|
a |
|
b/notebooks/USPSTF_recommendations.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"attachments": {}, |
|
|
5 |
"cell_type": "markdown", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"# USPSTF recommendations notebook\n", |
|
|
9 |
"\n", |
|
|
10 |
"P. Benveniste $^1$, J. Alberge $^1$\n", |
|
|
11 |
"\n", |
|
|
12 |
"$^1$ Ecole Normale Supérieure Paris-Saclay\n", |
|
|
13 |
"\n", |
|
|
14 |
"In this Notebook, we look at the results of the USPSTF recommendations on PLCO and NLST. " |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": 1, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"#Import of the librairies\n", |
|
|
24 |
"import pandas as pd\n", |
|
|
25 |
"import numpy as np\n", |
|
|
26 |
"import matplotlib.pyplot as plt\n", |
|
|
27 |
"from tabulate import tabulate" |
|
|
28 |
] |
|
|
29 |
}, |
|
|
30 |
{ |
|
|
31 |
"attachments": {}, |
|
|
32 |
"cell_type": "markdown", |
|
|
33 |
"metadata": {}, |
|
|
34 |
"source": [ |
|
|
35 |
"We now import both datasets." |
|
|
36 |
] |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "code", |
|
|
40 |
"execution_count": 2, |
|
|
41 |
"metadata": {}, |
|
|
42 |
"outputs": [ |
|
|
43 |
{ |
|
|
44 |
"name": "stdout", |
|
|
45 |
"output_type": "stream", |
|
|
46 |
"text": [ |
|
|
47 |
"(55161, 10)\n", |
|
|
48 |
"(48595, 10)\n" |
|
|
49 |
] |
|
|
50 |
} |
|
|
51 |
], |
|
|
52 |
"source": [ |
|
|
53 |
"#Loading of both datasets\n", |
|
|
54 |
"plco_file = './preprocessed_plco.csv'\n", |
|
|
55 |
"plco = pd.read_csv(plco_file)\n", |
|
|
56 |
"nlst_file = './preprocessed_nlst.csv'\n", |
|
|
57 |
"nlst = pd.read_csv(nlst_file)\n", |
|
|
58 |
"\n", |
|
|
59 |
"total_plco = len(plco)\n", |
|
|
60 |
"print(plco.shape)\n", |
|
|
61 |
"total_nlst = len(nlst)\n", |
|
|
62 |
"print(nlst.shape)" |
|
|
63 |
] |
|
|
64 |
}, |
|
|
65 |
{ |
|
|
66 |
"attachments": {}, |
|
|
67 |
"cell_type": "markdown", |
|
|
68 |
"metadata": {}, |
|
|
69 |
"source": [ |
|
|
70 |
"##### US RECOMMENDATION TOOL\n", |
|
|
71 |
"\n", |
|
|
72 |
"Now we look into the USPSTF recommendation tool on PLCO and NLST." |
|
|
73 |
] |
|
|
74 |
}, |
|
|
75 |
{ |
|
|
76 |
"cell_type": "code", |
|
|
77 |
"execution_count": 3, |
|
|
78 |
"metadata": {}, |
|
|
79 |
"outputs": [ |
|
|
80 |
{ |
|
|
81 |
"name": "stdout", |
|
|
82 |
"output_type": "stream", |
|
|
83 |
"text": [ |
|
|
84 |
"Pre-processed PLCO size: 55161\n", |
|
|
85 |
"Pre-processed PLCO with lung cancer: 2752\n", |
|
|
86 |
"Patients from PLCO who fit into US recommendation: 22609\n", |
|
|
87 |
"Patients from PLCO who fit into US recommendation with lung cancer: 2105\n", |
|
|
88 |
"------- USPSTF RECOMMENDATION ON PLCO --------\n", |
|
