELL892JLRC4lX+JC0gXsFBnSW9wKPc/I6NGjmT9/Pl9//TUnTpzgueeeIzU11Tq6ZvDgwYwdO9Za/rnnniM+Pp4XX3yR06dPs3r1aqZMmcKIESOK7i6EEKIIxSZnWn+vG+jGmlHtmN6/Ec4GmSeyRKkqnPodPm8Fa8aQGZXIxU3+mNK16KtWpfLiH9HdpFa+KOQ00TT0bYiL3qXYriPuoM9I//79iY2NZfz48URFRdGoUSPWrl1r7dQaERGB5oYpd4ODg/njjz94+eWXadCgAUFBQbz44ou8/vrrRXcXQghRBMwWlc83hfPZ5nB+eqaVdcXd6r7Otg2sIoo8BH+8CRe2ApCR6U3ENnfMaWkYwsKovHABdt7exRqCNNGUHEVVVdXWQdxOUlISbm5uJCYm4urqautwhBDlUExyBi8vOcj28GsAjOhYjVe71rJxVBVQ0lXY+C4cXAyooDWQUWkAEXP3YE5IxFC7NpUXfIWdh0exhpFpzqTdj+1IN6WztPdSannKa+FOFPTzW+ochRAV3vbwOF788SBxKZk46LS806ce/WTYbsnKTIEdM2HHLMhKy95Wry/pgQOJePltLImJ2NerR+Uv56MtgRm890XvI92Ujo+DDzU9ahb79So6SUaEEBWW2aIyY8MZZm08g6pCTT8XZg9qTJif9A8oMRYzHPweNr4HKVHZ24JbQtcppMfZEfHUcCwpKTg0akTw/HloXUrmb5PTX6RNUBsZ0lsCJBkRQlRYqw5dZeaGMwAMaB7MhN51cdBrb3OUKDJnN8Gfb0H00ezHHqHQeRLUeZC0/fu5NHwYlrQ0HJo1JXjOXLTOJbcujPQXKVmSjAghKqwHGgay/kQ0Xer48WCju5scSxRCzElY9zac+TP7sb0b3PsqtHga7Ayk7trNpeeeQ01Px/Geewj+/DM0jo4lFt7VlKucSzyHRtFwT8A9JXbdikySESFEhWEyW1i4/QKP3VMZR70dGo3C7EFNbB1WxZESC5unwL6vQTWDxg6aPwXtXwdHz+wi27ZzecQI1MxMnNq2pdLsWWjs7Us0zJxakYY+DXEzyLwyJUGSESFEhXA1IZ1RPxzg74vXORmVzCePNrR1SBVHVgbs+hy2fgrG5OxttXplN8l4V7cWS968mSsvjELNysK5QweCZkxHY4PZuKWJpuRJMiKEKPc2noxm9E+HSEjLwtlgR8daPrYOqWKwWODoz7BhEiReyt4W0BC6ToHQ3B/0yevXc/nl0ZCVhUuXzgR98gmKDWbpzjJnsTtyNyDJSEmSZEQIUW5lmS189Mcp5m05B0D9IDdmD2pMiFfJdYSssC7uhD/GwdX92Y9dg6DTeKj/KGhyT/6dtHYtV8a8CiYTLt27EfThhyg6nQ2Chv0x+0kzpeFp7ylzi5QgSUaEEOXS1YR0nv9+PwcvJQAwtHUoY3vUwmAno2WKVfw5WDcBTvya/VjvDG1fgntGgD5vJ9TEVau4+vobYLHg+kBvAqdMQbGz3UdTzpDetkFt0SiFXjFF3CFJRoQQ5ZKdRuFSfBqu9nZ82K8h3eoV3xomAki/Dn99BHvmgSULFA00fhw6vgkufvkekrB8BZFvvgmqitvDDxPwzmQUrW2Txa1XsqeflyaakiXJiBCi3DBbVLSa7AmqfF3tmft4U/xc7Qn2LLlhoRWOyQh7v4S/PoCMhOxt1TrB/e+CX52bHnZ9yU9ETZgAgHv//vhPGI+isW1NRFRqFOEJ4WgUDa0C8l+JXhQPSUaEEOXCxWupvPDDAZ5tX40e9QMAaBbqaeOoyqnEK3AtHK6fh+0zsptmAHxqQ9d3oXrnWx4e/933RL/7LgAe//sffm+OKxWznOaMoqnnXQ93e3fbBlPBSDIihCjzVh+O5I2fD5OcaeL930/SpY4fOq209xeL/d/AqhdBtfy7zcknuzmm8eOgvfXHyrWFi4j54AMAPJ98Et9Xx5SKRARy9xcRJUuSESFEmZWRZebd1cf5blcEAE1DPJg1sLEkIsUl8UreRAQFhq4Gn9svJhc3dx6x06YB4PXMM/i89GKpSUSyLFnsitwFQLugdjaOpuKRZEQIUSadj0tlxPf7OR6ZBMBzHaoxuksNSUSK08nV/0lEAFRIibllMqKqKnGffU7c7NkAeL8wEu/nny81iQjAwZiDpGSl4GHwoI7Xzfu6iOIhyYgQosyJScqg96xtpGSa8HTS8+mjDelQ09fWYZVvF3fA+gl5tyta8Kx608NUVSV2+gyuzZ0LgM/o0Xg/Pby4orxjOU00rYNay5BeG5BkRAhR5vi62tOvaSWORyYxc0Bj/N1Kdu2SCuf8FljcH7LSwDsMrp3LXltG0ULv6eCW/yKDqqoS8+FHxC9cCIDv66/j9cTQkou7EGQKeNuSZEQIUSaEx6TgZNAS4OYAwLgetdEoYCfNMsXr7Eb4YRCY0qHafTBgMaTFZ4+g8ax6y0Qk+r0pXP/uOwD83noLz/89VpKRF1hMWgynrp9CQaF1YGtbh1MhSTIihCj1ft53mbdWHqV+kBuLh7fETqtBbydJSLE7sw5+fAzMmRDWFR79BnT22QnITZIQANViIWrSZBKWLAFFwX/iRDz6P1qCgRdOThNNXa+6eNrLcHBbkGRECFFqpRlNjP/lGMv2XQbATquQajTj5iCJSLE79Tv8NBjMxuwVdvstBLvbL1ynms1Evj2exOXLQVEIeO893B9+qAQCvnPWJppK0kRjK5KMCCFKpVNRyYxYvJ/wmBQ0CrzUuQYjOla3zrAqitHxX2HZE2AxQZ0Hoe9XoL39wnWqycTVseNIWrUKNBoCP3gft969SyDgO2eymNgZuROQ/iK2JMmIEKJUUVWVn/6+xPhfjpFpsuDrYmDGgMa0quZl69AqhqM/w8/Dszuo1usHD8297URmAGpWFldee43k39eCnR1BH3+Ea7duJRDw3Tkce5hkYzJuBjfqedWzdTgVliQjQohSxWi28NW282SaLLQL82Za/0Z4OxtsHVbFcPgnWPFM9lwiDQZAn89Bc/uF61SjkSuvvELyuvWg01Fp2qe4dL71lPClRU4TTeuA1mgLcK+ieEgyIoQoVQx2Wj4b1IT1J2J45t6qaKRZpmQcXAwrnwfU7Gnde88oUCJiyczkyosvkbJ5M4peT9DMGbh06FDs4RYV6S9SOkgyIoSwKVVV+X53BOlGM8PvzZ48K8zPhTA/FxtHVoHsWwSrXgJUaPYk9PgECrCCriUjg8sjRpK6fTuKwUClzz7DuW2b4o62yMSlx3Ei/gSADOm1MUlGhBA2k5yRxRvLj7D6cCRajULbMG9qB7jaOqyKZc98WDMm+/cWz0D3D+A207RnRUWReeoUsXPmknHgAIqDA8FffI7TPfeUQMBFJ2dIb23P2ng7eNs4mopNkhEhhE0cuZzIyB/2c/FaGnYahde61aSm1IaUrF1fwNo3sn9vNRLuf/e2iUjCsmVEjp8Aluw1ahS9nsrz5+HYrFlxR1vkZJXe0kOSESFEiVJVla93XGDKmpMYzRaC3B2YNagxTSp72Dq0imX7TFj3dvbvbV+GThMKVCMS+fZ4UFXrNtVkQlepUnFGWizMFjM7IncA0K6SrNJra5KMCCFKjKqqvPjjQX49dBWALnX8+LhfQ9wcbz+HhShCWz6Gje9k/37va9Bx3G0TEVVVufbVV7kSEQAsFowXI9D5+xdTsMXjSNwREjMTcdG7UN+7vq3DqfAkGRFClBhFUWgW6sHvRyMZ2702T7QJLVXLyJd7qgp/fQCbp2Y/7vgmtH/ttodlxcQQ+eZbpG7dmveUGgV9SOWijrTY5YyiaRXQCjuNfBTamvwFhBDFSlVVYpMz8XXNXln38XtCaFvdm6o+zjaOrIJRVdj4Lmz9OPtx54nZzTO3kfTnn0SNn4A5IQH0OrZXM3HPSRWtCmYF5nfT8IgpnLaUrZoR6S9SukgyIoQoNglpRsYsPcTp6BR+G9UWV3sdiqJIIlLSVBXWjYcdM7Mfd50CrUbc8hBzSgrR775H4sqVABhq1+bqK48w4+wUvk1S8b+uEuWhEO+qsHHDc9T0qEmf6n3oWbUnHvalu/9PfEY8x64dAyQZKS1ktSkhRLHYdzGeHjO2sv5EDFGJGRyISLB1SBWTqsLasf8mIt0/um0ikvb335x/sE92IqIoeD39NO7fzGHatWUAxLsqHA/REO+a3cRmp9hx6vopPtj7AfctvY/Rm0ez5fIWTBZTcd7ZHdt+ZTsqKjU9auLj6GPrcARSMyKEKGIWi8rcLef4+M9TmC0qVbydmD2oMXUD3WwdWsVjscDvr8LeL7Mf95qWPanZTahGI7GzZnPtyy9BVdEFBRH44Qck1Qpi6LqnOJ94Hkc7RzLMGVhUCxpFw4RWE+hUuRNrzq9hZfhKjl87zrqL61h3cR0+Dj70qtaLPtX7UNWtagnd9O1tvypNNKWNoqr/7Rpd+iQlJeHm5kZiYiKurjIhkhCl1bWUTF5ZeojNp2IBeKBhIFMero+zQb73lDiLBX57CfZ/DSjwwCxo8vhNi2eeOcOV114n80T2jKRuDz2E35vjuGy5xvA/hxOZGom/kz9zu8zF0c6RS8mXCHYJxt8pd1+RU/GnWBm+ktXnVnM987p1e0OfhvSp3oduod1w1tuumc6iWuiwpAPXM6+zsOtCmvmXvflRypKCfn5LMiKEKDKv/HSIn/dfxmCnYeIDdRnQPFhGy9iCxQy/vgAHvwdFA32+gIYD8i2qWixc/+47Yj7+BNVoROvujv/kSbjefz+n4k/x9Lqnic+IJ9Q1lHld5hHgHFCgELLMWWy5vIWV4SvZemUrZtUMgL3Wns4hnelTvQ/N/ZujUUq2t8CR2CMMWjMIZ50zWwZsQaeRYeXFqaCf3/J1RQhRZMb1qEVUUjpv9awj07rbitkEK5+DIz+BooWH50H9fvkWzYqOJnLsOFJ3ZE/+5dSuHQHvvYvO15cDMQcYsX4EyVnJ1PKsxZzOc/By8CpwGDqtjk4hnegU0om49Dh+O/sbK8JXcC7xHL+d+43fzv1GkHMQD1Z7kAeqP0CQc1CR3P7t5AzpvSfgHklEShGpGRFC3LHY5Ex+PXSVYW2r2DoUAWDOguVPw7HloLGDvl9B3T75Fk1as4bISZOxJCai2Nvj+9qreAwciKIobLuyjZc3vUyGOYMmvk2Y3Wk2Lvq7n6pfVVWOxB1hZfhKfj//OylZKdZ9Lf1b8mD1B+kc0hkHO4e7vtbNPLbmMQ7HHmZiq4n0rdG32K4jskkzjRCiWO0Ij+PFJQeJTc7k00cb8nCTsjcleLliMsLPT8KJVaDRwaNfQ62eeYqZk5KIeuddklatAsC+Xj0CP/wQQ9XshHLthbWM3ToWk8VE26C2fNrh02JJDtJN6WyI2MDK8JXsjtxt3e6sc6ZblW70qd6HBt4NirSZLyEjgXuX3IuKyrp+6/L0dxFFT5pphBDFwmxRmbHhDLM2nkFVoYafM/WDZKSMTZkyYelQOLUGtHro/x3U6JqnWOruPVx94w1MkZGg0eD97DN4P/ccii67uWLZ6WVM3jkZFZXuod15r+176LTF05ThYOdAr6q96FW1F1dTrvLL2V/4JfwXrqRcYdnpZSw7vYwqblXoU70Pvav2LpIhuDuu7kBFpbp7dUlEShmpGRFCFFh0UgYv/niAXefiAejfLJiJD9TFQa+1cWQVWFYGLPkfhK8DO3sY8D1U75yriMVoJHb6DOIXLsweslu5MoEfvI9j48bWMguOLmDavmkAPFrjUca1HIdWU7J/V4tqYV/0PlacWcG6i+vIMGcAoFW0tAlqw0PVH6J9pfZ3nCCN2zqOVedW8UTdJxjdbHRRhi5uQppphBBFant4HKN+OMC1VCOOei1THqpPn8Yl0+lQ3IQxDX4cBOc2gc4RBv4IVdvnKpJx6jRXX32VzNOnAXB/pB9+b7yBxskJyO7HMX3/dBYcXQDAU/WfYlTjUTYfBZViTOGPC3+wMnwlB2MPWrd7GDzoWbUnfar3oaZnzQKfz6Ja6PhTR+Iz4vnq/q9oEdCiGKIW/yXNNEKIImWyqFxLNVI7wJXPBjWWKd1tzZgKi/vDha2gc4LHlkJoG+tu1WIhftHXxE6bhpqVhdbTk4B338HlvvusZcwWM+/tfo+lp5cCMLrpaJ6o90SJ30p+nPXO9K3Rl741+nIu8Ry/hP/CqrOriE2P5bsT3/Hdie+o7VmbB6s/SM8qPXG3d7/l+U7EnyA+Ix5HO0ca+za+ZVlR8qRmRAhxUyazBTvtv/NA/Hksintr+GCvk2YZm8pMhu8fhYgdoHeB/y2DyvdYd2ddvcrVseNI253dMdS5QwcC3n0HO2/vf8uYsxi3bRxrL6xFQWF8q/H0q5H/EODSwmQxsePqDlaGr2TTpU3W6eZ1Gh0dgzvSp3ofWge2zrd5ae6hucw+OJuOwR2Zed/Mkg69wpKaESHEXdl4MppJq47z3bCWBHs6AnB/Xen0Z3MZifBdP7i8Bwxu8PhyqPTvLKKJq34javJkLMnJKA4O+L3xBu6PPpKr2SXdlM7ozaPZdmUbdho73m/3Pl1D83Z4LW3sNHbcW+le7q10L9czrlunoD8Zf5I/L/7Jnxf/xNfBl97VetOneh9C3UIBiEqNYu2FtYBMAV9aSc2IECKXLLOFj/44xbwt54DsTqof9Gtg46gEAOnX4duH4ep+sHeHwSshMLvJwZyYSNSkySStWQOAfcMGBH3wAfrQ0FynSDImMXLDSA7EHMDBzoFpHabRJqgNZdnJ+JOsDF/Jb+d+IzEz0bq9sW9jgl2C+e3sb1iwAPByk5d5sv7N1+cRRUs6sAohCu3y9TRe+OGAdYXdoa1DGdujFgY7aZaxubR4+LYPRB4CB08Y/AsEZCeJqTt3cvWNsZiio0Grxfv55/B+5hkUu9yV33HpcTy3/jlOxp/ERefC550/p5Fvo5K/l2JiNBvZfGkzK8NXsv3qdiyqJU8ZjaLhj75/yNDeEiLNNEKIQvnzWBRjlh4iKcOEi70dH/VrQLd6BVuHRBSz1Dj45kGIPgpOPjD4V/CrgyUjg9hp04j/+hsA9CEhBH70IQ4N8tZkXU25ytPrnuZi0kW87L2Y22VuoUajlAV6rZ77Q+/n/tD7iUmL4fODn/PzmZ9zlbGoFi4lX5JkpJSRZEQIwdqjUTz73T4AGlZyY/agJtZ+IsLGUmLg6wcg9gQ4+8GQVeBTk4wTJ7jy6qsYw88C4D5wAH6vvorGMe/f7VziOZ7+82mi06IJdApk3v3zCHENKek7KVG+jr482/BZVoSvyFVDolE0BLsE2zAykR9JRoQQdKzlQ/0gN1pW8eS1brXQ25XsSqriJpIi4ZsHIO40uATCkFWoHlW4Nn8+sTNnQVYWWm9vAt97F+f27fM9xbFrx3hu3XNcz7xOVbeqzOsyDz8nvxK+Edvwd/JnQqsJTNo5CYtqQaNomNBqgtSKlELSZ0SICmp7eBwtq3hah+5mZJnLx5DdxCsQfxY8q4FbGZ6ULfEyfN0b4s+BWzAM+RVjmoGrb7xO+t/ZtVjOnTsRMHkydp6e+Z5ib9ReXtj4AqlZqdT1qssXnb/Aw96jJO+iVIhKjeJS8iWCXYIlESlh0mdECJGvjCwzU9ac4JudF3nhvuq8cn92v4FykYjs/wZWvQiqBRQN9J4BTQbbOqrCS4iARb0g4SK4V0YdvIrELQeJfuddLKmpaBwd8XvzTdwefuimM6X+dekvXvnrFTLNmTT3b87MjjNx1lfMier8nfwlCSnlJBkRogI5H5fKyMX7OXY1CcieVVVVVZtP/V0kEq/8m4hA9r+/vgBnNoBbYPZQWAcPcHDP53d3KKYF4Qot/nx2H5HECPCogumhxURNnEbyn38C4NCkCYEfvI8++Ob9Hn479xtvbXsLs2qmQ3AHPm7/MQatoaTuQIhCk2REiAri10NXGbf8CCmZJjyd9HzyaEM61vS1dVhFJ/7sv4nIjU6sLNjxeud/E5Ocf2+WuDh4/Lvd3g2KYkG5xCvZU7uvmwApUeBVnZQa44l87FlMsbFgZ4fPyJF4DX8KRXvz6/148kem7J6Cikrvqr2Z3GYydhr5r16UbvIKFaKcy8gyM2nVcX7YEwFAi1BPZg5sjL+bvY0jK2LRxwHIStNgTLZD72JC56RCm5dAVSEjIXvSsPSEf37/5ydnkixjSvZP0uXCX9vgBg5ut699sSYx/2wzuIJGk7t5CbDY+xMT25Xrn70BgL5qVQI//BCHenVvGoKqqsw7PI/ZB2cDMKjWIF5v8ToaRToji9JPkhEhyrnL19NZceAyigIjO1bnxU5hudabKRcu/w3rxpNw1pHIvW6AAqgEDO+Je+eJtz7WYs6eYj39+r9JSp7EJef3xH+SmH/KGlOyz5GZ+E9SE1G4uBUNGFwgI/GfJEqPxawQc9CCMWkFAB7/+x++r4xG4+Bw09OoqsrHf3/MN8ez5xt5ruFzPNfwufLR/CYqhDsaTfPZZ5/x0UcfERUVRcOGDZk1axYtWtx+OeYff/yRgQMH8uCDD7Jy5coCX09G0whxd349dBUPRx3twnxsHUrRS7wC8zuSFRNL+Cp/+M//aHb+/micnFAMejR6A4rBkP27wYCiN6Do9bkf/3e/wYDGoM/e/k9562M7LYqagUbNQLGkZf+YklEyEm9SE3NDwmNKt8b43yQKFOw83Qj44GOc2916LRWTxcTknZNZEZ6dvLze/HX+V+d/RfXsCnFXim00zZIlSxg9ejRz5syhZcuWTJ8+na5du3Lq1Cl8fW/e/nzhwgXGjBlDu3btCntJIUQhpBlNTF51nH5NK9EsNHvI5wMNA20cVTExpsKPAyElmrSsMFBT8xQxRUWVeFjZCc4/iYxef8PjEDT6sOzfdXYodgqkJ5K8dz/ZiQjkJCSVZn2EQ9NbJyJGs5HXt7zO+oj1aBQNk1pPok/1PsV8d0IUvUInI59++inDhw/niSeeAGDOnDmsXr2aBQsW8MYbb+R7jNls5rHHHmPSpEls3bqVhISEuwpaCJG/09HJjPh+P2diUth6Jo5NYzqU3wnMLBZY+RxEHsKs9SLuhCfwn2REo6HSrJlonF1QjZmomZlYMjNRjVmomZmoxn8eZxrzfWwx3rjPmPtxZiYW47+/c0Mls2o0ohqNkJyMuUA389/mFAWL6dajX9Ky0nhx04vsityFTqPjo/Yf0alypwJdTYjSplDJiNFoZN++fYwdO9a6TaPR0LlzZ3bu3HnT4yZPnoyvry/Dhg1j69att71OZmYmmZmZ1sdJSUmFCVOICkdVVZb+fZnxvx4lI8uCj4uBjx9pWH4TEYC/PoDjv2Cx6Lh0tD7GC6dRnJ1R09KyExWNhoDJk3DpVPwf0KqqQlZWruTEmvTcmARlGvM8Nl2L49rcebmSGTQa9CGVb3q9xMxEnt/wPIdjD+Ng58DM+2ZyT8A9xX6fQhSXQiUjcXFxmM1m/PxyTyXs5+fHyZMn8z1m27ZtfPXVVxw8eLDA15k6dSqTJk0qTGhCVFipmSbeWnmUFQeuANAuzJtp/Rvh7VyO55U4uhz+eh/VAlfOtib96Gk0zs6EfPsNWg8PjBcj0IdURudfMhNdKYoCej1avR6cCz+xmL5SJSLHT8iVRN0s9ti0WJ5e9zThCeG46l35ovMXNPDJuzCeEGVJsY6mSU5O5vHHH2f+/Pl4e3sX+LixY8cyevRo6+OkpCSCbzHBjxAV1bWUTB6Zs5NzcaloFHjl/po8174aGk05HkVx9QCsfB5VhcgL95Cy7wyKXk/wF59jX7s2QIklIUXFvV8/nNq2vW0SdSn5Ek//+TSXUy7j4+DD3C5zCfMIK+FohSh6hUpGvL290Wq1REdH59oeHR2Nfz5vnrNnz3LhwgV69+5t3WaxZI+jt7Oz49SpU1SrVi3PcQaDAYOhHH+rE6KIeDrpqeHnQprRzMyBjWlRJf81SsqN5Cj4YRCY0omJqE/ingjQaAia9imOzZvbOrq7ovP3v2USFX49nKfXPU1seiyVnCsx//75VHKpVIIRClF8CpWM6PV6mjZtyoYNG+jTpw+QnVxs2LCBkSNH5ilfq1Ytjhw5kmvbW2+9RXJyMjNmzJDaDiHuQHJGFgAu9joUReGDfg0wW1Q8nfQ2jqyYZaXDDwMh+SrXIqoQv/MaAAHvvFMi/UJs6XDsYZ7f8DyJmYlUd6/OvC7z8HEsh8O0RYVV6Gaa0aNHM2TIEJo1a0aLFi2YPn06qamp1tE1gwcPJigoiKlTp2Jvb0+9evVyHe/u7g6QZ7sQ4vaOXklk5OL91A1yY/bAxiiKgptDKVlTpTipKvwyEq7uJ+GyNzE7sju4+455Bfe+D9s4uOK1K3IXozaOIt2UTgOfBnze6XPcDG62DkuIIlXoZKR///7ExsYyfvx4oqKiaNSoEWvXrrV2ao2IiECjKcc9+IWwAVVV+WbnRd5bfQKj2UKWWSUuxYiPSwVpztz6CRxdRvJVRyJ32AMWPJ98Eq+nnrJ1ZMVqw8UNvLrlVbIsWbQKaMX0jtNx1DnaOiwhitwdzcBa0mQGVlGRJaZn8fqyw6w9lj15V+fafnz8SAPcHct5s0yOE6tgyf9Ii9ETsdUfNcuEW58+BEydUq6nO18ZvpIJOyZgUS10rtyZD+79AL22gvzNRblRbDOwCiFKzsFLCYxcvJ/L19PRaRXGdq/NE21Cy/WHcC5RR2D5M2Rct+PSjuxExLlDBwLefadcPwffHf+OD/Z+AECf6n2Y0GqCrLwryjV5dQtRSmWZLdZEJNjTgdkDm9Aw2N3WYZWclBhYPADj9QwitgViyTDh0LQpQdOnodiVv/+6olKjuJh0kc2XNvPdie8AGFxnMGOajSnXiZcQIMmIEKWWTqvh40ca8u2ui0x5qH7F6Kiaw5QJS/6HKfoqEVsCMKeaMdSsSfAXn6Oxt7d1dEVu+ZnlTNo5CYtqsW57ofELDK8/XBIRUSFIMiJEKbLv4nVikzPoVi8AgHuqenFPVS8bR1XCVBVWvYj57B4itviSlaSiq1SJ4Pnz0JajPmOqqhKRHMGGixuYtn9arn0KCg9Ue0ASEVFhSDIiRClgsajM23qOj/44hcFOQ5ifC9V8Cj+teLmwYxaWfT9weas3mde1aL29qfzVl+husSp4WXE5+TJ7o/ayJ2oPe6L2EJMWk285FZVLyZfwdypbM8kKcackGRHCxuJTjYz+6SCbT8UC0Km2H74VZcjuf51ai/rHeK7s9CAtVo/G2ZnK8+aiDwmxdWR3JDIl0pp4/B31N1dTr+bar9PoqOVZi6NxR1H5d2CjRtEQ7CKTQoqKQ5IRIWxoz/l4Rv1wgKikDAx2Gib0rsvAFsEVs3o++jjqsmFE7nUl5YoDil5Ppc8/w75OHVtHVmDRqdHZiUf03+yJ3MPllMu59tspdtTzrkdz/+a0CGhBQ5+GONg55OozolE0TGg1QWpFRIUiyYgQNvLZpnA++fMUFhWq+jjx2aAm1A4oP30iCiX1GvwwgNi/FRLPO2WvN/PpJzi1aGHryG4pLj3O2uyyN2ovF5Mu5tqvVbTU9aqbnXz4t6CRb6N8Jy17OOxhWge25lLyJYJdgiURERWOJCNC2EhyhgmLCg83DuKdPvVwMlTQt6PJCD89zrVdcVw7kT3NecDkSbh07mzjwPKKz4hnb9ReawJyPvF8rv0aRUNtz9q08G9BM/9mNPFtgrO+YH1//J38JQkRFVYF/d9PCNswmS3YabOXS3jl/ho0qexOlzp+FbNZBrJHzqx5hYTN+4k56AGAzyujce/Xz8aBZUvISMhucvmn5iM8ITzXfgWFmp41rTUfTfya4KqvoLVbQtwFSUaEKAFmi8rMDWfYeiaWH59uhd5Og06r4f66Ffyb8O45JK9aQuQeTwA8hw616XozScYk9kXtsyYfp6+fztWxFCDMI4wW/i1o7t+cZn7NZNE6IYqAJCNCFLOYpAxG/XiAXefiAfjzeBS9GgTaOKpSIHw9ad9N4MoOT1AV3B58EN/XXi3RWqIUYwr7Y/azJzJ7xMvJ+JN5ko9qbtWsHU6b+jXF096zxOIToqKQZESIYrTldCwvLznItVQjjnot7z1UTxIRgNjTZMwdxqW/PFDNCs7t22evN1NEK35HpUYRkRRBZdfKufphpGWlZScf/wy1PX7tOGbVnOvYUNdQa7NLM/9meDt4F0lMQoibk2REiGJgMluYtv40n28+i6pCLX8XZg9qQnXfCjqR2Y3S4jHOfYSIdQYsWRocGjfKXm9GVzTT3ecaJouGx+o8hr3Wnj1RezgWdwyTaspVPtgl2Nrs0ty/Ob6OZX9yNSHKGklGhCgGE1cd47tdEQAMalmZ8b3qYK/T2jiqUsCchWnR/4hYmYY5ww5D9aoEz5mDxsGhSE4flRrFxB0TrU0tFix8e/zbXGWCnIOsNR/N/ZvLCBYhSgFJRoQoBk+1rcr64zGM61mbBxpKs0wO84pXiPjmNFkpOnT+PgR/tRCt2913AI1OjWbthbUsPb00T58PgNaBrekW2o0WAS0Icg666+sJIYqWJCNCFIEss4Vd567RLswHgFBvJ/56rQMGO6kNyWHZ9gWXZ/xGZoIBrZszlRd9g87vzptEEjMTWX9xPWvOr2Fv1N58kxDInvtjUutJUgMiRCkmyYgQd+lKQjovLN7PgUsJfPtkS9qGZXd4lETkX+qZDVyZ+CFpsfZo7HVUXvg1+tDQQp8nw5TBX5f/Ys25NWy9spUsS5Z1X2PfxvSo0oMsSxYf//2xTK0uRBkiyYgQd2Hd8WjGLD1EYnoWLvZ2ZGSZb39QBaPGhRM5+llSLtujaBUqzZ1fqPVmTBYTuyN3s+b8GjZEbCA1K9W6L8wjjB5VetC9SvdczS9dQrrI1OpClCGSjAhxB4wmCx+sPclX27KnA29YyY3Zg5oQ7Jl33ZEKLT2B2FEPk3jGDhQI/ORjnFq2vO1hqqpyOO4wa86tYe2FtcRnxFv3BToF0qNqdgJSw6NGvsfL1OpClC2SjAhRSJfi0xi5eD+HLicCMKxtFV7vVgu9XdHMkVFumE1ce/VBru3PbkrxHzcG1249bnnI2YSzrD63mjXn13Al5Yp1u4fBg/tD76dn1Z409GmIRpHnWojyRJIRIQpp17lrHLqciJuDjo8faUiXOn62DqlUSpwyhJj1MQD4PDUAj8eH5VsuMiWS3y/8zppzazh1/ZR1u4OdA50qd6JHlR7cE3gPOk3RzEMihCh9JBkRopD6Na1ETHImfRoHEeReNPNjlDfJX77N1cX7AAXP3m3xemV8rv0JGQn8efFPVp9bzf6Y/dbtdoodbYPa0qNqD9pXao+jTpq9hKgIJBkR4jYuxKXy7uoTfNSvAR5OehRFYUTH6rYOq9RKW72IK9OWgqrg2rIavh/MRVEU0rLS2HxpM2vOr2H7le25ZkJt5teMHlV70KVyF9zt3W0WuxDCNiQZEeIWfj10lXHLj5CSaeKd1cf59NFGtg6pVMvYu4lLY99HNSs41XDHZ+4Stl7dxupzq9l0aRPppnRr2VqetehZpSfdqnSTzqZCVHCSjAiRj4wsM5NWHeeHPdlTurcI9eS1rrVsHFXpZjx7kkvPjsBiVDAH2vH9S51Ys7IbCZkJ1jKVnCvRo2oPelTpQTX3arYLVghRqkgyIsR/nI1NYcT3+zkZlYyiwIgO1Xmpcxh2WhnBcTOm2BjOPv4opKpc9YY3H1VJvfQLAJ72nnSv0p0eVXpQ37s+iqLYOFohRGkjyYgQN9h59hrDvt5LmtGMt7Oeaf0bWad4F3ldSbnCn8dWEvz6FwTFm4lxg0kDtODqzAOVO9GzSk9aBLTATiP/1Qghbk7+hxDiBnUCXPFw1NOwkiMzBjTC19Xe1iGVOtfSr/HnxT9Zc24NxyIPMPYnC0FRKomOsGF4GG91Hsm9le7F3k6eOyFEwUgyIiq8qwnpBLjZoygKbo46ljxzDwFuDmg1Fbs5ISo1ioikCCq7VsZF78LGiI2sPr+aXVd3YVbNKBaV0b9aqHdRxaxTqf5CFyY/McvWYQshyiBJRkSFpaoqS/ddZvwvRxnfqy6DWlYGoJKHzG2x/MxyJu2YhAULkD3/x41Dcet61uG5NVn4njqBolGpMqgGTkNm2CpcIUQZJ8mIqJBSM028vfIoyw9kTzm+6VQMA1sES+dK4HT8aSbumIiKat1mUk0EOQfxYLUH6V6lO47zf+LapoWgqAR2d8HplR9AIx18hRB3RpIRUeGciExixOL9nItNRaPAK/fX5Ln21Sp8IhKRFME3x79h+ZnluRKRHJNbT6ZFQAviFy0i+suFAPi3tuD69nLQO5V0uEKIckSSEVFhqKrKD3suMWnVMTJNFvxd7Zk5sDEtqnjaOjSbOhhzkEXHFrExYmO+SQiARtFQ2bUyib/+SvT7HwDg0zAVj4nLwD24JMMVQpRDkoyICuN0dApvrTyCRYWONX345NFGeDrpbR2WTZgtZjZe2siiY4s4HHvYur1dUDuG1B3C5eTLTN41GYtqQaNomNBqAs5/n+LS2LEAeNRIwWvshxDcwla3IIQoRyQZERVGTX8XRnepgU6rYXi7qmgq4GiZtKw0Voav5Nvj33I55TIAOo2O3tV6M7jOYOusqC0DWtImqA2Xki8R7BKM66lIIkYNBbMF15A0/EY8gdJooA3vRAhRnkgyIsotVVX5bncEbap5UdXHGYCR94XZOCrbiE2L5YeTP7Dk1BKSjEkAuBnc6F+zPwNrDcTbwTvPMf5O/nglQ8rv24iYOhU104hTQAaB/7sHpcuEkr4FIUQ5JsmIKJcS07MYu/wwa45EUTvAlRXPt8Zep7V1WCXuzPUzfHP8G1afW02WJQuAYJdgBtcZzAPVHsBRd/NhzAnLlhH59nhQs/uR6JxMVOrjh/Lol6CpeM+lEKL4SDIiyp1DlxIY+cN+LsWno9MqPNK0Ega7ijPsVFVVdkXu4uvjX7P9ynbr9kY+jRhadygdgjugvUUykRUTQ8qWLUS99Xbu7WlazN1moTG4FFvsQoiKSZIRUW6oqsqC7Rd4//cTZJlVgj0dmD2wCQ2D3W0dWonIMmex9sJavj72NaeunwKyR8F0qtyJwXUG08i3UZ5jzImJpB89SsaRo6QfPULG4cOYYmLzv4CqYLwSg65mMd6EEKJCkmRElAspmSZeXnKQdcejAehez5/3+zbAzUFn48iKX5IxiWWnl/H9ie+JSYsBwMHOgT7V+/B47ccJds0eemtJTyfjxAkyDh8mff9uMo4ew3g1n8RDUdE7mzAm2wHKf7abS+COhBAVjSQjolww2Gm4lpKJXqvh7V61+d89IeV+ErMrKVf47vh3LD+znDRTGgDeDt4MqjWIR6o+jH34WdIX/0jk4QOknzpPZmQC/8zunovOyYSDVxb2nkYcPLOwD/ZA4x1KwpZjRP7tBqoCikpA8yR0NZuW7E0KISoERVXV/Gc5KkWSkpJwc3MjMTERV1dXW4cjSgmLRcWiqthps/uDXElI53qqkXpBbjaOrHgdizvGomOLWHdxXfaCdapKyzRvBsR7U/t8EsYLMWREZaCa8yZjWntzdsLhbcYh1Bf7WtWxC6kD3jXAKwy8q4P9P8/f/m/IWjIaY5KC3lVF1/9TaDK4hO9WCFGWFfTzW5IRUSbFpxoZs/QQ1X2dGdejtq3DKXaW9OtsOfkzi8KXcyEqgmqRKtUiVZpcthAcraIx5u2gq9FZsPdRcKjsgX2NUBwaNMSuRhMU7zBwr1ywETGJVyD+HHhWBbegYrgzIUR5VtDPb2mmEWXOnvPxjPrhAFFJGew4G8eTbarg72Zv67BuL/EKxJ8Fz2r5f7BbzJAQAXFn4NoZiDtD6qXjbDkfwalr4BWj4ZlIFffUGw9SAAVFC/aBTthXC8KhXl3sm7ZC37AtiqPH3cXsFiRJiBCi2EkyIsoMi0Xli7/O8um605gtKlV9nPhsUJOykYjs/wZWvQiqBRQNtB0NXtWtSQdxZ7BEnyMjTiU9XkdivJ6EBAMOSRpCUQgFyFk3RgOGIG8caodh36gZDi3uxVCzJoqu/HfWFUKUT5KMiDIhLiWTl5ccZOuZOAAebhzEO33q4WQoAy/hhAj4dRRZaQrGZD16FxN2mz8mI1FHxjUd6fF6MuJ1ZCZ5ZncW/YfDP//GeGnR1gqjWpseuDVqin3t2mgcHPK/lhBClEFl4H9yUdGZzBYenbOTc3Gp2Os0TH6wHo80rVT6R8ukxWfXiOz8jPhwB6L/diO7WUX955+88V9zgbMBCmcDFEw1Q+nQeRj31XsAO428VYUQ5Zf8DydKPTuthhc7h/HZpnA+G9SEML9SPgNo5CHYMw+OLMOUaiTuuBPXT+UkImT/q4Li5EhazWD+9khgp3ssZwMUrrsodAjuwJA6Q2jq17T0J1xCCFEEJBkRpVJMcgaRCRnW2VMfbBRE93oB6EvrtO4mI5z4FfbMh0u7yEzSEn/KmcQLnqg3mSdsVn8ntvidBcCgdeCBag/weJ3HqeJWpQQDF0II25NkRJQ6287E8dKSAyiKwppR7fBxMQCUzkQkOQr2LYK/F6ImR5EWoyf+tBcpVwzWIoawMDLCz6DcMIjerMBRh3g8DJ4MrDWQ/rX642nvWfLxCyFEKSDJiCg1TGYL09ef4bPN4agq1PJ3Ic1oAgy3PbZEqSpc2pPdFHN8JarJRFKEA/FnAsi49k+ziqLg3LEjnkOHcDXMg7nvPMTw381o1exEZF53DYM7vMxjtR/D3q4MjAYSQohiJMmIKBWiEjMY9eMB9pyPB2BQy8qM71UHe10pWqo+Kx2O/pydhEQewmxUSDjrSPy5AEzJ2W0xir09bn0exHPIEDQhlVh6aikzf59JakOFg1W0+F9XifJQiHdVeNyngSQiQgiBJCOiFNh8KobRPx0iPtWIs8GOKQ/X54GGgbYO618JEbD3q+yRMenxGFO0xId7knjOCYvRDJjRenvj+dgg3AcMQOvuzpbLW/j4l1FcSLpgPU28a3YSAtmr6Qa7BNvmfoQQopSRZETY3C8HrxKfaqRekCuzBzYh1NvJ1iFlN8Wc/wt2z4PTv4NqIT1Ox7VzQSSf/2c/ZgxhYXgOHYpr715o9HpOxZ/i43WvsStyFwCe9p6MaDQCBYV3d7+LRbWgUTRMaDUBfyd/m96iEEKUFpKMCJt7p089