|
89 |
"TP : 2105\n", |
|
|
90 |
"FN : 647\n", |
|
|
91 |
"TN : 31905\n", |
|
|
92 |
"FP : 20504\n", |
|
|
93 |
"Precision : 0.093\n", |
|
|
94 |
"Recall : 0.765\n" |
|
|
95 |
] |
|
|
96 |
} |
|
|
97 |
], |
|
|
98 |
"source": [ |
|
|
99 |
"print(\"Pre-processed PLCO size:\", len(plco))\n", |
|
|
100 |
"print(\"Pre-processed PLCO with lung cancer:\", len(plco[plco[\"lung_cancer\"]==1]))\n", |
|
|
101 |
"\n", |
|
|
102 |
"plco_criteria = plco.copy()\n", |
|
|
103 |
"plco_criteria = plco_criteria[plco_criteria[\"age\"]>=50]\n", |
|
|
104 |
"plco_criteria = plco_criteria[plco_criteria[\"age\"]<=80]\n", |
|
|
105 |
"plco_criteria = plco_criteria[plco_criteria[\"pack_years\"]>=20]\n", |
|
|
106 |
"plco_criteria = plco_criteria[ (plco_criteria[\"cig_stat\"]==1) | (plco_criteria[\"age\"] - plco_criteria[\"ssmokea_f\"] <=15) ]\n", |
|
|
107 |
"\n", |
|
|
108 |
"print(\"Patients from PLCO who fit into US recommendation:\", len(plco_criteria))\n", |
|
|
109 |
"print(\"Patients from PLCO who fit into US recommendation with lung cancer:\", len(plco_criteria[plco_criteria[\"lung_cancer\"]==1]))\n", |
|
|
110 |
"\n", |
|
|
111 |
"TP_plco = len(plco_criteria[plco_criteria[\"lung_cancer\"]==1])\n", |
|
|
112 |
"FN_plco = len(plco[plco[\"lung_cancer\"]==1])-TP_plco\n", |
|
|
113 |
"TN_plco = len(plco[plco[\"lung_cancer\"]==0]) - len(plco_criteria[plco_criteria[\"lung_cancer\"]==0])\n", |
|
|
114 |
"FP_plco = len(plco_criteria[plco_criteria[\"lung_cancer\"]==0])\n", |
|
|
115 |
"\n", |
|
|
116 |
"print(\"------- USPSTF RECOMMENDATION ON PLCO --------\")\n", |
|
|
117 |
"print(\"TP : \", TP_plco)\n", |
|
|
118 |
"print(\"FN : \", FN_plco)\n", |
|
|
119 |
"print(\"TN : \", TN_plco)\n", |
|
|
120 |
"print(\"FP : \", FP_plco)\n", |
|
|
121 |
"print(\"Precision : \", round(TP_plco/(TP_plco+FP_plco),3))\n", |
|
|
122 |
"print(\"Recall : \", round(TP_plco/(TP_plco+FN_plco),3) )" |
|
|
123 |
] |
|
|
124 |
}, |
|
|
125 |
{ |
|
|
126 |
"cell_type": "code", |
|
|
127 |
"execution_count": 4, |
|
|
128 |
"metadata": {}, |
|
|
129 |
"outputs": [ |
|
|
130 |
{ |
|
|
131 |
"name": "stdout", |
|
|
132 |
"output_type": "stream", |
|
|
133 |
"text": [ |
|
|
134 |
"Pre-processed NLST size: 48595\n", |
|
|
135 |
"Pre-processed NLST with cancer: 1511\n", |
|
|
136 |
"Patients from NLST who fit into US recommendation: 48034\n", |
|
|
137 |
"Patients from NLST who fit into US recommendation with cancer: 1495\n", |
|
|
138 |
"------- USPSTF RECOMMENDATION ON NLST --------\n", |
|
|
139 |
"TP : 1495\n", |
|
|
140 |
"FN : 16\n", |
|
|
141 |
"TN : 545\n", |
|
|
142 |
"FP : 46539\n", |
|
|
143 |
"Precision : 0.031\n", |
|
|
144 |
"Recall : 0.989\n" |
|
|
145 |
] |
|
|
146 |