Qr2ceLZDVQx2Nm6W+X97dx4XVb3/cfw1MzADKKvsOO4L5oaikpilxg1vXcu6JmmheSvrKlZalllXbNUyTVPLq9Xt+rtuZeptMVtIb7mUqeC+b+ACgmzDIsPM+f7+mKRIXCBgAD/Px4OHD858v2c+5+s8nLfnfM/3lFhg53LHXTFZB1EaWE67kX0ilOLTF7i4CmqjPn3wGzWKRn2i0el0ZBVnMW/zPFYdXoVC4ap3Jf6GeB7u/DCeRsetyH2b9iXNkobZ0yxBRAghfqNKD8qbP38+M2bMID09na5duzJ37lx69epVYdtFixaxePFi9uzZA0BkZCSvvfbaZdtXRB6U17B8uy+DdXvTmTGkS91ZRyPrsCOApCwFqwWtVEduqi/ZR30pzS4GQOfqitegQfg9OBK3du0AuGC7wOJ9i3l/9/sU2YoAGNhiIE90f4Kmnk2ddjhCCFEX1NiD8lasWMGECRNYsGABUVFRzJ49m9jYWA4ePEhgYOAl7Tds2MCwYcOIjo7Gzc2N119/ndtuu429e/cSFiYP4LqeWG0ar687wPsbjwMQ3boJ93R34he2ZofD38DWf8LR7wAoLdKTk9aMnIN6tCIrUIzB2xuf4cPwGz4cl4AAR1el8eXxL5m9YzbphekAdPbvzDM9nyEiMMJJBySEEPVTpc+MREVF0bNnT+bNmweApmmYzWbGjRvHpEmTrtrfbrfj6+vLvHnzGDFixDW9p5wZqf/SsotIWJbMzrRcAB66qSXPDgx3ztohRdmQ/B/4+T3IPQnAhRxXzp9pS/6+fLBrABibN8fvwZF4Dx5c7lkwyeeSmfHzDHZn7QYgpFEIT3Z/koEtB6LX1cG1UIQQwklq5MyI1Wpl+/btPPfcc2Xb9Ho9MTExbNmy5Zr2UVRURGlpKX5+l1/gqaSkhJKSkrLf8/PzK1OmqGPW7TnLxJW7sFyw4e3uypv3duVPNwTVfiHpux235e76GGzFKAUFWX5knzRTdCQTyAXAo2dP/EY9SON+/dDpfw0XpyyneGv7W3x98mtHOxcPHunyCA90eEBu0RVCiD+gUmEkKysLu91OUFD5L5KgoCAOHDhwTft49tlnCQ0NJSYm5rJtpk2bxosvvliZ0kQdNTfpMDO/OQRA92Y+vD2sG019PWqvAHsp7P/MMR8kdTMAmg3ystuQvd8N69lsIBMMBrz+/Gf8Ro7EvXOncruwWC0s2r2I/+z7D6VaKXqdnrvb3E1CtwT83f1r71iEEKKBqtW7aaZPn87y5cvZsGEDbm6X/5/kc889x4QJE8p+z8/Px2yWNRnqoz5t/Xn7u8P87aaWPH1be1wNtXQZw5IBO/4N2z4Ay1kAbBdcycmNICc5D3teAVCEvnFjfIYOxS/+AVxDQsrtwqbZ+OTQJ8xPmU9OSQ4AN4bcyNM9nqa9X/vaOQ4hhLgOVCqM+Pv7YzAYyMjIKLc9IyOD4OAr36r45ptvMn36dL799lu6dOlyxbYmkwmTqY4tAS6u2amcorKzH92b+bL+6X61czZEKTi1zXEpZu9q0EoBKLEGcD49nPxtqSjraQBcQ0PxGzkC778OwdD40nVNfjj1AzO3zeRonuNBdi29W/J0j6fpG9a37twBJIQQDUSlwojRaCQyMpKkpCQGDx4MOCawJiUlkZCQcNl+b7zxBq+++ipfffUVPXr0+EMFi7rrQqmdlz/fx8rtp/hvQh/Cgx2TlWo8iJRegL2rHCHkTDLgyCVFWmfOH/alMOUI4AgVbl270GTUKDxjYtC5XPrxP5xzmJnbZrLpzCYAfEw+jIkYw5B2Q3DVu9bscQghxHWq0pdpJkyYwMiRI+nRowe9evVi9uzZFBYWMmrUKABGjBhBWFgY06ZNA+D1119nypQpLF26lBYtWpCe7rgNsnHjxjRu3LgaD0U409HMAsYu2cGBdAs6HWw9nl0WRqpd3mnIPgou7nBwreNyTNF5ADRM5Nv6kL2jiJJjqcB50OnwjInBb9QoPLp3q3CXWcVZvJPyDp8c/gRNabjoXbg//H5Gdx2Nl1Hu4BJCiJpU6TASFxdHZmYmU6ZMIT09nYiICNatW1c2qTU1NRX9b+5AePfdd7FarQwZMqTcfhITE5k6deofq17UCWuSTzN59W6KrHb8Gxt5Ky6Cvm0DaubNdiyGz54ApZXbbDeGkZMfSc7G49iyHJOpdR4e+NxzD34j4jE2a1bh7krsJfzfvv/jvd3vUVhaCMCfmv+J8d3HY/aSeUpCCFEbqrQCa22TdUbqpmKrnamf7mXFtjQAerdqwpz7Igj0qqHbXNP3wII+lBbpsVpcMHraUHYd2SUDyd10AFXsWCnVJTAQ3/gH8B06FIO3d4W7Ukrx1YmveGv7W5wpPANAxyYdmdhzIpFBkTVTvxBCXGdqbAVWIS5a8XMqK7alodPBE7e2ZdyAthj0NTC5UynHMu1fPkvuUQ/O/uwN6Lj4nBhwzBMxdehAk1EP4jVwIDqj8bK725m5kzd+foNdmbsACPII4onuT3BHqztk0TIhhHACCSOiyuJ7tyA5LZe4nmaiW9fQehvnDsAXE+DkJkqL9Jz9OQhHEKHsT48eEfgnPIlHVK8r3ulypuAMs3fM5svjXwLg7uLO3zr9jZEdR+Lu4n7ZfkIIIWqWhBFxzQpLbPzz+2OM6dcaN1cDBr2OOfdVPCH0D7MWwfczYPPboNm4YPHk7N6WQNYlTf3HjadR1OUfvFhgLeD9Pe+zeO9irJoVHToGtxlMQrcEAj0ufZ6SEEKI2iVhRFyTA+n5jF2yg6OZheQWWXnprk5X71RVh76GtU9BbipWi4HMEzeQvzeXioIIej3G5hVPTrVpNlYfWc285HlkX8gGoFdwLyb2nEi4X3jN1S+EEKJSJIyIK1JKsfznNKZ+upcSm0aQl4k7OodcvWNV5J+BdZNg33+xFevJOhxKzkE92HMB8PrLXzC1a0vm7DmgaaDXE/LSi7hWsODe5jObmfHzDI7kHgGguVdznop8in7mfrJomRBC1DESRsRlFZTYmLxqN5/udNxt0q99ADPv7UqTxtW8Oq7dBj8vgu9ewV5YyPkDXmQf9kZZ7YBGo759CZwwHrcOHQDwvvNOrCdTMTZvdkkQOZp7lJnbZvLD6R8A8DJ6MSZiDEPbDcXVIIuWCSFEXSRhRFToUIaF0Yu3ceJ8EQa9jmdi2/NI31boq/tumVPb4fMn0U7vIudII84fCMNerAF23Lp0IfCppy6ZD+IaHHxJCMm+kM07Ke+w8tBK7MqOi86F+8Lv47Guj+Ftqvj2XiGEEHWDhBFRIQ+jgZyiUkK93Zg7vDuRzX2r9w2Kc+G7l1E/vU/eSTcy9wRjK9QDGsaWLQkY/ySef/rTVS+pWO1Wlu5fysJdC7GUWgAYYB7A+MjxtPBuUb01CyGEqBESRkQZq03D6OJYZ6OprwcfPNiD1gGN8fG4/JodlaYU7PkEtW4yBYdyydzlT0me4/KJS1AQ/glj8bn77gqfGwOQXphOan4qZk8zu7N2M2v7LE4XOB5+18GvAxN7TqRncM/qq1cIIUSNkzAiANh1Kpdxy5JJHHQDA8IdS/tHNver3jc5fxS+eIqinzZxbqcnxVlNANB7eeE/+hF8H3gAvdvlV29ddXgVL255Ee13S8EHuAfwePfHGdRqEAa9oXprFkIIUeMkjFznlFL8a9MJpn25n1K7Yva3h+nfPrB67zixlcDG2Vz4bDaZyW4UnHEskKYzmfAbEU+Thx++7LLtFyVnJDN181QU5Z9eEN8hnoRuCXi41vCTgYUQQtQYCSPXsbyiUiau3MnX+zIAGNgxmNeHdKneIHJsA6XLxpP5QzZ5J35Zxt2gx+eev+KfMBbXXx6w+Hua0th3fh/fpX7HhlMbOJxzuMJ2/Zv1lyAihBD1nISR69SO1BzGLU3mdG4xRoOeF/7Sgfgbm1dfECk4h23VM5z/JImcw41QmiMweMbeRsATT2Jq1fKSLla7la3pW1mfup4NaRs4V3yu7DU9ejTKX57R6/SYPeXJukIIUd9JGLkOHc0sYOiCLdg0RfMmHswf3p1OYdV0+6umoW1eSPb8GZzf44JW2hgAj56RBE58BvcuXco1zyvJ44fTP7A+dT2bzmyisLSw7DUPFw/6hPWhv7k/Nze9maTUpLI5I3qdnsTeiQQ3unTBMyGEEPWLhJHrUOuAxgyJbEpBiY1p93TG0616FgNTp5LJmfZ3sjZlY7/guAPH1KY5gZP+QaM+0WVnXU4XnC47+7EtYxt2ZS/bR4B7AP3M/ehv7k+vkF6YDL8usHZP23uIDo0mzZKG2dMsQUQIIRoInVJKXb2Zc+Xn5+Pt7U1eXh5eXl7OLqde2nYimxb+jfD/ZfXUUruGi15XLZdlVHE++W8lkLlqC6UFjnzrGuhNwDPP43X7HaDTsS97H+tT17M+bT2Hcg6V69/Gpw39zf3pb+5PR/+O6HX6P1yTEEII57vW7285M9LAaZri3f8dZdY3h4hu3YR/j+qFXq/D1fDHv/CVplG4fBbn5r9PyXkAFwyNXfEf83caDxvJtuwUvtv6GhvSNpBRlFHWT6/T0z2wO/3M/RhgHoDZS+Z9CCHE9UzCSAOWVVDChI928v2hTACaNDJitWu4VcNaHMWbvubcy5MpOuGY46F3hUb33sauv97CwqzNbFw9oNz8D3cXd/qE9qF/s/7cHHYzPm4+f7gGIYQQDYOEkQbqx2PneXxZMucsJbi56nnpzk7c26PpH74sU3LkEJmJT2LZftyxQa/IiA7mk4FmNhZ9j23bd2Vtm7g1cZz9aDaAqJCocvM/hBBCiIskjDQwdk0x77sjzEk6hKagbWBj5t/fnXZBnn9ov6UZGWRNn0Luuu9BgUKR0smFRTdDlvd5KDwPQGvv1o4JqM3609m/s8z/EEIIcVUSRhqYC6V2ViefQlNwb2RTXryrIx7Gqv812/PyOPfOHHKWLEdnc8x13tZGx7J+BtICdI75HwERDGg2gH7mfjT3al5dhyKEEOI6IWGkgWlkcmHe8O4cyrBwT/emVd5Pfn4mu999nUbL12EqtqMDDjSFJf0MpLZwp3doNKObOdb/8HOr5mfYCCGEuK5IGKnnbHaNOUmH8W9sYmR0CwA6hXlf0yJmF5+A28yrGcGNgkkvTOe749+StfIjun9xmCYWR7tUf/jsFgNNbr6JhBvu48aQG3FzufwD7YQQQojKkDBSj6XnXeDx5clsPZ6Nq0HHrR0Caep7bc9p+e0TcHXoCPYIwpx8hvv+p9HNMf2DHE9FWi877e8awpz+iRhcJYAIIYSofhJG6qkNB88x4aOdZBdaaWQ0MO2vXa45iJwtOMvUzVPxzdcIyVF4Fin+svUU7c44Xi910/DoWMiNsdFE3/km+DSrwSMRQghxvZMwUs+U2jVmfn2IBf87CkDHUC/mDe9OS/9G19R/T9YeEjcn0m+nnUe/1ND/Zv1dzUUR0K6AJr08Mdy1AMIdq6cKIYQQNUnCSD2iaYoH3vuJn45nAzCid3Mm394BN9erL2J2ynKKt3e8zZcnviT8pMZjazV+GzMU4P2nHAIHPgz9ngNT45o5CCGEEOJ3JIzUI3q9jv7hgew7k8/rQ7pwe+eQq/bJK8lj4a6FLDuwDK8cK49t1Oi3S/H78x06wLfvVIj9e02ULoQQQlyWhJE6zmrTyCooIdTHHYDRfVsxOCKMYO8rTya12q0sO7CMhbsWosvJ4/7NGrclg4v94nUZBb+NJDqFsWlYzRyEEEIIcQUSRuqwtOwiEpYlU1hi49OEPngYXdDrdVcMIprSWHd8HW8nv01u5ikGbdX4y89gLHWEEI/AEgK65GPNc+XsNm9QOtApQnrm49o+srYOTQghhCgjYaSOWrcnnYkrd2K5YMPLzYXDGQV0Nftcsc/P6T8za9ssDp/dzZ+3KQb/pPC44Aghbn5WArvk42E2oosah0ejABqtmYI1X4fRS+EaNwu85cyIEEKI2idhpI4psdmZtvYAH24+AUC3Zj7MHdbtirftHss9xlvb32LjifXEpCie2KzwLnSEEJN3KQGdLTRu6YIuKgF6J0CjJgC43nAXrtnHwK+VBBEhhBBOI2GkDjl5vpCEpcnsPp0HwKM3t+Lp2Pa4Gip+2FxWcRbvprzL6oMruWmXjTkbNQLyHa+5NrIR0NmCVxsDuhvHlAshZbzDJIQIIYRwOgkjdcgrX+xn9+k8fD1cmTm0KwPCgypsV1RaxOJ9i/lw9wd02VPIjO81Qh13++Libse/owWfcD26G/9ecQgRQggh6hAJI3XIK4M7odfB1Ds7EuLtfsnrds3OmiNrmJ88j6Z7zjHle42WGY7XDEY7TW4owPcGHfroxySECCGEqDckjDjR0cwCkvZnMPrm1gAEebnxz/gel7RTSrHx9EZmbZ+F667DjPufnfBTjtf0Lhp+4QX4dQLDTY9KCBFCCFHvSBhxkjXJp5m8ejdFVjvN/DwY2KniBcz2n9/PzO0zydzxI/f9TyPiuGNiqs6g8G1bSJMuCpebR0sIEUIIUW9JGKllxVY7Uz/dy4ptaQDc2MqPbs18L2l3tuAsc5Pnkrz1M+K+txN18JfFynQKn9ZF+EdouPZ7REKIEEKIek/CSC06cs7C2CXJHMywoNPB4wPa8vitbTHof10J1WK18N7u9/hq82IG/6+E+/coHPfSKLxbFOPfzY7xVgkhQgghGg4JI7XkvymnmfTJbopL7QR4mpgTF0F0G/+y10vtpXx06COW/TCfmPW5zNipcNEcr3k2LSagux3TbQ9LCBFCCNHgSBipJW6uBopL7dzUxp+34iII8DQBjsmp35z8hkUbZxH5TSqvblcYbY4+jYIvENDdhvvtEkKEEEI0XBJGalCJzY7JxQBAbMdgFv+tF33a+Jddlkk5l8LbG1+n2Ze7mLRVw6PE0c/N30pg91Ia3fmQhBAhhBANnoSRGqCUYvnPacxNOswnY6LL1gy5uV0AACfzTzJ3y0xcPk3i0c0aXsWOfq4+pQR1L6Xx3aPQRY+TECKEEOK6IGGkmhWU2Ji8ajef7jwDwH9+PMnE2HAAsi9k88/t75D18Qru3mSjicXRR+9pIyTCiue9o9D1kRAihBDi+iJhpBrtPZNHwtJkjmcVYtDrmBjbntF9W3HBdoH/7FnM3hX/5M71RQTn/tLBw05IVyve941Ed9PjEkKEEEJclySMVAOlFP/5KZWXP9+H1aYR6u3G3OHd6NbMh8+O/JcNy2Yw8Jts+mQ62mtuGiGdrfgMj0d/8xMSQoQQQlzXJIxUg6VbU/nHmj0AxHQIZMaQruzP28akWS9x0+cnGX3W0c5uVATdUEKT+PvR9xsvIUQIIYRAwki1uKdbU5b+lMrd3cLo27GUOUse5IZPUhh10rFqqt1F0SS8hMARwzDc+pSEECGEEOI3JIxUgVKKdXvSie0YjF6vw91oYNGoNiz/Yhpb3/iWuMOOEKLpFY3bWQkbcS8usc9ICBFCCCEqIGGkkvKKSpm4cidf78tgYmx7HrwphGVfz0L/wQpi99rRA5pOYWxTSov4e3C9Y5KEECGEEOIKJIxUQnJqDglLkzmdW4zRoDh7ZiVLRiwlOqUUwy/PsbO3tNH2/kGY7n5eQogQQghxDSSMXAOlFO/9cJw1n66kZ/EeWvs2onfaVqLXFGG0O9pcMNsJHzYQ97hECSFCCCFEJUgYuYqcQitPf7yTdj9M5o3Np9ArUMDF5+wWhGi0j7sVr/iXJYQIIYQQVSBh5CpO5xaTsXc9E34JIuAIIgpwjWtPj4nvoWvsf6VdCCGEEOIK9M4uoK7rFObNg2EZZUHkIh1gaddVgogQQgjxB0kY+Z2sghIe/vc2dp3KLdsWPeB2NF35dnYdBHe+uXaLE0IIIRogCSO/8eOx89w+5we+3Z/BxI93oWmO0yGhXW4lfVhn7L8EErsOMoZ1JrTLrU6sVgghhGgYqhRG5s+fT4sWLXBzcyMqKoqtW7desf3HH39MeHg4bm5udO7cmbVr11ap2Jpi1xRzvj3M8EU/cs5SQpvAxrw9rBt6/a+nQ26d8hF+K+ZR/I+h+K2Yx61TPnJixUIIIUTDUekwsmLFCiZMmEBiYiI7duyga9euxMbGcu7cuQrbb968mWHDhvHQQw+RnJzM4MGDGTx4MHv27PnDxVeHc5YLxL//E299ewhNwZDIpnya0If2wZ6XtA3tcivd739RzogIIYQQ1UinlFJXb/arqKgoevbsybx58wDQNA2z2cy4ceOYNGnSJe3j4uIoLCzk888/L9t24403EhERwYIFCyp8j5KSEkpKSsp+z8/Px2w2k5eXh5eXV2XKvaK07CLufmczWQUluLsaeGVwJ/4a2bTa9i+EEEJcz/Lz8/H29r7q93elzoxYrVa2b99OTEzMrzvQ64mJiWHLli0V9tmyZUu59gCxsbGXbQ8wbdo0vL29y37MZnNlyrxmYT7udArzon2QJ5+Nu0mCiBBCCOEElQojWVlZ2O12goKCym0PCgoiPT29wj7p6emVag/w3HPPkZeXV/aTlpZWmTKvmV6vY05cN9aM7UObwMY18h5CCCGEuLI6ueiZyWTCZDLVynt5e7jWyvsIIYQQomKVOjPi7++PwWAgIyOj3PaMjAyCg4Mr7BMcHFyp9kIIIYS4vlQqjBiNRiIjI0lKSirbpmkaSUlJ9O7du8I+vXv3Ltce4JtvvrlseyGEEEJcXyp9mWbChAmMHDmSHj160KtXL2bPnk1hYSGjRo0CYMSIEYSFhTFt2jQAnnjiCW655RZmzpzJHXfcwfLly9m2bRsLFy6s3iMRQgghRL1U6TASFxdHZmYmU6ZMIT09nYiICNatW1c2STU1NRW9/tcTLtHR0SxdupQXXniByZMn07ZtW9asWUOnTp2q7yiEEEIIUW9Vep0RZ7jW+5SFEEIIUXfUyDojQgghhBDVTcKIEEIIIZxKwogQQgghnErCiBBCCCGcSsKIEEIIIZxKwogQQgghnErCiBBCCCGcSsKIEEIIIZyqTj619/cursuWn5/v5EqEEEIIca0ufm9fbX3VehFGLBYLAGaz2cmVCCGEEKKyLBYL3t7el329XiwHr2kaZ86cwdPTE51OV237zc/Px2w2k5aWJsvM1yAZ59ojY107ZJxrh4xz7ajJcVZKYbFYCA0NLffcut+rF2dG9Ho9TZs2rbH9e3l5yQe9Fsg41x4Z69oh41w7ZJxrR02N85XOiFwkE1iFEEII4VQSRoQQQgjhVNd1GDGZTCQmJmIymZxdSoMm41x7ZKxrh4xz7ZBxrh11YZzrxQRWIYQQQjRc1/WZESGEEEI4n4QRIYQQQjiVhBEhhBBCOJWEESGEEEI4lYQRIYQQQjhVgw8j8+fPp0WLFri5uREVFcXWrVuv2P7jjz8mPDwcNzc3OnfuzNq1a2up0vqtMuO8aNEi+vbti6+vL76+vsTExFz170X8qrKf6YuWL1+OTqdj8ODBNVtgA1HZcc7NzWXs2LGEhIRgMplo166d/PtxDSo7zrNnz6Z9+/a4u7tjNpsZP348Fy5cqKVq66fvv/+eQYMGERoaik6nY82aNVfts2HDBrp3747JZKJNmzZ8+OGHNVukasCWL1+ujEaj+uCDD9TevXvVI488onx8fFRGRkaF7Tdt2qQMBoN644031L59+9QLL7ygXF1d1e7du2u58vqlsuM8fPhwNX/+fJWcnKz279+vHnzwQeXt7a1OnTpVy5XXP5Ud64uOHz+uwsLCVN++fdVdd91VO8XWY5Ud55KSEtWjRw91++23q40bN6rjx4+rDRs2qJSUlFquvH6p7DgvWbJEmUwmtWTJEnX8+HH11VdfqZCQEDV+/Pharrx+Wbt2rXr++efVqlWrFKBWr159xfbHjh1THh4easKECWrfvn1q7ty5ymAwqHXr1tVYjQ06jPTq1UuNHTu27He73a5CQ0PVtGnTKmw/dOhQdccdd5TbFhUVpR599NEarbO+q+w4/57NZlOenp7q3//+d02V2GBUZaxtNpuKjo5W7733nho5cqSEkWtQ2XF+9913VatWrZTVaq2tEhuEyo7z2LFj1YABA8ptmzBhgurTp0+N1tmQXEsYeeaZZ1THjh3LbYuLi1OxsbE1VleDvUxjtVrZvn07MTExZdv0ej0xMTFs2bKlwj5btmwp1x4gNjb2su1F1cb594qKiigtLcXPz6+mymwQqjrWL730EoGBgTz00EO1UWa9V5Vx/vTTT+nduzdjx44lKCiITp068dprr2G322ur7HqnKuMcHR3N9u3byy7lHDt2jLVr13L77bfXSs3XC2d8F9aLp/ZWRVZWFna7naCgoHLbg4KCOHDgQIV90tPTK2yfnp5eY3XWd1UZ59979tlnCQ0NveTDL8qrylhv3LiR999/n5SUlFqosGGoyjgfO3aM7777jvvvv5+1a9dy5MgRxowZQ2lpKYmJibVRdr1TlXEePnw4WVlZ3HTTTSilsNlsPPbYY0yePLk2Sr5uXO67MD8/n+LiYtzd3av9PRvsmRFRP0yfPp3ly5ezevVq3NzcnF1Og2KxWIiPj2fRokX4+/s7u5wGTdM0AgMDWbhwIZGRkcTFxfH888+zYMECZ5fWoGzYsIHXXnuNd955hx07drBq1Sq++OILXn75ZWeXJv6gBntmxN/fH4PBQEZGRrntGRkZBAcHV9gnODi4Uu1F1cb5ojfffJPp06fz7bff0qVLl5oss0Go7FgfPXqUEydOMGjQoLJtmqYB4OLiwsGDB2ndunXNFl0PVeUzHRISgqurKwaDoWxbhw4dSE9Px2q1YjQaa7Tm+qgq4/yPf/yD+Ph4Hn74YQA6d+5MYWEho0eP5vnnn0evl/9fV4fLfRd6eXnVyFkRaMBnRoxGI5GRkSQlJZVt0zSNpKQkevfuXWGf3r17l2sP8M0331y2vajaOAO88cYbvPzyy6xbt44ePXrURqn1XmXHOjw8nN27d5OSklL2c+edd9K/f39SUlIwm821WX69UZXPdJ8+fThy5EhZ2AM4dOgQISEhEkQuoyrjXFRUdEnguBgAlTzztdo45buwxqbG1gHLly9XJpNJffjhh2rfvn1q9OjRysfHR6WnpyullIqPj1eTJk0qa79p0ybl4uKi3nzzTbV//36VmJgot/Zeg8qO8/Tp05XRaFQrV65UZ8+eLfuxWCzOOoR6o7Jj/XtyN821qew4p6amKk9PT5WQkKAOHjyoPv/8cxUYGKheeeUVZx1CvVDZcU5MTFSenp5q2bJl6tixY+rrr79WrVu3VkOHDnXWIdQLFotFJScnq+TkZAWoWbNmqeTkZHXy5EmllFKTJk1S8fHxZe0v3to7ceJEtX//fjV//ny5tfePmjt3rmrWrJkyGo2qV69e6scffyx77ZZbblEjR44s1/6jjz5S7dq1U0ajUXXs2FF98cUXtVxx/VSZcW7evLkCLvlJTEys/cLrocp+pn9Lwsi1q+w4b968WUVFRSmTyaRatWqlXn31VWWz2Wq56vqnMuNcWlqqpk6dqlq3bq3c3NyU2WxWY8aMUTk5ObVfeD2yfv36Cv/NvTi2I0eOVLfccsslfSIiIpTRaFStWrVS//rXv2q0Rp1Scm5LCCGEEM7TYOeMCCGEEKJ+kDAihBBCCKeSMCKEEEIIp5IwIoQQQginkjAihBBCCKeSMCKEEEIIp5IwIoQQQginkjAihBBCCKeSMCKEEEIIp5IwIoQQQginkjAihBBCCKf6f1T/rkXRYvfoAAAAAElFTkSuQmCC", |
|
|
1482 |
"text/plain": [ |
|
|
1483 |
"<Figure size 640x480 with 1 Axes>" |
|
|
1484 |
] |
|
|
1485 |
}, |
|
|
1486 |
"metadata": {}, |
|
|
1487 |
"output_type": "display_data" |
|
|
1488 |
} |
|
|
1489 |
], |
|
|
1490 |
"source": [ |
|
|
1491 |
"# predict probabilities\n", |
|
|
1492 |
"probs_train = model_final.predict_proba(x_train)[:, 1]\n", |
|
|
1493 |
"probs_val = model_final.predict_proba(x_val)[:, 1]\n", |
|
|
1494 |
"probs_plco = model_final.predict_proba(x_plco)[:, 1]\n", |
|
|
1495 |
"# reliability diagram\n", |
|
|
1496 |
"fop_train, mpv_train = calibration_curve(y_train, probs_train, n_bins=10, normalize=True)\n", |
|
|
1497 |
"fop_val, mpv_val = calibration_curve(y_val, probs_val, n_bins=10, normalize=True)\n", |
|
|
1498 |
"fop_plco, mpv_plco = calibration_curve(y_plco, probs_plco, n_bins=10, normalize=True)\n", |
|
|
1499 |
"\n", |
|
|
1500 |
"# plot perfectly calibrated\n", |
|
|
1501 |
"plt.plot([0, 1], [0, 1], linestyle='--')\n", |
|
|
1502 |
"# plot model reliability\n", |
|
|
1503 |
"plt.plot(mpv_train, fop_train, marker='.', label='Train set')\n", |
|
|
1504 |
"plt.plot(mpv_val, fop_val, marker='.', label='Validation set')\n", |
|
|
1505 |
"plt.plot(mpv_plco, fop_plco, marker='.', label='PLCO dataset')\n", |
|
|
1506 |
"plt.title(\"Calibration curve on train and validation set\")\n", |
|
|
1507 |
"plt.legend()\n", |
|
|
1508 |
"plt.show()" |
|
|
1509 |
] |
|
|
1510 |
}, |
|
|
1511 |
{ |
|
|
1512 |
"attachments": {}, |
|
|
1513 |
"cell_type": "markdown", |
|
|
1514 |
"metadata": {}, |
|
|
1515 |
"source": [ |
|
|
1516 |
"We now calibrate the XGBoost model over the plco dataset and see how it does on the NLST dataset" |
|
|
1517 |
] |
|
|
1518 |
}, |
|
|
1519 |
{ |
|
|
1520 |
"cell_type": "code", |
|
|
1521 |
"execution_count": 100, |
|
|
1522 |
"metadata": {}, |
|
|
1523 |
"outputs": [ |
|
|
1524 |
{ |
|
|
1525 |
"data": { |
|
|
1526 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACBf0lEQVR4nO3dd1zU9R8H8NfdwR372EsZIg5cgLhHamquTLPStHKklTkLrbRU1FIzzZxpy1G/nKVlZZqz3OZATQEVRVCZInve3ef3x8npCSinwMHxej4e94D73Of7/b7vC3pvPlMihBAgIiIiMhFSYwdAREREVJ6Y3BAREZFJYXJDREREJoXJDREREZkUJjdERERkUpjcEBERkUlhckNEREQmhckNERERmRQmN0RERGRSmNwQVYDOnTujc+fOuucxMTGQSCRYu3atrmz48OGwsbGp/OAeMHPmTEgkEmOHQURUbpjcEAGIjo7GW2+9BT8/P1hYWMDOzg7t27fHkiVLkJuba+zwnlhOTg5mzpyJAwcOGDsUekIXL17EzJkzERMTU6HX+fLLL/WS8crC31UqD2bGDoDI2P744w+89NJLUCgUGDp0KJo0aYKCggIcOnQI7733Hi5cuICvv/76ia7h4+OD3NxcmJubl1PUhsnJycGsWbMAQK9FCQCmTZuGKVOmGCEqehwXL17ErFmz0LlzZ/j6+lbYdb788ks4Oztj+PDhFXaNkjzsd5WorJjcUI127do1vPzyy/Dx8cG+ffvg4eGhe23s2LG4cuUK/vjjjye+jkQigYWFxROfp4hKpYJGo4FcLn/ic5mZmcHMzDT/K8jOzoa1tbWxwyCiSsZuKarRPvvsM2RlZeG7777TS2yK+Pv7Y+LEibrna9aswdNPPw1XV1coFAo0atQIK1eufOR1ShpzU+Tq1avo0aMHrK2t4enpidmzZ0MIUezYhQsXYvHixahbty4UCgUuXryIgoICzJgxAyEhIVAqlbC2tkbHjh2xf/9+veNdXFwAALNmzYJEIoFEIsHMmTMBlDzmRqVS4eOPP9Zdy9fXFx9++CHy8/P16vn6+uLZZ5/FoUOH0KpVK1hYWMDPzw/ff//9I+8JAGg0GixZsgRNmzaFhYUFXFxc0LNnT5w8efKR9+3+93D/+7h48SKGDBkCBwcHdOjQAQsXLoREIsH169eLnWPq1KmQy+W4c+eOruz48ePo2bMnlEolrKys0KlTJxw+fLhM7ycpKQkjR46Em5sbLCwsEBgYiHXr1unVuf/n+fXXX+vuccuWLfHvv/8+9Pxr167FSy+9BADo0qWL7md5fxfOn3/+iY4dO8La2hq2trbo06cPLly4oHeehIQEjBgxArVr14ZCoYCHhwf69eun6+ry9fXFhQsX8Pfff+uu8ahWlI0bNyIkJAS2traws7ND06ZNsWTJEr06aWlpeOedd+Dl5QWFQgF/f3/Mnz8fGo1Gd28e9rtKVFam+ecaURn99ttv8PPzQ7t27cpUf+XKlWjcuDGee+45mJmZ4bfffsOYMWOg0WgwduxYg6+vVqvRs2dPtGnTBp999hl27tyJsLAwqFQqzJ49W6/umjVrkJeXhzfffBMKhQKOjo7IyMjAt99+i8GDB+ONN95AZmYmvvvuO/To0QMnTpxAUFAQXFxcsHLlSrz99tt4/vnnMWDAAABAs2bNSo1r1KhRWLduHV588UVMmjQJx48fx7x58xAREYFt27bp1b1y5QpefPFFjBw5EsOGDcPq1asxfPhwhISEoHHjxg99/yNHjsTatWvRq1cvjBo1CiqVCgcPHsSxY8fQokULg+8nALz00kuoV68e5s6dCyEEnn32Wbz//vvYvHkz3nvvPb26mzdvxjPPPAMHBwcAwL59+9CrVy+EhIQgLCwMUqlUl9AePHgQrVq1KvW6ubm56Ny5M65cuYJx48ahTp062LJlC4YPH460tDS9JBkA1q9fj8zMTLz11luQSCT47LPPMGDAAFy9erXU7sunnnoKEyZMwNKlS/Hhhx8iICAAAHRff/jhBwwbNgw9evTA/PnzkZOTg5UrV6JDhw44c+aMrhvrhRdewIULFzB+/Hj4+voiKSkJu3fvRmxsLHx9fbF48WKMHz8eNjY2+OijjwAAbm5upb733bt3Y/DgwejatSvmz58PAIiIiMDhw4d17zsnJwedOnXCzZs38dZbb8Hb2xtHjhzB1KlTER8fj8WLFz/W7ypRiQRRDZWeni4AiH79+pX5mJycnGJlPXr0EH5+fnplnTp1Ep06ddI9v3btmgAg1qxZoysbNmyYACDGjx+vK9NoNKJPnz5CLpeL5ORkvWPt7OxEUlKS3nVUKpXIz8/XK7tz545wc3MTr7/+uq4sOTlZABBhYWHF4g8LCxP3/1cQHh4uAIhRo0bp1Zs8ebIAIPbt26cr8/HxEQDEP//8oytLSkoSCoVCTJo0qdi17rdv3z4BQEyYMKHYaxqNRu+933/fijz4forex+DBg4vVbdu2rQgJCdErO3HihAAgvv/+e90169WrJ3r06KG7vhDan3mdOnVE9+7dH/p+Fi9eLACI//3vf7qygoIC0bZtW2FjYyMyMjL03pOTk5NITU3V1f31118FAPHbb7899DpbtmwRAMT+/fv1yjMzM4W9vb1444039MoTEhKEUqnUld+5c0cAEAsWLHjodRo3bqz3O/wwEydOFHZ2dkKlUpVa5+OPPxbW1tbi0qVLeuVTpkwRMplMxMbGCiEe/rtKVFbslqIaKyMjAwBga2tb5mMsLS1136enpyMlJQWdOnXC1atXkZ6e/lhxjBs3Tve9RCLBuHHjUFBQgD179ujVe+GFF3RN9kVkMplu3I1Go0FqaipUKhVatGiB06dPP1Y8O3bsAACEhobqlU+aNAkAio1BatSoETp27Kh77uLiggYNGuDq1asPvc7PP/8MiUSCsLCwYq89ydT00aNHFysbNGgQTp06hejoaF3Zpk2boFAo0K9fPwBAeHg4Ll++jCFDhuD27dtISUlBSkoKsrOz0bVrV/zzzz+67pOS7NixA+7u7hg8eLCuzNzcHBMmTEBWVhb+/vvvYjEVtRgB0N3DR9230uzevRtpaWkYPHiwLvaUlBTIZDK0bt1a11VpaWkJuVyOAwcO6HXHPQl7e3tkZ2dj9+7dpdbZsmULOnbsCAcHB734unXrBrVajX/++adcYiEC2C1FNZidnR0AIDMzs8zHHD58GGFhYTh69ChycnL0XktPT4dSqTQoBqlUCj8/P72y+vXrA0Cxqb516tQp8Rzr1q3D559/jsjISBQWFj6y/qNcv34dUqkU/v7+euXu7u6wt7cvNnbF29u72DkcHBwe+cEZHR0NT09PODo6PlacpSnpfb/00ksIDQ3Fpk2b8OGHH0IIgS1btqBXr16634PLly8DAIYNG1bqudPT0/USkvtdv34d9erVg1Sq/zdjUZfRo+5b0XkfN+Eoiv/pp58u8fWi96lQKDB//nxMmjQJbm5uaNOmDZ599lkMHToU7u7uj3XtMWPGYPPmzejVqxdq1aqFZ555BgMHDkTPnj314jt37lyxBL1IUlLSY12bqCRMbqjGsrOzg6enJ/77778y1Y+OjkbXrl3RsGFDLFq0CF5eXpDL5dixYwe++OKLh/5VXx7ubzUq8r///Q/Dhw9H//798d5778HV1RUymQzz5s3Ta6V4HGVtPZHJZCWWi/sGRZd3DGq1utRjSrpPnp6e6NixIzZv3owPP/wQx44dQ2xsrG58CADdz2/BggUICgoq8dzluehied+3ovh/+OGHEpOU+2fEvfPOO+jbty9++eUX7Nq1C9OnT8e8efOwb98+BAcHG3xtV1dXhIeHY9euXfjzzz/x559/Ys2aNRg6dKhuQLVGo0H37t3x/vvvl3iOoqSeqDwwuaEa7dlnn8XXX3+No0ePom3btg+t+9tvvyE/Px/bt2/X+6v7/plJhtJoNLh69aref+yXLl0CgDKtYfLTTz/Bz88PW7du1UsEHuzqMaSbx8fHBxqNBpcvX9a1OgBAYmIi0tLS4OPjU+ZzPUzdunWxa9cupKamltp6U9SakZaWplde0synRxk0aBDGjBmDqKgobNq0CVZWVujbt69ePIA26e3WrZvB5/fx8cG5c+eg0Wj0Wm8iIyN1r5eH0n6WRfG7urqWKf66deti0qRJmDRpEi5fvoygoCB8/vnn+N///vfQ65RGLpejb9++6Nu3LzQaDcaMGYOvvvoK06dPh7+/P+rWrYusrKxHxsbVsqk8cMwN1Wjvv/8+rK2tMWrUKCQmJhZ7PTo6Wjedtegv7fv/sk5PT8eaNWueKIbly5frvhdCYPny5TA3N0fXrl0feWxJMR0/fhxHjx7Vq2dlZQWgeJJQkt69ewMAFi9erFe+aNEiAECfPn0eeY6yeOGFFyCE0C3Ydr+i92NnZwdnZ+di4zG+/PLLx7qeTCbDhg0bsGXLFjz77LN6a+CEhISgbt26WLhwIbKysoodn5yc/NDz9+7dGwkJCdi0aZOuTKVSYdmyZbCxsUGnTp0MjrkkRTE/+LPs0aMH7OzsMHfuXL3uySJF8efk5CAvL0/vtbp168LW1lZvqr+1tXWZfl8A4Pbt23rPpVKpboZT0TkHDhyIo0ePYteuXcWOT0tLg0qlAmDY7ypRadhyQzVa3bp1sX79egwaNAgBAQF6KxQfOXJEN5UXAJ555hndX6dvvfUWsrKy8M0338DV1RXx8fGPdX0LCwvs3LkTw4YNQ+vWrfHnn3/ijz/+wIcffljq2IT7Pfvss9i6dSuef/559OnTB9euXcOqVavQqFEjvQ9oS0tLNGrUCJs2bUL9+vXh6OiIJk2aoEmTJsXOGRgYiGHDhuHrr79GWloaOnXqhBMnTmDdunXo378/unTp8ljv9UFdunTBa6+9hqVLl+Ly5cvo2bMnNBoNDh48iC5duugGWo8aNQqffvopRo0ahRYtWuCff/7RtW4ZwtXVFV26dMGiRYuQmZmJQYMG6b0ulUrx7bffolevXmjcuDFGjBiBWrVq4ebNm9i/fz/s7Ozw22+/lXr+N998E1999RWGDx+OU6dOwdfXFz/99BMOHz6MxYsXGzRw/WGCgoIgk8kwf/58pKenQ6FQ6NZeWrlyJV577TU0b94cL7/8MlxcXBAbG4s//vgD7du3x/Lly3Hp0iV07doVAwcORKNGjWBmZoZt27YhMTERL7/8su46ISEhWLlyJT755BP4+/vD1dW11PE8o0aNQmpqKp5++mnUrl0b169fx7JlyxAUFKRr/Xvvvfewfft2PPvss7qlArKzs3H+/Hn89NNPiImJgbOzs0G/q0SlMt5ELaKq49KlS+KNN94Qvr6+Qi6XC1tbW9G+fXuxbNkykZeXp6u3fft20axZM2FhYSF8fX3F/PnzxerVqwUAce3aNV29sk4Ft7a2FtHR0eKZZ54RVlZWws3NTYSFhQm1Wl3s2JKm7mo0GjF37lzh4+MjFAqFCA4OFr///rsYNmyY8PHx0at75MgRERISIuRyud5U2wenggshRGFhoZg1a5aoU6eOMDc3F15eXmLq1Kl690II7VTwPn36FIvrwfdfGpVKJRYsWCAaNmwo5HK5cHFxEb169RKnTp3S1cnJyREjR44USqVS2NraioEDB4qkpKRSp4IXTaEvyTfffCMACFtbW5Gbm1tinTNnzogBAwYIJycnoVAohI+Pjxg4cKDYu3fvI99PYmKiGDFihHB2dhZyuVw0bdq02DT2h/08H3xPD3sffn5+QiaTFZsWvn//ftGjRw+hVCqFhYWFqFu3rhg+fLg4efKkEEKIlJQUMXbsWNGwYUNhbW0tlEqlaN26tdi8ebPeNRISEkSfPn2Era2tAPDQn+dPP/0knnnmGeHq6irkcrnw9vYWb731loiPj9erl5mZKaZOnSr8/f2FXC4Xzs7Ool27dmLhwoWioKBAV6+031WispIIUQ6j/oiIiIiqCI65ISIiIpPC5IaIiIhMCpMbIiIiMilMboiIiMikMLkhIiIik8LkhoiIiExKjVvET6PR4NatW7C1teUy30RERNWEEAKZmZnw9PQstkHtg2pccnPr1i14eXkZOwwiIiJ6DHFxcahdu/ZD69S45KZoCfS4uDjY2dkZORoiIiIqi4yMDHh5eZVpK5Mal9wUdUXZ2dkxuSEiIqpmyjKkhAOKiYiIyKQwuSEiIiKTwuSGiIiITEqNG3NTVmq1GoWFhcYOgyqAXC5/5DRCIiKqvpjcPEAIgYSEBKSlpRk7FKogUqkUderUgVwuN3YoRERUAZjcPKAosXF1dYWVlRUX+jMxRYs4xsfHw9vbmz9fIiITxOTmPmq1WpfYODk5GTscqiAuLi64desWVCoVzM3NjR0OERGVMw48uE/RGBsrKysjR0IVqag7Sq1WGzkSIiKqCExuSsCuCtPGny8RkWljckNEREQmxajJzT///IO+ffvC09MTEokEv/zyyyOPOXDgAJo3bw6FQgF/f3+sXbu2wuM0dTExMZBIJAgPDy/zMWvXroW9vb3R4yAiInqQUZOb7OxsBAYGYsWKFWWqf+3aNfTp0wddunRBeHg43nnnHYwaNQq7du2q4Eirh7i4OLz++uvw9PSEXC6Hj48PJk6ciNu3bz/0OC8vL8THx6NJkyZlvtagQYNw6dKlJw2ZiIio3Bl1tlSvXr3Qq1evMtdftWoV6tSpg88//xwAEBAQgEOHDuGLL75Ajx49KirMauHq1ato27Yt6tevjw0bNqBOnTq4cOEC3nvvPfz55584duwYHB0dix1XUFAAuVwOd3d3g65naWkJS0vL8gqfiIio3FSrMTdHjx5Ft27d9Mp69OiBo0ePlnpMfn4+MjIy9B6VJv0mcO0f7dcKNnbsWMjlcvz111/o1KkTvL290atXL+zZswc3b97ERx99BADw9fXFxx9/jKFDh8LOzg5vvvlmid1B27dvR7169WBhYYEuXbpg3bp1kEgkusUNH+yWmjlzJoKCgvDDDz/A19cXSqUSL7/8MjIzM3V1du7ciQ4dOsDe3h5OTk549tlnER0dXeH3hoiIapZqldwkJCTAzc1Nr8zNzQ0ZGRnIzc0t8Zh58+ZBqVTqHl5eXoZdVAigINvwx4lvgMVNgHV9tV9PfGP4OYQoU4ipqanYtWsXxowZU6w1xd3dHa+88go2bdoEcfd8CxcuRGBgIM6cOYPp06cXO9+1a9fw4osvon///jh79izeeustXXL0MNHR0fjll1/w+++/4/fff8fff/+NTz/9VPd6dnY2QkNDcfLkSezduxdSqRTPP/88NBpNmd4nERFVTanZBUjJyjd2GDomv4jf1KlTERoaqnuekZFhWIJTmAPM9XyyIIQG2DFZ+zDEh7cAufUjq12+fBlCCAQEBJT4ekBAAO7cuYPk5GQAwNNPP41JkybpXo+JidGr/9VXX6FBgwZYsGABAKBBgwb477//MGfOnIfGodFosHbtWtja2gIAXnvtNezdu1d33AsvvKBXf/Xq1XBxccHFixcNGu9DRERVx/GrtzFh4xn4u9rg+9dbQyY1/nIb1arlxt3dHYmJiXpliYmJsLOzK3X8h0KhgJ2dnd7DVIkytvS0aNHioa9HRUWhZcuWemWtWrV65Hl9fX11iQ0AeHh4ICkpSff88uXLGDx4MPz8/GBnZwdfX18AQGxsbJniJiKiqkOjEVi+7zIGf3MMiRn5SEjPw+0q0npTrVpu2rZtix07duiV7d69G23btq24i5pbaVtQDJFxC1jRSttiU0QiA8YeB+wMaAUyL9tKyf7+/pBIJIiIiMDzzz9f7PWIiAg4ODjAxcUFAGBt/ejWoMfx4FYGEolEr8upb9++8PHxwTfffANPT09oNBo0adIEBQUFFRIPERFVjOTMfIRuDsfByykAgAHNa+Hjfk1gragaaYVRW26ysrIQHh6uG8h67do1hIeH6/6Snzp1KoYOHaqrP3r0aFy9ehXvv/8+IiMj8eWXX2Lz5s149913Ky5IiUTbNWTIw7ke0HeJNqEBtF/7LtaWG3KeMq6k6+TkhO7du+PLL78sNvYoISEBP/74IwYNGlTmlXkbNGiAkydP6pX9+++/ZTq2NLdv30ZUVBSmTZuGrl276rrKiIioejlyJQW9lx7EwcspsDSXYeFLgVg0MKjKJDaAkZObkydPIjg4GMHBwQCA0NBQBAcHY8aMGQCA+Ph4vS6LOnXq4I8//sDu3bsRGBiIzz//HN9++23VnAbefCjwznlg2O/ar82HPvqYJ7B8+XLk5+ejR48e+OeffxAXF4edO3eie/fuqFWr1iPHy9zvrbfeQmRkJD744ANcunQJmzdv1i2W+LhbFzg4OMDJyQlff/01rly5gn379umNhSIioqpPpdZgxvYLSM7MR303G2wf1x4vhtQ2dljFGDXN6ty580PHiZS0+nDnzp1x5syZCoyqHClraR+VoF69ejh58iTCwsIwcOBApKamwt3dHf3790dYWFiJa9yUpk6dOvjpp58wadIkLFmyBG3btsVHH32Et99+GwqF4rHik0ql2LhxIyZMmIAmTZqgQYMGWLp0KTp37vxY5yMiospnJpNi6cvB+PH4dUzr0wiWcpmxQyqRRJR1FKqJyMjIgFKpRHp6erHBxXl5ebh27Rrq1KkDCwsLI0VYNc2ZMwerVq1CXFycsUN5Yvw5ExGV3T+XknEzLReDW3kbNY6HfX4/qOp0kFGV8uWXX6Jly5ZwcnLC4cOHsWDBAowbN87YYRERUSVRqTX4Ys8lfHkgGmZSCZrWUqJJLaWxwyoTJjdUosuXL+OTTz5BamoqvL29MWnSJEydOtXYYRERUSWIT8/FhA1n8G+MduLHwBZe8He1MXJUZcfkhkr0xRdf4IsvvjB2GEREVMn2RyYhdHM47uQUwkZhhk9faIpnmz3hYraVjMkNERERAQAW7IrEiv3aPf+a1LLDiiHN4eNUMWujVSQmN0RERAQAsLeUAwCGt/PF1N4NoTCrmrOhHoXJDRERUQ2WU6CClVybDozqWAdB3vZo6Vv25UOqomq1txQRERGVjwKVBrN+u4C+yw4hO18FQLtQa3VPbAC23BAREdU4sbdzMG7DaZy7kQ4A2BORiH5BlbPobGVgckNERFSD/Hk+Hu//dA6Z+SooLc3x+UuB6NbIzdhhlSt2S5HO2rVrYW9vr3s+c+ZMBAUF6Z4PHz4c/fv3r/S4DPXg+yAiIiCvUI0Zv/6Ht388jcx8FUJ8HLBjYkeTS2wAJjcmJSEhAePHj4efnx8UCgW8vLzQt29f7N2797HON3ny5Mc+1lBMSIiIKta8HRH4/uh1AMDoTnWx8c02qGVvaeSoKga7pUxETEwM2rdvD3t7eyxYsABNmzZFYWEhdu3ahbFjxyIyMtLgc9rY2MDG5slWpCwoKIBcLn+icxAR0ZMb+7Q/jl1NxdTeDdG5gauxw6lQbLmpQAnZCTgRfwIJ2QkVfq0xY8ZAIpHgxIkTeOGFF1C/fn00btwYoaGhOHbsGABg0aJFaNq0KaytreHl5YUxY8YgKyur1HM+2C1VZNasWXBxcYGdnR1Gjx6NgoIC3WudO3fGuHHj8M4778DZ2Rk9evR45LUPHDiAESNGID09HRKJBBKJBDNnzgQA5OfnY/LkyahVqxasra3RunVrHDhwQC+etWvXwtvbG1ZWVnj++edx+/btJ7iTRESmIa9QjV/Db+qeu9pa4M+JHU0+sQHYcvNIQgjkqnINPm579HbMOz4PGmgghRRTW0/Fc3WfM+gclmaWkEgkj6yXmpqKnTt3Ys6cObC2Lr6SZFF3j1QqxdKlS1GnTh1cvXoVY8aMwfvvv48vv/yyzDHt3bsXFhYWOHDgAGJiYjBixAg4OTlhzpw5ujrr1q3D22+/jcOHD+vKHnbtdu3aYfHixZgxYwaioqIAQNdiNG7cOFy8eBEbN26Ep6cntm3bhp49e+L8+fOoV68ejh8/jpEjR2LevHno378/du7cibCwsDK/HyIiU3QlKQvj1p9GZEImZFKJbvsEqfTRnymmgMnNI+SqctF6fesnOocGGsw5Pgdzjs95dOX7HB9yHFbmVo+sd+XKFQgh0LBhw4fWe+edd3Tf+/r64pNPPsHo0aMNSm7kcjlWr14NKysrNG7cGLNnz8Z7772Hjz/+GFKptiGwXr16+Oyzz8p8bblcDqVSCYlEAnd3d1292NhYrFmzBrGxsfD01P7DnDx5Mnbu3Ik1a9Zg7ty5WLJkCXr27In3338fAFC/fn0cOXIEO3fuLPN7IiIyJT+fuoFpv/yH3EI1nG3kulWHaxImNyZACFGmenv27MG8efMQGRmJjIwMqFQq5OXlIScnB1ZWj06iACAwMFCvbtu2bZGVlYW4uDj4+PgAAEJCQsrl2ufPn4darUb9+vX1yvPz8+Hk5AQAiIiIwPPPP6/3etu2bZncEFGNk1OgQtivF7Dl1A0AQLu6Tlg8KAiudhZGjqzyMbl5BEszSxwfctygYxJzEtH/l/7QQKMrk0qk+KXfL3CzKvuUO0uzso1ir1evHiQSyUMHDcfExODZZ5/F22+/jTlz5sDR0RGHDh3CyJEjUVBQUObkpiwe7Bp73GtnZWVBJpPh1KlTkMn09zd50oHORESm5FJiJsb+eBqXk7IglQATu9bHuKf9Iash3VAPYnLzCBKJpExdQ/ero6yDsHZhmHV0FjRCA6lEirC2YaijrFMhMTo6OqJHjx5YsWIFJkyYUCy5SEtLw6lTp6DRaPD555/ruo82b95s8LXOnj2L3NxcWFpqE69jx47BxsYGXl5epR5TlmvL5XKo1Wq9suDgYKjVaiQlJaFjx44lnjsgIADHj+snn0UDqImIaorrt3NwOSkLrrYKLHk5GG3rOhk7JKNiclNBBtQbgHae7RCXGQcvWy+4W7s/+qAnsGLFCrRv3x6tWrXC7Nmz0axZM6hUKuzevRsrV67Exo0bUVhYiGXLlqFv3744fPgwVq1aZfB1CgoKMHLkSEybNg0xMTEICwvDuHHjdElLSfz9/R95bV9fX2RlZWHv3r26rq/69evjlVdewdChQ/H5558jODgYycnJ2Lt3L5o1a4Y+ffpgwoQJaN++PRYuXIh+/fph165d7JIiohpBCKGbdNK9kRvmv9AUXQPc4GyjMHJkxsep4BXI3dodLd1bVnhiAwB+fn44ffo0unTpgkmTJqFJkybo3r079u7di5UrVyIwMBCLFi3C/Pnz0aRJE/z444+YN2+ewdfp2rUr6tWrh6eeegqDBg3Cc889p5u2XZqyXLtdu3YYPXo0Bg0aBBcXF92A5DVr1mDo0KGYNGkSGjRogP79++Pff/+Ft7c3AKBNmzb45ptvsGTJEgQGBuKvv/7CtGnTDH5fRETVycVbGXhx1VHcSrs3m3dQS28mNndJRFlHo5qIjIwMKJVKpKenw87OTu+1vLw8XLt2DXXq1IGFRc0bgFVT8OdMRNWVEALrT8Ri1m8XUaDSoE9TD6x4pbmxw6oUD/v8fhC7pYiIiKqBzLxCTN16Hr+fiwcAPN3QFR/3b2LkqKomJjdERERV3H830zFu/WnE3M6BmVSC93s2wKgOfjVmUT5DMbkhIiKqwo5Ep2D46n9RoNaglr0llg0JRnNvB2OHVaUxuSEiIqrCmns7wM/FGl6OVljwYjPYW9W8FYcNxeSmBDVsjHWNw58vEVV1lxIzUdfFBjKpBBbmMmx4ow3srczLtN8gcSq4HnNzcwBATk6OkSOhilS0i/mDqx4TERmbEALfHryKPksP4sv9V3TlDtZyJjYGYMvNfWQyGezt7ZGUlAQAsLKy4i+TidFoNEhOToaVlRXMzPjrT0RVR1pOASZvOYs9EdrPoKjETL2F+qjs+L/7A4p2pS5KcMj0SKVSeHt78z8MIqoyTl1Pxfj1Z3ArPQ9ymRTTnw3Aq218+P/UY2Jy8wCJRAIPDw+4urqisLDQ2OFQBZDL5Q/dLoKIqLJoNAJfH7yKBbuioNYI+DpZYfmQ5mhSS2ns0Ko1JjelkMlkHJNBREQV6npqDhbtvgS1RuC5QE/MHdAUNgp+ND8p3kEiIiIjqeNsjdnPNYYA8HJLL3ZDlRMmN0RERJVEoxFY+Xc02vs7I8jLHgDwcitv4wZlgjjwgIiIqBIkZ+Zj2JoTWLArCuPWn0ZOgcrYIZksttwQERFVsCNXUjBxUziSM/NhYS7FxK71YCXnR3BF4Z0lIiKqIGqNwNK9l7F032UIAdR3s8GKIc1Rz83W2KGZNCY3REREFSAzrxBvfH8Sx66mAgAGtqiNWc81gaWcM3ErGpMbIiKiCmAtN4OV3AxWchnmPN8EzwfXNnZINQaTGyIionKiUmug0ghYmMsglUrw+UuBSM0pQF0XG2OHVqNwthQREVE5iE/PxZBvjuPDbed1ZQ7WciY2RsCWGyIioie0PzIJoZvDcSenEBfjzRCXmgMvRytjh1VjMbkhIiJ6TIVqDRbuisJX/1wFADSpZYflg5szsTEyJjdERESP4WZaLsavP43TsWkAgOHtfDG1d0MozDgbytiY3BARERlIoxEYtvoEriRlwdbCDAtebIaeTTyMHRbdxQHFREREBpJKJQjr2wjB3vbYMaEjE5sqhi03REREZRB7OwfXU7PRsZ4LAKBjPRe0r+sMqZQ7eVc1bLkhIiJ6hD/Px6PP0oMY87/TuH47W1fOxKZqYssNERFRKfIK1Zi7IwLfH70OAGjubQ8zGdsFqjomN0RERCW4lpKNcetP48KtDADAW538MPmZBjBnclPlMbkhIiJ6wPazt/Dh1vPIylfBwcociwYGoUtDV2OHRWXE5IaIiOgB4bFpyMpXoZWvI5YMDoKH0tLYIZEBmNwQEREBEEJAItEOEJ7SqyF8na0wpJU3x9hUQ/yJERFRjbftzA2MWPsvVGoNAEBuJsXQtr5MbKopttwQEVGNlVOgQtivF7Dl1A0AwJZTNzC4lbeRo6InxeSGiIhqpEuJmRj742lcTsqCRAJM7FoPA1t4GTssKgdGb29bsWIFfH19YWFhgdatW+PEiRMPrb948WI0aNAAlpaW8PLywrvvvou8vLxKipaIiKo7IQQ2n4zDc8sP4XJSFlxsFfhxVGu8060+ZFyUzyQYteVm06ZNCA0NxapVq9C6dWssXrwYPXr0QFRUFFxdi0+5W79+PaZMmYLVq1ejXbt2uHTpEoYPHw6JRIJFixYZ4R0QEVF1s3jPZSzZexkA0LGeM74YFARnG4WRo6LyZNSWm0WLFuGNN97AiBEj0KhRI6xatQpWVlZYvXp1ifWPHDmC9u3bY8iQIfD19cUzzzyDwYMHP7K1h4iIqEjfQA/YKszwXo8GWDeiFRMbE2S05KagoACnTp1Ct27d7gUjlaJbt244evRoice0a9cOp06d0iUzV69exY4dO9C7d+9Sr5Ofn4+MjAy9BxER1RxCCFy4la577u9qi4MfdMHYLv7cG8pEGS25SUlJgVqthpubm165m5sbEhISSjxmyJAhmD17Njp06ABzc3PUrVsXnTt3xocffljqdebNmwelUql7eHlxsBgRUU2RmVeICRvD0XfZIZy4lqort7eSGzEqqmhGH1BsiAMHDmDu3Ln48ssvcfr0aWzduhV//PEHPv7441KPmTp1KtLT03WPuLi4SoyYiIiM5b+b6ei77BB+O3sLEokEV5KyjB0SVRKjDSh2dnaGTCZDYmKiXnliYiLc3d1LPGb69Ol47bXXMGrUKABA06ZNkZ2djTfffBMfffQRpNLiuZpCoYBCwf5UIqKaQgiBH45dxye/R6BArUEte0ssHRyMEB8HY4dGlcRoLTdyuRwhISHYu3evrkyj0WDv3r1o27Zticfk5OQUS2BkMhkA7S8zERHVbOm5hRjz42nM+PUCCtQadAtwwx8TOjCxqWGMOhU8NDQUw4YNQ4sWLdCqVSssXrwY2dnZGDFiBABg6NChqFWrFubNmwcA6Nu3LxYtWoTg4GC0bt0aV65cwfTp09G3b19dkkNERDXXXxcS8Od/CTCXSTClVwBeb++r2y+Kag6jJjeDBg1CcnIyZsyYgYSEBAQFBWHnzp26QcaxsbF6LTXTpk2DRCLBtGnTcPPmTbi4uKBv376YM2eOsd4CERFVIS+G1EZkQiaeC/REoJe9scMhI5GIGtafk5GRAaVSifT0dNjZ2Rk7HCIiegJpOQVY+FcU3u/ZEHYW5sYOhyqQIZ/f3FuKiIiqpVPX72DChjO4mZaLzDwVlrwcbOyQqIpgckNERNWKRiPwzcGrWLArCiqNgI+TFd7o6GfssKgKYXJDRETVRmp2ASZtDsf+qGQAwLPNPDBvQFPYskuK7sPkhoiIqoULt9Ixcu1JJGTkQW4mxcy+jTG4lRdnQ1ExTG6IiKha8FBaAgD8XKyxYkhzBHhwUgiVjMkNERFVWZl5hbouJ0drOb4f2Qq17C1hreDHF5WuWu0tRURENceR6BQ8/fnf+OnUDV1ZfTdbJjb0SExuiIioSlFrBBbvuYRXvz2O5Mx8/HA0BhpNjVqSjZ4Q018iIqoykjLy8M6mcByJvg0AeCmkNmb1awyplIOGqeyY3BARUZVw8HIy3t0UjpSsAljJZfikfxMMaF7b2GFRNcTkhoiIjC72dg6Gr/kXao1AQ3dbLB/SHP6uNsYOi6opJjdERGR03k5WGN3JD3dyCjHj2UawMJcZOySqxpjcEBGRUeyPSkJdZxt4O1kBACY/04AL8lG54GwpIiKqVIVqDebtiMCINf9i/IbTKFBpAICJDZUbttwQEVGluZmWi/HrT+N0bBoAINDLHgKc5k3li8kNERFVit0XEzF5y1mk5xbC1sIMn73QDL2aehg7LDJBTG6IiKhCFag0mL8zEt8dugYACKytxLLBzXVjbYjKG5MbIiKqUAICJ66lAgBeb18HU3o1hNyMQz6p4jC5ISKiCiGEgEQigcJMhhVDmiMyIQPPNHY3dlhUAzC5ISKicpWvUmPuHxGwszTHpGcaANCuY8NuKKosTG6IiKjcxKRkY9yG0/jvZgakEuCF5rXh62xt7LCohmFyQ0RE5eL3c7cw5efzyMpXwcHKHJ8PDGRiQ0bB5IaIiJ5IXqEas3+/iPXHYwEALX0dsHRwMDyUlkaOjGoqg5Obq1evws/PryJiISKiakYIgVe+PY5T1+9AIgHGdK6Ld7vVh5mMs6HIeAz+7fP390eXLl3wv//9D3l5eRURExERVRMSiQQvt/SCk7Uc60a0wns9GjKxIaMz+Dfw9OnTaNasGUJDQ+Hu7o633noLJ06cqIjYiIioCsotUONKUqbu+UstvLBvUmc8Vd/FiFER3WNwchMUFIQlS5bg1q1bWL16NeLj49GhQwc0adIEixYtQnJyckXESUREVcDlxEz0W3EIr313AneyC3TlSitzI0ZFpO+x2w7NzMwwYMAAbNmyBfPnz8eVK1cwefJkeHl5YejQoYiPjy/POImIyMi2nIxD3+WHcCkxCyqNwI07ucYOiahEj53cnDx5EmPGjIGHhwcWLVqEyZMnIzo6Grt378atW7fQr1+/8oyTiIiMJDtfhdDN4Xjvp3PIK9Sgg78zdkzoiKa1lcYOjahEBs+WWrRoEdasWYOoqCj07t0b33//PXr37g2pVJsn1alTB2vXroWvr295x0pERJUsMiEDY388jejkbEglQGj3+hjT2R9SqcTYoRGVyuDkZuXKlXj99dcxfPhweHiUvFW9q6srvvvuuycOjoiIjGvVgWhEJ2fDzU6BpS8Ho7Wfk7FDInokiRBCGHJATEwMvL29dS01RYQQiIuLg7e3d7kGWN4yMjKgVCqRnp4OOzs7Y4dDRFSlZeQVYu4fEXivRwM42SiMHQ7VYIZ8fhs85qZu3bpISUkpVp6amoo6deoYejoiIqpC/ruZjrk7IlD0d6+dhTk+faEZExuqVgzuliqtoScrKwsWFhZPHBAREVU+IQT+d+w6Pv49AgVqDfxdbTCwhZexwyJ6LGVObkJDQwFoV6OcMWMGrKzubV2vVqtx/PhxBAUFlXuARERUsTLyCjHl53PYcT4BANAtwBXPNHIzclREj6/Myc2ZM2cAaLP78+fPQy6X616Ty+UIDAzE5MmTyz9CIiKqMGfj0jBuw2nEpebCXCbBBz0bYmSHOpBIOBuKqq8yJzf79+8HAIwYMQJLlizhYFwiompu879x+OiX8yhUC9R2sMTyIc0R5GVv7LCInpjBY27WrFlTEXEQEVEl83Gygloj0LOxO+a/2AxKS26hQKahTMnNgAEDsHbtWtjZ2WHAgAEPrbt169ZyCYyIiMpfem6hLolp7eeEX8a2R9NaSnZDkUkpU3KjVN77xVcqudw2EVF1o9EIfHvoKpbvu4KtY9rD39UGANCstr1xAyOqAAYv4lfdcRE/IqppUrMLMHnLWeyLTAIAjO1SF+/1aGjkqIgMY8jnt8FjboiIqPr4NyYVEzacQXx6HuRmUoT1bYQhrar2SvJET6pMyU1wcHCZ+2NPnz79RAEREdGT02gEVv4djUW7L0GtEfBztsbyIc3RyJMt1mT6ypTc9O/fv4LDICKi8vTTqRtYsCsKAPB8cC180r8JrBVsrKeagWNuiIhMkEqtwYi1/6JvM0+81KI2Z0NRtccxN0RENYxaI7Dp3zi8GFIbcjMpzGRSfP96KyY1VCOVKblxdHTEpUuX4OzsDAcHh4f+Y0lNTS234IiI6NGSMvPwzsZwHIm+jejkLEx/thEAMLGhGqtMyc0XX3wBW1tbAMDixYsrMh4iIjLAocspeGdTOFKy8mFpLkNjDhgm4pgbIqLqSKXWYMney1i+/wqEABq622L5kOa6xfmITE2Fj7lRq9XYtm0bIiIiAACNGjVCv379YGbGITxERBUtIT0PEzaewYlr2mEAg1t5IaxvY1iYy4wcGVHVYHA2cuHCBTz33HNISEhAgwYNAADz58+Hi4sLfvvtNzRp0qTcgyQionvyCtW4eCsD1nIZ5g5oin5BtYwdElGVYnC3VNu2beHi4oJ169bBwcEBAHDnzh0MHz4cycnJOHLkSIUEWl7YLUVE1ZEQQm+A8IGoJPg4WaOOs7URoyKqPIZ8fhuc3FhaWuLkyZNo3LixXvl///2Hli1bIjc31/CIKxGTGyKqbm6l5eKdjeGY0LUeOtRzNnY4REZhyOe31NCT169fH4mJicXKk5KS4O/vb+jpiIjoIfZcTETvpQdxIiYVM379D2pNjZoDQvRYyjTmJiMjQ/f9vHnzMGHCBMycORNt2rQBABw7dgyzZ8/G/PnzKyZKIqIapkClwWc7I/HtoWsAgGa1lVg+uDlkUq5dQ/QoZeqWkkqlen29RYcUld3/XK1WV0Sc5YbdUkRU1cWl5mDchjM4G5cGABjR3hdTejWEwoyzoajmKvep4Pv37y+XwEqyYsUKLFiwAAkJCQgMDMSyZcvQqlWrUuunpaXho48+wtatW5GamgofHx8sXrwYvXv3rrAYiYgqy620XPRZehAZeSrYWZhhwUuB6NHY3dhhEVUrZUpuOnXqVCEX37RpE0JDQ7Fq1Sq0bt0aixcvRo8ePRAVFQVXV9di9QsKCtC9e3e4urrip59+Qq1atXD9+nXY29tXSHxERJXNQ2mBbgFuuHY7G8sGB6O2g5WxQyKqdh57heKcnBzExsaioKBAr7xZs2ZlPkfr1q3RsmVLLF++HACg0Wjg5eWF8ePHY8qUKcXqr1q1CgsWLEBkZCTMzc0fJ2x2SxFRlXP9djbsLMzhYC0HAOQWqGEmk8BcZvCcDyKTVaGzpZKTk/Hss8/C1tYWjRs3RnBwsN6jrAoKCnDq1Cl069btXjBSKbp164ajR4+WeMz27dvRtm1bjB07Fm5ubmjSpAnmzp370HE++fn5yMjI0HsQEVUVv5+7hT5LD+G9n87qxi9aymVMbIiegMH/et555x2kpaXh+PHjsLS0xM6dO7Fu3TrUq1cP27dvL/N5UlJSoFar4ebmplfu5uaGhISEEo+5evUqfvrpJ6jVauzYsQPTp0/H559/jk8++aTU68ybNw9KpVL38PLyKnOMREQVJa9QjY+2nce49WeQla9CWk4hMvNVxg6LyCQYvP3Cvn378Ouvv6JFixaQSqXw8fFB9+7dYWdnh3nz5qFPnz4VEScAbbeVq6srvv76a8hkMoSEhODmzZtYsGABwsLCSjxm6tSpCA0N1T3PyMhggkNERnU1OQtj159BRLy2JXlM57oI7V4fZmytISoXBic32dnZusG+Dg4OSE5ORv369dG0aVOcPn26zOdxdnaGTCYrtiBgYmIi3N1Lnhng4eEBc3NzyGT3pkMGBAQgISEBBQUFkMvlxY5RKBRQKBRljouIqCL9cuYmPtx2HjkFajhZy7FoUBA61XcxdlhEJsXgPxMaNGiAqKgoAEBgYCC++uor3Lx5E6tWrYKHh0eZzyOXyxESEoK9e/fqyjQaDfbu3Yu2bduWeEz79u1x5coVaDQaXdmlS5fg4eFRYmJDRFSV5BaosfCvKOQUqNHGzxE7JnZkYkNUAQxObiZOnIj4+HgAQFhYGP788094e3tj6dKlmDt3rkHnCg0NxTfffIN169YhIiICb7/9NrKzszFixAgAwNChQzF16lRd/bfffhupqamYOHEiLl26hD/++ANz587F2LFjDX0bRESVzlIuw/IhzTGxaz38OKoN3OwsjB0SkUkyuFvq1Vdf1X0fEhKC69evIzIyEt7e3nB2NmxDt0GDBiE5ORkzZsxAQkICgoKCsHPnTt0g49jYWEil9/IvLy8v7Nq1C++++y6aNWuGWrVqYeLEifjggw8MfRtERJXip1M3oNEIDGypHesX5GWPIC974wZFZOIee50boPg2DNUB17khosqQna/C9F//w9bTNyE3k2LnxI7wc7ExdlhE1VaFrnMDAN999x2aNGkCCwsLWFhYoEmTJvj2228fK1giIlMTmZCB55YfwtbTNyGVAOO7+MPHydrYYRHVGAZ3S82YMQOLFi3C+PHjdQN/jx49infffRexsbGYPXt2uQdJRFQdCCGw6d84hG2/gHyVBm52Cix5ORht/JyMHRpRjWJwt5SLiwuWLl2KwYMH65Vv2LAB48ePR0pKSrkGWN7YLUVEFUEIgUmbz2LrmZsAgE71XbBoYCCcbLgUBVF5KPddwe9XWFiIFi1aFCsPCQmBSsXVNYmoZpJIJPB1toZMKsHkZxrgraf8IJVWn/GIRKbE4DE3r732GlauXFms/Ouvv8Yrr7xSLkEREVUHQgik5xTqno/t4o/fxnXA253rMrEhMqIytdzcv32BRCLBt99+i7/++gtt2rQBABw/fhyxsbEYOnRoxURJRFTFZOQVYurP5xGdnIVfxraHhbkMMqkEjTzZ3U1kbGVKbs6cOaP3PCQkBAAQHR0NQLuVgrOzMy5cuFDO4RERVT3nbqRh3PoziE3NgZlUgpMxd9ChnmHrfBFRxSlTcrN///6KjoOIqMoTQmDtkRjM3RGBQrVALXtLLB8SjGBvB2OHRkT3MXhA8f1u3LgBAKhdu3a5BENEVFWl5xTivZ/O4q+L2s1+n2nkhgUvBkJpZW7kyIjoQQYPKNZoNJg9ezaUSiV8fHzg4+MDe3t7fPzxx3obWhIRmZJpv/6Hvy4mQi6TYmbfRvjqtRAmNkRVlMEtNx999BG+++47fPrpp2jfvj0A4NChQ5g5cyby8vIwZ86ccg+SiMjYpvRqiNjb2fikf1M0ra00djhE9BAGL+Ln6emJVatW4bnnntMr//XXXzFmzBjcvHmzXAMsb1zEj4jK4k52AfZEJOKlFl66MiFEtdpLj8iUVOgifqmpqWjYsGGx8oYNGyI1NdXQ0xERVTknY1IxfsMZxKfnwcFKjm6N3ABUr02CiWoyg8fcBAYGYvny5cXKly9fjsDAwHIJiojIGDQagS8PXMGgr48hPj0PdZyt4WFvYeywiMhABrfcfPbZZ+jTpw/27Nmjt3FmXFwcduzYUe4BEhFVhpSsfIRuPot/LiUDAPoFeWLO801ho3iiSaVEZAQGt9x06tQJly5dwvPPP4+0tDSkpaVhwIABiIqKQseOHSsiRiKiCnXs6m30XnIQ/1xKhsJMivkvNMXiQUFMbIiqKYP+5RYWFqJnz55YtWoVZ0URkclIysxHUmY+/F1tsGJIczRwtzV2SET0BAxKbszNzXHu3LmKioWIqNLcP/PpuUBPFKo06NXUHVZyttYQVXcGd0u9+uqr+O677yoiFiKiSnH4Sgr6LD2EpMw8XdkLIbWZ2BCZCIP/JatUKqxevRp79uxBSEgIrK2t9V5ftGhRuQVHRFSe1BqBJXsuYdn+KxACWLLnMuY839TYYRFROTM4ufnvv//QvHlzAMClS5f0XuMaEERUVSVm5GHChjM4fk27HtfLLb0wrU8jI0dFRBXB4OSGO4QTUXXz96VkvLspHKnZBbCWyzB3QFP0C6pl7LCIqII8UQdzXFwcAMDLy+sRNYmIjOOPc/EYu/40ACDAww4rhgTDz8XGyFERUUUyeECxSqXC9OnToVQq4evrC19fXyiVSkybNg2FhYUVESMR0WPr1MAFfs7WeK2ND7aNacfEhqgGMLjlZvz48di6dSs+++wzvRWKZ86cidu3b2PlypXlHiQRkSFOx95BsJc9JBIJbBRm+HVce9hamBs7LCKqJAbvCq5UKrFx40b06tVLr3zHjh0YPHgw0tPTyzXA8sZdwYlMV4FKgwW7IvHNwWuY1icAozr6GTskIionFboruEKhgK+vb7HyOnXqQC6XG3o6IqJyEZeag/EbziA8Lg2AdnYUEdVMBo+5GTduHD7++GPk5+fryvLz8zFnzhyMGzeuXIMjIiqLXRcS0GfpQYTHpcHOwgxfvRaCjzjNm6jGMrjl5syZM9i7dy9q166NwMBAAMDZs2dRUFCArl27YsCAAbq6W7duLb9IiYgekK9SY96OSKw9EgMACPKyx7LBwfBytDJuYERkVAYnN/b29njhhRf0yjgVnIiM4XJiFv537DoA4I2OdfBej4aQmxncIE1EJsbgAcXVHQcUE5mW/x27Dg+lBboGuBk7FCKqQIZ8fvNPHCKqNvIK1Zi5/QIi4jN0Za+28WFiQ0R6mNwQUbVwNTkLz395BGuPxGDc+tNQqTXGDomIqqgn2n6BiKgy/Bp+Ex9uPY/sAjWcrOWY0bcxzGT824yISsbkhoiqrNwCNWb9dgEb/9XuY9e6jiOWDg6Gm52FkSMjoqqMyQ0RVUlJmXl47dsTiErMhEQCjH+6HiY87c8WGyJ6pDIlN0uXLi3zCSdMmPDYwRARFXGyVsDJRg7nbAWWvByE9v7Oxg6JiKqJMk0Fr1OnTtlOJpHg6tWrTxxUReJUcKKqK6dABalEAgtzGQBt6w0AuNqyG4qopiv3vaWuXbtWLoEREZUmKiETY9efRus6jpjzfFMATGqI6PGw85qIjEoIgU3/xuK55YdwJSkLeyIScSe7wNhhEVE19lgDim/cuIHt27cjNjYWBQX6/wktWrSoXAIjItOXla/CtG3n8Uv4LQDAU/Vd8MXAQDhYy40cGRFVZwYnN3v37sVzzz0HPz8/REZGokmTJoiJiYEQAs2bN6+IGInIBF28lYFx60/jako2ZFIJJj1TH6OfqgupVGLs0IiomjO4W2rq1KmYPHkyzp8/DwsLC/z888+Ii4tDp06d8NJLL1VEjERkYvJVaoxYewJXU7LhobTApjfbYExnfyY2RFQuDE5uIiIiMHToUACAmZkZcnNzYWNjg9mzZ2P+/PnlHiARmR6FmQyf9G+Krg1dsWNCR7TwdTR2SERkQgxObqytrXXjbDw8PBAdHa17LSUlpfwiIyKTcv5GOg5dvvd/RPdGbvh2WAuOryGicmfwmJs2bdrg0KFDCAgIQO/evTFp0iScP38eW7duRZs2bSoiRiKqxoQQWHckBnN3RMJKIcOOCR3haW8JQLs2FhFReTM4uVm0aBGysrIAALNmzUJWVhY2bdqEevXqcaYUEelJzynE+z+fxa4LiQCAzr4usJZz1xciqlhlWqHYlHCFYqLKcSb2DsZvOIMbd3Ihl0nxYe+GGNbOl601RPRYyn2F4vv9+++/0Gg0aN26tV758ePHIZPJ0KJFC0NPSUQmRAiB7w5dw6d/RkKlEfB2tMKKIc3RtLbS2KERUQ1h8IDisWPHIi4urlj5zZs3MXbs2HIJioiqL4lEgujkLKg0An2aeuD3CR2Y2BBRpTK45ebixYslLtYXHByMixcvlktQRFT9aDRCt05NWN/GaF3HCf2CPNkNRUSVzuCWG4VCgcTExGLl8fHxMDPjQEGimkajEVh5IBqvr/sXGo12CJ+FuQz9g2sxsSEiozA4uXnmmWcwdepUpKen68rS0tLw4Ycfonv37uUaHBFVbbez8jFi7b+YvzMSB6KS8dfF4n/4EBFVNoObWhYuXIinnnoKPj4+CA4OBgCEh4fDzc0NP/zwQ7kHSERV0/GrtzFh4xkkZuRDYSbF7H6N0aOxm7HDIiIyPLmpVasWzp07hx9//BFnz56FpaUlRowYgcGDB8Pc3LwiYiSiKkStEfhy/xV8secSNALwd7XBiiHN0cDd1tihEREBeIzkBtBuwfDmm2+WdyxEVA1M++U/bDgRCwB4MaQ2ZvdrDCsuzEdEVUiZ/kfavn07evXqBXNzc2zfvv2hdZ977jmDg1ixYgUWLFiAhIQEBAYGYtmyZWjVqtUjj9u4cSMGDx6Mfv364ZdffjH4ukRkuFfbeOPP/+IxvU8jvBBS29jhEBEVU6YViqVSKRISEuDq6gqptPQxyBKJBGq12qAANm3ahKFDh2LVqlVo3bo1Fi9ejC1btiAqKgqurq6lHhcTE4MOHTrAz88Pjo6OZU5uuEIxkWHUGoHwuDSE+DjoyrLzVbBWsLWGiCqPIZ/fZZotpdFodImGRqMp9WFoYgNo96p64403MGLECDRq1AirVq2ClZUVVq9eXeoxarUar7zyCmbNmgU/Pz+Dr0lEZZOYkYch3xzDy18fxdm4NF05ExsiqsoMmgpeWFiIrl274vLly+Vy8YKCApw6dQrdunW7F5BUim7duuHo0aOlHjd79my4urpi5MiR5RIHERX396Vk9F5yEMevpUIukyIxI8/YIRERlYlBf36Zm5vj3Llz5XbxlJQUqNVquLnpTx91c3NDZGRkicccOnQI3333HcLDw8t0jfz8fOTn5+ueZ2RkPHa8RDWBSq3B57svYeWBaABAgIcdVgwJhp+LjZEjIyIqG4MX8Xv11Vfx3XffVUQsj5SZmYnXXnsN33zzDZydnct0zLx586BUKnUPLy+vCo6SqPq6lZaLl78+pktsXmvjg21j2jGxIaJqxeCOc5VKhdWrV2PPnj0ICQmBtbW13uuLFi0q87mcnZ0hk8mKbeeQmJgId3f3YvWjo6MRExODvn376so0Gg0AwMzMDFFRUahbt67eMVOnTkVoaKjueUZGBhMcolLs/C8BJ6/fga3CDJ++0Ax9mnkYOyQiIoMZnNz8999/uo0zL126pPeaofvIyOVyhISEYO/evejfvz8AbbKyd+9ejBs3rlj9hg0b4vz583pl06ZNQ2ZmJpYsWVJi0qJQKKBQKAyKi6imGt7OF4mZeRjSyhs+TtaPPoCIqAoyOLnZv39/uQYQGhqKYcOGoUWLFmjVqhUWL16M7OxsjBgxAgAwdOhQ1KpVC/PmzYOFhQWaNGmid7y9vT0AFCsnoke7cScHi/66hI/7N4G1wgxSqQRTewUYOywioidi9PmcgwYNQnJyMmbMmIGEhAQEBQVh586dukHGsbGxD11bh4gez18XEjB5y1lk5KlgpZDhk/5NjR0SEVG5KNMifgMGDMDatWthZ2eHAQMGPLTu1q1byy24isBF/KimK1BpMO/PCKw5HAMACPSyx/LBwfBytDJuYERED2HI53eZWm6USqVuPI1SqXzyCInIKGJv52DchtM4dyMdAPBGxzp4r0dDyM3YOkpEpqNMLTemhC03VFMdjb6NN78/icx8FeytzPH5S4HoGuD26AOJiKqAcm+5KUlSUhKioqIAAA0aNHjoPlBEZHx1XayhMJeigbsDlg4Ohqe9pbFDIiKqEAYnNxkZGRg7diw2btyo20tKJpNh0KBBWLFiBbutiKqQ1OwCOFrLAQCudhbY+GZb+DhZwVzGbigiMl0G/w/3xhtv4Pjx4/j999+RlpaGtLQ0/P777zh58iTeeuutioiRiB7Dr+E38dRn+7HjfLyuzN/VhokNEZk8g8fcWFtbY9euXejQoYNe+cGDB9GzZ09kZ2eXa4DljWNuyNTlFaox67cL2HAiDgDQLcAV3w5raeSoiIieTIWOuXFyciqx60mpVMLBwcHQ0xFRObqSlIVx608jMiETEgkwvos/JnStZ+ywiIgqlcHt09OmTUNoaCgSEhJ0ZQkJCXjvvfcwffr0cg2OiMru51M30HfZIUQmZMLZRoEfXm+N0GcawIzdUERUwxjcLRUcHIwrV64gPz8f3t7eALSrCCsUCtSrp/8X4unTp8sv0nLCbikyRf/dTMezyw4BANrVdcLil4Pgamth5KiIiMpPhXZLFW1wSURVR5NaSrzRsQ5sLcwxtos/ZFLDNrElIjIlXMSPqBoSQuDn0zfR3t8JHkquV0NEpq9SFvEDgKysLGg0Gr0yJgxEFSsrX4Vp287jl/BbaOnrgA1vtOG4GiKi+xic3Fy7dg3jxo3DgQMHkJeXpysXQkAikegW9iOi8nfxVgbGrT+NqynZkEkl6NLQFVIJu6CIiO5ncHLz6quvQgiB1atXw83NTbehJhFVHCEE1p+IxazfLqJApYGH0gLLBgejha+jsUMjIqpyDE5uzp49i1OnTqFBgwYVEQ8RPSArX4UPfj6HP85pVxru2tAVC18KhMPdbRWIiEifwR31LVu2RFxcXEXEQkQlkEkkuJKYBTOpBB/1DsC3w1owsSEiegiDW26+/fZbjB49Gjdv3kSTJk1gbm6u93qzZs3KLTiimkoIASEAqVQCS7kMK14JRkaeCs29uQo4EdGjGJzcJCcnIzo6GiNGjNCVSSQSDigmKifpuYX44KdzaFpbibFd/AEA/q62Ro6KiKj6MDi5ef311xEcHIwNGzZwQDFROQuPS8O49adx404uDlxKwsAWXnCxVRg7LCKiasXg5Ob69evYvn07/P39KyIeohpJCIHvDl3D/J2RKFQLeDtaYfmQYCY2RESPweDk5umnn8bZs2eZ3BCVk7ScAkzechZ7IpIAAL2buuPTF5rBzsL8EUcSEVFJDE5u+vbti3fffRfnz59H06ZNiw0ofu6558otOCJTV6DS4Pkvj+BaSjbkZlJMf7YRXm3tze5eIqInYPDeUlJp6bPHq8OAYu4tRVXND0djsPpwDJYPCUZjT6WxwyEiqpIqdG+pB/eSIiLDpGYX4HZWPuq5aWdAvdrGBy+GeMFSLjNyZEREpoG77RFVohPXUtFryT8Yue4kMvIKAWhbPJnYEBGVnzInN71790Z6erru+aeffoq0tDTd89u3b6NRo0blGhyRqdBoBJbvu4yXvz6KxIx8mMskSM0qMHZYREQmqczJza5du5Cfn697PnfuXKSmpuqeq1QqREVFlW90RCYgOTMfw9acwMK/LkEjgBea18Zv4zvA19na2KEREZmkMo+5eXDcsYHjkIlqpCNXUjBxUziSM/NhaS7Dx/2b4MWQ2sYOi4jIpBk8oJiIyu67Q9eQnJmP+m42WDGkuW4QMRERVZwyJzcSiaTY2htci4Po4Ra8FIhVf0fj3W71OWiYiKiSGNQtNXz4cCgU2uXg8/LyMHr0aFhba8cN3D8eh6im+udSMg5eTsZHfbSD6x2t5fiwd4CRoyIiqlnKnNwMGzZM7/mrr75arM7QoUOfPCKiakil1uCLPZfw5YFoCAGE+DigZxMPY4dFRFQjlTm5WbNmTUXGQVRtxafnYuKGcJyI0c4efKW1Nzo3cDVyVERENRcHFBM9gf2RSQjdHI47OYWwUZjh0xea4tlmnsYOi4ioRmNyQ/SYVuy/ggW7tGs7Na2lxPIhwfBx4to1RETGxuSG6DE1qaWERAIMa+uLqb0bQmHG2VBERFUBkxsiA6Rk5cPZRjtjsFN9F+x+9yn4u3LtGiKiqoQbZxKVQYFKg9m/XcTTCw8g9naOrpyJDRFR1cPkhugR4lJz8NKqI1h9+Boy8lQ4cCnJ2CEREdFDsFuK6CH+PB+P938+h8w8FeytzLHwxUB0a+Rm7LCIiOghmNwQlSCvUI25OyLw/dHrALSL8i0dHIxa9pZGjoyIiB6FyQ1RCdYeidElNqM71cWkZ+rDXMZeXCKi6oDJDVEJRrT3xdHo2xje3hdduNowEVG1wj9FiaDthvr6n2io1BoAgMJMhnWvt2JiQ0RUDbHlhmq8K0lZGLf+NCITMpGRq8LkHg2MHRIRET0BJjdUo209fQPTfvkPOQVqONso0MbPydghERHRE2JyQzVSToEKYb9ewJZTNwAA7eo6YfHLQXC1tTByZERE9KSY3FCNcyUpE2//7zQuJ2VBKgEmdq2PcU/7QyaVGDs0IiIqB0xuqMbRCCDuTg5cbRVY8nIw2tZlVxQRkSlhckM1glojdC0z9d1s8dVrLdDY0063CSYREZkOTgUnk3fxVgZ6Lv4H/8ak6so61XdhYkNEZKKY3JDJEkLgx+PX0f/Lw7iclIW5OyIghDB2WEREVMHYLUUmKTOvEFO3nsfv5+IBAF0auODzgUGQSDhomIjI1DG5IZPz3810jFt/GjG3c2AmleD9ng0wqoMfpJwNRURUIzC5IZMSlZCJAV8eQYFag1r2llg6OBghPg7GDouIiCoRkxsyKfXdbPB0Q1eoNAILX2oGeyu5sUMiIqJKViUGFK9YsQK+vr6wsLBA69atceLEiVLrfvPNN+jYsSMcHBzg4OCAbt26PbQ+mb5zN9KQkVcIAJBIJFj8chC+GRrCxIaIqIYyenKzadMmhIaGIiwsDKdPn0ZgYCB69OiBpKSkEusfOHAAgwcPxv79+3H06FF4eXnhmWeewc2bNys5cjI2IQS+PXgVL6w8gqlbz+tmQlmYyzhwmIioBpMII8+Nbd26NVq2bInly5cDADQaDby8vDB+/HhMmTLlkcer1Wo4ODhg+fLlGDp06CPrZ2RkQKlUIj09HXZ2dk8cPxlHWk4BJm85hz0RiQCA3k3d8cWgICjMZEaOjIioiki/CaRGA451AWUtY0fzxAz5/DbqmJuCggKcOnUKU6dO1ZVJpVJ069YNR48eLdM5cnJyUFhYCEdHx4oKk6qYU9fvYPz607iVnge5TIrpzwbg1TY+bK0hIipy+nvgt4mA0AASKdB3CdD80Q0ApsKoyU1KSgrUajXc3Nz0yt3c3BAZGVmmc3zwwQfw9PREt27dSnw9Pz8f+fn5uucZGRmPHzAZlUYj8PXBq1iwKwpqjYCvkxWWD2mOJrWUxg6NiKjquHUW2D4BwN2OGaEBfnsHqNvVJFpwysLoY26exKeffoqNGzdi27ZtsLCwKLHOvHnzoFQqdQ8vL69KjpLKS0ZeIdYcvga1RuC5QE/8PqEjExsioiIF2cCB+cB3z0CX2BQRaiD1qlHCMgajttw4OztDJpMhMTFRrzwxMRHu7u4PPXbhwoX49NNPsWfPHjRr1qzUelOnTkVoaKjueUZGBhOcasreSo6lLwfjako2Xm7pxW4oIiIAUKuA8P8B++cCWYkl15HIAEe/yo3LiIzaciOXyxESEoK9e/fqyjQaDfbu3Yu2bduWetxnn32Gjz/+GDt37kSLFi0eeg2FQgE7Ozu9B1UPGo3A8n2Xse3MDV1Zaz8nDG7lzcSGiEgI4NIuYFUH7fiarETAwRd4cQ3Qd6k2oQG0X/surjFdUkAVWMQvNDQUw4YNQ4sWLdCqVSssXrwY2dnZGDFiBABg6NChqFWrFubNmwcAmD9/PmbMmIH169fD19cXCQkJAAAbGxvY2NgY7X1Q+UrOzEfo5nAcvJwCS3MZ2vo5w11ZctcjEVGNcysc+GsaEHNQ+9zSAXjqfaDlSMBMoS3z76btinL0q1GJDVAFkptBgwYhOTkZM2bMQEJCAoKCgrBz507dIOPY2FhIpfcamFauXImCggK8+OKLeucJCwvDzJkzKzN0qiBHolMwcWM4kjPzYWEuxax+jeFmpzB2WERExpcWC+z9GDi/WftcpgBavwV0nARY2uvXVdaqcUlNEaOvc1PZuM5N1aXWCCzbdxlL916GRmi3UlgxpDnqudkaOzQiIuPKTQMOfg4c/wpQ350B3GwQ8PQ0wN7bqKFVlmqzzg1REZVag2FrTuDwldsAgEEtvDDzucawlHNRPiKqwVQFwL/fAv98BuTe0ZbVeQro/jHgGWTU0KoyJjdUJZjJpGhW2x5nYtMw9/mm6B9cM5tSiYgAaAcLX9gG7J0F3InRlrkEAN1nA/W6A5xU8VBMbshoVGoN0nML4WSjHU8T2r0+Xm7pBR8nayNHRkRkRNePagcL3zypfW7jDnT5EAh6BZDxY7sseJfIKOLTczFhwxkUqDTYMrod5GZSmMukTGyIqOZKuQzsDgOi/tA+N7cG2k8E2o0D5Py/0RBMbqjS7Y9MQujmcNzJKYSNwgyXEjO50jAR1VxZScCBT4FTa7UrCUukQPNhQOepgK3bIw9/mITsBMRmxMLbzhvu1g9fHNeUMLmhSlOo1mDhrih89Y92CfAmteywfHBz+DrzLxIiqoEKcoCjK4DDi4GCLG1Z/V5A91mAS4MnPv23577F0jNLISAglUgR1jYMA+oNeOLzVgdMbqhS3LiTg/EbzuBMbBoAYHg7X0zt3RAKM86GIqIaRqMGwtcD++cAmfHaMs9g7QyoOh0f/7RCg/9S/sOBuAPYfX03YjJi9F6bdXQW2nm2qxEtOExuqFJM+fk8zsSmwdbCDAtebIaeTTyMHRIRUeUSAriyB9g9A0i6qC2z9wa6hgGNBwBSw3dEylfn43j8ceyL3Ye/b/yNlNyUUutqhAZxmXFMbojKyyf9m2DaL/9h3oCm8HK0MnY4RFSVpN8EUqMBx7qmu6Ju/Fngr+nAtb+1zy2UwFPvAa3evLddQhndybuDf278g/1x+3Hk1hHkqnJ1r1mbW6NDrQ4Idg3GZyc+gwYa3WtSiRRetjVj42gmN1Qh4lJzcPhKCl5upV0509fZGv8b1drIURFRlXNqLfDbOwCEdu2WHvOANm8bOahylBYH7PsEOLcJgABkcm1C03ESYOVY5tPEZsRif9x+7Ivdh/DkcGjEvaTFzcoNnb06o4tXF7R0bwm5TA4AsDSzxKyjs6ARGt2Ym5rQagNw+wVjh2OS/jwfj/d/PoesfBV+eL01OtRzNnZIRFTVaDTAqTXAH6HFX7N0AtwaAS4NtQNrXRpov7d2qT6L1+WlAwcXAcdW3tsuockLQNcZ2p27H0EjNDiXfA4H4g5gf9x+XE2/qvd6A4cG6OLdBZ29OqORYyNISrkvCdkJiMuMg5etV7VPbLj9AhlFXqEac3dE4Puj1wEAzb3t4evMLigiuo8QQOTvwP55QNKFkuvk3tbudl2043URS4d7CY/zfUmPnWfVSXpUBcDJ1cDf84HcVG2ZT3vgmY+BWiEPPTRPlYdj8cdwIO4ADsQdwO2827rXzCRmCHEPQRevLuji1QWeNp5lCsfd2r3aJzWPg8kNlYuYlGyMXX8aF25lAADe6uSHyc80gLnM8AFyRGSChACi/gQOzAMSzmnL5DZAQTaA+zoQJDLg5fXafZSSI4HkKO3XOzHastij2sf95Lb3tfA0uJcAKb0fa5DuY7+/i79qt0tIvdvK4lwf6DYLaNCr1OQrNS8Vf8f9jQNxB3A0/qje+Bkbcxt0qNUBXby6oEPtDrCTs7ehrJjc0BP741w8PrjbDeVgZY5FA4PQpaGrscMioqpACODybuDAXODWGW2Z3EY7rqbtWCDiN+2YG6HWJjZ9FwMNehY/T2EucPvKvWSnKPFJvQoUZGq3KijarqCImSXgUl+/lcelobZbqDy3MYg9rt0u4cYJ7XNrV6DLVCB4aInXiUmPwf64/dgftx/hSeEQ9yV37tbu6Fy7M7p4d0FLt5Ywl5mXX5w1CJMbemLZBSpk5avQytcRSwYHwUNpaeyQiMjYhACi92q7n4qSDnNroPVbQLvx9wbTNh8K1O2qTVIc/UqfLWVuCbg31T7upyrQHnt/K0/KJe1DlaudpRR/Vv8YmRxw8tdv5XFpqJ2tZSYv+3u8HQ3sCdMmaABgbqV9b+3GAwpbXTW1Ro3zKeexL24f9sfu11t/BgACHAPQxUs7fqahY8NSx89Q2XFAMT0WlVoDs7tdTkII7DifgB6N3XRlRFRDCaGd7rx/LhB3XFtmZgm0ekO7T5J1JU0wUKuAtOv3tfJcupf4FOaUfIxEpk2w7m/lcWkAONfTJleAdtr6rdNA1A7g3GZAo9JulxD8KtD5Q8BOu4ZXrioXR28dxYG4A/j7xt9IzUvVXcZMYoaW7i21A4Jrd4aHDdf9KgtDPr+Z3JDBtp6+gS8PRGPLW23hYG3AXzlEZNquHdSOqbl+WPvczAJoMRLo8A5gU0W6qjUaID3uvlaeqLvfRwH5GaUcJAEcfLTdaYkXAAgkyGSINTeDd+12cO8+F3BrhJTcFN36M8duHUOeOk93BltzW3So3QFPez2N9rXaw1ZuW8q1qDRMbh6Cyc3jyylQIezXC9hy6gYAYELXegjtXt/IURGR0V0/om2pKZrdJFMALUYAHd4FbKvJTB0htFsh3N/KkxwFJEdoBzLfZ6uNNWY5O0IjkUACCbp6d0VybjLOJZ/TGz/jYe2hnd3k3QUhbiEwl3L8zJPgVHAqd5cSMzH2x9O4nJQFiQSY2LUexj9dz9hhEZExxZ3Q7o909YD2udQcCBkGdAitfisNSyTaKeV2nkDdp++VC4Gc9Dgknv0BSUeX4LLcHJ85OkDcHRcjILAndo+ueoBjALp4d8HTXk+jvkN9jp8xEiY39FBCCGw5dQMzfv0PeYUauNgqsOTlILSry4X5iGqsG6e0s5+u3P1Ql5oBwa9pV921rz7L+6s1aqTmpSIpJwmJOYlIykkq9n1SThKyCu/u2O3hVuq5Xg14FcMaD6uRa8pURUxu6KF+OHYdM37VLrTVsZ4zFg0MgoutYfugEJGJuHVGO/vp8i7tc4kMCBqi3SPJwce4sT0gpzCn1GSlqCwlNwVqoS7T+azMrOAqs4B92i2EWyj01q2RSqRMbKoYJjf0UP2CamH1oWt4qYUX3u5UF1Ipm1iJapz4c8CBT4GoP7TPJVIgcDDw1GTt7KJykJCdgNiMWHjbeT80SdAIDVLzUrUJS3bpyUtmYWaZriuVSOFk4QRXK1fdw83Krdj3NnIb7QHpN7H1wg+YdWVDjdyzqbrggGLSI4TAoSsp6ODvrOsrzitUw8JcZuTIiKjSJV7QJjUR27XPJVKg6UvAU+8Dzv7ldpmtl7fqNniUQIJhjYehgWODYi0tSTlJSMlJgUqoynReSzNLvUSlpOTF2dIZZlLD/843pT2bqgvOlnoIJjely8wrxIfb/sNvZ29h7vNNMaS1t7FDIiJjSIoE/v4UuLDtboFEu+ljpw+0K/4+ISEEbmTdQGRqJP5N+BcbIjcYdLwEEjhbOhdLWoq1tpjbcECvCeFsKTLYfzfTMW79acTczoGZVIK8wrL1QxORCUm5rN3w8fxP0O331Kg/0HkK4BrwWKdUaVSISY9BRGoEIlIjEJkaicjUSGQWPLzbqKFDQ/g7+JdrawvVHPztqOGEEPjh2HV88nsECtQa1LK3xNLBwQjxcTB2aERUWW5HA39/BpzfDAiNtiygL9BpCuDepMynyVfn48qdK9pE5rY2kbl055LeYnZFzKXm8Lf3h6+dL3bG7NRbH0YqkWJZ12Xs7qHHxuSmBkvPLcSUn8/hz/8SAADdAtyw8KVmsLfiqsNENULqNeCfhcDZDdqNKwGgQW9tS41H4EMPzS7M1rXCXLx9EZGpkbiadrXE8TBWZlZo6NhQ92jk1Ah+Sj/dppBtPNvoxtxwgC6VByY3NVhUQiZ2XUiAuUyCKb0C8Hp7X/ZPE9UEabHAPwuA8PXavZEAoN4zQOepQK3mxaqn5qUi8nYkLqZe1CU01zOul3hqe4U9AhwD0NCpIQIcAxDgGABvO29IJaXvOzeg3gC082zHAbpUbpjc1GCt6jhiVr8maFZLiUAve2OHQ0QVLf0GcPBz4PQPgKZQW1a3K9DlQ6B2CwghkJAVf298zO1IRKRGIDEnscTTuVu7o6HjvSQmwCkAblZuj/VHkru1O5MaKjdMbmqQtJwCzPj1AiZ2q4e6Lto1G15rU7UW3iKiCpBxCzi4CDi9DlAXAAA0dZ7C9dYjEalQICLhH0Rc/AqRqZFIy08r8RS+dr66bqUAJ20y42DBsXlUNTG5qSFOXb+DCRvO4GZaLq7fzsYvY9uzC4rIFKXfBFKjkWBph9icBHhf/BNOZzYgWqZBhKUcEc7+iFS6ITLnFnKPTy92uJnEDHXt6+olMQ0cG8Da3NoIb4bo8TC5MXEajcA3B69iwa4oqDQCPk5WmPN8UyY2RCaiUF2I9IJ0ZORnIP38RqQfXYa9Vhb41cZau7mjEJB5uUKt+zefBWRo90qykFmgvmN9XbdSQ6eGqGdfD3IZJxVQ9cbkxoSlZhdg0uZw7I9KBgA828wD8wY0ha2FuZEjI6pG7raEwLFu+e50rdEA6nxAlQdRmIe8/HSk56YiPe82MvLuID0/Den56UgvyEB6QSbSC7OQUZiNdFUO0tV52ocmH7kP7o3k9sCmthIJ1ACsza3R2Kmx3mBfXztfyKRcfZxMD5MbExWTko2Xvz6GhIw8KMykCOvbGINbebHFhoyqrPsHVQl56cDRL4G/5yNBJkWsuTm86z4D91qtAFUeoMq/+7VA91wU5iJblftAAlKADFGAdKFCulAjHRqkSwTSpUCGVIp0qRTpUhkKnmDfNokQsNNooNRoIBMC1+TFW16WdlmKVh6tnuSOEFUbTG5MVC0HS9RysISVQoYVQ5ojwINbTZBx3b9/UNFaJgPqDSjXawghoBEaaIQGaqHWPTSae891r+VlQJ1+E5qMm1Bl3IAmMx6ajJtQZyZAnZUAdWE2NAAOOCjxP6UthEQCSfYZdAo/gtoqFdKlMqTLipITKTLufq/r/pHdfehI7z5KZyYE7ASgFBIoIYUSMiglZrCTmEEplUMpU0Aps9Q+zK2gNLOBndwGtua2kKrzgUNfIEEmRQ8vT2ge2LXa247bqVDNwb2lTMjtrHzYWphDbqb9DzQpIw/WCjNYK5jDUuUrUBcgMTsR8dnxiEyNxMKTC/VWoQWAIJcgyKSyewmH5l7yoREaqDQqvUTl/iSlqM6D9aoChcQMSjNL2JlZQ2luDaXcFkq5HZRyJZQWStgpHKC0dITSwglKK2coLRyhtLCHlZnVk7Wunv4e+O0dbLW2wCxnR2gkkgpLJIkqGzfOfAhTTW6ORKdg4sZw9A/yxEd9Ghk7HDJxQgjcyb+D+Ox4JGQlID47XvdIyNY+T8lNMXaYxciEgPTuVxkAKSSQSaSQSWSQSc0glZpBJpNDJpNDKpGiIC0Wt8yL/3HQu05vBDgGQKlQwk5xN2lRaB92cjtYmFlU+nvTSb8JpF5FgqUt4lDIRfHIZHDjzBpErRFYtu8ylu69DI0A/r6UjNDualjKOUjQpFXUINe78lR5SMzRtrrEZ91LWO5PXvLV+Y88j4XMAu7W7nC0cMTppNN6r0kgwZRWU+Bk6QSZRAapRAozqRmkEimkEqk2AclJhSwrGdLsJJhlJUGakQBpZgLMMuMhzU6+m6wImIm7nT5CwAyAFAIyAcjMbSBz8IZU6Q2pvQ8kDj6Agw9g7619WCgfGn/C8RXoEbGyWBfPuyHvVt2EQVkLUNaCO4AqGiFRhWNyU40lZeThnU3hOBJ9GwAwsEVtzHquCRMbA1WrQa7A3a6HidoNDiVSoO8SoPnQMh+uERqk5qXeS1iy9JOW+Ox4pOalPvI8EkjgYukCdxt3uFu5w8PaAx42HnC3vvu9tQfsFfa6bpateyZj1o2d2q4SIRBW6xkM8Oig3QrgTixw57r2+7S7XzNu3tvEsTTmVoD93WTl/qSlqMzSAXiCbh731mMRZmGBWeFLoQH3PSKqLtgtVU0dvJyMdzeFIyWrAFZyGT7p3wQDmtc2dljVztbLWzHryCztBxekmN52Ol6s/6Jxg9JogNw7QHYSkJ1895Gi/Zp6DfjvJwBAgkyGWHMzeBeq4O7SCJApAIkEORBIgAYJEjXiJXe/Qo0EiQbxUCEBahSU4fPeEhJ4wAweMIM7zOABc3hIzO6WyeEGM5hLiwbISu5LIu5+lUjufa/KA67uR4JMhjhzM3gVquCuLsP4GDOL+xIW7wcSGR/AyumJkpeySshO4L5HREbGMTcPYQrJTXpuITrM34fMPBUautti+ZDm8He1MXZYldoCotaokaPKQXZhNrILs5FVmKX7XldWkIVsVTayC7L1vmYVaOtmFGSUutS8mdRMOw5DIoNMKtP73kxiputCkUlkkEqlMJM88L30bjdL0fdCwEyjhkytgkxdCJk6HzJVAWTqAsgK8yBT5UFWmHv3kaPtkhGATNflon1udvfrWYUcf9y3SFuDggJIIUG8mQxpske33EmFgLNaDQ+VGh4qFTxUarirVPBQ33tup9GgwtMGiexeolKUwDj43ktkrF0A6cNnGBFRzcAxNyZOaWmOOc83xdHo2wjr2wgW5sbvhirLNF+N0CBXlfvIpKMoWckpzNH7ev9ruarcCn0/Ko0KKqgq9BrFmAMwNwNgYNItkSBKodArspLK4alwgLtcCQ+5PTzkSrjL7eGhsIOH3B6uZrb3Wl10f9+IB54/8Fqp9Up77b7vc+8Ae2beKwO0XWoTzwL2Xoa9XyKiR2DLTTWxPyoJCjMp2tV1fnTlSlSoLsSJhBN4e8/bxab5NnRoiHxNvi4pySnMKVbnSZlJzGAtt4aNuQ2szK30vt7/vbW5td7DxtwGeao8jN4zWi8mKSTY2DIMDoX50OSkQJ2TAlVOKjS5qVDl3oY69w40uXegys+AWghoJIAKgFoigQaA6u5qsOpiXwG11BxqhS3UCmuo5Xcf5lZQm1vefVhAbaaA2swCapkcKtxbr0U31VmjRlLSeZzKuVHsXkwInoCnaj8FDxsP2JrbVr0FG+9OU4ZQa1ts+i42aKwQEdVs7JZ6iOqW3BSqNVj4VxS++vsqnG0U+HNiR7jYKh59YAXIVeXi0p1LiLgdgcjUSFy8fRFX0q6gUFNo0HlkElmxpONRiciDz63MrWAjt4FcKi/7h3h+lnaw6p0Y7SPxP2y98uu99UCEQFhKKgZkZZf9zVg6artOrF0Aa2fAxvXe99YugLXrve8VtuUyPiQhOwE9fnoGmvuTMokUu17YVfXHg9ydpgxHvwqZ5UVEpovdUibiZlouxq8/jdOxaQCA3k3dYWtROT+yzIJMRKZGIuJ2BCJStcnM1fSr0JQwe8XazBrZKv2EQAIJZradCS87r2JJi4XMomJaFTQaIPPWveTlwUd2crFDBgBol5unP8jV2gVQ1r6bmNyXqNjcl6hYu2gHs8oqf58ud2t3hLWbWawbsMonNoBumjIRUUViclNF7b6YiMlbziI9txC2Fmb47IVm6NXUo0KulZqXqktiir7GZcaVWNfRwhEBTgFo5NgIDR0bIsApALVtamPblW0VvrQ+ACA/UztluKTkJe06oC54+PEW9toBq451tMnJv9/BXa2+N3NHIgPe/LvKfwAPqDcA7TzbcQYPEVEJmNxUMWqNwNwdEfju0DUAQGBtJZYNbg5vJ6snPrcQAok5ifcSmbvJTGJOYon1Paw9dAlMI8dGCHAKgIulS4mtLuX2YatRA5nx2inPJSUwOY9Y9VZqBii9tAlMsYePdt0TvTcZWHwcSBVPbIq4W7szqSEiKgGTmypGKtHuEQUAr7evgym9Gur2ijKERmhwI/OGXmtMZGpkqYuz+dj5IMAxAAFOAdqExjEADhYOJdYtjbtKDffcXMDyEeuX5GeW3nWUFvvo1hdLx1KSF1/ArhYgM+DXuvlQoG5XjgMhIjIhHFBcRajUGpjJtElMVr4K/8akoksD17Idq1EhJj1GrzUmMjUSWYVZxerKJDL42ftpE5m7yUwDhwawkT/hOjkPrprbNQyoFXJf4nJfS0zO7YefS2p2b70TvUcdbevLI5bMJyIi08MBxdVIvkqNuX9E4GZaHr4ZGgKJRAIbhVmpiU2BugBX0q7ojZG5dOcS8tR5xeqaS81R36E+ApwCdMlMPYd65bOpn0YNpMcBt6OBm6eB/XNwb10TDbAn7OHHWzk9vPVFavy1e4iIqHpicmNEJ+OuYcpvexF9ywpCpcS/MXfQqo6j7vWcwhzt1Ov7upaupF2BSlN8cTlLM0sEOAboxsgEOAbAz94P5tInmM0jhHb8y+0r2iQmNVr79Xa0tiXmUd1Htp6Aa4B28O79yYu9D2BRdVrNiIjItDC5MZKwfavxc+xiSKwFbPwlGOA7BrBwwboLEbh4+yIiUyNxLf1aiYve2cntis1Y8rb1huxxWjuE0O5bdPvKveRF9/UqUJhT+rEyubaryK4WcHU/9FeflQGj9nAMCxERVTomN5Usr1CNqdsPYnfmYkgkd5MBicDW6yuw9Xrx+i6WLsVmLHlYexi+TkzuHeD2Vf0k5vYVbQKTn1H6cUV7/zj5A451Aae62oG3Tv7atWCKEqqSVp9lYkNEREbA5KaSjVt/Bvuvn4OVT/EWGWcLZwS5BunNWHKxctG+mH5Tm5SoRemr3OZn3U1crmgTGd330UBuybOktCTa6dNOfvpJjJO/dmBvWRaq46wjIiKqIpjcVLKxXeri3PrryIMUAvdW+5VKpNjw7IaS1y15cCZSpw8At8b3jYW52yKTVfJ6NTq2HncTlweSGIc6gHk5DDLm6rNERFQFMLmpYLkFapy9kYY2fk4AgGBvBxyc3B9/XJOUbfn89JvAbxPu7bosNMCBeaVf0MrpvsTlviTG0Q9QPOF0byIiomqAyU0FupyYibHrT+P67Rz8MrY9Ajy0M4QUZrKyr+ibGn0vsbmfUz3AM+i+LqS62u8t7Svs/RAREVUHhi99WwFWrFgBX19fWFhYoHXr1jhx4sRD62/ZsgUNGzaEhYUFmjZtih07dlRSpGUjhMDmk3Hou/wQLiVmwc7SHFn5xadvu1u7o6V7y4cvoe9YV9sVdT+JDBj6K/DCt0CXqUCzgdoF85jYEBERGT+52bRpE0JDQxEWFobTp08jMDAQPXr0QFJSUon1jxw5gsGDB2PkyJE4c+YM+vfvj/79++O///6r5MhLlp2vwqTNZ/H+T+eQV6hBx3rO2DGhI1r6Oj764JIoawF9l2gTGoAzkYiIiB7B6NsvtG7dGi1btsTy5csBABqNBl5eXhg/fjymTJlSrP6gQYOQnZ2N33//XVfWpk0bBAUFYdWqVY+8XkVuvxARn4Fx608jOjkbUgkQ2r0+xnT2h1Rq4LTtkqTf5EwkIiKqsQz5/DZqy01BQQFOnTqFbt266cqkUim6deuGo0ePlnjM0aNH9eoDQI8ePUqtn5+fj4yMDL1HRdl9MRHRydlws1NgwxttMO7peuWT2ADahKZORyY2REREj2DUAcUpKSlQq9Vwc3PTK3dzc0NkZGSJxyQkJJRYPyEhocT68+bNw6xZs8on4EcY28UfhWoNhrfzhZONolKuSURERPqMPuamok2dOhXp6em6R1xcXIVdSyaVYNIzDZjYEBERGZFRW26cnZ0hk8mQmKi/+FxiYiLc3UueQeTu7m5QfYVCAYWCyQYREVFNYdSWG7lcjpCQEOzdu1dXptFosHfvXrRt27bEY9q2batXHwB2795dan0iIiKqWYy+iF9oaCiGDRuGFi1aoFWrVli8eDGys7MxYsQIAMDQoUNRq1YtzJunXZV34sSJ6NSpEz7//HP06dMHGzduxMmTJ/H1118b820QERFRFWH05GbQoEFITk7GjBkzkJCQgKCgIOzcuVM3aDg2NhZS6b0Gpnbt2mH9+vWYNm0aPvzwQ9SrVw+//PILmjRpYqy3QERERFWI0de5qWwVuc4NERERVYxqs84NERERUXljckNEREQmhckNERERmRQmN0RERGRSmNwQERGRSWFyQ0RERCaFyQ0RERGZFCY3REREZFKY3BAREZFJMfr2C5WtaEHmjIwMI0dCREREZVX0uV2WjRVqXHKTmZkJAPDy8jJyJERERGSozMxMKJXKh9apcXtLaTQa3Lp1C7a2tpBIJOV67oyMDHh5eSEuLo77VlUg3ufKwftcOXifKw/vdeWoqPsshEBmZiY8PT31NtQuSY1ruZFKpahdu3aFXsPOzo7/cCoB73Pl4H2uHLzPlYf3unJUxH1+VItNEQ4oJiIiIpPC5IaIiIhMCpObcqRQKBAWFgaFQmHsUEwa73Pl4H2uHLzPlYf3unJUhftc4wYUExERkWljyw0RERGZFCY3REREZFKY3BAREZFJYXJDREREJoXJjYFWrFgBX19fWFhYoHXr1jhx4sRD62/ZsgUNGzaEhYUFmjZtih07dlRSpNWbIff5m2++QceOHeHg4AAHBwd069btkT8X0jL097nIxo0bIZFI0L9//4oN0EQYep/T0tIwduxYeHh4QKFQoH79+vy/owwMvc+LFy9GgwYNYGlpCS8vL7z77rvIy8urpGirp3/++Qd9+/aFp6cnJBIJfvnll0cec+DAATRv3hwKhQL+/v5Yu3ZthccJQWW2ceNGIZfLxerVq8WFCxfEG2+8Iezt7UViYmKJ9Q8fPixkMpn47LPPxMWLF8W0adOEubm5OH/+fCVHXr0Yep+HDBkiVqxYIc6cOSMiIiLE8OHDhVKpFDdu3KjkyKsXQ+9zkWvXrolatWqJjh07in79+lVOsNWYofc5Pz9ftGjRQvTu3VscOnRIXLt2TRw4cECEh4dXcuTVi6H3+ccffxQKhUL8+OOP4tq1a2LXrl3Cw8NDvPvuu5UcefWyY8cO8dFHH4mtW7cKAGLbtm0PrX/16lVhZWUlQkNDxcWLF8WyZcuETCYTO3furNA4mdwYoFWrVmLs2LG652q1Wnh6eop58+aVWH/gwIGiT58+emWtW7cWb731VoXGWd0Zep8fpFKphK2trVi3bl1FhWgSHuc+q1Qq0a5dO/Htt9+KYcOGMbkpA0Pv88qVK4Wfn58oKCiorBBNgqH3eezYseLpp5/WKwsNDRXt27ev0DhNSVmSm/fff180btxYr2zQoEGiR48eFRiZEOyWKqOCggKcOnUK3bp105VJpVJ069YNR48eLfGYo0eP6tUHgB49epRanx7vPj8oJycHhYWFcHR0rKgwq73Hvc+zZ8+Gq6srRo4cWRlhVnuPc5+3b9+Otm3bYuzYsXBzc0OTJk0wd+5cqNXqygq72nmc+9yuXTucOnVK13V19epV7NixA717966UmGsKY30O1riNMx9XSkoK1Go13Nzc9Mrd3NwQGRlZ4jEJCQkl1k9ISKiwOKu7x7nPD/rggw/g6elZ7B8U3fM49/nQoUP47rvvEB4eXgkRmobHuc9Xr17Fvn378Morr2DHjh24cuUKxowZg8LCQoSFhVVG2NXO49znIUOGICUlBR06dIAQAiqVCqNHj8aHH35YGSHXGKV9DmZkZCA3NxeWlpYVcl223JBJ+fTTT7Fx40Zs27YNFhYWxg7HZGRmZuK1117DN998A2dnZ2OHY9I0Gg1cXV3x9ddfIyQkBIMGDcJHH32EVatWGTs0k3LgwAHMnTsXX375JU6fPo2tW7fijz/+wMcff2zs0KgcsOWmjJydnSGTyZCYmKhXnpiYCHd39xKPcXd3N6g+Pd59LrJw4UJ8+umn2LNnD5o1a1aRYVZ7ht7n6OhoxMTEoG/fvroyjUYDADAzM0NUVBTq1q1bsUFXQ4/z++zh4QFzc3PIZDJdWUBAABISElBQUAC5XF6hMVdHj3Ofp0+fjtdeew2jRo0CADRt2hTZ2dl488038dFHH0Eq5d/+5aG0z0E7O7sKa7UB2HJTZnK5HCEhIdi7d6+uTKPRYO/evWjbtm2Jx7Rt21avPgDs3r271Pr0ePcZAD777DN8/PHH2LlzJ1q0aFEZoVZrht7nhg0b4vz58wgPD9c9nnvuOXTp0gXh4eHw8vKqzPCrjcf5fW7fvj2uXLmiSx4B4NKlS/Dw8GBiU4rHuc85OTnFEpiihFJwy8VyY7TPwQodrmxiNm7cKBQKhVi7dq24ePGiePPNN4W9vb1ISEgQQgjx2muviSlTpujqHz58WJiZmYmFCxeKiIgIERYWxqngZWDoff7000+FXC4XP/30k4iPj9c9MjMzjfUWqgVD7/ODOFuqbAy9z7GxscLW1laMGzdOREVFid9//124urqKTz75xFhvoVow9D6HhYUJW1tbsWHDBnH16lXx119/ibp164qBAwca6y1UC5mZmeLMmTPizJkzAoBYtGiROHPmjLh+/boQQogpU6aI1157TVe/aCr4e++9JyIiIsSKFSs4FbwqWrZsmfD29hZyuVy0atVKHDt2TPdap06dxLBhw/Tqb968WdSvX1/I5XLRuHFj8ccff1RyxNWTIffZx8dHACj2CAsLq/zAqxlDf5/vx+Sm7Ay9z0eOHBGtW7cWCoVC+Pn5iTlz5giVSlXJUVc/htznwsJCMXPmTFG3bl1hYWEhvLy8xJgxY8SdO3cqP/BqZP/+/SX+f1t0b4cNGyY6depU7JigoCAhl8uFn5+fWLNmTYXHKRGC7W9ERERkOjjmhoiIiEwKkxsiIiIyKUxuiIiIyKQwuSEiIiKTwuSGiIiITAqTGyIiIjIpTG6IiIjIpDC5IaKHGj58OPr376973rlzZ7zzzjuVHseBAwcgkUiQlpZW6deOiYmBRCJ54h3RH7yXJXnw/vr6+mLx4sW65xKJBL/88ssTxUFk6pjcEFVDw4cPh0QigUQigVwuh7+/P2bPng2VSlXh1966dWuZd042ZkJSXT3q/sbHx6NXr14Ayi/pIjI13BWcqJrq2bMn1qxZg/z8fOzYsQNjx46Fubk5pk6dWqxuee4m7ejoWC7nqSoKCwthbm5u7DB0HnV/S9vlmojuYcsNUTWlUCjg7u4OHx8fvP322+jWrRu2b98O4F73x5w5c+Dp6YkGDRoAAOLi4jBw4EDY29vD0dER/fr1Q0xMjO6carUaoaGhsLe3h5OTE95///1iOyQ/2G2Sn5+PDz74AF5eXlAoFPD398d3332HmJgYdOnSBQDg4OAAiUSC4cOHA9Du2Dxv3jzUqVMHlpaWCAwMxE8//aR3nR07dqB+/fqwtLREly5d9OIsjUQiwcqVK9GrVy9YWlrCz89P77xFLR2bNm1Cp06dYGFhgR9//BEajQazZ89G7dq1oVAoEBQUhJ07dxY7f2RkJNq1awcLCws0adIEf//9t969GzlypO49NWjQAEuWLCkxzlmzZsHFxQV2dnYYPXo0CgoKSr2/Jb3Hom6pOnXqAACCg4MhkUjQuXNn/PPPPzA3N0dCQoLece+88w46duz4yHtIZAqY3BCZCEtLS70Pyb179yIqKgq7d+/G77//jsLCQvTo0QO2trY4ePAgDh8+DBsbG/Ts2VN33Oeff461a9di9erVOHToEFJTU7Ft27aHXnfo0KHYsGEDli5dioiICHz11VewsbGBl5cXfv75ZwBAVFQU4uPjdR/28+bNw/fff49Vq1bhwoULePfdd/Hqq6/qkoW4uDgMGDAAffv2RXh4OEaNGoUpU6aU6T5Mnz4dL7zwAs6ePYtXXnkFL7/8MiIiIvTqTJkyBRMnTkRERAR69OiBJUuW4PPPP8fChQtx7tw59OjRA8899xwuX76sd9x7772HSZMm4cyZM2jbti369u2L27dvA9AmbLVr18aWLVtw8eJFzJgxAx9++CE2b96sd469e/ciIiICBw4cwIYNG7B161bMmjWrTO/tQSdOnAAA7NmzB/Hx8di6dSueeuop+Pn54YcfftDVKywsxI8//ojXX3/9sa5DVO1U+NacRFTu7t+RW6PRiN27dwuFQiEmT56se93NzU3k5+frjvnhhx9EgwYNhEaj0ZXl5+cLS0tLsWvXLiGEEB4eHuKzzz7TvV5YWChq166tt/t3p06dxMSJE4UQQkRFRQkAYvfu3SXGWbSD8P07Lefl5QkrKytx5MgRvbojR44UgwcPFkIIMXXqVNGoUSO91z/44INi53oQADF69Gi9statW4u3335bCCHEtWvXBACxePFivTqenp5izpw5emUtW7YUY8aM0Tvu008/1b1edG/mz59fajxjx44VL7zwgu75sGHDhKOjo8jOztaVrVy5UtjY2Ai1Wi2E0L+/Qmh3vf/iiy/03uO2bdv04jpz5ozedefPny8CAgJ0z3/++WdhY2MjsrKySo2VyJRwzA1RNfX777/DxsYGhYWF0Gg0GDJkCGbOnKl7vWnTpnrjbM6ePYsrV67A1tZW7zx5eXmIjo5Geno64uPj0bp1a91rZmZmaNGiRbGuqSLh4eGQyWTo1KlTmeO+cuUKcnJy0L17d73ygoICBAcHAwAiIiL04gCAtm3blun8D9Zr27ZtsQG3LVq00H2fkZGBW7duoX379np12rdvj7Nnz5Z67qJ7c3+r0IoVK7B69WrExsYiNzcXBQUFCAoK0jtHYGAgrKys9M6ZlZWFuLg4+Pj4lOk9Psrw4cMxbdo0HDt2DG3atMHatWsxcOBAWFtbl8v5iao6JjdE1VSXLl2wcuVKyOVyeHp6wsxM/5/zgx9kWVlZCAkJwY8//ljsXC4uLo8Vg6WlpcHHZGVlAQD++OMP1KpVS+81hULxWHEYqiI+5Ddu3IjJkyfj888/R9u2bWFra4sFCxbg+PHj5X6tR3F1dUXfvn2xZs0a1KlTB3/++ScOHDhQ6XEQGQvH3BBVU9bW1vD394e3t3exxKYkzZs3x+XLl+Hq6gp/f3+9h1KphFKphIeHh96HsUqlwqlTp0o9Z9OmTaHRaPQG1t6vqOVIrVbryho1agSFQoHY2NhicXh5eQEAAgICdONJihw7duyR77GkeseOHUNAQECp9e3s7ODp6YnDhw/rlR8+fBiNGjUq9dxF96bo3IcPH0a7du0wZswYBAcHw9/fH9HR0cWud/bsWeTm5uqds2iMkqFKur9FRo0ahU2bNuHrr79G3bp1i7VMEZkyJjdENcQrr7wCZ2dn9OvXDwcPHsS1a9dw4MABTJgwATdu3AAATJw4EZ9++il++eUXREZGYsyYMQ9do8bX1xfDhg3D66+/jl9++UV3zqJBtD4+PpBIJPj999+RnJyMrKws2NraYvLkyXj33Xexbt06REdH4/Tp01i2bBnWrVsHABg9ejQuX76M9957D1FRUVi/fj3Wrl1bpve5ZcsWrF69GpcuXUJYWBhOnDiBcePGPfSY9957D/Pnz8emTZsQFRWFKVOmIDw8HBMnTtSrt2LFCmzbtg2RkZEYO3Ys7ty5oxukW69ePZw8eRK7du3CpUuXMH36dPz777/FrlVQUICRI0fi4sWL2LFjB8LCwjBu3DhIpYb/d+zq6gpLS0vs3LkTiYmJSE9P173Wo0cP2NnZ4ZNPPsGIESMMPjdRtWbsQT9EZLj7BxQb8np8fLwYOnSocHZ2FgqFQvj5+Yk33nhDpKenCyG0g2QnTpwo7OzshL29vQgNDRVDhw4tdUCxEELk5uaKd999V3h4eAi5XC78/f3F6tWrda/Pnj1buLu7C4lEIoYNGyaE0A6CXrx4sWjQoIEwNzcXLi4uokePHuLvv//WHffbb78Jf39/oVAoRMeOHcXq1avLNKB4xYoVonv37kKhUAhfX1+xadMm3eulDcBVq9Vi5syZolatWsLc3FwEBgaKP//8s9hx69evF61atRJyuVw0atRI7Nu3T1cnLy9PDB8+XCiVSmFvby/efvttMWXKFBEYGFjs5zJjxgzh5OQkbGxsxBtvvCHy8vJKvb8PG1AshBDffPON8PLyElKpVHTq1EnvfU2fPl3IZDJx69atUu8ZkSmSCFHKSEEiompGIpFg27Ztj9zioKYYOXIkkpOTdesfEdUUHFBMRGRi0tPTcf78eaxfv56JDdVITG6IiExMv379cOLECYwePbrYlHuimoDdUkRERGRSOFuKiIiITAqTGyIiIjIpTG6IiIjIpDC5ISIiIpPC5IaIiIhMCpMbIiIiMilMboiIiMikMLkhIiIik8LkhoiIiEzK/wFMV7gnPw9JDgAAAABJRU5ErkJggg==", |
|
|
1527 |
"text/plain": [ |
|
|
1528 |
"<Figure size 640x480 with 1 Axes>" |
|
|
1529 |
] |
|
|
1530 |
}, |
|
|
1531 |
"metadata": {}, |
|
|
1532 |
"output_type": "display_data" |
|
|
1533 |
} |
|
|
1534 |
], |
|
|
1535 |
"source": [ |
|
|
1536 |
"#reliability on the NLST dataset (using only the training set)\n", |
|
|
1537 |
"probs = model_final.predict_proba(x_test)[:, 1]\n", |
|
|
1538 |
"fop, mpv = calibration_curve(y_test, probs, n_bins=10, normalize=True)\n", |
|
|
1539 |
"\n", |
|
|
1540 |
"#Now with calibration on the NLST dataset using the PLCO validation set\n", |
|
|
1541 |
"calibrated = CalibratedClassifierCV(model_final, method='sigmoid', cv=5)\n", |
|
|
1542 |
"calibrated.fit(x_plco, y_plco)\n", |
|
|
1543 |
"probs_calib = calibrated.predict_proba(x_test)[:, 1]\n", |
|
|
1544 |
"fop_calib, mpv_calib = calibration_curve(y_test, probs_calib, n_bins=10, normalize=True)\n", |
|
|
1545 |
"\n", |
|
|
1546 |
"#Relianility diagram\n", |
|
|
1547 |
"plt.title('Calibration curve on test set')\n", |
|
|
1548 |
"plt.plot([0, 1], [0, 1], linestyle='--')\n", |
|
|
1549 |
"plt.ylabel(\"Empirical probability\")\n", |
|
|
1550 |
"plt.xlabel(\"Predicted probability\")\n", |
|
|
1551 |
"plt.plot(mpv, fop, marker='.',label='Original')\n", |
|
|
1552 |
"plt.plot(mpv_calib, fop_calib, marker='.',label='Calibrated')\n", |
|
|
1553 |
"plt.legend()\n", |
|
|
1554 |
"plt.show()" |
|
|
1555 |
] |
|
|
1556 |
}, |
|
|
1557 |
{ |
|
|
1558 |
"attachments": {}, |
|
|
1559 |
"cell_type": "markdown", |
|
|
1560 |
"metadata": {}, |
|
|
1561 |
"source": [ |
|
|
1562 |
"### Explainability\n", |
|
|
1563 |
"\n", |
|
|
1564 |
"We can also view the explainability of each predictions based on the following code:" |
|
|
1565 |
] |
|
|
1566 |
}, |
|
|
1567 |
{ |
|
|
1568 |
"cell_type": "code", |
|
|
1569 |
"execution_count": 101, |
|
|
1570 |
"metadata": {}, |
|
|
1571 |
"outputs": [ |
|
|
1572 |
{ |
|
|
1573 |
"name": "stderr", |
|
|
1574 |
"output_type": "stream", |
|
|
1575 |
"text": [ |
|
|
1576 |
"ntree_limit is deprecated, use `iteration_range` or model slicing instead.\n" |
|
|
1577 |
] |
|
|
1578 |
}, |
|
|
1579 |
{ |
|
|
1580 |
"data": { |
|
|
1581 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAILCAYAAAAnojcdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACp6UlEQVR4nOzdd3gU1foH8O/sbnrvDRISktASUghNBAUBKYqoiCJeL4hg79xrb9jB8lNRQUGwgXQb0qs0aQmkACkQkpDe6ybZ3fn9sTdL1rRJSDKb5Pt5njywZ8/MvBM0mXfPOe8RRFEUQURERERE1EMp5A6AiIiIiIhITkyKiIiIiIioR2NSREREREREPRqTIiIiIiIi6tGYFBERERERUY/GpIiIiIiIiHo0JkVERERERNSjMSkiIiIiIqIejUkRERERERH1aEyKiIiIiIioR2NSREREREREPRqTIqIeTqfT4e2330bfvn1hZmaGvn37YvHixejfvz90Ol2rz7ds2TL4+vqiurq6A6IlIiIian+CKIqi3EEQkXyWLl2KJ598Es899xwGDx4MBwcHzJ07Fx9++CHmzp3b6vOp1Wr06dMHL730Ep588skOiLjjFRYW4tSpU8jPz0dlZSVUKhWcnJwQFhYGPz8/SecoKSnBiRMnkJOTA7VaDVtbWwQGBiIsLAwqlQoAkJubi8TERGRlZaGsrAwWFhbw8PBAVFQUHB0djc63f/9+JCYmNnm92bNnw8bGps33TERE1JMxKSLq4YYMGQJXV1fs2LEDAPB///d/eP3115GTkwNLS8s2nfP555/HunXrcOnSJQiC0J7hdoq0tDTExcXBw8MD1tbW0Gg0uHTpErKzszF69GgMGDCg2ePLy8uxceNGmJubY+DAgbCwsEBOTg4SExPh5+eHm2++GQCwa9cuZGdnIyAgAC4uLqisrER8fDxqa2sxffp0ODs7G86Zk5OD0tJSo+uIoohDhw7Bzs4Od911V/t/I4iIiHoIldwBEJF81Go1zpw5gzfffNPQtmrVKkybNq3NCREAzJw5E4sXL8a+ffswbty49gi1U/n6+sLX19eobdCgQdiyZQvOnj3bYlKUlJSEmpoaTJs2zZDYDBgwAKIoIikpCdXV1bCwsEBoaCjGjRsHpVJpOLZv377YuHEjYmJijL53Hh4e8PDwMLpOdnY2NBoNAgMDr/WWiYiIejSuKSLqoebNmwcrKytotVq88sorEAQBXl5eOHv2LMaPH9+g/5UrV2BpaYkHHnjAqH337t0wMzPDM888Y2gbMmQInJ2d8euvv3b4fXQWhUIBGxsb1NTUtNi3ro+1tbVRu7W1NQRBgEKh/9Hr6elplBABgIODA5ycnFBcXNzidZKTkwGASREREdE1YlJE1EPNnj0bDz30EADg008/xQ8//ICHH34YABAZGdmgv4+PDx588EH8+OOPuHz5MgDg/PnzuOuuuzB58mR89NFHRv0jIyNx+PDhFuPQ6XRQq9WSvjp7tm9tbS3UajVKS0tx9uxZpKenw8fHp8XjvL29AQAHDhxAfn4+ysvLkZKSgoSEBAwaNAhmZmZNHiuKIqqqqlocqdPpdEhJSYGHhwfs7Oxad2NERERkhNPniHqocePGYc+ePbCxscHjjz8OhUKBV199FQDg7+/f6DEvvvgiVqxYgQ8++ABvvfUWbrnlFvTp0wdr1641jH7UCQgIwA8//NBiHNnZ2fjjjz8kxTxr1qxOTQCOHTuGc+fOAQAEQUCfPn0watSoFo/r3bs3oqKiEB0dbUggASAiIgJDhw5t9tjk5GRUVFRgyJAhzfZLT09HdXU1goKCJNwJERERNYdJEVEPdvbsWQwaNMiQ0BQUFEClUsHW1rbR/j4+Ppg/fz6++eYbnD59GlVVVThw4ECjVc+cnJxQVVWFysrKBtPI6nNxccGUKVMkxWtlZdViH1EUodVqJZ1PqVQ2WwgiNDQU/v7+qKysxMWLF1t1bjs7O3h5ecHf3x+WlpZIS0tDdHQ0rKysEBIS0ugxxcXFOHToEDw8PBAcHNzs+ZOTk6FQKBAQECApHiIiImoakyKiHuzMmTOGSmhSLVy4EEuXLsXZs2fx119/NTmdrG6qW0vV5ywsLNCrV69WxdCcrKwsySNPM2fObFD6uj5HR0fD+8HBwdi6dSt27NiB6dOnN3tfycnJOHjwIO6++25Dgunv7w9RFHH8+HEEBgY2mB5XWVmJbdu2wdzcHOPHj28w8lZfbW0tLl++jF69el1TQQwiIiLSY1JE1EMVFxcjPT0doaGhhjYXFxdoNBqUlZU1OU3tnXfeAQBoNBqjktH/VFRUBGtr6xZHd7RareSNXi0tLZtNFgB9InPDDTdIOl9zI1iNCQgIwF9//YWSkpJmk6mEhAS4uro2GHHz8/NDYmIi8vPzjRLBmpoabNu2zVCxrqX9hlJTU1l1joiIqB0xKSLqoc6ePQsAGDx4sKGtf//+AIBLly4ZtddZsmQJVqxYgaVLl+I///kP3nnnHaxYsaLR81+6dKnF0tWAfv+d9lxTZG1tjX79+kk6X2tpNBoAaLECXVVVFSwsLBq063Q6ADAqGKHRaLB9+3aUlJRg6tSpcHJyajGO5ORkmJmZoU+fPq2InoiIiJrCpIiohzpz5gwA46Ro5MiRAICTJ082SIp++eUXvPDCC3jrrbfw2GOPISkpCV9++SVefvnlRgsznD59GrNnz24xjvZeU9QeqqqqGlxLp9MhKSkJSqXSKHHRaDQoLy+HpaWlYSqbg4MDMjIyUFxcbDSilJKSAkEQDCNsOp0Oe/bsQU5ODm6++eYG+xA1FVtGRgYCAwOhUvFHOBERUXvgb1SiHurs2bPw8fExmgIXEBCAkJAQ7N6922g/olOnTmH27NmYPXs2Xn75ZQDAf//7XyxbtqzR0aJTp06hsLAQt912W4txtPeaovbw119/oaamBl5eXrCxsUFlZSWSk5NRXFyMESNGGJXUzs3NxR9//IHIyEhERUUBAMLCwpCeno7ff/8dgwYNgoWFBdLS0pCeno7+/fsbpscdO3YMly9fhq+vL6qrq5GUlGQUR2OV5VJSUiCKIqfOERERtSMmRUQ91NmzZxudIvfAAw/gtddeM4yWZGRk4NZbb0VERAS++eYbQz9vb2888MADWLFiRYPRog0bNsDX1xfjxo3rlHtpbwEBAbhw4QISEhKgVqthbm4OV1dXDBs2TNKUNS8vL9x22204deoU4uPjUV1dDTs7OwwdOhRhYWGGfgUFBQCAtLQ0pKWlNThPY0lRcnIyrKysJO2XRERERNIIYmfvhkhEJq2kpAQBAQFYvHgx5s2b1+rjq6ur0adPH7zwwgt46qmnOiBCIiIiovbVfBknIupxHBwc8N///hdLliwxFAZojVWrVsHMzAwPP/xwB0RHRERE1P44UkRERERERD0aR4qIiIiIiKhHY1JEREREREQ9GpMiIiIiIiLq0ZgUERERERFRj8akiIiIiIiIejQmRUTUotLSUtx4440oLS2VOxQiIiKidsekiIhaVFpaigMHDjApIiIiom6JSREREREREfVoTIqIiIiIiKhHY1JEREREREQ9GpMiImqRvb09Ro4cCXt7e7lDISIiImp3giiKotxBEJHpKy8vh62trdxhEBEREbU7jhQRkST5+flyh0BERETUIZgUEZEkxcXFcodARERE1CGYFBGRJCqVSu4QiIiIiDoE1xQREREREVGPxpEiIpLkzJkzcodARERE1CGYFBGRJBxUJiIiou6KSRERSeLi4iJ3CEREREQdgkkREUnCjVuJiIiou2JSRESSXLp0Se4QiIiIiDoEkyIiIiIiIurRWJKbiCQpLS3lFDoiIiLqljhSRESSFBcXyx0CERERUYdgUkREkhQWFsodAhEREVGHYFJERJIoFPxxQURERN0T1xQREREREVGPxo9+iUiS2NhYuUMgIiIi6hAquQMgoq5Bq9U2+V5BlYjYPA469xTWZgKGeQlyh0FERNRumBQRkSROTk5NvvfOMR0+OcWkqCf59oZSzB3qLHcYRERE7YLT54hIEhcXl0bbq2pFrIxlQtSTCADKYCN3GERERO2GSRERSZKcnNxo+8ZEEaU1nRwMyY77VhERUXfCpIiIrsnSaB0UXF7S46irq+UOgYiIqN1wTRERSdKnT58GbbF5Io5nd34sJD8zFX99EBFR98GRIiKSpLy8vEHbsjM6qDhK1CO5u7vLHQIREVG7YVJERJLk5+cbvS6vEbE6ToSGNRZ6pCuZmXKHQERE1G6YFBFRm/x8XkSlRu4oiIiIiK4dkyIikiQ8PNzo9RfROv4A6cHs7OzkDoGIiKjd8JmGiCSJj483/P1ktoiYPEAnYzwkLxZaICKi7oRJERFJUltba/g7CyxQYVGR3CEQERG1GyZFRCSJg4MDAKCkWsRP51hggYiIiLoPJkVEJImHhwcA4KcEEdUssNDjebAkNxERdSOcFE5EkiQmJiIsLAxLo7vnSiIHC2DxGAVuDxJgbQYczxLx3H4donObP04AcP8gAXcECYhwF+BsBVwqAX4+r8OHJ0RUa437iwsb/7H7wkEtPjjedYbfSktLAVjKHQYREVG7YFJERJIdzQTOFcodRfsTAGy9Q4kwN2DJCR3yq4BHwxXYf7cSQ37QIrm46WOtzYDVk5U4mili2RkdciuBkd4C3rxOgZt8RYxb3zCJ3Jmqw/fxxglQdG7XSYgAoEqtljsEIiKidsOkyISo1WrExMQgNTUVFRUVMDMzg5OTE6KiouDl5WXUNzc3FydOnEBurv5jbA8PDwwbNgyurq5yhE49gK+vL54+pi+w0N3WE83oJ2CUj4AZv2mxKVF/c+svaJE4T4k3Rykwe2vTo2M1WuC6NRocrbeX6YpYEamlAhaNUuImXxF70oy/YYlFwE/nuvY3UalQyh0CERFRu+GaIhNRVlaGLVu2IDExEf7+/hg1ahTCw8NhZ2eHiooKo745OTn4/fffUVpaiiFDhmDIkCEoKSnB77//jsLCbvgxPpmErJJq/Hy+exZYmBEsILtCxObEqzeXXwWsvyDitkAB5s08/9fqYJQQ1dmSpD/XAJfGj7NUARZdOK/w9vZquRMREVEXwZEiE7Fv3z7odDrMmDED1tbWzfY9cuQIFAoFpk2bBhsbGwBA3759sX79ehw9ehRTp07tjJCph1l1VgNN91xOhAh3AadzRPwz3zueJeKhMAWCnYC4/Nad09NGX7M8v6rhe3MGCXg0XAmFICChQMTbR3VYe75rZZvpGRlAuK/cYRAREbULjhSZgKysLGRnZyMsLAzW1tbQ6XTQaBov71VSUoK8vDwEBAQYEiIAsLGxQUBAAK5cuYLKysrOCt3g3LlzuOuuu+Dr6wsrKytYWFjA398fzz//PNSNrD04ffo0hg0bBgsLC9ja2mLs2LGIjY2FIAi47rrrGvRftWoVQkNDDecODAzEu+++a7R3DnUcURSxLsO5QdLQXXjZAFkVDdvr2rxtW78p03+HCiipFrHtkvF37fAVES8f0mH6Lzo8vEsLrQ5Yc4sSD4dx4yciIiK5cKTIBKSlpQEAbG1tsX37dqSnp0MURTg4OCAyMhJBQUGGvnl5eQCulkeuz93dHRcuXEB+fj58fZv/BLempgY6nbSP/VUqFVQt7F6/d+9eHD16FGPGjEFAQABqamrwxx9/YPHixUhPT8cPP/wApVI/VygpKQmjR4+GVqvF7bffjr59+2Lfvn249dZbGz33s88+i08++QSDBw/GI488AktLS2zfvh0vv/wyLl++jK+++goKBfP7jnQgXURGlYXcYUgiAM1Od6uvrjKclQoNqsQBgFpz9f3WeHG4gAl9FHhklxYl1cbvXb/W+ELfxmpx6l9KvDtagdXxWsM1TZ1tvQ9liIiIujo+SZqAkpISAMDBgwdRXV2NG2+8ETfccAMUCgX27duHCxcuGPrWjQI1NsWubuTon2uQGrNjxw58//33kr5iYmJaPN+///1vpKamYs2aNXj77bexePFixMXFYejQodiyZQuSkpIMfZ955hlUVlbio48+ws8//4x33nkHR44cQWhoaIPznj59Gp988gluu+02nDhxAh9//DHeffddnD59GhMmTMD333+P6OjoFuOrU1hYiOrqq0+p5eXlKCsrM7yuqalBQUGB0TFZWVnNvs7OzoYoXh0N6I7XaK76mqkZ01uA+hmVpK9+zvpjqjSNr++xVF19X6qZ/QS8fb0CK87qsOxMy2NrtTpgabQOTpYChjT8rMNkWVjok2RT/2+X1+A1eA1eg9fomtfobIJY/45IFlu3bsWVK1dgZ2eHmTNnGkZUqqursXbtWiiVStx3330QBAGnT5/GyZMnMXXqVPj4+Bid58qVK9i6dStGjhzZaIJRX15entF/vM2xt7eHvb295PuprKxEcXExdDodvv76a7z11lv44YcfcN9990Gr1cLOzg4eHh44ffo0nJycDMcdP34cw4cPx8iRI3HkyBEAwGOPPYavvvoKGzZswPDhw42u88cff+CRRx7B+++/j+eff15yfNR6ZTUi3JbWolpn+p+jeFgDk/ylTUXbkiSitAZInKdEUpGIqZuNR08fCBGwcpISoas1ktYUjfcT8MftCuy8LOL2X3TQSvzpOtlfwJ93KjFtixa/p5j+j2QBwAv9M/HuLVxTRERE3QOnz5mAuiQoMDDQ8HdA/0msn58fkpKSUFxcDCcnJ8M0Nq224VyfuraWproBgJubW3uEblBeXo6nn34av/76K/LzGz491n06kJeXh6qqKnh6esLBwcGoT79+/RocFx8fD1EUMWPGjCavnZOTc43RU0vszAXc7luBjZftTL76XE4l8F1864KMyRUxupcAATBaNzXcS0BFrYjEopbPMcwT2HKbAidzgJm/S0+IACDAUf9nXqWJf3OJiIi6KSZFJqBu2puVlVWD9+qmydWN6tS9bqyYQt20ORsJc/3VarXkNUVmZmYwMzNrts/06dOxd+9eTJgwATfddBM8PT1hZmaGvXv3YsWKFWjrgKQoihAEAR9//HGj66gAtDgqRu3jqeFW+DlV7ig6xsZEEXf1U+COYMGwT5GLFXBXPwG/p4ioqfcZRMD/cvmLJVfb+jvrN39NLQVu2dz0uiBXq4bV6GzNgKcjFcirFHGqC+X37u38wQoREZGcmBSZAHd3d5w7d67RtUB1bXUJU90IT05ODvr372/Ut24jVykbuO7atUvy3M3IyEhERUU1+X5xcTH27t2LESNGYOvWrUYjVX///bdRXzc3N1hZWSE7OxslJSVG0+fqr52qExwcjIMHD8LT0xP33HOPpHipY1gWnMcQjxBE5wK6bjagsTFRxNFMEasmKTDQRYf8KuDRcAWUAvD6YeMPD/bM1I/m+n+jz5RszYAdM5RwsgSWnNRhaoDx1L2UYhHH/ve/2mMRCkwP1CdaaaUivGyBB0IU8LUH/vWnDrVdqOR5eUUFgIYf5BAREXVFTIpMQJ8+fXDkyBEkJycjMjLSMCpTWVmJ1NRUODg4GKaaOTg4wM3NDRcvXkRUVJRRcYWLFy/Cx8enxX2OAGDEiBGtWlPUnPpT/uqPCGVmZmLVqlUN+o4dOxZ//vkn1qxZg8cee8zw3ltvvdXg3PPnz8eKFSuwePFi3HzzzUZJFKBflOfk5ARLS0tJ90LX5rFwBR7Y0YWe3CXSicCUTVosuUGBJyMUsDIDTmQDc7ZpW5w652IF+NrrE6EPxjSs1rA6TodjWfrv2eErIq7zBh4MFeBiJaCiVr8X0gPbRexL71qZphyl/4mIiDoKCy2YiHPnzuGvv/6Ck5MT+vXrB51Oh4SEBFRWVmLSpEno1auXoW92djb++OMP2NjYICQkBAAQFxeHqqoq3HbbbXBxcen0+MeMGYNDhw5h/PjxGDVqFK5cuYL169fD1dUVKSkp+OSTT/D0008DAM6fP4/IyEjodDpMnz4dgYGB2Lt3L7KyspCammpUaAEAnn/+eSxevBg+Pj6YNGkSfH19kZOTg7Nnz+Lo0aOIj49vdD0Sta/8/HxYO7jA40styrk9VI8mAHhpQBbentpb7lCIiIjaBUeKTMSAAQNgaWmJM2fO4OTJkxAEAe7u7hg3bhw8PT2N+np6euLWW2/FiRMncOLECQiCAA8PD0yYMEGWhAgANm/ejIcffhh79+7Fvn374Onpifnz5yM4OBgLFiww6tu/f38cOHAAjz76KLZs2QKVSoWhQ4dizZo1uO666wylfut88MEHiIqKwpIlS/Dzzz+juroa9vb28PPzw8KFCxtU4aOOodFoYG0mYG6IgC9jxFYVEqDuh//fERFRd8KRIjIZp06dQlRUFGbNmoU1a9bIHQ79Q0xMDMLDw5GQL2LQ6kZ2OqUegyNFRETU3Zj+piPULdXf0AvQr0V64403AAA33XSTDBGRVANdBVznDSikbQVE3ZSOn6cREVE3wulzJIuQkBCEhIQgLCwMNTU12LVrF86ePYthw4bh7rvvljs8akTd+jVAX0XtSGb3K7hA0tlIKOhCRETUVTApIllMnjwZW7duxZ49e6DVauHm5oY5c+ZgyZIlsLW1lTs8akRKSoqhoMWdQQIeswCKpRUwpG7IikkRERF1I0yKSBbLli2TOwRqpaqqq7uOWqgEzB8s4OOTLLjQU+Xn5wPwlTsMIiKidsE1RUQkSd2eWHUWDFYwISIiIqJugUkREUni62s8KhDoJGBsb0DJggs9kqtM5f+JiIg6ApMiIpLk3LlzDdoei+BoUU+lVqvlDoGIiKjdMCkiojab1leAq5XcUZAcyisq5A6BiIio3TApIiJJvL29G7SZKQU8FCZwCl0PxH9yIiLqTpgUEdE1mR+qgI5T6HqcXr16yR0CERFRu2FJbiKSJDMzE+7u7g3a/RwETPIHdqRy9KCn0Ir6/x4QzsSIiIi6ByZFRHTNXhquhLu1Tu4wqJNYq4CJToUAmBQREVH3IIiiyIkvRNSi6upqWFhYyB0GmYjU1FT06dNH7jCIiIjaBdcUEZEkaWlpcodAJsTV1VXuEIiIiNoNkyIikqSCJZipnuTkZLlDICIiajdMiohIEisrbkhERERE3RPXFBGRJBqNBioVa7OQXnFxMRwdHeUOg4iIqF1wpIiIJImLi5M7BDIhnE5JRETdCZMiIiJqtby8PLlDICIiajdMiohIEk9PT7lDICIiIuoQXFNERJLk5+ezDDMZiKIIQRAatNdqRYR/r0V+lQxBEQBgqCfw63QllIqG/z5ERNQ4rpomIkkyMjKYFJHBuXPnMHDgwAbtv6eISCiQISAy2HoRqNYC1pwLQkQkGX9kEhFRq9XU1DTa/kW0DkoOUBARURfDkSIikqR///5yh0AmxN7evkFbSrGIvekyBENERHSNOFJERJJcuXJF7hDIhDRWeOPrMxwlIiKirolJERFJUlZWJncIZEISExONXldrRHx9VoSWpXuIiKgLYlJERJJYWFjIHQKZsM1JIoqr5Y6CiIiobZgUEZEkwcHBcodAJsTX19fo9ZcxOrACNBERdVVMiohIktjYWLlDIBNSXX11WOhcgYhDVwAdp84REVEXxaSIiIhaLScnx/D3ZWd0UHGUiIiIujAmRUQkibu7u9whkAmqqhWxKlaEhqNERETUhTEpIiJJLC0t5Q6BTEhoaCgAYP0FEWW1MgdDRER0jZgUEZEkaWlpcodAJiQpKQkAsDSaBRaIiKjrU8kdABERdT1qtRpnckWczGm5r6lxsAAWj1Hg9iAB1mbA8SwRz+3XITq3+eMEAPcPEnBHkIAIdwHOVsClEuDn8zp8eEJEtbZTwiciog7AkSJqF5MmTYIgdO7HxQsWLIAgCIiLi+vU6/ZULMlN9dnZ2XXJAgsCgK13KHHvAAFLo3X47wEd3K0F7L9biUDH5o+1NgNWT1bCzVrAsjM6PL1Xh+NZIt68ToFtd/LXKRFRV9btR4qKi4uRnJyMjIwMlJaWQqvVwt7eHv7+/ggNDYWZmVmDYy5evIjY2FgUFBRAEAS4uLggPDy8wb4cTUlLS0NCQgIKCwtRVVUFpVIJOzs7BAcHY8CAAVCpmv+27969GxcvXoSTkxPuuusuo/cyMzNx8eJFZGVloby8HEqlEg4ODhg0aBD69u3b6YkJ9Rw5OTnw9/eXOwwyEfZuPvju965XYGFGPwGjfATM+E2LTYn64Ndf0CJxnhJvjlJg9lZdk8fWaIHr1mhwNPNq24pYEamlAhaNUuImXxF70rrYN4SIiAD0gJGiCxcuIDY2Fvb29oiMjMTw4cPh4OCAkydP4tdff4VGozHqHxMTg927d0Oj0SAqKgpDhgxBbW0ttm/fbphD35LCwkIoFAr0798fo0aNQlRUFBwcHHD06FHs2LEDotj0L83Lly/j0qVLUCqVjb5//PhxXL58Gd7e3hgxYgTCw8MhiiL27t2Lv/76S/o3phtYunQpysrKMHDgQLlD6RFKSkrkDoFMyGcHc6DWtNzP1MwIFpBdIWJz4tWfw/lV+oIRtwUKMG/8Ry8AoFYHo4SozpYk/bkGuLR3tERE1Fm6/UhRQEAAIiIiYG5ubmgbOHAgTpw4gejoaJw/fx4hISEAgMrKSpw8eRJOTk64/fbboVDoc8aQkBBs2rQJR44cgZ+fn9G5GhMeHt6gLSQkBIcOHUJCQgLy8vIaLW9cW1uLQ4cOYeDAgbh8+XKj5x42bBg8PT0NsQH6KlB//PGH4V6cnZ1b/L50B+bm5i3+W1D7aWxUlXomURTxc0bXzAAi3AWczhHxz4+mjmeJeChMgWAnIC6/def0tNGP0OdXtU+MRETU+br9SJGbm1ujD859+/YFABQVFRnacnJyoNPpEBQUZJR0KBQKBAYGorq6GqmpqW2OxdbWFoDxTvD1nThxAqIoYujQoU2ew9vb2yg2ABAEwTCtqbCwsM3xtYe0tDRMnDgRtra2sLCwQFhYGPbs2WPUJy4uDoIgYMGCBfjss8/g7+8Pc3NzeHp64t133wUAnDt3DqNHj4atrS0sLS0xfvx4FBQUGJ2Ha4o616BBg+QOgUzEyWwgudyyQWLRFXjZAFkVDdvr2rxtWz8F+b9DBZRUi9h2qSt+R4iICOgBSVFTysvLAQBWVlaGNq1WXzqosTU/dW25uS2UJ6qnpqYGarUapaWlSExMxJkzZ2BhYdHoKFFubi7i4+MxcuTINo1+VFTof6NbW1u32FcURajVaslfzU33+6exY8ciLy8PTzzxBO69914kJSVh6tSpOHz4cIO+e/fuxWuvvYabb74ZCxcuhJWVFV5++WV89NFHhoToueeew0033YQ9e/bg/vvvl/4NoXYXExMjdwhkIr46o4NSkD8BEABYKKV91bFSodEqcXVTAa1aOX/ixeECJvRR4IWDOpQ0/nkXERF1Ad1++lxjdDodoqOjIQgCAgMDDe11086uXLlimFJXJzNTP5G8LpmS4sCBA7h06ZLhtbu7O0aNGgULC4sG8Rw8eBC9evUyjGC1RkVFBc6dOwc7Ozt4enq22L+8vBxr166VfP5Zs2bBzs5OUl8vLy8cPHjQMJo1e/ZsTJw4EU8++SROnTpl1Dc9PR2nT582jEA8/PDD6Nu3L/7zn//g2WefxYcffmjoe/3112PHjh0oKiqCk5OT5NiJqH2JooiNiSK0ovxFXcb01leNk6L/txpcKASqNMZJUh3L//02rGrFOqmZ/QS8fb0CK87qsOyM/EkiERG1XY8cKTp69ChycnIQFRUFR0dHQ7uzszN8fHxw+fJlHDt2DEVFRSgqKsLff/+N9PR0AFdHk6QYMmQIpkyZgnHjxqF///4AGp86d+bMGZSUlGDUqFGtvheNRoOdO3eitrYWN954Y4OpdY2xsrLClClTJH/VH01ryUsvvWQUw/jx4xEREYGYmBijqYoAMHr0aKMpWb6+vvDx8YEgCFi0aJFR35EjR0Kr1SIhIUFyLI0pLCw0+jcoLy9HWVmZ4XVNTU2DaXpZWVnNvs7OzjYaTeuu17Czs+sW98FrXNs1CgsLMcVfMImRovMFIuZs00r6yvrf51lZFfopdP9U15ZZLu2+xvsJ+H6yAlsvinh4V9MV6+TWVf674jV4DV6D1/jn684miK2ZG9UN1BVY6N+/P8aMGdPg/erqahw4cMBo7ZCdnR0iIiJw8OBB9OnTBxMnTmzTtRMSEnD48GHceuuthhGdkpISbNy4EREREYiMjDT0XbNmDczMzBqU5K5Po9Fgx44dyMzMxI033oigoKA2xdUeJk2ahB07diA3Nxdubm5G7919991Yv349Dh8+jOuuuw5xcXEIDQ3FAw88gJUrVxr1DQ0NRWZmZoP/cd577z289NJL2LhxI+68804A+jVF33zzDWJjYxuM7FH7Ky4uNvoQgXquA+kiblzXNXcqXX+rAqN7CfD+Smu0Jmr5BAVmDxTgvFSLmhZubZgnsGemEmfygPEbtCZZha/iKSWszeQfzSMi6ip61PS5kydPIjo6GsHBwRg9enSjfSwsLDBx4kRUVlaipKQEZmZmcHFxMYwUXctDYVBQEA4fPoyEhARDUnTs2DFYWFjA39/fqOSxKIrQ6XSGGP65VqhuhOjKlSu44YYbWpUQ6XQ6qNVqyf0tLS0ljUC1VlNlx5u7Vg/L4U1Kampqo5UVqecZ0wvwtalFeoVZlyu2sDFRxF39FLgjWDDsU+RiBdzVT8DvKaJRQhTgoP/zYr1q9P2d9Zu/ppYCt2w2zYSIiIhar8ckRSdPnsTp06cRHByMG264ocVNTq2trY0SkbS0NACQvIFrY3Q6HURRbDC8WFlZiQ0bNjR6zLp16+Dr64tJkyYZ2uoSooyMDIwZMwb9+vVrVRwVFRUdtqboxIkTmDJlilFbcnIyFAoFBgwY0Ko4icg0CYKAmT75+CjRS+5QWm1jooijmSJWTVJgoIsO+VXAo+EKKAXg9cPG0+D2zNR/cOP/jT5TsjUDdsxQwskSWHJSh6kBxr9HUopFHJN39gcREbVRj0iKTp06hdOnTyMoKEhSQvRPeXl5uHDhAry8vIwKGeh0OpSWlkKlUhnKbQP6/Y4aqwJXVzraw8PD0DZ8+HDU1NQ06Hvo0CEolUqMHDnS6FxarRa7du1CRkYGRo8ebVir1Bp1a4pa01+qd999F5MmTTKM9uzZswfR0dGIiIhggYQurn5REqKZfWvwWTJQY7rLaRqlE4Epm7RYcoMCT0YoYGUGnMgG5mzTIrGo+WNdrABfe/3vjw/GNBzpXh2nw7GsLvYNISIiAD0gKYqPj8epU6dga2sLHx8fJCcnG71vZWWFXr16GV6fOHECJSUlcHd3h7m5OfLz83HhwgVYW1tj7NixRsdWVFRg/fr18PLywq233mpo37BhAzw9PeHq6gobGxuo1WpcuXIFV65cgbOzs9H6l/rXru/YsWMwMzNDQECAUfvevXuRnp4OHx8fqFQqJCUlGb3v7OwMF5fmN1VUqVRNXvdaZWVlISoqCpMmTUJWVhbWrVsHc3NzfPLJJx1yPeo8BQUFRsk/9WxhQb1xT5qANQkiNF1sDl1xNTB/pw7zdzbfr26EqM7lUkD4kPPliIi6o26fFOXl5QHQT1Pbv39/g/e9vLyMEgRXV1dkZmYiOjoaGo0Gtra2CAkJQXh4eINS2k0JDQ1FRkYGEhISoFaroVKp4OjoiKFDhyIkJARmZmbXfD91SdY/RUZGtpgUdaR9+/Zh3rx5+Oyzz1BbW4v+/fvjo48+arSoBXUtRUVF8PPzkzsMMhEJCQl4JCwM38d3zYILRERE9fW46nNE1DaxsbEIDQ2VOwwyETExMQgLC0PIai3OFaDLFVzo7lh9joiodXrkPkVE1HpMiKg+b29vCIKAxyP4a4SIiLo+/jYjIknOnj0rdwhkQuoK1sweIMCi20/EJiKi7o5JERFJotOxqhZdVbem0d5CwL8GClBxphYREXVhTIqISBJnZ2e5QyAT9XCYostVoCMiIqqPSRERSeLo6Ch3CGRC6m/GHOkhIMKdv1CIiKjr4u8wIpLk4sWLcodAJiQ9Pd3o9eMRCnCCJRERdVVMioiIqNXKy8uNXt/dT4BN27dgIyIikhWTIiKSxN/fX+4QyIRYWloavbYxFzBnkAAlCy4QEVEXxKSIiCQpLS2VOwQyIYGBgQ3aHg5TQMuCC0RE1AUxKSIiSQoKCuQOgUxIXFxcg7YQNwEjvQAFR4uIiKiLYVJERJLUbdZJ1JxHIxTQcbSIiIi6GEEURf76IiKiVsnOzoanp2eDdrVGRO/lWhSqZQiKAAAD7KoQ86AtVByyIyKSjEkREUkSFxeHkJAQucMgohbExMQgPDxc7jCIiLoUTp8jIkk0Go3cIRCRBNxomYio9ZgUEZEkfNAi6hpcXV3lDoGIqMthUkREkvBBi6hrSE5OljsEIqIuh0kREUnCBy0iIiLqrpgUERERdSN9+vSROwQioi6HSRERScIHLaKuoaKiQu4QiIi6HCZFRCQJH7SIuoa8vDy5QyAi6nJUcgdARF1DXl4efHx85A6DiK5BaomIZWd0cofRLdmaCfjvMAHmSm6aS9QVMSkiIiLqRsLCwpp8b2m0Dp+cEsHn9vZXqxNhL5bhyeuc5A6FiNqASRERSdLcgxYRmY5z585h4MCBDdrVGhErYkXoREAnyhBYD2BpaS13CETURlxTRESSnDt3Tu4QiEiCmpqaRts3JYooqe7kYHqYouIiuUMgojZiUkREkjT1oEVEpsXe3r7R9i+idVBw2lyHUqvVcodARG3E6XNEJElTD1pEZFo8PT0btMXniziaJUMwPYxKZSZ3CETURhwpIiJJGnvQIiLTk5iY2KBt2RkdVBwl6nCenh5yh0BEbcSkiIgkaexBi4hMX0WNiNVxIjQsrtDhMjIy5A6BiNqISREREVE34uvra/R63QUR5bUyBUNE1EUwKSIiSf75oEVEpqm62rjE3BfROnDmXOewt+PaS6KuikkREUnyzwctIjJNOTk5hr+fzhFxOhfgzLnOoTJjoQWiropJERFJUv9Bi4i6BhZY6FyFhQVyh0BEbcSkiIiIqBsJDQ0FAJRWi/ghgQUWiIik4D5FRCRJ3YMWEZm2pKQk9O/fH2vOiajWyB3NVQ4WwOIxCtweJMDaDDieJeK5/TpE57Z87FBPYE6IAsM9BQx2A8yUAoQPG785e3Pg5RH66/SyBXKrgN2XRbx5RIf0sna+qX/w8ODWBURdFUeKiEiSpKQkuUMgIgnUajVEUcTSaJ3coRgIALbeocS9AwQsjdbhvwd0cLcWsP9uJQIdWz5+SoACD4YKEAFcLGn+OrvuUuLRcAFbkkQ8sVeHtedE3BUs4Mi9Sth28JKf0tLSjr0AEXUYJkVdwJgxYyAInBRO8lKr1XKHQEQS2NnZ4e8sIL7AdAoszOgnYJSPgDnbdVh0VMSXMSJuXKeFVgTeHNXyo8hXMTo4fK7F0B+12HW56bsa4Q0M8xLw/EEdnj+ow8pYES/+pcNT+3ToZSdgvF/H/i6tqqrs0PMTUcfpktPniouLkZycjIyMDJSWlkKr1cLe3h7+/v4IDQ2FWSPVXy5evIjY2FgUFBRAEAS4uLggPDycZYaJJLKzs5M7BCKSwMfHB4v26QssmMp6ohnBArIrRGxOvBpQfhWw/oKI+wYKMFcCNdqmj8+VmGvYm+uTnpx/9M8q1/9Z1cHTCZVKZcdegIg6TJccKbpw4QJiY2Nhb2+PyMhIDB8+HA4ODjh58iR+/fVXaDTGP/ViYmKwe/duaDQaREVFYciQIaitrcX27du7xJSgnTt3ory8XO4wqIfz8fGROwQikuB4bCJ+PmdaBRYi3AWczhEbjFwdzxJhYyYg2Kl9rnMyR0R5jYi3RikwtrcAb1tgTC9g8Q0KHM8SsbuZUab24OPNn5NEXVWXHCkKCAhAREQEzM3NDW0DBw7EiRMnEB0djfPnzyMkJAQAUFlZiZMnT8LJyQm33347FAp9HhgSEoJNmzbhyJEj8PPzMzqXqbG0tJQ7BNlotVqUlZXB0dFR7lB6vPPnzyM8PFzuMIioBX9kOaHWdJYTAQC8bICDGQ3bsyr0f3rbCojLv/aEpaAKuPsPHb6ZqMDeu6+O2my/pMOM33TQdnCimJaeBoT26diLEFGH6JIjRW5ubo0mMX379gUAFBUVGdpycnKg0+kQFBRkSIgAQKFQIDAwENXV1UhNTe3wmJsSHx+P6dOnw93dHWZmZnBwcMCQIUPwyy+/GPo0tabou+++Q3BwMMzNzeHo6Ij77rsPf/zxBwRBwHPPPSc5hhMnTkClUuGWW25p9P2bb74ZCoUCly5dMrSlpaXhnnvugYeHB8zMzGBvb4+JEyfiwoULRsemp6fj3//+N4KCgmBnZwczMzN4eXlh/vz5qKw0nt+wfPlyCIKApUuXYuHChfDx8YGlpSXeeustAMDu3bsxatQoODk5wczMDI6OjggLC8O6desk3ysRUXcmiiI2Zrl36DUEABZKaV91rFRAdSPT49Saq++3l7xKEdG5Il76S4vbtmjx+mEtRvcSsGpSl3zkIaJO0iVHippSN8XMysrK0KbV6n8Kq1QNb7WuLTc3F8HBwc2eW6vVora2VlIcgiDAwsKixX6HDh3CrbfeitLSUkyePBmRkZEoKSnB8ePHsX37dkyfPr3JY1etWoUFCxbA1tYWDz74IKytrfHbb7/h2LFjkmKsb8iQIYiMjMSuXbtQXFxsNCpz+fJlHDp0CMOHD4e/vz8AICUlBWPGjEFhYSFuu+02DBgwAGlpadiwYQOGDRuGmJgYQ98zZ87g119/xfjx4zFjxgwIgoADBw5g5cqViIuLw9GjRxvE89FHH6GsrAwzZ86Em5sbQkJCEBcXhzvuuAMKhQL33HMPevfujdzcXJw6dQpHjhzB3Xff3er7ptbp1auX3CEQUQsOXQEulXXsupYxvfVV46To/60GFwr1a3ksGjnE8n+/mttrrY+/A7DvbiXu/1OHzUn6YaHfUoDUUh2+m6zEpDgR2y913HCRrS3XXhJ1Vd0mKdLpdIiOjoYgCAgMDDS0Ozs7AwCuXLlimFJXJzMzEwAkrddJTk7GgQMHJMVia2uLe++9t9k+Go0Gjz32GIqLi/HLL7/gtttuM3q/LplrjFqtxqJFiyAIAv7++29DQvfqq68iKipKUoz1KRQK3HfffThx4gRWrFiBhQsXGt5bsWIFKisr8cgjjxjannjiCeTl5eHIkSNG15s7dy4mTJiAZ599Flu2bAEAjB07Fnl5eUbFL0RRxD333IP169fj2LFjGDFihFE8+fn5SEpKgqfn1f0eFi9ejLKyMvzwww+47777Wn2PdQoLC2FjY2NIWsvLyyGKoqGIQE1NDcrKyuDi4mI4JisrC15eXk2+zs7OhoeHh2E0r7teo6KiAhYWFl3+PngNXqM7X0NTlgfAGR3pfIGIOduaqYpQT12Bg6wK/RS6f6pryyxvn0RlTogClkrgj4vG5/stWf96lLfQoUkRRONzd5f/rngNXkOOa3Q2QRRFE1qK2XaHDx9GfHw8hg4dioiICKP3tm7diitXrmDw4MHo168fACAxMRGxsbHQ6XTw8fHB1KlTmz1/ZWUlCgsLJcWiUqmMHugbEx0djSFDhmDkyJE4fPhws33HjBmDv/76C3X/VH///TdGjBiBSZMmYdu2bUZ9Fy1ahNdffx3PPvssPvroI0nxAkBJSQkCAwPh4uKC8+fPAwBqa2sxePBgZGZmIi8vD+bm5igoKICfnx9CQ0OxYcMGo3OIoohJkyYhJycH+fn5Da6hVqtRVFQErVaL7du3Y/78+XjvvffwwgsvANBPn3v44Ycxd+5cfPvtt0bHfv3113jooYcwffp0rFq1imuMZBATE8M1RURdQNg3pYgrtYbOhH67r79VgdG9BHh/pTUqtrB8ggKzBwpwXqpttvpcfZ/fpMDjEYpGN29dNkGB+YMF2H6qNRp9crMGch9V4f2/dXjxr45bcPXGwAy8PqVPh52fiDpOtxgpOnHiBOLj49G/f/8GCREAjB8/HgcOHMDZs2dx9uxZAPrywtdffz0OHjzYaAnvf7K2toa1tXW7xRwfHw9RFBuNtyV163bqErz6Bg4c2KZ4HBwcMGXKFHz//fc4ffo0IiMjceDAAVy4cAFz5841rOFKSUlBRUUFjh07ht69ezd6rvprt2pra/HSSy9h3bp1yMjIwD9z8IKCAkn3cP/992PNmjX45Zdf8PvvvyM4OBg33HAD5s+fj8jIyDbdMxFRd/TMCCvM3SF3FMY2Joq4q58CdwQL2PS/stwuVsBd/QT8niIaJUQBDvo/m9uktSmJRSIUggIz+wn4Lv7q75tZ/fWfZkfnmlCmSEQmpcsnRSdPnkR0dDSCg4MxevToRvtYWFhg4sSJqKysRElJCczMzODi4oL09HQAkDTqoNFoUFNTIykmQRCM1jV1FY8++ih+/PFH/N///R++//57fP311xBFEU8//bShT11SM3ToUDzzzDONnqd+kvnYY4/hm2++wdChQ/Hwww/Dx8cH5ubmSEhIwNtvvw2druEndra2tg3aLC0tsXfvXuzfvx9btmzB33//jVWrVuHrr7/GW2+9hZdeeuka755aMmjQILlDICIJhqhS4WDujxJpv7I6xcZEEUczRayapMBAFx3yq4BHwxVQCsDrh41/D+yZqV985P/N1UzJ1x7410B9YhPlof/z5RH6Py+XAj8m6H83rY4TsTBKxPIJCkS4i4gvEBHpLuDBwfrqdluSOjYpcnf36NDzE1HH6dJJ0cmTJ3H69GnDqEFjFdrq++doT1paGgBI2sA1JSWlXdcUhYSEQBAExMTESDpnfUFBQQDQoNIbACQkJLT6fHXqph5u2bIFV65cwa5duzBo0CCEhoYa+vj7+8Pa2hoVFRWYNWtWs+errq7G9u3b4enpiWPHjhmNIP3f//1fq+NTKBQYN24cxo0bB0C/Ie91112Ht956Cy+++GKL//50bS5dutRiQRIikp+2ugIPDhbwf6fEDi9BLZVOBKZs0mLJDQo8GaGAlRlwIhuYs02LxKKWj/d3EPD29caVGupe708X8WOCPoEqVANRP2qxaJQCt/YV8HCYgAI18G2siJcO6Tq8VLl+jXLX+1CUiLpwUnTq1CmcPn0aQUFBkhKif8rLy8OFCxfg5eXV4vofAOjduzemTJki6dyNVbr7p5CQEAwePBiHDx/GH3/80aActk6nM0oi6ouIiECfPn2wZ88eJCYmGh5US0pK8MMPP0iKsTEKhQKzZ8/Gs88+izlz5qC4uBiLFi0y6uPm5obRo0djx44d+P7773H//fc3iDsjIwO+vr4QBMHwVX/aXGlpKZYtW9aq2DIzM+Hp6Wn0PfHz84Obmxtyc3OhVqu75OhcV/LPEupEZJpsbGywwFeBj05KXKTTSYqrgfk7dZi/s/l+9UeI6hxIFxtdQ9SYzHLgwR3ybNRUWVkBwE2WaxPRtemSSVF8fDxOnToFW1tb+Pj4IDk52eh9Kysro/LBJ06cQElJCdzd3WFubo78/HxcuHAB1tbWGDt2rKRrtveaIpVKhc8//xy33norpk+fjilTpiAiIgLl5eU4fvw4Bg0a1GTiYGlpiZdffhkPP/wwhg8fjlmzZhlKctclH20dNZkzZw7eeecd7N69G1ZWVpg7d67R+4Ig4Msvv8TYsWMxZ84cfP/994iKioJSqURqaioOHjyIqKgobNmyBebm5hg7diy+++47jBgxAlOnTkVBQQF+++03Seu46lu0aBE2bdqEm266CYGBgVAoFNi/fz/i4uIwadIkJkSdwMamkdJRRGRy9BuSC7ihl75Et6mMFvUETX2YSUSmr0smRXl5eQD0w9T79+9v8L6Xl5dRUuTq6orMzExER0dDo9HA1tYWISEhCA8Pl7SfUEcZPXo0Dhw4gJdeegmHDx/Gn3/+CRsbGwQFBbU4KvXggw9CoVDgvffewzfffAMbGxvccsstmDJlCmbPnt3mBM7JyQmTJk3CTz/9hClTpjS6vicgIADHjx/Hyy+/jB07duDgwYNQKpVwcXFBVFQUnnzySUPfL774Aubm5vj111/xzjvvwNHREdOmTcOdd97ZYsW/+m699VYkJydj37592LJlCxQKBTw9PfHiiy/i9ddfb9O9Uuv4+fnJHQIRSZCQkIDw8HA8FqHAgQx5Rkx6ql4+3M+NqKvqNiW5Se+dd97BK6+8gtWrV+Pf//53m87xwAMPYNWqVTh48GCTxSuo52FJbqKuoe7/1RqtCO+vtChQyx1Rz/HmoCt4bTI/QCLqijjO20XV1tZCrTb+TVdSUoLVq1dDqVTi5ptvbtN5CwoK8Pvvv6Nv375MiIiIuiBvb28AgLlSwENhApSsQdNp+DkzUdfVJafPEZCamoqhQ4di6tSpCAoKQm5uLv744w+kp6fjkUcegaenJ7RaLS5fvtziuTw8PJCQkIADBw5gy5YtyM/Px+LFizvhLqgrqXvQIiLTVn9N6fzBCrz3t2kVXOjOuPaSqOtiUtRFubi4YPjw4di9ezc2btwIURTRq1cvvP3223j55ZcBADk5Oejbt2+L5/rqq6+QmpqKDz74AHZ2dnjiiScaFFggYslzoq7hypUrcHPTV0Dr4yBggh+wJ40FFzpDexZkIqLOxaSoi3J2dsaOHc1vWe7i4oI1a9a0eK7rr78evXv3xvvvv99e4VE3VP9Bi4i6jsciFNh5mQUXOoO+EBRHi4i6IiZF3ZiFhUWLG6wSEVH3MmDAAKPXUwIEeFgDOdxqjIioSSy0QESS/PNBi4hMU3p6utFrlULAI+EKKDgDtsO5unI0nairYlJERJL880GLiExTeXl5g7YHQ5kRdQZ1VZXcIRBRGzEpIiJJGnvQIiLTY2lp2aDNx07ALQFgee4OVl7Bn5NEXRWTIiKSpLEHLSIyPYGBgY22PxKuYAW6Dsesk6irYlJERJI09aBFRKYlLi6u0faJfQT0su3kYHoY39695Q6BiNqISRERSdLUgxYRdQ0KQcBjEfy135FKctLkDoGI2ogluYmIiLoRT0/PJt9bMFhAHwcmRh3B1gzwKS2WOwwiaiNBFEXOMCaiFmVnZzf7sEVE1NOlpqaiT58+codBRG3Aj4uISBIzMzO5QyAiMmmurq5yh0BEbcSkiIgk4T5FRETNS05OljsEImojJkVERERERNSjcU0REUlSVVUFKysrucMgIjJZxcXFcHR0lDsMImoDjhQRkSRZWVlyh0BEZNIqKirkDoGI2ohJERFJUlpaKncIREQmLS8vT+4QiKiNuE8REUliYWEhdwhERF1WYqGIaq3cUZiWAAfAxlyQOwwiAFxTREQS6XQ6KBQcXCYiaoooihCEhg/5uRUifJZrodHJEJQJG9sb2Hs3P58n08AnHCKS5OzZs3KHQERk0s6dO9do+6o4ETomRA1cLJE7AqKrmBQRERERtYOampoGbTpRxBcxOjAnakij0cgdApEBkyIiksTd3V3uEIiITJq9vX2Dtl2pItLLZAimC9Bx+IxMCJMiIpKEexQRETXP09OzQduXMTooWUugUY2tvyKSC5MiIpLk8uXLcodARGTSEhMTjV5fKRPxx0VAy5JWjTIzM5M7BCIDJkVEREREHWBlrAiOhTStsTVYRHJhUkREkgQFBckdAhGRSfP19TX8XaMT8dUZHUeJiLoIJkVEJAl3aicial51dbXh79suiciukDGYLkCpVModApEBkyIikqS4uFjuEIiITFpOTo7h719Es8BCS1hogUwJkyIikoQLYomIpEktEbEzlQUWWsJ9isiUMCkiIkkGDRokdwhERCYtNDQUAPDNWR0UHAQh6lKYFBGRJGfOnJE7BCIik5aUlIRarYjlZ0SOEknAGQhkSlRyB0BEXYMo8jc8EVFz1Go1fk0WUaDunOs5WACLxyhwe5AAazPgeJaI5/brEJ3b8rFDPYE5IQoM9xQw2A0wUwoQPmx8Opu4sPHHxRcOavHB8bb/btBqtQCYGJFpYFLUjV24cAFz587F0aNH+UBL18zV1VXuEIiITJqdnR2+OKkvsNDRI0UCgK13KBHmBiw5oUN+FfBouAL771ZiyA9aJBc3f/yUAAUeDBVwNg+4WAL0c26+/85UHb6PN76p6Nxru0mdTndNxxO1JyZFzSguLkZycjIyMjJQWloKrVYLe3t7+Pv7IzQ0lMO+rZCZmYnly5fDzs4OCxcubPN58vPzsXr1ahQUFOC9995rxwipJXZ2dnKHQERk0qpsfLA/vXOuNaOfgFE+Amb8psWmRH1ysv6CFonzlHhzlAKztzafcHwVo8MHxwG1Bvj8JgX6OTe/CCqxCPjpXPtmeqw+R6aEa4qaceHCBcTGxsLe3h6RkZEYPnw4HBwccPLkSfz6668mXzUlKCgIe/bsQWVlpdyhIDMzEz///DM+//zzazpPQUEBNm/ejPfff7+dIiOpLl26JHcIREQmbclfRZ1WhntGsIDsChGbE68mKvlVwPoLIm4LFGDewhZAuZX6hKg1LFWARTtuLcQPl8mUcKSoGQEBAYiIiIC5ubmhbeDAgThx4gSio6Nx/vx5hISEyBhh8xQKBaysrOQOg4iIqNtTa0RsvuLcaQUWItwFnM4R8c/LHc8S8VCYAsFOQFx++11vziABj4YroRAEJBSIePuoDmvPX9vN1tTUgI+iZCo4UtQMNzc3o4SoTt++fQEARUVFnR2SgVarxe7duzFlyhS4ubnBzMwMDg4OGDlyJHbt2gVAP9J13XXXNRieLisrw4cffojAwECYm5vD2dkZjzzyCBYvXgxBEPDGG2+0Kpbs7GwsXLgQffv2hbW1NSwsLODl5YU777wTeXl52L9/PyZNmoTExESkpaVBEATD1/79+1FRUYGVK1di7Nix8PT0hIWFBaysrBAeHo5NmzYZrnPy5ElMmzYNR48eBQCj86xevfqavp/Usrr/7omIqKFNiSLKNe04jNICLxsgq6Jhe12bt237DVkdviLi5UM6TP9Fh4d3aaHVAWtuUeLhME5/o+6D6XkblJeXA4DkUZjq6mrJhQ7MzMygVDb/Q1Wr1WLVqlX4z3/+g9LSUtx6660ICQlBQUEBzpw5g927d2PChAmNHqtWq7FkyRK89957sLe3x4IFCyCKInbt2oXa2lpJMdZXXFyMV155BStXrkRERATuueceKBQKpKSk4OzZs8jNzcWAAQPw+OOPY/ny5aiursZLL70EALCxscGAAQNQWFiI3377DXl5ebjtttvg6emJy5cvY8eOHZgxYwZ++ukn3HvvvfD398eCBQuwbNkyJCcnY8mSJQD0/w5jxoxpdezUOkVFRVxXRETUhC9idFAIInRi6xMFAWhxuludaq3+TyvV1b/XVzclzqodn/CuX2t8oW9jtTj1LyXeHa3A6nhtq6fh1VEq+Nk8mQ4mRa2k0+kQHR0NQRAQGBgo6ZhNmzYZEqmW3HDDDejXr1+zfWJjY/Hpp5+iuLgY27dvx80332x4TxTFZhOwmJgY/PDDD1AoFDhx4gQCAgIAAIcOHcKcOXMkxVhfRkYGTp06BVtbWxw/fhwqVeP/Sd1yyy1Yu3Yt1Gp1g0ILGo0GP/30E2xtbY3a//zzTzzwwAN46623cO+998LFxQW33HILNm3ahOTk5DYVbCgsLISNjQ0sLCwA6BNcURQND/s1NTUoKyuDi4uL4ZisrCx4eXk1+To7OxseHh6GEbnueo28vDw4OTl1+fvgNXgNXoPXaO9raHUi4vLalhABwJjeAvbfLS0r6v+tBhcKgSpN4+t7LP/3a7iqA5c91+qApdE6LJ+oxBAP4PCVtp1HqJcUdbV/c16j46/R2QSRtZpb5fDhw4iPj8fQoUMREREh6Zjs7GzJRRmcnZ1hbW3dbJ9Vq1Zh3rx5mDhxIrZv395kv8ZKcn/99dd46KGHMHPmTKxbt87Qt6qqCk899RS++eYbvP7665Kn0CUmJmLOnDk4fvw41q9fj9tvv73RajInT57E7NmzoVarcfny5SbPp9VqUVJSgqqqKmRkZOC///0vDh48iJKSEtjb27PMuIxiY2MNu7UTEZGxJ/Zo8VWMDto2JEYe1sAkf2nHbUkSUVoDJM5TIqlIxNTNxlXmHggRsHKSEqGrNZLXFH1+kwKPRyia3KeoMZP9Bfx5pxLTtmjxe0rbfh97WdYg8/Hmn3mIOgtHilrhxIkTiI+PR//+/SUnRADg6enZrnEkJydDFEVERka2+tjU1FQAaDAaZWVlhV69erX6fH379sWcOXOQlJSEO++8E3Z2dhg6dChuv/12/Pvf/5Y03Uqn02Hv3r147733cOLECZSVlTXoU1xcDHt7+1bHR+2HCRERUdMeDlNgaXTbkoOcSuC7+NYdG5MrYnQvAQJgVGxhuJeAiloRiR287DnAUf9nXiU/oKTugZM5JTp58iSio6MRHByM0aNHt+rYqqoqVFZWSvoy9TLf/6RUKrFgwQKcPn0an376KW666SakpKTgiSeeQFBQEFJSUlo8x5EjRzB37lz89ddfmDlzJr744gv88MMP+OqrrzBs2DAA3ODNFMTGxsodAhGRyRrkKiDCSQ1FJ9Ue2JgowtNGwB3BVy/oYgXc1U/A7ykiauotAwpw0H+1hWsjy6dtzYCnIxXIqxRxKqdt5wUAsyam3BPJgf81SnDy5EmcPn0awcHBuOGGG1q92diWLVvadU1RUFAQBEFAdHR0q+IAAD8/PwD6qXX11U1Xa6vevXvjySefxJNPPony8nK89tpr+OSTT/Dxxx/jiy++aPZ7tnfvXmRkZOC1117Dm2++aWhPSEjAypUrjfpyozf5aLWNrOglIiKDu3zyEF3Uu1OutTFRxNFMEasmKTDQRYf8KuDRcAWUAvD6YeMPEvfM1C8+8v/m6s9xX3vgXwP1v1OjPPR/vjxC/+flUuDHBP0I0GMRCkwP1CdaaaUivGyBB0IU+uP/1KH2Gj6z1PIDTzIhTIpacOrUKZw+fRpBQUFtSogAYNy4ca1aU9SSiIgIDBo0CNu3b8fu3bsxfvx4w3t162yaijMsLAx+fn745ZdfcPHiRUOhhVOnTmHv3r2SYqxPrVajvLwcrq6uhjYbGxv0798fgH7hHaCvqmdhYYGsrCyIomgUX121vfprhGpra/Hnn38iJibG6HoqlcqwiK+wsFDS94vaB7/XRETNm9ZHgw+SgJLqjr+WTgSmbNJiyQ0KPBmhgJUZcCIbmLNNK2nqnL+DgLevN67UUPd6f7qIHxP0CdThKyKu8wYeDBXgYiWgola/F9ID20XsS7+2qXOcBUKmhElRM+Lj4w2V1Xx8fJCcnGz0vtR1OO29pigkJARPPvkkFi5ciEmTJmHatGkYNGgQioqKcPbsWYwcORIffPBBo8eGh4dj9uzZ+OCDDzB06FDMmjXLUJK77odTaxK/06dPY/bs2XBxccGwYcPg4eGB9PR0bNu2DYIg4F//+hcAwN3dHQEBAYiNjcV9992HyMhIODg4YNq0aRg1ahS8vb3x/vvvIz09HT4+PoiJicHevXvh7e2NtLQ0w/Xc3d3Rt29f7N+/H/fddx/GjRsHOzs7TJw4Ef7+/tfwXaWWODk5yR0CEZFJCwrww/xQAZ+cEjtlE9fiamD+Th3m72y+X/0RojoH0kVJhRV2Xxax+3LH3AznfpApYVLUjLy8PAD6soL79+9v8L6Xl1ebihNcK6VSiblz56J379746KOPcODAAfz222+wtbXFwIEDMXHixCaPtbS0xPPPPw8HBwcsX74cy5cvh52dHe6++264ubnhrbfekrz/EgD06dMHt99+O3bt2oWffvoJFRUVsLOzQ2hoKH744QeMGzcOgD4xfP7551FSUoLff/8da9euhSiKCAwMxPXXX4+lS5fi/fffx8aNG1FTU4OgoCB89tln+PXXX42SIltbWyxcuBA5OTk4dOgQtm/fDlEUsWrVKiZFHSwlJQXh4eFyh0FEZLISEhKwICwMH57kdGMpzMzN5Q6ByIAluQmAfhrc008/jeXLl2Pt2rW455575A6JTExMTAyTIiKiZtT9nBy3ToODGeiU0aKuzNuyBldYkptMBKvP9UC1tbVQq9VGbSdPnsTu3buhUqlw4403yhMYmTSOxBERNc/b2xuAvuABE6KW8VtEpoTT53qg3377DfPnz8ctt9yCPn36IC0tDXv27DFslurp6Qm1Wo3MzMxmz6NSqeDm5taq6XbUdZWVlcHBoY01XYmIeoC6Nbm3BQpwtQLyq2QOyMQpFPxsnkwHk6IeKCAgAOHh4di+fTtKSkogiiL69OmDTz/9FE8++SQAYNeuXZg2bVqL51q1ahXmzJnTwRGTKcjPz5dlDR0RUVdx5coVuLm5wUwp4KEwAe//3TkFF7oqJZMiMiFMinqgiIiIFstvjxgxAmvWrGm2j6WlJUaMGNGeoZEJ4x5RRETSzQ9V4N1jLLjQnFqNBgCLLZBpYKEFIiIionZQXV1t2EsPACZv1GDXZRZcaIqXZQ0yWWiBTATHLYlIkvj4eLlDICIyaenp6UavH41gwYXmqFScsESmg0kREUlSW1srdwhERCatvLzc6PUUfwFeNjIF0wWI/9s0nsgUMCkiIkkcHR3lDoGIyKRZWloavVYqBDwcpoCCSzIbpWVSRCaESRERSeLm5iZ3CEREJi0wMLBB27xQZkREXQGTIiKSJCkpSe4QiIhMWlxcXIM2HzsBt/YFlMyNGjA3Z+U5Mh1MioiIiIg60KPhLLjQmNqaGrlDIDJg2Q8iksTPz0/uEIiITJqnp2ej7eP9BMzqL6CkhplRfSMtcwD4yx0GEQDuU0REEmVmZsLb21vuMIiIqJtITU1Fnz595A6DCACnzxGRRLm5uXKHQERE3Yirq6vcIRAZMCkiIiIiok6XnJwsdwhEBkyKiEiSwYMHyx0CERERUYdgUkREkly4cEHuEIiIqBvheiIyJUyKiEiS6upquUMgIqJupKKiQu4QiAyYFBGRJPb29nKHQERE3UheXp7cIRAZMCkiIkm8vLzkDoGIiIioQ3CfIiKSJCYmBuHh4XKHQURE3YQoihAEodH3VpzV4eOTOnTlh9TbgwS8O1opdxgkkUruAIiIiIio5zl37hwGDhzYoF0URbz/tw4pJTIE1Y6+ihHx7mi5oyCpOH2OiCTp3bu33CEQEVE3UlNT02j7gXSxyydE1PUwKSIiSWpra+UOgYiIupGmCvh8dUaEqvFZdUQdhkkREUmSnZ0tdwhERNSNeHp6NmjLrRCxOVGEpisvJqIuiUkREREREXW6xMTEBm2r4kToZIiFiEkREUkSEhIidwhERNSN6UQRX8TooOMoEcmASRERSZKcnCx3CERE1I34+voavd6VKiK9TKZgqMdjUkREkqjVarlDICKibqS6utro9VdndFCywALJhEkREUlia2srdwhERNSN5OTkGP5+pUzE7ymAllPnSCZMiohIEu5TREREHWVlLLMhkheTIiKS5Ny5c3KHQERE3UhoaCgAQKMT8RULLJDMmBQRERERUadLSkoCAGy7JCK7UuZgqMdTyR0AEXUNPj4+codARETdSF0Bny+i9QUWrmU9kYMFsHiMArcHCbA2A45niXhuvw7RuS0fO9QTmBOiwHBPAYPdADOlAOFDTaN9Hw4TMM5XwHAvAb72AlbH6TB3O3dW6g44UkRGnn76aQiCgP3798sdSrPi4uIwduxYODo6QhAEDBs2TO6Quj1R5LwGIiJqP3Z2dkgtEbEz9doSIgHA1juUuHeAgKXROvz3gA7u1gL2361EoGPLx08JUODBUAEigIslzfd9fpgC43wFxBeIqGVViG7FpEeKNBoNNmzYgLKyMgwcOBDXX399o/3S0tIQGxuLvLw8aLVa2NrawsfHp8n+1LVVV1fjoYcewvHjx/Hwww/Dz88PgYGBcofV7WVmZsLd3V3uMIiIqJvw8fHB2yd1UFzjKNGMfgJG+QiY8ZsWmxL1J1p/QYvEeUq8OUqB2VubH8n5KkaHD44Dag3w+U0K9HNuui74Deu0SCvV/73sSWXbgyaTY9JJ0cmTJ1vcG+XUqVM4deoUevXqhaioKKhUKpSXl6OgoKCToqTOlpeXh/j4eNxwww34/PPP5Q6HiIiI2iA24TyWxYRccxnuGcECsitEbE68eqL8KmD9BRH3DRRgrgRqtE0fn9uK9Ux1CRF1PyabFOXn5yM2NhbDhw/HsWPHGu2TkZGBU6dOISoqCpGRkZ0cIcmlsrISpaWlcHZ2ljuUHmXgwIFyh0BERN3I/jx7FLTDvuAR7gJO54j4Z251PEvEQ2EKBDsBcfnXfh3q3kxyTZFOp8PBgwfRu3dv+Pv7N9kvJiYGVlZWCA8PBwDU1taaxLqHY8eOYfz48XB1dYWZmRkcHBwwcOBAfPXVV4Y+paWlePzxx+Hr6wtLS0tYWVnBx8cHM2bMQG1tLQD9dCVXV1cMGzYMmzZtQmhoKCwtLeHg4ID58+dDo9EgMzMTd9xxB5ycnGBmZobw8HDEx8c3iCkuLg633HILnJ2doVKp4OrqinvvvVfSiJparcbs2bMhCALmzp0LnU4/DH3q1ClMmTIFLi4uUKlUcHZ2xl133YXcXONVjSdPnsSMGTPQp08f2NjYwMzMDL6+vnj55Zeh1Tbz0U0j7rzzTvTr1w+iKGLDhg0QBAGCIGD16tWtOg+13uXLl+UOgYiIupFf87ygbHqmmmReNkBWRcP2ujZv23a4CHV7JjlSFBsbi+LiYkyYMKHJPrW1tcjKykLv3r1x/vx5nD59GpWVlVAqlfDz88N1110Ha2vrFq+l0Wig0TReYeSfFAoFzM3Nm+2TlpaG6dOno6SkBPfccw/69u2LwsJCnDlzBgcOHMAjjzwCnU6HBx98EBs2bMD111+POXPmQBRFpKSk4MiRI6iuroaZmZnhnOnp6XjggQcwefJkTJ8+HTt27MCKFSugVCpx7NgxqFQqPProo7h8+TI2bNiAqVOn4uLFi1AoFIbv5/jx45GXl4dp06Zh0KBBOH78OH7++WccPXoUZ8+ehZ2dXaP3U1RUhJkzZ2L37t145ZVX8NZbbwEA9uzZgxkzZkCn0+HOO++En58f4uPj8fvvv+PYsWOIi4uDg4MDAGDXrl04dOgQbrrpJgQEBKCyshK7du3Cu+++i7S0NPzwww+Svv8A8OCDD2LAgAF45513EB4ejtmzZwMAxowZI/kc1DYVFY38xiEiImqDpCIRh7PNGrQLAMwlLtWp/t/nqlaqq3+vT625+j5RS0zuP5PS0lKcOnUKkZGRsLOzQ1lZWZP9RFFEbm4urly5grCwMLi4uCA7OxtxcXEoLCzEHXfcAZWq+VuMiYnB6dOnJcXm5eWFW2+9tdk+Bw4cQE5ODt5++228/PLLjfYpKirCsWPH4O/vj7/++qvF62ZnZ2PNmjWYNWsWAH2FuMjISHz99de46aabsHPnTgiC/lMQCwsLfPvtt9i1axduvvlm6HQ6vPrqq8jNzcXHH3+MZ555BgCg1Wrx6KOP4uuvv8aiRYuwZMmSBtdNT0/H7bffjpiYGCxbtgwPPfQQAP30tYULFwIA4uPj0atXL8MxK1euxIIFC/D+++/jvffeAwA89thjeOGFFwwx1p1j/PjxWLNmDRYvXgwvL68Wvw8AMHnyZAQEBOCdd95BUFCQIQ7qeFI+ZCAiIpJi3XkRAkSIMB7FGdNbXzVOiv7fanChEKjSABaNHGL5v0fAKmmffVMPZ3LT5w4dOgQ7OzsMHjy42X51U8zUajVGjRqFqKgo+Pv7Y+TIkYiIiEBxcTESExNbvF5wcDCmTJki6WvEiBEtns/JyQkAsH37dmRnZzfax9zcHFZWVsjJycGePXtaPKebm5shIQIAFxcXBAcHQxRFPP/880bJxujRowEA58+fB6Bfm3X8+HE4OjriiSeeMPRTKpX4z3/+Azs7O2zZsqXBNZOSkjBu3DjEx8djy5YthoQIAM6cOYMzZ85g0qRJAPRru+q+hg4dCjc3N2zfvt3Q397e3hBjRUUFMjMzUVhYiFGjRkGn0+HkyZMtfg/aS2FhIaqrqw2vy8vLjRLvmpqaBlMKs7Kymn2dnZ1tNG2zu17D3d29W9wHr8Fr8Bq8Bq8h/zUiHEobJEQAcL5AxJxtWklfWeX/i6dCP4Xun+raMsvlW1rRVf49TPEanU0QTWERzv8kJSVh3759mDZtGjw9PQEAZWVlWLt2bYOS3Hl5ediyZQsEQcADDzwApfLqRwSlpaX4+eefERAQgPHjx3fqPajVatx3333YvHkzAKBv374YPXo05s6da0hYAP2IyjPPPIOysjI4OzsjKioK06dPx7x58wxT9DIzMzF48GD06dOnQeJw5513YvPmzUhOTkbfvn0N7b/99htuu+02vPjii3j33XeRkpKCAQMGYPDgwQ3OUVJSgiFDhiAjI8NQ5e/pp5/Gp59+CktLS1RXV2Pv3r248cYbjY77+uuvjZKkxvj4+CAjIwOA/n+U5557Dtu2bUNubm6DdV/fffcd7r///pa+tQYXLlxA//79cdddd2H9+vWSj6NrExMTY1i/R0REdC1EUUS/lRokFV/7ep/1tyowupcA76+0RsUWlk9QYPZAAc5Ltc1Wn6vv85sUeDxC0eTmrfWVPanExkSxyc1bHS2AoidMblIWNcFk/qW0Wi2OHj0KX19fWFlZoaREv3tW3TqGmpoalJSUwNLSEhYWFrCx0af/5ubmRgkRcHWaT/2MtSm1tbWGUaeWKBQKWFpaNtvH0tIS69evx99//41Nmzbh2LFjWLduHVatWoXHHnsMS5cuBQDMmzcPkydPxrp167B//36cPHkSO3fuxOLFi3Hq1Cmjymp1a4Ma8897r3Otue6NN96InTt34pVXXsGuXbtgZWXV4NzTpk3DPffc0+jxLi4uAPTf33vuuQe7du3ChAkTMGHCBHh6ekKlUmHnzp1YvXq1oXADERER9QyCIODuXgV4p9i1QdW41tqYKOKufgrcESwY9ilysQLu6ifg9xTRKCEK0C93bnGTVup5TCYp0mg0UKvVSEtLQ1paWoP3k5OTkZycjOHDhyMsLAzW1tawtbVFeXk5NBqN0dqhukSq/oN8U86cOdOua4oAfRIzcuRIjBw5EgBw5coVjB07Fl988QVee+01wwaY3t7eeOaZZ/DMM89Ao9HgiSeewLJly7Bs2TK89NJLkmJqiZ2dHVxdXZGSktLg+5SXl4fc3FyjNUF1/vOf/yAiIgIffPABxo4di7179xqSzQEDBkAQBOh0OqNpfY25cuUKDh8+jKioKOzcudPovQMHDrTDHVJnkbrui4iISIqJLrlYonRttEhCa2xMFHE0U8SqSQoMdNEhvwp4NFwBpQC8ftj4g9c9M/UfJvt/c/WivvbAvwbqR6yiPPR/vjxC/+flUuDHhKtp2y0BAsL+t4+5mQIY7CYY+v6WLCKWpb+7LJNJiszMzBqd6qZWq3Ho0CH07t0b/fr1MxpBCQoKQnR0NBISEozWICUkJAAAfH19W7xucHCwYapeSywsLFrsk5OTA2dnZ6PqcZ6envDx8UFSUhKKiorg6OiI4uJiQ3IEACqVCmFhYQD0yUp7qSvp/euvv+LLL7/Ek08+CUBf9vyjjz5CWVlZo1PhFAoF3n77bahUKrz77rsYM2YM9u/fD1tbW0RGRiI0NBTbtm3DoUOHjKY1AvoRuqKiInh6ehpKZv9z5CoxMRG//PJLu90ndbymRiWJiIjawtPRCrP6C/gxQYTmGoaLdCIwZZMWS25Q4MkIBazMgBPZwJxtWiQWtXy8v4OAt683/h1X93p/uogfE64mUHcGC5gTcnUGT6QHEOmh75tRpkVsvsmsSqFWMpmkSKFQICAgoEF73SItOzu7Bu+HhYXh0qVL+Pvvv1FSUmKoPpecnAxvb+9Gz/dP9vb2sLe3b5+bAPDVV1/hk08+wfjx4xEcHAwLCwv8/fffOHjwIAYPHox+/fohNTUVgwcPRmhoKCIjI+Hp6YnU1FRs3rwZKpUKc+bMabd4FAoF3nrrLRw9ehRPP/009u/fj4EDB+L48ePYvXs3/Pz88NprrzV57BtvvAEzMzMsWrQIo0ePxoEDB2Bvb49PP/0Ud955J2688UZMnToVgwcPRk1NDZKTk3Hw4EE8+OCDeO+99+Dp6Ylhw4Zh3759mDBhAkaPHo309HT88ssvcHBwQE5OTrvdK3WsjIwMuLq6yh0GERF1E35+fnjEVoHV8dc4VASguBqYv1OH+Tub71d/hKjOgXRR0hoiAJi7XdfkGiLq2kwmKWoLc3NzTJs2DSdOnMDly5dx4cIF2NjYIDw8HJGRkc2uxeko48aNw4kTJ3Ds2DH8+eef0Ol0cHd3x6OPPoq3334bAODs7IxZs2bh4MGD+O6771BVVQUHBwdERETgnXfeMYwYtZfQ0FDs3r0bL7zwAvbv34/ffvsNDg4OuOeee/DZZ581uUcRoE+MXnnlFahUKrz22msYNWoUDh06hBtvvBEHDx7EG2+8gb/++gt//vknzM3N4ebmhokTJxqm1VlYWOC7777D008/jQMHDmD//v1wc3PD/Pnz4eLiwpLaREREPVRCQgKGhoUh1BWIy8c1ry0iuhYmVX2OiEyXWq1usdAIERGRVHVVTZef0eGRXbpulxSx+lzXYnL7FBGRabpy5YrcIRARUTfi7e0NALh3gGDYaJVILvxPkEyCWq1GZmZms30EQYCPj49hHyfqXPU3YSMiIrpWdRu725kLuH+QgJVnr63gAtG1YFJEJmHnzp247bbbWuy3b9++BpvJUufg1DkiImpPV65cgZubGwDgkTAFlp+59oILRG3FpIhMwogRI7BmzZpm+yiVynYvQkHSBQUFyR0CERF1U2HuAoZ4AKdzWHCB5MFCC0QkSd2CWCIiovZQXV1ttAfk6rjuVe6ahRa6FhZaICIiIqJOl56ebvR6Zj8BdmYyBUM9HpMiIpLEw8ND7hCIiKgbKS8vN3ptbSZgTogApSBTQNSjMSkiIknqT3EgIiK6Vo0V8Hk4TAEtF3aQDJgUEZEkaWlpcodARETdSGBgYIO2ga4CRnkDCo4WUSdjUkREREREnS4uLq7R9sciFNBxtIg6GZMiIpIkODhY7hCIiKgHuCNIgCNnbFMnY1JERJJkZ2fLHQIREXUjnp6ejbZbqATMH9z1589Fsj5Rl8J9iohIEu5TREREnaVGK6KyVu4oro2NGWDGUnpdBneUIiJJzM3N5Q6BiIh6CHOlAHOl3FFQT8KRIiKSRBRFCAI/8SIiIqLuh2uKiEiSM2fOyB0CERERUYdgUkRERERERD0akyIiksTNzU3uEIiIiIg6BJMiIpLExsZG7hCIiIiIOgSTIiKSJDU1Ve4QiIiIiDoES3ITERERkXwOnQOOXpA7itbzcgLuu0HuKKidsCQ3EUlSXl4OW1tbucMgIqLuxuYeQF0LdMVtH9K/Bryc5Y6C2gGnzxGRJPn5+XKHQERE3VGNBtCJgFbXtb5EEfh2r9zfPWonTIqISJLi4mK5QyAiIjIdOhH4ajug1codCbUDJkVEJIlKxSWIRERERq4UAjti5I6C2gGTIiKSJCQkRO4QiIiITItSAXy5Xe4oqB0wKSIiSc6cOSN3CERERKZFqwP+PA2kc91tV8ekiIgkYaFKIiKiRigEYMVuuaOga8SkiIgkcXFxkTsEIiIi06PV6Qsu1GrkjoSuAZMiIpLE3t5e7hCIiIhMU14p8MdJuaOga8CkiIgkuXTpktwhEBERmSYWXOjymBQREREREV0LrQ7YfRa4mC13JNRGTIqISJKAgAC5QyAiIjJdSgXw9S65o6A2YlJERJIUFxfLHQIREZHp0uqAr3cCNbVyR0JtwKSIiCQpLCyUOwQiIqLWcbAGlj8M5K4CytcAe98EIiTOfBgaCHyxADi5BKhZD4ibWz6mqALY8ve1xUyyYFLURcXFxUEQBCxYsEDuUKiHUCj444KIiLoQQQC2vgLcOxpYug347/eAuwOwfxEQ6NXy8VOGAA/eBIgicDFH2jUVAvDFtmuLm2ShupaDNRoNNmzYgLKyMgwcOBDXX3+90ftnz57F5cuXUVxcjOrqalhYWMDR0REhISHw9/eXdI3MzEz88ccfjb7n6+uLSZMmXcstEJFEgwcPljsEIiKiq/YtAlJzgblLG39/xkhgVH9gxhJg01F92/ojQOJS4M27gdn/1/z5v9oOfLAFUNcAnz8I9PNpOSadCPx1DjifAfTv1arbIXldU1J08uRJqNXqJt/Pzc2FnZ0devfuDUtLS1RXV+PixYvYtWsXoqKiEBkZKfla/fv3h5eXcVZvY2PT5tiJqHViY2MRGhoqdxhERETSzBgJZBcBm49dbcsv1SdG940BzFVATTMbruaWtO26SgWwbCfwfw+07XiSRZuTovz8fMTGxmL48OE4duxYo33Gjx/foC00NBSbN2/GmTNnEB4eLnlKjoeHB4KCgtoaLnVRBQUFcHFxkTsMAqDVauUOgYiISLoIf+D0Rf30t/qOJwEPTQSCvYG4tPa/rlYHrNoDvDcbsLJo//NTh2jTIgGdToeDBw+id+/ekqfBGS6oUMDGxga1tbXQ6XStOra2thYaTTMZfSeaNGkSBEFAWloaJk6cCFtbW1hYWCAsLAx79uxp0P/VV19FZGQknJ2doVKp4OjoiPHjxyMuLq7R82/YsAHDhg2Dra0tzMzM4O7ujqlTpyIjI6PZuH788UdYWlpi0KBByM6WVit/5syZEAQBp0+fbvBeSkoKlEolJk+ebNS+du1aREZGwtraGmZmZvDz88Prr7/e4PiffvoJN954I9zd3WFubg5ra2tERkZi06ZNDfqGhobCzc0NZ86cwejRo2FrawtXV1cA+gfy//73v/Dz84OlpSWsrKzg7e2NqVOnorq6WtJ90rVxcnKSOwQiIiLpvJyArKKG7XVt3s4dd+3SKmDDkY47P7W7No0UxcbGori4GBMmTJDUX61WQxRFqNVqXLx4Eenp6fD29oZKJf3yR44cwYEDBwAADg4OGDhwIEJCQiAIQovHiqLYqgdnCwsLSecFgLFjx8Le3h5PPPEEsrOzsW7dOkydOhV79uzBqFGjDP2WL1+OkJAQ/Otf/4KLiwvi4uLw66+/YvTo0YiLi4OPz9V5qm+88QYWLVoEJycnzJw5E3369MHly5exd+9eJCUloVevxueofvDBB3jppZcwcuRIbN++Hba2tpLu4amnnsKGDRvw6aef4rvvvjN679NPP4VOp8Ojjz5qaHvzzTfx5ptvIjg4GA899BBsbW2xd+9eLFq0CMnJyfjpp58MfVeuXImSkhJMnz4dvXv3RkZGBjZu3IiZM2di06ZNmD59utH11Go1xo0bh8GDB+PZZ59FTo5+YePjjz+OZcuWYfjw4bj//vuhVCpx8eJF7N27F5WVlbCw4CcxHY0jdkREJBuVUl9Jrj4zFWBhBrjYGbcXlutHh6zMgepGPkxX1+j/tDLvmFgBfcGFpduA+8d23DWofYmtVFJSIq5cuVKMjo4WRVEUS0tLxeXLl4t//fVXk8esXr1aXL58ubh8+XLx66+/Fnfu3ClWVlZKul5WVpa4fft2MT4+XkxNTRXj4+PFzZs3i8uXLxf37dsn6Rx1MUr9Ki0tbfGcN998swhAHDVqlKjVag3tu3btEgVBECMjI436FxUVNTjHzz//LAIQn3rqKUPb+fPnRZVKJfr4+IjZ2dkNjtFoNKIoimJsbKwIQJw/f74oiqL4+OOPiwDE6dOnG/q0Rr9+/URHR0expqbGqN3T01P08fExvE5OThZVKpU4duzYBue46667REEQxJiYGENbY/d98eJF0dbWVoyKijJqDwkJEQGIc+fObXCMv7+/URxtVVBQIKrVasPrsrIyo3/v6upqMT8/3+iYzMzMZl9nZWWJOp2u21/j5MmT3eI+eA1eg9fgNXgNE7uG6k5RxO3Nf93wiiiZ3wL9MWWVorhiV8NzTX5L32/imy1ft+7r8636Y6T2V9whiiNf6Jr/HiZyjc4miOI/J1o2788//0RFRQXuvPNOKBQKlJWVYe3atY1Wn6uTlZUFrVaLiooKXLx4EYIg4LrrroO9vX1bEzls27YNGRkZmDZtGjw9PZvtr9FoJE8lAwBPT88WR7EmTZqEHTt2YOvWrZgyZYrRe0OGDEFMTAzy8/MbTDnSarUoLCw0jFwFBwcjMjIShw4dAgD85z//wYcffohPP/0UTz75ZJPXj4uLQ2hoKObNm4eioiJs3rwZjzzyCL788kvJ91nfe++9h5deegkrVqzAvHnzAABbtmzBHXfcgWeffRYfffQRAODFF1/E+++/j59//tloJAwA/vrrL9x777144403Gp1KV1RUhMrKSoiiiDvuuAMJCQkoLy83vB8aGoq4uDhkZ2fDw8PD6NjBgwcjOTkZa9euxW233dame6RrExMTg/DwcLnDICKi7sZsBqBpYUmFow0wpK9x20dz9IUUlvxq3H7oHFBdq68yl5QFTH3H+P0HbgJWPgaEPi19TdHnDwKPTwGEO6T1B4CfngbuHSO9P8mqVdPnkpKSDIlIa/YsqV81rl+/ftizZw9+/fVXzJw5s03TngRBQHh4ODIyMpCWltZiUqRSqZqccnathg4d2qAtMDAQp0+fxrlz53DdddcBANavX4+33noLFy5cQG2t8U7HZWVlhr8nJycDgOG4lvz0009Qq9V47LHHsHRpEyUpJXj88cfx1ltvYeXKlYakaNmyZVCpVHjqqacM/c6fPw8AuOeee5o8V/0ENCYmBs888wyOHz+OyspKo36NTVG0s7NrkBAB+qTt3nvvxfTp0+Hk5ITIyEhMmTIFjzzyCKysrFp3s9Qmffr0kTsEIiLqqYorgD1njduKyvXrg/7ZXicmFRg9QL9fUf0xgOFBQIUaSMzssHDhaAPcObLjzk/tTnJSpNVqcfToUfj6+sLKygolJfoyhRUVFQCAmpoalJSUwNLSssVEJzg4GCkpKbh06RL69+/fpsDt7PTzR5srCV5Hp9NJ6lfH0tKyXTeq3LFjB2bNmgVPT08888wzCAwMhI2NjWHz1dYWnKhvyJAhOHv2LNatW4f58+cjLCysTeexs7PD5MmT8csvv+DSpUuws7PD/v37MXLkSPj6+hr61Q0sfvDBB+jdu3ej5xo4cCAA/cjQuHHjoFarcd999yE8PBwODg5QKBR4//33cfZswx9iTf23M3XqVKSmpmLt2rXYs2cPjh8/jj179uDjjz/G8ePH4e3t3ab7JunKy8vh6OgodxhERETSbDwK3HUdcMeIq/sUudjp234/aVyOO+B/H8hK3aS1OUoF8OB4/Xon6jIkJ0UajQZqtRppaWlIS2s41JicnIzk5GQMHz68xQfzugpy11I1rC4pkzJKUFFRgbVr10o+96xZswxJV0tOnDjRYPpccnIyFAoFBgwYAAD49ttvodPpsG3bNqMNMIuLiw1JZZ26suNHjhxBVFRUi9cfOHAgFi9ejMmTJ2PcuHHYtWtXq/Z/qu+pp57C5s2b8emnn8LR0RE1NTWYP3++UZ/AwEAA+hLps2bNavZ8GzZsQFFREd555x289NJLRu+98cYbrY7PyckJjz76qKHow6uvvoq3334bS5YswSeffNLq81Hr5Ofnd9iIKxERUbvbeBQ4egFY9TgwsBeQXwY8OkmftLz+s3HfPW/q//R/+Gqbrxvwrxv0f4/SP//g5Rn6Py/nAT8eaPy6Wh2wQFoxMjIdkpMiMzOzRvcdUqvVOHToEHr37o1+/frB2Vlf3rBuipiZmXGWrNPpkJCQAABwd3c3ai8tLYVKpTKqmqZWq2FpaWl0Dq1Wi1OnTgEA/Pz8WozdysqqQeLSUn+p3n33XUyaNMkwsrRnzx5ER0cjIiLCsJ5IqVQCuDrKUueZZ55p0DZv3jx88sknWLJkCe69915DSeo6Op2uwSjWddddh127duHmm2/GTTfdhB07dmDYsGGS76HOmDFjEBQUhA0bNsDa2houLi649957jfrMnz8fn376Kd5++23ccccdDZLHvLw82NjYwNra2rAu65/3+NNPPyExMbFVsWVkZDR4IB85Uj8sXVhY2KpzERERUQ+g0wFT3gaW/Bt4cqq+2tyJZGDO59Kmzvm7A28bPwcZXu+PazwpUiqAMQOBIM5g6WokJ0UKhQIBAQEN2uvWw9jZ2Rm9X1JSgt9//x0BAQFwcHCApaUlKioqkJycjJKSEgQHBxutNaqoqMD69evh5eWFW2+91dC+bds2WFtbw9XVFTY2NkbnGDRokFFi1eRNduCaoqysLERFRWHSpEnIysrCunXrYG5ubjRycc899+Dnn3/GlClTMGvWLJibm2Pfvn1ISUlpkFT069cPL774It5++230798ft912G/r06YOMjAzs2rULK1euxNixDcs7Dhs2DHv27MGECRMwceJE/Pnnn5LXJdV3//3349VXXwWgT4DqErr68b355pt45ZVXEBAQgGnTpqFPnz7Izc1FfHw8Dh8+jFOnTiEkJARTp06Fg4MD3n33XVy6dAm9e/dGTEwMtm3bBl9f30ZHHJsycOBADBgwAEOGDIGPjw8yMzOxbt06qFQqPPAAd4zuDCyyQEREJmXsay33Ka4A5n+p/2pO/RGiOgfiW1dYAdCPEj02ueV+ZHLatE+RFLa2tggKCkJ2djZSU1NRU1MDc3NzuLq6IjIy0jANqyX+/v5ITU1FfHw8qqurYWZmBhcXFwwZMkTyOTrSvn37MG/ePHz22Weora1F//798dFHH2HMmKvVRqZNm4Zly5bhgw8+wOeffw5zc3NERUXhwIEDRv3qLFq0CP369cOHH36ItWvXora2Fk5OThg2bBiCg4ObjCUyMhJ79+7F+PHjMWnSJPzxxx+Nnr85jz/+ON59912o1WqjAgv1vfTSSwgJCcEHH3yADRs2oLKyEnZ2dujduzcef/xxw4J8Dw8P/Pbbb3jmmWewdu1aaLVaBAUF4eeff8ayZctalRTNmTMHe/bswY8//oiqqirY29tj0KBBeP3113HDDTe06h6pbeLj4zFo0CC5wyAiIjJdrnbAtIZFuMj0tbokN+nVleTubt++yspKuLu7o1+/foYpikQAS3ITEVEHkVKSuytQKoAX7mg45Y66hPYrsUbdwieffIKKigpDWW6iOg4ODnKHQEREZLp0OmB+w/X31DV02PQ5kl9RURGKioqa7aNSqeDr64uVK1ciJSUFn3/+OXr16tWg6hxRY/tHEREREfSjRBPCAL+W17qTaWJS1I09//zz+Oabb5rt4+rqiry8PLzwwgsoKipC3759sWrVqgZVA4kSExM5fY6IiKgxWp2+3Dd1WUyK2mj79u1yh9Cixx57rNFKdfXZ2NgA0JfSJiIiIqI28HICprRtn0gyDUyKurGwsLAWN9IlksrX11fuEIiIiEyPUgE8cjPwj21MqGthoQUikkStVssdAhERkekRRWAeCyx0dUyKiEiS3NxcuUMgIiIyLUoFcGsU4O0sdyR0jZgUERERERG1hVYHPDpZ7iioHTApIiJJQkND5Q6BiIjItPi6AuMHyx0FtQMmRUQkSWJiotwhEBERmQ6FoC/DreDjdHfA6nNEJEl1dbXcIRARUXdkYQZoqwFBkDsS6UTok6K54+SOhNoJkyIiksTOzk7uEIiIqDvatwg4nix3FK3n6Qi4O8odBbUTQRRFUe4giMj0qdVqWFpayh0GERERUbvjJEgikuT8+fNyh0BERETUIZgUERERERFRj8akiIgk6dWrl9whEBEREXUIJkVEJIlGo5E7BCIiIqIOwaSIiCTJzs6WOwQiIiKiDsGkiIiIiIiIejSW5CYiSTQaDVQqbm1GRESdK79SRK2uY6+hEAAPmy60eSy1Oz7hEJEkKSkp6Nevn9xhEBFRD1JWI8Lvay0qO2FZ64qbFZgXyklUPRX/5YlIkqqqKrlDICKiHmbtORFVnZAQKQUgNo+Tp3oyJkVEJImNjY3cIRARUQ8iiiKWRnfwvLn/UXDmXI/H6XNEJImvr6/cIRARUQ9yIhuIzZc7CuopOFJERJKcO3dO7hCIiKgH+SpGBxVHcKiTMCkiIiIiIpNSrBax9rwIDZf5UCdhUkREknh7e8sdAhER9RA/JIio0codBfUkTIqIiIiIyGTUFVjgIBF1JiZFRCRJZmam3CEQEVEPcPgKkFgkdxTU0zApIiIiIiKTwQILJAcmRUQkyYABA+QOgYiIurn8ShHrE1lggTofkyIikiQtLU3uEIiIqJtbHS9C1zn7tRIZYVJERJJUVFTIHQIREXVjOlHEl9E6MCciOajkDoCIugYrKyu5QyAiolYqVov470EdtiSJqKwFhnkJ+OhGBSI9pC3aOVcg4pl9Ohy6IsJcCUwNEPDxjQq4WTc8PqVYxKuHdNh9WURZLdDLFpjZT8A7o5WSrrUvTcSl0lbdHlG74UhRN7FgwQIIgoC4uDi5Q2mzjIwMTJw4EU5OThAEAaGhoQAAQRAwadIkmaOjvn37yh0CERG1gk4UMXWzFmvOiXg8QoHFNyiQWynixnVaJBW1vGgno0zEmJ+1SC4W8e5oBRZGKbD1oogJG7So0RofH5MrYsgPWpzJE/FclAKfj1NgVn8BmeXS4/2SBRZIRhwpagNRFBEbG4tz586hvLwclpaWCAgIQFRUFMzMzOQOr8uaN28e9u3bh3nz5iEwMJCbhZqYuLg4hIeHyx0GERFJtPGCiCOZwIZbFZjRT/85+Mx+AoJXavH6YR3W3NL8CM67x3SoqAVO/UsJX3t9tjLMC5iwQYfVcSIWhOnbdKKIf/2pRX9nYN9MJazMWp/ZZFeI+DUZ0LLAAsmESVEbHD16FHFxcejTpw8GDx6M4uJixMXFoaCgAFOnToUg8GOOtjh+/DiGDBmCZcuWyR0KERFRl7cxUYSHNXBH8NXnEjdrATP7CfgxQUS1RoRFM0Mzm5JE3BIgGBIiABjvp0Cwkw7rL4hYEKZv25kqIi4f+PMOBazMBFTWirBQAkqF9Oehb2NFbtZKsmJS1EqFhYWGhGjixImGdjs7Oxw5cgQpKSkIDAyUMcKuq6SkBI6OjnKHQU3w9PSUOwQiImqF6FwRkR4CFP/4sHaYl4Cvz4pILAJC3Ro/9kqZiNxKIMqzYWIzzEvAnxevpjC7L+v/bqECon7Q4FQOYK4Ebg8U8OV4BZytmk+OtDoRX8booGNWRDLimqJWSklJAQDDepc6/fv3h0qlQlJSkhxhNWrSpElNjlr9c51OXFwcBEHAggUL8O233yIwMBBmZmZwdHTE7NmzUVNT0+AcX375Jfr06QMzMzO4urrioYcewtq1ayEIAt577z3JcdathxJFETt27IAgCI2eY+vWrQgJCYGFhQVsbW0xdepUFBVxy+vOolLxMxQioq4kqwLwsmnYXteWWd50FpJVYdz3n8cXqoHq/20mlPS/X8Uzf9ehv7OAjdMUeH6ogE1JIm7dooUoNp/t7EgVcaUVa4+IOgKfclopLy8PgiDA3d3dqF2lUsHFxQV5eXktnkMURVRXV0u+poWFRadNydu3bx9+/vlnzJw5E97e3ti6dSvWrFkDJycnLF261NDvs88+w9NPPw0PDw88/PDDUKlU2LRpE/bs2dPqa953330IDg7Gf/7zHwwcOBBz584FAEyYMMHQ58KFC7j77rsxbdo0zJgxAwcPHsSff/6J+++/H7///vu13zi1KCMjA66urnKHQUTUI+lEETVaaX0tlPoPP6s0+r//k+X/nv6qNE2fo+69Ro9XXu1joQLKa/Wvh3oI+HGq/s07gwFrMx1e/EuHPWkixvs1/RzzZYwOSoHriUheHClqpYqKClhaWkKpbPhTwsbGBmq1Glpt8z+1ysvL8f3330v+Ki/vvI9P0tLScOTIEaxYsQKLFi3CiRMn0Lt3b/z444+GPjU1NXjjjTdgZ2eH6OhofP755/jkk09w5swZlJa2vpbmmDFjsHDhQgBA7969sXDhQixcuBBhYWGGPpcvX8aGDRuwZs0avPHGG9i7dy+GDh2KP//8s1WjRYWFhUYJaXl5OcrKyozuraCgwOiYrKysZl9nZ2cbfQrWXa+h1Wq7xX3wGrwGr8FrdMVrHEwXYfV/WklfFwr1x1upgOLyqgbXKKuqNbzf1H1Y/S9xqtY2jDu/pMJwPAAotPqYZw0QjO7j3v+93n+pusnvlSiKOHLFNBKiispKk/o37+nX6GyC2NKYJhlZu3YtdDodZs+e3eC9ffv2ISkpCf/+979hYWHR5Dk0Gg2ys7MlX9PT07PFqUsLFizAN998g9jYWISEhADQT5/bsWNHo8PWgiDg5ptvxvbt2wHop8+Fhobipptuwu7du436zpgxA5s2bUJhYSGcnJywbds2TJkyBffddx9++OEHo75PP/00Pv30U7z77rt48cUXJd9jYzHVb+/fvz/OnTtn1P7cc8/h448/xqFDhzBq1KhWXYtaT61Ww9LSUu4wiIh6pOwKEdsvSXtkuz1IgIOFgKAVGgQ5CfjzTuMPclfG6vDgDh3O/luJULfGR3CulInotVyLD8Yo8N9hxp+h/+tPLf68KKLgcf2zyYKdWnxzVsT2OxW42f9qX7VGn8g9PUTAJ2ObrnT31F4tvowWoZHxidRMATwaLuD/xknbU4m6H06fayWVSgW1Wt3oe3UjRC0lMCqVCr169Wr32NqDn59fgzZnZ2cAQGZmJpycnHDhwgUA+nVU/zRw4MAOiaux71fdVK7WJJjUdleuXOFeRUREMvG0ETAnpHVT6cPdBfyVIUInikbFFv7OEmGtAoKdmj7Wx06AmxVwMrthpnI8S0S4+9XzDfEQ8A0arguq26PIrYVCCw+HKfDZaYlzA4k6CKfPtVJzU+Sam1pXn06nQ2VlpeQvnU7XplibWofUWNGEOs3FLuegoqnG1ZPUHwYnIiLTNyNYQE4lsDnx6u/J/EoRGy6IuLWvYFSOO6VYREqx8e/TO4MF/HFRRHrp1fY9l3VILALuqlfm+7ZAARZKYFWcDrp6v5NXxOqfXyY0s54IAAa4CBjlDbSigjdRu+NIUSu5ubkhIyMDubm58PLyMrRrNBoUFBQYtTWloqICa9eulXzNWbNmwc7OrtWx1pW3zszMNNoI9ezZs60+V33BwcEAgPPnzzd4LyEh4ZrOTaaruSmhRERkemYECxjhBczdrkNCAeBqpS9qoBWBN0cZfy5+03r9h72pC64+Gr40XIENiVqMXa/FU5EKlNcCS07oEOoKzK03auVpI+DlEQq8dliHSRt1mB4o4EyeiG/OipjVX8BQr5azncciFDic2bYPgYnaA5OiVurbty+io6MRGxtrlACdP38eGo1G0h5FVlZWmDJliuRrWllZtSnWfv36AQA2btyIJ5980tC+aNGiNp2vzvjx4+Ho6IjffvsN2dnZhv1rioqKsGbNmms6N5muumSYiIi6BqVCv57oPwd0+Cxah6paYKgnsHqyEv2cW05UetsLOHC3Es/u1+GFgzqYK4GpAQI+ulHRYNPXV0YIcLJQ4PNoHZ7eJ8LTBnh5hIDXRkqblHRHkABHC6BYenFeonbFpKiVnJ2dMWjQIMTHx2Pnzp3w9fVFUVER4uLi4OXlJSkp6qw1RY8//jg+/PBDvPDCC0hISICzszP27NmD4uLiazqvubk5Xn31VTz33HOIiIjAXXfdBZVKhY0bN8Le3h55eXlQKDgzs7uJjY1FeHi43GEQEVErOFkKWHGzEitubr5f/RGi+ga5Ctgxo+XiA4Ig4PFIAY9Htu33v4VKwPzBAj4+KZpEJTrqefjk2gYjR47EiBEjUFRUhEOHDiElJQUhISHNbpYqB1dXV2zYsAF+fn5YuXIlPv/8c7i7u+PgwYPXfO5nn30Wn3/+OczNzfHVV1/h+++/x+TJkw2ltds6ukVEREQ904LBCiZEJBuW5KZ2VVcme+vWra2aIkim759r04iIiNrbTes0OJDR+fsWsSQ3caSI2qSqqgq1tbVGbUVFRfjhhx9ga2uLsWPHyhQZdRTuUURERB3tsQiOFpE8uKaI2iQ2Nha33HILJk+ejICAAGRmZmLLli3Iy8vDa6+9BisrK9TW1iI9Pb3Fc3l5eXG6XReQlpZm2LOKiIioI9zaV4CrFZBfJXck1NMwKaI28fHxQUhICLZu3YqSkhIolUr4+fnhlVdeMVS6u3DhAkJDQ1s814YNGzBjxoyODpmIiIhMnJlSwMNhAt77mwUXqHNxTRF1mPLycvz+++8t9hs7dqyhrDeZrsrKSlhbW8sdBhERdXNppSL6fK1FZz6gck0RcaSIOoytrS1mzZoldxjUTnJycuDv7y93GERE1M352guY5A/sTO38ggvUc7HQAhFJUlJSIncIRETUQzwazoIL1LmYFBGRJGZmZnKHQEREPcRkfwFeNnJHQT0JkyIikmTQoEFyh0BERD2EUiHg0XAFFILckVBPwaSIiCSJiYmROwQiIupBHghlRkSdh0kREREREZkcb1sB0/oCKuZG1AmYFBGRJK6urnKHQEREPcyj4QpoOqHgglbX8dcg08aS3EQkia2trdwhEBFRD3OTn4DJ/kBuZcdeRyEAswdwrKAn4+atRCRJTEwMwsPD5Q6DiIiIqN0xJSYiIiIioh6NI0VEJEl5eTmn0BEREVG3xJEiIpKkoKBA7hCIiIiIOgSTIiKSpKioSO4QiIiIiDoEkyIikkSpVModAhEREVGH4JoiIiIiIiLq0ThSRESSnD17Vu4QiIiIiDoEN28lIkl0Om73TUREneiDzcC26PY734PjgftuaL/zUbfCpIiIJHF2dpY7BCIi6kkWbQAqq9vvfJmFwOwxgCC03zmp2+D0OSKSxNHRUe4QiIiI2i4pC/grQe4oyEQxKSIiSS5evCh3CERERG2nUgBfbZc7CjJRTIqIiIiIqPvT6ICNx4C8ErkjIRPEpIiIJPH395c7BCIiomuj0wGr98kdBZkgJkVEJElpaancIRAREV0bnQh8sU2fHBHVw6SIiCQpKCiQOwQiIqJrdzkP2BsrdxRkYpgUEZEkAkuYEhFRd6BUAF+y4AIZE0RRFOUOgoiIiIjIiM2s9t2nqD6FAKR/A3hzDz7S40gREUkSFxcndwhERETt59s9ckdAJoRJERFJotFo5A6BiIiofehE/Z5FWq3ckZCJYFJERJI4OjrKHQIREVH7ySwCtkfLHQWZCCZFRCSJq6ur3CEQERG1n84suFBcASz4CnCbo18rNfY14HSK9OPPZQCTFgG29wLO9wP/+rThJrSpuYBwR+NfPx9q19vpjpgUkZGysjL069cP3t7ecofSLFEUsWzZMgQFBcHS0hKCIGD16tVyh9WtJScnyx0CERFR+9HqgG3RQFpex15HpwOmvg2s+Qt4fDKw+H4gtwS48TUgKbPl4zPygTGvAMnZwLuzgYXTgK2ngAlvAjW1DfvPGg388JTx18jg9r+vbkYldwBtFR0djfz8fOTn56OsrAy2tra49957G/QrKyvD2rVrmz3X2LFjERQU1FGhUgc4ceIEnnvuOXh4eODll1+GlZUVxowZI3dYRERE1JUoBGDFbmDRrLaf48ZXgT7uwOonGn9/41HgyAVgw0JgxnX6tpnXAcGPA6+vA9Y80/z5390EVKiBU0sAXzd927AgfVK0eh+wYKJx/0h/4L4b2n4/PVSXTYpOnDgBCwsLuLq6oqampsl+lpaWGDt2bKPvHT58GBqNBr179+6oMKmD7Nu3D5WVlViyZAnuvPNOucPpEfr06SN3CERERO1LqwOW7QBevQsw+//27jwq6nr/H/hz2HcQEEVUFhEVQ03cMPuqRGp6TY3U/JmFVl7zmkua1lURs1XtSJZXzBSNbENzKReuEppmuAd5UQQlA2RRUBTZZpj374+JyXEGmIEZBpjn45w5HT6f9+fzfr3nfaaZl+/lY6CfxTt/Bdq5AM8M+vtYW2dFYvTlz0ClFLC2rP36XcnAP/r9nRABQFhvIKAD8N1J9aQIUCRRluaAVR33JRUtNil67rnn4OTkBACIj4+HVKph+BCApaWlxlGggoICVFVVwdfXFzY2NgaNlfSvoKAAAODm5mbkSEzH/fv3udkCERG1PjfvAj+cVU1a9OlCFtDXDzB7aNXKgK7AZ4eBKzeAIG/N1+YWKaba9euifm5AV+DAOfXjK78D3vgCkEiAYD/g3anAiD6NbkZr12LXFNUkRA11+fJlAED37t31EU6DJCcnIywsDO7u7rC0tISzszMCAwOxceNGZZno6GhIJBJs3rwZ8+fPh6enJywtLeHr64tdu3YBAPbu3Ys+ffrA1tYWjo6OiIiIUEsS5XI5tmzZgl69esHOzg5WVlbo2rUr1q9fr1Wsqamp8Pf3h729PQ4ePAgAqK6uRkxMDHr37g07OztlXGvXrlW5VgiBDRs2YMiQIfDw8ICVlRXs7e3Rv39/HD58WKf37MaNG3B3d8e6desAKKY+SiQSSCQSne5Durt508BzromIiIzB3AzYcNBw98+7DXi2UT9ec+xGcd3XPlj24euLSxUjTYBiKuCIPsCaF4F9bwHrpisSqqfeAfafbVQTTEGLHSlqDKlUimvXrsHBwQEdO3bU6hqZTKb1c1rMzMxgZWVVZ5k///wT48ePR0lJCZ577jl06dIFxcXFSElJwbFjx/Dqq6+qlP/www9RVlaG5557DkII7NixA5MnT8aaNWuwYsUKjBkzBmPHjkVCQgK2b9+OTp06YdWqVcrr3333XURFRaFNmzaYPn06rKyssG/fPsybNw9ZWVnKJEOTxMRETJ06FVKpFMeOHUO/fv0gl8sxd+5cbNy4EYGBgZg9ezasrKxw+PBhvPHGG8jKysKGDRsAKJKnuLg4yGQyhIeHw9PTE1lZWdi7dy9GjRqFxMREDBs2TKv31sXFBW+//Ta+//57JCYmYtasWejSpQtsbW21up6IiIhIRbUc+Ol34Go+0KV93WWlMqCkTP1YpRS4dVf1uKuDYnSovAqw1vCT2+av34rltS8DUZ7TNL3OxvLvMtaWiul1CZGqZaYNBQLnAQu3A2P61V4PmWZSdPXqVUilUvTq1UvrEYbffvsN58+f16qsp6cnxo4dW2eZY8eOoaCgAO+88w6WLl1a7z1LSkqQmZkJZ2dnAEBwcDBeeOEFLFy4EN988w0mTZoEAJg/fz769u2LjRs3KpOi69evIzo6Gra2tkhJSYGXlxcAYPHixXj88cexfv16zJ49W+M0w6+//hqzZs2Ci4sLfv31V/j6+gJQrOn57LPP8PTTT2PPnj3K8lFRURg7dixiYmKwcOFC+Pn5wdzcHAkJCcrYa5w4cQKjRo1CVFQUjh49Wu97AAB2dnaYPXs2rly5gsTEREyePFnrhIoap3fv3sYOgYiIyDAkEiDuKBD1XN3lfrms2E77YSfT1be9zopRbMBgawVUaviH9Yq/Eh7bOv4hveZcpYZlIhXS+q93dQSmhwIffK/Yxa4jH69RmxY7fa4xLl++DIlEgm7duml9TUBAAEaPHq3Va9Cg+uektmmjGAY9dOgQ8vPz6y3/4osvqiQVQ4YMgY2NDdq2batMiADFGpuAgAAUFRWhtLQUAJCQkIDi4mJMmzZNmRABiuTt+eefh1wux86dO9XqjI6OxowZM+Dt7Y3z588rEyJAkSzJZDL885//RE5OjvJVWFiIESNGQC6XIyEhAQAgkUiUscvlchQVFSE3NxdeXl7w9fXFhQtN9+C04uJiVFZWKv8uLS3FvXv3lH9XVVWhqKhI5Zq8vLw6/87Pz4cQotXXkZqa2irawTpYB+tgHayj5dVhcELgtr9b/e3wcwcOrwAOr4D0wFLc3bUA6OWtmLZ2eAWKvnlNeR7tXRTt8GyjnAan8l79dazK3UG1jgffKzcHlbLAA+9N3m3A1QF5xbdUmvJwf9x3/Ws2TXGp5jpMtc8fJlqB7777TuzYsUOrssXFxWLTpk1i//79Bo6qbuXl5SI8PFxIJBIhkUiEv7+/mD59uvj5559Vyq1bt04AEJ999pnK8dzcXOHm5iaCg4PV7v3MM88IAOKPP/4QQgixZMkSjfcQQohdu3YJACIiIkIIIcTdu3dFQECAsLS0FObm5iIgIEDcv39f7bphw4YJAHW+li1bpiyfmJgoHnvsMWFnZ6dWTiKR6Pz+zZs3TwAQSUlJOl9LDXPhwgVjh0BERKbE7jkhMKFpXh1mCCGTNSzOocuEeHF97eefXS1Eu+lCVFerHn/lP4o2VlTVff+2LwoxcY368YB/CREaWX98C2MVbbxRVH9ZE2Zy0+causGCVCqtdYe7h5mZmdW7o52NjQ2+++47nDp1Crt27UJycjK+/fZbxMbG4l//+hc+/fRTlfKWlpq3VDR7eCeTB4gHMnhdOTk5oVOnTkhJScHnn3+OuXPnarx3dHQ0PDw8NN4jODgYAHDx4kWEh4ejqqoKERERCAoKgqOjIyQSCd5++22kp6c3OE5qOo3d3ISIiKhZMpMAs58CzM0Nc/9nQxTbcn+f/Pdzim7dBeJPAmP7qa4XuvrX7KEH1zaFhwDbk4DsW0Cnv6a/JaYqdq1b8MByjZsliq2+H5RbBGz9STGa5emq/7a1IiaVFFVXVyMjIwM2NjY6P3MlJSVFr2uKAEVCExISgpCQEABAbm4uhg8fjg0bNiAyMrLWZENXXbootnHUFP/vv/8OQDE98EFWVlY4dOgQxowZg/nz50MqlWLhwoXK897eiq0ju3btitGjR9dZ/86dO3Hnzh1s3rwZL7/8svL4nTt3sGzZsoY1ippc+/b1LD4lIiJqiSQSYEao4e7/bAgwKACY/imQlgO4OwL/OaTY4GHlQ2uYnlih+O8fm/4+9u9wRQI1PBKYNwYorQDW7FVs4z39gbgXfwFcLQCeCAI6uAJ/FAKb/qt4ZtHHLxmufa2ESSVF169fR0VFBYKCguocYdEkICBA6x+F1tbW9ZYpKCiAq6uryghQ+/bt4eXlhYyMDNy+fVtvSdGIESPg6uqKL7/8EpGRkfD09FTG8OWXX0IikeDZZ59Vu65du3bKxGjRokWQSqV48803AQBTp07FV199hcWLF2P48OFqu7/l5eXB1dUV1tbWMP/rX14eHLkSQuCzzz5DVlaWXtpIhnflyhX06dPH2GEQERHpj4UZMLa/YUdRzM2BA8uAN7YD6/crdovr7w9sew3o5lX/9Z3cgWOrgNe3AW9+CVhZAGOCgY8iVEeZRvRRPIh2w0Hg9n3AxR74v0Bg2bNAXw3POSIVLTYpunLlinIjgYqKClRXVytHQhwcHNRGPgAop2k15NlETk5Oep0+tHHjRqxbtw5hYWEICAiAtbU1Tp06hZ9//hm9evXSaROI+nh7e2P+/PmIiopCr169MHnyZOWW3FevXsX8+fM17jwHAO7u7jh48CDGjh2Lt956C1KpFMuXL0dYWBjmzJmDjz/+GD4+Phg3bhw6deqE/Px8/P777zh16hTS09Ph4+ODMWPGYO3atViwYAHOnTsHDw8PnD17FklJSfDy8kJubq7e2kpERESkNZkcmD2qcfc4uqr+Mm0cgM//pXjV5cERogf17Ky+3fbDpjyueFGDtNikKD09XW2XirNnFQ+m8vT0VEuKSktLkZOTg3bt2il3fjOm0NBQnDlzBsnJyThw4ADkcjk8PDwwe/ZsvPPOO3qvb+nSpfD09MT69euxZcsWyGQyeHt74+OPP1ZbL/QwV1dX7N+/H08//TQiIyNRVVWFVatW4aOPPkLfvn3x6aef4ptvvkFZWRkcHR3h7e2NxYsXK0fW+vbti+3btyMqKgpxcXGQy+Xo3r07fvjhB0RGRjIpaiE6d+5s7BCIiIj0y6ctEBpk7CioGZCIxqzGJyKTkZeXp5x6SUREZHD2U4CyyvrLNZSZBPhwGrBovOHqoBbDJJ9TRES6KygoMHYIRERE+mNmBkQYcIMFalFa7PQ5an1u3ryp8qAvTWxsbNChQ4cmioiIiIhaJQszYGII4M7HTZACkyJqNmbNmoXvv/++zjKenp64ceNGE0VEDwoK4pxrIiJqJWRy4NVGbrBArQqTImo2Fi9erHFr8Ae5ubk1UTT0sIyMjAbt3EhERNSsSAD4ewJDehg7EmpGmBRRszFw4EAMHDjQ2GFQLSoqKowdAhERkR5IgDmjFQ9tJfoLN1ogIq04OjoaOwQiIqLGszIHpg01dhTUzDApIiKteHlp8dRtIiKi5szCTPGA0zYOxo6EmhkmRUSklcuXLxs7BCIiosaRyYFZI40dBTVDXFNERERERK2fRAL07AQM6GrsSKgZ4kgREWmlY8eOxg6BiIioEQQw5ylusEAaMSkiIq1UV1cbOwQiIqKGs7EC/t//GTsKaqaYFBGRVvLy8owdAhERmRL/9vq937RhgKOtfu9JrQbXFBERERFR8/PLe0hL+hWBgYH6uZ+Hs37uQ62SRAghjB0EETV/UqkUlpaWxg6DiIhMCL97qKlw+hwRaSUrK8vYIRARkYnhdw81FSZFRKSVsrIyY4dAREQmht891FSYFBGRVuzt7Y0dAhERmRh+91BT4ZoiItJKVVUVrKysjB0GERGZEH73UFPhSBERaSUtLc3YIRARkYnhdw81FSZFRERERERk0pgUEZFWOnToYOwQiIjIxPC7h5oKkyIi0opEIjF2CEREZGL43UNNhUkREWklNzfX2CEQEZGJ4XcPNRUmRUREREREZNK4JTcRaaWyshLW1tbGDoOIiEwIv3uoqXCkiIi0kp2dbewQiIjIxPC7h5oKkyIi0kppaamxQyAiIhPD7x5qKkyKiEgrNjY2xg6BiIhMDL97qKlwTRERaUUmk8HCwsLYYRARkQnhdw81FY4UEZFWLl68aOwQiIjIxPC7h5oKU28yGdXV1bhy5Yqxw2ixrl27xh2AiIioSfG7x3QFBATA3Ny8yepjUkQm48qVKwgMDDR2GERERERUj7S0NPTo0aPJ6uOaIjIZHCkyjtLSUgwYMACnT5+Gg4ODscOhh7B/mj/2UfPHPjKM/Px8hIaG4qeffkL79u0bdS/2UfP3cB819UgRkyIiMqi7d+/C2dkZJSUlcHJyMnY49BD2T/PHPmr+2EeGkZOTg06dOiE7OxsdO3Zs1L3YR82fsfuIGy0QEREREZFJY1JEREREREQmjUkRERmUtbU1VqxYwd2Dmin2T/PHPmr+2EeG4eTkhKFDh+plKhX7qPkzdh9xTREREREREZk0jhQREREREZFJY1JEREREREQmjUkRERERERGZNCZFRERERERk0pgUEZHeFBYWYvr06ejVqxdcXV1hY2MDf39/vPTSS8jMzNTpXgcPHsQTTzyB9u3bw97eHt26dcOiRYtQUFBgoOhbP332DwDExcXhscceg5OTExwcHPDII49g1apVBojcdOi7j2osWbIEEokEDg4OeozWNOmjjyoqKrB582aMGzcOPj4+sLW1hZ+fH6ZMmYJLly4ZuAWtnz4/R6dOnUJYWBgcHR3h5OSEUaNG4bfffjNM4CYkNzcX77//PoYOHQpPT0/Y29ujZ8+eeOONN1BUVKTTvfT1e4G7zxGR3qSnp2PGjBkICQmBt7c3bG1tkZGRga1bt6KyshLJyckIDAys9z6bN2/GzJkzERwcjKlTp8Le3h5nzpxBbGwsOnfujN9//x329vZN0KLWRV/9AwAzZszA9u3bER4ejuHDh8PMzAxZWVm4desWPv/8cwO3pPXSZx/V+O2339C/f3/Y2NhACIHS0lIDRW8a9NFHly9fRo8ePTBkyBCMGDECHTp0wLVr17Bx40bcv38fhw4dwvDhw5uoRa2Pvj5HycnJGDZsGLy8vDBnzhwAwKefforCwkKcPHkSQUFBhm5KqxUTE4N58+ZhzJgxGDJkCBwdHXH69Gls27YN7du3x5kzZ9C+fft676PX3wuCiMjATp8+LQCIV199VavyAQEBwtPTU5SXl6scX7p0qQAgdu/ebYAoTZeu/fP5558LAOKLL74wcGRUQ9c+qiGTyUS/fv3E2LFjxdChQ4W9vb2BIiRd+ujWrVviwoULasf/97//CSsrKxEcHGyACEnXz1H//v2Fo6OjyMnJUR7LyckRjo6O4sknnzRUmCbh4sWLIi8vT+345s2bBQCxcOFCre6jz98LnD5HRAbn7e0NALh9+7ZW5e/evYs2bdrAxsZG5XiHDh0AgKNEeqZL/wgh8P7776Nv376YNm0aAODevXsQnHRgULp+hmqsX78eaWlp+OSTTwwRFj1Alz5yc3NDnz591I4HBgbikUcewcWLF/UdHkG3PsrMzMSZM2cwceJEeHl5KY97eXlh4sSJOHLkCPLz8w0Wa2vXs2dPjSNBkydPBgCtPwP6/L3ApIiI9E4qleLWrVvIy8vD8ePHMWXKFADA6NGjtbp+5MiRSEtLw8KFC3Hp0iVkZ2fj+++/x6pVqzB06FCEhoYaMvxWrzH9k56ejqtXr2Lw4MFYtWoV3Nzc4OTkBBcXF8yaNYtTs/SksZ8hALh+/TqWL1+OFStWKH8Mkv7oo48eJpfLkZeXh3bt2ukrTJPWmD46c+YMACAkJETt3KBBgyCEwLlz5/QbMCEnJwcAtP4M6PX3gtZjSkREWvrhhx8EAOWrXbt24qOPPtL6+jt37oiJEycKc3NzlftMnz5dVFVVGTBy09CY/tmzZ48AINq2bSucnZ3FmjVrxM6dO0VERIQAIIYNGybkcrmBW9D6NfYzJIQQTz31lAgKChJSqVQIITh9Ts/00UcP27BhgwAgli9frqcoTVtj+mjt2rUCgDhw4IDauf379wsAYtOmTfoO2eRNnDhRABCJiYlaldfn7wUL7dMnIjIVd+7cQXR0tNbl586dC1dXV+XfgwYNwuHDh1FeXo60tDR88803uH37NmQyGSws6v/fjqWlJTp37owJEyZg7NixsLOzQ0JCArZu3Qpzc3Ns3ry5Ic1qNYzZP/fu3QMA3Lx5E4cPH0ZYWBgAIDw8HEIIbN++HYcOHcJTTz2le8NaEWN/hr7++mscOnQIJ06c0Kq8KTJ2Hz3s5MmTeP3119G7d2/8+9//1vn61siYfVRWVgYAsLa2VjtXM1Wrpowpa2wfPeijjz5CfHw8Zs6cqfUIj15/LzQgiSOiVi4rK0vlX1zqe2VkZNR5v9zcXOHm5iZmzpxZb93V1dXi8ccfFyEhIWojDkuWLBEAxOHDhxvVvpbOmP2zc+dOAUB4eXmpnfvpp58EALF48eIGt621MGYfFRUVCQ8PD/Hyyy+rHOdIkSpj9tHDzp49K1xcXISvr6/Kon5TZ8w+4kiRdvTVR5s3bxYSiUSMGTNG6xEeff9e4JoiIlLj4+MDIYTWL39//zrv16FDB4SFhWHLli2orKyss+yJEydw/PhxhIeHQyKRqJybOHEiAODYsWONa2ALZ8z+6dixIwBoXCDr6ekJQPfNAFojY/bRypUrcf/+fbzyyivIzMxUvsrLyyGEQGZmJrKzs/XZ3BbJmH30oPPnz+PJJ5+Es7MzkpKSVBb1mzpj9lHNQv3c3Fy1czXH2Ff66aOtW7di5syZGDFiBHbt2gVLS0ut6tb37wUmRUTUJMrLy1FdXY27d+/WWa7my6a6ulrtnEwmU/kv6Y+2/RMUFAQbGxuNPxRqFsh6eHgYJEZTp20fXb9+Hffv38fAgQPRtWtX5ev06dMoKytD165dTX56o6Fo20c1zp8/r3wwaFJSEjfEaALa9lH//v0BAL/++qvaueTkZEgkEgQHBxskRlOydetWvPzyywgLC8OePXs0Tlesjb5/LzApIiK9qe3p0WlpaUhMTESXLl3Qtm1b5fFbt27h8uXLKCkpUR6reaDejh07IJVKVe6zbds2AH9/WZFu9NE/dnZ2CA8PR35+Pnbv3q1yn40bNwJo3O5bpk4ffbRkyRLEx8ervQIDA2FjY4P4+HisW7fO4G1prfTRRwBw4cIFPPnkk3BwcEBSUhJ8fX0NGrcp0Ucf+fv7o1+/foiPj8eNGzeUx2/cuIH4+HiEhoZq9XBRqt22bdvwyiuvIDQ0FHv37lXbVvtBTfF7QSIEHy5BRPoxf/58HD58GGPGjFEOqV+8eBFxcXGQSqXYt28fRo4cqSwfFRWFlStXIjY2FhEREcrjzz77LHbt2oVevXrh+eefVy6c/OGHHzBo0CCcOHEC5ubmRmhhy6av/vnzzz8xYMAAlJSU4LXXXoOPjw8OHDiA/fv344UXXsD27duN0LrWQV99pMmwYcNw9uxZbpveSProo+vXryM4OBjFxcVYsWIFunTpolbPhAkT+Ey2BtLX5+jkyZMYPnw4OnbsiNdeew0A8Mknn6CgoAC//PILevfu3dRNazX27duHCRMmwMnJCatXr4atra3KeQcHB4wfP175d1P8XuCWNESkN//4xz+Qk5OD7777DoWFhaiurlY+6G7RokXo2bOnVvf56quvEB0djR07diAyMhJyuRze3t546623sHTpUiZEDaSv/uncuTOSk5OxdOlSxMbGoqSkBF26dMHatWuxYMECA7eiddNXH5Hh6KOPsrKyUFRUBEDxY6+2MkyKGkZfn6PBgwfj6NGjWLZsGZYtWwaJRILBgwcjPj6eCVEjnT9/HnK5HHfu3MHMmTPVznt7e6skRbXR5+8FjhQREREREZFJ45oiIiIiIiIyaUyKiIiIiIjIpDEpIiIiIiIik8akiIiIiIiITBqTIiIiIiIiMmlMioiIiIiIyKQxKSIiIiIiIpPGpIiIiIiIiEyahbEDICIiIqLWKSIiAtu3bwcA9OzZExcvXlQ5L5fL8d577yE2NhZ//vknOnfujKtXr2L16tXYunUr0tLSYGam+7/hx8TE4L333kNGRgasra1VzkVHR2PBggXKv2/evAl3d/cGtM74iouLce7cOdy6dQtlZWWwsLBAmzZt0Lt3b3h7e2t1j+rqapw9exYZGRmorKyEq6sr+vfvj44dOzaorqNHj+LKlSu11jd16lTY29s3rMEGxJEiIiIiItJZQkICJBJJra8vvvgCAODu7o64uDh88MEHavf4z3/+g8jISDzzzDPYunUrNm3ahLt37+LDDz/EkiVL1BKilStXwszMDJcuXVK714wZM2Bubo79+/cjIiICVVVV2LRpk1q5UaNGIS4uDhMmTNDTO2E8paWlkEqlCAgIwODBg9G3b18Air7R9B5pcvToUaSmpsLf3x+DBw+GmZkZDh48iPz8/AbV1aNHDwwfPlzlNWzYMGUS1RwTIgCQCCGEsYMgIiIiopZl9erVWLJkCdavX482bdqonR85ciTeeOMNHD16FH/88YfGewQHB8Pd3R0JCQnKY9HR0VixYgUKCgpgY2OjUr6wsBDe3t544YUXVBKeTz75BHPnzsU777yDpUuXAgCWLFmCb7/9FllZWZBIJGp1R0VFYeXKlS16pEgTuVyO3bt3QyaTYfLkyXWWLSwsxJ49ezBw4ED07t0bACCTybBz507Y2tpi3LhxeqkrPz8f+/btQ//+/fHoo4/q3qgmwOlzRERERKSz1NRUODs7Y86cORqTjvpUVFQgJSUFK1euVDkeGxuLp59+Wi0hAgAPDw9MnToVcXFxePfdd+Hu7o5jx47h9ddfR3h4uDIhAoBJkyZh9erVSEpKQmhoqO4NbKHMzMxgb2+Pmzdv1lv22rVrkEgk6NGjh/KYhYUFunXrhjNnzqC0tBQODg6NriszMxMA4O/vr2Urmh6nzxERERGRzlJSUvDoo482KCF66aWXYGtri+rqaixbtgwSiQQhISHIyspCamoqwsLCar12wYIFKC8vR0xMDLKzszFp0iR0794d27ZtUykXHBwMV1dX7N27V+f4NJHL5aioqNDq1dQTsaRSKSoqKnD37l2kpqYiOzsbXl5e9V5XVFQEZ2dnWFlZqRz38PBQnm9sXXK5HFevXkW7du3g6OioY8uaDkeKiIiIiEgnVVVVSE9Px5AhQ3Dr1i21887OzrC0tKz1+qlTp8LS0hKbNm3Cxx9/DFdXV3h7e+PkyZMAoFyvoknPnj0xYsQIbNiwAXv27IFUKsWePXs0jmj07dsXv/zySwNaqC4/Px8//vijVmWnTJnSpAlAcnKycl2PRCKBj48PHnvssXqvKysrg52dndrxmmP3799vdF3Z2dmorKxE165dtWqLsTApIiIiIiKdpKWlQSqVIiYmBjExMWrn09PTERAQUOv1oaGhSExMhL29PebMmaPcUGH58uUAAF9f3zrrf/311zFq1CgUFhbiwIED6NKli8Zyfn5+iIuL07ZZdXJzc8Po0aO1Kmtra1tvGSEEqqurtbqfubl5nSNyQUFB8PX1RVlZGa5du6b1vWUyGczNzTXWB0DjPXStKzMzE2ZmZvDz86s3HmNiUkREREREOklNTQUAbNu2TePUKW1GBVJTU9GzZ0+VHeaKiopgYWFR5zoWAMqRCj8/P4wcObLWcm3atEF5eXmtIyK6sLa2VtumujHy8vK0HnmaNGkSXFxcaj3v4uKiPB8QEID9+/cjISEB48ePrzOZsrCw0JjQ1BzTlDDpUpdUKsX169fRsWNHjWvEmhMmRURERESkk5SUFFhYWGDKlClq61F0uUddCU1tjhw5gkWLFqFr167IyMjAf//7X4wYMUJj2Zq1PQ1Z9/Sw6upqVFZWalXWxsam3ucrubi4YOjQoVrdT9eEzs/PD8ePH0dJSUmdyZSdnZ3GKXJlZWUAoNX22XXV9ccff0AmkzXrDRZqMCkiIiIiIp2kpqbC19e3wQnRnTt3kJ2djaCgIJXjbm5ukMlkuHfvnsY1OdeuXcPkyZPx6KOP4siRIwgICMC6detqTYpu374NOzs7raaz1aegoECva4rs7OzQrVu3RseliUwmA6BY+1UXNzc33LhxA1VVVSp9WVhYqDzfmLoyMzNhaWkJHx8fbUM3GiZFRERERKST1NRUDBo0qFHXA0CvXr1Ujnfv3h0AkJWVpXautLQU48aNg6WlJXbv3g1nZ2fMnj0bK1euxKVLl1S2la6RlZWl8XhD6HtNkT6Ul5er1SWXy5GRkQFzc3OV50fJZDKUlpbCxsZGOZXNz88PqampuHTpkvI5RdXV1UhPT4eHh4fKNEZd6qopn5OTA39/f1hYNP+Uo/lHSERERETNRn5+PgoLC5UJTEOkpKQAUE+KQkJCAABnz55VOSeEwLRp05Ceno6kpCTl2p7Zs2fjgw8+QHR0tMrDXGucP38eU6dObXCcD9L3miJ9OH78OKqqquDp6Ql7e3uUlZUhMzMTd+7cwaBBg1R2ACwsLMSPP/6Ivn37ol+/fgAUW2/7+fnh9OnTKC8vh7OzM65cuYJ79+6pTe3TpS4AuHr1KoQQLWLqHMCkiIiIiIh0UJPQ3Lx5E19++aXa+d69e6tNi3tYamoqvLy84OrqqnLcz88PjzzyCI4cOYIZM2Yoj0dFRWHPnj3YtGmTyvbPbdu2xfPPP4+4uDi89957KtO9zp07h+LiYowbN65B7WwJ/Pz8kJ6ejrS0NFRUVMDKygru7u4YMGCA1lPWhg0bBgcHB2RkZKCqqgqurq4YNWoUPD09G1VXZmYmbG1ttXpeUnPApIiIiIiItFYz9S02NhaxsbFq57/44gutkqKHR4lqzJgxA5GRkcrpWrt378aqVaswa9YszJw5U638ggULsGXLFsTExGDp0qXK4/Hx8ejcuTNCQ0N1aV6L4u/vr/VITIcOHTS+fxYWFhg0aFC90yF1qQsAxo8fr3XZ5kAimvqRu0RERERkEiIiIvDTTz/h/PnzsLCwqHMntBolJSXw8/PD6tWr8dJLLzWo3srKSvj4+ODNN9/EvHnzVM5VVFSgtLQUq1evxpo1a3Dz5k24u7s3qB5qPereK5CIiIiIqBGys7PRtm1bDBkyRKvyzs7OWLx4MdasWQO5XN6gOmNjY2FpaYlZs2apnYuJiUHbtm2xZs2aBt2bWieOFBERERGRQaSlpeHGjRsAAAcHh0btWKcv2dnZSE9PV/49dOhQtU0CyPQwKSIiIiIiIpPG6XNERERERGTSmBQREREREZFJY1JEREREREQmjUkRERERERGZNCZFRERERERk0pgUERERERGRSWNSREREREREJo1JERERERERmTQmRUREREREZNL+PwlwkV85L03WAAAAAElFTkSuQmCC", |
|
|
1582 |
"text/plain": [ |
|
|
1583 |
"<Figure size 800x550 with 3 Axes>" |
|
|
1584 |
] |
|
|
1585 |
}, |
|
|
1586 |
"metadata": {}, |
|
|
1587 |
"output_type": "display_data" |
|
|
1588 |
} |
|
|
1589 |
], |
|
|
1590 |
"source": [ |
|
|
1591 |
"model_final.fit(x_train, y_train)\n", |
|
|
1592 |
"explainer = shap.Explainer(model_final)\n", |
|
|
1593 |
"shap_values = explainer(x_train)\n", |
|
|
1594 |
"\n", |
|
|
1595 |
"# visualize the first prediction's explanation\n", |
|
|
1596 |
"shap.plots.waterfall(shap_values[4])" |
|
|
1597 |
] |
|
|
1598 |
}, |
|
|
1599 |
{ |
|
|
1600 |
"attachments": {}, |
|
|
1601 |
"cell_type": "markdown", |
|
|
1602 |
"metadata": {}, |
|
|
1603 |
"source": [ |
|
|
1604 |
"### Saving of the model\n", |
|
|
1605 |
"\n", |
|
|
1606 |
"We now save and compress the finally trained model in a pickle file." |
|
|
1607 |
] |
|
|
1608 |
}, |
|
|
1609 |
{ |
|
|
1610 |
"cell_type": "code", |
|
|
1611 |
"execution_count": 102, |
|
|
1612 |
"metadata": {}, |
|
|
1613 |
"outputs": [], |
|
|
1614 |
"source": [ |
|
|
1615 |
"pickle.dump(model_final, open('./model_lung_cancer.pkl', 'wb'))" |
|
|
1616 |
] |
|
|
1617 |
} |
|
|
1618 |
], |
|
|
1619 |
"metadata": { |
|
|
1620 |
"colab": { |
|
|
1621 |
"provenance": [] |
|
|
1622 |
}, |
|
|
1623 |
"kernelspec": { |
|
|
1624 |
"display_name": "Python 3 (ipykernel)", |
|
|
1625 |
"language": "python", |
|
|
1626 |
"name": "python3" |
|
|
1627 |
}, |
|
|
1628 |
"language_info": { |
|
|
1629 |
"codemirror_mode": { |
|
|
1630 |
"name": "ipython", |
|
|
1631 |
"version": 3 |
|
|
1632 |
}, |
|
|
1633 |
"file_extension": ".py", |
|
|
1634 |
"mimetype": "text/x-python", |
|
|
1635 |
"name": "python", |
|
|
1636 |
"nbconvert_exporter": "python", |
|
|
1637 |
"pygments_lexer": "ipython3", |
|
|
1638 |
"version": "3.8.9" |
|
|
1639 |
} |
|
|
1640 |
}, |
|
|
1641 |
"nbformat": 4, |
|
|
1642 |
"nbformat_minor": 4 |
|
|
1643 |
} |