} |
|
|
147 |
], |
|
|
148 |
"source": [ |
|
|
149 |
"print(\"Pre-processed NLST size:\", len(nlst))\n", |
|
|
150 |
"print(\"Pre-processed NLST with cancer:\", len(nlst[nlst[\"lung_cancer\"]==1]))\n", |
|
|
151 |
"\n", |
|
|
152 |
"nlst_criteria = nlst.copy()\n", |
|
|
153 |
"nlst_criteria = nlst_criteria[nlst_criteria[\"age\"]>=50]\n", |
|
|
154 |
"nlst_criteria = nlst_criteria[nlst_criteria[\"age\"]<=80]\n", |
|
|
155 |
"nlst_criteria = nlst_criteria[nlst_criteria[\"pack_years\"]>=20]\n", |
|
|
156 |
"nlst_criteria = nlst_criteria[ (nlst_criteria[\"cig_stat\"]==1) | (nlst_criteria[\"age\"] - nlst_criteria[\"ssmokea_f\"] <=15) ]\n", |
|
|
157 |
"\n", |
|
|
158 |
"print(\"Patients from NLST who fit into US recommendation:\", len(nlst_criteria))\n", |
|
|
159 |
"print(\"Patients from NLST who fit into US recommendation with cancer:\", len(nlst_criteria[nlst_criteria[\"lung_cancer\"]==1]))\n", |
|
|
160 |
"\n", |
|
|
161 |
"TP_nlst = len(nlst_criteria[nlst_criteria[\"lung_cancer\"]==1])\n", |
|
|
162 |
"FN_nlst = len(nlst[nlst[\"lung_cancer\"]==1])-TP_nlst\n", |
|
|
163 |
"TN_nlst = len(nlst[nlst[\"lung_cancer\"]==0]) - len(nlst_criteria[nlst_criteria[\"lung_cancer\"]==0])\n", |
|
|
164 |
"FP_nlst = len(nlst_criteria[nlst_criteria[\"lung_cancer\"]==0])\n", |
|
|
165 |
"\n", |
|
|
166 |
"print(\"------- USPSTF RECOMMENDATION ON NLST --------\")\n", |
|
|
167 |
"print(\"TP : \", TP_nlst)\n", |
|
|
168 |
"print(\"FN : \", FN_nlst)\n", |
|
|
169 |
"print(\"TN : \", TN_nlst)\n", |
|
|
170 |
"print(\"FP : \", FP_nlst)\n", |
|
|
171 |
"print(\"Precision : \", round(TP_nlst/(TP_nlst+FP_nlst),3))\n", |
|
|
172 |
"print(\"Recall : \", round(TP_nlst/(TP_nlst+FN_nlst),3) )" |
|
|
173 |
] |
|
|
174 |
}, |
|
|
175 |
{ |
|
|
176 |
"attachments": {}, |
|
|
177 |
"cell_type": "markdown", |
|
|
178 |
"metadata": {}, |
|
|
179 |
"source": [ |
|
|
180 |
"### Saving a txt file\n", |
|
|
181 |
"\n", |
|
|
182 |
"Now we write a text file to concatenate these analyses. " |
|
|
183 |
] |
|
|
184 |
}, |
|
|
185 |
{ |
|
|
186 |
"cell_type": "code", |
|
|
187 |
"execution_count": 5, |
|
|
188 |
"metadata": {}, |
|
|
189 |
"outputs": [ |
|
|
190 |
{ |
|
|
191 |
"name": "stdout", |
|
|
192 |
"output_type": "stream", |
|
|
193 |
"text": [ |
|
|
194 |
"File edited\n" |
|
|
195 |
] |
|
|
196 |
} |
|
|
197 |
], |
|
|
198 |
"source": [ |
|
|
199 |
"with open('./USPSTF_recommendations.txt', 'w') as f:\n", |
|
|
200 |
" f.write('------------ COMPARISON WITH USPSTF ON PLCO------------ \\n \\n')\n", |
|
|
201 |
" f.write(\"Pre-processed PLCO size: \" +str(len(plco)) + '\\n')\n", |
|
|
202 |
" f.write(\"Pre-processed PLCO with lung cancer: \" + str(len(plco[plco[\"lung_cancer\"]==1])) + '\\n')\n", |
|
|
203 |
" f.write(\"Patients from PLCO who fit into US recommendation: \"+ str(len(plco_criteria))+ '\\n')\n", |
|
|
204 |
" f.write(\"Patients from PLCO who fit into US recommendation with lung cancer: \"+ str(len(plco_criteria[plco_criteria[\"lung_cancer\"]==1])) + '\\n\\n')\n", |
|
|
205 |
" f.write(\"------- USPSTF RECOMMENDATION ON PLCO -------- \\n\")\n", |
|
|
206 |
" f.write(\"TP : \" + str(TP_plco) + '\\n')\n", |
|
|
207 |
" f.write(\"FN : \" + str(FN_plco) + '\\n')\n", |
|
|
208 |
" f.write(\"TN : \" + str(TN_plco) + '\\n')\n", |
|
|
209 |
" f.write(\"FP : \" + str(FP_plco) + '\\n')\n", |
|
|
210 |
" f.write(\"Precision : \" + str(round(TP_plco/(TP_plco+FP_plco),3)) + '\\n')\n", |
|
|
211 |
" f.write(\"Recall : \" + str(round(TP_plco/(TP_plco+FN_plco),3)) + '\\n\\n\\n')\n", |
|
|
212 |
" f.write('------------ COMPARISON WITH USPSTF ON NLST------------ \\n \\n')\n", |
|
|
213 |
" f.write(\"Pre-processed NLST size: \" +str(len(nlst)) + '\\n')\n", |
|
|
214 |
" f.write(\"Pre-processed NLST with lung cancer: \" + str(len(nlst[nlst[\"lung_cancer\"]==1])) + '\\n')\n", |
|
|
215 |
" f.write(\"Patients from NLST who fit into US recommendation: \"+ str(len(nlst_criteria))+ '\\n')\n", |
|
|
216 |
" f.write(\"Patients from NLST who fit into US recommendation with lung cancer: \"+ str(len(nlst_criteria[nlst_criteria[\"lung_cancer\"]==1])) + '\\n\\n')\n", |
|
|
217 |
" f.write(\"------- USPSTF RECOMMENDATION ON NLST -------- \\n\")\n", |
|
|
218 |
" f.write(\"TP : \" + str(TP_nlst) + '\\n')\n", |
|
|
219 |
" f.write(\"FN : \" + str(FN_nlst) + '\\n')\n", |
|
|
220 |
" f.write(\"TN : \" + str(TN_nlst) + '\\n')\n", |
|
|
221 |
" f.write(\"FP : \" + str(FP_nlst) + '\\n')\n", |
|
|
222 |
" f.write(\"Precision : \" + str(round(TP_nlst/(TP_nlst+FP_nlst),3)) + '\\n')\n", |
|
|
223 |
" f.write(\"Recall : \" + str(round(TP_nlst/(TP_nlst+FN_nlst),3)) + '\\n\\n\\n')\n", |
|
|
224 |
"print(\"File edited\")" |
|
|
225 |
] |
|
|
226 |
} |
|
|
227 |
], |
|
|
228 |
"metadata": { |
|
|
229 |
"kernelspec": { |
|
|
230 |
"display_name": ".venv", |
|
|
231 |
"language": "python", |
|
|
232 |
"name": "python3" |
|
|
233 |
}, |
|
|
234 |
"language_info": { |
|
|
235 |
"codemirror_mode": { |
|
|
236 |
"name": "ipython", |
|
|
237 |
"version": 3 |
|
|
238 |
}, |
|
|
239 |
"file_extension": ".py", |
|
|
240 |
"mimetype": "text/x-python", |
|
|
241 |
"name": "python", |
|
|
242 |
"nbconvert_exporter": "python", |
|
|
243 |
"pygments_lexer": "ipython3", |
|
|
244 |
"version": "3.8.9" |
|
|
245 |
}, |
|
|
246 |
"orig_nbformat": 4 |
|
|
247 |
}, |
|
|
248 |
"nbformat": 4, |
|
|
249 |
"nbformat_minor": 2 |
|
|
250 |
} |